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ABSTRACT

NONLOCAL POLARIZABILITY DENSITIES AND MOLECULAR SOFTNESS:

NEW RESULTS FOR ELECTROMAGNETIC PROPERTIES

AND INTERMOLECULAR FORCES

By

Pao-Hua Liu

By using nonlocal polarizability densities to characterize the changes in electronic

charge density induced by molecular interactions, Dr. K. Hunt’s group has derived new

results for dispersion, induction, and hyperpolarization forces. The first part of this thesis

establishes that the nonlocal polarizability density theory meets the fundamental physical

requirement for force balance between two interacting molecules A and B, order by order.

Force relay plays an important role in this derivation, which stems from the application of

Epstein’s force theorems: in a stationary state, the total force on the electrons is zero in

fixed external fields. Thus when the electronic state adjusts adiabatically to a perturbation,

the force of the external field on the nth order term in the electronic change density equals

the force on the nuclei due to the (n+1)st order correction to the electronic charge density.

The second part of this thesis rigorously relates electromagnetic properties and

characteristics of molecular potential energy surfaces to the empirical concept of “soft-

ness,” used to categorize Lewis acids and bases, and to summarize observed patterns of

reactivity. New equations are derived that connect infrared absorption intensities, vibra-



tional force constants, intermolecular forces at first order, and linear electric-field shield-

ing tensors to softness kernels as defined in density functional theory. A generalization to

nonlinear response--by introduction of the hypersoftness--leads to new equations in den-

sity-functional terms for vibrational Raman band intensities, the cubic anharmonicities in

molecular potential energy surfaces, intermolecular forces at first and second order, and

nonlinear electric-field shielding tensors. The analysis employs relations of the softness

and hypersoftness to nonlocal polarizability and hyperpolarizability densities that repre-

sent the intramolecular distribution of response to applied electric fields.
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CHAPTER I

INTRODUCTION

This thesis contains two major parts, the first is concerned with intermolecular

forces and force relay, the second is concerned with electromagnetic properties such as

force constants, infrared and vibrational Raman band intensities, and nonlinear electric-

field shielding tensors. Both parts employ nonlocal polarizability density theory.

As two interacting molecules approach each other, the distributions of charge and

polarizability within molecules begin to affect the interaction energy before the electronic

charge clouds overlap; hence representation of the molecules as point-polarizable multi-

poles does not suffice. Distribution effects are expected to be particularly important for

large planar or rodlike molecules, in configurations where the distances between nearby,

but nonbonded nuclei in the two distinct molecules are smaller than the distances between

many of the nonbonded pairs of nuclei in a single molecule. Hunt has developed a theory

of molecular interactions that uses nonlocal polarizability densities [1-6] and nonlocal,

nonlinear susceptibility densities [6] to incorporate the distribution effects. The nonlocal

response tensors or (r, r’;—(:), (1)) and B (r, r’, r”;—0)o, to], (02) determine the intramo-

lecular charge shifts induced by an applied electric field acting on a molecule with a fixed

number of electrons N; their values reflect the distribution of polarizable matter within a

molecule. Within linear response, or (r, r’;-(t), 0)) gives the m-frequency component of

the polarization P (r, 0)) induced at point r in the molecule, due to an external field

86’“ (r’, (0) acting at point r’. The lowest-order hyperpolarizability density

[3 (r, r’, r”;—(uo, (01, (1)2) gives the (no-frequency polarization induced at r by the con-

certed action of the external field Sen (1", (01) at r’ and 8m (r”, (02) at r”, with
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(00 = (i)1 + (.02. Thus, when an external field 86“ (r, 0)) is applied to a molecule, the

electronic polarization PInd (r, (0) induced in the molecule satisfies

P (130)) = P0(r, co) + Pind (r, (1))

ext

= P0(l‘,(t)) +Jdr’a(r,r’;—(o,to) ~33 (r’,(i))

CXI
(r II, w!)

1 oo

+§I_wdw’Jdr’dr”B (r, r’, r”;—w, a) - (0’, (0') 23m“ (1", (D - (0') 3

+.... (1)

The polarization Pind (r, (0) is related to pind (r, 0)) , the induced change in electronic

charge density in the field Sc“ (r, (u) , by

V - Pind (r, (o) = —pind (r, (0). (2)

One purpose of the first part of this thesis, Chapters II and III, is to prove that the

forces on interacting molecules A and B are equal and opposite, order by order, within the

nonlocal polarizability density theory. An explicit proof is needed because of the differ-

ences in the molecular properties that determine the forces on A and B, at each order in the

interaction. For example, the first-order force on nuclei in A depends on the unperturbed

charge density pg (r) of molecule B and on the first-order change pf’ A (r) in the elec-

tronic charge density of molecule A [7]; thus it depends on the polarizability density of A.

In contrast, the first-order force on nuclei in B depends on p3 (r) and p? B (r) , and

hence on the polarizability density of B; but for distinct species A and B, there is no rela-

tion between (1A (1', r’;—(i), to) and OLB (r, r’;—to, to) . As a second example, the disper-

sion force on nuclei in A depends solely on the second-order, dispersion-induced change
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pg’dA (r) in the electronic charge density of molecule A, while the force on nuclei in B

depends on pg’dB (r) alone [8]. The quantity pg’dA (r) is determined by the hyperpolariz—

ability density of molecule A; similarly for B [8], and the nonlinear susceptibilities of dis-

tinct species are unrelated. Identical results for the forces at each order can be obtained by

differentiation of the standard perturbation expression for interation energies, or by use of

the Hellmann-Feynman theorem [9,10] for intermolecular forces [7, 8, 11]; therefore, the

analysis given here has general applicability beyond the nonlocal response theory.

Hunt and I [12] have found that force balance is derivable from “force relay,” a

physical effect occurring when the electronic state of a molecule or group of molecules

6’“ (r) acts on aadjusts adiabatically to perturbations [13]. When a fixed external field 3

molecule, the force that 8w (r) exerts on the nth order term p: (r) in the electronic

charge density is relayed in full to the nuclei by the (n+1)st order change p: + l (r) [13]. If

the external field itself varies as the electronic charge density changes—for example, due

ext

n

to molecular interactions—force relay takes a modified form. The change AF in the

external force on the electrons is passed on to the nuclei by the (n+1)st order change in the

electronic charge density; here

' n

Ari“ = 2W1. lIdrpe(r)3m(r) I‘I’n_k ). (3)

k = 0

In Eq. (3), ‘Pk is the kth order term in the normalized, perturbed wave function, including

the field source, and be (r) and 3m (r) are operators. For fixed external fields, the force

relay condition has been stated previously by Epstein [13]. Chapters II and III generalize

the condition to cases in which the electronic charge density and the perturbing field are

correlated.

In Chapter II, the results from the nonlocal polarizability density theory for the

first- and second-order forces on the nuclei in interacting molecules A and B [7, 8, 11] are

summarized throughout Sections 2.1 to 2.3 and the need for an explicit proof of force bal-
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ance at each order is shown. The key equations related to the adiabatic approximation are

derived in Section 2.5 within the nonlocal polarizability density theory.

In Chapter 1H, the force relay condition based on Epstein’s force theorem [13] is

introduced in the first section. Section 3.2 prOveS that the force relay condition is satisfied

within the nonlocal polarizability density theory, for fixed external fields. This is a conse-

quence of interconnections among permanent charge densities, linear response, and non-

linear response that Hunt’s group has derived earlier [14, 15]. Section 3.3 generalizes

force relay to variable external fields and shows that force balance is a consequence,

within the nonlocal response theory.

Chapters IV and V link a set of molecular properties including infrared intensities,

electric-field Shielding tensors, and harmonic force constants to softness [16] as defined in

density functional theory [17, 18]. Expressions for these molecular properties have been

derived previously [14, 19] in terms of nonlocal polarizability densities 0t (1', r’;—to, (o) .

Here, the connection to molecular softness is established by relating a (r, r’;O, 0) to the

softness kernel 5 (r, r’) [16]. A similar relation between the hyperpolarizability density

and a “hypersoftness” o (r, r’, r”) is introduced in this work, in order to express vibra-

tional Raman band intensities, nonlinear shielding tensors, and cubic anharrnonicity con-

stants in density functional terms. New connections are also established between s (r, r’) ,

0(1', 1", r”) , and long-range intermolecular forces.

Within density functional theory, the softness kernel and the hypersoftness charac-

terize the response of the electronic charge density to external perturbations. These func-

tions quantify [16, 20-24] the concepts of chemical hardness and softness used by Pearson

[25, 26] to categorize Lewis acids and bases. Empirically, numerous reactivity patterns are

summarized by the statement that hard acids “prefer” to react with hard bases, both ther-

modynamically and kinetically [26-27]. Typically, soft acids are large and highly polariz-

able species, with low positive charges. Soft bases are highly polarizable, easily oxidized,

and low in electronegativity. The opposite properties hold for hard acids and bases [25,
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ance at each order is shown. The key equations related to the adiabatic approximation are

derived in Section 2.5 within the nonlocal polarizability density theory.

In Chapter III, the force relay condition based on Epstein’s force theorem [13] is

introduced in the first section. Section 3.2 prOves that the force relay condition is satisfied

within the nonlocal polarizability density theory, for fixed external fields. This is a conse-

quence of interconnections among permanent charge densities, linear response, and non-

linear response that Hunt’s group has derived earlier [14, 15]. Section 3.3 generalizes

force relay to variable external fields and shows that force balance is a consequence,

within the nonlocal response theory.

Chapters IV and V link a set of molecular properties including infrared intensities,

electric-field shielding tensors, and harmonic force constants to softness [16] as defined in

density functional theory [17, 18]. Expressions for these molecular properties have been

derived previously [14, 19] in terms of nonlocal polarizability densities (1(1', r’;—o), (n) .

Here, the connection to molecular softness is established by relating or (r, r’;O, O) to the

softness kernel 5 (r, r’) [16]. A similar relation between the hyperpolarizability density

and a “hypersoftness” 0' (r, r’, r”) is introduced in this work, in order to express vibra-

tional Raman band intensities, nonlinear shielding tensors, and cubic anharmonicity con-

stants in density functional terms. New connections are also established between 5 (r, r’) ,

0‘ (r, r’, r”) , and long-range intermolecular forces.

Within density functional theory, the softness kernel and the hypersoftness charac-

terize the response of the electronic charge density to external perturbations. These func-

tions quantify [16, 20—24] the concepts of chemical hardness and softness used by Pearson

[25, 26] to categorize Lewis acids and bases. Empirically, numerous reactivity patterns are

summarized by the statement that hard acids “prefer” to react with hard bases, both ther-

modynamically and kinetically [2627]. Typically, soft acids are large and highly polariz-

able species, with low positive charges. Soft bases are highly polarizable, easily oxidized,

and low in electronegativity. The opposite properties hold for hard acids and bases [25,



26].

The first section in Chapter IV is a general introduction of density functional the-

ory and the concepts of chemical hardness and softness. In Section 4.2, the softness and

hypersoftness kernels which also describe nonlocal response to external fields are related

to the nonlocal susceptibilities at (r, r’;-(:), 0)) [1-5] and B(r, r’, r”;—(oo, (01, (1)2) [6];

the softness kernel is further generalized to a frequency-dependent form.

The relation between harmonic force constants and the softness kernel 5 (r, r’) is

derived in Section 5.1, which also shows that the cubic anharmonicity constants and the

intensities of vibrational Raman bands depend on s (r, r’) and o (r, r’, r”) within the

Placzek approximation [28]. In Section 5.2, the softness kernel 5 (r, r’) is related to the

derivative of the molecular dipole with respect to a shift in nuclear coordinates; thus the

softness determines both infrared absorption frequencies (within the harmonic approxima-

tion) and infrared intensities; and the Stemheimer electric-field shielding tensors [9, 29-

33] are also related to the softness and hypersoftness. The Stemheimer shielding tensors

give the difference between an external electric field 86’“ applied to a molecule and the

effective field that acts at the nuclei, because these tensors account for the shielding or

deshielding effects of the electronic redistribution induced by Sen.

In Section 5.3, long-range intermolecular forces are treated in the density-func-

tional framework. Earlier, Gézquez has expressed the second-order induction energy in

terms of the softness kernel [34]; here it is proven that the force atfirst order depends on

the softness kernel and the force at second order depends on the softness and hypersoft-

ness. In Section 5.3, the dispersion energy is analyzed in terms of an imaginary-frequency

dependent softness kernel, 5 (r, r’;-i(n, im) .
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CHAPTER II

INTERMOLECULAR FORCES WITHIN NONLOCAL POLARIZABILITY

DENSITY THEORY

2.1 Nonlocal Polarizability Densities

Maaskant and Oosterhoff introduced nonlocal polarizability densities in a study of

optical rotation in condensed media [1]. They gave the nonlocal polarizability density in a

sum-over—states form, with each matrix element itself given as an infinite series. Hunt [2]

derived a simple form that permits practical calculations in cases when the field acting on

a molecule is derivable from a scalar potential.

When an external field 8”" (r, (1)) is applied to a molecule, the electronic polar-

ization PInd (r, 0)) induced in the molecule satisfies

P(r,a)) = P0(r,to) +Pi"d(r,(t))

ext (rl, (D)

= P0(r,0)) +Idr’a(r,r’;—a),m) -S

1 °° I I II I II I I C“ I I 6’“ II I

+-2-I_°°d(DIdl'dl' [3(r,r,r ;—(o,(o-0),u)):8 (r,(o—(i))3 (r,0))

+.... (I)

The polarization Pind (r, (o) is related to pind (r, (1)) , the induced change in electronic

charge density in the field 8”“ (r, 0)) , by



V-Pi"d(r, (1)) = —pi"d(r, (1)), (2)

and the same relationship holds for the polarization and charge density operators. From

Eq. (1) one can see that the nonlocal polarizability density a(r, r’; —(i), (1)) determines the

electronic polarization Pind (r, (1)) induced at point r in a molecule by an external electric

field of frequency (1) acting at r’, within linear response. It is a fundamental molecular

property which reflects the distribution of polarizable matter within the molecule. The

polarizability density for a molecule in the ground state has the form

 (10,50, r’; —a), w) = < 0 I Pam C(co) P30“) 0)

+ < 0 | PB(r’) G(——(i)) Pa(r) lo ), (3)

where 6(a)) is the reduced resolvent operator

6(a)) = (I — no) (H — 50 mm)“ 0— no). (4)

and {J0 is the ground-state projection operator '0 ) ( O l.

