
, ~ylv~tn1«yrl-F-l.~9f§,

a..

 



THESIS

{K 01/

    

Illlllll‘lllllllllllllllllllll
3 1293 01417 2013

This is to certify that the

dissertation entitled

SUBPOSETS OF

THE BOOLEAN ALGEBRA

presented by

Ping Zhang

has been accepted towards fulfillment

of the requirements for

Doctor pol-7‘31 degree inmy Philosophy 

\ g \

Major professor

Wei-Eihn Kuan

Datejug.i 1 /7;{

August 1, 1995

MSU is an Affirmative Action/Equal Opportunity Institution 0-12771



 

LIBRARY

Michigan fitate

University   

PLACE ll RETURN BOXto removeWe checkom from your record.

TO AVOID FINES return on or More dete due.

DATE DUE DATE DUE DATE DUE    
 

 
  

 

 
  

 

  

 

 

 
 

   

 
 

 
  

 

 
 

 

 
  

 

 

MSU leAn Atflnnetlve MONEquel Oppommlty Inetltulon

, mm1

 



SUBPOSETS OF

THE BOOLEAN ALGEBRA

By

Ping Zhang

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1994



ABSTRACT

SUBPOSETS OF THE BOOLEAN ALGEBRA

BY

Ping Zhang

This work deals with two important subposets of the Boolean algebra.

The first subposet ka is called truncated Boolean algebra, which consists of all

subsets, whose cardinality is at least I: together with the empty set. We first compute

its Mobius function in various ways. Since ka can be consudered as the intersec-

tion lattice of the k-equal subspace arrangements, we then compute its charateristic

polynomial, x(Qn;k,t), by different methods. As a result, we obtain two different "

expressions for x(Qn;k,t). One of them has a nice form in the terms of the basis

(t — 1)i,z' _>_ 0, for the polynomial ring.

The second subposet ink is called the k-divisible Boolean algebra, which consists

of all subsets whose cardinality is divisible by k together with the whole set. The

generalized Euler number Enlk is the absolute value of Mobius function of ink. So

Enlk counts the number of permutations of an n-set with all the descents in the

position m, where m is divisible by k. The well known classic Euler number is a

special case when k = ‘2. we study the arithmetic properties of the generalized Euler

numbers and their q-analogs. We derive two different expressions for their recursions

and obtain their divisibilities. We also provide new proofs of previousely known

results already in the literature.
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Introduction

The history of partially ordered sets, or posets, and lattices begins in the nine-

teenth century. The subject was systematically developed in the 1930’s, first in G.

D. Birkhoff’s work [4] and then by others. Although the Mobius function originated

in several forms related to number theory, geometries, algebra, topology and combi-

natorics, the first version of the Mobius Inverse Theorem for posets was due to L.

Weisner [44] in 1935. Shortly after Weisner, P. Hall independently rediscovered this

theorem [27]. In 1939, M. Ward was able to generalized the M6bius Inverse Theorem

[43]. Then in 1964 Rota began the first systematic study the Mobius functions of

the posets within combinatorics [32]. He also established the connection between the

Mobius function and the efficient enumeration of objects represented by posets. The

combinatorial properties of the Mobius function provide a great deal of information

regarding the structure of posets and related enumerative problems.

The characteristic polynomial of a lattice was also first considered by G. D.

Birkhoff [5], and has been called the Birkhoff polynomial [39] and the Poincaré poly-

nomial [13]. Since the characteristic polynomial of a lattice is the generating function

for the M6bius function, much has been done to exploit the combinatorial and alge-

braic properties of this polynomial. For example, Stanley has produced a factorization

theorem for the modular elements in a finite geometric lattice [38] and has also shown

that the characteristic polynomial of a supersolvable lattice has only nonnegative inte-

ger roots [39]. In fact, much recent work has been related to finding conditions under
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which this polynomial has only integral roots. Raising interest in this topic stems,

in fact, from the fact that a polynomial with real roots has a log concave coefficient

sequence. If, in addition, the coefficients are positive items, they are unimodal [37].

The topic of hyperplane arrangements has developed rapidly in recent years. The

combinatorial implications of this subject arise from a simple fact: An affine hyper-

plane cuts R" into two connected regions. By introducing several hyperplanes, R"

can be partitioned into a number of bounded and unbounded regions. The problem

of counting these regions dated back to to the mid-1800’s. However, no satisfactory

explanation or general formulas were produced until 1975 when Zaslavsky [45] first

used the Mobius function of the intersection lattice C(A) (defined in Chapter 2) to

enumerate the regions of the complement of a hyperplane arrangement. Zaslavsky’s

results illustrate the important roles played by intersection lattices, their Méibius

functions, and their characteristic polynomials. Zaslavsky also established the theory

of signed graphs and eXploited the connection between the chromatic polynomials

of these graphs and the characteristic polynomials of certain arrangements [47, 48].

More recently Blass and Sagan were able to generalize one of Zaslavsky’s fundamental

theorems [9] by demonstrating that both of these polynomials count a set of lattice

points in Z", This gives a surprising relationship between these two polynomials and

the Ehrhart polynomial of a polytope [110, 9]. We will use this result and many others

to computer Mébius functions and characteristic polynomials for various subsposets

of the Boolean algebra.

The history of the Euler numbers can be traced all the way back to the eighteenth

century. They posses many interesting number-theoretic properties that can also be

interpreted in various combinatorial ways. D. André [1] showed that the coefficient

of xn/nl in sec x + tan x, or the Euler number En, is the number of alternating

permutations (1102 ~ -~a,1 of {1,2,-~,n}, where alternating means a1 < (L? > a3 <
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a., > This result was extended by Carlitz [11] to generalized Euler numbers,

Enuc, which count the permutations (1102 - --a,, of {1,2,---,n} such that a, > a,“

if and only ifi is divisible by k. In particular, the ordinary Euler number is the

case when k = 2. Furthermore, Stanley [36] used a q-analog of the Euler number,

to generalize this result. He has shown that they count the same permutations by

weight, where the weight of a permutation with i inversions is (1'.

The divisibility properties of these numbers have also received much attention

over the years. It is well-known that [32,,“ is divisible by 2" and that (n + 1)E2n+1 is

divisible by 22" but by no higher power of two [12, p.259]. The divisibility properties i

of Stanley’s q~Euler numbers were studied by G. Andrews, 1. Gessel, G. Viennot and

D. Foata [2, 26, 19]. The odd integer (n. + 1)E2n+1/22" is called a Genocchi number.

D. Dumont, G. Viennot and J. Francon have given nice combinatorial interpretations

for the Genocchi numbers and the Euler numbers [16, 20]. Moreover, a formal power

series extension of these numbers has also been investigated by Ranrianarivony, J.

Zeng, D. Dumont [33, 18] and others. We will generalize some of these results to the

number Enlk in this thesis.



Chapter 1

Definitions and Notation

In this section, we set up some definitions and notation. We will follow Stanley

[40] as much as possible. Any terms not defined can be found described in Stanley’s

book.

A partially ordered set, or poset, P is a set together with a binary relation S

satisfying the following three axioms:

1. For all :1: E P,:r S as. (reflexivity)

2- If 517 _<_ y and y S 51:, then r = y. (antisymmetry)

3. If a: S y and y S z , then at S 2. (transitivity)

Weusez<ytomean$Syandw¢y,y2:rtomeanxSy. Wesayx,y€P

are comparable if :1: S y or y S 1:; otherwise a: and y are incomparable. The element

y covers a: (a: < y) if :1: < 2 S y implies z = y.

We say that P has a minimal element 9 if there exists an element 9 E P such that

a: Z 9 for all :1: E P. Similarly, P has a maximal element 1 if there exists an element

IEPsuchthathlforallrEP.

A subposet Q of P is a subset Q of P and a partial order of Q such that for any

4



x,y 6 Q, we have x S y in Q if and only if :1: S y in P. A special type of subposet of

P is the (closed) interval [:r,y] = {z E P : :r S 2 S y}, defined whenever :1: S y.

Two posets P, Q are isomorphic if there exists an order-preserving bijection 77 :

P —> Q whose inverse is also order—preserving; that is,

:1: S y in P if and only if 71(23) S 77(y) in Q.

A chain (or totally ordered set) C in P is a subset so that every two elements

are comparable. So if the elements of C are {$0, 23,, . . . , :rk} with 9;,- S 51:]- when i S j,

we can write C as

C: :r0<:r1<---<:rk.

The length of this chain is k. We say this chain C is saturated if we can write C as

C: a?0-<a:1 4 <xk.

A maximal chain in a poset P is a saturated chain from a minimal element in P to

a maximal element in P.

We say P is a graded poset of rank n if every maximal chain in P has the same

length n. In this case, there is a unique rank function p : P —-> {0, 1,. . . ,n} such that

0 if :1: is a minimal element in P

p(y):{p(:r)+l ifzr<y.

Given a poset P, then the Mo'buis function [J of P is defined recursively on intervals

[z,y] in P by

p(:c,;r)=1and;1(.r,y)= -(:L',Z,Lt z)f0rall.r,y€P.

1<z<y

If there is a possibility of confusion, we use 11,, to denote the Mobuis function of a

poset P. Suppose that P is a finite poset that has a unique minimal element 9. For

5



brevity, we let 11(1) denote p(9,:r) and 11(P) denote ,up(9, 1). The M6bius function

of P can be equivalently defined by

1 ifcr=9 ,

.r = , .’ 1.1

M ) l — 2y“ ,u(y) ifa' > 0. ( )

It is well-known that if n : P —+ Q is an isomorphism between two finite posets P

and Q, then ”(13) = 11(17(:1:)) for all :r E P. Also, the Mobuis function of the interval

[:c,y] of P equals the restriction to [.r, y] of the Mobuis function of P.

The following result is fundamental [44] and a proof can be found in [32].

Theorem 1.0.1 ( M6bius Inversion Theorem ) Let V be a vector space over a

field K. Let P be a finite poset with 9.1ff and g .' P —> V satisfying condition that

f($) = 23ny 9(y) for all It in P, then 9(0) = Dearth/”(y)-

Let P be a finite graded poset with 9 and rank n. The characteristic polynomial

ofPis

..\*(P,t) = Z #(i‘) t""”(”’- (1-2)

xEP

One uses the corank of :15, rather than its rank, as the exponent on t so that the

polynomial will be monic. Since the characteristic polynomial is just the generating

function for the Mbbius function, it is of fundamental importance.

A lattice is a poset £ for which every pair x,y E E, has a least upper bound (or

join ) :1: V y and a greatest lower bound (or meet ) a: /\ y. Clearly, all finite lattices

have a 9 and a 1.

For n E N, let Qn be the poset of all subsets of {1, 2,. . . ,n} ordered by inclusion;

that is,

:1: S y in Qn if and only if :1: Q y as sets.
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Then :1: A y = :1: O y and :1: V y = :r U y for all a2,y E Qn. Hence Qn forms a graded

lattice with the minimal element 0 = (b, the empty set, and the maximal element

1 = {1,2,...,n}. The rank function p of Qn is p(.r) = [:r], where I - I denotes the

cardinality of :13. Then Qn is called the Boolean algebra of order n. It is well—known

[40, 3.8.3] that

Theorem 1.0.2 The Mb’buis function of Qn is

1,1(;1:):(_1)Irl

for all a: E QW

By the definition, the characteristic polynomial of Qn is

new): Zeu'r'tr'r': Z (—1)*‘[’,:)t"-‘~‘=(t—1)". (1.3)
ern |x|=k30

In this work, we study two classes of the subposets of the Boolean algebra Q":

the truncated Boolean algebra and the k-divisible Boolean algebra. We denote these

two subposets by ank and ink, respectively.

We begin in Chapter 2 with the study of the truncated Boolean algebra. In the

spirit of J. W. Moon [30], we first compute the mobius function of QM. in as many

ways as possible. We then derive two forms of the characteristic polynomial of ank.

