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ABSTRACT

THE DONALDSON INVARIANT AND EMBEDDED 2—SPHERES

By

W0jciech Wieczorek

In this thesis we study the Donaldson invariants for smooth 4—manifolds containing

an embedded 2-sphere with an arbitrary negative self—intersection. In [FS3] Fintushel

and Stern have described the relation between the Donaldson invariant of the manifold

X and its blowup X#W. We prove the existence of a similar relation for X =

Y UL N, where N is a neighborhood of the sphere with self—intersection —p, and L

is a lens space L(p,1). We describe the most efficient way of covering by Taubes

neighborhoods the points that contribute to Donaldson invariant. The technique we

develop allows to compute explicitly the coefficients in this formula in some particular

cases, which we ilustrate at the end of the thesis.
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1 Introduction.

For a long time Donaldson invariants were the most powerful tools for studying

smooth 4-dimensional manifolds. For a simply connected 4—manifold with b+ odd

and bigger or equal to 3, these invariants are defined as linear maps Dd : Ad(X) —* R

where Ad(X) is the set of elements of A(X) = Sym.(Ho(X) EB H2(X)) having degree

d. We provide the elements of H,-(X) with the degree %(4 — i). Donaldson’s original

definition of these invariants is subject to the restriction

3(b;(X) + 1)

2

and d > =3(b'{(X) + 1). The first version of the blowup formula in [FM 2] allowed the

removal of the second restriction. For a special class of manifolds (called simple type)

 d (mod 4) (1.1)

one can define Donaldson’s invariants for d Ew (mod 2), but in our paper

we shall stick to the original restriction. Since the discovery of Donaldson invariants

there arose a question about computing them. There are many elliptic surfaces for

which these invariants have been completely computed. Except for computing specific

examples one would like to develop general techniques, like the Mayer-Vietcris type

of argument: having the decomposition of the manifold Xonto X1 9X2 and knowing

the invariant for the components X1, X2 and some properties of Y (which in fact

are related to the invariant of the 4—manifold R x Y), determine the invariant for

the manifold X. When X2 is a neighborhood of an embedded sphere with negative

self-intersection, then R. Fintushel and R. Stern provided the following answer in.

[FS2]:

Theorem 1.2 Let X be an oriented simply connected 4-manifold, which contains an

embedded 2-sphere 5 representing a homology class a with self-intersection 02 _<_ —2.

Then there are polynomials BM = Bj’k($) and AM depending only on 02, such that

for z E A(o"')

D(02'°‘lz) = Bo,kDa(z) + 23:} D(02j‘lB,-,k(:c)z) if 0'2 = —(2k + 1),

and

D(ozkz) = Ao,kDa(z) + 229:1 D(0'2j-2Aj,k($)2) if 02 = —2k.

Here the degrees of the polynomials BM are equal to k — j, whereas the degrees of AM

are k — j + 1. The A0,): and Boy: are constants.

The proof of [F32] uses the compactifications of certain open sets in the moduli spaces

provided by C. Taubes [T1] and does not show how to compute Bj,k(:c) for specific

examples. In this paper we would like to provide an alternative proof of a theorem

that generalizes the above result. Namely we prove that for an arbitrary number of

classes 0 representing an embedded sphere with negative self—intersection we have

the following result:

Theorem 1.3 Let X be as above and suppose that X contains an embedded 32 with

self-intersection 02 = —p S —1. Then there is a formal power series B(p);n(:c,t) =

1



Ego 3‘1IB(p);n,j($)tj,
SUCh that:

D(exp(o - t) - z) = D(Zp B(p)m(:c, t)o" - 2)

n=1

There are few comments necessary about this formula:

1. Each B(p);n.j is a polynomial in a: of a degree d satisfying the inequality 2d + n S j.

2. For j _<_ p this formula provides nothing but the trivial statement D(o-’) = D(oj).

Later though we shall define the relative Donaldson invariants, for which a similar

formula will become nontrivial.

3. For given 2 E H2(X) only half of the terms in the above formula are nontrivial.

Due to the restriction (1.1), either D(o°""" - z) or D(o°dd - z) is always zero.

4. When p = 1 or 2, X admits an orientation preserving diffeomorphism that induces

a map on H2(X) sending 0 onto -0 and which is identity on 0*. Thus in this case,

D(o°ddz) = 0 for all z.

5. In the case p = 1, Fintushel and Stern [F33] have actually computed the function

B(:c,t) = 8(1);0° Using their result and Theorem 1.3 one can compute the functions

8“,)” for higher p.

In the proof of the above theorem we split the manifold X into N, the neigh-

borhood of the embedded sphere with negative self—intersection, and the remaining

part Y. These spaces are connected along the lens space L = L(p,1). Section 2 pro-

vides a review of the results on gluing. Roughly speaking by stretching the cylinder

L x (-—e, e) we obtain open sets U,- in the moduli space for the manifold X that can

be described in terms of moduli spaces of X1 and X2. In order to combine these open

sets back into a global one, we need to understand how these sets overlap. Section

3 describes the moduli spaces of connections on the cylinders R x L(p,1), which are

essential component of the sets U.- H Uj. In section 4 we describe the most efficient

way of chosing the sets Ug, which cover the points of the moduli space over X which

contribute nontrivially to the Donaldson invariant. We introduce a partial order in

the set {U.-} that will enable us to make inductive argument in the proof of the main

theorem. The next section is devoted to computations inside the sets Ug. In the same

section, by using relative Mayer—Vietoris sequence, we also show that the computa-

tions in Ug’S done separately suffice for proving a global result. Finally, in section 6 we

prove the main result. The techniques developed in this paper have wider application

than just proving the existence of a general formula. In the final section we compute

three examples of particular formulas. One of such formulas has been used by [F33]

as a necessary initial condition for their differential equation defining the function

Bj’k(X) in the blowup formula.

The author would like to thank Ronald Fintushel for introducing him to gauge

theory, as well as for guidance and help while working on this problem.



2 Construction of the Donaldson Invariants.

In this chapter we will recall some main points of the theory of Donaldson invariants.

The details can be found in [D1] and in [DK]. Let X be a simply connected four

dimensional manifold and P —) X be an SU(2) bundle over X. These bundles are

classified by their second Chern class c2(P) = It. For a generic Riemannian metric on

X, the space of gauge equivalence classes of anti—self-dual (ASD) connections on P

is a manifold of dimension 8]: — 3(1 + b+). We will denote this manifold by Mk(X).

Over the product Mk(X) x X there is a universal 50(3) bundle P which gives rise

to a homomorphism p : H;(X) —> H4“(Mk(X)) obtained by assigning to a E H;(X)

the class — ip1(P)/o. To each cohomology class p(a) corresponds a codimension 4 —i

variety V, contained in Mk(X) Let [:0] denote the generator of H0(X), and u = ”(3)

with V” its dual divisor. The class V can be also realized as —%p1(M£(X)), where

Mj',(X) is the moduli space of based anti—self—dual connections. The Donaldson

invariant is a linear function

D : A(X) = Sym,,(Ho(X) EB H2(X) ) —+ R

which assigns to the classes a], . . . ,0, E H2(X) and 3 copies of the generator [1] E

H0(X) the intersection number

#(Mk(X) n v,, n---v..n:=1vu) (2.1)

where the numbers k,r and s are related through 2r + 43 = 8k — 3(1 + b+). In

order to make sense of this intersection number, one has to compactify the mani-

fold Mk(X). For that purpose we need to define ideal connections on X as a pair

([w],(xl,:c2,.. .,:z:,)), where [w] is a point in Mk-_,(X) and ($1,232,. . . ,x,) is an un-

ordered s—tuple of points in X. To an ideal connection A = ([01], ($1,232, . . . ,x,)) we

associate its measure (or curvature density) pm 2 ||F,,,,||2 + 87r2 ‘ 63,.
r=l

Definition 2.2 (Compare [DK]) We say that a sequence of connections {can} in

Mk(X) converges to an ideal connection A = ([w],($1,a:2,.. .,a:,)) if the following

conditions are satisfied:

1. The measures pwn converge to [IA-

2. There are bundle maps pn : P’|x\{,, ,,,,,3,} —v P|x\{,,.1 ,,,,,,3} such that p;(w,,)

converges on compact subsets of punctured manifold to w.

Let us denote by s"(X) the nth symmetric product of X. Then the above definition

of convergence provides the set

1M,.(X) = Mk(X) u Mk-1(X) x X u Mk_2(X) x 32(X) u ...

with a topology. The Uhlenbeck compactification MAX) of Mk(X) is the closure

of Mk(X) in IMk(X) This is a stratified space with singularities. We can define a



fundamental class of a singular space (and thus introduce an intersection theory) if

the singular set is of codimension at least 2. This is the case when d > %(1 + b+). In

[FM 2] it is shown that the classes p(o) extend over the compactified moduli space,

whereas the class V extends only away from the lowest stratum, corresponding to a

completely concentrated connection. Under the above restrictions on the dimension

of the moduli space, the intersection of divisors V, takes place away from completely

concentrated connections, thus the intersection (2.1) is well defined. One can extend

the definition of the Donaldson invariants beyond the dimension restrictions by con-

sidering connections on SU(2) bundles over X#CW and using the first version of

the blowup formula from [FM 2].

2.1 Donaldson polynomials on manifolds with cylindrical

ends

In order to prove Theorem 1.3 we need to separate the sphere S with its tubular

neighborhood N from the rest of manifold X. As 6N = L(p, -1) (which we abbreviate

as L), we can represent X as Y LLJ N. From this point on, one could try to study spaces

of connections on the manifolds Y and N with boundary L. However for boundaries

as simple as lens spaces, it is more convenient to stretch the neck L X (—e, e) to an

infinite length and study spaces of connections on manifolds with cylindrical ends (see

the definition below). The advantage of this approach is that the restrictions over L

of connections with finite energy on bundles over X may be almost arbitrary, whereas

the connections with finite energy on bundles over a manifold with a cylindrical end

limit to a flat connection. The whole set of flat connections is a finite dimensional

variety, thus we have very limited set of possible “boundary values”.

In our formal description of this procedure we shall follow the notation of [MMR].

We are going to apply this theory to both N and Y; thus for the presentation of

general theory let us fix a closed, oriented, Riemannian 4-manifold (Z, gz) whose

boundary is a 3-manifold (L, g).

Definition 2.3 A Riemannian 4-manifold (Z, gz) is called a manifold with cylin-

drical end if Z has a subset isometric to [—1,oo) X L. This subset we will call the

cylindrical end.

We do not assume that the above is the only end of Z. We shall refer to manifolds

with two cylindrical ends as tubes.

Definition 2.4 On the manifold Z with cylindrical end let rz : Z -+ R be a function

which maps a cylindrical end onto {—1, 00) and is less than -1 on the complement of

the cylindrical end.

Define Z, to be 751((-oo,a]) and Zla.b] = Z1, \ Z, = T‘1([a,b]).

There is a corresponding theory of ASD connections on bundles over Z. Let E —) Z

be a C°° principal SU(2) bundle. For any Lilac connection w and any real number



6 Z 0 define the Li); norm on C§°(Z, Ap(ad E)) by

1:

“sun; = (2 /, wares-Tr” (2.5)
i=0

Set Li“); to be the completion of Cg°(Z,A”(ad E)) with respect to this norm. By

A” we denote the set of all connections with the norm defined above. When 6 = 0

we abbreviate Lips by Li”. Let 93 be the group of L3 gauge transformations of E .

Then BE denotes the quotient AE/QE . Define also 92; to be a group of those gauge

transformations which are the identity on a fixed fiber Ex of E. If we divide .43 by

gg, then we get the space of based connections denoted by 873, or 3,”; if we want to

indicate the point over which we fix the fiber. The same space can be also obtained

as

3;; = A}; X E;- (2.6)

91-:

Every element of the space Bf; can be represented as a pair [00, p,], where w is a gauge

equivalence of connection in BE, and p, is a framing of E at 1:. For any complete

Riemannian metric on Z, the energy k of an ASD connection w is:

_1 2

kzgfi‘éterA’FFw: leng

—1

Q3“

(the last equality holds only when w is ASD). Note that, unlike in the case of closed

manifolds — the number k need not be integer. In fact we shall show in the next

section that k is of the form %, where n is an integer and p is the self-intersection of

5'. With this understood, denote by Mk(Z) the space of gauge equivalences classes

of g—ASD connections on E with the energy 1:. Again, if we divide the space of ASD—

connections by g0 then we obtain the space of based connections denoted Mz(Z), or

M}:(Z) when we will need to indicate the point at which the connections are based.