Hunt [3] has shown that or(r, r’; -(i), to) also determines the net field 3] acting on

nucleus I of a molecule in a static, external field 8°“ (r) :

SI : 31(0) +8ext(Rl)

+Jdrdr’T(RI,r) o0t(r,r';0,0) -Sm(r’)+.... (5)

SI (0)

where is the field at nucleus I in the absence of the external perturbation, and

Tat} (R', r) is the dipole propagator, i.e.,

TaB(Rl,r) = VaV lR‘-rl"1
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= [3 (Rl—r)a(Rl—r)B—8aBlRI—ri2]/iRl —ri5- 4355,3230 — R'). (6)

The hyperpolarizability density [3(r, r’, r”; —0), 0) — 0)’, 0)’) represents the nonlinear re-

sponse of lowest order; it gives the 0)-frequency polarization induced at r by the concerted

o t I I t I I 1’ 0

action of the external fields Sex (r', 0) — 0) ) at r and Sex (r ’, 0) ) at r . Perturbation

analysis gives the hyperpolarizability density in the form

[3045103 r’, r”; —0)0, (01, (1)2)

= 80371 <0 | Par) G(wo) Mr”) G(wl) Pg(r’) IO)

+ ( 0 | P70") G(—0)2) P“B(r’) G(—mo) Pa(r) I 0 >

+ < 0 I 1w") G(-w2) Imam G(wr) P30") |0 > 1. (7)

where the operator 5037 denotes the sum of all terms obtained by perrnuting PB(r’) and

PY(r”) and simultaneously perrnuting the associated frequencies ml and (02, in the expres-

sion following the operator; and too = 0)] + $2. The operator P¢a(r) is defined by P¢a(r) =

Pa(r) — < 0 l Pa(r) 10).

The tensor densities 004303 r’; —0), 0)) and [SGML r’, r”; —0)0, 0)], 0)2) both repre-

sent the distribution Of polarizable matter on the intramolecular scale. (10430, r’; —0), 0))

has applications in theories of local fields and light scattering in condensed media [4], and

in approximations for dispersion energies [2], collision-induced dipoles, and collision-

induced polarizabilities [2, 5] of molecules interacting at intermediate range. [304MB r’,

r”; -0)O, 0)], (02) and the dipole propagator determine the derivatives of the polarizability

density with respect to nuclear coordinates [3, 6],

I I II I II

damn, r ;—0), 0)) /8Ra =I dr [3375 (r, r , r ;—0), 0), 0)



ll

1 ,, I
XZ T8a(r,R). (8)

where Z1 is the charge on nucleus 1, and RI is the nuclear position. An analogous equation

also holds for any two adjacent-order polarizability densities.

The higher-order nonlocal polarizability densities can be expressed in terms of a

general nth order nonlocal susceptibility density x (n) defined by [2]

 

X;7;2...an+l (r,r’, r(")’;-0);0)-0)’— ...m("' ”20)’, 0)”, 0)"' ")

P r P r’ ...[P r(")’:l

1S 2
I: a,( )JOII[ 02( )]1112 a"+'( ) 1.,0

— 7
I II (ti-l), ("—1), ’

f1 1'12m,n(0)110—0)) (0)120—0) —0) —...0) )...(0),nO—...0) )

(9)

In Eq. (9), the sum over intermediate states 11,12,...,ln runs over all electronic states

including the ground state, and S represents the sum of all terms generated by pennuting

Pa: (r) , P (12 (r') , P +1 (rn’) and applying the same permutation to the frequencies
a

1'1

—0);0)— 0)’ — ...0)("_ ”’,0)’, 0)”, ..., 0)"- 1’ in the expression given.
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2.2 The Interaction Energy

When molecules A and B interact, the net force FI on nucleus I in A is the sum of

the force F1(0) on I in the absence of molecule B and an interaction force AF1. The interac-

tion-induced force is related to the AB interaction energy AE by

AF' = —aAE/aR‘a, (1)
a

where RI is the position of nucleus I. In this section I will show that the first-order and sec-

ond-order interaction (energy separated into the induction energy and the dispersion

energy) can be expressed in terms of nonlocal polarizability densities.

At long range, perturbation techniques are suited for calculating the interaction

energy order by order [7]. In Rayleigh-SchrOdinger theory the interaction energy AE can

be expanded as a series in the perturbation Hamiltonian H' [2, 8-12]. For molecules inter-

acting without appreciable charge-cloud overlap, H' is given by

AA AB _l

H’ = [p (r)p (r')lr—r'| drdr’, (2)

AA AB

where p (r) and p (r’) are the charge density operators for molecules A and B,

respectively ;

A .

f) (r) = Ze5(r—rj)+2218(r—RI); (3)

j I

the sum over j runs over the electrons assigned to molecule A, with position operators rj,

and the sum over I runs over nuclei in A with charges ZI and positions RI.

The first-order interaction energy AB“) depends upon the permanent charge densi-
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ties pAO (r) and p300“) of the unperturbed A and B molecules:

1 ,
AE( ’ = (‘I’OIH I‘I’O)

A B I I ’1 I

=Ip O(r)p O(r)Ir—r| drdr, (4)

where ‘PO is the product of the unperturbed molecular wave functions of A and B, and

PAoU') = <‘P,’,‘|pA mlwg‘) (5)

The change of energy for the system at second order is

A

g

(2) A B , A B A B , A B A

AB = - Z 0113‘}!ng Wk \ngwk ‘1'ng I‘I’g ‘I’g )/(Ek —E )

katg

A B , A B A B , A B B B

— 2 (‘1’8 ‘1’ng Iwg ‘1’“)(‘I’g ‘I’ulH I‘vg ‘I’g )/(Eu —Eg)

Uig

A B , A B A B , A B A A B B
— 2 (‘I’g‘I’ngI‘Pk‘I’u)(‘I’k‘I’uIHI‘I’g‘Pg)/[(Ek —Eg) +(Eu-Eg)]

u,k¢g

(6)

The first term of the second—order perturbation energy corresponds to the permanent

moments of B polarizing A. The induced moments of A then interact with the permanent

moments of B. The second term corresponds to the permanent moments of A polarizing B.

The third term corresponds to the second-order dispersion energy. The total interaction

energy for molecules at long range is the sum of the induction energy Nimind (the first

and second terms) and the dispersion energy AE(2)disp (the third term). The induction

energy is determined entirely by the first—order, linear response of each molecule to the



14

field of its neighbor. The dispersion (van der Waals) energy results from dynamic reaction

field effects, due to correlations of the spontaneous, quantum mechanical fluctuations in

charge density on the interacting molecules [2, 8-12]. By using the definition of the nonlo-

cal polarizability densities the first two terms can be rewritten as:

AE(2). d = —1/2Jdrdr’aAaB(r,r’)380a(r)SBOB(r’)
1n

-1/2jdrdr’aBaB(r,r')8A0a(r)8AOB(r'), (7)

where SAOGU) is the OL component of the unperturbed field of molecule A and

0L0!B (r, r’) denotes the static susceptibility aaB (r, r’;0, 0) . The third term can be writ-

ten as

AEmdisp = —(h/41t2)Igdwjdrdr'dr'drmaAaB(r, r"';—i0), i0))

B H I._' ' I H H!

xa 75(r ,r,10),10))Ta5(r,r)TYB(r ,r ). (8)

Equation (8) is equivalent to that obtained from reaction-field theory [2, 13-15] and the

fluctuation-dissipation theorem [8, 9, 16-23]
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2.3 Intermolecular Forces Obtained from Nonlocal Polarizability Densities

For interacting molecules with weak or negligible electronic overlap, within the

Bom-Oppenheimer approximation, the forces acting on nuclei derived from the Hell-

mann-Feynman theorem are equivalent order by order to those obtained from standard

perturbation expressions for the interaction energy [see Section 2.2] by differentiating

with respect to nuclear coordinates [24-26].

At first order, the force AF]l a on nucleus I in molecule A is determined by

—aAE (”/aR'aAF'La

a _

= —JpaAer(——)RpBO(r’’)Ir—r’l ldrdl", (I)

where pAO (r) and p30 (r’) are the expectation values of the charge density operators

A B

I) (r) and f) (r’) for the unperturbed molecules A and B [see Eq. (2, 2, 3)]

..A Ae,A

p (r) =p (r)+22‘8(r—R'>

l

= ze6(r—rj)+2z'8(r—R'), (2)

j

e. A

f) (r) is the electronic charge density operator for molecule A, the second term of the

right-hand side of Eq. (2) is the nuclear point charge distribution, the sum over j runs over

the electrons assigned to molecule A, with position operators r-, and the sum over I runs

over nuclei in A with charges ZI and positions RI.

The differential of the electronic charge density of molecule A is related to the

nonlocal polarizability 0370, r’) [3]
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ape,A0(r) -_ aVBPQBe’A (l‘)

aR'a aR'a

= —VBZIIdr’a€Y(r, r’) T70! (r’, R') , (3)

where To”3 (RI, 1') is the dipole propagator: Tap (RI, r) = VaV IRl - rl_1. Greek sub-

scripts denote Cartesian tensor components, and the Einstein convention of summation

over repeated Greek subscripts is followed throughout. Substitution of Eqs. (2) and (3)

into Eq. ( 1) shows that the first-order force is determined by the unperturbed charge den-

sity pg (r) of molecule B, and by the first-order interaction-induced change in the elec-

tronic polarization of molecule A, Pig (r) [24]

-3 B

AFLG = Z'J(RI—r)a|RI—rl p 0(r)dr

+ZIJ‘TaB(Rl,r)Pig(r)dr; (4)

where

Pig”) = Jdr’aABy(r,r’)SgY(r’), (5)

in terms of the field 83 Y (r’) due to the unperturbed charge distribution (electronic and

nuclear) of molecule B. Similarly, the first-order force on nucleus J in molecule B depends

on orgy”, r’)

AFJ ZJJ(RJ—r)a|RJ—ri—3pA0(r)dr
1,0-

+z’jTaB(R’,r)Pj:g(r)dr; (6)
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and

Pig”) = Idr’aBBy(r,r’)33Y(r’). (7)

The net force on molecule A is obtained by summing overI and the net force on B by

summing over I. Since the polarizability densities of A and B are unrelated (in general),

force balance is not evident from a simple comparison of Eq. (4) with Eq. (6).

At second order, the force is determined by differentiating the second-order inter-

action energy which is the sum of the induction energy ABS: and the dispersion energy

AB (2) [see Section 2.2],
disp

AF -8AE (2’ /aR'a
2,0

= -8(AEi(n2c: +AE335’p) /8Rla

I I

= AF 2, a,ind+AF 2,0t,disp' (8)

The second-order induction force is

 

 

A

8a (r r’)
I , i B B ,

AF 2.a,ind =1/2jdrdr ‘37] 3 OB(r)Ss 07(r)

an a

A A

a 3 (r)8 (r’)

+1/2Jdrdr’aBBY(r,r’) [ DB 1 07 ].(9)

an 0,

Hunt et al. have shown that linear and nonlinear response are related by [3, 6]

8a (r r’)
57 ’ _ I II I II II IT_ zjdr emu; ,r )T8a(r ,R ), (10)

a
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and the differential of the field of the unperturbed molecule A is

BSAOBU) rilapAOO’)

aRI
(I

= —]dr'v Ir— (11)
B{R

(l

Substitution of Eqs. (2) and (3) into Eq. (11), and Eqs. (10) and (11) into Eq. (9) shows

that the second-order induction force AFIZ, a, ind is determined by P? g (r) and

Pg’g ind(r) assuming that nucleus I is in molecule A; therefore it depends on

BA (1., rl’ r”):

1

AF 2,0,,“ = z'jdrTaB(R',r) [szgm +P;:g,ind(r)], (12)

where

9 I II III A I I II

Fianna”) = Jdr dr dr aBY(r,r )TY5(r ,r )

B II III A III

x083” ,r >304)” )

l

+2ldr'd'"l3375(r. I", r")3807(r') 3805(r")- (13)

The second-order induction force on nucleus J in molecule B has a similar form to Eq.

(12).

J

AF Mind = z’jdr'raflmir) [Pj;g(r) +P;’,g’ind(r)]; (14)

Eq. (14) depends on BB (r, r’, r”) , but Eq. (12) depends on BA (r, r’, r”) , so again

force balance is not evident.

The dispersion force on nuclei in A comes from the second-order, dispersion-

induced change in the electronic polarization of A itself as can be proven by differentiat-
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ing the second-order dispersion energy with respect to nuclear coordinates;

(2)
AE disp = —(h/41t2) Izdwjdrdr'dr'drmaAaB(r,r"';—i0),10))

B II I._‘ ' I II III

x0t 75(r ,r ,10),10))Ta5(r,r)TYB(r ,r ). (15)

By use of Eq. (10) generalized to the imaginary-frequency dependent polarizability den-

sity, the dispersion force is obtained in the form

1 (2) 1

AF 2,0t,disp _ _aAEdisp/aR or

Z'jdrTaBm‘, r)P;"3,disp(r). (16)

e.A

The polarization P2 B disp (r) is determined by the field from the fluctuating polarization

of molecule B, and by the hyperpolarizability density of A, taken at imaginary frequencies

[25]

C,A _ 2 N I II III IV

P2,B.disp(r) _ —(h/41t )jodwjdr dr dr dr

x [39w (r ', r ", r;-i0), i0), 0) Tye (r ", r "’)

B III . ' ° . '

XOL E:§(r ,r'v;—10),10))TC5(rw,r ). (17)

The dispersion force on nuclei J in molecule B can be derived in the same way and has a

form similar to Eq. (16),

J _ (2) J



20

= zjjdr'rafim’,upggdispm. (18)

The polarization P; g, disp (r) is determined by the field from the fluctuating polarization

of molecule A, and by the hyperpolarizability density of B taken at imaginary frequencies.

