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ABSTRACT

CVD DIAMOND PIEZORESISTIVE
MICROSENSORS

By

Izzat Ibrahim Taher

Diamond piezoresistive pressure, acceleration, and strain sensors can be uniquely
suited to chemically harsh, high radiation and high-temperature environments. The
piezoresistive effect in both polycrystalline and homoepitaxial chemical vapor de-
posited (CVD) diamond films was studied. The diamond films were produced by
hot filament CVD system. The piezoresistive gauge factors, measured at 300 °K are
in the rahges of 200 - 550 and 6 - 25 for homoepitaxial and polycrystalline p-type
diamond films, respectively. The gauge factor for polycrystalline films decreases with
decreasing resistivity but increases with increasing temperature.

A multisensor microchip, with a number of diamond test structures and a mini-
mum feature size of 5 pm, was designed and fabricated using a six mask process. The
chip employs diamond both as an electronic and a mechanical material. An array of
cantilever beams of various sizes ranging from 100 to 1500 gm in length, from 20 to
150 ym in width and 3 to 5 ym in thickness were fabricated.

The residual total stress of the diamond films was investigated as a function of



methane fraction in hydrogen with or without addition of carbon monoxide. It was
observed that the magnitude of the total stress for films deposited in the absence of
CO was very high in comparison with the samples deposited in the presence of CO.
This result indicates that by using CO in the gas mixture, it is possible to control

the type and magnitude of the total stress in the diamond films.
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CHAPTER 1

Research Motivation and Goal

1.1 Introduction

Today, many sensors are based on silicon device technology. Many of these sensors
are piezoresistive. In contrast to an integrated circuit (IC), a sensor must be exposed
to its environment in order to function. The use of the piezoresistive silicon sensors
has been limited to dry, uncontaminated environments. In general, silicon devices are
not suitable for use in chemically harsh, high radiation and high temperature environ-
ments. Material technologies superior to silicon are needed for pressure, acceleration
and strain sensors to operate in such environments. A promising material for these
applications is diamond.

The high thermal conductivity, wide energy gap, chemical resistance, high dielec-
tric strength, radiation hardness, and moderately good carrier mobilities of diamond
make it an excellent material for use in sensors. However, natural semiconducting
diamond is generally p-type (type II-b) and is too expensive. Therefore, for the last
three decades a considerable amount of research has focussed on the development of
diamond synthesis methods. The major breakthrough occurred in the early 1980s,
when Spitsyn et al. [1] deposited thin diamond films on diamond and non-diamond

substrates using a chemical vapor deposition (CVD) technique. This has attracted the
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interest of many researchers and has led to the fabrication of low cost, diamond-based
semiconductor devices.

Most present devices are fabricated with p-type diamond formed by introducing
boron either during deposition of the film or by ion implantation after the film is
deposited. However, none of the currently available techniques are suitable for the
introduction of donor impurities with reasonable activation energies to create n-type
semiconducting diamond. Given the tremendous difficulties in developing a com-
pletely new electronic technology, it is not surprising that no crystalline diamond-
based semiconductor devices yet demonstrated even approach the performance of
their conventional silicon equivalents. However, diamond passive devices do not re-
quire crystalline diamond or n-type doping. CVD polycrystalline diamond films can
be used for such devices.

1.2 Objective of this Work

The focus of this work is to study piezoresistive properties of CVD diamond films. In
view of a huge application potential of diamond sensors, design, fabrication and test-
ing of a multisensor diamond microchip is undertaken. The chip contains a pressure
sensor, an accelerometer, a Hall structure, and a variety of other structures.

To overcome the limitation of silicon piezoresistive sensors, there is a definite need
for new sensors based on materials with properties that are superior to silicon. The
attractive and unique properties of diamond make it a viable candidate for sensors for
harsh environment applications. In order to realize the true potential of diamond as
piezoresistive material for strain gauges and micro sensor applications, high quality
doped and undoped diamond films are needed. The development of a technology
compatible with conventional Si fabrication technology, is also important. Therefore,

this work had the following objectives:
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(1) Grow device quality poly-diamond films.
(2) Characterize the piezoresistive properties of p-type diamond films.

(3) Design and fabricate a diamond multisensor testchip.

