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ABSTRACT

NONDESTRUCTIVE MEASUREMENTS OF

ELECTROMAGNETIC PARAMETERS OF

ANISOTROPIC MATERIALS USING A WAVEGUIDE

PROBE SYSTEM

By

Chih-Wei Chang

A non-destructive measurement of electromagnetic (EM) properties of anisotropic

materials using an open—ended waveguide probe has been conducted. Two different

techniques, based on the Hertzian potential method and the transverse field method, are

developed to facilitate the investigation of the subject. The technique employing Hertzian

potentials is applied to isotropic materials only, however, the technique employing the

transverse field method is suitable for both isotropic and anisotropic materials.

When a waveguide probe, which consists of an open-ended waveguide terminated on a

flange, is placed against a material layer, two coupled electric field integral equations

(EFIE’s) for the aperture electric field can be derived by matching the boundary conditions

at discontinuity interfaces. These EFIE’s can be solved numerically with the Method of

Moments (MoM) when the electric field on the waveguide aperture is expressed as a sum

of waveguide modes. The reflection coefficient of the incident wave or other relevant

quantities of the waveguide probe can be expressed as functions of the EM properties,
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such as the permittivity, permeability, and conductivity, and the thickness of the material

layer. Therefore, the EM parameters of the material layer can be inversely determined if

the reflection coefficient of the incident wave is experimentally measured.

A series of experiments have been conducted using the waveguide probe system

constructed at MSU electromagnetics laboratory. The experimental results of the probe

input admittances, with the probe attached to various isotropic and anisotropic material

layers, using an HP 8720B network analyzer are presented. These probe input

admittances are then used to determine the complex permittivity inversely by a numerical

inverse procedure based on the Newton’s iterative method. The inverse results on the EM

properties of some known materials are found to be quite satisfactory. The results on the

tensor permittivities of some anisotropic materials are found to be reasonable even though

their exact values have not been determined before. Finally, an analysis of the effects of

material parameters on the input admittance is presented.
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CHAPTER 1

INTRODUCTION

The objective of this research is to conduct nondestructive measurement of the

electromagnetic (EM) properties of material layers using a waveguide probe system. Two

different techniques are established to facilitate the investigation of the subject. The

technique employing Hertzian potentials is applied to isotropic materials only, however,

the technique employing the transverse field method is suitable to both isotropic and

anisotropic materials.

Techniques for the measurement of the material EM properties have been developed

by numerous investigators using various structures such as open-ended coaxial line [1]-

[12], stripline [l3], microstrip line [14], cavity resonator [15]-[17] and waveguide [18]-

[20] during the last two decades. In recent years, due to the rapid advance in material

manufacturing, an increasing demand for accurate nondestructive measurements of the

material parameters has emerged.

Several methods are available for measuring the EM properties of dielectric materials

nondestructively. Some researchers employed an open-ended coaxial probe [1]-[12],

while others used an open-ended waveguide probe [19]-[20]. However, all of them were
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limited to the measurement of the EM parameters of isotropic materials only. In this

research, we present an technique for accurate nondestructive measurement of the EM

parameters of isotropic materials, and another technique for anisotropic materials, where

both of them employ an open-ended waveguide probe system.

In the study of the nondestructive measurement of the EM parameters of materials

with a waveguide probe system, we divide the study into steps: the forward and the

inverse procedures. The forward procedure refers to the theoretical and numerical

analysis of the waveguide probe system, which consists of an open-ended waveguide

terminated on a flange, placed against a layer of material [21]-[32]. In this procedure, the

reflection coefficient or the input admittance of the waveguide probe can be expressed as a

function of the assumed EM parameters of the material layer. On the other hand, the

inverse procedure deals with the problem of inversely determining the EM parameters of

the material layer from the measured reflection coefficient or input admittance of the

waveguide probe placed against the material layer [12].

This study is presented in three parts: the first part, Chapter 2, presents the basic

theories for this research; the second part, Chapters 3 and 4, develops the forward

procedure of the measurement for determining the EM properties of isotropic and

anisotropic materials; and the last part, Chapter 5, describes the experiments and the

inverse procedure of the measurement.

Chapter 2 presents the basic theories which are used to establish two different

techniques for determining the EM parameters of materials using a waveguide probe

system. Hertzian potentials are first reviewed in the chapter. The EM fields in the

waveguide, the material layer and the open free space are then determined in terms of

Hertzian potentials. These fields are used in Chapter 3 to match the boundary conditions

at the interfaces between different regions. The transverse field method is also reviewed

in this chapter. It generates a general case dealing with the EM fields inside an anisotropic
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medium and a degenerate case with the EM fields inside an isotropic medium. The EM

fields derived by this method are then used to match the boundary conditions at the

discontinuity interfaces in Chapter 4.

In Chapter 3, the forward procedure of the measurement for determining the EM

parameters of isotropic materials is studied. The EM fields expressed in terms of Hertzian

potentials within various regions are first recalled from Chapter 2. Two coupled integral

equations for the electric field are then derived by matching the tangential EM fields

across the waveguide aperture. The method of moments is implemented to solve these

coupled electric field integral equations (EFIE’s) numerically. Finally, the numerical

results on the input admittances of the waveguide probe placed against material layers are

compared with the existing results published by other workers.

Chapter 4 deals with the forward procedure of the measurement for determining the

EM parameters of anisotropic materials. The EM fields derived with the transverse field

method are recalled from Chapter 2. The matching of the tangential EM fields at the

probe aperture results in two coupled integral equations for the unknown aperture electric

field. The method of moments is implemented to solve these EFIE’s numerically. Also

the numerical examples illustrated in Chapter 3 for isotropic materials are recalculated and

compared with the existing results to validate the technique. In addition, the numerical

results on the input admittances of the waveguide probe in contact with a layer of assumed

known anisotropic material are presented.

Finally, the experiments and the inverse procedure of the measurement are described

in Chapter 5. The experimental setups and the calibration procedures of the waveguide

probe system are first described. The experimental results of the probe input admittances,

with the probe attached to various isotropic and anisotropic material layers, using an HP

8720B network analyzer are then presented. In addition, the inverse procedure of the

measurement to determine the EM parameters of the measured materials is developed.
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The probe input admittances are then used to inversely determine the complex permittivity

by this numerical inverse procedure. The inverse results on the EM properties of some

known materials are found to be quite satisfactory. The results on the tensor permittivities

of some anisotropic materials are found to be reasonable even though their exact values

have not been determined before.



