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ABSTRACT
THE DONALDSON INVARIANT AND EMBEDDED 2-SPHERES
By

Wojciech Wieczorek

In this thesis we study the Donaldson invariants for smooth 4-manifolds containing
an embedded 2-sphere with an arbitrary negative self-intersection. In [FS3] Fintushel
and Stern have described the relation between the Donaldson invariant of the manifold
X and its blowup X#CP2. We prove the existence of a similar relation for X =
Y UL N, where N is a neighborhood of the sphere with self-intersection —p, and L
is a lens space L(p,1). We describe the most efficient way of covering by Taubes
neighborhoods the points that contribute to Donaldson invariant. The technique we
develop allows to compute explicitly the coefficients in this formula in some particular
cases, which we ilustrate at the end of the thesis.
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1 Introduction.

For a long time Donaldson invariants were the most powerful tools for studying
smooth 4-dimensional manifolds. For a simply connected 4-manifold with b, odd
and bigger or equal to 3, these invariants are defined as linear maps D, : A¢(X) —» R
where A?(X) is the set of elements of A(X) = Sym,(Ho(X) @ Hz(X)) having degree
d. We provide the elements of H;(X) with the degree }(4 —¢). Donaldson’s original
definition of these invariants is subject to the restriction

(6 (X) +1)

4 2

(mod 4) (1.1)

and d > 2(bF (X) +1). The first version of the blowup formula in [FM 2] allowed the
removal of the second restriction. For a special class of manifolds (called simple type)

one can define Donaldson’s invariants for d = w (mod 2), but in our paper
we shall stick to the original restriction. Since the discovery of Donaldson invariants
there arose a question about computing them. There are many elliptic surfaces for
which these invariants have been completely computed. Except for computing specific
examples one would like to develop general techniques, like the Mayer-Vietoris type
of argument: having the decomposition of the manifold Xonto X, L};Xz and knowing

the invariant for the components X;, X; and some properties of ¥ (which in fact
are related to the invariant of the 4-manifold R x Y), determine the invariant for
the manifold X. When X, is a neighborhood of an embedded sphere with negative
self-intersection, then R. Fintushel and R. Stern provided the following answer in
[FS2):

Theorem 1.2 Let X be an oriented stimply connected 4-manifold, which contains an
embedded 2-sphere S representing a homology class o with self-intersection 02 < —2.
Then there are polynomials B;x = Bjx(z) and A, depending only on o2, such that
for z € A(ot)

D(0*7'z) = BoxDo(2) + £j2i D(0% ' Bji(z)z)  if  o*=—(2k+1),
and

D(0%*2) = Aok Do(2) + k=) D(0%2A;jk(z)z) if ot = —2k.

Here the degrees of the polynomials B; are equal to k — j, whereas the degrees of A;x
arek — j+ 1. The Aox and By, are constants.

The proof of [FS2] uses the compactifications of certain open sets in the moduli spaces
provided by C. Taubes [T1] and does not show how to compute B;(z) for specific
examples. In this paper we would like to provide an alternative proof of a theorem
that generalizes the above result. Namely we prove that for an arbitrary number of
classes o representing an embedded sphere with negative self-intersection we have
the following result:

Theorem 1.3 Let X be as above and suppose that X contains an embedded S? with
self-intersection 0> = —p < —1. Then there is a formal power series Bpyim(z,t) =

1



PRy ﬁB(p)m,j(m)t", such that:

Diexp(o 1) - 2) = DY Byn(a, )™ - 2

n=1

There are few comments necessary about this formula:
1. Each B(p);n,; is a polynomial in z of a degree d satisfying the inequality 2d+n < ;.

2. For j < p this formula provides nothing but the trivial statement D(o?) = D(o”).
Later though we shall define the relative Donaldson invariants, for which a similar
formula will become nontrivial.

3. For given z € Hy(X) only half of the terms in the above formula are nontrivial.
Due to the restriction (1.1), either D(a°**" - z) or D(0°% - z) is always zero.

4. When p = 1 or 2, X admits an orientation preserving diffeomorphism that induces
a map on H3(X) sending o onto —o and which is identity on o+. Thus in this case,
D(0°4z) = 0 for all z.

5. In the case p = 1, Fintushel and Stern [FS3] have actually computed the function
B(z,t) = B),0. Using their result and Theorem 1.3 one can compute the functions
By(p);; for higher p.

In the proof of the above theorem we split the manifold X into N, the neigh-
borhood of the embedded sphere with negative self-intersection, and the remaining
part Y. These spaces are connected along the lens space L = L(p,1). Section 2 pro-
vides a review of the results on gluing. Roughly speaking by stretching the cylinder
L x (—¢,€) we obtain open sets U; in the moduli space for the manifold X that can
be described in terms of moduli spaces of X; and X,. In order to combine these open
sets back into a global one, we need to understand how these sets overlap. Section
3 describes the moduli spaces of connections on the cylinders R x L(p,1), which are
essential component of the sets U; N U;. In section 4 we describe the most efficient
way of chosing the sets U;, which cover the points of the moduli space over X which
contribute nontrivially to the Donaldson invariant. We introduce a partial order in
the set {U;} that will enable us to make inductive argument in the proof of the main
theorem. The next section is devoted to computations inside the sets U;. In the same
section, by using relative Mayer—Vietoris sequence, we also show that the computa-
tions in U;’s done separately suffice for proving a global result. Finally, in section 6 we
prove the main result. The techniques developed in this paper have wider application
than just proving the existence of a general formula. In the final section we compute
three examples of particular formulas. One of such formulas has been used by [FS3]
as a necessary initial condition for their differential equation defining the function
B;x(X) in the blowup formula.

The author would like to thank Ronald Fintushel for introducing him to gauge
theory, as well as for guidance and help while working on this problem.



2 Construction of the Donaldson Invariants.

In this chapter we will recall some main points of the theory of Donaldson invariants.
The details can be found in [D1] and in [DK]. Let X be a simply connected four
dimensional manifold and P — X be an SU(2) bundle over X. These bundles are
classified by their second Chern class c;(P) = k. For a generic Riemannian metric on
X, the space of gauge equivalence classes of anti-self-dual (ASD) connections on P
is a manifold of dimension 8k — 3(1 + ;). We will denote this manifold by M (X).
Over the product M;(X) x X there is a universal SO(3) bundle P which gives rise
to a homomorphism x : H;(X) — H*~*(M,(X)) obtained by assigning to ¢ € H;(X)
the class —3p1(P)/o. To each cohomology class u(c) corresponds a codimension 4 — ¢
variety V, contained in M(X). Let [z] denote the generator of Ho(X), and v = p(z)
with V, its dual divisor. The class v can be also realized as —1p;(M3(X)), where
M%(X) is the moduli space of based anti-self-dual connections. The Donaldson
invariant is a linear function

D : A(X) = Sym,(Ho(X) ® Hy(X) ) = R

which assigns to the classes oy,...,0, € Hy(X) and s copies of the generator [1] €
Ho(X) the intersection number

#(M(X)N Vo, N Vo, NP, V) (2.1)

where the numbers k,r and s are related through 2r + 4s = 8k — 3(1 + b4). In
order to make sense of this intersection number, one has to compactify the mani-
fold My (X). For that purpose we need to define ideal connections on X as a pair
([w], (z1, 22, . ..,2,)), where [w] is a point in My_,(X) and (z;,z2,...,Z,) is an un-
ordered s-tuple of points in X. To an ideal connection A = ([w], (z1,23,-...,%,)) we
associate its measure (or curvature density) ps = ||F,||*> + 87232, 4.,.

Definition 2.2 (Compare [DK]) We say that a sequence of connections {w,} in
M (X) converges to an ideal connection A = ([w),(z1,2Z2,-..,2,)) if the following
conditions are satisfied:

1. The measures p,,, converge to pia.

2. There are bundle maps pn : P'|x\(z,,..z.} — Plx\(z,,..z.} Such that p}(wn)
converges on compact subsets of punctured manifold to w.

Let us denote by s®(X) the n** symmetric product of X. Then the above definition
of convergence provides the set

IMi(X) = Mi(X) U Mi_y(X) x X U My_a(X) x $3(X) U ...

with a topology. The Uhlenbeck compactification M(X) of My(X) is the closure
of M(X) in IMy(X). This is a stratified space with singularities. We can define a



fundamental class of a singular space (and thus introduce an intersection theory) if
the singular set is of codimension at least 2. This is the case when d > 3(1 4 b,). In
[FM 2] it is shown that the classes u(o) extend over the compactified moduli space,
whereas the class v extends only away from the lowest stratum, corresponding to a
completely concentrated connection. Under the above restrictions on the dimension
of the moduli space, the intersection of divisors V, takes place away from completely
concentrated connections, thus the intersection (2.1) is well defined. One can extend
the definition of the Donaldson invariants beyond the dimension restrictions by con-
sidering connections on SU(2) bundles over X#CP? and using the first version of
the blowup formula from [FM 2].

2.1 Donaldson polynomials on manifolds with cylindrical
ends

In order to prove Theorem 1.3 we need to separate the sphere S with its tubular
neighborhood N from the rest of manifold X. As 9N = L(p,—1) (which we abbreviate
as L), we canrepresent X asY U N. From this point on, one could try to study spaces

of connections on the manifolds Y and N with boundary L. However for boundaries
as simple as lens spaces, it is more convenient to stretch the neck L x (—¢,¢) to an
infinite length and study spaces of connections on manifolds with cylindrical ends (see
the definition below). The advantage of this approach is that the restrictions over L
of connections with finite energy on bundles over X may be almost arbitrary, whereas
the connections with finite energy on bundles over a manifold with a cylindrical end
limit to a flat connection. The whole set of flat connections is a finite dimensional
variety, thus we have very limited set of possible “boundary values”.

In our formal description of this procedure we shall follow the notation of [MMR].
We are going to apply this theory to both N and Y; thus for the presentation of
general theory let us fix a closed, oriented, Riemannian 4-manifold (Z,gz) whose
boundary is a 3-manifold (L, gL).

Definition 2.3 A Riemannian 4-manifold (Z,gz) is called a manifold with cylin-
drical end if Z has a subset isometric to [—1,00) X L. This subset we will call the
cylindrical end.

We do not assume that the above is the only end of Z. We shall refer to manifolds
with two cylindrical ends as tubes.

Definition 2.4 On the manifold Z with cylindrical end let 7z : Z — R be a function
which maps a cylindrical end onto [—1,00) and is less than —1 on the complement of
the cylindrical end.

Define Z, to be 77 ((—00,a]) and Ziayy = Zy \ Za = 77([a, b)).

There is a corresponding theory of ASD connections on bundles over Z. Let £ — Z
be a C* principal SU(2) bundle. For any L?, . connection w and any real number



8 > 0 define the L} ; norm on C§°(Z, A?(ad E)) by

k
Isllws = (X [ 195s[257)1/2 (25)
=0

Set L}, ;s to be the completion of C§°(Z,AP(ad E)) with respect to this norm. By
Ay s we denote the set of all connections with the norm defined above. When 6 = 0
we abbreviate L , ; by L} . Let G be the group of L} gauge transformations of E .
Then Bg denotes the quotient Ag/GEg . Define also Gg to be a group of those gauge
transformations which are the identity on a fixed fiber E, of E. If we divide Ag by
Gg, then we get the space of based connections denoted by B, or B if we want to
indicate the point over which we fix the fiber. The same space can be also obtained

as
B = Ap x E, (2.6)
O

Every element of the space BE can be represented as a pair [w, p.], where w is a gauge
equivalence of connection in Bg, and p; is a framing of E at z. For any complete
Riemannian metric on Z, the energy k of an ASD connection w is:

-1

" 82

(the last equality holds only when w is ASD). Note that, unlike in the case of closed
manifolds — the number k£ need not be integer. In fact we shall show in the next
section that k is of the form % where n is an integer and p is the self-intersection of
S. With this understood, denote by M(Z) the space of gauge equivalences classes
of g—ASD connections on E with the energy k. Again, if we divide the space of ASD-
connections by G° then we obtain the space of based connections denoted M$(Z), or
M;3(Z) when we will need to indicate the point at which the connections are based.