Let x(L) denote the space of gauge equivalences of flat connections in BE(L). This

space is called the character variety of L and is identified with

Hom(7r1(L), SU(2) )/AdSU(2)

Similarly, the flat connections modulo based gauge transformations are identified with

’R(L) = Hom(7r1(L), SU(2)), the representation variety. According to Theorem 4.6.1

of [MMR] there is a well-defined map 3° : MflZ) —) ’R(L). This map descends to

0 : Mk(Z) —+ x(L). These maps associate to every ASD connection w (or gauge

equivalence class [w]) the limit lirntnoohulth]. This limit is (the gauge equivalence

class of) a flat connection on L. In the particular situation when L = L(p, 1) the

character variety is just [’23] + 1 isolated points. Let us denote the elements of the

character variety x(L) by numbers {0,1,2, . . . [g] }. Notice that x(L) is a quotient

of Z, by the Z2 action given by multiplying by -1. Thus for given p there is a map

Z —> x(L) that is a composition of the modulo p quotient of integers with the above

Z2 quotient.



Definition 2.7 We will refer to the elements 0 and p/2 E x(L) as trivial elements of

the character variety. Thus for p odd there is only one trivial element. The remaining

elements of x(L) we will call nontrivial.

The representation variety consists of an isolated point or points corresponding to

trivial elements in x(L), and a copy of 32 corresponding to every nontrivial element

of x(L). For given m E x(L) define Mk(X,m) as 0'1(m). As we have seen before,

the number lc is of the form 3. If the moduli space Mk(X, m) is nonempty, then the

numbers m and k are not arbitrary. In order to describe their relation we shall define

the Chern—Simons function. Every connection w on the trivial bundle 0 = SU(2) x Y

we can write as w = O + a, where O is the trivial connection and a E 01(Y,ad0).

Then define:

CS(w) = Atr(a/\da+ gaAaAa)

The gauge transformation may change the value of the function CS by an integer,

thus Chern—Simons function descends to a function CS : B(Y) —) R/Z. According

to the Chern—Simons theorem we have

k E C'S(m) mod Z

The formal dimension of Mk(X, m) is given by the formula:

1 0

_ h_'1_+_h_m + BLT.) (2.8)

3

8k — §'(0(Z)+X(Z)) 2 2

Here o(Z) is the signature and x(Z) is the Euler number of Z. The hi” are dimensions

of cohomology groups H‘(L, ad m) and p(m) is the Atiyah—Patodi—Singer p invariant

for the signature complex twisted by ad(m) <8) C. The invariant hm = hln + hg, is

equal to:

1 when m is nontrivial (2.9)
hm = { . . .

3 when m 18 triwal.

It is important to notice that the invariant hm does not depend on an orientation of

L, whereas p(L) = -—p(L). We will give more explicit formula for p(m) in Lemma 3.8.

For the sake of later gluing theorems, we need some facts about ASD connections on

Z in local coordinates.

Definition 2.10 Let I‘ be a flat connection on a SU(2) bundle 17 over L, and Up be

an open neighborhood of I‘ in the space of gauge equivalence classes of connections on

17. Let I be a subinterval of [0,00). Following [MMR] we say that an L3 connection

w = I‘ + A(t) + a(t) dt on I x 17 is in standard form with respect to Up iffor all t E I

O A(t) 6 Up

e a(t) E Ker(A1~)l

where Ar is the Laplacian on 0°(L,ad (I‘)).



Theorem 2.11 (Corollary 4.3.3 in [MMR]) There is a constant 50, depending

only on L, such that for a generic metric g on Z and for all 1 S a S b S 00 and any

Lilac g—ASD connection w offinite energy satisfying

b+1 2

/ lat<ah
a-l

there is a neighborhood Up and an L3,“, bundle isomorphism d) : [a, b) x 17 ——> E lla.b)x L

such that 45%..) = F + A(t) + a(t) dt is in standard form with respect to Up.

An important consequence of the previous theorem is:

Lemma 2.12 Let Z be a Riemannian manifold containing a submanifold isometric

to C1 = (—l, l) x L for some 3—manifold L whose character variety x(L) consists of

finitely many points. Then there is an e > 0 such that for every ASD-connection w

on an SU(2) bundle E over Z satisfying

.LHRWSC (am)

there is a unique gauge equivalence class offlat connections [F] E x(L) which is closest

to the restriction w|{o}xL in the L3,)2 norm.

Proof: Let 6 be the minimum distance between any two points in the character

variety x(L) in the L3” norm. Consider the set Uz of all ASD connections on Z

satisfying (2.13), and the set U0, of corresponding restrictions to 01. Because of

the energy bound, any sequence of connections on E Ia, cannot bubble on C1. Thus

the set U0, is compact as is the corresponding set Uz in the Uhlenbeck compact-

ification. Hence by Theorem 2.11 we can cover Uz with finite number of the sets

U1! = {wlwkqu 6 Up for all t E (—l, 1)} Now we want to estimate the distance

llwl{t}xL — FHLi/z by the curvature of w on BIC;-

According to Lemma 4.1.1 of [MMR] there is a 61 such that for every connection A

on the S'U(2) bundle over L and satisfying “FA“ Lg), < 61, there is some flat connection

I‘A such that

IM—Pmnn<fl2

which, because of our definition of 6, must be unique. Thus to conclude the lemma

we need to bound the energy of the curvature of calm“, by the curvature of the

connection w on the cylinder C1. This is done in Lemma 3.5.1 [MMR] which provides

a constant C1 > 0 such that the following estimate holds:

2

(wamla)scql um:
[t—l,t+l]xL

which combined with Sobolev inequality ”FllL'fl, S C; - ||F||L¥ gives that

2

2

(llFWI{¢}xLllL§/2) _<_. 0/01 lel



Thus when 6 < 5% every connection as satisfying (2.13) has a unique flat connection

IL. 0

Once we consider the based connections [0), pn] E M24,+(X1, Cdo), then we can

“recover” the flat connection in representation variety.

2.2 The Gluing Theorem

A goal of this subsection is to set up tools for covering the moduli space Mk(X) by

well—understood open sets. We next describe the gluing procedure which joins con-

nections on two manifolds with cylindrical ends. We follow [MMR] and [MM]. For any

m E x(L) and real positive numbers Ti let us define open sets Mlet (X*, [T*, e], m) C

Mks: (X*3, m) as containing those ASD connections wi on the bundles E*, for which

E, 2<[WWII in. e

Whenever possible we are going to skip some of the indices in this notation. Thus

the lack of the e parameter means that eis equal to 50/2, where so is taken from

Theorem 2.11. Analogously we can define a based version M;(X, T, m) of the above

sets. It follows from [MMR] that for generic metrics on Xi and any lei > 0 the

spaces Mlea: (X‘1‘, T*, m) are smooth manifolds. Consider the fibered product

0,31,“ = Mfi_(X_,T',m)§gM§+(X+,T+,m) (2.14)

We now describe how to glue together two connections [w+,w_] 6 0,31,“. Let E0 =

S'U(2) X L be the restriction of E3: to L. For a constant do chose the numbers

Ii 2 Ti: +d0 and construct a manifold X; by identifying the cylinders XIII —do.l++do] C

X(l++do) with X[7._doJ-No] C X(1-+do). Let us denote by Cdo the cylinder on which the

identification takes place. Note that X; contains a subset isometric to a larger cylinder

C1 of the length I. This construction provides gluing of manifolds Xf: and Xf. . When

it is clear from the context, we are going to skip subindexes Ii indicating finiteness

of the cylindrical end, thus using the symbol Xi for the spaces with finite or infinite

cylindrical ends. Theorem (2.11) gives bundle isomorphisms 17* : [T*,oo) x E0 —)

Eihrim)“ such that (17*)*(wi|[1¢_do,oo)) = I‘ + A*(t) + ai(t) dt, where I‘ is a flat

connection on E0. These bundle isomorphisms provide a clutching of the bundles Ed:

through an isomorphism 17’(17+)‘1 : E+|{z+}xL —-> E" |{¢-}xL. Also if both connections

wt are based at a point (l*,n) E {1*} X L, then the above isomorphism provides a

basing at a corresponding point in Cdo. Using the partition of unity {¢"', 43‘} on C4,,

we can define a glued connection by:

w+ on Z340;

’iz(w+,w") = W! = F + ¢+(A+(t) + 0+(t) dt) + ¢’(A'(t) + 0"(t) dt) 01! Cato;

w" on Z,‘__do;

When the connections w'flw" vary in some open sets U1', U', then '71(U+, U‘) de-

scribes an open set in the space 35;. The goal of the gluing theorems is to project



this set onto the space of ASD connections. The main result of [MM] answers when

can we do it:

Theorem 2.15 (Propositions 4.1.1 and 4.2.1 in [MM]) There is a constant Io

depending only on the sets U31,“ such that for every ([w+,w"]) E Uzi,c+ and l 2 4do

and do 2 lo there is a unique solution u = u(w+,w') to the equation

F+(iz(w+,w') + u) = 0

This solution u satisfies the estimate

—§6I

"‘4ng S 006 3

where 6 is the minimum of the lowest eigenvalues of Laplacians Am, m E x(L). More-

over the assignment ([w+,w']) —) :yz(w+,w‘) + u defines a unique smooth map 71" :

Ugh -+ M£++k_ (X;) that is a difleomorphism onto an open subset of M2++k_(X1).

This difi'eomorphism factors through to 7: : Ufl.k— = Ufl,k_/SO(3) -—> Mgr”? (X1).

We can use the above theorem also for the purpose of reversing gluing. Let X;

contain a fixed cylinder Cd = (-do, do) X L for some d 2 do. Define A111,”)C+ (X1, C4)

to be the set of those (.0 E M1,_+k+ (X1), for which the following holds:

/ “Poi”: < 50/2

Cd

/X_ ||Fwi||j —87r2k- < 50/2

I

j + “mug—8791c, <eo/2

XH-

Let ML.“ (X1, C40) denote the corresponding set of connections based at some point

n E Coo. The following claim describes the domain of the “ungluing”:

  

Lemma 2.16 Assume that l and do satisfy the assumptions of the gluing theorem.

Then there is a smooth map

Mitt—.19. (XI, C(10); u 012.,“

the union taken over all m E x(L) such that CS(m) E k+ E —k_ mod Z.

Proof: According to Lemma 2.12 for every connection w from ML,“ (X1, Coo) we

can find a unique flat connection I‘,, s 6 {0,1, . . . , [123] + 1} such that I‘, is the closest

to wlcdo. Define two approximately ASD connections (12* = :1, (mlx1 , 6’) on the bundle

Ei over the spaces with infinite cylindrical ends Xi. The assumptions on I and do

guarantee that we can use the gluing theorem (2.15) for perturbing these approximate

connections to a pair of ASD connections [w',w+] 6 (7,31,,+. Cl

Now we are interested in describing the image of the above “ungluing” map. Our

main statement is the following:
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Lemma 2.17 For every 6 satisfying 0 < e < so there is a length lo such that for

every I _>_ lo the set

It... (x+i [1:50 _ ellggMIc_(X-? [1’50 _ 6l)

is in the image of ungluing map p defined on ML,“ (X;,Cdo).

Proof: Let us begin with a simple topological lemma:

Lemma 2.18 Let 8, denote a ball in R" centered at the origin and with a radius 5.

Let f : Bc —) R" be a continuous map such that for every :1: 6 Be, dist(f(:c),a:) < 6.

Then the center of Be is in the image off.

Proof: Let S; = 38‘. Suppose that f maps B, to R" \ {0}. Then the restriction

f : S, -—> R“ \ {0} is homotopically trivial. On the other hand the map

F(:c,t)=ta:+(1—t)f(:c)

provides a homotopy between f and identity map (the interval ta: + (1 — t)f(1:) never

passes through 0 as dist(f(:r),:z:) < 6). This contradicts the triviality of f. D

Definition 2.19 Let U be an open set in the Riemannian manifold M. For a positive

number 6 define the sets

U+¢ = {m E MIdist(m,U) < e}

U_c = {m E M|B(m,e) C U}

Corollary 2.20 Let M be a manifold with a radius of injectivity bounded from below

(for example ifM is precompact) and let U be an open subset in M. Then there exists

an 61 such that for every 6 < 61 and every map f : U —> M such that dist(f(11:), 2:) < e

the set U.c is in the image off.

Let us come back to the proof of Lemma 2.17. Consider the map

p 0 7 = M2,.(X+, [’+,€o]) goMiJX', [l—,€ol) -* MAO“) 53M;_(X-)

Both components 7 and p are defined by the gluing theorem. If we replaced these

maps by corresponding approximate gluing, then after restricting the connections

over Xf: and X; we would get an identity. The theorem (2.15) tells us that while

stretching the neck we can make the actual gluing as close to the approximate one as

we want. Thus it remains to show that the L2 norm of the curvature can be estimated

by an L3 norm of the connection, which is due to the Sobolev embedings theorems

(see [P]):

IIFA - FA+al|L2 = Ildaa + a A (III S ”0|ng + Clllallu S Czllalng
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3 The description of instantons on the cylindrical

end.