In particular, after a review of the definitions and some premilinary materials related

to subspace arrangements, we use a lattice point counting method due to Blass and

Sagan to get this result.

In Chapter 3, we study the k—divisible Boolean algebra. We start by determining

the Mobius function of ink. We then define the corresponding generalized Euler

number to be the absolute value of this Mébius function and study its combinatorial

properties. We derive two different recursions for these numbers. By using these

7-;
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recursions, we extend some well-known facts about Euler numbers ( the case I: = 2 ) to

generalized Euler numbers. In Section 3, we introduce the q-Euler numbers defined by

Stanley [40]. We establish combinatorially an explicit expression of the recursion for

the q—Euler numbers. Using this recursion, we are able to obtain some nice divisibility

properties of the q-Euler numbers and then generalize two q—divisibility theorems of

Andrews and Gessel. Along the way, we also provide a few different proofs for known

results already in the literature.

This work ends with some comments on related results, open questions and various

conjectures.



Chapter 2

The Truncated Boolean Algebra

2.1 The Miibius Function of the Truncated Boolean

Algebra

For I: fixed, 1 S k S n, let ank be the set of all 3 Q {1,2,...,n} such that

IS] 2 k or [S] = 0. Ordering ka by inclusion, we see that ka is a poset. In fact,

ka is the subposet obtained from Qn by eliminating all elements that have ranks

1,2, . . . , k — 1. For this reason, ka is called the truncated Boolean algebra.

The Mébius function of ka is well known. We first state the Mobius value 11(33)

for elements from ka. Then we give various new algebraic and combinatorial proofs

of this result. Our proofs illustrate various standard combinatorial techniques.

Theorem 2.1.1 The Mo'bius function of ka is

1 utza

f1.(IL') = { (_l)m—k+l (Tn—1 (2'1)

k4) ifs; > 0 and [3:] = m where h S m _<_ n.

First, we give an algebraic proof of Theorem 2.1.1 simply using the definition of

the Mobius function and the following lemma.

Lemma 2.1.2 Let P(:1:) be a polynomial of degree at most n with real coefficients. If

P(:1:) has more than n distinct real roots, then P(:1:) :— 0.

9



First proof of theorem 2.1.1 : By the definition of the Mobius function of a

poset, 11(0) = 1. Let a: E ka with |r| = k +i where 0 S i S n — h‘. We proceed by

induction on i. For i = 0, the result is trivial since ,u(:r.) = —1 if [at] = 1:. Assume

that the result holds for all 0 S i S I. Now let :1: E ka with Irl = k + I + 1. It is

easy to see that

[{yE ka: 0<y<:1: and [y] =k+i whereOSiS 1}]

k+I+1 _ k+I+l

k+i _ 1—i+1’

By the induction hypothesis, we have

#W)==— Z:uar=-r—X3 2: AW)

0Sy<r 0<y<x

lyl=k+i

’ k+I+1 . k+i—1
= —1— ——1'+1 .

a-..» > < . >

k+1 ’ k+l+1 ,,k+i—1

I3“: W<1+1){ 23(1—i+1lh4)+( i )l'

()

Let

1"

ItIS enough to show that P k) —:0. First note

 

 

k+ a+1xk+I—n a+1n

(L+J: (1+U! (2%

and

k+1+1 k+t—U__w+l+ixe+n~wk+i+nw+¢—1fnw+iw

I—i+1 i _ (I—i+U!i'

93)

are polynomials in k of degree I + 1. Hence if P(k) gé 0, then it is a polynomial of

degree at most I + 1. Moreover, by equation (2.2), (7:11) : 0 for all 0 S j S I and

(“1:11)“) = ([+1]) : (—1)’“. Also by equation (2.3),

’ _ al—j+1+1 —J+i—1 ___jn —j+1+1 —j+j—1 __
E] n . . _(1) . . _ 1
i=0 I—i-l—l z I-J'l'l J
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for all 0 Sj S I and

’ ,, —(1+1)+l+1 —(1+1)+z'—1 _

Zl-1)+( l—i+1 )( i )‘0'

It follows that P(—j) = 0 for all 0 S j S I + 1. By theorem 2.1.2, we have P(k) E 0

and the result follows. I

The second proof of theorem 2.1.1 involves certain properties of Mobius functions

of Eulerian posets which were originally studied by Stanley [41, Proposition 2.2].

A finite graded poset P with 0 and 1 is Eulerian if p(;z:,y) = (—1)’(x'y) for all

a: S y in P, where l(-.1:,y) is the length of interval [any] in P; that is, the length of

a maximal chain in [:r,y]. It is clear that the Boolean algebra Qn is Eulerian. The

following theorem is due to Stanley [40, p.137].

Theorem 2.1.3 (Stanley) Let P be Eulerian afrank n, and let Q be any subposet

ofP containing 6 and 1. Set Q = (P\ Q)U {0,1}. Then

The second proof of theorem 2.1.1: By the definition of Mobius functions of

posets, #meé) = 1. Let :1: E ka with [1| 2 m, where k S m S 12. Since the interval

[(1, x] in ka is isomorphic to the poset ka, we can apply Theorem 2.1.3 to Qm and

szk. Let 0 and 1 denote the minimal and the maximal element of Qm, respectively.

It follows that szk = (Qm \ Qn,;k)U{(1,1} and then by Theorem 2.1.3,

#(vak) = (‘1)m-1I‘(szk)-

Moreover, if y E Qm;k,y ¢ 1, then #0....kfy) : ,uQm(y) = (—1)'y'. It follows that

”(Q—mi) : —Z#ka(y)

y<i

11



k—l .

—Z [{UEQ—m:ki lyl:J}l (—1)J

j=0

“1 - m m — 1

= -— -1 J = —1 ’° .

23 lb) ( )(z._1)

The last equality follows from identity (1.5) in [22, pl]. Finally we have

#Qn:k($) : H(Qm:k)

m_1 . m—l

= (—1) (—1)*(k_,)

— 1
: _1 m—k+1 m

( ) (I: — 1

as desired. I

The third proof of theorem 2.1.1 uses Stanley’s results characterizing the Mobius

function of a rank—selected poset in terms of the number of permutations with given

descent set [42, Proposition 14.1]. A few preliminaries are required for this proof.

Let P be a finite graded poset with f) # 1 and n 2 p(1) where p is P’s rank

function. Let S Q {1, . . . , n — 1} and then the corresponding S-mnk-selected subposet

of P is

P5={$€P:p(ar)€S}U{f),1}

with the same partial order as P. Now define a(P, S) = 0(5) to be the number of

maximal 6 — i chains of P3. Then define 5(1), 5) = 5(5) by

5(5) = :(—1)'S"'T'0(T).

Tc_:S

If ,us denotes the Mobius function of the P5, by proposition 14.1 in [42], we have

A

6(5) = (—1)'5'“‘us(0, 1). (2.4)

Let C(P) be the set of all pairs (:13, y) of elements of P for which y covers .12. A function

A : C(P) -—) Z is called an R-labeling of P if, for every interval [3,3]] of P, there is a

12



unique saturated chain :c = :00 < a" < < :r; = y satisfying

A(.r0,;r1) S A(.r1,:r2) S S A(1r,_1,.r1). (2.5)

A poset P possessing an R—labeling /\ is call an R-poset and the chain a: : 51:0 <

111 < - -- < 3:; = y satisfying (2.5) is called the increasing chain from .1: to y.

R. P. Stanley has shown [35, Theorem 3.1] the following theorem and a proof can

be find in [40, Theorem 3.13.2].

Theorem 2.1.4 (Stanley) Suppose that P is an R-poset withf) # 1 and p(P) = 72.

Let A be an R-Iabeling of P, and let S g {1,2, . . . ,n — 1}. Then MP, S) equals the

number of maximal chains M : O 2 1'0 < .161 < < 3:" = l of P for which the

sequence /\(M) := ”($0,131), . . . , A(J:n_1,:rn) has descent set S; that is, for which

Des()\(.M)) :2 {i:/\(at,_1,:c,-)> /\(a.',,:r,+1)} = S.

Let P = 62,, the Boolean algebra of rank n and S Q {1,2, . . . ,n — 1}. If H < T,

then let A(H,T) be the unique element of T \ H. So for any interval [33,31] in Qn,

there is a unique increasing chain a: = x0 < 1:1 < < :61 = y defined by letting the

sole element :13,- — 3.3--1 consist of the least integer contained in y — ar,_1. Hence /\ is an

R—labeling of Qn and [3(Qn, S) is the number of maximal f) — 1 chains M in Qn such

that Des()\(M)) = S.

Let 8,, be the set of all permutations of {1,2, ..., n}. We define the descent set of

7r to be

Des(7r) = {i : 7r,- > 7r,“ and 1 S i S n —1 }.

Note that for each maximal 0 — 1 chain M : 1‘0 < .r1 < < a?" in Qn with

Des()\(M)) = S, the sequence MM) determines a permutation

71' = /\(.’I:1,:l?0)/\(.’L‘2, 3:1) - ~ ' Mat", a:,,_1)

13



with Des(7r) = S. Conversely, for each 7r 2 7r17r2. - -7r,1 E 5,, with Des(7r) : S, we see

that 7r determines a maximal 0 —- 1 chain

M®< {7T1} < {711,713} < < {W1,772,---7T,,}

with Des(/\(M)) = S. It is easy to check that it is a one to one and onto correspon—

dence between the set of all maximal 0 — 1 chains M in Q, with Des()\(M)) = S and

the set of all permutations 7T 6 8,, with Des(7r) = S. Hence /3(Q,,,S) = fln(S) is the

number of permutations of {1, ‘2, . . . ,n} with descent set S.

Now we are in the position to give another proof of Theorem 2.1.1 using the idea

of the R-labeling of a poset.

The third proof of theorem 2.1.1: Let P = (2,, and S = {A3,}: +1,...,n— 1}.

Then P5 = ka and

#(ankl = (—1)'S"1/3n(5)= (—1)"-k—lfin(5)

where 3,,(5) is the total number of the permutations of {1, ‘2, . . . ,n} with the descent

set S. So it is enough to show that

n — 1

n S = .i ( ) (, _ 1)

Let 71' = 7r17r2---7rn be a permutation of {l,2,...,n} with Des(7r) : S. Then 1r is

built up as follows:

7r1<7r2<-~<7rk_1<7rk>7rk+1>7rk+2>--->7rn.

Hence 7r,c = n. Since 7r, 7t 11 for all 1 S i S k — 1, there are ("-1) ways to choose
k—l

in < «2 < < 7rk_1. Having chosen 7n < m < < n-1, since there is only one

way to order the rest numbers, we have only one way to choose 7n, > in.“ > - - - > an.

It follows that 5,,(S) = ("‘1).
k—l

Let a: 6 ank with [ml 2 m. Since the interval [0, :13] in ka is isomorphic to QWk,

p(.7:) = #(Qm;k) = (—1)""“""1 (72:11) as desired. I
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2.2 Subspace Arrangements and the Intersection

Lattices

A central subspace arrmigement A 2 {K1, K2, . . . , Km} in the Euclidean space R"

is a finite collection of linear subspaces K, of R". Then A is a hyperplane arrangement

if codim K,- : 1 for all i.

The intersection lattice of a subspace arrangement, .C = C(A), is the poset of

nonempty intersections of these subspaces ordered by reverse inclusion; that is,

:1: S y if and only if y g 3:.

Thus in £, 0 corresponds to R" and 1 corresponds to (11".;A K. Given two arrange-

ments A and B, we say A is embedded in B if A Q 13(3). The characteristic

polynomial of L is

x(£. t) = Z M17) tdi'ml- (2-6)
IEE

Note that this charateristic polynomial differs from the one in definition (1.2) since

L may not be graded, and even if it is, then the dimension and corank of :1: may not

be the same. However, using the dimension often gives more interesting polynomials.