Let x(L) denote the space of gauge equivalences of flat connections in Bg(L). This
space is called the character variety of L and is identified with

-1
k /Ztr FuNFo= IRl

Hom(my(L), SU(2) )/AdSU(2)

Similarly, the flat connections modulo based gauge transformations are identified with
R(L) = Hom(m,(L), SU(2)), the representation variety. According to Theorem 4.6.1
of [MMR] there is a well-defined map 8° : M%(Z) — R(L). This map descends to
0 : Mi(Z) - x(L). These maps associate to every ASD connection w (or gauge
equivalence class [w]) the limit limy_o[w|ixr]. This limit is (the gauge equivalence
class of) a flat connection on L. In the particular situation when L = L(p,1) the
character variety is just [g} + 1 isolated points. Let us denote the elements of the

character variety x(L) by numbers {0,1,2,... [5—’]} Notice that x(L) is a quotient
of Z, by the Z, action given by multiplying by —1. Thus for given p there is a map
Z — x(L) that is a composition of the modulo p quotient of integers with the above
Z, quotient.



Definition 2.7 We will refer to the elements 0 and p/2 € x(L) as trivial elements of
the character variety. Thus for p odd there ts only one trivial element. The remaining
elements of x(L) we will call nontrivial.

The representation variety consists of an isolated point or points corresponding to
trivial elements in x(L), and a copy of S? corresponding to every nontrivial element
of x(L). For given m € x(L) define Mi(X,m) as 3~!(m). As we have seen before,
the number k is of the form 2. If the moduli space M(X,m) is nonempty, then the
numbers m and k are not arbitrary. In order to describe their relation we shall define
the Chern-Simons function. Every connection w on the trivial bundle § = SU(2) xY
we can write as w = © + a, where © is the trivial connection and a € Q!(Y,adf).
Then define:
CS(w) = /Ytr(a/\da+ 2ahaAa)

The gauge transformation may change the value of the function C'S by an integer,
thus Chern-Simons function descends to a function CS : B(Y) — R/Z. According
to the Chern-Simons theorem we have

k=CS(m) mod Z
The formal dimension of M(X,m) is given by the formula:

hl. + RS . p(m)
5 + 2 (2.8)

3 — 5 -(o(2) + x(2)) -

Here 0(Z) is the signature and x(Z) is the Euler number of Z. The k!, are dimensions
of cohomology groups H!(L,ad m) and p(m) is the Atiyah-Patodi-Singer p invariant
for the signature complex twisted by ad(m) ® C. The invariant h,, = h}, + R? is

equal to:
1 when m is nontrivial (2.9)

Am = {3 when m is trivial.
It is important to notice that the invariant k,, does not depend on an orientation of
L, whereas p(L) = —p(L). We will give more explicit formula for p(m) in Lemma 3.8.
For the sake of later gluing theorems, we need some facts about ASD connections on
Z in local coordinates.

Definition 2.10 Let T be a flat connection on a SU(2) bundle n over L, and Ur be
an open neighborhood of I' in the space of gauge equivalence classes of connections on
n. Let I be a subinterval of [0,00). Following [MMR] we say that an L2 connection
w =T+ A(t) + a(t) dt on I x 1 isin standard form with respect to Ur if for all t € I

o A(t) € Ur
e a(t) € Ker(Ar)t
where Ar is the Laplacian on Q°(L,ad (T')).



Theorem 2.11 (Corollary 4.3.3 in [MMRY]) There is a constant o, depending
only on L, such that for a generic metric g on Z and for all1 < a < b < oo and any
L3 ,,c 9—ASD connection w of finite energy satisfying

b+1 2
SR <<
a-1

there is a neighborhood Ur and an L}, bundle isomorphism ¢ : [a,b) X n — E|s p)xL
such that ¢*w =T + A(t) + a(t) dt is in standard form with respect to Ur.

An important consequence of the previous theorem is:

Lemma 2.12 Let Z be a Riemannian manifold containing a submanifold isometric
to C; = (=1,1) x L for some 3-manifold L whose character variety x(L) consists of
finitely many points. Then there is an € > 0 such that for every ASD-connection w
on an SU(2) bundle E over Z satisfying

/ IFl; <e (2.13)
Ci

there is a unique gauge equivalence class of flat connections [I'] € x(L) which is closest
to the restriction w|(o)xr in the L,, norm.

Proof: Let § be the minimum distance between any two points in the character
variety x(L) in the L}/, norm. Consider the set Uz of all ASD connections on Z
satisfying (2.13), and the set Ug, of corresponding restrictions to C;. Because of
the energy bound, any sequence of connections on E|¢, cannot bubble on C;. Thus
the set Ug, is compact as is the corresponding set Uz in the Uhlenbeck compact-
ification. Hence by Theorem 2.11 we can cover Uz with finite number of the sets
Ut = {w|w|qyxr € Ur for all t € (=I,1)}. Now we want to estimate the distance
lwlqepxL — I"||L§/2 by the curvature of w on E|c,.

According to Lemma 4.1.1 of [MMR] there is a é; such that for every connection A
on the SU(2) bundle over L and satisfying || F4|| 1z, < 61, there is some flat connection
['4 such that

A —TLallz, < é/2

which, because of our definition of §, must be unique. Thus to conclude the lemma
we need to bound the energy of the curvature of w|(;3xz by the curvature of the
connection w on the cylinder C;. This is done in Lemma 3.5.1 [MMR] which provides
a constant C; > 0 such that the following estimate holds:

(IIFwI(:)xL||L§)2 < C;/ le|2

[t-1,t+1]xL

which combined with Sobolev inequality || F|| 12, < Cy - ||F|| L2 gives that

2
2
(”FWl(x}xL”Lfn) < C/C, |Fu|



Thus when € < 2k every connection w satisfying (2.13) has a unique flat connection
r,. o

Once we consider the based connections [w, p.] € M}_ ;. (Xi,Cy), then we can
“recover” the flat connection in representation variety.

2.2 The Gluing Theorem

A goal of this subsection is to set up tools for covering the moduli space Mi(X) by
well-understood open sets. We next describe the gluing procedure which joins con-
nections on two manifolds with cylindrical ends. We follow [MMR] and [MM]. For any
m € x(L) and real positive numbers T'* let us define open sets M, (X*,[T*,¢€],m) C
M, (X%, m) as containing those ASD connections w* on the bundles E*, for which

F:|? <
/[T*mmu s2<e

Whenever possible we are going to skip some of the indices in this notation. Thus
the lack of the ¢ parameter means that ¢is equal to €9/2, where ¢¢ is taken from
Theorem 2.11. Analogously we can define a based version M§(X, T, m) of the above
sets. It follows from [MMR] that for generic metrics on X* and any k+ > 0 the
spaces My, (X*,T*, m) are smooth manifolds. Consider the fibered product

U7 4y = ME_(X_,T=,m) x ME, (X, T*,m) (2.14)

We now describe how to glue together two connections [w;,w_] € U™ k- Let Eo =
SU(2) x L be the restriction of E* to L. For a constant dy chose the numbers
I* > T*+do and construct a manifold X; by identifying the cylinders Xt _; 1+ +do) C
X+ +do) With Xp__ g - 41 C X(1-44o)- Let us denote by Cy, the cylinder on which the
identification takes place. Note that X; contains a subset isometric to a larger cylinder
C) of the length I. This construction provides gluing of manifolds X;} and X;Z. When
it is clear from the context, we are going to skip subindexes !, indicating finiteness
of the cylindrical end, thus using the symbol X for the spaces with finite or infinite
cylindrical ends. Theorem (2.11) gives bundle isomorphisms % : [T%,00) x Ey —
E% |74 c0)xr such that (9%)*(w*|p2-g5,00)) = T + AX(t) + a*(t) dt, where I is a flat
connection on Ey. These bundle isomorphisms provide a clutching of the bundles E*
through an isomorphism 7~ (9+)~! : E*|43xz — E~|q-3xL. Also if both connections
w* are based at a point (I*,n) € {I*} x L, then the above isomorphism provides a
basing at a corresponding point in Cy,. Using the partition of unity {¢+, ¢~} on Cy,
we can define a glued connection by:

wt on Z,'t_do;
F(whw ) =w =4 T+ ¢H(A*(t)+ at(t) dt) + ¢~ (A~(t) + a~(t) dt) on Cy;
w~ on Z__,;

When the connections w*,w™ vary in some open sets U*,U~, then 4,(U+,U") de-
scribes an open set in the space Bg. The goal of the gluing theorems is to project



this set onto the space of ASD connections. The main result of [MM] answers when
can we do it:

Theorem 2.15 (Propositions 4.1.1 and 4.2.1 in [MM]) There is a constant ly
depending only on the sets U" . such that for every ([w*,w™]) € Ul , and! 2> 4do
and dg > I there is a unique solution u = u(w*,w™) to the equation

Fr(qu(whw™)+u) =0
This solution u satisfies the estimate
lullzz < Coe™3

where 6 is the minimum of the lowest eigenvalues of Laplacians A,,, m € x(L). More-
over the assignment ([w*,w™]) = Fu(wt,w™) + u defines a unique smooth map 7 :
Ur k. — M3, 1x_(Xi) that is a diffeomorphism onto an open subset of M}, ., (Xi).

This diffeomorphism factors through to v : U, x_ = (7,:’;',:_ [/SO(3) = M, 4x_(X)).

We can use the above theorem also for the purpose of reversing gluing. Let X;
contain a fixed cylinder Cy = (—dp,dp) X L for some d > dy. Define M;_ 4, (Xi, Ca)
to be the set of those w € My_4x, (Xi), for which the following holds:

/ [Pt < €0/2
Ca

./X‘ ”Fw*”: —87%k_| < &0/2
t

< 60/2

[y WFus]l2 = 822k,
Xk 9

Let M%_ ;. (Xi,Cyq,) denote the corresponding set of connections based at some point
n € Cy,. The following claim describes the domain of the “ungluing”:

Lemma 2.16 Assume that | and dy satisfy the assumptions of the gluing theorem.
Then there is a smooth map

M4, (X1,Ca) S LIOE «,

the union taken over all m € x(L) such that CS(m) = ky = —k_ mod Z.

Proof: According to Lemma 2.12 for every connection w from M;_ x, (Xi, Cq,) we
can find a unique flat connection I',, s € {0,1,...,[2] + 1} such that T, is the closest
to wlc,, - Define two approximately ASD connections &* = 4;(w|x#,£*) on the bundle
E over the spaces with infinite cylindrical ends X*. The assumptions on [ and dy
guarantee that we can use the gluing theorem (2.15) for perturbing these approximate
connections to a pair of ASD connections [w™,w*] € U, ,- 0O

Now we are interested in describing the image of the above “ungluing” map. Our
main statement is the following:
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Lemma 2.17 For every € satisfying 0 < € < € there is a length ly such that for
every | > ly the set

£, (X, [ 6o — ) x Mi_(X™, [leo — €]

is in the image of ungluing map p defined on M§_ . (Xi, Cy,).
Proof: Let us begin with a simple topological lemma:

Lemma 2.18 Let B, denote a ball in R™ centered at the origin and with a radius €.
Let f : B. = R™ be a continuous map such that for every z € B,, dist(f(z),z) <e¢.
Then the center of B, is in the image of f.

Proof: Let S, = B.. Suppose that f maps B, to R" \ {0}. Then the restriction
f:S.— R"\ {0} is homotopically trivial. On the other hand the map

F(z,t)=tz+ (1 —t)f(x)

provides a homotopy between f and identity map (the interval tz + (1 —t) f(z) never
passes through 0 as dist(f(z),z) < €). This contradicts the triviality of f. O

Definition 2.19 Let U be an open set in the Riemannian manifold M. For a positive
number € define the sets

Use = {m € M|dist(m,U) < €}
U..={m € M|B(m,e) C U}

Corollary 2.20 Let M be a manifold with a radius of injectivity bounded from below
(for ezample if M is precompact) and let U be an open subset in M. Then there ezists
an €, such that for every € < €; and every map f : U — M such that dist(f(z),z) < ¢
the set U_, is in the image of f.