2.1.11

Ir.

differ:

using .-

iliSl te

101’ [he



CHAPTER 2

BASIC THEORIES

2.1. Introduction

In this chapter we review the basic theories which will be used to establish two

different techniques for determining the electromagnetic (EM) parameters of materials

using a waveguide probe system. As mentioned in the preceding chapter, the study of the

first technique is limited to isotropic media. The second technique, however, is suitable

for the application to both isotropic and anisotropic media.

The geometry of the problem is shown in Fig. 2.1 which depicts the cross-sectional

view of the system. A layer of unknown dielectric material of thickness d which is backed

by free space, is placed against a waveguide probe consisting of an open-ended

rectangular waveguide terminated by an infinite metallic flange. Inside the waveguide

region, a dominant TE10 mode of field is excited and it propagates toward the probe

aperture. In addition to the reflected TE10 mode, higher order modes of fields are excited

near this aperture due to the discontinuity between the waveguide and the slab material.

The electromagnetic wave carried by the waveguide radiates into the material layer and

through to the open space backing it. If the electromagnetic fields in the material layer
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Figure 2.1 The geometric structure of nondestructive measurement using a

waveguide probe system.
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and the open space are established based on Maxwell’s equations, the problem can be

solved by matching the fields at the waveguide-material and the material-air interfaces.

In this chapter, the EM fields in the waveguide, the material layer and the open free

space will be determined. The application of the boundary conditions at the interfaces

will be discussed in the following chapters.

Section 2.2. presents the EM waves in an isotropic medium in terms of Hertzian

potentials. In this section, the EM fields in both the waveguide region and the material

layer are examined. In section 2.3. a partial differential equation is derived directly from

the Maxwell’s equations for the spectrum-domain transverse EM fields. This partial

differential equation then leads to an eigenvalue problem for the EM fields in an

anisotropic medium and a degenerate eigenvalue problem for the EM fields in an isotropic

medium.

2.2. Derivation of EM Fields via Hertzian Potentials

For an isotropic medium, it is well known that the total EM fields inside the region can

be regarded as a superposition of two types of waves: the transverse electric (TE) modes

and the transverse magnetic (TM) modes which can be derived in terms of Hertzian

potentials [33].

The definition of the TB and TM modes of waves will be addressed in the following

subsection [34]. Also the definition of Hertzian potentials is introduced, and the EM fields

based on Hertzian potentials are defined.

2.2.1 Introduction of Hertzian Potentials

In a homogeneous and isotropic medium, we can classify waves into two types; TE

modes and TM modes. TE modes are field configurations which electric field components

lie in a plane that is transverse to the direction of propagation; while for TM modes the
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magnetic field components are transverse to the direction of propagation. Generally, the

TE and TM modes that satisfy Maxwell’s equations and the boundary conditions are used

to solve electromagnetic boundary—value problems, especially for waveguide-related

problems.

In general, there are two types of Hertzian potentials, the electric type Hertzian

-> ->

potential 11, and the magnetic type Hertzian potential 11;. , commonly used to describe the

EM fields in a homogeneous and isotropic medium.

. . . . . . —>

In a time harmonic and source free region, the electric type Hertzran potential, I'le,

satisfies

Vzltie + kzfie == 0

and the related electric and magnetic fields are derived from

i: = W - ii. + 131—i. = Vxini.

F1 = jmerfie

where k = mJt—t—e is the wavenumber in the medium.

Similarly, the magnetic type Hertzian potential, F1}, , satisfies

VzI-Ih + kzfih = 0

and the related electric and magnetic fields are derived from

E = —jo)p.Vxl_'>lh

ii vv.fi,,+k2ii,. = VxVxfi.

(2.2.1)

(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)
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Combination of eqs. from (2.2.1) to (2.2.6) shows that a general solution to Maxwell’s

equations can be written as

-> —> —>

E = VxVxIIe -j(oqu11h

-) -> —>

H = jwerI‘le + VxVxHh

(2.2.7)

(2.2.8)

. . . . '9 —) . .

where the electric and magnetic Hertzran potentials, Hi. and He , are pornted in a constant

direction it [33]:

He = fine

a

II}, = an,

A

(2.2.9)

(2.2.10)

If the unit constant vector (1 = z is chosen where z is in the direction of wave

_)

propagation, F1}, can produce TE modes while TM modes can be generated from He.

Using eqs. (2.2.9) and (2.2.10) and the choice of £1 = 2, these two kinds of modes can be

modified as follows:

Transverse Electric Modes (Ez = 0, Hz ¢ 0)

The TE modes can be derived from a magnetic Hertzian potential by letting

.9

II}, = 211,! and be represented as

V211,, +k21'1h = 0

9

E.

-> 82 2 a
H=2—2+k 11h+V—II

82 '32 h

where

(2.2.11)

(2.2.12)

(2.2.13)
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V = v_2_
(2.2.14)

Transverse Magnetic Modes (Hz = 0, Ez ¢ 0)

The TM modes can be derived from an electric Hertzian potential by letting

_)

IL = Elle and be represented as

Vzlle+k211e = 0 (2.2.15)

E-E az+k211+VaH (2216)_ 822 e fa—E 8 . .

a o A

H, = —j(r)|.t(z>< V.) He (2.2.17)

Total Fields (TE modes + TM modes)

The total EM fields within a homogeneous and isotropic medium can therefore be

expressed as the combination of eqs. (2.2.12), (2.2.13), (2.2.16) and (2.2.17).

Components of the EM fields are shown as follows:

E a a2
x = —jmua—y—11h+-a——xazl‘l (2.2.18)

2

Ey = jmuaa—xIIh+-a—Z-fafle (2.2.19)

2 2

EZ = -[-a—2+—a—]He (2.2.20)

8x2 ayz

H _ a_2n a
x _ ax82 h-i-jmeay—11 (2.2.21)

32 . a
= __ .. _ 2.2.22H), ayazl'lh jweaxfle ( )
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32 32]H = __ _+_ 1] (2.2.23)

z [82:2 av2 h
a

2.2.2 EM Fields inside A Rectangular Waveguide

As mentioned in the previous section, the scalar Hertzian potentials, l'lh and He,

satisfy two scalar Helmholtz equations as given in eqs. (2.2.11) and (2.2.15). Since both

TE and TM modes in a rectangular waveguide are sought, the solutions for [1h and He

can be assumed to have a form of

Z2r

11h wk (x, y) e (2.2.24)

trz

He — we (x, y) e (2.2.25)

where the scalar wave functions \llh and we satisfy the two-dimensional Helmholtz

equations;

V2 2 _

1W1+kc‘l’h - 0 (2.2.26)

V2 k2 — 0
1‘5"“ c‘l’e -

(2.2.27)

. 2 2 2 2 2
With kc = k0 + 1" and V1 as the transverse part of V operator.