One of the most important combinatorial invariants of an arrangement is its char—

acteristic polynomial. Zaslavsky has related the characteristic polynomials of certain

arrangements to the chromatic polynomials of signed graphs [47, 48]. Blass and Sagan

[9] have generalized one of Zaslavskly’s results by showing that these two polynomials

both count a certain set of lattice points in Z", which provides us an efficient way to

compute characteristic polynomials (see Theorem 2.7).

let R" = {(;r1,;r2,---,.r,,)} be the Euclidean space of dimension n. For each

15



i,l S i S n, let H,- be the hyperplane CL‘,‘ = 0 and

Q11:{I113H2a”'aHn}°

This hyperplane arrangement is called the coordinate hyperplane arrangement and

the intersection lattice of 9.2,, is lattice isomorphic to the Boolean algebra Qn. For

this reason, we often write Qn in place of C(Qn) .

Forfixed k, 1 SkSn, let [={1Si1 <i2<~--<ikSn} and

Ix',=II,,flH,-,fl~-flHik-

Let ka be the set of all such I\'1’s so that ka is a subspace arrangement. It is

easy to check that £(ka) is a lattice and it is lattice isomorphic to the truncated

Boolean algebra ank. Also for this reason, we simply denote £(Qmic) by ank. Since

ka Q £(Qn), we see that it can be considered as a subspace arrangement embedded

in the coordinate hyperplane arrangement Qn.

2.3 The Characteristic Polynomial of the Trun-

cated Boolean Algebra

We now consider the characteristic polynomial of QM. In this section, we will

derive two forms of the characteristic polynomial of ka in various ways, which involve

the Blass-Sagan Theorem [9], hypergeometric series, generating functions, binomial

coefficient identities, induction, etc.

Theorem 2.3.1 The characteristic polynomial of ank has the following two forms:

k-l 77. .

(2)2(i)(t—1)”", (2.7)

2

k-l _ .. ‘

X(Qn:kat): (t_1)n—k+lz (n A+ z)tk_t—l' (28)

i=0

16



It is clear that x(Qn;1,t) = ,\'(Qn,t). Also observe that if n < k, then Qua. = 0 and

X(Qn:k,t) = #(Ofln’o = t". Moreover, if n < k, then

k-l Tl ‘ n Tl .

Z(,)(._1)n-I=;(.)(.-.)n-.an,
i=0 i=0 2

also

I

(t -— 1)"""‘rl E (n — k + zi)t’°"‘"1

i=0

“-1 k—n—l —1‘___ t __ 1 n—k+ltk-—l (__)
< > >_: , t

. . 1 k—n—l

: (t—1)n~k+ltkfll (1_ '2') : tn.

Much work has been devoted to finding conditions under which the characteristic

polynomial of a lattice has only integral roots. This is true for (2,, but not in general

for ka, k 2 2. However, Theorem 2.3.1 shows that x(Qn,k, t) at least factors partially

over Z, in particular that it is divisible by (t — 1)""‘+1 = x(Qn_k+1,t).

Furthermore, Equation (2.7) shows that one gets a nicer form for the coefficients

of x(Qn,k, if) when it is expanded using the basis 1, t — 1, (t — 1)2, - - - for the polynomial

ring, rather than using the usual basis 1, t, t2, . - -.

Since the truncated Boolean algebra can be considered as a subspace arrangement

embedded in the coordinate hyperplane arrangement, we first give a combinatorial

proof of Equation (2.7) using the Blass—Sagan interpretation of certain characteristic

polynomials as counting a set of lattice points in Z" [9].

Theorem 2.3.2 (Blass-Sagan) Let

8n = {(172': i171), (33k = 0)}lSiSanJSkSn

17



and let A be a subspace arrangement such that A c_: £(Bn), Fort = 23 + 1, define

has] = {-3,-(9 -1),---,-1,0,1,-.-,s} and c. = {—s.sr. The-n mam) =

ICt \ Al.

The significance of Theorem 2.3.2 is that it provides us an efficient way to de-

termine certain characteristic polynomials without even computing any Mobius func-

tions. Before proving this theorem, we would like to give the readers an example to

show intuitively what is going on. Consider 82 in R2 and C5 in Z2. It is well-known

[28] that

x(£(l3n),t) = (t — 1)(t — 3) - - - (t — 2n +1).

So x(£(82),5) = (5 —1)(5 — 3) =

On the other hand, let A = 32 = {(x1 = is»), (2:1 2 0), (r2 = 0)}.

 

We see that |C75 \ 82] = 8 and then |C5 \ 82' = X(£(Bz),5).

The following proof is due to Blass and Sagan [9). I am including their proof here

for completeness.

Proof ( of Theorem 2.3.2 ): For X E £(A), let

f(X):       and 9(X) = llX 0 Ct) \ (UY>XY fl Ctll-

Given X E £(A) Q C(Bn), there is a one to one correspondence between X 0 C, and -

the cube of side t in Zdile) centered at 0. It follows that f(X) = X 0 Ct| = tdimlx).
 

Clearly f(X) = 2:sz g(Y). So by Mobius Inversion Theorem 1.0.1

lCt \ Al— 9((11") =Z:/t(Y =ZH(YUtd'm‘Y =X(£(A),t)



and this ends the proof. I

A combinatorial proof of Equation (2.7): Since QM. g £(Bn), by the Blass-

Sagan Theorem, it is enough to show that

k—l

IC. \ em = Z (:f)(t—-1r-‘. (2.9)
i=0

Note that C; \ ka consists of all 1' = (3:1,:r2,...,:1:,,) E Z” where —s S 3:; S s for

all i and the number of zeros in (.r1,:1t2, . . .,:1:,,) is at most I: — 1. This observation

enables us to partition Ct \ QM. into 1: parts. For fixed i, 0 S i S k - 1, let

S.- = {3: = (31,12, . . . ,17,,) E C, \ QM. : the number of zeros in (.r1,.r2, . . . ,rn) is i }.

Then

IS,| = (the number of ways to choose i elements

from {171,172, . . .,.1:,,} as zero coordinates of 1:)

-(the number of ways to choose the remaining n — i

non-zero coordinates of :L‘ from [—s, s] \ {0})

= (?)(t — 1)"“.

It is clear that {Sg}osisk_1 are mutually disjoint and

k-l

Cl \ ank = U 5,.

i=0

Hence

k—l A31 n .

lCt \ ankl : Z lSII : Z
(z)(t _

1)n-1

i=0
{:0

as desired.

I

Next, we will give an algebraic proof of Equation (2.7) which only involves the use

of binomial identities and the definition of the characteristic polynomial of a poset.
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An algebraic proof of Equation (2.7) : We start from the right hand side of

Equation (2.7):

 

n—k+l k—l n! . , ti

= Z {Z '1 )!(_1)n_z—J}'-_
i=0 z.(n — i —j j!

 

Tl 11-j 71! . . tj

+ z {2. . ._j),(—1>n-J-*)f

 

j:n—k+2 i=0 1- (”- ‘1 Jl

n—k k_1 -
.

n-' i ("—Jll . t3

= Z (—1) J { (’1) -, . .' n(n — 1)...(n —] +1) 7

i=0 i=0 z.(n—z—J).
].

 

( thej = n -— l: + 1 term in the first sum is the expansion of

(1 — 1)""1 = 0 and thej = n term in the second sum is t")

"‘k n— '— j= tn+ Z (_1)n—j {(_1)k-l( 133-11)} n(n— 1)...(n—j+1)%

, = 0

(applying identity (1.5) in 22, p.1] to each term in the first sum

and the expansion of (l — 1)"‘j = 0 to each term in the second one)

n-j-k+1 n(n —1)...(n -j+1)(n ——j — 1)! fl

(k-UHn—j—M! j!

 

n—k

= t"+ 2H)

j = O
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 _ "+20-1)(p+1" )-1---(k+p+1)(k+p—1)
! tn-k-p

((9—1)! P! (n—k—p)!

(letn—j—kzp)

11—h , ... ,. A
: t"+:(—l)p+l( n )(k+p—1)...(k+1)k tn’k—p

k+p p!

k+p— __
: tn+ l)p-+-l(1>tnkp.

§(k+Pl(-) p

On the other hand, the left hand side of Equation (2.7) is

X(Qn:ka t)

Z #(xfldimtr)

1.6ka

11—1: '. . . _, _1 _

t” + Z (J)(—1>':‘“(" 1. i, )t’

( using Theorem 2.1.1 and |{:1: E ka : dim(:1:) = j}| = (3‘) )

, k+p— 1 __
tn 1)P+l nkp

+Z(k+r)(1( P it

(letn—j—ltzp).

Hence we have shown algebraically that Equation (2 7) holds.

As for the proofs of Equation (2.8), we first give it a combinatorial proof using

the Blass-Sagan Theorem; that is, count the number of elements in C, \ Q,

21H

m), as we



did in the combinatorial proof of Equation (2.7) except that in this case we partition

C; \ ka in a different way.

A combinatorial proof of Equation (2.8) : For non-negative integers t and s

witht=2s+1,welet E=[—.,s] and D: E\{0}. ItIS clearthat |E|= 2s+1 =t

and [DI = 2s = t — 1. Also we let A X B denote the product of two sets A and B

and A“ denote the product of 772 copies A’s where m is a non-negative integer.

By Theorem 2.3.2, it is enough to show that

—k

|<7:\.C%mkl== (t-1)"kid 2:3;(:1 +iz)tki 1 (2 10)
i

First we give a outline of this proof. To prove equation (2.10), we construct

a partition {.40, A1,... Ak_1} of C; \ ank such that each A.- is a disjoint union

of ("H’) sets, say A“, Ai,2,...,Ai'(n—f+i) with |A,-,j| = tk""1(t — 1)""‘+l, where

0 S i S k — 1 and 1 S j g (“is“). In this way, we have

k-l k—l ("_k+)

C"! \ ank z: 6 Ai .: w w ’43.in (211)

i=0 1:0 j=l

where L+J denotes the disjoint union of sets. Then

k—l k—l (ii—7+.)

lCt \ ank1 = Z lAil = Z: Z lAiJI

i=0 i=0 j=l

k-l (him)

_k ~....'_
1)" +ltk l 1

i=0 j=l

: _1)n—k+lZ(n —f‘+z)tk—i-l.

1

Now we start a detailed proof of equation (2.10) by constructing {.4,,j}l<j<(n—g+.)

for each i. Keep in mind that C" \ QM. consists of all .1: = (.r1,.r«2, . . . ,;r,,), such that

{$1,172,” .,:1:n} g [—s,s] and the number of zeros in ($1, 1'2, . . . ,.r,,) is at most I: — 1.

22



For fixed i, O S i S k — 1, take products of n — k copies of 0’5 and i copies {0}’s

in all possible ways. Since the number of all such products is the number of ways

of placing i O—component’s in the n — k + i possible positions, we get a collection of

(n-k-H

3

) sets, say {Bi’j}l<J-<(n—k+a). Note that all the Bid- are mutually disjoint subsets

in Rn‘k“ and

le‘l: an'k||{0}| =(t—1)""k

which is independent ofi and j. Moreover, if :1? = (121,1?2, . ..,.rn_k+,~) 6 Bid, then

{$1,332, . . . ,:r,,_k+,~} _C_ [—-s,s] and the number of zeros in ($1,:r2, . . .,4l’n—1.-+.‘) is i.

Now for fixed i and j, 0 S i S k— 1 and 1 Sj S ("7?“), let Am- 2 Ek";l X D x

BM. It is clear that

lAiJlZlEk—i-lllDllBiJl=lk7i—1(t—1)”‘k+l

which is independent of j. Since all Bid-’5 are mutually disjoint subsets of Rn‘k“,

we see that all AiJ’S are also mutually disjoint subsets of R". Moreover, if :1: :—

($1,:r2,...,:rn) 6 A”, then {r1,:r2,...,:r,,} g [—s,s] and the number of zeros in

($1,x2,...,:rn) is at most (k—i— 1) +i = k— 1. Hence .41.,ng Ct\Qn;k.