Let us come back to the proof of Lemma 2.17. Consider the map
poy: My (X¥, [l e]) X ME (X7, [I-, €0]) = M, (XT) x My (X7)

Both components 4 and p are defined by the gluing theorem. If we replaced these
maps by corresponding approximate gluing, then after restricting the connections
over X;" and X;_ we would get an identity. The theorem (2.15) tells us that while
stretching the neck we can make the actual gluing as close to the approximate one as
we want. Thus it remains to show that the L? norm of the curvature can be estimated
by an L2 norm of the connection, which is due to the Sobolev embedings theorems

(see [P)]):

1Fa = Fatallzz = [|[daa + a Aa|l < llallzz + Cillallze < Collallzz
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3 The description of instantons on the cylindrical
end.

Certain SU(2) bundles over R x L can be obtained from SU(2) bundles E over a
sphere S* by dividing by a Z, action. It turns out that the condition for bundles
to arise in this way is closely related to the existence of ASD connections on these
bundles. Following [FL], we can describe the Z,-invariant bundles over 54 as

(D% x SU(),T:) Y(D4 x SU(,T) @)
where £ = e’ acts on Di C C? via £(21,22) = (21€, 22€), and for g € SU(2),

Ti(g)=g9- ( expofm 0 ) ,and T3(g) =g - ( exPOfm' 0 )

exp&m exp Em’

We will refer to the numbers m and m’ as the weights of the Z, action. The transition
function F : S3 x SU(2) — S3 x SU(2) of (3.1) can be written as F(z,g) = (z, f(z)g)
for f : S® — SU(2). The Z, equivariance of F means that f(z¢) = T5 ' f(z)T1. No-
tice that the degree k of the map f is equal to the second Chern class of the bundle E.
We denote the bundle obtained from the above construction divided by a Z, action
by E(k,m,m'). [FL] adapted to the case of SU(2) bundles over R x L(p, 1), gives a
construction of Z, equivariant bundles with weights (m,m’) and degree k = m'? —m?2.
Let us now denote by My /(R x L, [m,m']) the moduli space of ASD connections on
a bundle E(k,m,m’). Before quoting the results of [Au] describing moduli spaces of
ASD connections on E(k,m,m'), we need to comment on orientations. The construc-
tion of ASD connections is based on the identification of S* with quaternions H; thus
when R X L is the boundary of a complex manifold M, the orientations in [Au] agree
with the convention that the weight m is from “the manifold side” and m' is from the
other side. In our particular application we are studying the spaces R x L as the ends
of the space N = CP?, thus we have to reverse orientations coming from the complex
structures. We can do it in two ways: either by changing the convention about the
order of weights or by changing L(p, q) to L(p, —q). In this paper we have chosen the
second way, thus even though the boundary of N is L(p,—1), while quoting Austin’s
paper we fix ¢ = +1. The main construction in [Au] (Lemma 5.1) gives a description
of ASD connections on the bundles E(k,m,m') for which there exists a solution (a, b)
to a system:

a = m+m' (modp)
b = m'—m (mod p)
a-b = k (3.2)

These bundles are called S equivariant. (The reason for this name is that the Z,
action on these bundles extends to an S* action). To state the general result we need
one more definition:
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Definition 3.3 A Z, equivariant bundle E(k,m,m’) is a composite of Z,, equivariant
bundles {E(ki,m;,m!)}~, if and only if for alli =1,2,...,n we have:
ki>0; k=3%;k; m=m (modp); m{=miyy (modp); my=m' (mod p)

Lemma 3.4 (Compare Lemma 5.2 in [Au].) A Z, equivariant bundle supports an
invariant ASD connection if and only if it is a composite of S equivariant bundles.

The bundles over R x L may have noninteger second Chern numbers (which we will
often refer to as energies). In fact the minimal amount of energy on a nontrivial moduli
space on R x L is 1. This ostensibly leads to large number of possible distributions of
energy on the cylinder. We would like to use (3.4) to limit the number of possibilities.

Lemma 3.5 For fired m and m' let k be the minimal amount of energy for which
E(k,m,m') supports an ASD instanton. Then

k= m'? —m? ifm' >m
T m?-m?4+pm-—m') ifm'<m

Proof: As m,m' < p/2, then (a,b) = (m + m’,m’ — m) is the smallest nonegative
solution to (3.2) in the case m’ > m, and (a,b) = (m —m',p—m —m') is the smallest
solution in the case m' < m. The product of these numbers gives the required
result for S! equivariant bundles. Now assume that E(k,m,m’) is a composite of
{E(ki,m;,m!)}",. The in the case of m’ > m we have:

b= Tk 2 m? - md + Y p(m; — m) > m = m?
i€l
Here I is the set of those indexes ¢ for which m; > m!. In the case m’ < m we have:

k> m2—mi+Y¥erp(mi—ml) > m2-mi+ L, p(mi—mi) = mZ—mi+p(m,—m))

As an example we can make the following list representing the minimal energies
required for “tunnelling” between flat connections m and m’ on R x L(4,1).

m\m'| 0 1 2
0 | 0 1/4 1
1 3/4 0 3/4 (3.6)
2 |1 1/4 0

The dimension of the moduli space M = M,/,(R x L(p, 1), [m,m']) is

. 8k 271 ] jm’ ]
dmM=——-3+n+- Ecotz(ﬂ) . (sinz(m) - sinz(m))
P P P P p
where n € {0,1,2} is the number of m,m’ different from 0,p. By using Fourier
expansions, this formula can be simplified to:

dim Mp.2/,(R % L(p,1),[0,m]) = 4m — 3 for m < p/2 (3.7
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Using this result and the gluing theorem we can complete our calculations of the
dimensions of moduli spaces M(Y,m), where « is in %Z. A similar result has been
observed in [MMR] in Lemma 13.4.1:

Lemma 3.8 The dimension of M.(Y,m) is equal to

2
8k — g-(a(Y)+x(Y)) - % + -8—%—+1—4m

when m is nontrivial, and

3 3
8 — 5 (o(¥) +x(V)) - 5

if m is trivial.

Proof: By Lemma 3.5, there is a moduli space of ASD connections on N with
boundary value m and with energy ™. What is more, this is the smallest energy
giving a nontrivial moduli space on K with this boundary value. Gluing together
the bundles over Y and N we obtain a bundle over X with energy « + '“72. From
the gluing theorem (2.15) we have that dim M,(X,m) = dim M.(Y,m) + hAn+ dim
M 2/,(N, m), which for m nontrivial, by using (2.8), gives the following equation:

3 1 pm m2. 3
8k — 5-(0(X)+1+x(X)—2) -3 + —2—+1+4m—3 = 8(n+7)— 5-(0(X)+x(X))
here we used o(X) = o(Y) — 1 and x(X) = x(Y) + 2. Solving this equation for p,,
and plugging the result into (2.8) gives the first formula. The second formula can be
obtained similarly after gluing in the trivial connection on N. O

Similar calculations give:

dim M (N, m) = {8n —3+4m - SL;‘E if m is nontrivial (3.9)
8k —3 . if m is trivial.
One can notice that the first formula gives 8x — 3 for m = 0 and £, so it is valid in
both cases. ‘
In order to formulate the result which allows us to quantize moduli spaces on the
cylinders, we need to notice a simple fact connected with gluing. This fact has also
been mentioned in [FS1]:

Lemma 3.10 Let M° = M?(X,m) for a nontrivial element m of the character
variety. Then the base point fibration M° — M reduces, i.e. there exists an S!-

bundle Q such that M° = Q x SO(3).
s

Proof: Consider the map §° : M° — S? C R(L). This map restricts over each
fiber as 0°|so(3) : SO(3) — S? that sends ¢ — g€ég~'. Thus for fixed point pt € S?
(0°)~'(pt) is an S? bundle Q over S? for which M° =@ x SO(3). D

S1

The moduli spaces on the cylinders R x L have two boundary value maps

03 : M(R x L(p,1),[m,m']) = R(L)
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with x € Z,. Let us recall that according to our convention on the cylinders we
consider as positive the direction from N to Y. Thus 0° points toward N, and
0% points toward Y. With this understood, define MZ»(R x L(p,1),[m,m’]) to be
(8°)~*(pt) for any pt € Im (8°). Thus when m is a trivial element of x(L), then
MZ»(R x L(p,1),[m,m’]) is the based moduli space M2(R x L(p,1),[m,m']). When
m is nontrivial, then according to Lemma 3.10 the space MZ»(R x L(p,1), [m,m’])
is an S? reduction of the base—point fibration. This space should be thought of as
the gluing parameter bundle over an unbased moduli space. This gluing parameter
is attached at the end of the cylinder which is closer to N. The next lemma shows
that these moduli spaces provide good quantization of the whole moduli space:

Lemma 3.11 dim MZ»(R x L(p,1),[m,m]) > 4- |m —m/|.

Proof: This is a direct consequence of Lemma 3.5 describing the lowest energy on
the moduli space MZ»(R. x L(p,1),[m,m']) and the dimension formula (3.7).

Case 1: m’ > m. The moduli space Mp=;,(R x L(p,1),[0,m']) has a boundary
corresponding to a splitting

anz/p(R X L(P, 1)) [0’ m]) ;’M‘(’mn_mz)/p(R X L(p, 1), [m, m'])

where all of the moduli spaces involved have the minimal energy required for each
tunneling. From (3.7) we have: 4-m'—3 = 4-m —3+dim M% (R x L(p, 1), [m,m"]),
from which the lemma follows.

Case 2: m' < m. From the index formula we get that dim M,,(Rx L(p,1),[0,0]) =
8m — 3. This space allows a splitting M?,, (R x L(p,1),[0,m]) ;E)M° (R x

m2/p m(p—m)/p
L(p,1),[m,0]). Analyzing the dimensions of both spaces we get:

8m — 3 = 4m — 3 + dim M2 (R x L(p,1),[m,0})

m(p-m)/p

Thus dim M2 _ (R x L(p,1),[m,0]) = 4m.

m(p-m)/p
Now consider the space M ,m_m2);5(R X L(p,1),[m,0]) and its splitting

Moi_ma (R X L(p,1), [m,m']) ;S,MOE"‘"""’ (R x L(p,1),[m’,0])
P

P

Again the energies have been chosen according to Lemma 3.5 so as to be the smallest
ones. Analyzing the dimensions of the involved spaces we get the equation:

4m = dim MZ»(R x L(p, 1), [m,m"]) + 4m’,

which concludes the proof of the lemma. O

4 Dividing the moduli space into open sets.

Now we can come back to the computation of the Donaldson invariant D(zo™). We
assume here that the numbers p and n are fixed. The goal of this section is to list all
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open sets defined in (2.14) that cover the intersection
M (X)NV, N .-ﬁ Vs, (4.1)
To fix notation let us assume that the class z € A(Y') has the degree d, and
dim My (X) =2 (d +n)

Since we are using a generic metric on X, the intersection of divisors on Y-side is

transverse, so the intersection U, , NV, N _ﬁl Vi, (see (2.14) for the definition of
1=

UL, &y) is empty if dim My, (Y,m) < 2d. This implies that dim M, (N, m) must

not exceed 2n — 1 if m is trivial nor 2n — 3 if m is trivial. In order to choose the sets

ULL xy in the most efficient way, let us define the set

J = {(m,k)|me x(L), k € Z[;], M(N,m) # 0,
and 0 < dim My(N,m) + k., < 2n}

(hm is defined in (2.9)). We set also J = J U {(0,0)}. Note that the bound on the
dimension of the spaces M;(N,m) implies that the set J is finite. In J we define a
partial order by saying that (mj, k;) < (mg, k2) if there is a nonempty moduli space
M-k, (R x L, [m1, m3]).

Definition 4.2 To every element (m,k) € J assign its degree deg (m, k) to be the

length of the longest chain in J from (0,0) to (m, k) linearly ordered by <. Define
deg(J) = max;es deg(z).