The hyperpolarizability density of B is unrelated to the hyperpolarizability density of A, in

general.
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2.4 Adiabatic Approximation

In quantum mechanics an adiabatic process is a process for which the change of

the Hamiltonian versus time is sufficiently slow to avoid quantum jumps from one eigen-

state of the instantaneous Hamiltonian to another [27, 28]. If the external perturbing

potential is small enough that perturbation theory can be used, it is possible to extend this

treatment to a more general problem in which the perturbing potential undergoes a large

change, but over a long period of time. Bohm [29] derived the condition that a process is

adiabatic if the rate of change of the perturbation V is slow compared to the separation AB

of the initial state from the neighboring states, in the sense that the expectation value of

dV/dt must obey dV/dt « (AE) 2m.

It is possible to perturb the electronic states of a molecule by slowly bringing

another molecule near the first. Davydov [30] has defined an adiabatic collision as fol-

lows: if the effective collision time is appreciably larger than the period 0)‘ lnm which char—

acterizes the electronic energy spectrum, the collision is electronically adiabatic; in other

words, in an adiabatic collision the inequality (0anA) » 1 is satisfied, where D is the

distance of closest approach and 1) is the velocity of the approaching particle (approxi-

mated as constant). In Section 2.3 the adiabatic energies of two molecules are discussed,

based on the assumption that the nuclei move sufficiently slowly compared to the elec-

trons that the force between the molecules can be calculated by differentiation of the adia-

batic interaction energies [31].

Using the adiabatic approximation, one can assume that the wave function at any

instant of time is nearly equal to that which would be obtained if dV/dt were zero, and V

were equal to its instantaneous value. Two different approaches can be used to calculate

the wavefunctions and the expectation values of forces. The first is based on time-inde-

pendent perturbation theory with a fixed static external perturbation. The second is based
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on time-dependent perturbation theory [32], but the nonadiabatic term in the expansion for

the wavefunction is subtracted out. Both methods are consistent with the force relay con—

dition [33].

To illustrate the second method, let us suppose that the perturbation V(t) acts only

during some finite interval of time. Let the system be in the nth stationary state before the

perturbation begins to act (or in the limit as t—) —oo). At any subsequent instant the state

of the system will be determined by the function ‘I’ = zakn‘l’fio) , where, in the first-

order time-dependent perturbation approximation,

._ (I) __ i : imnfi' ,
akn — akn — —%I_kane dt for k¢n,

(1)

_ (1)_ i r ,
an" —1+ann —1_1—’1 -..,oVnndt'

For a perturbation V(t) that tends to zero as t —-> —oo and to a finite non-zero limit

as t —-) +00, an integration by parts in Eq. (1) gives

“.0 I . I

kn m) r

. r kn

z z ' ane 8an e
V ‘mkfl d I t

k" it -~ *" fin) -°° at’ fin)
kn _°° kn

  dt’. (2)

The first term vanishes at the lower limit, while at the upper limit it is formally identical

with the expansion coefficients in time-independent perturbation theory; the presence of

an additional periodic factor exp(imk,,t) is merely due to the fact that “kn are the expansion

coefficients of the complete wave function ‘1’. At any instant of time, the first term simply

gives the change in the original wave function Tum) under the assumption that V is a con-

stant and equal to its instantaneous value, while the second term describes transitions into

other states. The magnitude of the second term depends on Ban/Bt’, which can be

neglected if it is small enough.
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2.5 Rigid Translation

The forces on nuclei in a molecule can be obtained by using the Hellmann-Feyn-

man theorem [34, 35] as well as from standard perturbation theory by differentiation of the

interaction energy with respect to nuclear coordinates [24]. Because the interaction energy

at different orders within the nonlocal polarizability density theory depends on electronic

charge densities, nonlocal polarizability densities, hyperpolarizability densities, and

higher order susceptibility densities, it is necessary to know the derivatives of nonlocal

polarizability densities with respect to nuclear coordinates in order to prove force relay

and force balance. It is also necessary to determine the effect on nonlocal polarizability

densities of a simultaneous shift in the coordinates of all of the nuclei of the molecule in

question. This section focuses on simultaneous shifts of all of the nuclei.

If the electrons adjust adiabatically to the nuclear motion, the whole molecule

moves uniformly: At an arbitrary but fixed nuclear configuration, let pe(r) denotes the

expectation value of electronic charge density operator be (r) , and p°s(r) denote the elec-

tronic charge density after an infinitesimal shift, and peo(r) denote the original electronic

charge density, and let 5R denote the displacement.

P 0 SR 965

r-8R
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Then pes(r) = peo(r - 8R). Because SR is very small, a Taylor expansion can be used to

connect pcs(r) and pe0(r):

 

P:(r) = p§(r—5R)

= 980‘) -5R-fo,(r); (I)

also 8

e p°(r)

P:(r) = potr)+6R-2 ° . (2)
I

,3]:

where I runs over the nuclei, and V denotes differentiation with respect to the spatial coor-

dinate r. Comparison of Eqs. (1) and (2) shows that the effect on the electronic charge

density of a simultaneous shift in the coordinates of all of the nuclei of a molecule is deter-

mined by the gradient of the charge density

303(r)

aR‘

 = —Vpg (r) . (3)

t

The individual terms on that left-hand side of Eq. (3) are nucleus-dependent and the right-

hand side is purely dependent on spatial coordinates for the electronic charge density. The

rest of this section shows how to build up an analogous connection for each nonlocal

polarizability density.

Equation (3) can be related to the nonlocal polarizability density 0t(r, r’) by

using the relations p (r) = —V - P(r) and

P§(r) = Idr’a55(r, r’) f,“(r'). (4)

Then the left-hand side of Eq. (3) becomes

3930') _ 9VaP§(r>
 



Sf,“ (r’), (5)

where E,“ (r’) is the static field which1s derived from the scalar potential (Dex(r’) , via

the relation SBX(r’) = —V’B<I>ex(r’). The derivative of 0t(r, r’) with respect to

nuclear coordinates in Eq. (5) can be derived from the definition

aBB (r, r’)

(‘i’OIP5(r)|‘Pk)(‘I’k|PB(r’) ‘I’ >
= (1+C)2’|: E _E O], (6)

k k 0

 
 

where C denotes complex conjugation, and P is polarization operator. The prime denotes

the summation over all excited states k, excluding the ground state ‘I’O. By using integra-

. . ext ext .

tion by parts and the relat1ons 8a (r) = —Vad> (r), p (r) = -V - P(r) , the r1ght-

hand side of Eq. (5) can be expressed as below:

801 (r,r ’)

-2V8Jdr I5___B______ SEXI(rI)

3R]

(1

90,,(1‘) Pkg“)
=—Jdr’Z(I+C)2’aa[R‘ E_E

Ra k 0

 

 

(r) 8 ’+ pox pko” ) ]¢cxt(r,). (7)

ER ‘ Eo 8R;

In Eq. (7), the derivative of the energy difference a (Ek - E0) /8RL between excited state

‘I’k and ground state ‘I’O summed over nuclear coordinates is zero, Equation (3) also
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A C

P (r)

hand side of Eq. (3) into Eq. (7) and integration by parts give

holds for the expectation value p0k (r) = (‘I’O ‘Pk ). Substitution of the right-

[Vapgkmjpiom

—Idr’(l+C)2’[ E —E

k k

 

0

C I e I

90ktr1V upkotr)

+ E E ]¢m(r’).

k— 0

 

VBIdr’[VaaBB(r,r’) + Va’a5B(r,r’) 1 SE“ (r’). (8)

Equation (8) that shows the sum of the derivatives of the nonlocal polarizability density

0t (r, r ’) with respect to nuclear coordinates is determined by the gradients of the polariz-

ability density:

BOLBB (r, r’)

 = --V a (r,r’) —V '0t (r,r'). (9)
I (1 SB (1 SB

1 3R
(1

Similar steps can be used to find the effect on the hyperpolarizability density [3 of a

simultaneous shift in the nuclear coordinates, which is given by

861435 (r’, r”, r)

, an'
a

 = —V’aBYB5 (r’, r”, r)

_VIIaBYB8 (r', rll, r)
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—VGBYB5(r’,r”, r). (10)

In general, the sum of the derivatives of the nth order nonlocal polarizability den-

sity with respect to nuclear coordinates is

(n) I II (n+1)!

ax 76”.“)(1' ,r ,...,r )

l

a

 

Z
, an

(n+1),
I (n) I II

= —V ax YB...(o(r , r ’ 0.0, r )

II (n) I II (n+1);

—V ax YBmm(r,r ,...,r )—

(n+l), (n) , ” (n+1),
_Va x YB.,.w(r , r , 00-, r )0 (1])

In Eq. (1 l), x(1)(r, t") denotes 0t(r, r'), x(2)(r, r', r") denotes [3(1', r', r"), and x(3)(r, r',

r", r'") denotes y (3)(r, r', r", r'"). Eq. (1 1) holds not only for the static response tensors,

but also for the imaginary-frequency susceptibility densities.
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CHAPTER III

FORCE RELAY AND FORCE BALANCE

3.1 Force Relay

According to Epstein’s force theorem [see Appendix A] the force on any electron i

vanishes if the electronic state adjusts adiabatically to an external perturbation. In effect,

the force due to the external field passes through the electrons and acts on nuclei. This sec-

tion shows how the force is relayed from the electrons to the nuclei.

Let Fe be the total force operator on N electrons,

Fe = F¢N+FCS (1)

where F6N is the force operator on the electrons due to the nuclei, and Fc8 is the force

operator on the electrons due to a static, nonuniform external field, 86’“ (r) . If we use the

A e o o o 0

electronic charge density operator, p (r) wr1tten as a function of the contmuous vanable

r, and a point charge distribution for nuclei, F 6N and Fe8 can be expressed as follows:

[see EC1-(2,2.3)]

FCN .—. Idrpc(r)221(r-Rl)lr—Rl |—3 (2)

I

and

Fes = jdrf) (r)8"“(r) (3)

3O
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As the external perturbation is weak one can use time-independent perturbation

theory to derive the force relay condition. The expectation value of the total force is zero

in the perturbed ground state. That is,

(Fe) =(‘1’0+‘1’1+‘1’2+...|Fe|‘1’0+‘1’l +‘P2+...) = 0, (4)

and therefore

(F63) = -<FeN)' (5)

In Eq. (4) ‘PO is the ground-state wave function for the molecule in the absence of the

external field, and ‘1’" is the nth correction to the ground-state wave function. The equality

in Eq. (5) holds order by order in the external field. The (n+1)st order term in Eq. (5) can

be rewritten as follows:

Idrp:(r) SW“) = —Idrp:+ 1 (1‘)2:Zl (r — RI) lr — Rl l-3. (6)

1

Equation (6) shows that the external force on the nth order component of the elec-

tronic charge density p: (r) is relayed in full to the nuclei by the (n+1)st order component

of the electronic charge density p: + 1 (r) . When the external field may be correlated with

the changes in the electronic charge density of molecule A - as for induction or dispersion

forces due to interactions with a second molecule - the force relay condition changes from

Eq. (6) to

[drtp°"‘(r18°’“(r)1,

n+1

= —jdrpe"‘ (r)ZZl(r—Rl)lr-Rl I'3, (7)

I
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where [pe’ A (r) 36“ (r) ] n denotes the change AF:XI in the external force on the elec-

trons,

 

n Ae,A ext

MS“: 2011,( jdrp mix (r) ‘I’n_k). (8)

k=0

In Eq. (8), ‘Pk is the kth order term in the normalized, perturbed wave function, including

e, A

the field source, p is the electronic charge density operator for molecule A, and

ext

3 (r) is the field operator. The sum on the right-hand side in Eq. (7) runs over nuclei I

in A only. Section 3.2 shows that the condition in Eq. (7) is met at first and second order in

the interaction between two molecules A and B.
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3.2 Force Relay within the Nonlocal Polarizability Density Theory

This section provides a proof that the force relay condition is met within the nonlo-

cal response theory for a molecule in a static, nonuniform external field that is indepen-

dent of the molecular charge distribution. The force relay condition is [see Section 3.], Eq.

(6)]

jdrp:(r)se’“(r) = -jdrpf,,. (r)zz'(r—R')|r—R' |’3 (1)

I

By using the relation between the electronic polarization, P", and the electronic

charge density, p (r) ,

V-P:(r) .-.- —p:(r), (2)

one can transform the right-hand side of Eq. (1) into

Sam) s-ZZlerpiH (r) (r — Rl)alr - RI [’3

I

= XZIJ'drTaB(RI,r)P:+LB(r). (3)

I

and this form is used to establish the force relay condition within the nonlocal polarizabil-

ity density theory.

First, when n = 0,

saw) = zz‘jdrrafiminpjfiu). (4)

l



34

The first-order electronic polarization P: (r) is related to the nonlocal polarizability den-

sity osz(r,r’) by [see Section 2.1]

PiB(r) = Jdr’aBY(r,r’)8:Xt(r’). (5)

The nonlocal polarizability density also gives the change in the electronic charge density

(or the electronic polarization) due to an infinitesimal shift in nuclear position [1].

BF; 7(r’)

8R1 = ledraYB(r’,r)TBa(r,Rl). (6)

(1

Eq. (6) expresses a general, quantum mechanical connection between linear response ten-

sors and the permanent charge distribution. One can relate Eq. (4) to Eq. (6), using Eq. (5),

the Born symmetry[2] of the nonlocal polarizability density [0tYB (r’, r) = aBY(r, r’) ],

and the symmetry of the dipole propagator [T0113 (R', r) = Tpa (r, R') ].

saw) = Zz'jdrTaB(R‘,1-)P';”B(r)

1

ext

Y

= zzljdrdr’TaB (RI, r) aBy(r, r’) S (r’)

1

8P3, Y(r’)

an'
(I

= zjdr’83m (r’) (7)

1

The static field 8:“ (r’) is derived from the scalar potential (hm (r’) , via the relation

1 , t . . . . .