Certain S'U(2) bundles over R X L can be obtained from SU(2) bundles E over a

sphere S4 by dividing by a Z, action. It turns out that the condition for bundles

to arise in this way is closely related to the existence of ASD connections on these

bundles. Following [FL], we can describe the Zp-invariant bundles over .S'4 as

(01 x SU(2),T2)q(Di x SU(2),T1) (3.1)

where f = e277” acts on D; C C2 via {(21,22) = (216,225), and for g E SU(2),

T.(.)=..(expgm o ),..dT.(.)=..(expgm' 0 )
exp {-m exp {-m’

We will refer to the numbers m and m’ as the weights of the Z, action. The transition

function F : S3 x SU(2) —-> S3 x SU(2) of (3.1) can be written as F(a:,g) = (:r, f(a:)g)

for f : 53 -—) 3U(2) The Z, equivariance of F means that f(:c£) = T;1f(x)T1. No—

tice that the degree I: of the map f is equal to the second Chern class of the bundle E.

We denote the bundle obtained from the above construction divided by a Zp action

by E(k, m, m’). [FL] adapted to the case of S'U(2) bundles over R X L(p,1), gives a

construction of Zp equivariant bundles with weights (m, m’) and degree k = m’2 —m2.

Let us now denote by Mk/p(R x L, [m, m’]) the moduli space of ASD connections on

a bundle E(k, m, m’). Before quoting the results of [Au] describing moduli spaces of

ASD connections on E(k, m, m’), we need to comment on orientations. The construc-

tion of ASD connections is based on the identification of S"1 with quaternions H; thus

when R X L is the boundary of a complex manifold M, the orientations in [Au] agree

with the convention that the weight m is from “the manifold side” and m’ is from the

other side. In our particular application we are studying the spaces R X L as the ends

of the space N = W, thus we have to reverse orientations coming from the complex

structures. We can do it in two ways: either by changing the convention about the

order of weights or by changing L(p, q) to L(p, —q). In this paper we have chosen the

second way, thus even though the boundary of N is L(p, —1), while quoting Austin’s

paper we fix q = +1. The main construction in [Au] (Lemma 5.1) gives a description

of ASD connections on the bundles E(In, m, m’) for which there exists a solution (a, b)

to a system:

a E m + m' (mod p)

b E m' — m (mod p)

a - b = k (3.2)

These bundles are called 31 equivariant. (The reason for this name is that the Z,

action on these bundles extends to an 5'1 action). To state the general result we need

one more definition:
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Definition 3.3 A Z, equivariant bundle E(k, m, m’) is a composite of Z, equivariant

bundles {E(k,-,m,-, m2) 2;, if and only iffor all i = 1, 2, . . . , n we have:

ki > 0; k = Z; ks; m 5 m1 (mod P); m:- E m,“ (mod 1’)? m1, 5 m’ (mod P)

Lemma 3.4 (Compare Lemma 5.2 in [Au].) A Z, equivariant bundle supports an

invariant ASD connection if and only if it is a composite of S'1 equivariant bundles.

The bundles over RX L may have noninteger second Chern numbers (which we will

often refer to as energies). In fact the minimal amount of energy on a nontrivial moduli

space on R X L is 1. This ostensibly leads to large number of possible distributions of

energy on the cylinder. We would like to use (3.4) to limit the number of possibilities.

Lemma 3.5 For fixed m and m’ let k be the minimal amount of energy for which

E(lc,m,m’) supports an ASD instanton. Then

k— m’2—m2 ifm’>m

— m’z—m2+p(m—m’) ifm’<m

Proof: As m,m’ S p/2, then (a,b) = (m + m’, m’ — m) is the smallest nonegative

solution to (3.2) in the case m’ > m, and (a, b) = (m — m’,p— m —m’) is the smallest

solution in the case m’ < m. The product of these numbers gives the required

result for .S'1 equivariant bundles. Now assume that E(k,m,m’) is a composite of

{E(k;,m,,m$)}?=1. The in the case of m’ > m we have:

k=zk.2m3—m2+zp(m.~—mz>2m2-m:
iEI

Here I is the set of those indexes i for which m,- > m2. In the case m’ < m we have:

’8 Z mf-mi+2:ezp(mi—mi) Z mE-mi‘l’Zi‘flMme-mi) = mf-mi+P(m1-m$.)

As an example we can make the following list representing the minimal energies

required for “tunnelling” between flat connections m and m’ on R x L(4,1).

m\m’ 0 1 2

0 0 1/4 1

1 3/4 0 3/4 (3.6)

2 1 1/4 0

 

 
The dimension of the moduli space M = Mk/p(R x L(p,1), [m, m’]) is

, 8k ”“1 ' ' ’ '
dimM = $ — 3 + n + 3 Zeofl?) - (MR?) — mflfln— )

Pi=1

where n E {0,1,2} is the number of m,m’ different from 0,p. By using Fourier

expansions, this formula can be simplified to:

dim Mmz/p(R X L(p,1),[0,m]) = 4m — 3 for m S p/2 (3.7)



13

Using this result and the gluing theorem we can complete our calculations of the

dimensions of moduli spaces M,‘(Y,m), where K. is in fiZ. A similar result has been

observed in [MMR] in Lemma 13.4.1:

Lemma 3.8 The dimension of MK(Y,m) is equal to

1 8 2

8,. — g-(0(Y)+x(Y)) - E,- + —’p1+1—4m

when m is nontrivial, and

[
\
D
I
C
—
O

8.. — gem + w» —

if m is trivial.

Proof: By Lemma 3.5, there is a moduli space of ASD connections on N with

boundary value m and with energy at. What is more, this is the smallest energy

giving a nontrivial moduli space on N with this boundary value. Gluing together

the bundles over Y and N we obtain a bundle over X with energy it + ”I‘D—2. From

the gluing theorem (2.15) we have that dim MK(X, m) = dim M,‘(Y, m) + hm+ dim

Mm2/,(N, m), which for m nontrivial, by using (2.8), gives the following equation:

3 1 m 2 3

81¢ — §'(U(X)+1+X(X)—2) — 5 + a—+1+4m—3 = 8(rc+—T:—)— 5~(o(X)+x(X))

here we used 0(X) = a'(Y) — 1 and x(X) = x(Y) + 2. Solving this equation for pm

and plugging the result into (2.8) gives the first formula. The second formula can be

obtained similarly after gluing in the trivial connection on N. C]

Similar calculations give:

dimMK(N,m) = {8n — 3 + 4m — 8—2:: if m is nontrivial (39)

SK. — 3 . if m is trivial.

One can notice that the first formula gives 8n — 3 for m = 0 and ‘23, so it is valid in

both cases. '

In order to formulate the result which allows us to quantize moduli spaces on the

cylinders, we need to notice a simple fact connected with gluing. This fact has also

been mentioned in [F31]:

Lemma 3.10 Let M° = Mfi(X,m) for a nontrivial element m of the character

variety. Then the base point fibration M° —> M reduces, i.e. there exists an 51-

bundle Q such that M" = Q X 50(3).

51

Proof: Consider the map 0" : M° —» 52 C R(L). This map restricts over each

fiber as 0°|50(3) : 50(3) —> 52 that sends g —> gég’l. Thus for fixed point pt E 52

(0°)’1(pt) is an 51 bundle Q over 52 for which M" = Q X 50(3). Cl
51

The moduli spaces on the cylinders R X L have two boundary value maps

63: : Mf,(R X L(p,1),[m,m']) —; ’R(L)
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with n E Z,,. Let us recall that according to our convention on the cylinders we

consider as positive the direction from N to Y. Thus a: points toward N, and

61 points toward Y. With this understood, define MEP(R x L(p,1),[m,m’]) to be

(afl)'1(pt) for any pt E Im (82). Thus when m is a trivial element of x(L), then

MEP(R X L(p,1), [m, m’]) is the based moduli space M:(R X L(p,1), [m, m’]). When

m is nontrivial, then according to Lemma 3.10 the space MEP(R X L(p,1), [m,m’])

is an 51 reduction of the base—point fibration. This space should be thought of as

the gluing parameter bundle over an unbased moduli space. This gluing parameter

is attached at the end of the cylinder which is closer to N. The next lemma shows

that these moduli spaces provide good quantization of the whole moduli space:

Lemma 3.11 dimM§P(R x L(p,1),[m,m’]) Z 4- [m — m’].

Proof: This is a direct consequence of Lemma 3.5 describing the lowest energy on

the moduli space M§P(R X L(p, 1), [m, m’]) and the dimension formula (3.7).

Case 1: m’ > m. The moduli space Mme/p(R X L(p, 1), [0,m’]) has a boundary

corresponding to a splitting

M70712/P(R X L(p,1),[0, m]) g: Mfmn—m2)/p(R X L(p,1), [m, m’])

where all of the moduli spaces involved have the minimal energy required for each

tunneling. From (3.7) we have: 4 - m’ — 3 = 4 - m — 3 + dimM§P(R x L(p,1), [m, m’]),

from which the lemma follows.

Case 2: m’ < m. From the index formula we get that dim Mm(RXL(p, 1), [0, 0])

8m — 3. This space allows a splitting Ming/AR X L(p,1), [0,m]);an(p_m)/p(R X

L(p, 1), [m, 0]). Analyzing the dimensions of both spaces we get:

- Z

8m — 3 = 4m — 3 + dlmMm?p_m)/p(R x L(p,1), [m, 0])

Thus dim M:?p_m)/p(R X L(p, l), [m, 0]) = 4m.

Now consider the space M(pm_m2)/,,(R x L(p,1),[m, 0]) and its splitting

M°m__~;m2...-..(R x L(p,1).{m,m'1);g Maya (R x L(p.1).{m'.01)

Again the energies have been chosen according to Lemma 3.5 so as to be the smallest

ones. Analyzing the dimensions of the involved spaces we get the equation:

4m = dim MEP(R X L(p,1), [m,m']) + 4m’,

which concludes the proof of the lemma. D

4 Dividing the moduli space into open sets.

Now we can come back to the computation of the Donaldson invariant D(zo"). We

assume here that the numbers p and n are fixed. The goal of this section is to list all
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open sets defined in (2.14) that cover the intersection

M;,,(X)nVz (1:11 V... (4.1)

To fix notation let us assume that the class z E A(Y) has the degree d, and

dikao(X) = 2 (d + n)

Since we are using a generic metric on X, the intersection of divisors on Y-side is

transverse, so the intersection Ugh n V, n '61 V0,. (see (2.14) for the definition of

Ugh”) is empty if dim MkY(Y, m) S 2d. This implies that dim Mk” (N,m) must

not exceed 2n — 1 if m is trivial nor 2n — 3 if m is trivial. In order to choose the sets

Ufi,” in the most efficient way, let us define the set

J = {(172.10 Im e x(L), k e ZI;1,M,.(N,m)¢@,
and 0 < dika(N,m) + hm S 2n}

(hm is defined in (2.9)). We set also j = ,7 U {(0,0)}. Note that the bound on the

dimension of the spaces Mk(N, m) implies that the set ,7 is finite. In (I we define a

partial order by saying that (m1, k1) S (mg, to) if there is a nonempty moduli space

Mk2-k1 (R X L, [m], 7712])-

Definition 4.2 To every element (m,lc) E j assign its degree deg (m,lc) to be the

length of the longest chain in ,7 from (0,0) to (m, k) linearly ordered by S. Define

deg(J) = maxxej deg(x).

The next lemma shows how to compute the above degrees.