Now we define

(n—k+t)

Ar: E‘J Ai,j forallOSsz—l

1:1

and then

("-5“) . .
— k — k . . .

|A,-| = X 1A,): (’1 , +z)|.4,,1| = ('l . +2)t“"1(t—1)”"‘+1. (2.12)
2 Z

i=1

We claim that {Ajay-9-1 are mutually disjoint. To prove this claim, we proceed by

contradiction. Suppose not and let a: E A,- 0 Ah for some 0 S i < h S k — 1. Then

a: 6 Aid- 0 A“ for some 1 Sj S (”7?“) and 1 S l S ("7:”). It follows that

(i) the number of zeros in ($k_,',. . .,:1:,,) is i since .16 E 24,-, and arr.-. # 0;

23



(ii) the number of zeros in (171.41“, . . .,:1:n) is h since :1: 6 Ah.

But the fact |{.rk_h+1,;rk_h+2, . . . ,13k_,~-1}| = h — (i + 1) implies, by (ii), that the

number of zeros in (17.-., . . . , .rn) is at least i+ 1 which contradicts (i). Hence all .435

are mutually disjoint.

Finally, we claim that C: \ sz; = Ufz—Ol A,. Since Am Q C, \ ank, it follows that

(ii—f“) k—1

A, = U Aid- Q Ct \ ka and then U A, (_I Ct \ ank.

i=1 '=0

On the other hand, let 1' = (.1'1,:1:2,...,1?n) E C \ ka. Since the number of zeros in

($1,332, . . . x") is at most k —- 1, the number of non—zeros in ($1,122, . . . ,;rn) is at least

n—k+1. Let :1)", be the (n—k+1)-st non—zero coordinate in {$1, 1'2, . . . , In} counting

from the right. Moreover, m is at most k since |{.rm+1,.rm+2, . . .,.rn}| = n — m is

at least n — k by the definition of :rm. If k — m = i, then we claim that :1: E 14,-.

By the definition of 23",, the number of zeros in (:rm+1,...,:rn) is k — m = i. It

follows that (:1:m+1,.rm+2,...,:cn) 6 Bid- for some 1 S j S ("7?“). Since :rm 76 0

and k - m = i, we have (:r1,a'2,...,:rm-1,arm) E Em”l x D : Elk—i-1 x D. So

a: = (31,332,”.,1rm,;rm+1,...,.rn) E 13"".—1 X D x Bid- 2 Aida This proves that

C. Q U12} A.

Hence Ct \ ka = 6:01 A,- and IC, \ kal 2 21:11 |A,-|. Now the result follows

from equation (2.12). I

Next, we set up some definitions for the algebraic proofs of Equation (2.8).

The two most common types of generating functions are ordinary generating func—

tions and exponential generating functions. The ordinary generating function of a

sequence {anhzo is the formal power series

Elan-”v",
n20
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while the exponential generating function of {an}n>0 is the formal power series

2 anxn/nl.

7120

For information about generating functions, see Stanley’s book [40]

1f a1, a2, . . . , ap and (21,132, . . . , bq are constants, then we can form the hypergeomet-

ric series

al, ([2, ..., a

1),, ..., b

1)

PFC}

 

 

._ (01)k((12)k
-~(ap)k :

at] .—kZZ% (b1)k"'(bq)k 1;! (2.13)

q

where (a);; = a(a + l)(a + 2) - - - (a + k — 1) is a rising factorial with respect to k. For

information about such functions, see the books of Bailey [3] or Slater [34]. We also

need the following result known as the Chu—Vandermonde Theorem [34, p.28].

Theorem 2.3.3 (Chu-Vandermonde ) If n is a positive integer. then

—n, a (1 —b+a)n
P ' : 9

211 [ —n + b[ I] (1 — 1))” (“'14)

 

Proof. See [34, p.28]. I

Now we are ready to give algebraic proofs of Equation (2.8) by hypergeometric

series and generating functions, respectively. We assume that Equation (2.7) is given.

First factor out (t — 1)"""+1 from 2:01 (2‘)“ — l)"“, and then expand (t — 1)k""1.'

We find

The coefficient of ii is



Let k —j — 1 = h 2 0. We see that the coefficient of ti = tk’h‘l is

h -n k—i—

(—1)";(—1)'(i)( h—i 1)‘

h n '—-i— 00 .n “—i—

9(h) =;(—1li(i) (k h—i 1) =;(_1)i(i)(k h ”1).

It remains to show that

Now we let

' —k I

g(/2) : (—1) (n I + l) for all h 2 0. (2.15)

z

1. We first prove (2.15) by using hypergeometric series. To do this, we need first

to express the binomial coefficients in terms of rising factorials:

n _ ,(—n), k—i—l _(—1)"(—k+1),,(—h),-

('>’(_1) and ( h—i )‘ h!(—k+1),- °

go.) = 341(3) (k 1; 1)

_ (—1)h(—k + 1)}, 00 (—72),‘(—h),‘1

_ {2:7, (4H1), 2i}

_ (—1)h(—k+1)h —n, —h

_ h! {2Fl[ —k+1[1[}

( by the definition of hypergeometric series)

  

 

(—1)"(—k +1),,(—n + k — h),

h! (—n+k)n

 

( using equation (2.14) with a = —h and b = n — k + 1 )

 

(—nnn_t+nh_ n—k+h

h! —(-—1)( h )
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2. Next we prove (2.15) using generating functions. Consider the generating func—

tion 0(1) of {g(/z)}hzu,

C(I) = Z {/(llll'h

 

 

 

[:0
i

= (1 +1‘)k_l:(—1)i(7:) (1:1)!

= (1+IV—l (1_ 1:17)”

: (1 +1.1)n_k+1 = 2(12 -:+ h)(_1)hJ-h.

It follows that g(h) = (—1)"("_:+h) for all h 2 0. Then the coefficient of t"”"1 is

(—1)hg(h) = ("7:”) as desired. I

We conclude this section by giving the exponential generating function of the

characteristic polynomial of (2“,.

Theorem 2.3.4 The exponential generating function of {X'(Qn;k,t)}n20 is

k—l xi

Gt(;r, t) : {Z 7} 6111-1) (2.16)

i=0 2.

where k is a fired non-negative integer.

Proof. By the definition, we have

00 k—l ,n

Gk(:r,t) : Z{ (7?>[t_1)n-g}l



...,.
_
m

(t __ 1)Tl—1

n

.
2

{
I
|
\

2
2
m

H
2
4
.
“

 

as desired.
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Chapter 3

The k-divisible Boolean Algebra

Let n and k be positive integers with 1 S k S n. Define ink be the set of all subsets

a: Q {l,2,...,n} such that l: divides |.r| or [1| 2 n. Ordering ink by inclusion, we

see that ink is a subposet obtained from (2,, by eliminating all elements that have

ranks not divisible by k, except {1, 2,. . . ,n} if k ,[ n. So ink is called the k-divisible

Boolean algebra. It is clear that inl = Q".

3.1 The Mobius Function of the k-divisible Boolean

Algebra

The main theorem in this section concerns the Mobius function of ink. To state

this theorem, we let H and [[ denote the ceiling and floor functions (round up and

round down), respectively. Clearly, ifa' E ink, then either [II 2 ml; for 0 S m S [f[,

or [:1:| = n.



Theorem 3.1.1 The Allobi'us function of ink is

' m ml;

2 —l r E , , , , i .r = mk ;

( ) (J1k,]2k,ooo,]rk) fl I

j1+j2+...+jr:m

1.21

lSiSr

f
—
-

I!

k l
.
—

_ 7
1
-
1
3

J

—1’+1 2: n ,7 = dlc .
( l ,. (we—Me,j1k,j21e....j.xel’ 'f '1' ""1"

jl+j2+"+.lr=h

1.21

lSiSr

r=0 :
-

ll

 

We will give both algebraic and combinatorial proofs for Theorem 3.1.1. Our

algebraic proof of this theorem simply uses the definition of the Mobius function,

induction, binomial identities, etc.

An algebraic proof of Theorem 3.1.1: For any x 6 ink, we see that either

[:13] = ml: for some non-negative m, or [r[ = n with k I n. We will consider these two

cases separately.

Case 1: Suppose that [ml 2 ml: and induct on m. If m = 0, then .r = 0 and 11(0) 2 l

by the definition. Also (—1)0(0!/p) = 1 where p is an empty product. So the result

holds when m = 0. Next, by the definition,

y<r

yEQnIk

m-l

= — Z Hye on: |y|=hkan1y < e~}I My)
h=0
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(3’1[t..

(31“["'

(3114-1!1.31.1.[1.

3’at

(ciJl‘L..

(31.1['....c313!1311-6)

31"!

..(312;!£311!)

18

JSFSI

12'!

lu:-‘[+...+Ci[+l.('

-r1r0=-‘ ‘13."1)KAI-XK

31111

(1.(q.1xaprusq:Btnmqs)

JStSI

12'!

uL:J[+...+C[+I[

waran“1=~‘ “1.“1.)3A143

312.11

(q——111=1+4!Burmnd)

I+JSFSI

12'?

111:I+J[+J[+...+C(+I[

3

02.1

{+.1(I—):K

{—211

4I V
I

.'

12'!

V:J[+...+z[+1[

meta;‘311-[131(Zl_w)
-l=1{0:4

311a)Z[3111I+J(I_)I-Zw

(sisauiiod.\"lluorpnpnr91.13Buisn)

4#31

2':

q:J[+...+Z[+l[

v
-
I
t
V
'



Note that we get the last equality by adding the r = 0 term into the sum. We can

do so since if r _—_ 0 and m > 0, then

2 (
jlk, jgk, .. ., j...)

.ll+.l2+"'+.lr=m

1.21

lSiSr

is an empty sum and hence is 0.

Case 2: Suppose that [ml 2 n with k I n. By the definition,

#(i)=- E: #(y)

y<i

yEink

[fl

= '— 2 If?! E inki

h=O

lyl = lllell My)

: _ltl (1:11,) ’2 (_1), Z ( hk

jlk, jgk, ..
h:0 7‘20 . . .

Ji+Jg+~e+Jrzh

j. 2 1

1 Si 1‘

( applying case 1 to each y )

,
—

a
-
l
:

{
—

,
—

a
-
l
:

l
—

= my“ 2
0 r . . .

JI+J2+"'+Jr=l1

1.21

lSiSr

:
-

ll‘1 H

as desired. This ends our algebraic proof.

Tl

72 — hk,j1k, jzk, . . .

., j...)-

. jrk)

Our combinatorial proof of Theorem 3.1.1 employs an important way of computing

the Mobius function due to Phillip Hall [27].
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Theorem 3.1.2 (Phillip Hall) Let P be a finite poset with f) and 1. Let :L' E P

and c, be the number of chains 0 = 10 < 3:1 < < xr = :r of length r between f) and

:1:. Thus c0 = 0 and c1 =1. Then

”(1') =C0_C1+C2—C:3+"'

A proof of this theorem can be found in [40, p.119].

The significance of Theorem 3.1.2 is that it shows that n(P) can be interpreted

as an Euler characteristic and thus links Mobius inversion with algebraic topology.

First combinatorial proof of Theorem 3.1.1: First consider the |:L| = mk case.

Since a maximal f) — :1: chain in ink has length m, it follows from Theorem 3.1.2 that

MI) = Zeno. (3.2)
r=0

where c, is the number of chains 0 : :rO < r1 < < :L‘r = :1: of length r in ink. So

it is enough to show that

c - Z ( ml: ) for all 0 < r < m (3 3)

” . _ . jlk,j2k,...,j,.k - - ' '

Jl +J2+"'+Jr :m

j. Z 1

If i S r

First assume that r = 0. In this case, if m. = 0, then c0 = 1 and the sum is

Ol/p = 1, where p is an empty product. If m > 0, then c0 = 0 and the sum is 0 since

it is an empty sum. So the result holds when r = 0.