1.3 Organization of Dissertation

A review of silicon-based and diamond-based sensors technologies is presented in
Chapter 2. After an overview of diamond film deposition methods, nucleation, pat-
terning and doping of diamond films are also presented. Mathematical derivation
of the piezoresistive coefficients and gauge factor is also described in this chapter.
Chapter 3 describes the deposition system, sample preparation and characterization.
Nucleation, patterning and doping methods used in this research and their results
are presented in this chapter. The next chapter describes the design and fabrication
of a multisensor diamond microchip. Fabrication of micromechanical structures are
also described in this chapter. Chapter 5 describes the measurement techniques used
in this research. The dependence of gauge factor on doping and temperature depen-
dence is presented in Chapter 6. Finally, Chapter 7 summarizes the results of this

study.
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CHAPTER 2

Background

2.1 Introduction

In this chapter, an overview of the silicon and diamond-based sensors is presented.
Mathematical derivation of the piezoresistive coefficients and gauge factor is de-
scribed. Physical explanation of the piezoresistive effect in n-type and p-type silicon
is also discussed. Chemical vapor deposition methods of diamond film are described
in this chapter. Nucleation, patterning and doping of the CVD diamond films are

also presented.

2.2 Sensor Background

A sensor is a device that detects a change in a physical parameter such as temperature,
pressure, acceleration and light intensity and converts it into a signal which can be
measured, usually electrical (see Table 2.1) [2]. The most important effects for sensors
in silicon are shown in Table 2.2.

Solid-state sensors have seen rapid developments in the past two decades. The
key technology for this growth, is silicon micro-machining. Basically, silicon micro-

machining is used to fabricate precise three- dimensional silicon based microstructures
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Table 2.1. Signal domains with examples of measurable parameters.

[ Signal Domains Examples

Radiant signals light intensity, wavelength,
polarization phase etc.

Thermal signals temperature, temperature gradient,
heat, entropy etc.

Mechanical signals | force, pressure, acceleration, flow,
vacuum, thickness, displacement etc.
Electrical signals | voltage, current, electric field,
resistance, capacitance etc.
Magnetic signals | field intensity, flux density,
permeability etc.

Chemical signals | concentration, toxicity, pH,
reduction potential etc.

of great diversity, including thin diaphragms, microbridges and cantilever beams [3].
These micromachined microstructures combined with electronic circuits, have been
successfully employed to realize a large variety of solid-state sensors for measuring

most of the parameters listed in Table 2.1. The most popular mechanical structure

Table 2.2. Physical effects for sensors in semiconductor material.

I Physical Signals Effect |
Radiant signals photovoltaic effect, photoelectric effect,

photoconductivity,

Mechanical signals | piezoresistive effect, capacitive effect,

piezojunction effect, piezoelectric effect

lateral photoelectric and lateral photovoltaic effect

 Thermal signals Seebeck effect , temperature dependence of

conductivity and junctions, Nernst effect

Magnetic signals | Hall effect, magneto-resistance

Chemical signals | ion-sensitive field effect
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has been the thin diaphragm. The diaphragm is preferred for most applications.

In the present development of various solid-state sensors, pressure sensors are the
most successful and account for a major portion of commercial market. There are
basically two types of monolithic silicon pressure sensors, capacitive and piezoresistive.
The typical structures of a capacitive and a piezoresistive silicon pressure sensors are

schematically illustrated in Fig. 2.1 and Fig. 2.2, respectively. Both types of sensing

Metal Fixed Plate

N\

On-Chip Circuits

Silicon

\

Seal (Anodic Bonding)

Diaphragm
Reference Chamber

External Pressure

Figure 2.1. Typical structure of a capacitive silicon pressure sensor.

structures embody a thin silicon diaphragm formed by wet etching of the silicon wafer.
The silicon wafer is bonded to a glass substrate, normally a 7740 Pyrex glass wafer.

In the capacitive sensors (4], the front surface of the silicon wafer is anodically
bonded to the glass substrate. The thin silicon diaphragm and the metalization layer
on the glass substrate create a parallel plate capacitor. An applied pressure on the
diaphragm deflects it and causes a change in the diaphragm capacitance, which is
then detected by a capacitance readout circuitry and can be converted to a voltage

or frequency output.
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Figure 2.2. Typical structure of a piezoresistive silicon pressure sensor.