Lemma 4.3 For every (m, k) E J we have the following relation:

4 ' (deg (m, k) — 1) + 1 = dim Mk(N,m)

Proof: Set a = deg (m,k). The definition of 0 implies that the moduli space

Mk(N, m) has a boundary component corresponding to a fibered product of (a — 1)

moduli spaces Mk,(R X L, [m,,mS-D and the last a‘h space MkN(N, mN). Thus from

(3.11) we have: dim Mk(N,m) _>_ 4(a — 1) + 1. I

We prove the inequality in the opposite direction by induction on the degree of

elements of J. Lemma 3.5 gives us the following inequalities in J:

(ch):(m+1,k+2m+1
 )S(m,k+1)

Thus deg (m, k + 1) _>_ deg (m, k) + 2. Using the dimension formula (3.9) we get:

dika+1(N,k+1) = dika(N,k)+8=4(deg(m,k)-1)+1+8

S 4(deg(m,k+1)—3)+1+8=4(deg(m,lc+1)—1)+l

El
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Corollary 4.4 Let F be a graph representing the set .7 with the relation S. Then

(m,lc) S (m’,lc’) are immediate neighbors in the graph I‘ if and only if m’ = m :i: 1

and

k'-k={

Proof: The fact that (m,lc) S (m’,lc’) for m’ and 19’ defined above follows from

Lemma 3.5. The Lemma 4.3 gives us:

~[2m+1] ifm’=m+1

-[-2m+1]+1 ifm’=m—1

'
U
I
H
'
U
I
H

deg(m’, lC’) - deg(m, k) = ildika:(N,m') — dika(N, m)]

idimemR x L, [m,mv = 1 (4.5)

thus there are no other points of J between (m, k) and (m’, k’). D

For each element of J we wish to assign an open set in the moduli space Mk(X)

Let us fix 3 = deg(J). Notice that by changing the metric on X we can identify in

X a subset isometric to a cylinder [0,1] X L for an arbitrary large I. We can adjust its

length I so as to have a collection of disjoint subcylinders Cf, . . . , Cf), R1, C11, . . . , 0},

R2, C12, . . . C3, . . . R,” Cf, . . . C,’ satisfying the following:

1. For each C,- and B..- there is some r E [0,1] such that these cylinders are equal

to [r,r+ 1] X L;

2. For every connection w with energy I: + n on X there are 3 + 1 numbers

io,i1,i2, . . . ,i, (1 S i, S t) such that

./C" [le2 < 50

'r

where so is the number defined in Theorem (2.11).

Each cylinder R,- splits the manifold X into two manifolds with boundary, which we

denote as Y,- and N,. We also denote by ng the cylinder that is cut from [0,1] x L by

the cylinders R,- and Rj.

Definition 4.6 For every element (m, k) E ..7 we define an open set U)? C Mk0 (X)

as the set of all w that satisfy:

1. f [Fol2 < so, where i = deg(m,lc).

R.-

2. f IF,,,|2 = k + e for some I5] < 60

Ni

3. If (r,n) is a point in R,- then the character m is closest to w|{,}xL in the sense

of Lemma 2.12.

Having this assignment in mind we shall understand that the collection of open

sets {Ufl‘} has also defined a partial order S and deg(UL") makes sense as well. Each

set UL" has uniquely assigned region R,- with i = deg(m,k) and let us choose one
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point x,- E 12,-. According to Lemma 2.17 each U)? can be described as the fibered

product:

“11-10%, m) 3,; M11111. m)/50(3) (4.7)

Thus every connection in UL" can be written as w = [wy,wN]. In general, if a given

connection w allows the representation (4.7) for some i, then we say that w allows

splitting at the region 12,-. In the next lemma we shall prove that the sets UL” suffice

for covering the intersection of divisors V n 01,V. As the proof of that lemma

requires splittings of moduli space at multiple regions R1, 122,” .,12, on the cylinder

[—n, n] X L, we need to be more precise about the notation of cylindrical—end manifolds

Y and N. Thus by Y and N we shall mean finite cylinder manifolds ending at the

first splitting regions (including these regions). For a given region 12 we shall mean by

the terms Y—side or N-side the corresponding connected components of the manifold

X cut by 12. (See the picture below):

 

       

N sidcof R Y sidcof R

Figure 1. The splitting of the manifold X.

Lemma 4.8 Every connection that belongs to the intersection Mko() O V, D '61 V,

is contained in one of the setsUm, (m, i) E J. Moreover deg (J)_< —+—

Proof: First we shall prove that s = dng is a sufficient number of the splitting

regions. Assume that w is a connection that does not allow splitting at any of the

regions 121, . . . ,R,. According to the definition of the length I, there are cylinders

03;, r = 0, 1, . . . , s such that w has energy less than so in these regions, thus it allows

the splitting at C5. Let m, denote the gauge equivalence class of the limiting flat

connection on C; , and k, the energy on the N—side of 03;. As (.0 E M1,,(X)flVz '61 V,,

then for every r the dimension bound dimMk(N, m,) S 2n, defining the set J, is

satisfied, thus the pair (m,, la.) E J for every r. By Lemma 2.17, no can be represented

as a fibered product of connections [wN,w1, . . . ,w,,wy]. The first connection wy lies

in a moduli space of nonnegative dimension. If one of connections w,- defined on

[l,-,l,+1] x L D 12,- was flat, then it would allow the obvious splitting along 12,- as

w; = [w,-,_,w,,+]. In here and are the restrictions of w,- onto different connected

components of [l,-, 1,4,1] X L \ 12,-. As each w,- is nonflat, then we have a sequence of

strict inequalities in J

(mm/m) < (mhkl) < < (m,,k,)
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from which we get that the last pair (m,., 111,.) has the degree greater than or equal to

s + 1, thus contradicting the definition of 3.

Next assume that w allows splitting at 12,- with 11:,- being its energy on the N— side

and m,- being the nearest flat connection on 12,- in the sense of Definition 4.6. We

still need to prove that for some i there is the equality deg(m,, k,) = i. 30 assume

there is an to which satisfies: for every i = 1, 2, . . . , 3 either (.0 does not split at 12,- or

deg(m,, k,) 75 i for (m,, k.) defined by a splitting at 12,-. Consider first the case when

w splits at 12,- with deg(m,, k,) < i. We claim that there exists another region 12,- for

which the equality deg(m,, k,-) = j holds. This is proved by induction with respect

to i. For i = 1 the statement is obviously true, since each element of J has degree at

least one. Thus we may assume that:

For every r < i and every connection on that allows a splitting at the region 12, with

deg(m,, k,) < r there existj < r such that w splits at R,- and deg(m,, k,) = j.

Consider now a connection (.0 that splits at 12,- with deg(m,, 16;) < i. Then we can write

to as [wy,wN]. The connection wN must allow splitting at 12,-1 for some i > jl _>_ 1, as

otherwise wN could be written as aw = [wjv'v w}! , . . . , a251,], showing that deg(m,, k,) 2

i in contradiction to our assumption. Splitting am at 12,-l we get: am 2 [wrnwm]

and the numbers(m,-,, k,,) corresponding to that splitting. If deg(m,,, k,-,) < jl, then

we are done by an inductive assumption. If deg(m,,,k,-,) = jl, then no splits at

12,-1 with the right equality deg(m,,,lc,-,) = jl. We claim that the last possibility:

deg(m,-1 , k,,) > j], implies that the connection can splits at some other region 12,-,2 for

jl < jz < i. If that claim is not true, then le can be written as a composition of

i — j] nontrivial connections on the cylinder between the regions 12,-1 and 12,-. Thus

we have:

deg(m,, k,) 2 deg(mjn kj1))+(i-J'1) > i

again contradicting our assumption. Thus we can write le = [wT2+,wT2—]. Define

wN, = [awl ,wT—]. Same argument as above aplied for (42)»), instead of any, shows that

we either find the required splitting for w, or we will find another splitting of wT2+ at

the region 12,-, for jg < j3 < i. As there can be only i such splittings, this process

must terminate by finding the 12,- with the required properties.

The proof in the case when deg(m,,k,~) > i is the same as in the the previous

case, exept that one has to reverse the “orientation” of the whole proof, i.e. start the

induction from the point that is closest to the Y—side and replace all N’s with Y’s,

and “+” with “—”.

Let us now consider an element (m,k) E J with maximal degree. There is

a corresponding connection in M),(N,m) with the splitting [wN,w1, . . . ,w,_1] that

defines its degree. According to Corollary 3.11 the smallest dimension of a moduli

space Mk(R x L, [i, 3]) including the gluing parameter from the N-side is no less than

4 - (i —j). Thus

e—l

2(d + n) = dikaY(Y) + hm, + ZdimeflR x L, [m,-,mg])+

i=1

+ dikaN(N,mN) 22d+hx+4(8-1)+l 2261-1-48—2
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from which the last statement of the lemma follows. D _

For example, when evaluating D(zo4) for o - o = —4 we get the following set J

encoding the covering of the moduli space:

(0,0)

(11%)

(2,1 (0,1)

In general on the graph representing J we can denote only the values of the

equivalence classes of the flat connections m E x(L). To each edge of the graph J we

can assign the minimal energy for tunneling between the boundary values denoted at

the ends of the edge that has been established in Lemma 3.5. Then the energy of an

arbitrary vertex can be obtained by summing the energies of the edges while going

from the top of J to the given vertex.

Example 4.9 When computing D(zo“) for 11-17 = —6 we obtain the following graph,

that stabilizes:

x1 ........... 1

.. ...........l\o

i\l$3 ........... \2[\0

4 ......................:£\[

Figure 2. The graph J for o - a = ——6.

On this graph the points x1, x2, . . . denote the chosen points from the regions 121 , R2, ..

All points on the graph lying on the level indicated by x,- correspond to open sets U1”

that split at the region 12,-. The above graph, according to Lemma 4.8, terminates at

the level [11,1]. The meaning of the columns of this graph will be explained later.

Lemma 4.10 The intersection of the divisors V, :11 V,,. is empty in U;? unless the

moduli space Mk:(N,m) contains a reducible connection.

Before proceeding with the proof we want to comment on the terminology. The

set UL" for a generic metric does not contain reducible connections, as b+(X) Z 3.
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Nonetheless we shall informally say that A is a reducible connection in Uf‘ if the

restriction of A to N is a reducible connection in Mk(N, m).

Proof: The open set U,f,‘ has dimension 2(d + n). On the other hand, this set viewed

as fibered product has the dimension

dikao_kr(Y,m) + hm + dikar(N,m)

As b+(X) = b+(Y) Z 3, then the intersection Mk,_k:(Y,m) O V,, is transverse since

it contains only irreducible connection. Thus dika,(Y,m) 2 2d. If the divisors

V, intersected along irreducible connection as well, then we would have: 2(d + n) 2

2d + hm + 2n, in contradiction to the fact that hm = 1 or 3. Cl

5 Computing intersection numbers in open sets

U12”

5.1 Description of the neighborhoods of the reducible con-

nections

Let us recall that our main purpose is to compute the intersection number

M,(X) n V, n fl V,,. (5.1)
3:

or dually, to evaluate the cohomology class p(2)p"(o) on the moduli space Mk(X)

As we saw in the previous paragraph, this intersection is included in the set covered

by the sum of open sets UL" and takes place near connections whose restriction to

N is reducible. Thus our first task is to describe the neighborhoods of reducible

connections in the moduli spaces MI," (N, m,), and then we will describe a procedure

for keeping the intersection (5.1) inside these neighborhoods. Before proceeding,

we want to notice that there is one kind of noncompactness of the sets UK that

can be taken care of immediately. This noncompactness comes from the completely

concentrated connections (so—called bubbles). Recall that the sets UL" are obtained

via fibered products iY(Y, m) a; M}:(N, m), where the point x belongs to the region

12, on which the energy estimate excludes bubbling. Thus both basepoint fibrations

extend to the 50(3) bundles over the Uhlenbeck compactifications of these moduli

spaces, and from this point on we will assume that the sets UL" contain completely

concentrated connections.

When a reducible connection occurs in the top stratum, its neighborhood is mod-

elled on C"/51. For the sake of later generalizations we set the following notation:

Definition 5.2 e Every neighborhood of a reducible connection is modeled on

some stratified space divided by as 51 action. Let K denote a compact neighbor-

hood of the total space of this 51 action. The space K/51 describes a compact

neighborhood of the reducible connection. In this case K = {z E C"|||z|| S 1};

the general description of K is given below.
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e Let M denote the link of reducible connection. Thus M = UK.

e Let r(K/51) be the image of K/Sl under the deformation retraction shrinking

the cone parameter to zero. (Thus in the case of top stratum connection r(K/51)

is a point.) There is a corresponding deformation retraction of the set K, which

we will denote by the same symbol. As 51 acts trivially on r(K), then we have

Tar/51) -_—v. r(K).

The set M/51 is often referred to as the link of the reducible connection. In this case

M/51 = CPn'l. In the proof of Proposition (5.1.21) in [DK] it is shown that the

Pontrjagin class of the restriction of the adjoint bundle to the link of the reducible

connection on the bundle L EB L is equal to

p1(P‘d) = h2 X1+4-h x c1(L)+4-1 X c§(L)

where h is the positive generator of H2(CP"‘1). Thus we have the following:

Lemma 5.3 On the link of a reducible connection on the top stratum in Mk(N,m)

we have the following identities in H2(M/51):

M0) = -<01(L),0)'h

Ma?) = -i-h2

The second equation holds for points x E N.