S“ (r ) = -V YD" (r’) , where V ’ denotes d1fferent1at1on W1th res ct to the coord1—
11 11 11 p6

nate r’y. Hence by double integration by parts

301(0) = Zjdt"[—VY’<I>‘”‘t (r') :| 81%;)

1 a
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ex , 8[VY’P°. (r’)]

= ;jdr'cb [(r) 31::

(I

 

893 (r’)

811‘ '
(I

(8)
 = -2J‘dr’<l>¢xt (r’)

I

The effect on the electronic charge density of a simultaneous shift in the coordinates of all

of the nuclei [see Section 2.5] is given by

3133 (r’)

311'
l a

 

= -Va’pf, (r’) . (9)

Substitution of Eq. (9) into Eq. (8) and an integration by parts yield

saw) = jdr'pg(r’)8;’“(r’). (10)

Thus, the force relay condition at lowest order (n = 0) has been proven within the nonlocal

polarizability density theory:

—3

—Zz‘jdrpj(r) (r—R')a|r-R'| = Jdr’p8(r’)86a“(r’). (11)

I

Next, I will prove the force condition in Eq. (1) for n 2 1. In Eq. (3) for Sa (n) ,

P:+1’B(r) is determined by the (n+1)st order polarizability density cast in terms of

polarization operators, xv” ]) (r, r’, r”, ..., r (" +1)’) . Thus

sum): EZ'IdrTaB(Rl,r)P:+BB(r)

I
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= 1/(n+1)IZZIJdrdr’dr”...dr("+l)’

1

+1 I II +1, I I 1 ”

XXézau;(
rar 9r 9...,r(n

) )3:X (1.)ng (r )...

x82)XI(r(n+I)I)Ta
B(r,RI),

(12)

(n+1),

where r denotes the spatial coordinate r with n+1 " primes." Hunt has shown that

linear and nonlinear response are related by [1,3]

Bays (r I, r II)

 

 

_ I I II I

3R1 — ZIdl‘BY5B(l‘,r ’r)TBa(r9R ),
(13)

a

and an analogous relation holds between x(") and x(" + 1’

rI I ,

3x§§)Hw(1”...,r‘"+,
))

1
8Ron

I 1 I II ,

= ZId'Xigtmis” ” ,...,r("+” ,r)TBa(r,R'). (14)

Therefore

Sa(") : 1/ (n + 1) IZJdrdr’dr”...dr (
H 1)’

1

() 1.! (+1),

«3767;.m( l'”,...,r " )

311‘
at

ext ,

8, (r )
 

xs;*‘(.-») ...szrwc”). (15>
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Now the relation between the nth order polarizability density and its gradient is used [see

Section 2.5]

 

”V;n+l)’x.;g?..w(r’ar”y---,r(n+l)’)- (I6)

By use of the permutation symmetry of x (n) ,

Sam): —(1/n!)jdr’dr”...dr("+”’

XV I (n) r’, rll,...,r(n+l)l 8X! r!

X ngt (r,r) Sext (l‘ (n+ 1);)

(o 3 (17)

and so

Sa(n)= (l/n!)de'd
r”...dr (n+I)I VY’VS”...V

$H)’

(I!) I II (n+1),

xxyamm(r,r ,...,r )

X [Va,¢ext (r,)](bext (r’,) ”.(bext (l' (n+ 1);)
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—jdr'p: (r’) [Va,¢ext (r’)]

jdr’p:(r’)8;’“(r’). (18)

This completes the proof that the force relay condition is satisfied within the nonlocal

polarizability density theory, for fixed external fields 8:“ (r) .
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3.3 Force Relay Condition and Force Balance

a. Force Balance at First Order

The sum of the first-order forces on nuclei of molecule A is

EAF‘W = zz’jm’ -— r)alRl — rl—3pBO(r)dr

I I

+22le (Rl r)Pe’A(r)dr (1)
a8 ’ 1,13 ’

I

where

Pigm = Idr'aABY(r,r’)Sgy(r’), (2)

in terms of the field 83 Y(r') due to the unperturbed charge distribution (electronic and

nuclear) of molecule B. From the zeroth-order force relay condition, the second term of

Eq. (2) can be replaced by a term containing the unperturbed electronic charge density of

A and the unperturbed charge distribution of B,

ZZlIdrTaB (R1, r) P??? (r)

1

= -221IdrPI'A(l') (l' 'RIMI" “R1 l-3

1

jdrp°”‘o(r)sga(r). (3)

After substitution of Eq. (3) into Eq. (1 ), Eq. ( 1) can be rewritten as follows

2M“... = 2253,”)
I l



4O

+jdrpe’A0(r)Sga(r). (4)

That is, the sum of the first-order forces on the nuclei of molecule A equals the force on

the entire unperturbed charge distribution ofA due to the entire unperturbed charged dis-

tribution of B. Equation (4) can be decomposed further into four terms, giving the total

force on nuclei in molecule A as

XAFIM- = ZZIJpS’BU) (RI-r)alRI—r|—3dr

I I

+ZZIXZ’(R' — R’)a|R' —R’l_3

I J

+zz’jp3’A (r) (r — RJ)alRJ — rl-Bdr

.I

+Jp3’A(r)p;‘B(r’) (r—r’)alr’—rl—3drdr’. (5)

Similarly, for nuclei in molecule B,

J J A J

ZAFMJL = 22 80,010!)

J J

+Idrpe’Bo(r)88a(r); (6)

and so

2M1... = EZ’JPS’Atr) (R’—r)a|R’-r|'3dr

J .I

+ZZ'ZZ’ (RJ — R‘) alR’ — R1 l—3

I J

+zZlJp3’B (r) (r — RI) alR' — rl-Sdr

1



41

+jp§B(r)p§'A(r’) (r-r’)a|r’-r|—3drdr'. (7)

Comparison of Eqs. (5) and (7) shows that the first-order forces on A and B are equal and

opposite, within the nonlocal response theory.

b. Force Balance for Second—Order Induction Forces

The sum of the second-order induction forces is

2111,“, = XZ'JdrwR',r>1PT:E<r>#:1311101], <8)
I I

where

Fianna (r) = Idr'dr"dr"'agy(r, r')TY5(r', r")

x (138 (r r'") 83.5 (r "')

1
+-2-jdr'dr"BB‘ys(1-, r ', r ") 330,0 ') 8305 (r "). (9)

Substitution of Eq. (2) into the first term of Eq. (8) gives

EZlIdrTaB (R', r) Pig (r)

I

= Zz‘jdrdr'TaBm',r)a‘§y(r,r’)83,(r’)

I

= 22' sfiam‘), (10)

I

where
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SEQ(R') = Idrdr’TaB(Rl,r)0th(r,r’)83"y(r’). (11)

Equation (10) gives the force on the nuclei of A, due to the first-order, interaction—induced

field from molecule B, 8113, a (RI) , which depends on the change in charge density

induced in B by the field from the entire unperturbed charge distribution of A.

The second term of Eq. (8) contains two parts

zz‘jdrTaB (R', r) 1’31;in (r),

I

= zz'jdrdr 'dr "dr ~er43 (R', r) 013,0, r ') T115 (r '. r "1 a3, (r r "') s; E (r "')

I

1
+§2Z1Idrdr 'dr "TaB (R‘, r) [3&5 (r, r ', r ") 830,0 ') 8305 (r "). (12)

1

If one applies to Eq. (12) the same equations used to prove the force relay condition in

Section 3.2, the first term in Eq. (12) becomes

Zzlerdr Idr IIdr III'l‘aB (R1, r) agy(r, l.I) T75 (r I, r II) age (r II, I. III) 838 (r III)

I

8P8’¢(r') B

= 1 = ;Idr __8R:131.11“. ). (13)

Then

Tl = [drpe’Aou-mfiam, (14)

where Eqs. (7)-(10) of Section 3.2 have been used to establish the equality of Eqs. (13)
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and(l4),

aPe’Au’)
O, I

-—Yl—- = z‘jdrTaB(R',r)a§Y(1-,r ), (15)

and

and

818,7(r’) : IdrIIdrIIIT‘Y6(rI’rII)ag€(rII,rIII)83£(rIII). ('6)

Equation (14) gives the force on the unperturbed electronic charge distribution of A due to

the first-order correction to the field from B. The second term in Eq. ( 12) can also be rear-

ranged by using the same procedure used to prove the force relay condition within the

nonlocal polarizability density theory [see Section 3.2]:

I , ,, I II B I B ”EXz'jdmr dr TaB(RI,r)B§,5(r,r ,r )8 o,(r )3 050' >

I

 

A I II

_ l I II 75(1. ,l' ) B I B II
__ 2211.31. d 8R; 8 01/“ )8 05(r ). (17)

Equation (17) is equal to Sa (n = 1) from Section 3.2, and it has already been proven in

Eqs. (12)-(18) of Section 3.2 that

C

Sa(n =1) = jdrpn'fl (”33a”). (18)

Eq. (18) gives the force on the first-order correction to the electronic charge density of A,

due to the unperturbed charge distribution of B. From Eqs. (10), (14) and (18), the sum of

the second-order induction forces is



I I B I

zAF 2’ a, ind : 22 8 I, (I (R )

I I

+Jdr[pe'A1(r)Sga(r) +pe’A0(r)S‘fia(r)]. (19)

The first term in Eq. (19) is due to the direct force on the nuclei in A from the first-order,

interaction-induced change in the charge density of B. The second term gives the induc-

tion force on nuclei in A due to the response of electrons in A to the field from B, at sec-

ond order in the interaction. The second term is also obtained by direct evaluation of the

induction terms in [pe' A (1')ESB (r) J 1' Hence, the force relay condition is met for the

second-order induction effects.

To show that the induction forces balance in the theory, it is useful to designate the

force terms as F [p?’ x —) pjo’ Y] according to their source S (electrons e or nuclei n) and

molecule of origin X (A or B), and the object O in molecule Y, on which the source acts; i

and j indicate the orders of the charge densities in the intermolecular interaction. Equation

(19) implies

ZAF'z. ma = F198 8 —> 91' A] + F193 B -> 01"]
I

+F[p§’B—>p3’A] +F|:pT'B—>p3’A]. (20)

Similarly, for nuclei J in molecule B

2“]; ind = FIPS' A ‘9 Pi' B] + FIPS' A —’ Pi’ B]

J

+F[p‘;’A—>p3‘3]+F[p'i‘A—)p3’8]. (21)

The terms in Eq. (21) correspond one-to-one with the terms in Eq. (20), taken in reverse
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order. Then from the equalities

F938 B—’Pn’=A] ‘FIPT'AHPS'V (22)

F1913 ->1>3 AA]=-F[p$’ —>p, B] (23)

Fpol: BTP1HI=TFIPI “’90 B] (24)

and

F1913 4133"] =-F[PS' 601B] (25)

it follows that the induction forces balance within the nonlocal response theory.

c. Force Balance for Second-Order Dispersion Forces

The sum of the dispersion forces XIAFIZ' disp on the nuclei in A, due to the elec-

trons in A, is obtained directly from Eqs. ( 16) and ( 17) in Section 2.3. To prove force bal-

ance, it is easier to use the derivative of Eq. ( 15) in Section 2.3 with respect to nuclear

coordinates,

A .
8a By(r,r , 1011(1))

 ZAF"20Ldisp: (h/41t) jdtoXIdrdr'dr'or'" a 1

R
I I 01

IIII II B II III - -

XTyfi” ,r )(Jt88 (r ,r ;-1o),1(o)TEB(r ,r). (26)

Equation (9) in Section 2.5 holds not only for the static response tensors, but also for the

imaginary-frequency polarizability density OLB7 (r, r ';-i(o, ico) [3]; that is
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8am”, r';i(o)

 3R1 = —Va0(BY(r, r';—i(1),i(i)) — Va aBY(r, r';—i(o, ico) , (27)

l a

Substitution of Eq. (27) into Eq. (26) shows that the sum of the dispersion forces on nuclei

in A depends on the gradients of 0‘37 (r, 1' ';-im, im) :

ZABJ’ALOLJ,isp = —(h/41t2) igdwldrdr'dr'arm

1

A y 0 - I A ' . a

X[ I ;— ’ V ) ;_ I J
VaaBYO' r 1(1) 1(1))+ a 0‘13?” r 1(1) 10))

I H B H ”I ' ' HI

XTyB” ,r )oc68 (r ,r ;—1(1),10))TEB(r ,r).(28)

Equation (28) is used next to prove that the force relay condition is satisfied for dispersion,

within the nonlocal polarizability density theory. The first-order dispersion term in the

product of the external field and the charge-density operator for molecule A is:

Jdr[pe'A(l‘)SB(r)]1,disp

e, B

=-(1+C)jdr(\¥0l[b Ami! (r)]GA$B(0)VAB|‘PO>1 (29)

where C denotes complex conjugation, ‘I’o is the ground state of the unperturbed AB pair,

VAB is the perturbation due to the AB interaction, and GA 6 B is a particular term in the

reduced resolvent for the AB pair (cf. Eq. (4) in Section 2.1): states of the AB pair give a

nonzero contribution to GA 6 B only if both molecules A and B are excited. Eq. (29) trans-

forms to
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1dr 1p“ (r) 8" (011,,“p

: _(] +C)J‘dl‘dl"dl‘ "drINT88(r, r')TB.Y(r", l.III)

   

  

A A

X2'( 111;; VaP5(r) ‘1'; X ‘11; PB(r")|~113)

, B B , B B B B
x2(‘1’0 Pen-)anwn Py(r)‘l’0)

x [(E;_Eg)+(1a§_1ag)]“. (30)

For simplicity, it is assumed that the states of A and B are real. Then by use of standard

integral identities, the definition of the nonlocal polarizability density [see Eq. (3) in Sec-

tion 2.1], index relabeling, and the symmetry of the dipole propagator T, the right-hand

side of Eq. (28) is obtained. Since Eq. (28) follows both from the standard perturbation

theory [see Eqs. (16) and (17) in Section 2.3] and from Eq. (29), the force relay condition

holds for dispersion, at leading order.