Next assume that r > 0. Let C :0 = 170 < 131 < < $r_1<.rr = :L‘ beaO—a:

chain with fixed |:z:,~| : hik for all 2'. Clearly, 0 = ho < 17.1 < < lz,,._1 < [2,. = m and

the number of such chains C with fixed hi’s is

[[(the number of ways to Choose sci)

i=1
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elements from a (772k — 11,-- 1k)-element set

_ H mic—h“ 1k mic
_ 3:1 hzk—hi— 1k jlk, jgk, "'$jr—1k,j,

.k
s

where we assume thattj =h,- — h,“ > 0 for all i. Then Equation (3.3) follows by

I!

”
:
1
"
:

irl( the number of ways to choose hk — hi- I]: )

taking sum over all possible 0 = jg < jl < --- < j, S m such that j1+j2+- - ~+j,. = m

and all j.- > 0.

Now suppose |:I:| : n with k A n. Then c0 = 0 and a n'iaximal 0 — 1 chain has

length if]. By Theorem 3.1.2 ,

l l l

“(1): (_llrcr : (—1l’i+lcr+lv

0

a
—
l
:

a
-
l
:

L
—

r l r

where c,“ is the number of 0 -— 1 chains of length r + 1. It is enough to show that

r
—

x
-
I
:

L
—

n

Cr+l = Z < . . . > for all r .

h=r _ 4 g n — his, jlk, 1219,. . ..jrk

JI+J2+‘ - 4% = h

J} 2 1

[S i S 7‘

Following the same lines as in the Ir] 2 ml; case, we let C : 0 : .er < 171 < <

:cr_1 < £13,» < L“ = 1 be a f) — 1 chain in ink with fixed |.r,~| = Ink for all t. Then

the number of such chains C is

r

n

H(the number of ways to choose 1*.) = ( . . . . )

i=1
Jlk J2k$ "ajr-lka Jrka n _hrk

where each ji = h,- — 11,--1 > 0, r g hr 3 H and jl + j2 + + jr = hr. Now the

result follows by substituting /2,. by h and taking sum over all possible such j1,- - - ,j,

and h. I

The second combinatorial proof of Theorem 3.1.1 uses one of Stanley’s results

which characterizes the Mobius function of a rank—selected poset in terms of the

number of permutations with a certain descent set [42, Proposition 14.1].
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The Second Combinatorial Proof of Theorem 3.1.1: Let

S: {k,2k,..., [712.] k} <_: {1,2,...,n — 1}.

Then ink is an S—rank-selected subposet of Qn. By Theorem 2.1.4, we see that

MQnik) = (-1)'S'_lfin(5l-

where ,Bn(S) is the total number of the permutations of {1, 2, . . . , n} with the descent

set 5. So it remains to find [3,,(5).

Let 0,,(5) be the number of permutations 7r 6 5,, with Des(7r) Q S. Then

ante) = 2 MT). (3.4)
Tgs

By the Principle of Inclusion-Exclusion [32], we have

ants) = Z(—1)'5‘Tlan(T).

Tgs

If [T] = 0, then 01,,(T) = 1. If |T| = r 2 1, then let

T:{1Sltlk<hgk<m<llrksn—1}§S.

To obtain a permutation 7r 2 7T17T2"°7Tn 6 Sn satisfying Des(7r) Q 5, first choose

7n < 7T2 < < whlk in (hik) ways. Then choose 7mm,“ < 7rh1k+2 < < 717,21, in

"-h‘k ways and so on From this we obtain
hzk-hlk ' L ' l

(T) n n—lzlk n—hr-1k n—hrk

an 2

hlk ligk — [11}: hr]: — hr_1k n — hrk

_ n

— hlk, (112—111)/c,~-,(h,.-hr_1)k, n—hJc '

There are two different cases here. So we will consider them sparetely.

Case 1: If kln, then let n = mic. Since the m = 0 case is trivial, we may assume

that m is a positive integer. Then S = {k, 212,. . ., (m —1)k} and IS] = m — 1. So we
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'(0<1“J!OS!39113“”910=J9111Snippe)

43331

12‘?

w:-‘[+...+C[+T[

31.1I‘...£:YZ.[L31[.[0:4

(W)3.(1—)Z=

(uuaq1=.t91Hs13[-Bumnduaqipure1.{q.1xapui9111Summs)

I+JS§SI

12‘!

w:I+J[+...+C[+I(

31.4;4..“quL3,]!1:4

(911“>Z4(I—)Z:

1 V
I

.1S

'[ A
l

-...

I

w:J[+...+Z[+l[

311+st31.1.[£...$313,.[5311?I=J—

(91m3I+J(I_)I:_Kw+1_—

(Sfififl_n_wfiI-l=(”tht

1qusaxono]1iuaql

I+JSFSI

12’?

w:I+J[+...+z[+1[

..I+-l[£3,4[c...c‘Ifi.If
I=J

.(T..7.T.)Z4—1-1L1(I_)3+[—1u(I—)=(S)ugl

31m[_w

312m90sa.“flag)uouunbgKg'ul.:I+-‘[+...+lt+Ifpue0<{I

ll?menu“"1/—zu=l+-‘[pue‘1—m.S.tg.1Sa9.1911.“1‘le—*2]2(PM;=if19']

3/(“1/-w)”10‘”!-"11)‘-~‘:‘1(“I/-32I)‘91”!..

<,=(.L)0
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So the result holds in case 1.

Case 2: Suppose I: ,] 71. If 0 < n < k, then 11(ink) = 1. Also, the sum has only

1' = 0 term which equals to 1. So we are done. Now suppose n > k. Let m = [fl

and then S = {k,2k,...,m} Q {1,2,...,n —1}.lfT Q S, then

TI.

where jl + jg + - -- +j,. = hr and r g [1, S m. It follows that

m

_ m _ m—l—r

n5,,(5) _g 1) Z Z (M, j,k,...,j,.k, n—h.k)'hr: _ . .
r J: +J2+"'+Jr = h.

ji 2 1

l S i S 7'

Changing the notation h, to h, we have

7".

— m _ r“
n

#(ink) _ Z( 1) Z Z (jlkv ijv'HajI‘k’ 71— bk)r=0 h=r

.ji+12+---+jr=h

1.21

13137‘

We add the r = 0 term into the sum to include the m = 0 case.

Let :1: E ink with [.1] = 1111:. Since the interval [0,1] in ink is isomorphic Q(mk)|k,

11(1) 2 ”(Q(mk)|k) and then the result follows from case 1. I

3.2 Old Numbers and New Numbers

Let n(r) be the Mobius function of ink. We define

l/—‘( i )l = Enlk

where I - I denotes the absolute value of a real number.
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By Theorem 2.1.4, we see that En“, is the number of all permutations of {1, 2, - - - ,n}

with the descent set {15,213, . . ., [fi] k}. In particular, if k : 2, then En]; is the num-

ber of alternating permutations in S”. The number Enp is well known as an Euler

number. So we call Enlk a genera/ism! Euler number for k > 2. Define

VI

ifilk : (_1)LIJ Enlk”

Ifk > 2, then E' , is called a (eneralixd sir ned Euler number and E’ . = —1 ["21] E, 2
71]!» J J nlz I

is a signed Euler number.

The Euler numbers are classical numbers and have been thoroughly studied in the

past century. So we consider them as old numbers. By comparison, the generalized

Euler numbers will be our new numbers.

The following results are \er1—known [12, p.48 ] for the old Euler numbers .

(1). The exponential generating functions of the En]? are

1,211

2131271112 T =sec.1‘,

11>0 271.!)

2: E I 91.2”“ —tan:r
(271+1)2(—— _ ’ 9

11>0 71+ 1)!

Z 1.2n

E; — = sech(.r).

”20 "(271)!

For this reason, E(2n)|2 and Ennflm are sometimes called a secant number and a

tangent number, respectively. Naturally, Ef2n)l'2 and Ei2n+1)|2 will be called a signed

secant number and a signed tangent number, respectively.

(2). The number Enlg satisfies the following recursion: for n 2 1,

2n — 1

E(2n)]2 : 2 (9m _ 1) E(‘2m—l)l2E(‘2n—2m)|2 + E(2n—l)|2i

m=l "‘ ' '
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" 2n

E(2n+l)|2 = Z ( )E(2m—l)|2E(2n—2m+l)|2
i) _

"1:1 .771 1

with the boundary conditions E,” = 1 for all 0 g i S 2.

(3). The number E(2n)[2 satisfies the following formula [10]:

(E+1)m+(E—1)m=0

where Em = Em, such that E0 = 1 and

Em = Eme?’ if m is even;

Em : 0, if m is odd .

(4). (n + 1)E(2n+1)|2 = 22"]6’2n+2|, where G2,,” is called a Genocchi number, which

is an odd integer. Thus it is clear that the tangent number E(2,,+1)|2 is divisible by

2".

It is worthwhile to mention that

Lemma 3.2.1 (3) is equivalent to the following condition:

(3’). The number Elzn)l2 satisfies the following recursion:

" 2n , ,

.120 "

Proof. By the binomial formula, we see that

(E+1)m + (E — 1)m

z V: (7;1)E”“j[1+(—1)j]

320

m ['32] m

m 2 [—-J

= 2 m— — 2 171

Z (j)E J j>02( 2j )E2il2l-J)

120 —

jeven
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: 271:29(:;)E(’2n—21H? (putting n = [%J )

.02 2]

:2:(1;)
It follows that (3) and (3’) are equivalent. I

(
\
3

[
V

Our goal here is to extend these well known results for Enlg to En“, for k > 2. We

first consider the exponential generating functions in (1). Stanley [36] has shown the

following result.

Theorem 3.2.2 Let n and It be positive integers with h S n. Then the exponential

- r. 4” I'd.

generating function of Lnlknis.

 

E El __1 + 2:57;: 271:0 $nk+i/(nk + Z)! (3 6)

”>0 "|k_:11: ano (link/(17k)! . '

Alternatively,, for 1 S i S k — 1,

2E rnk“ __ano :r"k+f/('Iik+i)l .

(nk+i)]l\‘ (llk‘i't')! znzolJcn/(kn)! 9

 

 

11>0

2 E, .rkn — 1

n20 ("HIV—171). 2,20 amk/(nkfi'

Proof. See [40, Proposition 3.16.4]. I

By substituting :15" by -.rk in the exponential generating function for EL“: in

Theorem 3.2.2, one can easily see that

Theorem 3.2.3 For each fixed k 2 2, the exponential generating function of En“,

 

 

is

2 E Mn 1+ 1:: zso<—1>"x"k+‘/(nk+ 1)! (3 ,)

n>0 n Engo(—1l"$""/(nl~‘)l

Also,for1SiSlc—1,

2 E ink-H Zzn>0(_1)nl.nk+i/(nk +1)!

""‘+""_We +1) zsu—l)"*n/(Im)!
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xk" 1
 

E nk k— = 7 ‘ ,

:22?) ( ll (hill)! Zn20(_l)n$nh/(n
k)!

Remark: If —- 2, we get the same exponential geneiating function of En]; and

EL” in (1):

__:....<—1>"r2"+1/<2n+1)!_ 3mm
  

 

 

Z E(2n+1)|2(7—.T 2 . ' _ : tan(1“.),

n>0 71+ 1) Zn>o(—1)"1"/(2nl- (705(1')

(1:2" 1 1

E n — : z z .. Q ,

g (2 H2(2n)l ano(—1)":r2"/(2n)l cos(at) sec(z)

X: E $271 1 1 Cl ( )

= = — : se 1 :r .

n20 (hm—(2n)!2,120.172’1/(271)! ch(.r)

Next we give our first recursion for Enlk, which generalizes the recursion for Enlg

in (2).