Thus the EM fields represented in eqs. (2.2.12), (2.2.13), (2.2.16) and (2.2.17) can be

written as

2 411‘:

Hz = kthe

—> $1“:

H, = ¥FV,\V;.€ (2.2.23)

-> . —)

E, = :pzhiz th)

for TE modes, and



for T

admi‘

F.

W, n

electr

TM 11

(72‘)
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2 $1“:

EZ — kcwee

'3 ““2

E, = $I‘Vtwee . (2.2.29)

—> .. a)

H, ZFYeLZXEI

for TM modes, where Zh is the TB mode wave impedance and Ye is the TM mode wave

admittance.

For a waveguide with perfectly conducting walls, we observe from eq. (2.2.28) that

wh must satisfy the boundary condition if awh/an = 0, in order for the tangential

electric field to vanish in the case of TE modes. Also from eq. (2.2.29) we see that

we = 0 is the condition to make the tangential electric field vanish on the boundary for

TM modes. Thus, the scalar wave functions wk and we can be determined from eqs.

(2.2.26) and (2.2.27), using the separation of variables method, to be

 

' ' n' = O l 2

Whmm = cos(w)cos(m—:z),{m' = 0, 1,2, (2.2.30)

a m'¢n' = 0

" " " = 1,2,

we,” = sin('—'—an—x)sin(mbny),{;n _ 1 2 (2.2.31)

The scalar Hertzian potentials can then be derived from wh and we by means of eqs.

(2.2.24) and (2.2.25) and are expressed as

-r r. .

Ilh = alocosC-EXe loz+ Rerwz)+ ZZAnH'LZ—mcos(x)cos("1512)e "'"Z(2.2.32)

 

_ . n"1tx . m"1ty r"..,,,.z

He—gan.m.51n(—a—)sm( b )e (2.2.33)

where
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. I 2 1t 2

. 2 n 2 1t 2

al.-(2;) —('—'—'.—i

k0 = a) 11on (2.2.36)

 

Also alo and A".m. represent the amplitude coefficients of the dominant TE10 mode and

the TB higher order modes, respectively; and Bn.m. represents the amplitude coefficients

of the TM higher order modes. R denotes the reflection coefficient of the incident

dominant mode and it is required that Re (I‘m) 2 0 and Im (I‘m) 2 0 , for all values of n

and m.

The EM fields inside the waveguide can then be derived via the substitution of

Hertzian potentials into eqs (2.2.18) to (2.2.23):

The EM Fields inside the waveguide

 

 

n m

"1: "n . "n rn~m--Z

+ 22" Futomr( ’17)Bn"m" COS(’z—a-x)51n(mb y)e (2.2.37)

'1 m

Ey(x’y’z) = “mom-E)“iosiniia'lie“02+ Rer'ozl

"n
mtty

.‘JGHOZZ(’%)A,,."{sin
Cig-x)cos(—b )el‘,,,,.z

m 1C _ "flux
many rum-Z

+22; r""""(T)B""'""Sm(—a)cos( b )e (2.2.38) 

E, (x. y. z)  

ll

=
M

a

Ii
: 2 "My - ("ml ' (mum) T”: (2.2.39)

.. ) ti".— iBWS‘“ T 5‘“ b e



l4

 

n'tt . n'nx m'ny Fn.,,,.:

22.r-(-.-)A-m(—.—iws( .ie
. H H I. r u "z

+1(08022( flbi‘ )Bn"m" sin( "7151‘ ) COS( m b”)8 " m (2.2.40) 

 

 

= __ m1: ' x , m'ny rmz

H). (I, y, Z) "Z; Fn.m(—b-)An.m.cos(———)sm
( b )e

. " " " r .. ..

’1w8022(E—E)Bnnmucos(w)sin(m nyje ""‘Z (2241)
nu mu a a b

_ 1C 2 TEX —r10Z . r103)

HZ (x, y, z) — (2)“10C°S(7)(e +Re

 

. 2 r 2 ' ' r .

+2219 +1“)1A....cosin—zxicosiwien m T b

2.2.3 EM Fields inside A Homogeneous, Isotropic Medium

The scalar Hertzian potentials inside a homogeneous and isotropic medium satisfy the

scalar Helmholtz equations of eqs. (2.2.11) and (2.2.15). Since the isotropic medium is

uniform and unbounded in the transverse directions, Fourier transform will be applied to

the x and y directions. Let’s define f1(kx, k), z) to be the two-dimensional Fourier

transform of II (x, y, 2) along the transverse directions, i.e.,

oo

H(kx,k),,z) = [[n(x,y,z)e
-oo

—'k -'k\.)'

I ‘Xe j ' dxdy (2.2.43)

Then

2 °° .. 'k .kJ

II (x, y, z) = (it) I I II (er k), z) e] ’er "‘dkxdky (2.2.44)
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If we take the two-dimensional Fourier transform of the two scalar Helmholtz

equations, we have

II C
D

1 2‘” 82 2 2 2 ~ Raj/s.)-
(E)Jj[g+kl—kx—ky]nhe e dkxdk),

{-21—“ZN“; +1.? -kf—kf]fiejk'exJk"dkHdk 0

or

32 2 k2 " k -——2—+k2 —kx- y I'lh( x,ky,z) — O

82

82 2 2 ~ _
_7-i-k2 —kx-k), l'Ie(kx,ky,z) — 0

82

The solutions of 1:1,, and He of eqs. (2.2.47) and (2.2.48) can be written as

.. il‘lz

H. (k. k,. z) = F (k,. k,,> e

and

.. :r,z

119(16):, kyr Z) = G (er ky) e

where

. 2 2 2

1"](kx, ky) = -j,/kl -kx-ky

k1 = 0° “131

(2.2.45)

(2.2.46)

(2.2.47)

(2.2.48)

(2.2.49)

(2.2.50)

(2.2.51)

(2.2.52)

Notice that F1 should provide positive real and positive imaginary parts to satisfy the

radiation condition of fields derived from eqs. (2.2.49) and (2.2.50).
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The substitution of the two-dimensional Fourier transformed Hertzian potentials, flh

and F1, , into eq. (2.2.44) gives the expressions of space domain Hertzian potentials inside

a slab, isotropic medium as

II, (x, y, z) = i2]:[ F(kx,kye)k e +Rae dkxdky (2.2.53)

2 °° 1k.x k —1“1 1":

r1, (x, y, z) = (217:) J’ [ G(kx,k)e e’ ‘(e Z+Rbe )dkxdky (2.2.54)

Here the quantities Ra (er ky) and Rb (er ky) represent the ratios of the backward-to-

forward wave at the plane interface 2 = d as shown in Fig. 2.1.