For force balance, Eq. (28) can be rewritten after an integration by parts

zAFIhAlmdisp = (h/41t2) Igodconrdr'dr"dr"'[ag‘Y(r,r';—iw, im)

I

I II B II III, ° ' III

xT75(r ,r )ase (r ,r ,—1(o,1w)VaTEB(r ,r)

+01A (r r"—i0) i(())V' T (r' r")0tB (r" r""—i0) im)
BY , I I (I 75 I 58 7 9 9

xTEfl(r"',r) 1. (31)
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The same analysis, applied to nuclei J in molecule B gives the result on the right-hand of

Eq. (31), but with VaTeB (r "', r) replaced by V"'mTEB (r "', r) and V’mTY5 (r’, 1'”)

replaced by V”mT76 (r’, r”) . From the relations VaTefl (r "', r) = —V maTeB (r "', r)

(r’, r”) = —V” T (r’, r”) , it is clear that dispersion forces balance in theandV’ T a Y5
(175

nonlocal response theory.
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CHAPTER IV

MOLECULAR SOFTNESS FUNCTIONS

4.1 Introduction

Over the years scientists have tried to categorize the behavior of molecules under

different circumstances. From the earliest observations of some metal oxides and sulfides,

scientists are able to classify metal ions into two groups, hard and soft, by comparing the

differences between their cohesive energies of the metal oxides and sulfides [1, 2]. Pear-

son [3] extended this work by adopting the generalized concept of acid and base intro-

duced by G. N. Lewis to the entire range of chemistry.

The principle of hard and soft acids and bases [4] (HSAB), and the principle of

electronegativity equalization [5] provide a framework for simple physical interpretations

of complex phenomena. Parr and Yang [6] related the parameters associated with these

principles, hardness[3, 4, 7, 8] and softness [9], and electronegativity with fundamental

variables of density functional theory [10]. Through their work, a solid theoretical basis

has been provided for these concepts, this allows us to build a bridge between these con-

cepts and wavefunction theory which provide an accurate description of the electronic

structure of chemical systems, but otherwise far from providing a framework for simple

interpretations. This also makes it possible to transform the relevant information contained

in the wavefunction into an almost pictorial representation, ready to be analyzed with the

principles mentioned above [8, 10-20]. The purpose of this chapter is to provide an over-

view of the concepts of density functional theory needed for applications in Chapter V,

and its relation with the nonlocal polarizability density theory.

50
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a. Density Functional Theory

Density functional theory originated with a 1964 paper by Hohenberg and Kohn

[21], and its chief method of implementation is described in a 1965 paper by Kohn and

Sham [22]. An earlier model which is regarded as the source of modern density functional

theory is the Thomas-Fermi model [23-26], from which originated the idea of an "electron

gas. " In this model all properties of a system are expressible in terms of the electron den-

sity p (r) , the number of electrons per unit volume, as it varies through space. The Tho-

mas-Fermi model fails to give an accurate description of electronic systems of chemical

interest; for example, it cannot account for chemical binding [27]. But it is now possible to

characterize the properties of any system in terms of its electron density via the density

functional description.

The Hohenberg-Kohn theorem ensures that the exact ground state density can be

calculated from a variational principle involving only the electron density p, without solv-

ing the Schrodinger equation exactly. For any system, the ground-state electronic energy is

a functional of the density, given by the formula

B1p1=[p(1)v(1)dr,+F1p1. (1)

Here v is the external one-particle potential (for example, -Z/r for an isolated atom) and

F[p] is the sum [21]

Flo] = T1111 +V,,(p1, (2)

where T [p] is the electronic kinetic energy and Vee [p] is the electron-electron repul-

sion energy. Both T [p] and Vee [p] are well-defined, universal, but unknown function-

als of the density.

The spin-free density may be expressed in terms of the wavefunction,
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p(l) = N]|\P(1,2,...,N)|2dm,dx2dx3...de, (3)

where dxi = dmidti is a spin-space volume element, with dd)i the spin part. The number

of electrons is given by the formula

N=N[p] =[p(1)drl. (4)

The quantity N, like E, is a functional of p.

Suppose there is some p' from some approximation to the exact ground-state den-

sity p, normalized to the proper number of electrons, N [p’] = N. Using the same defini-

tion as Eq. (1), the energy associated with the electron density p' is given by

E,1p’1 =[p'(1)v(1>dr.+F(p'1. (5)

and Ev [p’] obeys the inequality

Ev [P'] 2Ev [P]; (6)

when p’ equals p, the equality holds and results in the true energy, E [p] . That is to say,

the density p and energy E are determined from the stationary principle,

5{E,lp’] —uN[p’]} = 0, (7)

where p. is a Lagrange multiplier. In Eq. (7) an arbitrary variation in p’ is allowed; the

potential v is fixed. If the solution making E an absolute minimum is selected from all

possible solutions, the associated value of u is characteristic of the system of interest [28]
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and is called the chemical potential of the system. The chemical potential is related to the

Mulliken definition of electronegativity [29, 30] (xM) through

- a—P- (tar—p1“ ' “Jd'aN ' Id” 5p 31:

_ 8E) ~_I+A~_

- (3N v(r)= _ XM,
(8)

where v (r) , I and A are the external potential, the ionization potential and the electron

affinity, respectively.

From Eq. (7) and a theorem from the calculus of variations [3]] it follows that

5E[p]

= — . 9

ll [(8p(1))v:|p=p[v] ()

The quantity 5E/8p is the functional derivative of the Hohenberg-Kohn functional with

respect to the electron density; it is evaluated at the correct ground-state density at an arbi-

trary point in space. The corresponding functional derivative with respect to the potential

v may be determined from Eq. (1); it is

(10)pH) = (5391—)
P

8v(l)

The total differential of E = E (N, v) accordingly is given by the fundamental equation

dE=udN+Ip(l)dv(1)d‘cl. (11)

This is the generalization, to include change in the number of particles, of a formula from

first-order perturbation theory (the Hellmann-Feynman formula) [38].
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b. Chemical Hardness and Softness

Chemical hardness is a helpful concept for describing a variety of acid-base reac-

tions. This idea has been in the chemical vocabulary for almost four decades [3, 7]. A wide

variety of chemical reactions can be encompassed by general reaction scheme,

A + :B —> A: B (12)

involving a Lewis acid (A) and a Lewis base (:B); electrons transfer from the base (:B)

with an available pair of electrons to the generalized acid (A). Through study of the char-

acteristics of acids and bases, both Lewis acids and bases have been divided into two cate-

gories, called hard and soft [3] based on the following properties:

a) Hard acid: high positive charge, low polarizability and small size, e.g., H+, Li+, Ca2+.

b) Hard base: high electronegativity, difficult to oxidize and low polarizability, e.g., NH3.

c) Soft acid: low positive charge, high polarizability, large size, e.g.,, Cu+, Ag+, Rs+,12.

(1) Soft base: low electronegativity, easily oxidizable, higher polarizability, e.g., bases con-

taining P, Se, 8, ml as donor atoms.

From the time hardness was first defined within density functional theory [8], var-

ious related concepts like softness, local hardness [32, 33] and local softness [9], hardness

and softness kernels [34], and related hardness [35] have emerged to correlate and to ana-

lyze experiment information on the interactions between different chemical species in

many different situation.

c. Density Functional Theory of Chemical Hardness and Softness

Equation (11) gives the differential energy change if the external potential or the

number of electrons or both are varied slightly, and the chemical system moves from one

ground state to another:

dE = udN+Ip(r)dv(r). (13)
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In order to understand the energy change to higher order, one would need to know how the

chemical potential behaves as the external potential or the number of electrons is changed

differentially. The variation in u to first order is

a

d“ = (5%)
 

511
vmdN+j[8vm]Ndv(r)c111. (14)

Both derivatives on the right hand side of Eq. (14) are chemically significant. The first

derivative has been defined as chemical hardness 11 [8]

 

1 a 1 32E
1‘] : —(-a—u—) : —[_i] , (15)

2 N V(r) 2 8N v(r)

and the second derivative is defined as the Fukui function f(r) [36]

5p 8p

1(1):] ] = [_] . (16)
5v (1') N 8N v (1.)

With these definitions, Eq.( 14) becomes

an = 2ndN+Jf(r)dv(r)dr. (17)

Equation (17) connects three important molecular properties: the chemical potential (I; the

hardness n , and the Fukui function f (r) , whose rigorous, quantitative definitions are

supplied by density functional theory. The parameters [.1 and n are global quantities which

do not depend on spatial coordinates, whereas f (r) is a local quantity varying from place

to place in a molecule; f (r) is useful for explaining the frontier-orbital theory of chemical

reactivity in molecules.

Taking the finite difference approximation [11] for the curvature of the E vs. N

curve one can obtain the following formula for hardness:



56

I — A

= —. 18n 2 ( 1

Comparison of Eq. (18) with Eq. (8) shows that both global quantities, the chemical poten-

tial u and the hardness n of a molecule, can be determined from the ionization potential

and the electron affinity of the molecule, just as can the electronegativity.

From Eq. (15), another global quantity, softness, is defined in terms of the recipro-

cal of the hardness

1 8N

2T] 311 v (r)

Generalizing to treat a chemical system (atom, molecule or solid) in the grand canonical

ensemble, the softness in Eq. (19) may be also defined in terms of number fluctuations as

[9]

a N l

s = {-é—U = — (<N2>— <N>21. (20)
u v, T kT

where k is the Boltzmann constant and the brackets < > designate ensemble averages at

constant T, v and u.

(1. Local Quantities and Nonlocal Quantities

In order to measure the chemical reactivity of a particular site in a molecule, differ-

ent local variables are defined. The local softness is introduced by combining two impor-

tant quantities, n and f (r) in Eq. (17):

5(r) = 53.51 = f(r)S = [3p(r):| (8N) : [M] . (2])

2" v(r) v(r) v(r)

 

BN 3;; Bu
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Since the Fukui function is normalized (it integrates to unity), the local softness must yield

the global softness on integration

]s(r)dr= s]f(r)dr = s. (22)

A nonlocal quantity, the softness kernel [34] is defined by

5

s (r, r’) 5-5:((:,))1 (23)
 

where u (r) is the difference between external and chemical potentials, i.e.

u(r) = v(r) —p. (24)

The softness kernel integrates to the local softness [9]

]s(r,r')dr' = s(r), (25)

Combination of the definitions of the global softness S, the local softness s (r) ,

and the softness kernel 3 (r, I") gives the linear density response function [34],

s(r)s(r’)_ , _ 6pm]
8 s(r,r) _ [5v(r’) N. (26)

In more detail, from perturbation formula [33]

  
,< ‘11,] bml “W ‘1', bu) ‘11,)

5pm ] _

[8v(r’) N ' 21(13):: Ek-EO (27)

 
 

Equations (26) and (27) provide a route to connect softness functions and nonlocal polar-
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izability densities; this will be discussed in the next section.

The fluctuation formulas for the local softness [9] and the softness kernel [37] are

respectively given by

1

8(r) = fil<p(r)N>-<N><p(r) )1, (28)

and

1

$03!“) = fi[<p(r)p(r’)>-(p(r)><p(r’)>] - (29)

The hardness kernel [32] 1] (r, r’) is defined in terms of functional the inverse of

the softness kernel,

_ 511m _ 52F[p]
_ , 30

5P (r’) 5P (1059 (1") ( )

  

2n (r. r’) E

where F [p] is the universal functional of density functional theory [see Eq. (2)]. The

hardness kernel integrates to the local hardness, 1] (r) , though not in the sense that the

softness kernel integrates to local softness [Eq. (25)]. In this case

1 I I I

u(r)sfiJn(r,r)p(r)dr, (31)

and the local hardness integrates to the global hardness,

n = Inmfmdr. (32)

The reciprocal relations between local hardness and local softness, and between hardness

and softness kernels [34] are
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2J5 (r)n (r) dr = 1 (33)

and

2J3 (r, r’) n (r’, 1'”) dr’ = 5 (r — r”) . (34)

The local hardness involves the variation of p (r) at constant external potential;

this situation makes the definition of the local hardness [32] ambiguous [37, 38]. [Interest-

ingly, the hardness kernel and the local softness do not suffer from this drawback]. This

ambiguity stems from the interdependence of v (r) and p (r) as they appear in density

functional theory [21]. To avoid this ambiguity and take advantage of the simpler interre-

lation of softness functions, it is easier to use the softness functions for the further deriva-

tions in the next chapter.
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4.2 Relation between Molecular Softness and Nonlocal Polarizability Densities

Nonlocal polarizability densities and molecular softness functions are both related

to the electronic charge density pe (r) . Nonlocal polarizability densities represent the dis-

tribution of polarizable matter within a molecule; and softness functions represent the

compressibility of the electronic charge cloud [33].