The description of reducible connections in the lower strata of Mk(N, m) has been

worked out in [KoM]. For every sequence of integer numbers n1 _>_ n2 2 - - - _>_ n,

there is a stratum 5t corresponding to s bubbles with multiplicities described by the

numbers n,-. Let us denote by k = k,- — 2:2, n,- and by P = L 63L the 5U(2) bundle

with c2(P) = k. Let FN be a principal 50(4) bundle associated to a tangent bundle

TN, and let us define Fr = P X FN to be a fibered product of the bundles P and

N

FN over N. Then Fr is a principal 50(3) X 50(4) bundle over N. Following the

notation from [KoM] and [FM 2], for each n > 0 define Z, to be the space of gauge

equivalence classes of ideal ASD connections on 54 with standard metric that satisfy:

1. they are based at the south pole

2. they are centered at the north pole

3. they are concentrated in the 6 ball around the north pole

The notions of “concentration of energy” and “6 ball” in the last statement should be

understood in the following way: for a fixed annulus A contained in the complement

of the 6 ball, every ASD connection (.0 with the “energy concentrated in the 6 ball” can

be glued along A to another ASD conneCtion on the manifold N. The spaces Zn have

a natural 50(3) action that changes the framing at the south pole, and the 50(4)

action that rotates the sphere. In addition to that there is an R+ action on each Zn



22

corresponding to conformal contraction toward north pole. Thus there exists a space

Zn such that Z, = cZn. For everyj=1,2,. . . ,3 define 01,-: Fr X can. As

S0(3)xSO(4)

is proven in [FM 2] the neighborhood K of the reducible connection in the strata 5t

is

(on x 1'1 G1,) /51 (5.4)

j=l

divided by the symmetry group permuting the Cl,- factors. The top stratum described

above fits into the above description for s = 0. In Theorem 4.4.2 of [KoM] it has

been shown that given a reducible connection w, for r = n1 + no + - - - + n,, different

strata of the form (5.4) can be glued together to form a smoothly stratified space

GP(w,r). This space allows the projection 1r : GP(w,r) —> E’(N) induced by an 51

equivariant deformation retraction onto the r—fold symmetric product E”(N). The

notation from Definition 5.2 extends to the case of a reducible connection in the lower

strata. Lemma 4.7.4 in [KoM] gives a description of the class ”(0) on the link of given

reducible connection:

Theorem 5.5 Let M be a link of reducible connection (.0 E GP(w, r). Then the class

p(0‘) E H2(M/51) is equal to

11(0) = WSW?) - (01(L),0') ' CM

where

1. CM is the first Chern class of the 51 bundle M —) M/51.

2. 2"(0) E H2(2"(N) ) is the class induced from the Poincare dual to 0’ in H2(N)

by symmetrization.

Similarly we conclude that

—4p(x)|M/51 = -47r"2‘(x) + Ci,

Next we want to apply the gluing theorem to “attach” connections on the Y— side

to the neighborhoods of reducible connections on N— side. Recall that the 50(3)

fibration Mio_k(Y,m) reduces to an 51 fibration when m is nontrivial. In that case

let Q denote this Sl—fibration. For the sake of uniform notation let Q be the whole

total space of Mio_k(Y,m) when m is trivial. Notice that even in the later case we

can still think of Q as of the total space of an 51 fibration with the base Q/51.

When the boundary value m is nontrivial, the basepoint fibration on the Y—side

is Q :1 50(3) and the basepoint fibration Up”: —1 UL" near a “reducible” connection

can be described through the fibered product of:

Q :1 30(3) 30(3) x K
\ /s.

S2
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which gives the basepoint fibration Q :1 (50(3) X K) -—1 Q :1 K. This 50(3) fibration

reduces to an 51 bundle with a total space Q; (51 X K) = Q x K.

The case when m is trivial is even easier to describe. The 50(3) fibration over

U)? is:

QX (SO(3);K) anK

which again admits a reduction whose total space is Q x (51 :1 K) = Q X K. i

5.2 Desigularization of Q SXI K

To make the future computations easier we want to “enlarge” the set Q :51 r(K) =

Q/51 x r(K), onto which Q X K deformation retracts. For any 51 bundle Q let us

denote by Q0: Q X D2, the disc bundle associated to a circle bundle Q. Consider a

projection 71': Q :5 MC —-> Q X K that18 identity for every nonzero radius parameter

of the disc D2, and for the radius zero 7r( [q] [m])-— ( [q] r(m)). Here [.] denotes the

equivalence class with the respect to the 51 action. This map is well defined because

of the 51 equivariance of the retraction r. If a is any top dimensional cohomology

class in H“”"(Q;<l K, QSX1 M) then

<a, [<2 5x, K, 61> = <a, mac :1 1140,61» = (1‘0:ng 140,31) (5.6)

Thus we can evaluate the pullback 1r"‘a in the enlarged space Q X MC, getting the
1

same answer. 5

5.3 Closing neighborhoods of reducible connections

Next we wish to describe a procedure that will keep the intersection of divisors in (5.1)

inside neighborhoods of reducible connections. Below, we describe compact spaces

C containing neighborhoods Q x M0 together with a technique for translating the
l

intersection problem from U,2" into the sum of these compact sets.

In case m is trivial, let N denote the based moduli space MiN(N, m) and G =

50(3), and in the case when m is nontrivial, let N be the 51 reduction of the above

basepoint fibration and G = 51. Then the set UL" = Q EN.

Let M),(N,m) = N/G contain 51 reducible connections A1,A2,. . . ,A,, each

contained in the compact nieghborhood K,/51. In the set UL" each A,- is contained

in a neighborhood of the form Q X K,. Let q,- : Q X M,- -—> Q/51 X M,-/51 denote

$1 $1

projections of the boundary of the above neighborhoods. The cohomology classes 11(0)

and p(x) can be obtained from pullback via q,- of the first Chern class of the bundle

M,- —+ M,/51. Since the dimension of Q/5l X M,-/51 is 2 less than the dimension
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of Uf‘, the top dimensional cohomology class will evaluate trivially on it. Thus it is

reasonable to compactify Q :1 M? as:

C,- = Q x Mf’ u Q/s1 x M,/Sl (5.7)
S] QilQ X Mi

51

The space that we added to Q X M? is homotopy equivalent to either of the two
51

spaces: QC X M,- or Q X Mic. Thus the projection may be replaced by an inclusion

SI SI

giving:

. ,.. _c c , .
C, _ Q; M, Q >L<1JM.-Q :51 M, (5.8)

8

~ .0 .0_ Q 5).: M, Q ’EJM‘ Qg M, (5.9)

5'

To define the class p(a) we have to pull back the bundle M,- —» M,-/51 over the

space Q X M,, thus it is more convenient to use the construction (5.8). Then [1(0) is
31

a multiple of the first Chern class of the 51 bundle:

c C , C C .

QXM‘ gym-Q XM’TQsfiM' cyan-Q 51M
51

The total space of this bundle is the boundary of Q0 X Mic, which can be considered

as the 53 bundle 5(Qc X M?) over Q/S1 X M,/51. Thus C,- is P (Q0 X MC),

the projectivization of the bundle Q0 X Mic. The first Chern class of the bundle

5 (QC X Mic) —> P (QC X M?) is the class h that restricts as a generator of each

fiber CP1 .

The next two lemmas justify our choice of the above compactification:

Lemma 5.10 Let w be a fixed divisor in Mk(N,m). Let M“ be a complement of

the sum of the neighborhoods LI,- K,/51. Then there is a one-to-one correspondence

between divisors V on UL” that pull back from the divisor w, and collections of divisors

V,- on C,- such that V,fl(Q/51 X M,/51) = [Q/51]X [13,-], and (131, . . . ,i},) = 6[w]. Here

6 is the boundary map a from the Mayer— Vietoris sequence:

-- —> H.1M‘) ea 3114K.) -> H.(M1(N.m)) 3» <19 Ham/5‘) -—»

Proof: Given the divisor V C UL" that pulls back from w C Mk(N,m) define

v,- = w]M,)51 . Using the deformation retractions r,- : C,- \ Q X M? —» Q/5l X M,-/51,
51

we can construct the divisors V,- = VIQ x Mr: Q UM r‘1([Q/51] x v,).

51 ' x i
51
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Going in the other direction: given a collection of divisors (V,, 13,-) define

V: {V U -110a IQ,M,C,,Mip~( I)
51

where pN : Q X N —> N/G is the projection, and w] is a restriction of the class w

G

onto the set N/G \ (LI,- pN(Q X M,-0 )) . It can be directly seen that the composition
51

of these two assignments gives the identity. [3

Lemma 5.11 Let w1,. . .,wr be fixed divisors on Mk(N,m) and V1,. . . , V, denote

pull-backs of w,- ’s to UL". Assume also that the sum of codimensions of V,- ’s is equal

to the dimension of UL”. Then the following signed intersections are equal:

8

r r e

:91 V; _ 2.21 V12
i=1

where V,,- is the divisor on 0,- corresponding to V,- as in Lemma 5.10.

Proof: Let V},- be a perturbation of V,,,- into transversal position. Since Q/5l X

M,-/5l has codimension 2 in C,-, the one dimensional set {61 V},- | t E [0,1]} misses

Q/51 X M,-/51, the set added in the compactification. As 6[w,~] = (13,-,1,.. . ,v,,,),

and this is a homological condition, we can use Lemma 5.10 for all V3,, to get a

corresponding perturbation of the divisors V3,. Because the dimension of Mk(N, m)

is lower than the dimension of UL" the perturbed divisors cannot intersect outside the

set Q x (N \ (LI,- K,)). Thus the intersection number of V,- is equal to the intersection
51

number of V,,. D

The top stratum of the moduli space MkN(N, m) has a reducible connection on

the bundle L if and only if c§(L) = kN. Thus if the reducible connection exists, it is

unique. Similarly on the stratum in which the background connections have energy

kN — 3 there exists a unique reducible connection if and only if c§(L’) = kN — 3.

Thus every reducible connection A,- E MkN(N,m) has uniquely assigned 1,, the first

Chern class of the reduction of the bundle L,- and s,- = kN — c§(L,-). We can perform

the closing—up construction for every link M,- of A,- separately getting the following

equivalent of Theorem 5.5 for the spaces 0,:

Corollary 5.12 Under the above correspondence of cohomology classes we have the

following equalities in H‘(C,-):

11(0) = 71‘3” (0) - 1,- ° hi

where the class h,- restricts as the generator of each fiber CP2 H P(QC X MJ-C).

Similarly

—41r‘2’i(x,) + h? ifr S i

c2, ifr > i
-4#($r) = {



26

We will need some properties of the characteristic classes of the bundle P(QC x

MC) which we now evaluate. The Kiinneth formula provides an embedding

H*(M/S'1)—> H"'(Q/Sl x M/Sl)

that sends x E H‘(M/51) to 1 (8 x. In the description that follows by cohomology

classes x E H‘(M/51) or y E H‘(Q/51) we shall mean their images 1 (8) x or y (8)1 in

H‘(Q/51 x M/51). From the definition of characteristic classes we get the relation

h'2 = c1(QC X MC)h — co(QC X MC). Notice that c1(QC X M0) = cM + cQ and

. 1

c2 = chM, which in vector notation (a, b) = a-h+b can be wrltten as h2 = A 0 for

A = ( cM + cQ 1

—chM 0

Lemma 5.13 We have

). By elementary computations we obtain the following lemma:

n+2 n+2 n+1 n+1

C - C C '— C

hn+2z L—i—Hh—L—LCMCQ

CM — 60 CM - CQ

Proof: Using the expression for h2 we get:

h-(ah+b)=ah’+bh=[a(cM+co)+b]-h — a-cMcQ=A(:)

n+1_ n 1

h —A (0

1 1

S=—(. —c.)
A direct check verifies the relation:

A = s( ”Q 0 ) s-1
0 CM

A"=S(Cg (.).)S-1
0 cM

Thus we have

Set

thus

from which the result follows. CJ

The situation is different when the reducible background connection is trivial. In

that case there is no direct relation between p(o)2 and p(x). We need to supply a

further discussion with some more notation. Notice first that whenever the moduli

space Mk(N, m) admits a trivial background connection, then k must be an integer

and m = 0. Thus on the Y side we always have the 50(3) fibraton Q = MfiY(Y,0).

Let M be a restriction of the basepoint fibration over the link of the trivial connection

M/50(3) C M),(N,m) with the projection 1r : M/50(3) —» 2"(N).

We have the following analog of Theorem 5.5:
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Lemma 5.14 We have the following equalities of classes in H‘(M/50(3)):

11(0) = W'E’(0)

#(931') = WE’RE) - 2PM

where PM is the first Pontrjagin class of the fibration M —> M/50(3).