The next lemma shows how to compute the above degrees.
Lemma 4.3 For every (m,k) € J we have the following relation:
4 - (deg (m,k) — 1) + 1 = dim M(N,m)

Proof: Set a = deg (m,k). The definition of a implies that the moduli space
M (N, m) has a boundary component corresponding to a fibered product of (a — 1)
moduli spaces My, (R x L, [m;,m)]) and the last a** space My, (N, my). Thus from
(3.11) we have: dim My(N,m) > 4(a—1) + 1. '

We prove the inequality in the opposite direction by induction on the degree of
elements of J. Lemma 3.5 gives us the following inequalities in J:

(m, k) < (m +1,k + 22F 1

) < (m,k+1)

Thus deg (m, k + 1) > deg (m, k) + 2. Using the dimension formula (3.9) we get:

dimM; (N, k+1) = dimMi(N,k) + 8 = 4(deg (m,k) —1)+1+8
< 4(deg(m,k+1)—3)+1+8=4(deg(m,k+1)—1)+1

0
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Corollary 4.4 Let I be a graph representing the set J with the relation <. Then
(m, k) < (m', k') are immediate neighbors in the graph T' if and only if m' = m £ 1

and
k’—k:{

Proof: The fact that (m,k) < (m',k’) for m’ and k¥’ defined above follows from
Lemma 3.5. The Lemma 4.3 gives us:

- [2m + 1] ifm=m+1
[-2m+1]+1 fm'=m-1

S S I

deg(m', k') — deg(m,k) = }[dim Mp(N,m’) — dim My(N,m))
1dimMZ (R x L,[m,m]) =1 (4.5)

thus there are no other points of J between (m, k) and (m/,k’). O

For each element of J we wish to assign an open set in the moduli space M(X).
Let us fix s = deg(J). Notice that by changing the metric on X we can identify in
X a subset isometric to a cylinder [0,1] x L for an arbitrary large I. We can adjust its
length ! so as to have a collection of disjoint subcylinders C?,...,C?, R,,C},...,C},
R;,C%,...C}, ... R,,Ct,...C} satisfying the following:

1. For each C; and R; there is some r € [0,1] such that these cylinders are equal
to [r,r + 1] x L;

2. For every connection w with energy k + n on X there are s + 1 numbers
10,%1,%2,.-.,%5 (1 <7, <t) such that

/Cr IFLI? < €0

tr

where ¢ is the number defined in Theorem (2.11).

Each cylinder R; splits the manifold X into two manifolds with boundary, which we
denote as Y; and NN;. We also denote by T; ; the cylinder that is cut from [0,!] x L by
the cylinders R; and R;.

Definition 4.6 For every element (m, k) € J we define an open set U C My, (X)
as the set of all w that satisfy:

1. [ |F,|? < €q, where i = deg(m, k).
R

2. [|FL?=k+e¢ for some |e| < g
Ni

3. If (r,n) is a point in R; then the character m is closest to w|(r}xL in the sense
of Lemma 2.12.

Having this assignment in mind we shall understand that the collection of open
sets {U["} has also defined a partial order < and deg(UJ") makes sense as well. Each
set U" has uniquely assigned region R; with i = deg(m, k) and let us choose one
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point z; € R;. According to Lemma 2.17 each U® can be described as the fibered

product:
kx-k(Yym) X M(N,m)/50(3) (4.7)

Thus every connection in U can be written as w = [wy,wn]. In general, if a given
connection w allows the representation (4.7) for some ¢, then we say that w allows
splitting at the region R;. In the next lemma we shall prove that the sets U" suffice
for covering the intersection of divisors V; N ﬂl V,. As the proof of that lemma
requires splittings of moduli space at multiple regions Ry, R;,..., R, on the cylinder
[—n,n]x L, we need to be more precise about the notation of cylindrical-end manifolds
Y and N. Thus by Y and N we shall mean finite cylinder manifolds ending at the
first splitting regions (including these regions). For a given region R we shall mean by
the terms Y-side or N-side the corresponding connected components of the manifold
X cut by R. (See the picture below):

R, R R

N sideof R Y sideof R
Figure 1. The splitting of the manifold X.

Lemma 4.8 Every connection that belongs to the intersection My, (X)NV, N _61 V,
is contained in one of the sets U™, (m,i) € J. Moreover deg (J) < 1.

Proof: First we shall prove that s = degJ is a sufficient number of the splitting
regions. Assume that w is a connection that does not allow splitting at any of the
regions R,,...,R,. According to the definition of the length [, there are cylinders
Cr,r=0,1,...,s such that w has energy less than ¢ in these regions, thus it allows
the splitting a.t CI. Let m, denote the gauge equivalence class of the limiting flat

connection on C7 , and k, the energy on the N-side of C}.. Asw € My, (X)NV, '61 V,,

then for every r the dimension bound dim My(N,m,) < 2n, defining the set 7, is
satisfied, thus the pair (m,, k,) € J for every r. By Lemma 2.17, w can be represented
as a fibered product of connections [wy,ws,...,ws,wy]. The first connection wy lies
in a moduli space of nonnegative dimension. If one of connections w; defined on
(li,liy1] X L D R; was flat, then it would allow the obvious splitting along R; as
wi = [wi-,wi4+]. In here w;4 are the restrictions of w; onto different connected
components of [I;,l;11] x L\ R;. As each w; is nonflat, then we have a sequence of
strict inequalities in J

(mn, kn) < (my, k) <--- < (me, k)



18

from which we get that the last pair (m,, k,) has the degree greater than or equal to
s + 1, thus contradicting the definition of s.

Next assume that w allows splitting at R; with k; being its energy on the N- side
and m; being the nearest flat connection on R; in the sense of Definition 4.6. We
still need to prove that for some i there is the equality deg(m;, ki) = i. So assume
there is an w which satisfies: for every i = 1,2,...,s either w does not split at R; or
deg(m;, k;) # ¢ for (m;, k;) defined by a splitting at R;. Consider first the case when
w splits at R; with deg(m,, k;) < i. We claim that there exists another region R; for
which the equality deg(mj, k;) = j holds. This is proved by induction with respect
to ¢. For : = 1 the statement is obviously true, since each element of J has degree at
least one. Thus we may assume that:

For every r < i and every connection w that allows a splitting at the region R, with
deg(m,, k,) < r there exist j < r such that w splits at R; and deg(m;,k;) = j.
Consider now a connection w that splits at R; with deg(m;, k;) < i. Then we can write
w as [wy,wn]. The connection wy must allow splitting at R;, for some ¢ > j; > 1, as
otherwise wy could be written as wy = [wjy,,w};, . . ., w,], showing that deg(m;, k;) >
i in contradiction to our assumption. Splitting wy at Rj, we get: wy = [wr,,wn,]
and the numbers(m;,, k;, ) corresponding to that splitting. If deg(m;,, k;,) < 71, then
we are done by an inductive assumption. If deg(mj,,k;) = 71, then w splits at
R;, with the right equality deg(m;,,k;,) = 71. We claim that the last possibility:
deg(m;,, kj,) > 71, implies that the connection wr, splits at some other region R;, for
J1 < j2 < t. If that claim is not true, then wr, can be written as a composition of
¢ — j nontrivial connections on the cylinder between the regions R; and R;. Thus
we have:

deg(mi’ kt) 2 deg(m.in kjl)) + (z - ]l) >1

again contradicting our assumption. Thus we can write wy, = [wT;,,sz-]. Define
wN, = [wn,,wr-]. Same argument as above aplied for wy, instead of wy, shows that
we either find the required splitting for w, or we will find another splitting of wry at
the region R;, for j2 < j3 < ¢. As there can be only i such splittings, this process
must terminate by finding the R; with the required properties.

The proof in the case when deg(m,, k;) > ¢ is the same as in the the previous
case, exept that one has to reverse the “orientation” of the whole proof, i.e. start the
induction from the point that is closest to the Y-side and replace all N’s with Y'’s,
and “4” with “=".

Let us now consider an element (m,k) € J with maximal degree. There is
a corresponding connection in My(N,m) with the splitting [wn,wy,...,w,-1] that
defines its degree. According to Corollary 3.11 the smallest dimension of a moduli
space M(R x L, [, j]) including the gluing parameter from the N-side is no less than
4-(:—j). Thus

-1
2d+n) = dimM,(Y)+hn, + Y dim MZ*(R x L, [m;,m])+
j=1

+ dimM;, (N,mny) >22d+hx +4(s—=1)+12>2d+4s -2
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from which the last statement of the lemma follows. O .
For example, when evaluating D(zo*) for o - 0 = —4 we get the following set J
encoding the covering of the moduli space:

(0,0)

|
i)

1
/
)

In general on the graph representing J we can denote only the values of the
equivalence classes of the flat connections m € x(L). To each edge of the graph J we
can assign the minimal energy for tunneling between the boundary values denoted at
the ends of the edge that has been established in Lemma 3.5. Then the energy of an
arbitrary vertex can be obtained by summing the energies of the edges while going
from the top of J to the given vertex.

(2,1 (0,1)

Example 4.9 When computing D(zo") for o-0 = —6 we obtain the following graph,
that stabilizes:

T ceecvcennes 1

PN
T2 eeenneenes

LN
T3 ceececenens

N
T4 coceecoceccccccncnnces l
TG ceveerennnnnnrenconnns :i\ 1

....................

Figure 2. The graph J for 0 - 0 = —6.

On this graph the points z,, z, ... denote the chosen points from the regions R;, Ry, ..
All points on the graph lying on the level indicated by z; correspond to open sets U
that split at the region R;. The above graph, according to Lemma 4.8, terminates at
the level [2*]. The meaning of the columns of this graph will be explained later.

Lemma 4.10 The intersection of the divisors V, ,('11 Vo, is empty in U} unless the
1=

moduli space My(N,m) contains a reducible connection.

Before proceeding with the proof we want to comment on the terminology. The
set Uy* for a generic metric does not contain reducible connections, as b,(X) > 3.
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Nonetheless we shall informally say that A is a reducible connection in U if the
restriction of A to N is a reducible connection in M(N,m).

Proof: The open set U} has dimension 2(d + n). On the other hand, this set viewed
as fibered product has the dimension

dimMy,_p(Y,m) + hp + dimMy (N, m)

As by (X) = b4 (Y) > 3, then the intersection Mg,_x(Y,m) NV, is transverse since
it contains only irreducible connection. Thus dimMy,(Y,m) > 2d. If the divisors
V, intersected along irreducible connection as well, then we would have: 2(d + n) >
2d + h,, + 2n, in contradiction to the fact that h,, =10or3. O

5 Computing intersection numbers in open sets
ur

5.1 Description of the neighborhoods of the reducible con-
nections

Let us recall that our main purpose is to compute the intersection number
Mi(X)NV, N ,r’ﬁl V,. (5.1)
1=

or dually, to evaluate the cohomology class u(z)u™(o) on the moduli space My (X).
As we saw in the previous paragraph, this intersection is included in the set covered
by the sum of open sets U and takes place near connections whose restriction to
N is reducible. Thus our first task is to describe the neighborhoods of reducible
connections in the moduli spaces My, (N, m;), and then we will describe a procedure
for keeping the intersection (5.1) inside these neighborhoods. Before proceeding,
we want to notice that there is one kind of noncompactness of the sets U that
can be taken care of immediately. This noncompactness comes from the completely
concentrated connections (so—called bubbles). Recall that the sets U are obtained
via fibered products Mg (Y, m) X Mi(N, m), where the point = belongs to the region

R, on which the energy estimate excludes bubbling. Thus both basepoint fibrations
extend to the SO(3) bundles over the Uhlenbeck compactifications of these moduli
spaces, and from this point on we will assume that the sets U contain completely
concentrated connections.

When a reducible connection occurs in the top stratum, its neighborhood is mod-
elled on C"/S1. For the sake of later generalizations we set the following notation:

Definition 5.2 o FEvery neighborhood of a reducible connection is modeled on
some stratified space divided by as S? action. Let K denote a compact neighbor-
hood of the total space of this S action. The space K/S! describes a compact
neighborhood of the reducible connection. In this case K = {z € C"|||z|| < 1};
the general description of K is given below.
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e Let M denote the link of reducible connection. Thus M = 0K .

o Let r(K/S*) be the image of K/S' under the deformation retraction shrinking
the cone parameter to zero. (Thus in the case of top stratum connection r(K/S?)
is a point.) There is a corresponding deformation retraction of the set K, which
we will denote by the same symbol. As S* acts trivially on r(K), then we have

r(K/S') = r(K).

The set M/S? is often referred to as the link of the reducible connection. In this case
M/S' = CP™!. In the proof of Proposition (5.1.21) in [DK] it is shown that the
Pontrjagin class of the restriction of the adjoint bundle to the link of the reducible
connection on the bundle L @ L is equal to

n(P)=h%?x1+4+4-hxc(L)+4-1x (L)
where k is the positive generator of H2(CP"~1). Thus we have the following:

Lemma 5.3 On the link of a reducible connection on the top stratum in My(N,m)
we have the following identities in H3(M/S?):

plo) = —(a(Ll),0)-h
p(z) = -5k’

The second equation holds for points ¢ € N.