Within density functional theory, the nonlocality of molecular response to pertur-

bations is expressed in terms of the softness kernel 5 (r, r’) [34] and the hypersoftness

o (r, r’, r”) introduced in this section. The softness kernel s (r, r’) is a measure of the

sensitivity of the electronic charge density p'3 (r) l to a change in the potential v (r’) rel-

ative to the chemical potential [1. Here, the potential v (r) is the sum of the potential

vn (r) due to the nuclei and the potential ve (r) due to an external perturbation. The

chemical potential [I [11, 32, 33, 39, 40] is determined by the change in total energy E

with a change in the number of electrons N, at constant v (r) :

11 = (BE/8N),; (l)

Parr, Donnelly, Levy and Palke [11] have shown that the electronegativity equals ~11. It is

convenient to define a modified potential u (r’) by [34]

u(r’) = v(r’) —u. (2)

The softness and hypersoftness are derivatives of the electronic charge density with

respect to the modified potential u(r). As shown by Berkowitz and Parr [34], u(r) deter-

 

]. The sign changes if the number density p (r) is used instead of electronic charge density, in the defini-

tion of the softness kernel.
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mines all properties, subject to the assumption that E is a convex function of N: Since v(r)

vanishes as r —> co, the long-range behavior of u(r) yields )1; then for finite r, v(r) follows

by subtraction. Given [1 and the convexity property of the energy, N is determined. Then

the softness kernel is a functional derivative [34],

s(r, r’) = 5pe(r)/8u(r’). (3)

Integrating the softness kernel 3 (r, r’) over all space with respect to r’ gives the local

softness s (r) , [8, 9, 34, Eq. (24) in Section 4.1]

s (r) = Is (r, r’) (11"; (4)

where the local softness, s (r) , is defined by [8, 9, 34]

_ __ 3126(1)] 31:1 __[Bpe(r)]
s(r)—f(r)S— [ 8N v(au)v— a” v. (5)

  

In Eq. (5), S is the global softness; f (r) is the Fukui function [36], a normalized local

softness, which is useful for explaining the frontier-orbital theory of chemical reactivity in

molecules. A Maxwell relation yields [see Eqs. (27) and (28), below]

__awuq _[5u]

f”) ' [ aN ,7 5v(r) N' (6)

Since the Fukui function is normalized (it integrates to unity), the local softness must yield

 

the global softness on integration [8, 9, 34]

Is(r)dr = SIf(r)dr = S. (7)
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The global softness, S, is reciprocally related to the hardness, n , as defined by Parr and

Pearson [8]

1 N

s z _ = (L). (8)
211 911 v

The molecular softness determines the change in the electronic charge density at r due to a

change in the external potential ve (r’) , for a system with a fixed number of electrons N,

via

8

[M] = so, r’) —s(r>s(r’) S". (9)
five (r’) N

as proven by Berkowitz and Parr [34] (see also Handler and March [41]).

By definition, the derivative [5pe (r) /5ve ( r’) ] N is related to the static charge-

density susceptibility x (r, r’;0, O) by [42]

(t‘1p"(r)/2‘>v‘i(r')1N = x(r,r’;0.0). (10)

Equation (9) permits a connection of the softness kernel and the local softness to

the nonlocal polarizability density, since the relation between the charge-density suscepti-

bility x (k, k’;0, O) in Fourier space and the longitudinal component 0LL (k, k’;O, O) of

the nonlocal polarizability density is known.

In terms of the polarization operators Pa(r) and PB(r ), the aB-component of

(x (r, r’;—(r), (0) satisfies [43-47, Eq. (3) in Section 2.1]

010430. r ’; -(.0, (1)) = ( O I Pa(r) G(co) Pfl(r’) IO)

+ ( 0 l PB(r’) G*(—(o) Pa(r) I 0 ), (1 1)
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where G(m) is the reduced resolvent operator

G(w)=(1- poxH-Eo-hm)“ <1— (00), (12)

500 is the ground-state projection operator [0 ) (O I, H is the unperturbed molecular Hamil-

tonian, and E0 is the unperturbed ground-state energy.

After Fourier transformation into k-space, the longitudinal component of the static

nonlocal polarizability density (1" (k, k’;O, O) is related to the charge-density susceptibil-

ity [47, 48]. Specifically, with the convention

a (k, k’;0, 0) = Jdrdr’exp (—ik - r) exp (ik’ - r’) on (r, r’;0, 0). (l3)

and

V~P(r,(1o) = -—Ap(r, (11)), (14)

one obtains [47, 48]

(1"(k, k’;0, 0) = E12101, k’;0, O)/kk’. (15)

Then from Eqs. (9), (10) and (13), one can obtain

01“ (k, k’;O, 0) = iEiE'[s (k, k’) — s (-k) s (k’) 5"] (kk’) ". (16)

The longitudinal component of the polarizability density 011‘ (k, k’;0, O) suffices to deter-

mine all of the physical properties considered in the next chapter. In r space Eq. (16) is

VmV’B awn, r’;0, 0) = s(r, r’) —s (r) s(r’) S". (17)

Equation (16) gives an exact formulation of the observed qualitative correlation

between polarizability and softness; it is consistent with the result of Vela and Gézquez for



the total polarizability [49]:

aaB = Idrdr’[s(r,r’)—s(r)s(r’)S_]]rar’B. (18)

Vela and Gazquez have used Eq. (18) and a local approximation to the softness kernel to

correlate the isotropically averaged polarizability a and the global softness S, in an

approximate fashion [49]. The total polarizability can be obtained from Eq. (16) in the

_ as(-ki) as(k'j) _.

[ ak. H Bk’. ]3 ’ “9)
k=1(’=0 ‘ 11:0 1 k’=O

in terms of the derivatives of the softness kernel with respect to k and k’. In Eq. (19), i

form

a _ 62$ (k1, k’j)

11' Bkiak’j

   

   

and j denote unit vectors in the directions of the i and j axes.

Further, Eq. (16) suggests a generalization of softness to include frequency depen-

dence, with s (r, r’;—(i), (1)) determined by the (n-frequency component of the change in

electronic charge density p‘3 (r, 0)) induced by the (1)-frequency component of the modi-

fied potential 11 (r’, 0)) , within linear response:

51)" (r, (0)

(Eu (r’, (1)) ° (20)

s (r, r’;—(n, (1)) =

To extend the density-functional analysis to nonlinear response, Fuentealba and

Parr [50] have used higher-order derivatives of the molecular hardness n (r) [8]. Here,

we introduce a hypersoftness o (r, r’, r”) , which permits a more direct relation to the

hyperpolarizability density. The hypersoftness o (r, r’, r”) is defined by

(21)
 

Szpe (r) ] = 55 (r, r')

0(r’r’r) : [8u(r’)8u(r”) 5u(r”) '
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From Eq. (21) and the symmetry of s (r, r’) , o (r, r’, r”) is symmetric in all three vari-

ables r, r’ and r”. The analysis below requires contracted versions of the hypersoftness,

obtained by integration with respect to one or more of the spatial variables:

G(r, r’) = Jdr”o(r, r’, r”) = Jdr”o(r’, r”, r) = Jdr”o(r”, r, r’) , (22)

and

o (r) = Idr’dr’b’ (r, r’, r”) = Jdr’dr’b (r’, r”, r) = Idr’dr’b (r”, r, r’) .

(23)

When the external potential ve (r) changes while the number of electrons N is

held constant, the change Ape (r) in the electronic charge density at point r satisfies

C C l C

Ap (r) = 8p (r) +582p (r) +...

Idr’x (r, r’) five (r’) + ;Idr’dr”x(2) (r, r’, r”) 8ve (r’) (3ve (r”) + ...(24)

where x (2) (r, r’, r”) is the nonlinear charge—density susceptibility (at lowest order). For

comparison, within the density functional framework, Apc (r) is obtained from [see

Appendix B]

 

e __ I 6pe(r)] I

Ap (r) — [dr [5u(l") 8u(r)

 

2

.1. I II 6 pc(r) ’ ”
+zj'dr dr [on (r,) on (r”) Jou (r )5u (r )

1 .8601] 2 .
+zjdr[8u(r,) 5u(r)+... (25)

C . . .

to second order. When v (r) 1S changed but N 18 held constant, there is a non-zero second
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variation in u(r), due to the second variation in u. The first variation in u at constant N is

specified by the Fukui function f(r):

C

811N = jdr f(r)v (r), (26)

where [34, 5]]

f(r) ____[§£_(r_)] = 8” , (27)

3N v 5v"’(1-)N

 

The equality of the two derivatives in Eq. (27) follows from a Maxwell relation [52] for

the mixed second partial derivatives of the energy E, with N and v'3 (r) taken as the inde-

pendent variables:

d5 = udN -]d1-p° (r) v6 (r). (28)

The second variation in u stems from nonlinear response to the external potential:

5f(r)

five (r’)

 azuN = [drdr’[ ] 8ve(r)5vc(r’). (29)

N

From Eqs. (2) and (3), within the density functional framework the change in charge den-

sity is

Ape(r) = Jdr’s(r, r’) [5ve(r’) -5u]

+-;-Jdr’dr”o (r, r’, r”) [five (1") - 51.1] [5Ve (r”) — 511]

—-;—Idr’s (r, r’) 52p + (30)
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Then from Eqs. (26) and (29)

Ape(r) = [dr'sng r')5v"(r') —]dr"s(r, r")]dr'f(r')5ve(r')

+%Jdr'dr"o (r, r', r") five (r') five (r")

-%]dr'dr"'o (r, r', r'") five (r') jdr"f(r") 5vc (r")

-%]dr"dr"'o (r, r'", r") 5ve (r") Jdr'f(r') 8ve (r')

1 m iv ,., iv , , e , ,, n e n

+§Idr dr o(r,r ,r )Idrf(r)5v (r)]dr f(r )8v (r)

8f(r3

5ve(r")

 

—%J’dr"'s(r, r"')]dr'dr"[ ]8v°(r') 5ve(r") + (31)

From Eqs. (2), (22), and (23), Eq. (31) becomes

Ape(r) = Idr’[s(r, r’) -s(r)f(r’)]5ve(r’)

1
+§Idr’dr”{o(r, r’, r”) -6(r, r’)f(r”) -G(I'1 r”)fU')

8f (r’)

6v°(r”)

 +o(r)f(r’)f(r”) —s(r)[ :l}5ve(r’)5ve(r”)

+... (32)

The Fukui function f(r) is related to the local softness s(r) via the global softness S,

f(r) = s(r)S_]. (33)



68

Then

Ape(r) = Idr’[s(r, r’) -s(r)s(r’) S—1]5ve(r’)

1
_ _

+§Idr’dr”{o(r, r’, r”) -6(r, r’)S(r”) S 1-00‘, 1'”) $075 I

 

+o(r)s(r’)s(r”)S—2—s(r)[ 8f(r’) :l }

ave (r”)

x 811" (r’) 5ve(r”) + (34)

The final term in Eq. (34) can be further simplified as [see Appendix C]

 

l: 6f(r’) ] : G(r’, r”) S-I_O_(rl)s(rn) S-‘Z

five (r”) N

— o (r”) s (r’) S“2 + OS (r’) s (r”) 8-3. (35)

Substitution of Eq. (35) into Eq. (34) gives

Ape(r) = Jdr'[s(r, r’) —s(r)s(r’)S-]] 8ve(r’)

+%J‘dr’dr” {0' (r, r’, r”) — [0' (r, r’) s (r”) + o (r, r”) s (r’) + 0' (r’, r”) s (r) ] S"

+ [o(r)s(r’)s(r”) +O'(r’)s(r)s(r”) +O'(r”)s(r)s(r’)]S_2

—o s(r) s(r’)s(r”) 8‘3 }8vc(r’) 5ve(r”) + (36)
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Then by comparison with Eqs. (24) and (36), the lowest order nonlinear charge—density

susceptibility x (2) (r, r’, r”) in terms of molecular softness and hypersoftness is

x (2) (r. r’, r”)

= O'(l‘, r’, r”) — [G(l‘, r’) s (r”) + o (r, r”) s (r’) + G(r’, r”) s (r) ] S-1

+ [o(r)s(r’)s(r”) +o(r’)s(r)s(r”) +O'(r”)s(r)s(r’) ] s‘2

—o s (r) s (r’) s (r”) 5'3 (37)

= C (r, r’, r”) [1/3 c (r, r’, r”) — o (r, r’) s (r”) S"1

+o(r) s (r’) s (r”) 84-1/3 0' s (r) s(r’) s (r”) S_3 J, (38)

where 0' is obtained by integrating over 1' in Eq. (23), and C (r, r’, r”) denotes the oper-

ator that sums the cyclic permutations of r, r’ and r” in the expression that follows it.

The symmetries of xm (r, r’, r”) and o (r, r’, r”) with respect to r, r’ and r” are evi-

dentin Eq. (38). The lowest order nonlinear charge-density susceptibility xm (r, r’, r”)

is related to the longitudinal component of the B hyperpolarizability density in k-space, via

(3“ (k, k’, k”) = 112123?) (2’ (k, k’, k”) (kk’k”) ". (39)

Thus, the relation between BL (k, k’, k”) and the hypersoftness is
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BL (k, kl, k”)

A

= ikk’k”C(k, k’, k”) [1/3 G(k, k’, k”) —o(k,k’)s(k”)S—'

+o(k)s(k’)s(k”)S_2—1/3 o s(k)s(k’)s(k”)S—3 ] (kk’k”)-'. (40)

For comparison, a perturbation analysis gives the hyperpolarizability density in the form

[48, 52]

Bafigr, r’, r”; —(r)o, (1)1, (02)

= (0(1) 1 < 0 | Pam G(coo) 111).") G(m1) Pam 10>

+ ( 0 11w") G(-(1)2) Wfiu’) G(—(11)O) Pa(r) IO)

+ <0 | P70") G(—w2) Wan) G(w11 Pam I 0 > 1. (41)

where the operator 5037 denotes the sum of all terms obtained by permuting PB(r’) and

P70”) and simultaneously permuting the associated frequencies (01 and (02, in the expres-

sion following the operator; and (00 = (1)] + (1)2. The operator Walk) is defined by Wan) =

Pa(r) — ( o l Pa(r) Io ).
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4.3 Density of States and Nonlocal Polarizability Densities for Metals at Absolute

Zero

In the Kohn-Sham [53] formulation of finite-temperature density functional the-

ory, one has the self-consistent equations

 

 

l

[— §V2+veff(r) ‘11]‘l’i : ‘3in (1)

p(r) = 2|w,(r)|21(e,—11). (2)

' 5F [1)]
_ ,P (1') xc

veff(r) — v(r) +Idr Ir—r’] +—5p(r) , (3)

where f (t:i — It) is the Fermi function,

1

f(ei—u) = (4)

1+exp(B(e,-11)1

and the “’1 (r) are the normalized Kohn-Sham orbitals. FxC [n] is the exchange-correla-

tion free-energy functional.

Equations ( l) to (4) hold for molecules or solids, for the specific case of solids,

N =[d1-p(r) = Zuei—u)

2V

= _3]dk mm _,11], (5)

(2n)

where the discrete sum has been replaced by an integral; a sum over the band index is

assumed here and in the formulas below. Alternatively [9, 54, 55],
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N = Jde g(8)f[e-ul.

where g (e) , the density of states at energy 8, is given by

g (e) = 2561—8)

2V

(2 )3]dk6[e(k)—e].