For any 50(3) fibration Q define QG = Qsdl )c50(3) and let pQ denote its first

3

Pontrjagin class. A similar construction to (5.8) produces an 50(3) fibration:

6(QG x W) _. 6(QG x PG) (5.15)
50(3)

which we shall'denote by 5g(QG x 170) —1 Pa(QG x ’PG), or even 50 —1 PG when

the two other 50(3) bundles will be obvious from the context. Let H denote the

Pontrjagin class of this fibration. As in the case of 51 fibrations, there is a further

projection P0(QG x MG) —1 Q/G X P/G’, whose fiber is 250(3), the suspension of

50(3). The fibration 50 —> PG restricts over each fiber of PG as the fibration:

50(3) * 50(3) —. 250(3)

and the first Pontrjagin class is 2. As before, the computations of the intersections of

the dual classes in the neighborhood of the trivial connection can be translated into

the intersection of corresponding divisors in Pg(QG X MG). As in the case of 51 re-

ducible connections, there is a correspondence between the classes that pullback from

the moduli space containing M/50(3) and the classes in the compactification (5.15).

Using the above correspondence and Theorem 5.5 we get the following corollary:

Corollary 5.16 Under the above correspondence of cohomology classes we have the

following equalities:

11(0) = n’E’(0) (5.17)

where the class H restricts as twice generator of each fiber Pa(QG X MG). Similarly

. _ —47r‘2’(x,-) + H ifj Si

"4"” ‘ {p5 ifj > 2'

It follows from the corollary that in this neighborhood, the top power of the classes

p(0) evaluates trivially, so it seems that these neighborhoods are redundant. But our

method of computing 11(0)“? on the whole moduli space M1,, (X) requires evaluating

in PG(QG X MG) terms of the form 11(0)“ -p(x1)"’1 - - - p(x,)°“ for various 0, 01, . . . , 0,,

which may give a nontrivial contribution in Pg. 30 let us state the following analog

of Lemma 5.13:

Lemma 5.18 With the notation above we have:

+2 +2 +1 +1

'PPP

PM - [’0 PP - PQ Q
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Proof: As 51 C 50(3), then there is an 51 fibration Q -—> Q/51 with the first Chern

class cQ E H2(Q/51). Let p : Q/S'1 -—+ Q/50(3) denote the projection of the fibration

with the fiber 52. Then since p‘ (Q X C3) = Q X C3 we have:

30(3) 51

'_ ="‘ 3 = " C3 = (33=—2 5.19p( m) p (02(QSO><(3)C )) c2 (1» (0,3,3) )) c219,, ) c5 ( )

Observe also that for every fiber 52 C Q/51, c2[52] = 2. Thus from Leray—Hirsh

theorem we get that the map (H°(52)€BH2(52)) ®H*(Q/50(3)) —+ H‘(Q/51) sending

i‘(cQ)®a —> p“(a)UcQ is monomorphism, and in particular also p" is monomorphism.

After these general remarks about 50(3) fibrations let us come back to the con-

struction described in the Lemma. Let h denote the first Chern class of the bundle

8(QG X 790) —> 0(QG X ’1’"). Then using Lemma 5.13 and (5.19) we have:
31

  

 
 

  

p'(H) = 112 = (h(CQ + 613) — CQcp) (5.20)

Thus: 4 4 c3 c3

p“(H") =h“ = CP'CQ -h — P- Qcpcq =
cP—cQ cp—cQ

c1 -.4, c1: —c5
- h c + c — - c c

C?) _czq ( P Q) CP __ CQ P Q

which by (5.20) can be written as:

at — c5 . c1» — c5(fig—C22 .[p H+cPcQ] — Cp—cQ .cch_

= p‘(H) - (c?) + cg) + (CPCQ) - l-CPCQl = Pi (HIP? + Pol — PPPQ)

As p‘ is a monomorphism, the above proves the same relation that we had in Lemma

5.13 with Chern classes replaced by Pontrjagin classes. Thus the result follows. Cl

Thus in this paragraph we have established the relations between the class 11(0)

and Pontrjagin classes of basepoint fibration in each of the sets U)? separately. The

next chapter deals with the problem of matching these descriptions together.

5.4 Compactifications of the U1"

The results of the previous paragraph are based on the assumption that the spaces

M/51 and Q/51 are compact. However this assumption is not valid in general. Even

after taking the Uhlenbeck compactification, the sets

U1“ = 1.0) 3,; MW)
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still remain open. This is because there are connections whose energy may escape

through the cylindrical end. We want to describe the boundary of the sets U,2" con-

taining such connections. As we shall see in the next section, we need to understand

the characteristic classes of the bundles over UL“ that over the boundary 8U)? pull

back from certain set r(U) that has the dimension at least 2 less than dim U,5". Let

us denote by UL" the compact space U1," yr(U), where p : 3U)? —) r(U). Since there

is an isomorphism of cohomology groups H‘°”(U,T) 9: Ht°P(U,’,",8), we shall refer to

our construction as either compactifying the spaces UL" or as to splitting the global

characteristic classes into the sum of relative ones.

We shall begin the description of the connections in the boundary of U,2" with the

generalization of the definition of based connections. Let us recall that if MAX)

denotes the space of ASD connections in A, then MflX) = MAX) 0X E,. Thus we

E

can similarly define a moduli space of connections based at two points as

Mi'”(X) = MAX) 39w, x 13,) (5.21)

Note that MZ’”(X) can be also described as a fibered product MflX) M)?” MZ(X).

k

The projection Mi’y(X) -> MflX) is in fact the quotiening Mfi’“(X) by 50(3),,

acting on By. We shall use this definition for the moduli spaces of connections on the

cylinders R x L based at the different ends of R. We indicate this by ”MflR X L).

Similarly, for a finite interval [a, b] C R we can define the space z./\/1Z([a, b] X L) to be

a space of connections over the cylinder [a — 1, b + 1] X L having small energy on the

subcylinders [a — 1, a] x L and [b, b+ 1] x L containing the points x and y.

The noncompactness of U,2" is a direct consequence of noncompactness of the

spaces MkY(Y) and M),(N), so it is sufficient to describe the compactification of

these factor spaces. Recall that in order to glue back these factor spaces we need to

work with spaces of connections having small energy on the fixed cylinder 12. We shall

assume this throughout this paragraph. Let us focus first on the case of compactifying

the space MkY(Y). The boundary component corresponding to the splitting at one

region can be described as the fibered product:

MiY(Y,m,-) )g ”Mada — 1, b +1] X L, [m,-,m])/ (50(3),, X 50(3),) (5.22)

The first Pontrjagin class of the 50(3), action defines the point class —4p(x). The

total space of this 50(3)x-fibration needs to be glued to the space M£N(N, m) to get

the compactified set UL". The time translation parameter of the space

Mina“ - 1,1» +1] X L, [m,m'])

is the collar parameter of the fibered space Mk(Y, m). Denote by M3,,([a — 1, b+ 1] X

L) = Mk,([a — 1,b+1] X L)/R and let

p = M1_(Y.m.-) g; M21(T,1m.-,m1)/SO(3). —»
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—* M),_(Y,m,-) X M],,([a —1,b+1] X L, [m,-,m])

be the projection. We define the compactification of MkY(Y, m) as

Mammy [Mum-n.) x MS..([a — 1, b +11 x L,1m.-,m1)]

Notice that the space that we have added in this compactification has codimension

at least 2 in Mia/(Km). (One dimension is “lost” while dividing by time trans-

lations, and we also “lose” the gluing parameter between Y and the cylinder T).

Thus we are in the situation described at the begining of this section, which allows

us to define the compactified space MkY(Y,m), or equivalently the relative class

H‘°”(M;,,,(Y,m), 6(MkY(Y, m)) ). We shall use the same symbol Mky(Y, m) for the

compactified space. We define the classes p(x,~) on this compactification as pull-

backs of the corresponding classes on the product M1,_(Y, m,-) x M5,,([a — 1, b + 1] X

L, [m,, m]). Notice that with the class p(y) for y in the splitting region, pulling back

from Mi_(Y,m,-) or M2,”([a — 1, b + 1] X L, [m,-,m]) gives the same result.

While applying the same construction to the moduli space M),(N,m) we get a

similar splitting of that moduli space into factor spaces MzN(N, m’) and the mod-

uli space on the nearest cylinder M%T([a — 1, b + 1] X L, [m’,m]). In this situation

ZN(N, m’) is not an 50(3) fibration because of the presence of reducible connec-

tions. Thus we shall apply the construction similar to (5.8), relating the classes p(0)

and p(x,-) to the Pontrjagin class of the basepoint fibration based at x, which is at the

end of N. This basepoint fibration based at x allows us to define the extension of the

boundary value map 8 : M£Y(Y, m) —+ 72(L), and thus the gluing of the compactified

spaces §Y(Y) and M}:(N) As a result we get a compactification of the set UL". In

general it may happen that the fibered product defining the boundary of M1,(Y) has

a bigger number of factors. In this case we apply inductively the above procedure for

constructing the compactification of an unbased moduli space. This construction is

similar to the Floer compactification of the moduli spaces on the cylinder.

Now we want to ask the question if the relations between 11(0) and the point

classes proven in Corollaries 5.12 and 5.17 hold on the sets C,- after compactifying the

moduli spaces M),(N,m) and MkY(Y, m). With the definition of the compactified

11(0) as above, the answer is positive only when there is only one reducible connection

A,- is in the the set M1,, (N, m1). (We used the relation between this connection and

the Pontrjagin class of the basepoint fibration based at x to define the compactified 2

class 11(0).) Otherwise the cohomology class

11(0) — n’E’(0) — (c1 (L) , 0) - ha (5.23)

whose evaluation inside the set C,- is zero, has nontrivial support in the neighborhoods

of the other reducible connections A,-, j at i.
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5.5 The relative Mayer—Vietoris sequence

So far we have been dealing only with local computations in a single open set U)?

coming from covering the part of the moduli space Mk(X) that contains the inter-

section of V,. 0161 V,. Now we want to show how to combine these local computations

into a global one.

Assume first for simplicity that the whole moduli space M may be covered by

just two open sets U1 and U2. As the moduli spaces of connections on bundles

over R x L allow time translations, then from (5.22) we see that U1 (1 U; can be

written as (—2, 2) X V’, where V’ is codimension 1 submanifold of M. Let us put

V1 = U1 \ (—1,2) X V’ and V,» = U; \ (—2, 1) x V’ (thus V}’s are deformation retracts

of Ug’s, but they do not cover M). Then the cohomology group H*(M) is a part of

the relative Mayer—Vietoris sequence:

—’ H*(M1V1UV1’) TH‘(M1V1)€BHI(M1 V2) “*H'(M50) —’

II II II (524)

H-(EV') H“(U2,0U2) H*(U1,8U1)

It follows from this sequence, that any top dimensional class in H‘°P(M) is equal to the

sum of two relative classes in H‘(U1,3U1) and in H*(U2,8U2) modulo a “correction

term” from H‘(EV’ ).

In general, when the set M is covered by open sets U1, U2, . . . , Ur, let us denote the

complements of these sets by V,- = M\U,-. For any subset {i1, i2, . . . ,ik} C {1, 2, . . . ,r}

let V,,,,-, ,,,,, ,-,, = V,, U- - -UV;-,,, and Vil1i”°""* = V,, n- - ~flV,-,,. Then we have the following

generalization of the relative Mayer-Vietoris sequence:

Theorem 5.25 Let M be a manifold containing the submanifolds V1,...,V,., not

necessarily covering M. Then for every class 11 E H‘°P(M, K,2,,,,,) there exist classes

11,-, ,,,,, ,-,, E H’OP(M,V‘1"""*) for {i1,i2, . . .ik} C {1,2,.. . ,r}, such that:

(1‘ 1 [M1 V1.2-----fl) = :(-1)k+l Z (”imam-i1: 1 [M1 vi1,i2,...ik])

k {1,,;,,...i,,}

Proof: We shall prove this theorem by induction on the number of sets V,-. For

r = 2 the theorem follows from the relative Mayer—Vietcris Theorem described above.

Assume thus that this theorem is valid for all n < r. The sequence (5.24) for M1 = V1

and M2 2’ W 3
’ 00000

Ht°p(M, V1 U V2,3,...,r) —* Ht0p(Ma V1) EB Ht°p(M, V2,3.....r) —* Ht°p(M, V1,2,...,r) —* 0

(5.26)

Hence, using the inductive assumption, there exist classes 11,-, ,,,,,5, E Ht°P(M,V1 U

V2,3,,,,,,.), where {i1,...,i,} C {2,3,...,r}, a class #1 E H(M, V1), and a class a E

H’°P(M, V1 U V23 ,) such that

II = #1 + XX-Ukl'l Z 1111,12,...“ — a

k {”1'i2""”k}c

C{2,3,...,r}

,...
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a E H"'(M, V1 U mer) under the excision isomorphism. Using again the inductive

assumption for the set U1 containing sets V,- we get

a = z:(-—l)""'1 Z 6111,12,...1',‘

k {‘1112»---‘k}C

C{2,3,..

where 01,-,,,-,,,,,,-, E H’°P(U1,V). By excision H‘°P(U1,V) c: H‘°P(M, V131"? """"f“), thus

a,-,,,-,,,,,,-,, correspond to p1,,,,,-,,_,,,-,,, which concludes the proof. Cl

Corollary 5.27 When the sets U1,U2,...,U,. cover the space M, then eyery class

[1 E H‘°P(M) is equal to a combination of the classes 11,-,,,-,,,,,,,-,, E H‘°”(U,-,,,-,,,,,,,-,,),

where U,,,,-,,,,,,,-, is a compactification of the intersection U,-,,,-,,,,,,,-,, described in previous

paragraph.