Thus, the total EM fields within an isotropic material slab can be obtained by

substituting eqs. (2.2.53) and (2.2.54) into eqs. (2.2.18) to (2.2.23) as follows:

Fields inside the isotropic material slab

I 2 kxxejky') -r,z l",z

Ex(x,y,z) = (27:) [(61101].,F(kx,k,ej) (e +Rae )dkxdky

1k1" jk) —Fz Fz

—jJ:JkFlyeG(kx’k) e (e l —Rbe ' )dkxdky] (2.2.55)

] 2 °° 1"xxejky -I‘|z I‘lz)

E), (x, y, z) = (it) [4011ij kxF(k, ky)e (e +Rae dkxdk),

e e

1‘12) -

-1']my]k F G (k,, k,e) —Rbe dkxdky (2.2.56)

1 2 °° 2 2 ””11 jk,> -I‘.z 1“,:
Ez(x,y,z) =(2—1-r)J-J(kx+ky)6(k,kye) e (e +Rbe )dkxdky(2.2.57)
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1 ngk\‘1'( —1‘lz rig)

Hx(x,y,z) = (2—2 —j[:[krI'F(kr,k‘)ejk‘ e -Rae dkxdky

°° 1k} jk _1 —F,z Fl:

“(DELI kyG(k, k)e e (e +Rbe )dkxdk),] (2.2.58)

1 2 ,°° first)“ 4“,: m)
H,.(x1 y, z) = (5:) [1L] kyl‘1F(kx,k)e (e —Rae dkxdky

0° kxx jk\ -rlZ rlz

+612] [ka(11, k)e e e +Rbe dkxdk), (2.2.59)

1 2” ( 2 2) jkx" ( -r,z 112)
Hz(x,y,z) = 21—1) L] kx+ky F(kx,k),)e e e +Rae dkxdky(2.2.60)

The symmetry condition in the waveguide excitation can be used to simplify the

problem. Let‘s observe the field distributions at the waveguide’s aperture, (2 = 0) . The

transverse electric fields derived from eqs. (2.2.28) to (2.2.31) for both TE and TM modes

are proportional to the following sinusoidal functions.

.. (nnx) . (mm)
xcos — srn —'—

a b
_)

Er °¢ (2.2.61)

. Sin(tt__1tx)cos(m__1ty)

y a b

Since the dominant TE 1 0 mode,

_)

Em .. 911mg?) (2.2.62)

which is evenly symmetrical to the center of the aperture located at (a/2,b/2) , is used to

excite the waveguide, only the higher order modes with odd n and even m can be excited.
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Thus, the x-component of the electric field of higher order modes appeared at the

aperture is antisymmetric with respect to the center of the aperture, and the y-component

of the electric field of higher order modes is symmetrical with respect to the aperture

center. The excited modes are determined to be (1, 0) , (3, 0) , (1, 2) , ,

(2k + 1, 2k) , , for k 2 0 , in an ascending order of cut-off frequencies. Expressing the

aperture field in terms of these excited modes will result in an accurate and rapidly

convergent solution.

2.3. Derivation ofEM Fields via Transverse Field Method

Due to rapid technological advance in material manufacturing in recent years, the

study on the behavior of electromagnetic fields in anisotropic materials has become

increasingly important. Numerical methods are commonly used to solve the problems

dealing with materials with complex structures.

In this section the electromagnetic fields inside an electric anisotropic medium, which

electric properties vary in different directions, is investigated. The method used in this

section is based on the concept of eigenmodes of the spectrum-domain transverse EM

fields. The EM fields derived in this section are used in chapter 4 to match the tangential

electric and magnetic fields at the interfaces between regions as illustrated in Fig. 2.1.

2.3.1 Dielectric Tensor Properties of Anisotropic Media

The constitutive relations for a homogeneous, nonmagnetic anisotropic medium are

derived as

m
11

[
1
1
+.9

D =
(2.3.1)

-> a

B = ”OH (2.3.2)
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where E is called the tensor permittivity and is a complex constant dyadic or tensor if the

medium is a lossy material. The basic form of the complex tensor permittivity containing

only the diagonal elements is of the form

  

£1 0 O

E = o 52 0 (2.3.3)

0 0 83

where

8}. = er—joj/m (2.3.4)

and er is the real-valued dielectric constant and 0']. is the real-valued conductivity. The

orthogonal coordinate axes in which the diagonal tensor E takes are referred to as the

principal axes.

Let us now consider that coordinates of the medium are lines up with the principal

axes of the anisotropy and the z-axis is considered to be the direction of wave propagation.

To rotate the transverse plane of the medium with a rotated angle 6, it will give us an

alternative form of the tensor permittivity:

_ an exy 0

= 2.3.8 ny 2y), 0 ( 5)

O 0 82

where

2 _ 26

em = alcose +8281!) (2.3.6)

_ . 2 29

a”, - elsme +£2cos (2.3.7)

8 = 23 (2.3.8)
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8x), = a” = (81-82) sinecose (2.3.9)

The relationship of matrix components between eqs. (2.3.3) and (2.3.5) is based on the

change basis of the transverse plane. It can be easily found in the following derivation.

Let W be a square matrix that transforms vectors in accordance with the equation

->
u

:10:

3* , and there is a matrix W that can transform vectors 3* and ii" in accordance with the

2*

equation 3* = W - 3‘. Now if we know that the coordinates in the new basis relates to

the coordinates in the old basis by a transform matrix T’, we can then write relations for

the coordinate transformation as

Y 3* (2.3.10)x
v

ll

C
W

II 33-13“ (2.3.11)

Simply applying the vector transformation of 3 and 3* for the new and old basis

respectively into eq. (2.3. 10) and taking the inverse coordinate transformation leads to the

:1

solution to the matrix W , i.e.,

:-1
9* = Y 9

:-l =

= .w-%

:-l = : 9

= . W. Y v“
(2.3.12)

01'

:1; :-—l = :

W = Y W-Y (2.3.13)

If we rotate an angle 6 of the transverse plane, the coordinate transform matrix T’ can

be represented as
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3, = cosO sinO (2.3.14)