1E

 

At T = O, u is equal to the Fermi energy 8F and

l €i<].1

f(Ei-Ll) = I

O ei>u

At T = 0 one therefore has

_ u
N - [Ode g(e)

andhence

EN) 1

—— = — : S : g(8 ),

(Bu 1w 2n F

(6)

(7)

(8)

(9)

(10)

where the volume V and the lattice structure, remain fixed through all the differentiations

here and later. For a metal at absolute zero, the global softness is the density of states at the

Fermi level.

The local density of states g (e, r) is defined by

g(8.r) = Elvi(r)|28(ei-e)
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2V

(211) 3

 [dk|1yk(r)|28[e(k)—e]. (H)

In analogy with Eq.(9), the electron density is given at absolute zero temperature by

p(r) = [Ede g(e, r). (12)

Consequently, using Eq. (10) and Eq. (16) in Section 4.1, one can connect the Fukui func-

tion [36] with the density of states g (e) and the local density states g (e, r) :

_ 8pm _ 8pm] 93

f(r) _[ aN ]T,v'[ an T,V(BN)T’V

g (2,, r)

g (2F) °

(13)
 

211s (8p, r) =

The Fukui function is the normalized local density of states at the Fermi level; the normal-

ization [f(r) dr = 1 corresponds to Ig (8F, r) dr = g (8F) .

Equations (10) and (13) give the product of the global softness S and Fukui func-

tion, that is the definition of the local softness s (r) [see Eq. (21) in Section 4.1]

 s(r) 2 (8p (1.)) = Sf(r) = g(8F,r). (14)

T,v(r)

Equations (10) and (14) extend the application of the molecular softness functions to met-

als at T = O:

S = g (8F) . (15)

s(r) = s(epr). (16)

The integration relation also holds for Eqs. (15) and (16), thus
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S = Idrs(r). (17)

Chemisorption and catalytic reactions on metals can be regarded as soft-soft chemical

reactions. Falicov and Somorjai [54] have pointed out that f (r) or g (e, r) appears to

determines site selectivity for metals in Chemisorption and catalysis. In general metals are

soft [4], with large g (e) [9], and transition metals are particular active because of their

high g (e).
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CHAPTER V

MOLECULAR SOFTNESS, INFRARED ABSORPTION, AND

VIBRATIONAL RAMAN SCATTERING: RELATIONS DERIVED

FROM NONLOCAL POLARIZABILITY DENSITIES

5.1 Vibrational Force Constants and Anharmonicities in Terms of Molecular

Softness

When a nucleus shifts position infinitesimally, the change in energy quadratic in

the nuclear displacement depends on the gradients of the field at the nucleus due to the

unperturbed electronic and nuclear charge distribution, and on the electronic induction

energy associated with the change in the nuclear Coulomb field. The electronic charge dis-

tribution responds to the change in the nuclear Coulomb field due to the shift in the

nuclear position via the same susceptibilities that describe its response to external fields.

Force constants and anharmonicities depend respectively on the second and third deriva-

tives of the molecular potential energy function V with respect to nuclear coordinates

(within the Bom-Oppenheimer approximation). By the Hohenberg-Kohn theorem [1], the

electronic energy is a functional of the electron density, E = E [pc (r) ] . For a specified

nuclear configuration {R}, within the Bom-Oppenheimer approximation, the force on

nucleus I is obtained by differentiating the effective potential V( {R}), the sum of

E [p6 (r) ] and the nuclear Coulomb potential:

 

__a__V({R}1=_—]d[ 8E ]ap°(r1

aR‘ 8p°(r) an‘
(I a
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—Zler p6 (r) VLlr — Rll—l

—ZIZZJV;lRl-le_l, (1)

J¢I

where 5E/8pe (1') denotes the functional derivative of the energy with respect to the

electronic charge density; equivalently, —5E/5p'3 (r) is the chemical potential for the

electrons [2-4]. V; denotes the derivative with respect to R;. Since 8E/5pe (r) is inde-

pendent of r [2-5], the first term in Eq. (1) vanishes, to give the Hellmann—Feynman result

[6] for the force.

The second derivatives of V( { R}) with respect to the normal mode coordinates q",

evaluated at the equilibrium nuclear configuration, determine the vibrational force con-

stants kn, as kn = 82V( {ch})/8q:. Differentiating Eq. (1) directly gives:

 

2 e __

81V] 2 ZIIerP—(g-VLIr—RII I

BRaBRB BRB

8[ZIVIa'r - RIP]

 + drpe(r)

I all]5

+—a—[z' zKV‘lR' 11’8"]J 2 a — . (21

8R0 K321

By using Eq. (3) in Section 2.3, assuming that the electronic ground state adjusts adiabati-

cally to the shift in nuclear coordinates, one finds

ape,AO(r) - anPO,Be’A(r)

l I

and an,

 

I I I I



80

which permits the transformation of Eq. (2) into an analytic expression for the second

derivatives of the potential [7]:

azv

I J

aRaaRB

 = -Z[ZJJ‘drdr’0(Y5 (r, r’) T017 (1'. RI) T35 (r’, R1)

+8112] []drpc (r) TaB (r, R') + z ZKTaB (RI, RS]

Kati

_(1—5U)z'z"raB(R‘,R’). (4)

In Eq. (4), Tan (R', R1) = VLVI IRI — RJI—l. Equation (4) holds for arbitrary nuclear

configurations {R} , not restricted to the equilibrium nuclear configuration, {RCq} . In

interpreting Eq. (4), it is useful to focus on the quadratic energy shifts 1/2 [82 V({R})/

dRLdRé J SRLSR:3 associated with small nuclear displacements 8R:ll and 5R3 Then the

first term on the right in Eq. (4) gives the second-order induction energy of the electrons in

the internal fields 53; and 53;, where 88; is the change in the nuclear Coulomb field

due to the shift SRL. Equivalently, the change in field satisfies 88; = ZI T70! (r, RI) 6R:ll

. When I = J, the remaining terms give the negative of the field gradient due to the other

charge; for I at J, the remaining terms gives the change in the I - J nuclear Coulomb poten-

tial due to the shifts 612;, 5R;3 [8].

From Eq. (17) in Section 4.2,

VaV'B 0043 (r, r’;0, 0) = -s (r, r’) + s (r) s (r’) S—1 , (5)

and a double integration by parts in Eq. (4), one obtains
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82v

I J

(1120,5112,3

 = -ZIZ’Jdrdr’[s (r, r’) — s (r) s (r') 5411",, (1‘, RI) T13 (1", R1)

+5”z'[]drp° (r) TaB (r, R') + 2 Z"T,,[3 (R'. R5]

K¢I

-(1 - a”) Z'Z’TOLB (R', R’), (6)

. —1

where Ta(r,Rl) = Valr—Rl] .

At the next order, differentiating Eq. (4) directly gives:

3015,3 (r, r’)

K
3R?

83v

I J K

31203111331:y

 = —ZIZ’]drdr’ T015 (r, RI) TBE (r', RJ)

a[z’z"rm6 (r, R') TBE (r’, R’)]

K
8R7

 

—J‘drdr’()(&5 (r, r’)

+3—k-{auz' [drp°(r1T,,B(1-.R'1+ZZLTaB(R',RL> }
3RY

L¢l

 

a[(1— 511) z‘z’TaB (R‘, 18)]

K
3RY

(7)

Using the same assumptions as for Eq. (3), one needs the derivatives of the polarizability

density with respect to nuclear coordinates, which are determined by the hyperpolarizabil-

ity density and the dipole propagator [9],

3013, (r, r’)

311'
or

= ZIIdrBBYS(r,r’,r”) T5a(r”,R1). (8) 
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to lead to an analytic expression for the third derivatives of V({R}), and hence the anhar-

monic force constants, 83V({ R})/BRLBREBR: . These quantities depend on the first and

. . 8 . .

second derivatives of p (r) With respect to the nuclear coordlnates:

83v

BRLBR$BR$

 

= —Z‘Z’ZKIdrdr’dr”B&§ (r, r', r”) T0,,5 (r, R‘) T55 (r’, R’) TY: (r”. RK)

+ C 6,,z‘z"jdrdr'ol88 (r, r’) Tags (r, R1) "rye (r’, RK)
IJK

+ 511511<Z[[Jdrpe (r) Tamml’ r) + 2 ZMTGBY(RM’ R5]M :1

5” (1 - 81K) Z‘ZKT (11211") , (9)
7 ClJK 0:137

where CIJK denotes the sum over the three cyclic permutations of {La}, {LB} and {K,y},

and Tam“, r’) a Vc[VBVYIr — r’|_1 . Equation (9) leads to a physical interpretation of

the cubic energy shifts 1/6 [33v ({R})/8R;8RE3R;( ] SRLSRgalzf. The first term

gives the energy of hyperpolarization of the electronic charge distribution in the fields

53;, 58:, and 88g . The second term on the right gives the induction energy bilinear in

the first-order change 58:: in the Coulomb field due to nucleus K and the second-order

change 82815 in the Coulomb field due to nucleus I (plus the terms associated with permu-

tations of the nuclear labels). Here 523:3 = 1/2 ZlTaBS (R‘, r) angling. Hence the sec-

ond term vanishes unless at least two of I, J, and K are identical. When I = J = K, the

remaining terms give (—Zl) x the derivative of the field gradient due to the other

charges; when two of the nuclei are identical but distinct from the third, the contribution is

the third-order change in the nuclear Coulomb interaction between the two distinct nuclei;
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and when I, J, and K are all distinct, the remaining terms vanish.

The hyperpolarizability is related to molecular softness and hypersoftness:

“VaV’BVIIYBaBY (r, r’, r”)

= 0(r, r’, r”) — [6(r, r’)s(r”) +o(r, r”)s(r') +o(r’, r”)s(r) 1 s‘I

+1<1<r1s(1-’1s(r”1+c1(r’1s(r1s(r”1+c1(r”1s(r1s(r’1ls‘2

—<1 s(1-1s(r'1s(r”1S‘3

= C(r, r’, r”) [1/3 o(r,r’,r”) —c1(r,r’)s(r”)S_l

+o(r)s(1~')s(r”)S‘2—l/3 o s(1-)s(r’)s(r”)s‘3 ], (10)

Again by repeated integration by parts and substitution of Eqs. (5) and (10) into Eq. (9),

one can show that anharmonicity constants depend on molecular softness and hypersoft-

' ness:

33v

aRLaRgaRf

 

= —z’z’z"]clrclr'clr”r0L (r, R‘) TB (r’, R’) TY (r”, RK)

x C (r, r’, r”) [1/3 (S (r, r’, r”) — 0' (r, r’) s (r”) S-1

+o(r)s(r’)s(r”)S'2—l/3 o s(r)s(r’)s(r”)S’3]
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+CUKBUZ‘ZKJdrdr’[s (r, r’) - s (r) s (r’) s"']TOLB (r, R') Ty(r’, RK)

-5”5"(Z1[J‘drpe (r) TQBYU, R1) + 2 ZMTaBY(RM. RB]

Mat]

-C”K8” (1 - 51K)ZIZKT (R', RK). (11)
01137
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5.2 Electric Field Shielding Tensors, Infrared and Vibrational Raman Band

Intensities in Terms of Molecular Softness

When a uniform external field Fe is applied to a molecule, the net field FK acting

at nucleus K is

l

FK = F§+ (1—7") -FC+E¢K:FCFC+.H, (1)

where F5 is the field at nucleus K in the absence of the external perturbation, 1 denotes

the unit tensor, 'yK is the Stemheimer (linear) shielding tensor [9-13], and (11K is the non-

linear shielding tensor. As shown by Sambe [9], Epstein [14, 15], and Lazzeretti and

Zanasi [16], a molecule with internal vibrational degrees of freedom may couple to the

external field through the derivatives of the moments and polarizabilities with respect to

nuclear motion]. Thus, in general, “a molecule in an external field distorts by an amount

depending on the dipole moment and other derivatives to reach a new equilibrium geome-

try in which the electric field at each nucleus is again zero” [17]. This physical explanation

of the connection between 7" and the atomic polar tensor P was also pointed out by

Lazzeretti and Zanasi [16]:

K K

Yuri = Sufi-PaB/Z . (2)

where

PM3 = auB/BR:. (3)

Here ZK is the charge of nucleus K, RK is its position vector in a space-fixed frame, and

(l is the molecular dipole moment.

 

1. This can also apply to the force relay discussed in Section 3.1.
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For clamped nuclei the polarizability “up and the higher polarizabilities such as B01137 are

purely electronic. From Eqs. (2) and (3), the dipole derivative Qua/BRE is given in terms

of 7K by

K

aria/311% = PM = z (sap—ya). (41

Buckingham and Fowler [17] have proven that

K _ K K
BaaB/BRY - Z (1)7043. , (5)

By use of nonlocal polarizability densities to analyze electronic charge redistribution

induced in a molecule by an external field, Hunt [18] has found new expressions for 7K

and (11K in terms of nonlocal polarizability densities a (r, r’) and B (r, r’, r”) :

7%“ = —Jdrdr’ awn, r’) TYB(r’, RK) , (6)

and

$70113 = Jdrdr’dr” [30,350, r’, r”) T570”, RK) . (7)

By Integrating by parts and substituting Eqs. (5) and (10) in Section 5.1 into Eqs. (6) and

(7), one can find the shielding tensor YK in terms of the softness, and the quadratic shield-

ing tensor (11K in terms of the softness and hypersoftness:

YE“ = —]drdr'[s (1‘, I") - s (r) S (r’) S—IJraT (r’, RK) , (8)

8:111 = [drdr'drmra (r, RK) r’Br”,YC (r, r’, r") { [l/3o (r, r’, r”)
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-o (r, r’) s (r”) s“+o (r) s (r’) s (r”) 5‘2

I II -3

-1/30's(r)s(r)s(r)S J}. (9)

By substituting Eq. (8) into Eq. (4), and Eq. (9) into Eq. (5), one can derive the property

derivatives that determine infrared and vibrational Raman band intensities in terms of the

molecular softness:

Bud/BR; = 21({15043 + Jdrdr’[s (r, r’) — s (r) s (r’) S_]:|r°‘TB (1", RK)}

(10)

and

Belem/8R: = ZKJdrdr’dr”rar’BTY(r”, RK) C (r, r’, r”) { [1/3 (I (r, r’, r”)

- o(r, r’) s (r”) s‘1 +o(r) s (r’) s (r”) 8‘2

—1/3 0' s(r)s(r’)s(r”)s‘3] }. (11)
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5.3 Interaction Energies and Intermolecular Forces in Terms of Molecular Softness

In addition to single-molecule spectrbscopic properties, the long-range interaction

energy for a pair of molecules A and B can be expressed in terms of the softness kernels.