Proof: When the sets {U,}f=, cover M, then Vlgmr = 0. Thus from Theorem

5.25 it is sufficient to prove that H‘°”(M,V‘1""""‘*) 2 H’°p(U,-,,,-,,,,,,,-,). The exci-

sion isomorphism gives us H*(M, Vi1 ""°""*) 5: H*(U,-,,,-,,,,,,,-,,, 6). Recall that the com-

pactified sets U are of the form U UK, where K is a set of codimension at least

2. Let us denote CK = EU UK. Then we have another excision isomorphism:

H‘(U,-,,,-,,,_,,,-,,,0) 2 H’(U,CK). As the set CK deformation retracts onto K, which

is of codimension at least 2, then we have the last isomophism H‘°”(U, CK) 9.: H‘°P(U)

from the exact sequence of the pair (U, CK)- D

Let (I) denote the set of these classes 0 E H‘°P(Mk(X)) that are equal to a linear

combination of terms of the form a,,,,,,,_,,,p(0)°‘ - p(x1)"'1 - - - p(x,)°". The specific

compactification of the classes [1(0) and p(x,-) that we defined before allows us for

every (15 E (I) to define a “restriction map” r,-,,,-,,_,_,,-,, : Hi°P(Mk(X)) -+ H‘°P(U:,,;,,...,i,,)

such that d) is a combination of the classes r,-,,,-,,_,,,,-,,(¢) in the sense of Lemma 5.27.

The following lemma will allow us to avoid dealing with the classes r,-,,,-2 ,,,,,,-,,(45) for

k > 1:

Lemma 5.28 Let M and V1,...,V,. be as in Theorem 5.25. Let p E H‘°”(M) be

a cohomology class such that p,- = 0 E H‘°”(M,V,-) for every i = 1,2,.. . ,r. Then

1“ = 0 E Htop(M, W,2,...,r)-

Proof: This is proved by an induction on the number of sets V;- as in (5.25). For

r = 2 the statement follows from the relative Mayer—Vietoris sequence. The inductive

assumption implies that 11 E Hi°P(M, V2,3,,,,,,) is zero. Thus the sequence (5.26) gives

us the lemma. Cl '
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6 The proof of Theorem 1.3

The proof of Theorem 1.3 is based on the idea of replacing the classes 11(0) with some

appropriate point classes p(x,) by using relations described in Lemmas 5.12 and 5.16.

In other words we would like to find a linear combination of the form:

11(0)“ + Z “0.01 .....0511(010 ' 11(331)crl ' ' ' ”(33:1)“a (6°11

a<n

that would evaluate as zero on every set U,. In the above formula, as well as in later

notation, we shall often skip the factor 11(2) that appears in every term. Then from

Corollary 5.27 it follows that (6.1) is zero on the whole of Mp(X), thus giving the

main result.

We shall begin by defining a form that will evaluate trivially on a part of the

diagram J defined in (4.6). Let {U,-}f=, be the open sets of the cover corresponding

to the first column of J.

Theorem 6.2 Let 0 - 0 = —p, and let' 3 be the number of elements in x(L(p,1) ).

Let n > 23, and set r = "—333- when n is even, and r = L225}- when n is odd. There

is an a = (01,02, . . . ,a,) such that 0(a) defined by:

1(a) = 1(0)" — as#(0)2’u(x,)" + ,,_,,(,)2s—2,(,,_,).+1 + . . . + ,,,(,)2,(,,).+.-1

when n is even, and

(13(0) = 11(0)" - as#(0)2"‘#(x.)’ + a.-1#(0)2"3#(:c.._1)’“ + ~ - - + alu(a)‘#(x1)’+"‘

when n is odd, evaluates trivially on the set 1<l,J< U,.

_1_e

Proof: We shall give the proof in the case when n is even. The proof in the other

case is analogous. For convenience let us set p(x,) = —4;1(x,). Using Corollary 5.12

for the set U, we get the relation: 11(0)2 2 s2 - p(x,) for i S 8. Thus, in U, we get:

¢(a) = (32" + a, + gab, + . . . + —(32;3_1 (11) ”(0)28p($8)r

While considering the other sets U,- we have to use the following lemma, which is a

direct consequence of Lemma 5.13:

Lemma 6.3 Leti > k, and let the numbers a, ,3, and 7 be such that 7 + a Z

dimME(N, k). Then in the set U), we have:

P

#(0)7u($k)°’#($s)” = MOP/100°”
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From this Lemma and the relation 11(0)2 = k2p(x,-) for i S k we get in Uk:

(2(a) = #(0)2k ((k2)r+s—kp(xk)r+s—k + (k2)‘""a, , P($k)"kp($s)' + . . .

+ Egg—{I’Wklrfl-kai)

= ”(0)2kp($k)r+s—k ((k2)r+e-k + (162)8-ka, + . , , + (k2;k_1a1)

Thus we get a system of 3 equations with 3 variables, whose matrix is the Vander-

monde matrix:

(32)“1 . .. (32) 1

1 1 1

whose determinant is 1119-9-54j2 — i2). In particular, this determinant is nonzero,

thus we can always find the numbers 01,. . . , 0,. D

In order to remove the assumption n > 23 from the above theorem we need to

define the relative invariants, that have been introduced in [F32].

Definition 6.5 Let Y is a 4—manifold with a cylindrical end and MkY(I/, m) a com-

pactified moduli space. Assume that m is nontrivial, and that c denotes the first

Chern class of the 51 fibration 3‘1(pt). Then define the relative Donaldson invariant

Dy[m] : A(Y) —+ R by:

Dr[ml(z - C“) = (11(2) - 6”, Min/(Y1 m))

When m = 123 we set Dy[m](z) = Dx,,(z) to be a twisted 50(3) invariant. When

m = 0 we set Dy [m](z) = Dx(z), the usual invariant.

The class wo of that twisted invariant must evaluate as zero on Y and on N, thus

it is a unique Z2 class that comes from H1(L) in the cohomology sequence:

_; H1(L) —) H2(X) —+ H2(Y) ea H2(N) _,

Since the Z2 reduction of the class 0 satisfies these conditions, we have w; = 0.

Lemma 6.6 Let n = 2k S 23 (where s is the number of elements in x(L)). Then

there exist coefiicients a1, . . . ,ak._1 such that the form

431: = ”(0)21: - ak—lfl(a)2k-2P($k—1) - - -- — a1p(0)2p(x1)""1

evaluates on the sum of the sets Uf=,U,- as (2k)!Dy[k](z) in the case when k is a

trivial element of x(L), and evaluates as £1’—;°13D}z[k](1'z - c) otherwise.
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Proof: Let W(k — 1) denote the k X (k —— 1) matrix

and let W(k — 1)j denote the (k — 1) X (k — 1) matrix obtained from W(k — 1) by

deleting j ‘1‘ column from the right. Then according to Theorem 6.2 for a,- =W

the form 45), evaluates trivially on the sets U,- for 1 S i < k. 30 it remains to evaluate

43;, on the set Uk:

¢klUk = _(k2)k + ak_1(k2)k-l +
. . . + alkz 2

k2

= det Wk 1 [_(k2)k_l ' det Wk-l + elk—.1(l€2)k"2 det W(k — 1)"’1 + . ..

+ a, det W(k _1)1] =

W
1

= "2 det k ‘ H (k2 - i2) = L2,?) (6.7)
det Wk“ — OSiSk—l

When k is a trivial element of x(L) and U), corresponds to the set with the biggest

amount of energy on the N-side that covers the intersection of divisors V,, then the

bundle Q apearing in the Lemma 5.13 is 50(3) —> 52 = 50(3)/51. As the first

Chern class of this bundle is equal to 2, then we have an additional factor of 2 in the

formula for ¢klUk in this case. [I]

To avoid dealing with separate statements for two different cases 11 > 2s and

n S 23 we shall introduce the following notation:

Definition 6.8 Define the Donaldson invariants needed for evaluation D(z0"):

2m k—2d—

Di(z0 xm+2d D[m](c-z) ifk—2d—m=0.

m) {D(z02mx:,'f§’d'm ifk — 2d — m > 0.

0 ifk—2d-m<0.

when n = 2k, and

2 1 k 23 0(202m-1xin-4-22dd-m) ifk - 2d -— m > 0.

01(20 m_ aim—+2117”): D[m](z) if k _ 2d _ m = 0.

0 ifk—Zd—m < 0.

in the case n = 2k +1.

The particular subscript of xm+2d in the above formulas is taken from the fact that in

the (d + l)“t column of the diagram J the element with boundary value m lies in the

level xm+2d. Now we are ready to prove the theorem, from which (1.3) will follow:

Theorem 6.9 Let X be a smooth manifold containing an embedded sphere 52 with

self-intersection 02 = -—p. Let s be the number of elements in x(L(p,1)), and let
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z E A(X) be a cohomology class such that z - 0 = 0. Then there exist constants a;

such that:

D(02"z) = Z ZaiDL(02mxk"2“‘m2) (6.10)

m=1 d=0

when n = 2k, and:

D(a”‘+‘z)= 2 2damD.L(0.2m—lxk—2d—mz) (6.11)

m=l d=0

when n=2k+1.

Proof: We first concentrate on the case when n = 2k. Let U1,U2,. . . ,U, be the

open sets that correspond to the first column of the diagram J (if there are fewer

than 3 sets in the first column, thanks to the definition of D_L we can assume that

we completed that list by empty sets). Theorem 6.2 and Lemma 6.6 imply that there

are constants 0?, a3, . . . , 02 such that

8

= Z: a9,01(202mx"m)

m=1

evaluates trivially on the first column of J. Let J(1) be a diagram obtained from J

by erasing its first column. For every vertex of J(1), like in (4.6) we can assign an

open set in Mk_1(X) (the moduli space of connections on X, with one charge less

than the space that we started with.) Repeating the argument from Theorem 6.2 we

can show that there exists a polynomial

¢1 = 0.11/40)Z’Il(xs+2)r‘1 + 01.11107)28-2#($s+1)' + ° ' ' + “111(0)2#(33)r+8-2

+ aifl($2)'+’-l

such that 0° — 01 evaluates trivially on the first column of J(1). The difference 0° — 01

should be understood in the following way: as the diagram J(I) has been obtained

from J by erasing some of its elements, then we can say that there is an embedding

J(1) H J. Then 01 we evaluate on the open set corresponding to a vertex of J(1),

whereas the 0° we evaluate on the corresponding set of J. Repeating Theorem 6.2

for consecutive diagrams J(i) we prove the theorem. Cl

Proof of Theorem 1.3: Lemma 6.6 with Theorem 6.9 implies that the relative

Donaldson invariants Dy[k] can be expressed in terms of D(02") and D(02-lx"‘j) for

j < k. Thus all relative invariants in 6.10 can be replaced with invariants defined on

X, which completes the proof. Cl

7 Examples of computations.

The theory that we have developed gives more than just Theorem 1.3. By using the

results of this thesis we can compute the actual coefficients in some of the formulas

given by the (1.3). Below we give some examples of such computations.
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Example 7.1 Let 0 be the cohomology class of an embedded 2—sphere with self—in-

tersection -4. Although Theorem 1.3 does not cover the case of D(z0“), the only

relative Donaldson invariant that appears in Theorem 6.9 is a twisted 50(3) invariant

with 1.02 = 0, that is why we get the formula of the form:

D(z04) = A - D(z) + B - D(z02x) + C - D,(z)

We have already seen that the diagram J in this situation is

‘ 1

l\o

and let us denote the corresponding open sets by U1“, U12 and U9. Then from

Lemma 6.6 we have that 0° = ;1(0)4 — p(0)2p(x1) evaluates trivially on U11), Since

the coefficient B is obtained from the term p(0)2p(x1) = —4/1(0)211(x1), then we have

B = —4. The coefficient C we obtain by evaluating 0° on U3. The dimM1(N, 2) = 5,

thus the neighborhood of the reducible connection is modelled on C3/51 = CPz.