—sin0 cost)

:—1

and the inverse matrix Y is

1f] ____ cos6 —sin9 (2315)

sin9 cosB

: :—l 2*

As a result, with the aid of Y and Y , the vector transform matrix W in the new basis is

derived as

W“ = ff‘ . W i, = cos() —sin6 31 0 cos() sine

sine cost) 0 £2 —sin6 cosG

8100829 + 82 sin26 (El — £2) sinBcosG

(2.3.16)

(81 — 82) sin9cosG e] sin29 + ezcoszfl

2.3.2 General Eigenvalue Problem

Assuming a suppressed elm: harmonic time dependence of the fields, the electric and

magnetic field vectors satisfy the Maxwell’s equations

-> _ ->

VxE = —1mu0H (2.3.17)

-> . = a

VxH = 1m - E (2.3.18)

Expanding above equations gives

air:Z 313), , H
__.___ = _ 2. .1

3E, a1;z
az — ax = -j(0}10Hy (2.3.20)



22

(DE“ 815:3r . H

X ._ .5; _ _J(ou0 2 (2.3.21)

8Hz aH‘. . .

7.97 — —az— : JanszJ‘C +Jmsx),Ey (2.3.22)

BHx 8Hz . _

—a—Z— — 3x— = 1(08).XEX +1wewa (2323)

8H), 6H)[ . E

__ _— = (1)8 . 2.3.24

ax ay 1 z z ( )

As mentioned before, a two-dimensional Fourier transform can be used to facilitate the

solution of the three-dimensional Maxwell’s equations derived above if an uniform and

unbounded medium along the transverse directions is involved. Let us now define a two-

dimensional Fourier transform pair as

.. °° —'k —'k.'

f(kx, k), z) = Jlflx, y, z) e j Rte 1 “"dxdy (2.3.25)

2 00 ~ .k X .k .

f(x, y, z) = (211;) J Jf(kx, k), z) e] I e} ”‘dkxdky (2.3.26)

where f(x, y, 2) denotes a three-dimensional spatial function and }(kx, ky, z) is defined

to be the two-dimensional Fourier transform of f(x, y, 2) along the transverse directions.

If we take the two-dimensional Fourier transform of eqs. (2.3.19) to (2.3.24), we then

have

, - at, , -
jkyEZ—E- = -}cou0Hx (2.3.27)

at, , .. , -
E-kaEZ = —j(D}.l0H). (2.3.28)
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jkxE).—jkyi~3, = #0011019: (2.3.29)

. " 3i!) . " . "'

1k),Hz—-a—z- = waxxEx ”mega, (2.3.30)

air, - , .. -

dz -1ka. = 1(08),xEx+j(08nyy (2.3.31)

jkay—jk),Hx = jooezEZ (2.3.32)

Among these expressions, the partial derivatives of the spatial domain electromagnetic

fields with respect to x and y are replaced by jkx and jky and the derivative with respect to

z is left as the only variable in the spectrum-domain. Rewriting eqs. (2.3.29) and (2.3.32)

 

gives

1?: "2 i1 "x i1= —— + , 2.3.33

2 mez ‘ wez ’ ( )

- k, - k -
= 4E _ X E (2.3.34)

The substitution of eqs. (2.3.33) and (2.3.34) back into eqs. (2.3.27), (2.3.28), (2.3.30) and

(2.3.31) leads to

 

5%? = ’5: [kxkyfix + ((02.11er — kx2)i1y] (2.3.35)

83;? = .31: {-0120er + kyzjilx — kxkyfiy] (2.3.36)

8:? = —;{Tl [(—m2uoeyx - kxk),)f£Jr + {—002 1108),), + kx2)f£y] (2.3.37)

88—? = 701: [( (021108” - ky2)f£x + (wzuoexy + kxk),)l§).] (2.3.38)
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These equations constitute a set of one-dimensional linear partial differential equation

for the spectrum-domain transverse electromagnetic fields, and they can be expressed by a

matrix equation as

if = 3- 2 (2.3.39)

dz

where

~ ~ ~ - ~ 1

T 5 (15,, E), nOHx, nOHy) (2.3.40)

with no = 1201t,and

  

 

pO 0 a bT

32- O 0 c d (2.3.41)

0: B O 0

2509

k k (0 e —k
[a b] Ewe} x ) “0 Z X

(2.3.42)

6 d [‘10 -c0 uoez + k), —kxk‘

. 2 2 2

[a ] E J_%_ -0) “08y; k,k). —(0 uoey),+ kx (2343)

5 (Duo 2 2 2 ' °
7 0) “08n— k), (0 ”0%.“ kxk),

The longitudinal components, Ez and Hz , can be obtained from

.. k .. kx ..
E2 = — 4H, + —H), (2.3.44)

00:5z (er

.. k, .. k ..

= _>_ _ x E (2.3.45)
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To find the solutions for the spectrum-domain transverse EM fields we need to solve

the eigenvalue problem of the one-dimensional partial differential equation. Its general

solution can be represented as

... 4 .) A 7

T __. Z ,4me e '" (2.3.46)

m = 1

where Am denotes the unknown coefficient of the mm eigenvector, 1,2,", which with a

corresponding eigenvalue 7""; satisfies the relation 3‘ ~ i2", = lmizm. Since 3‘ is a 4x4

matrix in our case, there exists four eigenmodes in this problem and the complete solution

of the spectrum-domain transverse EM fields is a linear combination of these four

eigenmodes.

The nontrivial solutions to eigenvalues and eigenvectors can be determined by solving

detLXj—g') = 0. This leads to

  

32:: ch Old 07cc

detaBAO =2» [3),0 +a 01130 -b 01(3)»

_78025 801 761 780

71.4—3.2(a01+by+c[3+d8)+(ad—bc)(ad-By)

a x4 — 1.22 + AS = 0 (2.3.47)

With the aid of the quadratic formula, four eigenvalues are obtained from the solutions of

 

 

eq. (2.3.47) as

2

+,/ —4AS

A'l (kx’ ky) 5 1“1+ = J2 2 (23.48)

12(kx, ky) -=- I"- = —I‘1+ (2.3.49)
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2 —,/22—4AS
13(kx,ky) 213+ = J 2 (2.3.50)

 

 

 

(2.3.51)
+

714(kx,ky) .=.r2_ = —r2

These eigenvalues represent right and left traveling waves which are denoted by the

propagat1on constants 1"” and 1“,; for the subscr1pt t = l or 2.

. . T . .