Gazquez [19] has established a relation that can be used to connect the second-order

induction energy to the softness kernel. Here, by using the results of Section 4.2, the inter-

molecular forces at both first and second order are related to softness and hypersoftness.

The first-order interaction energy for a pair of molecules A and B is

I A B , I ”I I

AE()=Jp O(r)p O(r)Ir—r| drdr. (1)

The first-order induction force on nucleus K in molecule A is

AFKW = -8AE“)/BRKa

8AP (1') _
= 43110 “HBO“ Ir—r’l ldrdr’

 

an“ an“
a (I

a n,A a e.A

‘I[ P 00‘) + P 0(r):lpBO(r’)lr—r’|_ldrdr’, (2)

where pn' A0 (r’) is the nuclear charge density, and pc’ A0 (r’) is the electronic charge

density. From Eq. (3) of Section 2.3

0(1‘) _ K I A I ’ KT_ ‘VBZ jdr am“; )Tygu' ,R )

8
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ZKJdr’[VBV’Yagy(r,r’) ]T8 (r’, RK)

szdr’[sA(1-, r’) —sA(r) sA(r’)/SA]T5(r’, RK) (3)

and

ap“”‘0(r1 ZKaMr—RK)

K K

8R5 an8

(4)
 

From Eqs. (3) and (4), one can derive the first-order induction force in terms of the soft-

ness function:

-3 B

APE“ = zK[(RK—r)a|RK—rl p 0(r)dr

—ZKIdrdr’dr”[sA(r, r’) —sA(r) sA(r’)/SA]

xTa(r’, RK) pBO(r”)|1-—r”|". (5)

The second-order interaction energy for a pair of molecules A and B is

1313(2)ind = -1/ZJdrdr’aAaB(r,r’)880a(r)SBOB(r’)

, B , A A I

—l/2jdrclr a aB(r,r )8 Cam?) 030-) (6)

= —l/ZIdrdr’ [SA (1', r’) - SA 0') SA (1") /SA] 9800') 9130”,)

—1/2]drdr’ [sB (r, r’) — sB (r) sB (r’) /SB] 6A0 (r) 6A0 (r’), (7)
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where sA is the softness function associated with molecule A, and the Qt component of the

electric field of the unperturbed molecule A satisfies 8A0“ (r) = —Va¢AO (r) . Equation

(7) is the same as Gazquez’s result [19].

From Eq. (7), one can derive the second-order induction force by differentiating

Eq. (7) with respect to the coordinates of a nucleus in molecule A

 

(2)

AFK __ _aEind

2,6,ind K

8R5

= l/2Jdrdr’-i [sA(r, r’) —sA(r)sA(r’)/SA] ¢Bo(r)¢BO(r’)
K

an,S

+l/2Idrdr’[sB(r,r’)—sB(r)sB(r’)/SB]wiK[¢Ao(r)¢A0(r’)]. (8)

5

In Section 1.3, Eq. (10) can be rewritten as follows:

80L (r,r’)
137 K =ZKIdF'PBYeUtr'tr',)TgMF'CRK)

8R5

K II II I II I! K

=—z jar v85 Y€(r,r,r)T5(r,R ), (9)
B

then the derivative in the first term on the right in Eq. (8) is related to hyperpolarizability

density B

_8_ [sA (r, r’) — sA (r) SA (r’) /SA]
K

R5

I

BVBVYaAmu, r’)

K

art8

 

= ijdr”[—VBV;V'EBA (r, r’, r”) 1T5 (r”, RK)

378
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= ZKIdr’TS (r”,RK) c (r, r’, r”) [1/3 0" (r, r’, r”)

—l —2

-oA(r. r’1sA(r”1 (SA) +oA(r1sA(r'1sA(r”1 (SA)

-l/3 oAsA(r) sA(1~') sA(r”) (sh—3]. (10)

The derivative in the second term of Eq. (8) satisfies

a——ZK[¢AO (r111"M

5

  

=AB¢0(r)[¢A (r)]+ 8(1)¢A0(r’)

0(
K

8 6

[11A0(1)] (111

where

  

a¢Ao(r) I ,_,apA0(r’)

K = Idr Ir -r I K

3R5 3R5

a n,A , a e,A ,

=(,,.1|,_,.1-1 my]; , (,2)
8R8 an,

From Eqs. (3), (4), (11) and (12), the second term in Eq. (8) becomes

l/2]drdr’[sB(r-,r’) —sB(r)sB(r’B)/S1-6—[41A0mt)AO(r ')]

R8

= gzxjdrdr’ [sB (r, r’) - SB (1') SB (1") /SB]

_]

-
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x [sA(r", r'”) —sA(r")sA(r"')/SA]

-1
_

+¢A0(r')ZKV§|r—RKI +¢A0(r’)ZKIdr"dr"'T5(r"',RK)Ir—r"l I

x [sA(r",r"') -sA(r")sA(r'")/SA] }. (13)

From Eqs. ( 8), (10), and (13), the second-order induction force is

K

AFZ, 6, ind

] I II II B B I

= EZKIdrdr dr T5(r ,RK)¢ 0(r)¢ O(r)

xC(r,r',r") [1/3 oA(r,r',r")

-1 —2

—oA(1-.r'1sA(r"1(sA1 +oA(r1sA(r'1sA(r"1(sA1

A A A A A ‘3
—1/3 6 s (r)s (r')s (r") (S ) J

+%ZKJdrdr' [sB(r, r’) —sB(r)sB(r’)/SB]

X{ A KVKI I K|_l A K II III III K I ".1

¢O(r)Z 8r—R +¢ O(r)Z Idr dr T5(r ,R )Ir —r

X [SA(rH,rIN) _SA(rH) SA(rIII) /SA]

-1

+¢A0 (r ’) ZKVlglr — RKI + 6A0 (r ') ZKJdr "dr"'T8 (r"', RK) Ir — r "I—1

x [sA(r",r'") —sA(r")sA(1-"')/SA] }. (14)
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The dispersion energy can be expressed in terms of softness functions, generalized

to imaginary frequencies.

AEmdisp = —(h/41t2)Igdedrdr'dr'flrmaAaB(r, r';—im, iw)

B II III._' ' III II I

xa Y5(r ,r , 1w,1m)Ta8(r,r )TYB(r ,r)

h w I II III A I ' ' A ' A I 0 A 0

= ——2J0dm‘[drdr dr dr [s (r,r ;—10),1(o) —s (r;1(o)s (r ;1m)/S (100)]

41:

B II III ' ' II ' III ' ‘

x [s (r ,r ;—1u),1(u) -sB(r ;1(u)sB(r ;10))/SB(1(0)]

xIr-r"'l_llr"—r'l_l. (15)

In Eq. (15), the softness kernel 5 (r, r’;i(u) is obtained by first generalizing s (r, r’) =

5pe (1') /Su (r’) to the (1)-frequency component of the change in electronic charge den-

sity produced by a potential of frequency 0), and then analytically continuing into the

complex plane. In terms of transition matrix elements between the ground state I O > and

excited states I k ).

[sA (r, r ';—i0), iw) - sA (r;iu)) SA (r’;i(u) /SA (iw)]

 = (4n2/h)2wko(mio+w2)"<0|p(r)| k><k|p(r') 0). (16)

k¢0

The second-order dispersion force is

(2)

aAEdisp

an"8

 

K

AF 2, 8, disp = ‘
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A ,__. . _A ,. A A.

= (h/41t2)Igodedrdr'dr'flrmals (r,r, 100,1(0) s (r,r(u)s (r,rm)/S (1(1))1
 

an“6

x [sB(r", r"';—i(u, iw) —sB(r";i(u) sB(r"';i(u)/SB (im)]

--1

Xlr—r"'|‘llr"—r'l (17)
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APPENDIX



Appendix A

Force Theoremsl

Let Fe be the total force operator on N electrons. That is,

N N

(R,—r,>

Fe = zzzafl— 28(rs) EFeN-theES’ (Al)

—r

s=l a a s s=l

also

Fe=—2(aH/Brs) = i[H,P] (A2)

3

where P is the total electronic momentum operator, H is the Hamiltonian operator. Za is

the electron charge of the nucleus a. In Eq. (Al) the double sum yielding the force on the

electrons is due to the nuclei and the single sum is the force due to an applied electric field,

3 (if any). The electron-electron force cancels. From Eq. (A2) if the hypervirial theorem

for P is satisfied, i.e., if ([H, P] ) = 0, then the average of Fe vanishes.

As an interesting application of the force theorem, consider the average total force

on all the nuclei. Since the operator for this total force is

N (rs-Ra)

F" = Z 220T+Zzasmp EFNe-i-FNS, (A3)

5:] a I S— 0| a

and since

FN. - -F.~, (A4)

if follows that

 

1. From S. T. Epstein, The Variation Method in Quantum Chemistry (Academic Press, NY, 1974)
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(Fm) = ' (FeN>+ (FNS>'

However, if the force theorems are satisfied, then

0=<F8N>+ <F.s> = <F.> = (ilH,Pl),

and Eq. (A5) can be rewritten as

<17") = - (FeN>+ (FA/3) : <Fe3)+ (FA/3);

or in words

average totalforce on the nuclei

= force on the nuclei due to the externalfield

+ averageforce on the electrons due to the externalfield.

(A5)

(A6)

(A7)

(A8)



Appendix B

Assume that f is a function of g(x),

f= f[g(x)]. (B1)

Then the first-order, second-order, third-order and fourth-order differentials of f with

respect to x are

dfdg

A‘f = ——Ax, (B2)
dgdx

2 dzf dg 2 2 dfdg
Af=—(—) Ax +——Ax (B3)

dg2 dx dgdx2

3 3

f d
A3f= ELAE) Ax3+3d——f-(d—g)d—22gAx3 +fd——gAx3, (B4)

dg dx dg2 dx dx2 +dgdx3

4 4 3 2 2 2 2 2

xx = 4(2) A.4+69_§(d_g) d—iAx4+3i-f§[d—§-]
dg x dg dx dx dg dx

+4df(fl—g)d—gAx4 +df-—[d§]Ax4. (B5)

dg2 dx dx +dg dx

Substitution of Eqs. (B2) to (B5) into a Taylor expansion gives

2 2

Af = flgAx+— d2f(d_g_) +9:d_g_ sz

dg dx 2 dgz dx dgdx2

.1[23(9§)3.3235(1g)d_2g.9:£g]m3
3! dg3 dx dg2 dx dxz dng3
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,..:[L‘fngj ,d_f(d_g_)2d2_g
4! dg4 dx dg3 dX dx2

2 2

+3-d—f[9—§] +4d—2f(g—g)g—§+fl[d—§]]Ax4 +.... (B6)

dg2 dx dg2 dx dx dg dx4

Rearranging Eq. (B6) according to the order of the differential of f with respect to g gives

f 1 l

Af = g-l:5g-l- ~52g+ ——83g+ 164g+ ...:l

dg 2 3! 4!

2f

+l9—f[(5g) +5g 522g+1g2(52) +—3-5g 53g+.. ]
2dg2

+—1—d—t:[(5g)3 +—(8g)2 52g+...:l

3'dg3

1 d

+4—!—[(8g) +1 (B7)
d5

where 8g = $1M, 52g-= d2-—gAx2, etc. If the electronic charge density p6 (r) isidenti-

x
dx2

fied as the function f and the modified potential 11 (r’) is identified as the function g of a

continuous variable r, then Eq. (B7) corresponds to the functional relation

Ape(r)= ldr’:p_c—_(—,_(r))[511(r’)+£52“(r')+%93u(r’) +£54u(r’) +...]

529°(r)

5n (r’) 5u (r")

 +%ldr’dr" [Sutr’)5u(r") +5110“) '52u(r")

+£82u(r')52u(r") +%6u(r’) -53u(r") + ]

83pe(r)

5n (r’) 5u (r") 5n (r"')
 +£Jdr’dr"dr"' [8n (1") 5n (r") 8n (r"')



+38u(r’)8u(r") ~52u(r"') + ]. (38)

Equation (B8) is similar to the result from differential expansions in density functional

theory, but with higher-order variations in the modified potential.



Appendix C

The Fukui function f (r) is related to the local softness s (r) via the global soft-

ness S

f(r) = s(r)s“. (0)

To simplify the final term in Eq. (34) in Section 4.2, the following expansion is used:

-1
[Sf(r)] = 8-1[8s(r) ] +80% 55 ]

5ve(r’) N 5v°(r') N 5v‘(r’) N

Sd-llr”[58(l‘) ][6u(r”)]

511(1‘”) 5Ve(l") N

   

  

  

 

  

 

  

= s-zsmM 1pm] . .5.
8u(r ) 5vc(r’) N

where

53(1') _ , 55(r, r’) _ , , I, _ ”

5u(r”) — Jdr [ 8u(r”) ] — Idro(r,r,r) - o(r,r )1 (C3)

[5u(r")] = {Mega-(1)}

8ve(r') N 8v°(r’) N

: 5(rn_rr)_ 8“ : 5(l'”-r')-f(r')
(C4)

8v°(r’)

and

SS _ , 88(r,r’) _ , ’ fl _ ”

5u(r”) _ Idrdr [ 5u(r”) ] _ Jdrdr o(r,r ,r " “(r )- (C5)
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From Eqs. (Cl) and (C3)-(C5), Eq.(C2) simplifies to

 

[ 8f(r)

] = g(r, 1")S"l -o(r)s(r’)S—Z—o(r’)s(r)S-2+o s(r)s(r’)s‘3.

5vc(r’) N

(C6)
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