In the piezoresistive sensors, the sensing elements are p-type diffused or implanted
resistors in the n-type diaphragm material. As the diaphragm is deflected by an ap-
plied pressure, the stresses induced in these resistors cause a change in their electrical
resistance (the piezoresistive effect), which is detected and is usually converted to
a voltage change by Wheatstone bridge circuit [5]. The bridge output voltage is
usually amplified and possibly temperature compensated by circuitry usually fabri-
cated on-chip with the sensor. The layout of piezoresistors on the membrane and the

Wheatstone bridge circuit are shown in Figure 2.3(a) and Figure 2.3(b), respectively.

The capacitive sensors are more sensitive, less vulnerable to temperature changes,
consume less power, but are inherently nonlinear in their pressure response and are
scaled poorly [4]. On the other hand, the piezoresistive sensors are easier to manufac-
ture, can be easily scaled down, have a more linear response and, as a result, require

less signal conditioning and cost less.
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Figure 2.3. Layout of piezoresistors on the membrane (a) and Wheatstone bridge
circuit (b) for a typical piezoresistive pressure sensor.
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2.3 Piezoresistive Sensors

Currently, many micro-mechanical sensors are based on the piezoresistive effect in
silicon [6]. The piezoresistance effect is defined as the change in the electrical resis-
tance of a material due to the application of mechanical stress. The piezoresistance
effect was first discovered in 1856 by Lord Kelvin. In his experiment, he found that
the resistance of copper and iron wires increased when they were loaded in tension;
furthermore, he also noticed that the amount of change depended on the material.
Bridgman also studied the piezoresistive effect in single and polycrystalline metals
in the 1920’s [7, 8]. Additional work on the piezoresistive effect of many metals was
done in the 1930’s by Rolnick [9], Allen [10, 11, 12, 13] and Cookson [14]. These
effects are now used in the well-known, commercially marketed, metal wire and foil
strain gauges [15, 16].

The piezoresistive effect in semiconductors was first studied by C. S. Smith in the
mid 1950’s [17]. Smith measured the piezoresistance coefficients of germanium and
silicon, he found that the semiconductors exhibit piezoresistance coefficients much
higher than those of metals. Smith’s observations stimulated an increased interest
in the investigation of the effects of stress on other semiconductors [18, 19, 20, 21],
organometallic crystals and other materials [22, 23], and in the application of this
effect to micromechanical sensors [24, 25, 26, 27, 28, 29, 30].

A useful measure of piezoresistance is the gauge factor (GF), which is defined
as the fractional change in resistance -Arn per unit strain e. The magnitude of the
piezoresistive effect varies between different materials. Typical gauge factors for var-
ious materials in the longitudinal direction are shown in Table 2.3.

The magnitude of the gauge factor in some organometallic materials is large but,
they are not stable enough to be used in micromechanical sensors [22]. Consequently,

the use of these materials has not been as revolutionary as the use of silicon. How-
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Table 2.3. gauge factors for various materials in the longitudinal direction.

Material descriptions Gauge Factor (GF) |
metals [16]
Composition, percent
Advance 45 Ni, 55 Cu 2.0 to 2.1
Platinum, Tungsten 92 Pt,8 W 4.0
Nickel 100 Ni -12.1
Platinum 100 Pt 6.1
Silver 100 Ag 2.9
Copper 100 Cu 2.6
Semiconductors -
Types
Single Crystal Silicon [17, 24, 31] | p-type +100 to 4175
n-type -133
Poly- Silicon (18, 19, 32, 33, 34] | p-type 15 to 30
n-type -30
Germanium [17, 24] p-type +48.7 to +101.5
. n-type -147 to -157
Poly- Germanium (34, 35] p-type +30
n-type -30 to -40
Indium-antimonide [24] -60.5
Silicon Carbide n-type* a-SiC (6H)[36] | -55 to - 994
n-type A -SiC [37] - 26.6 to -31.8
n-type Poly-SiC [38] +5 to +10
Organometallic Crystals [22]
Strain (ue)
Magnus’Salt 500 500
Ir(CO),acac 500 - 100
Thick Film Resistors |39, 40 Inks ) +82 to +12.3 |
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ever, silicon strain gauges are not suitable for chemically harsh, high radiation [41]
and high temperature environments [5, 42]. Figure 2.3 shows the effect of the temper-
ature on p-type silicon strain gauges [42]. The gauge factor decreases with increasing
temperature for low doping level. The operating temperature of diffused or implanted
piezoresistive silicon sensors is often limited to 100 or 125 °C. Since the diffused gauges
and the diaphragm have different types of doping impurities, they create p-n diodes.
These diodes must be reversed biased in order to channel the current into the gauges.
In the case of a dramatic increase in reverse current, its flow in the diaphragm may
induce stray voltage that are not ;3asily controlled and may modify the bridge output
voltage. Therefore, silicon-based piezoresistive sensors in addition to the chemical
and radiation environment problems, can not operate over 125 °C due to the p-n
junction effect.