Theorem 3.2.4 The number En“. satis ies the recursion

Ln/kJ n

E(n+1)lk = 2 (km _ 1) E(km—l)|kE(n—km+l)|k + b(h ll, nlEnlk- (3.8)

where b() is the boolean function defined by

1 if the condition c is true,

l)(c) = (3.9)

0 if the condition c is not true.

The boundary conditions are Eng. 2 1 for all 0 S n S 13.

Remark: If k = 2, we have the same recursions for Enlk in (2).

As for the proof of this theorem, we leave it to the next section, since Theorem 3.2.4

is just a simple corollary of Theorem 3.3.2.

Our second recursion for ELI): generalizes the recursion for ELI.2 in (3) or in (3’).

41



Theorem 3.2.5 Suppose that n 2 l and 1 S i S l: — 1. Then the number En|k

satisfies the following recursion:

” . nlc

(1) 21—1)] (kj) E(kj)|k = 0;

)E(kj)|k + (-1)n+1E(kn+-i)|k = 0

with the boundary conditions Eilk = l for all 0 S i S ls — 1.

By the definition, uc 866. that. suppose n > 1 and l S i S k —1. 7/7677. En lk satisfies

the following recursion:

nk

(1') :(kj)E(kj)lk: 0
220

" kn +i
. I I I

(3) Z ( kj )E(kj)|k = Eat-Mink

1:0

with the boundary conditions Elf“: = 1 for all 0 S i S k — 1.

Remark: If k = ‘2, we have the same recursion for EL” in (3’) and (3).

We will give Theorem 3.2.5 an algebraic proof as well as a combinatorial proof.

Our algebraic proof uses exponential generating functions.

An Algebraic Proof of Theorem 3.2.5 To prove (I), it is equivalent to Show

that

n 1 kn

E(kn)lk- l"+1 2(1)J(kj)E(k-j)lk (3-10)
j>0

We have

"1V:72)E( wk"

7; [(4))Jz>(:)() (Jll (hilly

 

 

_ n_J (kn)! ‘ fun-J) lgkj

_ — Z {ZN—l) [Mn - JillUCJ)! EMMA. (kn)! }+1
n21 jZO

4‘2



 

Z Z < 1 J‘————""“”"" E —'—: - —1 n- . —1 k' L- . +1

1‘20 n-jZO [k(n —])l! (m (15])!

—1

1:“ at“

= - Ek'k—. -1 Ek'k—. +1

E E 1.1g 2 E xii-j

= —1 + k k—— +1 = ‘ k' k—. .
j>0 (1H (kj)! jZO (1H (kj)!

Equating the coefficients of—-T:),, the result follows.

To prove (2), it is equivalent to show that

n " kn + z .

E(kn+i)|k = (—1) :(—1) ( k )EWHA for all z.

j:0 J

By Theorem 3.2.3, we have

Tnk+i

137M7i k—71:20 ( +ll (”k-ft)!

= Z(—l)"fifi— 2E k ”kn/(kw

"20 (nl; + i)! "20 (n )l . .

 

_ n - kn +i JJMH

= —1 n —1 J E .- . _—

nZO ij

Ink+a

(—Ai+ ),, the result follows.
I

Equating the coefficients of—

We now give a combinatorial proof of Theorem 3.2.5. To do this, we need some

preliminary materials related to signed sets and the involutions of such sets.

A signed set S is a set with a function e : 5' —> {+1. —1}. An involution f on S

is a function f : S —) S such that

f2 = id, where id is the identity map of S .

A functionf on a signed set S is sign-reversing if

sign {f(a)} : —sign {f(a)} for all a E S
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A point a E S is called a fixed point of f if f(a) = a. The set of all fixed points of f

in S is denoted by F]; that is,

F] = {a E S : f(a) : a}.

Then the following theorem will play a crucial role in our proof [40, 2.6].

Theorem 3.2.6 Let S be a signed set with a sign function e. Iff is a sign-reversing

involution on S with the fired point set F]. Then

X: 6(a) = Z 6(a) = lFfl- (3.11)

065 06F,

A combinatorial Proof of Theorem 3.2.5 : First, we construct a. signed set S

as follows: we let 7r0 represent the O permutation for convenience of notation.

5(0) = {”0},

5(72 +1)

{7r 2 7T17T2"'7Tkn+,‘ 651.“,- : Des(7r) = {k,‘2k,---,kn}}, i # O;

(0. i: 0.

Let 1 S j S n and O S i S k —1 . For fix i and j, let J be any kj-subset

of {1,2, - - - ,kn + i} and 5(J) be the set of all permutations of J with descent set

{k,2k,-- - ,(j — 1)k}. Then let

5(j) = L—lj 5(J), where J runs over all kj-subset of {1,2, - - - , kn + i}.

J

By the definition of Enlk, one can easily see that

|5'(.0)|=1~

lsUll = (kit?) E(kj)|k, ifl SJ S 71 and 0 S i _<. k — 1a

E(nk+i)|ka if 'i # 0;

|5(n +1)| =

0, ifi = 0.
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we now contruct a signed set S by

n+1

s = L+J 5,-
i=0

with a signed function e : S -—7 {+1, —1} defined by

e(7r) = (—1)J‘ if 7r 6 5,.

Secondly, we define a sign reversing involution f on S as follows: if 7r 6 S, then

71’ E S,- for some 0 Sj S n + 1. there are three cases:

Case 1: Ifj = 0, then 7r 2 71'0. Define

f(7r0)=1‘23-~-k.

Case 2: lfj = n + 1 and i > 0 and then 7r 2 mm ' - - 7mm“. Define

“71'1"? ° ' ’ TVA-n+1) = 7717M ' ' ' Trim-

Case 3: If 0 < j < n + 1, then 7r = 7r17r2 - - - 77k)” we let

{1,2,...,kn+i}\{m,7r2,...,7rkj}={a1< (12 < ...}

and define

7r17r2 - --7r1.J-(11(12-~ak E 5141, ifa1< Tl’kj and 1 Sj < n;

7r17r2 - unnalag - --a,- 6 5n“, if a1 < 7mm and j = n;

f(vr) =< (3-1‘2)

7r17r2---7r1.J-_1;€Sj_1, i'fa1>7rkj and1<an.

7r0 ifa1>7rkjandj=1 

Remark: Note that f is a well defined map on S. Moreover, if 71' E 5'], then either

f(7r) E 51-“ or f(7r) 6 51-1. It follows that

1. f is sign reversing.



2. f has no fixed point; that is, F, 2 (ll.

It remains to show that f is an involution on S.

1. If 71 6 5(0), then

f‘zlrro) = f(1‘2-°-k) = 7T0,

since {1,2,...,nk+i}\{1,2,...,k} ={Ic+1 <k+2< ~-} and k<k+1.

2. If 7r 6 S(n +1), then

f2(71'17r2---7r,,1.+,) = f(7r17r2-n7rkn) (by the definition)

: 7r17r2 - - - mm“- (since kn E Des(7r) ).

3. If 7r 6 5(j) for some 0 < j < n + l, by a routine procedure, one can easily see

that f2(7r) = 7r.

So we see that f2 = id.

By Theorem 3.2.6 and the ren‘iark, we see that, on one hand,

Eda): Z =|Fy|=0.

HES REF]

On the other hand,

2 6(7r)

n+1

lejl(_1)j

zii=o(—1)j(kiji) E<k711k+ (-1)"+‘E(kj+1)11-. ifi aé 0;

ELM—1)) (:31) E(kj)|k ifi = 0.

Combining these two equations, the result follows. I

So for, we have generalized the well-known results (1 ), (2), (3) and (3’) about

the old numbers. It remains to generalize their divisibility properties in (4). We leave

it to the next two sections.
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3.3 The Generalized q-Euler numbers

We start this section by introducing the concept of a q—analog of a mathematical

object, which will play an important role in the rest of this work.

A q-analog of a mathematical object (9 ( 0 could be a definition, number, theorem

or an identity) is an object (9(q) depending upon a parameter q such that

lim 0((1) = O.

q—tl

Note that q-analogs are not necessarily unique. There may be several equally valid

q-analogs for the same object.

Let k,j E N and q be an indeterminate. Define q-analogs of k by

[k]1=1+ (11+ (12" + (131+ -~-+ W”).

In particular,

[kll:lkl=
1+q+q2+..

.+qk-l.

Further, define a q-analog of the factorial by

[k]! : [k][k —1][k —— 2]....[2][1]

We can then define q-binomial coefficients by

n _ [n]!

7n — [7n]l[n -— 7n]l'

Clearly, when q = 1, [k] = [[5]]- : k, [k]! = kl and [ J = (n).

 

Tl

771 171

It is well-known that any q—binomial coefficient is a polynomial in q.

R. P. Stanley [40, p148] defines a natural q—analog En|k(q) of Eng. as follows:

7?an Zn>o("1)n$nk+i/(ank+e

E ‘n i ‘ = T 3.13
71:20 (h + )lk(q) (q)kn+i Zn20(—l)nxnk/(q)nk ( )
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forlSiSk—land

kn 1

. 1?

E: Elkn)lk(‘1)_
=

3.

n20 ((llkn Zn20(—1)"Ccnk/(q)
nk

( 14)
 

where (q)m = (1 -— q)(1 — qz)...(1 — q"‘) = (1 — q)'"[m]l for any positive integer 7n.

We call En|k(q) a generalized q-Euler number. In particular, E,,|-2(q) is an ordinary

q—Euler number and a natural q-tangent number is given by

$2n+l

 

Z E(2n+1)|2((1)

7120 (q)2n+l

anol—l)n4F2'lH/(‘ll2nfl _ sinq(:r)

anol—1)”$2"/(Q)2n ‘ cosqm z ”“0“”

 

Also, it is clearly that En|k(1) = EnIk.

The main theorem in this section is concerned with a recursion for Enlk(q), from

which we derive the first recursion for Enlk- Once we have established this theorem,

we can more efficiently study the divisibility properties of Enlk- First, the following

preliminaries are needed.

Let $1,:r2,...,a:n be a set of variables. Then the elementary symmetric function

of degree r in n variables is the sum of all square-free monomials of degree r in

$1,332, ...,:rn. More formally, for all r 2 0 and n 2 0,

e,.(.r1,.r2, .r,,) = Z anagram“. (3.15)

Isi1<iz<---<i.gn

Let 3:,- = qi‘l for all 1 S i S n, where q is an indeterminate. Then

. n- r n

e,.(1,q,qz,...,q 1) = (1(2) [ r J (3.16)

where [ 7: ] is the q-binomial coefficient [29, p.19]. Suppose that {P1, P2} is a par-

tition of {l,2,...,n}. For a 6 P1 and b 6 P2, we call a pair (a,b) an inversion of

48



{P1, P2} caused by a if a > b. We define

[(P1,P2) = |{(a,b) : a 6 P1, l) 6 P2 and a > b}|

Lemma 3.3.1 Let {131,132} be a partition of{1,2, ...,n} with IP1| = r. Then

2 qI(P1.P2) : [7:]. (3.17)

{P11P2}

Proof. This lemma is well known. But I am including a proof for completeness.