The corresponding e1genvector, denoted by 1);", = [e, f, g, h] , satisfies a matrix

equation as

    

'xmo a If:

0)» d

”'6 f=0 (2.3.52)

01 BkmO g

y 8 01m 1!.

For a spec1fic e1genvalue Am , expandmg th1s matrix equat1on gives four homogeneous

linear equations for four unknown components of the corresponding eigenvector. It can

be written out as

Homogeneous system offour linear equations:

ekm+0+ag+bh = O

O+fkm+cg+dh = 0

ea+fl3+gkm+0 = O

ey+f6+0+hlm = O

The algorithm used to solve this homogeneous system is that one of the equations is

selected and the unknown terrn containing the eigenvalue is transferred to the right-hand

side and treated as a known value. Next by transferring the selected unknown terms on

the left-hand sides to the right—hand sides of the remaining equations, we can solve the
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remaining three unknowns in terms of the unknown treated as a known value. Thus, four

different sets of nontrivial solutions, or four different eigenvectors, can be constructed.

Since the four eigenvalues represent two pairs of forward and backward waves of two

different waves, two different eigenvectors are used to construct four possible eigenmodes

in the medium. The selection of appropriate eigenvectors to create eigenmodes is dictated

by the numerical convergence.

Cgsel

ag+bh = -e7tm (2.3.53)

Am C d f 0

B ,,, 0 ' g = —e0t (2.3.54)

8 0 9. h -eY

Solving these equations with the Gauss elimination method leads to,

p 2 —

(Km-CB-da) 0 O f e(ca+dy)

[3 Km 0 ' g = —ea (2.3.55)

8 0 7t h l. —eY
L ”L  

The value of unknown f is first determined from the top of above expression, and

unknowns g and h are then solved by substituting f back into the subsequent equations.

 

  

Thisgives

f= 2coz+aVY 8
(2.3.56)

lm-cB—do

g = 7— OH 2 Y = - "’ , 2 5 e (2.3.57)

m xm—ca—da 2m(xm_c0—d5)
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2.2 — —d5 5 +d
h = _}% 7+ 52(Ca+dY) = __ K m Cf: 2 J+ (CE Y) 8 (2.3.58)

m Am—cB—ds Am(xm—c0—d5)

 

If we multiply MILK: — CB — d5) to and divide e from above equations, the eigenvector

 
  

 

becomes

_ 2 -

r1 Xm(lm—cB-d5)

e

Am(coc+dy)

in, = f = 2 (2.3.59)

8 -[a(xm-cB-d8)+B(ca+dy)]

h

" -[y(k,2n—cB—d8)+8(ca+dy)]

Notice that e should be a nonzero value.

  

Qgse 11

ea +113 = —g}tn (2.3.60)

kn O b e —ag

0 2t" d ' f = ..cg (2.3.61)

7 8 A" h 0

Using the Gauss elimination method, eq. (2.3.61) becomes

3L" 0 b H
e —ag

0 A" d . f = _cg (2.3.62)

0 0 (xi—by—da) h (“+650  

From eq. (2.3.62) the components of the eigenvector are then solved in terms of the

selected unknown g as
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h = [1201+ 6:8]8 (2.3.63)

n- Y-

2
?» —b —d8 +b + 5

e = -513- a+b2(ay+c5) = - at n Y 2 ) (cry c ) g (2.3.64)

n kn—by—dfi MAR—127-216)

_ g d(a'y+c5) _ cflki—by—d54)+d(ay+c5)

f - -— 6+ 2 — - 2 g (2.3.65)

n An-by-dfi An(2n-by—d5)

Finally, multiplying Ankki—by—do) to and dividing nonzero value g from each

component of the eigenvector, we have

  

r- —[a li—by—do +b(a'y+c5):fl

e

2

in. = f = —[c kn—by-db +d(ay+c5)] (2.3.66)

: xn(xfi-by—d5

H Kn(ay+c5)   
1h . .

Let us now denote the n e1genvector of the four e1genmodes of the system as

an
, n=1, 2, 3, 4 (2.3.67)C

W

3

ll

  

We will generate the first and second eigenvectors based on eq. (2.3.59) and the third and

fourth eigenvectors on eq. (2.3.66). Finally, the spectrum-domain transverse

electromagnetic fields represented in eq. (2.3.46) for an anisotropic medium can be

rewritten as



3O

 

F ~ 1

Ex

E. 1; Ad A2 A:
i = A1316 1+A21/28 ‘ +A3$3€ 3 +A4i/4e 4 (2.3.68)

"OHx

"OI-I),  

2.3.3 Degenerate Eigenvalue Problem

In this section the electromagnetic fields within an isotropic medium will be derived in

the same way as we did in the preceding section using the transverse Fourier transform

and eigenmode representation. As shown in Fig. 2.1, the free space backing the material

layer will be recognized as an isotropic medium and used as an example.

In free space the permittivity tensor is reduced to a complex scalar value by setting

£1 = 82 = 83 = so and the permeability remains as u = 110. Substituting back into

eqs. (2.3.6) to (2.3.9), we have

em = a”, = 82 = 80, e = e, = 0 (2.3.69)

The two-dimensional Fourier transform of Maxwell’s equations expressed in the

preceding section gives the following simplified relations.

 

did 2 ~

32 =,gr7; a37m

.. k), .. kx ..

Eza = ‘m—EBqu' meOHya (2.3.71)

- k‘, - kx ..
w - (OMEN—MICE)“ (2.3.72)

where
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~ ~ ~ ~ ~ T

Ta 2 (EM, Eya’ nOHm, 110”...)

  

 

and

0 0 a’ b’

305— O 0 ed

01' [3' 0 O

-7’ 5' 0 0.

, , _ 2 2

a b E J kxky (D l'I’OEO--kx

c d —0) uoeo+k), —kxky

. . . 2 2
on B = £2 —kxky —c0 u080+ kx

. . “(0

y 8 “0 wzuoeo— k3 kxkv

(2.3.73)

(2.3.74)

(2.3.75)

(2.3.76)

The nontrivial solution to the eigenvalues of matrix Sa can be proven to have

degenerate A. This means that multiple eigenvectors of 3}, correspond to the same

eigenvalue. Let’s calculate the coefficients of the quadratic equation (2.3.47) and find the

solutions for eigenvalues via eqs. (2.3.48) to (2.3.51).