The piezoresistive effect of polycrystalline silicon films was also investigated by
many workers [18, 19, 33]. The gauge factor of the polysilicon films was found to
range from less than 10 to about 25 depending on the resistivity [19]. The polysili-
con piezoresistor offers the advantage of a potentially higher operating temperature
limit than diffused single crystal Si piezoresistor, because p-n junction piezoresistor
isolation is not required. Use of polycrystalline film resistors increases the operating
temperature range of the sensor to 200 °C. This is because the polysilicon piezoresis-
tors can be deposited on insulator layer, this is known as silicon on insulator (SOI).
However, the sensitivity of polycrystalline silicon piezoresistors is lower than that of

single crystal silicon resistors (see Table 2.3).

2.3.1 Piezoresistive Coeflicients

The piezoresistive effect is defined as the change in the electrical resistance of a
material due to the application of mechanical stress or strain.

From a mathematical point of view, the effect of homogeneous mechanical stress
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Figure 2.4. Effect of the temperature on p-type silicon strain gauges.

on the electrical resistance of a conducting crystal can be described generally in terms
of a set of constants. These constants are known as the piezoresistance coefficients.
However, in most practical cases the piezoresistive effect is characterized by the gauge
factor. The expressions for the piezoresistive coefficient and the gauge factor are
briefly derived next. More detailed derivations are given in appendix A and appendix
B for piezoresistive coefficients and gauge factor, respectively.

In a material subjected to stress Xi;, the electric field F; is a function of the

current density J; and stress Xy which can be written as [24, 30, 42).

E; = pi; Jj + mijiu J; Xu ,7,k,1=1,2,3 (2.1)

where p;; is the resistivity, and =;;x is the piezoresistive tensor. Equation (2.1) is
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derived in appendix A Eq. (A.9). The stress can be written as

4

X; forlongitudinal stress

X =4 X: for transverse stress (2.2)

X, for shear stress

In the case of crystals with cubic symmetry, such as diamond and silicon, =, is given

by [24]

po x11 if both J and X are in one of the {100} directions
po 712 if J and X are in one of the {100} directions but are perpendicular
to each other

Tijkl = ¢

po T4 for shear stress

\

(2.3)
where 7,3, 712, and x4 are the fundamental longitudinal, transverse and shear piezore-
sistive coefficients, respectively [17]. py is the resistivity under zero stress.

For longitudinal case ( the current density and the mechanical stress are all in the

same direction, e.g. [100]), the piezoresistive coefficient is given by
- 1
™Tm = p___PO -_— (2.4)

where the subscript 1 denotes [100] direction, X; = X;.

For transverse case, the piezoresistive coefficient is given by

- p 1
ma = 20 (2.5)

In Eq. (2.5), the current density is assumed in [100] direction whereas the stress is in
(010] direction.

In arbitrary directions, following similar derivation as (2.4) and (2.5) the piezore-
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sistive coefficients can be written as

S Sl NS (2.6)

for arbitrary longitudinal direction and

gz =Pl (2.7)
P X,
for arbitrary transverse direction. The primed quantities refer to arbitrary direction.
In arbitrary direction, the piezoresistance coefficient can also be expressed in terms
of the fundamental piezoresistance coefficients and the direction cosines.
For the longitudinal case, the piezoresistance coefficient can be written as [24, 42,
30].

X = %33 2(111 - X112 — T“)(lf mf + mfnf + nfl,’) (2'8)

and for transverse case, the piezoresistive coefficient can be written as
xe = Tia+ (711 — M2 — %) (21 + mPmf + nfnf) (2.9)

where [, m;, and n; (i = 1,2,3) are the direction cosines of the transformation.
For randomly oriented polycrystalline films the longitudinal piezoresistive coefficient
can be estimated by averagin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>