Let P1 = {i1 < i2 < < ir} g {1,2,...,n} and P2 = {l,2,...,n} \ P1. It is clear

that ij causes ij —j inversions for all 1 S j S r. Then

1(P1,P2) = in; ~11 = i<i.—1)-— (,) (3.18)
j=l j=l

By using (3.16), we get

2 ql(P1.P2) ___ (]_(;) 2 (12,2, (51—1)

{P1.P2} 15i1<i2<...<1,gn

r

= (Ii—(2) 67(1) ([7 (12a ' ° ' Jim—1)

z q-(;)q(;)[:)=[:)

as desired. I

If 7r 2 7r17r2...7rn E S", then define an inversion of a permutation 71' to be a pair

(1r;,7rj) where i <j and 7r, > 713. We let the number of inversions ofrr to be

inv(7r) : |{(7r,~,7rJ-): i <j and 7r,- > 7rj }|

Recall that we defined the descent set of 7r by

Des(7r)={i:7r,->7r.-+1 and 1 SiSn—l }.
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Theorem 3.3.2 Let n and k be any non-negative integers. Then En|k(q) satisfies

the following recursion:

li—‘J
n n— ‘m

E(n+1)|k((I) =Z[k JG A +1EMm-l)|k((l)E(n-km+lHit-((1)'l' Mk ll ")En|k((1) (3-19)
1 771—1

where b(-) is the boolean function defined by (3.9).

Proof. R. P. Stanley has shown [40, Proposition 3.16.4] that

E71|k((]) = Zqinvh') (3.20)

where the sum is over all 71' 6 Sn with the descent set Des(vr ——{k, 2k,..l"—;1-J., k}.

So it is enough to show that En|k(q) defined by equation (3.20) satisfies (3.19).

Let

5,.“ = {7r: 7r 6 Sn“ and Des(rr) : {k,2k,... ,(%J k} }

If 7" = 7T17T2m7rn+1 6 511+“ then either 72 + 1 = at," for some 1 S m S lfij or

n + 1 2 an“ where k ,l n. One. easily sees that n + 1 : an“ can happen if and only

if k ,l' n. Now define

571+, _-:{7r 7r 6 8,,“ and mm = n +1}

for 1 Sm S (L) and

ESH—— {7r : 7r 6 5,.“ and an“ : n+1}.

ItIS clear that 5n+1—— UL“;_J05,’,’3H. Note that k divides n if and only if 83+1 = 0. Hence

E(n+l)|k(£[) : Zqinv(1r )__Z :(Iinv(7r) +b(k If" ) Z qinv(1r). (321)

6‘")
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Now consider the first summation in equation (3.21). For fixed 7n, 1 S 7n S lfl , and

write

m

71’ = 7r17r2...7rkm_lj(n + 1) akm+1...7rn+£ E 5,,“

v f

 

 

T 0'

where mm = n + 1. Then

inv(7r) = inv(T) + inv(a) + (n — km + 1) + i(7',0)

where

n—km+1=|{(n+1,7rj):km+1San+1}|

and

i(T,0) = |{(7r,-,7rJ-) : 7r,- > Tl’j,1 S i S km— 1 and km+1 Sj S n+1}|.

Suppose {P1,P2} is a partition of {1,2,...,n} with [Pl] = km — 1. Define 8(P1)

to be the set of all permutations of P1 with the descent set {k,2k, . . . , (m — 1)k}.

Then there is a one-to-one order-preservmg correspondence between 5( P1) and 81m.“

and Similarly for 5(P2) and 8,,_1.,,,+1. For any 7' = 7172...7'km_1 E 5(P1) and any

a : 0102..-0n_k111+1 E £(P2),

i(‘r,o) = |{(T,-,aJ-): Ti>aj,lSiSkm—1and1San—km+1}|

= |{(a,b):a€P1,b€P2 anda>b}|

= I(P1,P2).

For any partition {P1, P2} of {1,2, ...,n} with [Pl] 2 km — 1,

Z qi11v(7)+ir1v(o)

7' E €(P1)o E 50%)

___. Z qinv(7)+inv(a)

T E tkyn—la E gn—km-l-l
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=1: 1111 21111653ka aesn—km-{d

= E11..-1)11((1)E1n-km+11IA-((I)-

If r is replaced by km — 1 in Lemma 3.3.1, then

2 .11....) = z 2 .11111
weer“ (P115) T E 5(P1)

068(132)

77’ T}.- .771

: lkm—l l q A +1Evan-UIk‘M)Eln-kmflllbiq)‘

It follows that

l

m

a
r
l
:

l JJ
I Tl l ‘1" I

2 : inV 71
.

(I 1; _ + k

1 «653+,

k
w

M

3 _l
_|
‘

So we are done if k divides 71. Suppose that k A n. Then there is an extra term

2,653“ qinvm in equation (3.21). Note that the correspondence

7r : alag...7rn(n +1) <=> if = magma"

between 52+} and 8,, is one-to—one and order-preserving. Hence

Z qi11v(1r) : Z (linv(7r) : En|k(q)-

”683+! "657:

This completes the proof of Theorem 3.3.2. I

Remark: Observe that when q = 1, we have the recursion for Enlk as in Theo-

rem 3.2.4

Theorem 3.3.2 and Theorem 3.2.4 are very useful in further studying the divis-

ibility properties of En“. and E,,l1.(q), which will be seen in the next section. To

52



demonstrate this point, we will end this section by a direct application of Theo-

rem 3.2.4.

We know that (n + 1)E(2n+1)|2 = 22"|ng+2| where 02,.” is the Genocchi number.

It can be verified using the exponential generating functions of E(2,,+1)|2 and [GEM-2|

as follows: it is well-known [12., p.48- p.49 ] that.

 

Qt t2n+2

G t = —t G n -———(1 6+, 1;) 2.21,,+2),

and

2 E t2n+l

T t = 1+ n ——
(l 62"+1 "22% (2 -1-l)|2(2n+ 1)!-

Let 2t = s and then t = 5/2. On one hand,

.’)t

H

e2‘+1

 tTU)=

2714-2

:1 E, 2- 2————-
+71% (2 +1)I2( n + )(277. +2)!

_ Z E(2n+1)|2(7l + 1) 82n+2

‘ 8+ r1 mn+mz'
n>0

 

On the other hand,

 

 

It follows that (n + 1)E(2n+l)|2 = 22"|ng+2|.

Since Genocchi numbers are odd, we see that following theorem is true.

Theorem 3.3.3 Let n be a non-negative integer. Then
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1. 22" divides (n + 1)E(2n+1)|2;

2. (TI. ‘1' 1)E(2n+1)|2/22n i8 Odd.

Proof. Using the recursion for Bulk when k = 2, we can now give a direct proof of

this theorem without using their generating functions. For brevity, we first define

Ei2n+1112 = (71 +1)E(2n+11l2-

We first prove (1): Induct on n. The case n = O is trivial. Suppose n > 0 and

then

,. ” 2n

E(2n+l)|2 = Z ("1 +1)( 1)E(2m-1)|2E(2n-2m+1)|2
"1:, 2m —

1 (11+ 11(25'1.) .. .
:. Z 771(77' _ m + 1) E(2m-I)I2E(2n-2m+1)|2

771:1

 

 

2 " 2n + 2 . ,,

= 2n + 1 "12:; ( 2m )E(2m-l)|2E(2n—2m+l)|2'

It follows that

,, , " 2n + 2 _ y

(271. + 1)l(:’(2n-{1-1)|2 : ‘2 Z ( 97,” ) E(2m-1)I2E(2n—2m+l)l2'

m=1 "'

By the induction, we have

. 271—2 . .
1t

"‘2 d1v1des E(2m_1)|2 (2n—2m+l)12

where 1 S m S n.

Since 2n + 1 is odd, it is enough to show that

" 2n + 2 ‘ _

Z ( )E('2m—1)|2 (2n—2m+l)|2 (3.22)

‘)m=l ..7n

22”"1. Note that for fixed 7n, 1 S m S n, we see that

2n+2 _ 2n+2 _ 2n+2

2m — 2n+2—2m _ 2(n—m+1)°
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Moreover, since 72 — (n — 7n + 1) +1 2 m, 2(n — m + 1) ——1 : 2n — 2m +1 and

2n—2(n—m+1)+1= 27n—1, Also sincel S 7n S n implies that IS n—m+1 S n,

it follows that the m-th term equals to the (n — m + 1)-th term in sum (3.22). It

follows that sum (3.22) is

«
7
|
:

1

2

m

1.1.11.1. Odd) (251141-12) lil Evin-11121"— lgl + ll Eon-21111112

where b() is the boolean function. By the induction,

2m

1
2n + 2 ,_ .

( )E(2m—1)|2E(2n—2m+1)|2

1

2m

71— - - 2n+2 n- :1: . n

22 1 d1V1des 2( ) (2m-1)|2E(2n—2m+1)|2 where 1 S m S l§l°

So we are done if n is even. If n is odd, there is an extra term. Now let n = 21 + 1

for some non—negative integer l and then

2n+2 _(2(21+1)+2 __ 2(21+2)

(2M)- 2(1+1) )_(21+2)

which is divisible by 2, since that the number of carries in adding 21 + 2 to (41 +

4) — (2l + 2) 2 2l + 2 in 2-ary arithmetic is at least 1. Hence the extra term is also

divisible by 2271—1 and the result follows.

We next prove (2): Induct on n. The n = 0 case is trivial. Now suppose n > 0

and consider

Ef2n+1)|2 ___ in: 71 + 1 271 EF2m-1)l2 (Ef2(n-m)+1)|2

22" 22m(n — 7n + 1) 2m — 1 22(m‘1l 22("‘m)
771:1

: 1 En: 2(n + 1) Ef2m—1)|2 Ef2(n—m)+1)|2

2(2n + 1) 2m 221m‘ll 22("‘ml i
m=l

O = M
(2(n-m)+1)|2

m 22(m—1)
22(n—m)
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Let

 



and then

9271

E‘, 1 n 2 1

(271 +1)——_‘2“1'2 = 5 ( (n + l) 0....

1

1

By the induction, Om is an odd number for all

Since 2n + 1 is odd, it is enough to show that

1 " 2(n + 1)

V = — m

(n) 2 7.12::1( 2m ) O

is odd for all n 2 1. Note that, by the induction,

Om — 1 :— 0 (mod 2) for all 1 S 771 S 71.

By [22, (1.91)], we see that

"+1 (2n + 2
= 92(n+1)—1 = 22n+l

2m
m=0

n .) .)

%{Z(~71+~)}=;(2271+l—2)=22n_1

m=l
.. 2771.

It follows that

[
v

is odd. Now it is enough to show that

n (2n+2)

V(n)—(22"—1)=Z 2’" (Om—1)

m=l

 

is even, since then V(n) must be odd and the result follows.

Note that 0... = 0..-...“ for all 1 S m S n. It follows that

 

111 31:2
= 2 _ (2; )(Om —1)+b(n isodd )£_l_22_l_)_ (0%] —1).

It is clear that for 1 S 7n S (€21), (237:2)(0m — 1) is even since each (0... — 1) is even

and (237:2) is an integer. Moreover, we have the extra term in the odd-n case is also

(2....)

even since _2l_:_:fl_ is an integer and 0%.] — 1 is even. Hence V(n) — (22" — 1) is even

and then V(n) is odd. I
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3.4 The Divisibility of the Generalized q-Euler Num-

bers

G. E. Andrews and I. Gessel have shown [2, Theorem 1 and Theorem 2 ] that

1. E(2n+1)|2(q) is divisible by (1+ q)(1+ q2)...(1+ q”) = [2]]2]2[2]3...[2]n.

2. E(2n+1)|2(q) is divisible by (1 + q)" = [2]".

It follows that 2" divides E(2n+1)|2 by letting q 2: 1.

We adopt the techniques which G. E. Andrews and I. Gessel have used in their

work and extend their results to E(,,k+,-)lk(q) for all prime k 2 2 and 1 S i S k — 1.

First, we study some related divisibility properties of certain binomial coefficients

and q-binomial coefficients .

Lemma 3.4.1 Let k be prime. Then (:53) is divisible by k for all 0 S i S k — 2.

Althought Lemma 3.4.1 is just a special case of Theorem 3.4.3 and Theorem 3.4.4,

we include a proof here to show a special method used in proving such a problem.