The description of reducible connections in the lower strata of M;(N,m) has been
worked out in [KoM]. For every sequence of integer numbers ny > ny; > --- > n,
there is a stratum St corresponding to s bubbles with multiplicities described by the
numbers n;. Let us denote by k = k; — 33, n; and by P = L @ L the SU(2) bundle
with ¢;(P) = k. Let F'N be a principal SO(4) bundle associated to a tangent bundle
TN, and let us define F'r = P x FN to be a fibered product of the bundles P and

N
FN over N. Then Fr is a principal SO(3) x SO(4) bundle over N. Following the
notation from [KoM] and [FM 2], for each n > 0 define Z, to be the space of gauge
equivalence classes of ideal ASD connections on S* with standard metric that satisfy:

1. they are based at the south pole
2. they are centered at the north pole
3. they are concentrated in the € ball around the north pole

The notions of “concentration of energy” and “e ball” in the last statement should be
understood in the following way: for a fixed annulus A contained in the complement
of the € ball, every ASD connection w with the “energy concentrated in the € ball” can
be glued along A to another ASD connection on the manifold N. The spaces Z, have
a natural SO(3) action that changes the framing at the south pole, and the SO(4)
action that rotates the sphere. In addition to that there is an R, action on each Z,
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corresponding to conformal contraction toward north pole. Thus there exists a space

Z, such that Z, = cZ,. For every j = 1,2,...,s define Gl; = Fr X cZy,. As
S0(3)xSO(4)

is proven in [FM 2] the neighborhood K of the reducible connection in the strata St
is

(C" x ] Gl,-) /S? (5.4)

j=1

divided by the symmetry group permuting the Gl; factors. The top stratum described
above fits into the above description for s = 0. In Theorem 4.4.2 of [KoM] it has
been shown that given a reducible connection w, for r = ny + ny + - - - + n,, different
strata of the form (5.4) can be glued together to form a smoothly stratified space
GP(w,r). This space allows the projection 7 : GP(w,r) — X7(N) induced by an S?
equivariant deformation retraction onto the r—fold symmetric product £7(N). The
notation from Definition 5.2 extends to the case of a reducible connection in the lower
strata. Lemma 4.7.4 in [KoM] gives a description of the class (o) on the link of given
reducible connection:

Theorem 5.5 Let M be a link of reducible connection w € GP(w,r). Then the class
p(o) € H2(M/S?) is equal to

p(o) = 7°E7(0) — (a1(L), 0) - em
where

1. cp is the first Chern class of the S* bundle M — M/S*.
2. £7(o) € H3(X7(N) ) is the class induced from the Poincare dual to o in H?(N)

by symmetrization.

Similarly we conclude that
—4pu(z)Imys1 = —47"E*(z) + ¢}y

Next we want to apply the gluing theorem to “attach” connections on the Y — side
to the neighborhoods of reducible connections on N— side. Recall that the SO(3)
fibration Mg _,(Y,m) reduces to an S? fibration when m is nontrivial. In that case
let Q denote this S'-fibration. For the sake of uniform notation let Q be the whole
total space of M§ _,(Y,m) when m is trivial. Notice that even in the later case we
can still think of Q as of the total space of an S? fibration with the base Q/S!.

When the boundary value m is nontrivial, the basepoint fibration on the Y —side
is Q X SO(3) and the basepoint fibration U;""* — U™ near a “reducible” connection

can be described through the fibered product of:

Q x 50(3) SO(3) x K

~ 7

52
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which gives the basepoint fibration Q §-<1 (SO(3) x K) — Q ;(l K. This SO(3) fibration
reduces to an S? bundle with a total space Q;(l (S'x K)=Q x K.
The case when m is trivial is even easier to describe. The SO(3) fibration over
Ur is:
Q x (SO(3)xK) S OxK
St St

which again admits a reduction whose total space is Q X (51 ;(1 K ) =Qx K.

5.2 Desigularization of Q ;(1 K

To make the future computations easier we want to “enlarge” the set Q x r(K) =

Q/S! x r(K), onto which @ x K deformation retracts. For any S! bundle Q let us
S1
denote by Q¢ = Q x D?, the disc bundle associated to a circle bundle Q. Consider a

projection 7 : Q X M CHQ x K that is identity for every nonzero radius parameter
s

of the disc D?, and for the radms zero 7([q], [m]) = ([q], r(m)) Here [.] denotes the
equivalence class with the respect to the S? action. This map is well defined because
of the S! equivariance of the retraction r. If a is any top dimensional cohomology

class in H‘°”(Q;<1 K, Q; M) then
(o, (@ x K,0]) = (a,x.(1 x M%,0) = (r'a,[Q X M,0)  (56)

Thus we can evaluate the pullback 7*a in the enlarged space Q X MC, getting the
same answer. s

5.3 Closing neighborhoods of reducible connections

Next we wish to describe a procedure that will keep the intersection of divisors in (5.1)
inside neighborhoods of reducible connections. Below, we describe compact spaces
C containing neighborhoods Q X MC together with a technique for translating the

intersection problem from U;® into the sum of these compact sets.

In case m is trivial, let A denote the based moduli space M$, (N, m) and G =
SO(3), and in the case when m is nontrivial, let /" be the S! reduction of the above
basepoint fibration and G = S'. Then the set U* = Q éN .

Let M (N,m) = N/G contain S! reducible connections A, A, ..., A,, each
contained in the compact nieghborhood K;/S!. In the set U™ each A; is contained
in a neighborhood of the form Q;( K;. Let ¢; : @x M; = Q/S! x M;/S! denote

1 St

projections of the boundary of the above neighborhoods. The cohomology classes u(o)
and u(z) can be obtained from pullback via ¢; of the first Chern class of the bundle
M; — M;/S*. Since the dimension of Q/S! x M;/S! is 2 less than the dimension
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of U™, the top dimensional cohomology class will evaluate trivially on it. Thus it is
reasonable to compactify Q ; ME as:

Ci=Q@xMS U Q/S'x M;/S! (5.7)
st gile x M;
sl

The space that we added to @ x MF is homotopy equivalent to either of the two
S1

spaces: @° x M; or @ x MP. Thus the projection may be replaced by an inclusion
st s

giving:

1R

Q° x M; (5.8)
St

C,' Q X M{C
St

Q

1R

MF (5.9)

U
x M;
s1
x M U X
Qsa 'QlesQSI
S

To define the class u(c) we have to pull back the bundle M; — M;/S? over the
space Q X M;, thus it is more convenient to use the construction (5.8). Then u(o) is

a multiple of the first Chern class of the S? bundle:

c c , c C o M
ex M, Q)EJM.-Q XM'—)Q;M' Q%JM;Q ;M'
S

The total space of this bundle is the boundary of Q¢ x MF, which can be considered
as the S® bundle S(Qc X M,C) over Q/S! x M;/S'. Thus C; is P(QC X MC),
the projectivization of the bundle Q¢ x MF. The first Chern class of the bundle
S (Qc x ME ) — P (QC x ME ) is the class h that restricts as a generator of each
fiber CP1.

The next two lemmas justify our choice of the above compactification:

Lemma 5.10 Let w be a fized divisor in My(N,m). Let M* be a complement of
the sum of the neighborhoods [I; K;/S'. Then there is a one-to—one correspondence

between divisors V on U™ that pull back from the divisor w, and collections of divisors
V; on C; such that V,N(Q/S* x M;/S') = [Q/S] x[5i], and (b4,...,0,) = O[w]. Here
0 is the boundary map 0 from the Mayer-Vietoris sequence:

= (M) © @ Ho(Ki) — Ho(My(N,m)) S @ Has(M;/SY) = -
Proof: Given the divisor V C U that pulls back from w C M(N,m) define

v; = w|p;/s1. Using the deformation retractions r; : C; \ @ x MF — Q/S* x M;/S?,
s

we can construct the divisors V; = Vg  pme 0 u. r~1([Q/SY] x v).
s1 P eXx M

s1
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Going in the other direction: given a collection of divisors (V;, ;) define

— .0 -1
V= 63.V|czsxx ME Q;EJM'_PN (w])

where py : Q é}\f — N/G is the projection, and w| is a restriction of the class w

onto the set N'/G \ (]_I; pn(Q x MF )) It can be directly seen that the composition
3

of these two assignments gives the identity. O

Lemma 5.11 Let wy,...,w, be fired divisors on My(N,m) and V,...,V, denote
pull-backs of w;’s to U™. Assume also that the sum of codimensions of V;’s is equal
to the dimension of U*. Then the following signed intersections are equal:

r ir o

Av=X 4%

=
where V; ; is the divisor on C; corresponding to V; as in Lemma 5.10.

Proof: Let V,‘] be a perturbation of V; j into transversal position. Since Q/S! x
M;/S? has codimension 2 in Cj, the one dimensional set {il';\l V,‘J |t € [0,1]} misses
Q/S' x M;/S?, the set added in the compactification. As Ofw;] = (Digs -+ o s i),
and this is a homological condition, we can use Lemma 5.10 for all V!, to get a
corresponding perturbation of the divisors V;!;. Because the dimension of M(N,m)

is lower than the dimension of UJ* the perturbed divisors cannot intersect outside the
set @ x (M \ (II; K:)). Thus the intersection number of V; is equal to the intersection
St

number of V;;. O

The top stratum of the moduli space My, (N, m) has a reducible connection on
the bundle L if and only if ¢?(L) = kny. Thus if the reducible connection exists, it is
unique. Similarly on the stratum in which the background connections have energy
kn — s there exists a unique reducible connection if and only if ¢Z(L’) = kny — s.
Thus every reducible connection A; € My, (N, m) has uniquely assigned [;, the first
Chern class of the reduction of the bundle L; and s; = ky — ¢?(L;). We can perform
the closing-up construction for every link M; of A; separately getting the following
equivalent of Theorem 5.5 for the spaces C;:

Corollary 5.12 Under the above correspondence of cohomology classes we have the
following equalities in H*(C};):

p(o) =L (o) — 1, - h;

where the class h; restricts as the generator of each fiber CP* — P(Q€ x M{).
Similarly
_ _ ) —4nT(z,) + R} ifr <i
4;1(2:,)—{62 ifr>1
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We will need some properties of the characteristic classes of the bundle P(Q° x
MC€) which we now evaluate. The Kiinneth formula provides an embedding

H*(M/S') — H*(Q/S" x M/S?)

that sends £ € H*(M/S!) to 1 @ z. In the description that follows by cohomology
classes z € H*(M/S!) or y € H*(Q/S') we shall mean their images 1 ®@ z or y ®1 in
H*(Q/S! x M/S'). From the definition of characteristic classes we get the relation
h? = ¢;(QF x MC)h — ¢3(Q° x MC). Notice that ¢,(Q° x M) = cpm + ¢ and

. 1
¢2 = cgcm, which in vector notation (a, b) = a-h+bcan be written as h? = A 0 ) for
A= ( cm +¢cQ 1
—cqem 0
Lemma 5.13 We have

). By elementary computations we obtain the following lemma:

+2 n+2 n+1 n+1

i —¢ cpr —¢

hn+2= L—Q—°h——£——Q-'CMCQ
cM — €Q cM —CQ

Proof: Using the expression for A% we get:

h-(ah +b) = ah® + bh = [a(cm +cq) + b] - h — a-cMcQ=A(Z)

n+l _ An 1

h _A(O)
5=t 2o
= —em —cg

A direct check verifies the relation:

A=S(CQ 0 )5-1
0 CM

Thus we have

Set

thus
A"=s(03 0 )s-l
0 ciy

from which the result follows. O

The situation is different when the reducible background connection is trivial. In
that case there is no direct relation between p(o)? and u(z). We need to supply a
further discussion with some more notation. Notice first that whenever the moduli
space My(N,m) admits a trivial background connection, then k¥ must be an integer
and m = 0. Thus on the Y side we always have the SO(3) fibraton Q@ = Mj (Y,0).
Let M be a restriction of the basepoint fibration over the link of the trivial connection
M/SO(3) C Mi(N,m) with the projection 7 : M/SO(3) — Z¥(N).