From Lemma 5.12 it follows that U,2 = P(50(3)C X 720), where 7,, —» CP" is a line

bundle with c1(7,,) = [CPI]. If h is the generator of the fiber CPl of P, then we

have:

11(0) = 2h; p(wl) = h”

Thus in U,2

11(0)4 - #(0)2P($1) = ic([50(3)/Sll) ' (24 — 22) ' 117(2) = i24 ' Da(2)

Here 0 = 2[52] is the first Chern class of the fibration 50(3) -+ 50(3)/51.

In order to determine the sign in the above equation we have to refer to the orien-

tations of moduli spaces defined in [D2]. By using a complex structure on the elliptic

complex

0°(TX (g) L) _. 01(TX 55 L) _. 111(TX 55 L)

where L —-> X is a complex line bundle, one can assign an orientation 0(L) to a

reducible connection respecting the splitting L 63 L in the case of 5U(2) connections,

or respecting the splitting L GB R in the case of 50(3) connection. The Example 4.3

from [D2] worked out for an arbitrary reducible bundle L EB L gives:

Claim 7.2 The orientation 0(L) of a moduli space in the neighborhood of reducible

connection on a bundle E = L EB L is —1'z/\ (standard orientation on CP"), where

it is the normal pointing away from the reduction. This orientation compares to the

standard one with a sign (-1)CI(L)2.

For the connections over the space N we have to change the sign in the above

Claim, due to the fact that N has the orientation opposite to the complex one.

The decomposition X = Y#N yields a splitting of arbitrary line bundle L into
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L ’5 Ly#LN, where c1(L) = c1(LN) on N. The neighborhood of reducible connec-

tion on LN EB LN is described as 50(3) :5 C“ has the orientation 0(L). An arbitrary

connection may be related to a reducible one through additions and subtractions of

instantons. The set U,2 is a neighborhood of the reducible connection on LN EB LN

with c1(LN) = 2[52] E H2(N). The associated 50(3) connection is defined on

Lg, 69 R. Thus as a bundle L on the whole X we can take the line bundle with

c1(L) = —PD[52]-— —0, since —0[52]-— c1(LN)-— 4. Thus the complex orientation

on U,2 compares with the standard one with the sign (--1)"—- (——1),4 giving the “”+

sign at D,(z).

There are no 51 reducible connections inside the set U? but there is a trivial

one. Following the discussion in [Y], the restriction of the basepoint fibration to

the link of the trivial connection in M1(N,0) is Fr+(N) —» N, where Fr+(N) is the

associated 50(3)-principal bundle of AiTN. Then U? = Pa(50(3)G x Fr+(N)G),

and following Corollary 5.16 we have in this set:

#(0) = 1r"'(0); P($1) = -4W’($1)+ H

where H is a generator of the fiber 250(3) of Pa(50(3)G X Fr+(N)G). Thus 0° =

—H[250(3)] -02[N] = —2- (—4) = 8. The additional “—” sign has to be added again

due to the anti—complex orientation of N. Putting all three terms together we get

Theorem 7.3 When 0 is a class of 52 with self-intersection —4, then the following

formula holds:

D(204) = -—8 - 0(2) + 24 - D,(z) — 4 - D(z02x) (7.4)

7.1 Second stratum connections over CP2

The next example requires the description of the reducible connections in the second

stratum of the moduli space. The following presentation is based on [Y, Oz]. Let

(.0 be a reducible connection on the bundle L EB L over X with cL = c1(L). Assume

that n is such that the neighborhood of w E Mcz(X)18 modeled on C"/51 Then

an open neighborhood of {w} X Xin the compactified moduli space Mc2+1(X) is

homeomorphic to the bundle:

Cu 3:, (PL x (Fr+X SOX(3)CSO(3) )/ U(1)) (7.5)

X

By the symbol P if Q we have denoted the fibered product of two fibrations P and Q

over X. (the pullback of Q over P.) Let PL denote the principal 51 bundle associated

to L, on which U( 1) acts in a natural way from the right. The U( 1) action on c50(3)

is a square of the right action of 51 H 50(3) via the map

1 0 0

exp(i9)—> 0 c080 sin0

0 —sin9 c030
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For any complex line bundle L we have L X 50(3) 2 L2 :5 50(3), where the 51 action

SI 1

on 50(3) is the square of the 51 action. Thus in what will follow we shall replace

the fibration PL with Pp getting the standard U(1) = 51 actions on all bundles

appearing in the formula. The stabilizer 5§T acts in the standard way on C" and on

the left on the space PL 3: (Fr+X SOX(3)c50(3) )/ U(1) Thus in the neighborhood

of {10} X X the bundle M —1 M/51 used in Theorem 5.5 is:

M = S (0" x (P12 § (Fr+X 55,3)c50(3) )/S‘)) -

_. p (on x (P, 3, (Fr+X $513050“) )/51)) (7.6)

where the projection is the quotient by the 551‘ action. In the above formula we have

used the symbol “5” even though the fiber of the boundary of

n 1

C x (PL: if (Fr+XSOX(3)cSO(3) )/S )

is not a sphere, but 52’“1 at 50(3), a space that is double covered by 52"”. For

later computations we need to evaluate the powers of the first Chern class CM of the

fibration M —+ M/Ssi'r on M/Sl.

When the 50(3) fibration Fr+X lifts to an 5U(2) fibration Er+X (i.e. when 1.02

of the manifold X vanishes), then, following [Oz], we have an 51 equivariant double

cover map:

” 1 1
PL 3(((Fr+X 513((2)05U(2) )/5 —> Pp 3(((Fr+XSOX(3)c50(3) )/5

where 51 acts in the standard way on 5U(2) The fibration

~ 1

PL 3; (Fr-,.X Slfiflcsmz) )/3

can be orientation reversing identified with the sphere bundle of the complex vector

bundle L‘1 (X) Aic with the complex orientation. For the whole space M/S1 we have

the following:

Lemma 7.7 (Compare Proposition 2 in [02]) If X is a four manifold with w; = 0,

then there is a fiberwise covering map p of degree 2"

p: P (0" 613(12 o 1110)) .. p (on x (PL. 3, (Fr-,.X ails-1650(3) )/51))

Moreover p*(cM) = —2hp, where hp is the positive generator of the fiber CP"+l of

P (on o (L s 211(3)) —. X.
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Proof: In order to make the lift an 51 equivariant we need to lift the 51 action on

PL: and on each fator of C" = c(§'l * - - - =1: 5:). This gives us a 2"+1 cover of the
 

n times

fibrations before projectivization. Dividing by the 51 action “cancels” one factor of

2.

On the fibers the map p is

S2n+3 A 5271-1 * 50(3)
7

GP“ P (521-1 ... 30(3) )/51A

7

By using technics similar to the desingularization of the moduli space (5.6) and

Theorem 5.13 we get:

(6111, (52“1 * 50(3) )/51) = (CnM+19P(SZC X 30(3)C)) = 65013152] = 2

Hence

(1)1634“), CPW) = Twill”, (13'2“l * 50(3) )/31) = 2"+I(7"+1,CP"+1)

giving the second conclusion modulo the sign. The minus in this formula is due to the

fact that the identification of 2" cover space with P(C" EB (L ® A1,C)) is orientation

reversing. Cl

Now we need to adjust the above results for the case of the space N E CPn/Zp.

7.2 Second stratum connections over the orbifold N

Let T : CP1 —1 N denote the quotient by Z, action defined by 7'[zo : 21 : zo] =

[exp(27"‘)zo : 21 : 22]. This action has a fixed sphere {zo = 0} and one fixed point

{21 = z; = 0}. The quotient space N is not a manifold, having singularities at the

fixed points of 1. Near the fixed point sphere N is diffeomorphic to —p degree disc

bundle over 52, thus the singularity there can be resolved. The neighborhood of the

fixed point is modelled on the open set in R" divided by Z, action with a single

fixed point at the origin. Such spaces are called orbifolds. We will need the following

properties of N:

Lemma 7.8 Let 0 E H2(N) be a cohomology class Poincare dual to the sphere with

self—intersection —p. Also let x E H4(N) denote the generator of this group. Then

we have

T'(0) = m; 7"(3) = m2

where 7 E H2(CP2) is a generator of this group.
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Proof: For the generator :1: E H4(N) we have r*(x) = p72, thus proving second

equality. Also we have:

(7100,5162) = P' (USN) = ~10? = ((imYfifi)

Since PD(0) is a fixed by the action of T, then we have the “+” sign in the first

equality. El

Over the orbifold N the line bundles L and the bundle A1(N) are defined as

Z, quotients of the corresponding bundles over W. Thus if hN denotes the class

obtained by quotiening the generator h of the fiber CP2 of P(C€B(L®A1’C)) —+ C133,

then we have:

(112070), P(C EB (13 (8 A10)» = (11117110), N) = £010,512?) = (hm—(7P7) (7-9)

and

(hire), P(C EB (13 69 A13)» = (7"(2), N) = (72.33?) (7-10)

In particular this answer does not depend on the intersection number p. Now we are

ready to come back to the computations of next examples.

Example 7.11 For the 0 with the self—intersection -4, same as in the previous

example, we want to increase the number of the classes 0 appearing in the Donaldson

invariant. According to Theorem 1.3 we expect the formula of the form:

D(20°) = a1 D(z02x2) + aoD(z04x) + a3D(zx) + a4D(202) (7.12)

Each term in the above formula corresponds to different open set represented on the

diagram:

i\.
\1

Solving the system of equations described in Theorem 6.2 gives us that the form

050 = #(0)6 - 5#(0)4P($2) - ("4)Il(‘7)217(-7-‘1)2

evaluates trivially on the sets U11), and U12. This shows that the coefficient 01 =

—4 - (—4)2 = —64, and a2 = 5 - (-—4) = —20. Again it remains to evaluate 0° on U?

and U51), Similarly like in the previous example, in U? we have

3° = 4 . 52w] . H(250(3)] -p($1)[Mk(Y, 0)] = 4 . (—4) . 2 . (-4)D(zx) -_- 1280(25)
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This gives us the coefficient at D(zx) with the sign determined like in the previous

example. Since the graph J terminates on one level below the set U,°, then we also

get 01 = —32p(x2). In U51), we have:

11(0) = “‘10) - 11; p(wi) = -47r‘($i) + h”

Thus:

3" = («‘(a) - hr — 5 («*(a) — hr- (-451...) + 1.2) + 4 («‘(a) — h)?-

(—47r"(x,-) + h“)2

= h6 — 6h5n‘(0) + 15h“(1r"‘(0))2 — 5(h4 — 4h31r"(0) + 6h2(7r"(0))2) -

(—47r"'(x,-) + h?) + 4 ((7r’(0))2 — 2515);. + 52) . (54 — 852515;,»

= 155515) (-—6 + 20 — 8) + h47r"(x,-) (1552 + 20 - 3052 + 452 — 32) (7.13)

= 6h51r‘(0) + 32h41r"(x,-)

The set U51), is P(Q$ x MC), where M is the neighborhood of the connection (11 X N

described in (7.6). Thus

(1157110111554) = (5,, 2y) - <h3r(a),M> = 0(02) . __;_ - (—2)3 . «mew

Here CF, = c1(L (8) A10) = —27 and the extra minus in the front of the whole formula

is due to the fact that the identification of the 2" cover of M and L <8) A10 was

orientation reversing. Thus the contribution of the term 6h57r“(0) in U51), is 48D(02).

Similar computations give (h41r*(x), U51“) = -2D(02). The contribution of 01 in U1),

is equal to D(02), thus adding these terms together we get:

D(z0°) = —64D(z02x2) — 20D(z04x) — 128D(zx) — 48D(z02)

Example 7.14 As the other way of generalizing the above considerations we shall

prove that for 0 - 0 = —6 we have

D(z0°) = —192D(zx) — 64D(202x2) — 20D(z04x) - 108D(202) + 720D,(z)

The graph J for this situation is

i\.
l\l

and as before the form 0° = 11(0)6 —5p(0)4p(x2) — (—4)p(0)2p(x1)'2 evaluates trivially

on the sets Ui/s and UZ/G, giving the coefficients at D(z02x2) and at D(20“x). In U3),

we have:

¢° = 1452] . (36 —5-3“ +133)= 2(729 -405+36) = 720
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which gives the constant at D,(z) and 01 = —48p(x2). Repeating the reasoning from

the previous example we get that 0° = 4 - (—6) - 2 - (—4)D(zx) = 192D(zx) in U9.

From (7.13) in U71“, we have:

0° = 6h57r*(0) + 54h41r'(x,-)

As the pull—back over CP2 of the link of the reducible connection in Ui/s does not

depend on the self—intersection p of 0, we can repeat the computations from the

previous example, obtaining:

l¢01U7I/S> + (<19, Ui/e) = (6 ' 8 + 54 ' (-2) - 48) ‘D(02) = 4080072)
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