Proof. By Kummer’s Theorem [15, p.270, item 71], it is enough to show that the

number of carries when adding km — 1 to kN + i — (km — 1) in base k is greater than

orequal to 1. Now kN+i-—(km—1) = k(N—k)+(i+1)where1 S(i+1) S k—l

and km — 1 = k(7n — 1) + (k — 1). So these two numbers have one’s digit i + 1 and

k — 1 in base k. Since (i + 1) + (k — 1) 2 k, we have a carry out of the one’s digit

and are done. I

In general, q-analogs of these binomial coefficients have the similar divisibility. To

show it , we first need the following lemma [24].
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Lemma 3.4.2 Up is a primitive ktlz roots of unity, then p is a simple root ofl — qM

if and only if kllW.

Remark: Note that Lemma 3.4.2 requires the condition that k is prime. Since our

proofs are based on Lemma 3.4.2, the condition that k is prime can not be omitted.

Also, it is easy to find a counter example to show that this condition is nesessary.

Lemma 3.4.3 Let prime k 2 2 and 0 S i S k — 2. For any nonnegative integers n

and m, the expression

 

[ kn + i J [k][k]2...[k]m_1

km — l [k]n[k]n_1...[k]n_m+1

is a polynomial in q. Clearly, when q = 1, we have Lemma 3.4.1.

Proof. The expression in question is a rational function and the roots of the de-

nominator are roots of unity. To prove Lemma 3.4.3, we need only show that each

zero of the denominator appears with at least as large multiplicity in the numerator

as in the denominator.

kn + i

km — 1

1 S j S km —— l, j must divide at least (Enf—IJ of the numbers kn + i,kn + i —

We know that that [ ] is a polynomial in q. By Lemma 3.4.2, for each

1, ..., k(n — l) + 1, k(n — 1), k(n — l) — 1, ..., kn — km + i + 2 (otherwise this q-binomial

coefficient would not be a polynomial). Now

 

kn +2 — (1 _ an+i)(1_ qkn+i-l)...(1_ qkn—km+i+2) (3 23)

km —1 — (l — qk""1)(1— (1km—2)---(1 ‘ (12)“ “ (I) i .

Since [k],- = (1 — qjk)/(l — q’), we have

1— k 1— 2k... 1— WM)
[k][k]2...[k],,,_,=( q“ q l ( ‘1 l (3.24)

(1 - q)(1- q2)---(1- qm“)

 

and

 

(1_ an)(1_ qk(n—1))(1_ qk(n-2))u.(1_ (1k(n—m+l))

(1-q")(1-(1"")~-(1-q"‘"‘+‘) '
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[klnlkin-l-“ikln—m-l-l : (325)



As a result, we have

[kllklzmlklm-l

[klnlkln—l---[kln—m+1

 

(1 - (1")(1- (12")...(1 - qk‘m‘”)(l - <1")(1 - (1"“‘).-.(1— q"”"‘+‘)

(1 - q"“)(1 - q*(""’)-~(1 - qk‘"'"‘+”)(l - q)(1- q2)-~(1- qm“)

 

Now we get

 
[kn-ti] [ka]2...[k]m—1 _Ql(‘I) (3.26)
km —- l —

[k]n[k]n_1...[k]n_m+1 Q2(q)’

where Q1(q) and Q2(q) are as follows:

(21(0) = (1-qk”+‘)(1 - (1""+“‘)

~-(1-(1k"“)(1-q")(1-qk"“)

m(1_qkl’1‘1)+1)(1_qn
—l)(1_qk(n—l)—l)

...(1 _ ([k(n—m+l)+l )(1_qn—m+l )(1 _qk(n—m+1)—l)

(1_ qk(n-m+1)-2).H(l_ qk(n—m)+i+2)

’

Q2(([) : (1_ qkm—l)(1 _ qkm—2)

...(1 — ([k(7n_l)+l)(1_
qm-l)(1_ qk(m—l)—l)

...(1... (1k(m-2)+l)(l _ (1(m-2))(1_ qk(m—2)-l)

...(1— q*‘+‘)(l — q)(1- q“)

-(1— qk'2)---(1— (12)(1— (1)-

kn. + i

Note that Q1(q)/Q2(q) is almost. same as [ km _ l ] except that the factor

(1_ (Ikn)(1_ qk(n—l))”.(1 _ qk(n—m+l))

(1 - (Ik‘m‘l’fil - qk‘m'z’l-(l - (1“)
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. kn+i

1n km—l

] is replaced by

(1 - q")(1- q"“)---(1 - q"‘"‘“)

(1 — q)(1- q2)---(1- qm‘l)

 

More precisely, Q1(q)/Q2(q) is same as [ 2:21:21 ] except that each kN exponent in

the numerator and denominator has been divided by k. Suppose that 1 S j S km - 1

and jIkN. If k /[ j, then jIkN implies that le. If klj, then flN. Hence we still

have that each zero of the denominator of Q1(q)/Q2(q) appears with at least as large

multiplicity in the numerator as in the denominator. Thus the divisibility properties

previously described are preserved since the only change dose not affect whether a

denominator exponent divides a numerator exponent. I

Lemma 3.4.4 Let k _>_ 2 be aprime and 0 S i S k—2. For any nonnegative integers

kn +i J

n and m,[k] is a factor of [ km _ 1

Clearly, when q = 1, we also have Lemma 3.4.].

Proof. For all non-negative integers n and m, we see that

 

[kn +2 J _ (1_ an+i)(1_ qkn+i—l).'.(l _ qk(n-m+1))".(1_ qkn—km+i+2) (3 27)

km —1 <1— ,...-,,(1_ qkm-2)...(1— qk<m-1>)...<1- q2><1— q)

By Lemma 3.4.2, for any integer M, 1 — qM has one and only one factor [k] if and

only if M is divisible by k. There are n — (n — m) = m factors of [k] in the numerator

kn+i

and m — 1 factors of [k] in the denominator of[ km 1 ]. As a result, there is one

- . kn+i

factor [k] m [ km _1 ] .

Now we are in the position to prove the divisibility properties of the generalized

q-Euler numbers.
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Theorem 3.4.5 Let k be any prime and 1 S i S k — 1. We have E(nk+,-)Ik(q) is

divisible by [k][k]2[k]3...[k]n.

Remark: When k = 2, we have the Andrews and Gessel’s first result about the

divisibility of the q-tangent numbers in [2].

Proof. Induct on n. For n 2: 0, the result is trivial. Suppose the result is true up to

but not including N. By Theorem 3.3.2, we have two cases.

Case 1: lfi = 1, then

E(k-N+ 1m. (‘11

EN [W U, h
- ’— 7 l

: [.771 —1]q
1+ EM";-l)|k_(([)E(kN-km+l)]k(q)3

771:]

Case 2: HQ S i S k — 1, then

E(IW+ .' ) [k ((1)

N .

ICN+ Z— l . r__ 7,,

: 2:[ I.~m(—1)]‘1m i +119(1‘m-1)Ik(‘01—qu—km+i)Ik-(q)“l" Emmi-nah)

We first consider case 1. By the induction hypothesis, for all 1 S m S N,

E(km—l)|k((l) = [kllkl'zlklsu-lklm—ipi((1)

and

E(kN-km+l)|k((l) = [k][ls]2[k]3...[k]N-,,.P2(q)

where P1(q) and P2(([) are different polynomials in q. Then

W

[k ]E(A~.m—l)lk((1)E(kN-km+i)|k((ll
m —l

 =[W l MHMQWML’” [kllklzlklsmlklwflWWW)-km — l [k]N[k]N_.1...[k]N_m+1
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By Lemma 3.4.3,

 
[Iv/V ] [kllk]2.-~[klm_1

km - 1 [k]N[k]N_1...[k]N_m+1

is a polynomial in q. We have that [k][k]2[k]3...[k]N is a factor of

LIN

km — 1
JE(km—l)|k((1)E(kN—km+l)|k((I)

for all 1 S m S N and then a factor of

N [ AW

"12:; km -1
] qW—bn-HE(km-1)Ik(q)E(kN—km+i)|k((I)-

So the result holds in case 1.

For case 2, we see that [k][k]2[k]3...[k]N divides the extra term by an induction on

i, where i = l is done in case 1. So the result also holds in case 2. I

Theorem 3.4.6 Let k be prime and 1 S i S k — 1. E(k,,+,)lk(q) is divisible by [k]" .

Remark: When k = 2, we have the Andrews and Gessal’s second result about the

divisibility of q-tangent numbers in [2].

Proof. Induct on n. For n = 0, the result is trivial. Suppose the result is true

up to but not including N. By Theorem 3.3.2, we consider the two same cases as in

Theorem 3.4.5.

Case 1: Ifi = 1, then

Emmm-(Q)

N W at...
2 Z k (I E(km-l)|k(qlE(kN—km+l)lk(q)

Case 2: If? S i S k— 1, then

E<W+ii|k((b



N .

= Z[ km—l Jqu-bn-HE(km—1)|k(q)E(kN-km+i)|k(q)+ E(kN+i—1)|k(q)°

We first consider case 1. By the induction hypothesis, for all 1 S m S N, then

E(km—l)lk(q) = [klm-IHIUI)

and

E(kN—km+l)|k(q) = [MN-"115(9)

where H1(q) and H2(q) are different polynomials in q. By Lemma 3.4.4, [k] is a factor

of [ :2 _ 1 ]. We have that [k]N‘m+"“1+1 = [13]", is a factor of

kN

km _ 1 E(km—l)[l€(q)E(kN—km+1)lk(q)a

for all 1 S m S N and then a factor of

:3 kN

km —1
m=l

[Cliff-“Ml E(km—l)|k ((1)E(kN—km+1)|k((1)-

So the result holds in case 1.

For case 2, we see that [k]N divides the extra term by an induction on i, where

i = l is done in case 1. So the result also holds in the case 2. I

Observe that if put q = 1 in Theorem 3.4.5 and Theorem 3.4.6, we have the divisibility

properties of En|k as follows.

Corollary 3.4.7 Ifk is prime, then k" divides E(k,,+,-)lk for all 1 S i S k — 1. In

particular, when k = 2, we have 2" divides E(2n+1)|2.
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Chapter 4

Open Problems and Conjectures

We know that (n + 1)E(2n+1)12 is divisible by 22" but by no higher power of two.

More precisely, we have

(71+ 1)E(2n+1)|2 = 22n62n+2 (4-1)

where the Genocchi number 02,,” is odd. It is then natural to ask the following

question:

Problem: For a fixed prime k, are there two simple functions of n and k, say an).

and bmk, such that

an,kEn|k : kan: Gnlk (4'2)

with Gnlk being an integer that is not divisible by k?

In our study, we see that for each i,1 S i S k — 1,

(n + 1)E(nk+-i)|k

klknki—Il—l-J

 (4.3)

is an integer, but in general this number and k are not relatively prime. For example:

if k = 5 and n = 9, then (9 + 1)E(9.5+4)|5 has factor 514, while [1&1] = 12. So
5—1

the number (9 + 1)E(9.5+4)]5/5” has factor 52. But we believe that E(3,,+,)|3 behaves

exactly like the ordinary Euler numbers.
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Conjecture 4.0.8 For i = l or 2, we have

Thain—l

(71 + 1)E(3n+i)|3 = 3] 2 JG'(371+i)|3

such that C(3n+,-)|3 is an integer that is not divisible by 3.

Note that if k = 2, expression (4.3) agrees with the Genocchi number.

The signed Euler number E’ 2 is defined by
n]

where [J is the round down function. L. Carlitz [10] found a congruence for E242:

0 (mod pe) (E' ___ p (mod 4) )

(2")‘2— 2(m0dpe) (p

1

3 (mod 4) )
(4.4)

where p is an odd prime such that (p — 1);)6'1 |2n.

We expect that the generalized Euler number and the signed Euler number have

the similar congruence properties.
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