We have the following analog of Theorem 5.5:
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Lemma 5.14 We have the following equalities of classes in H*(M/SO(3)):
p(o) = 7"2%(a)
w(a;) = 7°E(z;) — 1P
where Py is the first Pontrjagin class of the fibration M — M/SO(3).
For any SO(3) fibration Q define Q¢ = QS 0)((3) ¢SO(3) and let pg denote its first

Pontrjagin class. A similar construction to (5.8) produces an SO(3) fibration:

G G G
A(Q% x P%) - 8(Q sc;<(3)P ) (5.15)
which we shall*denote by Sg(QF¢ x P%) — Pg(QC x PC), or even S¢ — Pg when
the two other SO(3) bundles will be obvious from the context. Let H denote the
Pontrjagin class of this fibration. As in the case of S! fibrations, there is a further
projection Pg(Q% x M®) — Q/G x P/G, whose fiber is £50(3), the suspension of
SO(3). The fibration S¢ — Pg restricts over each fiber of Pg as the fibration:

SO(3) * SO(3) — £S0(3)

and the first Pontrjagin class is 2. As before, the computations of the intersections of
the dual classes in the neighborhood of the trivial connection can be translated into
the intersection of corresponding divisors in Pg(Q¢ x M%). As in the case of S re-
ducible connections, there is a correspondence between the classes that pullback from
the moduli space containing M/SO(3) and the classes in the compactification (5.15).
Using the above correspondence and Theorem 5.5 we get the following corollary:

Corollary 5.16 Under the above correspondence of cohomology classes we have the
following equalities:
pulo) =72 (o) (5.17)

where the class H restricts as twice generator of each fiber Pg(QC x MC). Similarly

N_ ) 4B () + H ifj<i

‘““”‘{m ifi>i

It follows from the corollary that in this neighborhood, the top power of the classes
u(o) evaluates trivially, so it seems that these neighborhoods are redundant. But our
method of computing u(o)!*? on the whole moduli space M, (X) requires evaluating
in Pg(QC x MC) terms of the form u(o)- u(z;)1 - - - u(z,)** for various a, ay, . . ., a,,
which may give a nontrivial contribution in Pg. So let us state the following analog
of Lemma 5.13:

Lemma 5.18 With the notation above we have:

+2 +2 +1 +1
g2 PP —PQ o PP —Pg

* PPP
PM —PQ PP — PQ ¢
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Proof: As S! C SO(3), then there is an S fibration @ — Q/S! with the first Chern
class cg € H?(Q/S"). Let p: Q/S* — Q/SO(3) denote the projection of the fibration

with the fiber S2. Then since p* (Q x C3) = Q x C? we have:
50(3) s

T — p* 3 — - 3 — CS — 2 1
F(-p0) =5 (@ ) = (F(@ 5, @) =@ ) =~ (.19
Observe also that for every fiber S? C Q/S?, ¢2[S?] = 2. Thus from Leray-Hirsh
theorem we get that the map (H°(S5?)®H?(S?))®H*(Q/SO(3)) — H*(Q/S') sending
i*(cq)®a — p*(a)Ucq is monomorphism, and in particular also p* is monomorphism.

After these general remarks about SO(3) fibrations let us come back to the con-

struction described in the Lemma. Let k denote the first Chern class of the bundle
9(QC¢ x PC¢) — 9(QC x PC). Then using Lemma 5.13 and (5.19) we have:
st

p"(H) = h* = (h(cq + cp) — cqcp) (5.20)
Thus: . b _a
‘H2 _h4 CP_CQ,h P Q =
p*(H") cp — cq cP—chPcQ
b —ch -
B _ .
3= (cp + cq) cr—cq P

which by (5.20) can be written as:

cp—c}

cp —c2
ot H _ Q. —
C%:—CZQ [P +CPCQ] cp—cq CpPCQ

= p"(H) - (b + ) + (cpeq) - [—cpeq] = p (H[pp + pq] — PPPQ)

As p* is a monomorphism, the above proves the same relation that we had in Lemma
5.13 with Chern classes replaced by Pontrjagin classes. Thus the result follows. O

Thus in this paragraph we have established the relations between the class u(o)
and Pontrjagin classes of basepoint fibration in each of the sets U separately. The
next chapter deals with the problem of matching these descriptions together.

5.4 Compactifications of the U"

The results of the previous paragraph are based on the assumption that the spaces
M/S" and Q/S! are compact. However this assumption is not valid in general. Even
after taking the Uhlenbeck compactification, the sets

U = M, (Y) X M(N)
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still remain open. This is because there are connections whose energy may escape
through the cylindrical end. We want to describe the boundary of the sets U;* con-
taining such connections. As we shall see in the next section, we need to understand
the characteristic classes of the bundles over U that over the boundary U pull
back from certain set r(U) that has the dimension at least 2 less than dim U[*. Let
us denote by U* the compact space U yr(U ), where p : QU — r(U). Since there

is an isomorphism of cohomology groups H*P(U[*) ~ H*P(U[*,d), we shall refer to
our construction as either compactifying the spaces U* or as to splitting the global
characteristic classes into the sum of relative ones.

We shall begin the description of the connections in the boundary of U* with the
generalization of the definition of based connections. Let us recall that if Mi(X)
denotes the space of ASD connections in A, then MF(X) = M(X) X E;. Thus we

E

can similarly define a moduli space of connections based at two points as

MPV(X) = M,,(X);;(E, x E,) (5.21)

Note that M{"Y(X) can be also described as a fibered product M§(X) M>§X) Mi(X).
k

The projection M7¥(X) — MZ(X) is in fact the quotiening M;¥(X) by SO(3),
acting on E,. We shall use this definition for the moduli spaces of connections on the
cylinders R x L based at the different ends of R. We indicate this by “M¥(R x L).
Similarly, for a finite interval [a,b] C R we can define the space “M}([a,b] x L) to be
a space of connections over the cylinder [a — 1,b+ 1] X L having small energy on the
subcylinders [a — 1,a] X L and [b,b+ 1] X L containing the points z and y.

The noncompactness of U* is a direct consequence of noncompactness of the
spaces My, (Y) and M(N), so it is sufficient to describe the compactification of
these factor spaces. Recall that in order to glue back these factor spaces we need to
work with spaces of connections having small energy on the fixed cylinder R. We shall
assume this throughout this paragraph. Let us focus first on the case of compactifying
the space My, (Y). The boundary component corresponding to the splitting at one
region can be described as the fibered product:

by (Yymi) XM ([ = 1,5+ 1] x L, [mi, m])/ (SO(3), x SO(3)z) (5.22)

The first Pontrjagin class of the SO(3), action defines the point class —4u(z). The
total space of this SO(3),—fibration needs to be glued to the space M, (N, m) to get
the compactified set U*. The time translation parameter of the space

My ([a—1,6+1] x L, [m,m'])

is the collar parameter of the fibered space M(Y,m). Denote by M} ([a —1,b+1] x
L)y=My(J[a—1,b+1] x L)/R and let

p: MY (Y, ms) x M(T, [mi, m])/SO3), —
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— Mk_(Y, m,-) X M;"([a - 1,b+ 1] X L, [m;,m])

be the projection. We define the compactification of My, (Y, m) as
M, (Y,m)Y [Mi_ (Y, ms) x My, ([a~1,b+1] x L, [mi, m])|

Notice that the space that we have added in this compactification has codimension
at least 2 in M§ (Y,m). (One dimension is “lost” while dividing by time trans-
lations, and we also “lose” the gluing parameter between Y and the cylinder T).
Thus we are in the situation described at the begining of this section, which allows
us to define the compactified space M, (Y,m), or equivalently the relative class
Ht?(My, (Y, m),0( My, (Y,m)) ). We shall use the same symbol My, (Y, m) for the
compactified space. We define the classes p(z;) on this compactification as pull-
backs of the corresponding classes on the product M;_(Y,m;) x M} ([a—1,b+ 1] x
L,[m;,m]). Notice that with the class p(y) for y in the splitting region, pulling back
from MY_(Y,m;) or M;¥([a —1,b+ 1] x L,[m;, m]) gives the same result.

While applying the same construction to the moduli space My(NN,m) we get a
similar splitting of that moduli space into factor spaces M (N, m') and the mod-
uli space on the nearest cylinder M} _([a — 1,b+ 1] x L,[m’,m]). In this situation

iy (IN,m') is not an SO(3) fibration because of the presence of reducible connec-
tions. Thus we shall apply the construction similar to (5.8), relating the classes u(o)
and u(z;) to the Pontrjagin class of the basepoint fibration based at z, which is at the
end of N. This basepoint fibration based at z allows us to define the extension of the
boundary value map 8 : M§, (Y,m) — R(L), and thus the gluing of the compactified
spaces M{ _(Y) and ME(N). As a result we get a compactification of the set U*. In
general it may happen that the fibered product defining the boundary of M(Y’) has
a bigger number of factors. In this case we apply inductively the above procedure for
constructing the compactification of an unbased moduli space. This construction is
similar to the Floer compactification of the moduli spaces on the cylinder.

Now we want to ask the question if the relations between u(o) and the point
classes proven in Corollaries 5.12 and 5.17 hold on the sets C; after compactifying the
moduli spaces My(N,m) and My, (Y, m). With the definition of the compactified
u(o) as above, the answer is positive only when there is only one reducible connection
A, is in the the set My, (N, m;). (We used the relation between this connection and
the Pontrjagin class of the basepoint fibration based at z to define the compactified
class p(0).) Otherwise the cohomology class

p(o) — L) — (a(L), o) - ha (5.23)

whose evaluation inside the set C; is zero, has nontrivial support in the neighborhoods
of the other reducible connections A;, j # i.
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5.5 The relative Mayer—Vietoris sequence

So far we have been dealing only with local computations in a single open set U
coming from covering the part of the moduli space Mi(X) that contains the inter-

section of V, njri V,. Now we want to show how to combine these local computations
into a global one.

Assume first for simplicity that the whole moduli space M may be covered by
just two open sets U; and U,. As the moduli spaces of connections on bundles
over R x L allow time translations, then from (5.22) we see that U; N U, can be
written as (—2,2) x V', where V' is codimension 1 submanifold of M. Let us put
Vi=U1\(-1,2) x V'and V2 = U, \ (—2,1) x V' (thus V;’s are deformation retracts
of U;’s, but they do not cover M). Then the cohomology group H*(M) is a part of
the relative Mayer—Vietoris sequence:

— H*(M, ,UV,) —H*M, Vi)oH*(M, V) — H*(M,0) —

I | | (5.24)
H*(ZV') H*(U,, 8U,;) H*(Uy,8U;)

It follows from this sequence, that any top dimensional class in H**?(M) is equal to the
sum of two relative classes in H*(U;,0U,) and in H*(U,, 8U;) modulo a “correction
term” from H*(ZV').

In general, when the set M is covered by open sets Uy, Us, . . ., U,, let us denote the
complements of these sets by V; = M\U;. For any subset {7y, %,...,1} C {1,2,...,r}
let Vi, ipin = ViyU---UV,, and Virizei = V; N...NV,,. Then we have the following
generalization of the relative Mayer-Vietoris sequence:

Theorem 5.25 Let M be a manifold containing the submanifolds V;,...,V,, not
necessarily covering M. Then for every class p € H'P(M, V1 5,...,) there ezist classes
Wiy iy € HOP(M,Viteix) for {i1,45,...54} C {L,2,...,7}, such that:

(# ’ [M, ‘/1,2,...,1']) = zk:(—l)k+l Z <ﬂ'i1 12,00k 9 [M1 Vil "-2'.""‘])

{insi2,000}

Proof: We shall prove this theorem by induction on the number of sets V;. For
r = 2 the theorem follows from the relative Mayer-Vietoris Theorem described above.
Assume thus that this theorem is valid for all n < r. The sequence (5.24) for M; =
and M; = Vz,s,...,r is:

H (M, V; U V,a,..,) — H¥(M, Vi) @ HP(M, Va,..,) — H*P(M, Vi) = 0
(5.26)
Hence, using the inductive assumption, there exist classes p,,,.;, € H?(M,V; U
Vaa,...r), where {iy,...,4,} C {2,3,...,r}, a class u; € H(M, W), and a class a €
H*?(M, ViU V,3...,) such that

p=pm 42 (=DM ST pi — @
k

{il ,ig,...iklc
c{2,3,...,r}
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By excision we have: H*(M,V, U Va3, ,) ~ H* (U4, V33,...r), where Uy = M \ 4, and
V. = Uy N V.. We shall use the same symbol @ € H*(U;,V,3,....) for the image of
a € H*(M,V; U Va3, ,) under the excision isomorphism. Using again the inductive
assumption for the set U; containing sets V; we get

a= (=DM Y aii.
k

{1 ,iz,...ik}c
c{2,3,...,r}

where @, ,..5, € H?(U1,V). By excision H*P(Uy, V) ~ H'P(M, V1iizeiv) | thus
Qi, ig...ix correspond to iy, iy,..ix, Which concludes the proof. O

Corollary 5.27 When the sets Uy, Us,...,U, cover the space M, then every class
p € H'P(M) is equal to a combination of the classes i, i,,..i. € HP(Ui,i50in),
where U, ;,....i, 15 a compactification of the intersection U, ,, ..., described in previous
paragraph.