-~ 1 2 2

aa = 2 kxk,

(0)1080

 

 

. . —1 2 2 2 2

by = 2 (to “050-181 X 0) (Loco—k), )

(0 “080

 

-1 2 2 2 2 2 2
= 2 [(0)11080) —(kx+k),)00 ”080+kxkfl

0) “080

—1
 

, . 2 2 2 2

c3 = 2 (40 11080+ky X —(0 [1080+ kx)

(0 “030
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—1 2 2 2 2 2 2
= 2 1100 1.1080) —(kx+k),)m 1108044ku

0) 11080

 

.. 1 2 2

d8 = kxk),
2

00 11080

 

=> 2 = (a'a'+b'y'+c’[3'+d'6') = —21:(02p.0€0—k: —k::1

a’d' = ——k k,

. . —1 2 2 2 2

b c = 3,2—(0) “oeo’kx X —(0 “030+ky)

1 2 2 2 2 2 2

= —22[((0 1.1080) -(kx+k),)0) ”080+kx kg

(0 80

068' = —k k

II I
H

. 9 — 2 2 2 2

By 2 2(-0‘) “080+kx )( (I) “OeO-ky)

1 2 2 2 2 2 2

= —2—5[((D 11030) -(kx+ky)(0 “080+kx kfl

0

, ,, ., ,, ., 2

=>AS = (ad —bc)(a5 —BY) = [wZHOSO-k: -k:]

From eqs. (2.3.77) and (2.3.78) we obtain

( 212—41553 0

(2.3.77)

(2.3.78)

(2.3.79)

If we substitute eq. (2.3.79) back into the formulas for the roots of a quadratic equation, it

will lead to a condition of eigenvalue degeneracy meaning the multiple roots of the

eigenvalues. The eigenvalues are
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1 . 2 2 2
A] = 132?.“ = 22; = —1Jm (Logo—k)r -k), (2.3.80)

. 2 2 2

4'2 = 242-20 =1Jw quO—kx —k), (2.3.81)

 

 

The corresponding eigenvectors associated with these two degenerate eigenvalues can

also be determined by using a similar algorithm as shown in the preceding section. Since

eigenvalues are degenerate within an isotropic medium, this algorithm doesn’t need to

yield linear independent eigenvectors. Let’s write one eigenvector by setting zero in one

component and normalizing the other two nonzero components by the other remaining

nonzero component in a form like [0 f 1 [1:17 , or e 0 g 1] T, or [1 f 0 hJT, or

[e 1 g 0:1T. The other eigenvector that has the same eigenvalue can be constructed with a

0 where the first eigenvector has a 1 and with a l where the other has a O. The derivation

of these eigenvectors is given below.

Qase I

Let the first eigenvector which corresponds to the eigenvalue 3.0 be chosen as

T

1210 = [0 f} h] . Substituting this into eq. (2.3.52) gives

  

plaOab-b‘

07» d
ac f=0

(2.3.82)

01 [3200]

y 6 02“.".  

This will give us four linear equations to determine unknowns f and h. Expanding the

matrix equation yields a system of four homogeneous linear equations:

a+bh = O

fita+c+dh = O
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fB+ka = O

fB-I-hka = 0

It is obviously that the solution tofand h are

f = __a
(2.3.83)

B

5
- (2.3.84)

B

The other eigenvector which corresponds to the same eigenvalue is then expressed as

9
V3), = [1 f 0 h]T. Substituting this back into eq. (2.3.52) and expanding this matrix

equation gives

la + bh = O

fka + dh = O

01+fB = 0

y+f6+h7ta = 0

Similarly the 80111110118 10 unknownsfand h are obtained as

h = ___a 2. .1 ( 3 85)

— -E - d.
2.3.f 1 ( 86)

Finally, the eigenvectors in this case are summarized as

T

t»... = 1 3:2 1 .21 (2.3.87)
13 l3
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320 = 10 2'." 1 §1T 1 (2.3.88)

B l3

9 d 7» T

V3a = 1:] I; 0 _f1 (2.3.89)

9 d l T

V40 — [I I; 0 3“] (2.3.90)

Qase II

Now let the first eigenvector which corresponds to the eigenvalue la be chosen as

T

1’21), = e 0 g 1] . Substituting this into eq. (2.3.52) leads to

1

I

FKaOab-

Olacd

0113200

1750M..-

= 0 (2.3.91)

  ~
O
Q
O
N

  

Expanding the matrix expression gives a system of four homogeneous linear equations:

ela+ag+b = O

cg+d = O

ea-l-gla = O

e'y-I-la = O

The solutions to unknowns e and g are obtained as

e = --3 (2.3.92)

7

g ___ _6_1 = 9 (2.3.93)

C 'Y



36

The other eigenvector corresponding to the same eigenvalue is then written as

1230 = e 1 g OJT. With this eigenvector, four linear equations are obtained when the

matrix equation is expanded:

eka+ag = O

la+cg = 0

ea + B + gka = O

ey+5 = O

The solutions to unknowns e and g are obtained as

la

= __ 2.3.948 c ( )

e = -8 = 9 (2.3.95)

'Y C

T

31a = 1.92 o 9 11 (2.3.96)

7 'Y

2. T

320 = 1:1 0 ‘1 11 (2.3.97)

7 'Y

A, T

1’3a = ‘3 1 __£ ()1 (2.3.98)

C C

A T

340 = E 1 .9 01 (2.3.99)

C C

. . rh . . . . . .

We W111 use the notation of the n e1genvector of the e1genmodes W1th1n an 1sotrop1c

medium as
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nla

n20 "=1, 2, 3. 4 (2.3.100)
na ’

C
V

II

n30

  _ "40.

Let’s use the eigenvector of case I to create the first two eigenmodes with two different

eigenvalues and the eigenvector of case 11 to generate the last two eigenvectors with two

different eigenvalues. The spectrum-domain transverse electromagnetic fields can then be

expressed as

Exa

E» l (z—t) ~71 (z—l) Ada—1) -).a(z-z)

in = 8112108 0 3212208 0 +B3a3a€ +B4g4ae (2.3.101)

n0 xa

310qu  

If we let la satisfy Re {la} > O and 1m {10} > 0, the terms with complex-valued

coefficients B1 and B3 will represent the backward propagating waves, while the terms

with 32 and B4 will represent the forward pr0pagating waves.

By considering only the forward plane waves in an infinite half space, the spectrum-

domain transverse fields inside free space can be expressed as

  

xa

E —la(z—t) 41 (z-t)

{“ = 32122,, e + B4340 e " (2.3.102)

nOI-Ixa

1%qu

In summary of this chapter, the EM fields inside a homogeneous medium have been

derived based on two different techniques. Those derived in section 2.2. will be further



used 11

an 1501

chap-t:

3111301
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used in matching the boundary conditions in chapter 3 for measuring the EM properties of

an isotropic slab material. On the other hand, those derived in section 2.3. will be used in

chapter 4 to match the boundary conditions for measuring the EM properties of an

anisotropic slab material.