Proof: When the sets {U;}I_, cover M, then V;3 ., = 0. Thus from Theorem
5.25 it is sufficient to prove that H!P(M,Viiz--ix) ~ HtP(T, . .). The exci-
sion isomorphism gives us H*(M, Vi1+i2-ik) ~ H*(U;, 4,...ir, 0). Recall that the com-
pactified sets U are of the form U LJK , where K is a set of codimension at least

2. Let us denote Cx = 90U LélK . Then we have another excision isomorphism:

.....

is of codimension at least 2, then we have the last isomophism H*?(U, Cx) ~ H!*?(U)
from the exact sequence of the pair (U,Ck). O

Let ® denote the set of these classes ¢ € H*?(My(X)) that are equal to a linear
combination of terms of the form @, q,,..a,4(0)* - p(z1)*? -+ p(z5)**. The specific
compactification of the classes p(o) and u(z;) that we defined before allows us for
every ¢ € ® to define a “restriction map” r;, 4,,..i, : HP(My(X)) = H*P(U,, 5,....0)
such that ¢ is a combination of the classes r;, i, i, (¢) in the sense of Lemma 5.27.
The following lemma will allow us to avoid dealing with the classes r;, ;,....;, (¢) for
k>1:

Lemma 5.28 Let M and V;,...,V, be as in Theorem 5.25. Let p € H*P(M) be
a cohomology class such that u; = 0 € H'?(M, V) for every i = 1,2,...,r. Then
H = 0 € Htop(M, ‘/1,2,...,1')-

Proof: This is proved by an induction on the number of sets V; as in (5.25). For
r = 2 the statement follows from the relative Mayer—Vietoris sequence. The inductive
assumption implies that u € H*P(M, V, 3. ,) is zero. Thus the sequence (5.26) gives
us the lemma. O
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6 The proof of Theorem 1.3

The proof of Theorem 1.3 is based on the idea of replacing the classes u(o) with some
appropriate point classes u(z;) by using relations described in Lemmas 5.12 and 5.16.
In other words we would like to find a linear combination of the form:

p(O)" + 3 aay,.c,h(0) - p(z1) - p(z,) (6.1)

a<l<n

that would evaluate as zero on every set U;. In the above formula, as well as in later
notation, we shall often skip the factor u(z) that appears in every term. Then from
Corollary 5.27 it follows that (6.1) is zero on the whole of M(X), thus giving the
main result.

We shall begin by defining a form that will evaluate trivially on a part of the
diagram J defined in (4.6). Let {U;}:_, be the open sets of the cover corresponding
to the first column of J.

Theorem 6.2 Let 0 - 0 = —p, and let s be the number of elements in x(L(p,1) ).
Let n > 2s, and set r = 232 when n is even, and r = 2=2*1 when n is odd. There
is an a = (a1,03,...,a,) such that ¢(a) defined by:

$(a) = u(o)" — asu(0)* u(zs)" + a1 p(0) 7 p(2om1)™ + -+ + a1pp(0) (1)

when n is even, and

$(a) = p(0)" — asp(0)* 7 p(2s)" + amrp(0) P p(@emn) ™ 4 -1 - + arp(0) p(zy)
when n is odd, evaluates trivially on the set 1<U< Ui.
Proof: We shall give the proof in the case when n is even. The proof in the other

case is analogous. For convenience let us set p(z;) = —4pu(z;). Using Corollary 5.12
for the set U, we get the relation: u(o)? = s?- p(z;) for i < s. Thus, in U, we get:

¢(a) = (327‘ +a, + 'slz"as-l +--- 4 '(':s’%,___lal) #(a)Zap(x‘)r

While considering the other sets U; we have to use the following lemma, which is a
direct consequence of Lemma 5.13:
Lemma 6.3 Let i > k, and let the numbers a, 3, and v be such that v + a >
dim M 2 (N, k). Then in the set Uy we have:

P

#(0) u(zi) u(z:)’ = p(o) p(ze)*+?
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From this Lemma and the relation u(0)? = k%p(z;) for i < k we get in Uy:

d(a) = p(o)* ((B)*Fp(ze)+=* + (k) *a, - p(ze) ™ p(z) + - -

+ (—kz;k—_lp(wk)'*""al)
= p(d)ka(:tk)r+’_k ((k2)r+s-—k + (k2)""‘a, 4o (—kz_;ﬁal)

Thus we get a system of s equations with s variables, whose matrix is the Vander-
monde matrix:

(21 ... (s?) 1
A P (6.4)
1 ... 11

whose determinant is [];<;c;j<,(j — ¢%). In particular, this determinant is nonzero,
thus we can always find the numbers a;,...,a,. O

In order to remove the assumption n > 2s from the above theorem we need to
define the relative invariants, that have been introduced in [FS2].

Definition 6.5 LetY is a 4-manifold with a cylindrical end and My, (Y, m) a com-
pactified moduli space. Assume that m is nontrivial, and that c denotes the first
Chern class of the S fibration 0~'(pt). Then define the relative Donaldson invariant
Dy[m]: A(Y) — R by:

Dy[m](z- ¢*) = (u(2) - &, Mi, (Y, m))

When m = E we set Dy[m](z) = Dx.(z) to be a twisted SO(3) invariant. When
m = 0 we set Dy[m](z) = Dx(z), the usual invariant.

The class w; of that twisted invariant must evaluate as zero on Y and on N, thus
it is a unique Z; class that comes from H!(L) in the cohomology sequence:

— HY(L) — H3(X) —» H¥(Y) ® H}(N) —
Since the Z; reduction of the class o satisfies these conditions, we have w, = 0.

Lemma 6.6 Let n = 2k < 2s (where s is the number of elements in x(L)). Then
there erist coefficients ay,...,ax—; such that the form

¢k = p(0)* — ar-14(0)*?p(zk-1) — - - - — arp(0)?p(z1)*

evaluates on the sum of the sets US_ U; as (2k)!Dy[k](z) in the case when k is a
trivial element of x(L), and evaluates as ‘%BDy[k](Z - ¢) otherwise.
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Proof: Let W(k — 1) denote the k£ x (k — 1) matrix
(—((k —15) (k-1 . (k-1)? 1)

...............................................

and let W(k — 1)’ denote the (k — 1) x (k — 1) matrix obtained from W(k — 1) by
deleting j** column from the right. Then according to Theorem 6.2 for a; = d—;%’,%‘ﬁ)i
the form ¢, evaluates trivially on the sets U; for 1 <1 < k. So it remains to evaluate
¢« on the set Uj:

¢k|Uk = (k2)k + ak-](kz)k— -+ a]k? _
= detl;V,, [ (k%)% . det Wi_y + ax_1(K?)F 2 det W(k — 1)k + ...

+ adet W(k-1)!] =
(2k)

det Wk .
= k2—-— = kz - 12 = 6.7
det Wi ~ ol [ 1) = (6.7)

When k is a trivial element of x(L) and Ui corresponds to the set with the biggest
amount of energy on the N-side that covers the intersection of divisors V,, then the
bundle @ apearing in the Lemma 5.13 is SO(3) — $? = SO(3)/S*. As the first
Chern class of this bundle is equal to 2, then we have an additional factor of 2 in the
formula for ¢i|y, in this case. O

To avoid dealing with separate statements for two different cases n > 2s and
n < 2s we shall introduce the following notation:

Definition 6.8 Define the Donaldson invariants needed for evaluation D(zo™):

D(zo*™zk 2™) ifk—2d —m > 0.
Dy (20%™zk 2™y = D[m](c- 2) ifk—2d —m =0.
0 ifk—2d-m<0.

when n = 2k, and

2m—1 k— d—m
D_L(ZG m+2d

D[m|(2) tfk—2d—m=0.
0

D(z0?™1zk 2™y ifk—2d —m > 0.
)=
ifk—2d—m <0.

in the case n = 2k + 1.

The particular subscript of 424 in the above formulas is taken from the fact that in
the (d+ 1)* column of the diagram J the element with boundary value m lies in the
level z,,124. Now we are ready to prove the theorem, from which (1.3) will follow:

Theorem 6.9 Let X be a smooth manifold containing an embedded sphere S* with
self-intersection 0 = —p. Let s be the number of elements in x(L(p,1)), and let
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z € A(X) be a cohomology class such that z- o = 0. Then there exist constants a
such that:

D(o%*2) = Z Y ad Dy(0z* ) (6.10)
m=1d=0
when n = 2k, and:
o2+, Z Za Do (o™ gh=2d-m ) (6.11)
m=1d=0

when n = 2k + 1.

Proof: We first concentrate on the case when n = 2k. Let U;,U,,...,U, be the
open sets that correspond to the first column of the diagram J (if there are fewer
than s sets in the first column, thanks to the definition of D, we can assume that
we completed that list by empty sets). Theorem 6.2 and Lemma 6.6 imply that there
are constants a?, ad,...,a% such that

]
= Y % Dy (z0™zF ™)
m=1
evaluates trivially on the first column of J. Let J() be a diagram obtained from J
by erasing its first column. For every vertex of J(), like in (4.6) we can assign an
open set in Mj_1(X) (the moduli space of connections on X, with one charge less
than the space that we started with.) Repeating the argument from Theorem 6.2 we
can show that there exists a polynomial

¢! = () u(zera) "t + ay_ p(0) PP p(2a1) + - + ajp(0)p(zs)
+ agp(zg)™!

such that ¢° — ¢! evaluates trivially on the first column of J(1). The difference ¢°— ¢!
should be understood in the following way: as the diagram J(!) has been obtained
from J by erasing some of its elements, then we can say that there is an embedding
JM — J. Then ¢' we evaluate on the open set corresponding to a vertex of J(),
whereas the ¢° we evaluate on the corresponding set of J. Repeating Theorem 6.2
for consecutive diagrams J () we prove the theorem. O

Proof of Theorem 1.3: Lemma 6.6 with Theorem 6.9 implies that the relative
Donaldson invariants Dy [k] can be expressed in terms of D(0**) and D(o%z*~7) for
J < k. Thus all relative invariants in 6.10 can be replaced with invariants defined on
X, which completes the proof. O

7 Examples of computations.

The theory that we have developed gives more than just Theorem 1.3. By using the
results of this thesis we can compute the actual coefficients in some of the formulas
given by the (1.3). Below we give some examples of such computations.
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Example 7.1 Let o be the cohomology class of an embedded 2-sphere with self-in-
tersection —4. Although Theorem 1.3 does not cover the case of D(zo?), the only
relative Donaldson invariant that appears in Theorem 6.9 is a twisted SO(3) invariant
with w, = o, that is why we get the formula of the form:

D(z0%) = A-D(z) + B - D(20%z) + C - D,(2)
We have already seen that the diagram J in this situation is
‘ 1

§ >

and let us denote the corresponding open sets by U}“, U? and UP. Then from
Lemma 6.6 we have that ¢° = u(0)* — p(0)?p(z1) evaluates trivially on U},,. Since
the coefficient B is obtained from the term u(0)%p(z,) = —4pu(0)?u(z1), then we have

= —4. The coefficient C we obtain by evaluating ¢° on U2. The dim M,(N,2) = 5,
thus the neighborhood of the reducible connection is modelled on C3/S! = CP2.
From Lemma 5.12 it follows that U? = P(SO(3)¢ x 1), where 7, — CP™ is a line
bundle with ¢;(7,) = [CP!]. If h is the generator of the fiber CP! of P, then we
have:

p(o) = 2h; p(z1) = h?

Thus in U}
p(0)! = u(0)’p(z1) = £c([SO(3)/S']) - (2 = 2%) - Dy (2) = £24 - Do(2)
Here ¢ = 2[S?] is the first Chern class of the fibration SO(3) — SO(3)/S*.

In order to determine the sign in the above equation we have to refer to the orien-
tations of moduli spaces defined in [D2]. By using a complex structure on the elliptic
complex

QTXQL)—» Q(TXQL)— M (TX QL)

where L — X is a complex line bundle, one can assign an orientation o(L) to a
reducible connection respecting the splitting L @ L in the case of SU(2) connections,
or respecting the splitting L @ R in the case of SO(3) connection. The Example 4.3
from [D2] worked out for an arbitrary reducible bundle L @ L gives:

Claim 7.2 The orientation o(L) of a moduli space in the neighborhood of reducible
connection on a bundle E = L @ L is —nA (standard orientation on CP™), where
n is the normal pointing away from the reduction. This orientation compares to the
standard one with a sign (—1)1(D)?,

For the connections over the space N we have to change the sign in the above
Claim, due to the fact that N has the orientation opposite to the complex one.
The decomposition X = Y#N yields a splitting of arbitrary line bundle L into
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L = Ly#Ly, where ¢;(L) = ¢;(Ln) on N. The neighborhood of reducible connec-
tion on Ly @ Ly is described as SO(3) ; C" has the orientation o(L). An arbitrary

connection may be related to a reducible one through additions and subtractions of
instantons. The set U} is a neighborhood of the reducible connection on Ly & Ly
with ¢;(Ly) = 2[S?] € H*(N). The associated SO(3) connection is defined on
L% ® R. Thus as a bundle L on the whole X we can take the line bundle with
c1(L) = —PD[S? = —o, since —0[S? = ¢1(L%) = 4. Thus the complex orientation
on U? compares with the standard one with the sign (—1)°* = (—1)4, giving the “+”
sign at D,(z).

There are no S? reducible connections inside the set U but there is a trivial
one. Following the discussion in [Y], the restriction of the base—point fibration to
the link of the trivial connection in M;(N,0) is Fry(N) — N, where Fry(N) is the
associated SO(3)-principal bundle of A2TN. Then U? = PG(.S'O(3)G x Fry(N)%),

and following Corollary 5.16 we have in thls set:
p(o) = n*(o); p(z1) = —4x"(z1) + H

where H is a generator of the fiber £SO(3) of Pg(SO(3)¢ x Fr,(N)€). Thus ¢° =
—H[ES0(3)]-0%[N] = —2-(—4) = 8. The additional “—” sign has to be added again
due to the anti—complex orientation of N. Putting all three terms together we get

Theorem 7.3 When o is a class of S? with self-intersection —4, then the following
formula holds:

D(z0*) = —8-D(z)+24-D,(2) —4- D(z0%z) (7.4)

7.1 Second stratum connections over C P2

The next example requires the description of the reducible connections in the second
stratum of the moduli space. The following presentation is based on [Y, Oz]. Let
w be a reducible connection on the bundle L @ L over X with ¢ = ¢;(L). Assume
that n is such that the neighborhood of w € M (X) is modeled on C"/S*. Then
an open neighborhood of {w} x X in the compactlﬁed moduli space M ,,(X) is
homeomorphic to the bundle:

o x ( P (FroX x cSO(3)) / U(l)) (7.5)

By the symbol P X @ we have denoted the fibered product of two fibrations P and Q

over X. (the pullback of Q over P.) Let P, denote the principal S? bundle associated
to L, on which U(1) acts in a natural way from the right. The U(1) action on cSO(3)
is a square of the right action of S? — SO(3) via the map

1 0 0
exp(i) = | 0 cosf sinf

0 —sinf cosé
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For any complex line bundle L we have L x SO(3) = L? X SO(3), where the S! action
1

s
on SO(3) is the square of the S! action. Thus in what will follow we shall replace
the fibration Pp with P2 getting the standard U(1) = S? actions on all bundles
appearing in the formula. The stabilizer Sip acts in the standard way on C™ and on

the left on the space P X (FryaX sox(s) c¢SO(3) )/ U(1). Thus in the neighborhood
of {w} x X the bundle M — M/S* used in Theorem 5.5 is:

M =S (C" X (Pr2 X (FryX Sox(a)c50(3) )/Sl)> —

P (c" X (Pia % (FraX x eSO(3) )/51)) (7.6)

where the projection is the quotient by the Sl action. In the above formula we have
used the symbol “S” even though the fiber of the boundary of

n 1
C" x (PL2 3‘( (FT+XS(;((3)CSO(3) )/S )

is not a sphere, but S?"~! x SO(3), a space that is double covered by S?*+3. For
later computations we need to evaluate the powers of the first Chern class cps of the
fibration M — M/Sir on M/S.

When the SO(3) fibration Fr,X lifts to an SU(2) fibration Fr,X (i.e. when w,
of the manifold X vanishes), then, following [Oz], we have an S? equivariant double
cover map:

; 1., p, 1
P X (FroX SI;<(2)CSU(2) )/S' — Py X (Fry X 5(;((3)650(3) )/S

where S! acts in the standard way on SU(2). The fibration

7 1
Py x (FreX oy SV )/S

can be orientation reversing identified with the sphere bundle of the complex vector
bundle L~! ® A%  with the complex orientation. For the whole space M/S! we have
the following:

Lemma 7.7 (Compare Proposition 2 in [0z]) If X is a four manifold with w, = 0,
then there is a fiberwise covering map p of degree 2™

p:P(C"o(LeAig)) - P (c" X (Pia % (FraX x cSO(3) )/S‘))

Moreover p*(cy) = —2hp, where hp is the positive generator of the fiber CP™! of
P(Cre(L®ALg)) — X.
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Proof: In order to make the lift an S! equivariant we need to lift the S! action on
P2 and on each fator of C* = ¢(S! *---x S'). This gives us a 2"*! cover of the

n times
fibrations before projectivization. Dividing by the S! action “cancels” one factor of

2.
On the fibers the map p is

S2n+3 S2n—l * 30(3)

Ccprt P . (51 50(3) )/S!

By using technics similar to the desingularization of the moduli space (5.6) and
Theorem 5.13 we get:

(i, (S % S0(3) )/S") = (i, P(S?° x SO(3)°)) = cso(3)[S? = 2
Hence
(p(c3F1), CP™1) = 27 (i, (571 + 50(3) )/S) = 27+ (y"+1, CP™H)

giving the second conclusion modulo the sign. The minus in this formula is due to the
fact that the identification of 2" cover space with P(C" & (L ® A% ()) is orientation
reversing. O

Now we need to adjust the above results for the case of the space N = CP"/Z,.

7.2 Second stratum connections over the orbifold N

Let 7 : CP?2 — N denote the quotient by Z, action defined by 7[z : z; : 23] =
[exp(%"i)zo : 21 : z2]. This action has a fixed sphere {29 = 0} and one fixed point
{z1 = 22 = 0}. The quotient space N is not a manifold, having singularities at the
fixed points of 7. Near the fixed point sphere N is diffeomorphic to —p degree disc
bundle over S?, thus the singularity there can be resolved. The neighborhood of the
fixed point is modelled on the open set in R™ divided by Z, action with a single
fixed point at the origin. Such spaces are called orbifolds. We will need the following

properties of N:

Lemma 7.8 Let 0 € H*(N) be a cohomology class Poincare dual to the sphere with
self-intersection —p. Also let £ € HY(N) denote the generator of this group. Then
we have

(o) =pv; *(z) = py’
where v € H(CP?) is a generator of this group.
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Proof: For the generator r € H*(N) we have 7*(z) = py?, thus proving second
equality. Also we have:

(r*(¢*),CP?) =p- (¢*,N) = —p* = ((£p7)?,CP?)

Since PD(o) is a fixed by the action of 7, then we have the “4” sign in the first
equality. O

Over the orbifold N the line bundles L and the bundle A2(N) are defined as
Z, quotients of the corresponding bundles over CP2. Thus if hy denotes the class
obtained by quotiening the generator k of the fiber CP? of P(C®(L®A2 ¢)) — CP?,
then we have:

(k7 (o), P(C & (L ® AL c))) = (hn7*(0), N) = %(hm,w) = (hy,CP?) (7.9)

and

(hy7*(z), P(C® (L ® A} ) = (n*(z), N) = (+*,CP?) (7.10)

In particular this answer does not depend on the intersection number p. Now we are
ready to come back to the computations of next examples.

Example 7.11 For the o with the self-intersection —4, same as in the previous
example, we want to increase the number of the classes o appearing in the Donaldson
invariant. According to Theorem 1.3 we expect the formula of the form:

D(20°%) = a;D(20%z?) + a3D(z0%z) + a3D(2z) + a4 D(z0?) (7.12)

Each term in the above formula corresponds to different open set represented on the
diagram:

.
~

Solving the system of equations described in Theorem 6.2 gives us that the form

¢° = u(0)® — 5u(0)'p(z2) — (—4)u(o)*p(z1)?

evaluates trivially on the sets U}/, and U{. This shows that the coefficient a; =
—4-(—4)? = —64, and a; = 5 (—4) = —20. Again it remains to evaluate ¢° on U?
and Uj/,. Similarly like in the previous example, in U we have

¢° = 4-0’[N]- H[ESO(3)] - p(z1)[Mk(Y,0)] = 4- (—4) - 2- (—4) D(2z) = 128D(zz)
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This gives us the coefficient at D(zz) with the sign determined like in the previous
example. Since the graph J terminates on one level below the set U?, then we also
get ¢! = —32p(z;). In U5/, we have:
p(o) = x*(o) — h; p(zi) = —4n*(z:) + b
Thus:
$° = (7°(0) —h)®=5(n*(0) — h)*- (—47"(z:) + h?) +4(x"(0) — h)*-
(—47r'(:c.~) + 112)2
= h8 —6h°x*(0) + 15h%(n*(0))? — 5(h* — 4h%x*(0) + 6R%(n*(0))?) -
(—am*(z:) + h2) + 4 ((7*(0))? — 27°(0)h + ) - (h* — 8h?x*(z,))
= h°7*(0) (=6 + 20 — 8) + A*r*(z;) (15(72 + 20 — 3002 + 40% — 32) (7.13)
= 6h%n*(0) + 32h*r*(z;)
The set Us,, is P( Q§ x MC), where M is the neighborhood of the connection w x N
described in (7.6). Thus

(B5*(0), Ul = (e, @v) - (K7°(0), M) = D(e?) - =5 - (=2)° - (e 7, CP)

Here cg, = c1(L®A? ) = —27 and the extra minus in the front of the whole formula
is due to the fact that the identification of the 2" cover of M and L ® A2 . was
orientation reversing. Thus the contribution of the term 6A°7*(o) in U3, is 48D(0?).
Similar computations give (h*r*(z), U;,4) = —2D(0?). The contribution of ¢! in U},,
is equal to D(o?), thus adding these terms together we get:

D(z0®) = —64D(z0%z%) — 20D(20*z) — 128D(zz) — 48D(z20?)

Example 7.14 As the other way of generalizing the above considerations we shall
prove that for o - ¢ = —6 we have

D(z0®%) = —192D(zz) — 64D(z0*2?) — 20D(z0*z) — 108 D(z0?) + 720D, (z)
The graph J for this situation is

.
N

and as before the form ¢° = pu(0)® —5u(0)*p(z2) — (—4)u(o)?p(z;)? evaluates trivially
on the sets U] and U}, giving the coefficients at D(z0%z?) and at D(z0*z). In U3),
we have:

¢° = h[S?] - (35 —5-3* +4-3%) = 2(729 — 405 + 36) = 720
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which gives the constant at D,(z) and ¢! = —48p(z2). Repeating the reasoning from
the previous example we get that ¢° =4 -(—6)-2-(—4)D(zz) = 192D(zz) in U}.
From (7.13) in U}/ we have:

#° = 6h°71*(0) + 54h%n"(z;)

As the pull-back over CP? of the link of the reducible connection in U71/6 does not
depend on the self-intersection p of o, we can repeat the computations from the
previous example, obtaining:

(8° Uzje) + (¢!, Ulsg) = (6 -8 + 54 - (—2) — 48) - D(0*) = —108D(0?)
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