CHAPTER 3

OPEN-ENDED RECTANGULAR WAVEGUIDE

PROBE TO MEASURE EM PROPERTIES OF

ISOTROPIC MATERIALS

3.1. Introduction

There are demands for measuring the EM parameters of materials nondestructively. A

waveguide probe which consists of an open-ended waveguide terminated with a flange

can be used for this purpose. When a waveguide probe is placed against a material layer

and the reflection coefficient of the incident wave at the waveguide aperture is determined,

the EM properties of the material layer can be inversely determined.

The goal of this chapter is to derive two coupled integral equations for the electric field

on the waveguide aperture. After the determination of the aperture electric field by

solving the electric field integral equations (EFIE’s) numerically, the reflection coefficient

of the incident wave can be expressed as a function of the EM parameters of the material

layer. Thus, the EM parameters of the material layer can be inversely determined if the

reflection coefficient of the incident wave is experimentally measured.

In section 3.2., the electromagnetic fields in the waveguide, the material layer and the

free space derived using Hertzian potentials in section 2.2. are employed to match the

boundary conditions at the material-air interface and the material-waveguide aperture

39
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interface. This will lead to two coupled electric field integral equations. In section 3.3.,

the moment method is implemented to solve the EFIEs numerically. Numerical results on

the input admittance of the waveguide probe are then compared with the existing results

published by other workers.

3.2. Coupled Integral Equations for Aperture Electric Fields

The geometry of the problem is shown in Fig. 2.1, where there are two discontinuity

interfaces; the material-free space interface at z = d where the material to be tested is

backed by free space, and the waveguide-material interface at z = 0 where the material

slab is placed against the waveguide flange.

Using the EM fields in the waveguide, the material layer and the free space derived in

section 2.2., the tangential components of the electric and magnetic fields can be matched

at the two interfaces. This will lead to two coupled integral equations for aperture electric

field. After the aperture electric field is determined, the reflection coefficient or other

quantities of interest such as the input impedance and admittance of the waveguide probe

can be determined.

3.2.1 Reflection Coefficients at a Discontinuity Interface

When a TE or a TM wave is incident upon an interface plane which separates two

different media, a part of the wave is reflected back from the discontinuity. The ratio of

the complex amplitudes of the reflected wave to the incident wave is defined as the

reflection coefficient.

In section 2.2.3 we have derived the EM fields in a layer of material which is backed

by free space. In that section two unknown quantities, Ra (kx, ky) and Rb (kx, Icy) ,

appeared in the field components given in eqs. (2.2.55) to (2.2.60) represent the reflection

coefficients of propagating TE and TM modes, respectively, at the plane interface at
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= (I. These quantities can be determined when the transverse EM fields within the

material layer and that in free space are matched at the interface at z = d . Since the free

space is of infinite extent, only the forward propagating wave is assumed in the free space

region.

The forward propagating transverse fields inside the free space can be derived as

follows:

1 2°° , —r,(z— d) ejkxejk)

E: = (it) 1°01 [wuokyI-I (kx, ky) —jer21(kx, ky) ] e dkdk), (3.2.1)

1 2 w , (z— d) ejkxejk)

E: = (27:) L1 [—a)u0ka(kx,k),) —jkyl“21(kx,k),)]er, dkHdk, (3.2.2)

1 2°° . —F(z- d) jkxjk)

H: = (fi)_1m'1 {—jer2H(kX, ky) —00€0ky1(kx, ky) ] e 2 dkdk (3.2.3)

912” . -2F(z- d)ejkx)xejk,v

H: = (27:) 1°01 [—jk),l‘2H(kx,ky) +0080kx1(kx,ky)]e dkxdky (3.2.4)

where

I‘z(k, k) = —j,1k0 -k: —k: (3.2.5)

k2 = 00 ”080 (3.2.6)

The quantities of H (kx, ky) and I (kx, ky) represent the corresponding coefficients of

fields of TE and TM modes at the spectrum location (kx, ky) . The superscript, a,

appeared in the field components signify that existing in the free space.

Using the transverse EM fields in the material layer given in eqs. (2.2.55) to (2.2.60)

and the transverse EM fields in the free space given in eqs. (3.2.1) to (3.2.4), the matching
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of these transverse EM fields at the interface at z = d will generate the following

  

 

relations:

for E)I = E:

z=J z=d+

21‘1d , 21‘,d -r,d ,

[mukyF 1+Rae —karlo l—Rbe ]e = [muckyH—111521] (3.2.7)

for E, = E0

42=d‘ )z=d+

2nd , 21‘,d -r,d ,

[-mpkxF 1+Rae —jk)_I‘]G l-Rbe ]e = [—(ou0ka—jk),l“211 (3.2.8)

 

for Hxl = H:

z=J z=d+

, 2nd 2r,d —r,d ,

[‘karlF 1 — Rae — (flakyG 1 + Rbe ]e = [—jkxF2H — (080k),l] (3.2.9)

forHVI =Hj',
.2“, .

 z=d+

—r,d[ , 2nd 2nd , ,

—jk),I“1F l—Rae +£08ka 1 +Rbe ]e [—jkyI‘2H+a)ekaI] (3.2.10)

The unknown quantity I (kx, ky) can be eliminated from eqs. (3.2.7) and (3.2.8) by

subtraction to yield

zrld -r,d

11F l +Rae e = pOH (3.2.11)

Similarly, I (kx, k) can be eliminated from eqs. (3.2.9) and (3.2.10) to yield

2r,d -r,d

FIFLI —Rae )e = FZH (3.2.12)

Now, the reflection coefficient of propagating TE modes, Ra , at the interface at z = d can

be obtained from eqs. (3.2.11) and (3.2. 12) after eliminating H (kx, ky) . The result for Ra

is
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11 F —ul‘ -2r,d

L3] (3.2.13)R (kx,k,) = e

a ) [qu1 + qu

On the other hand, after eliminating the unknown quantity H (kx, ky) from eqs. (3.2.7)

and (3.2.8), we have

2r,d —r,d

FIG(1—Rbe )e = 1‘21 (3.2.14)

Similarly, eliminating H (kx, k\,) from eqs. (3.2.9) and (3.2.10), we have

2nd —r,d

680(1 + Rbe = 80] (3.2.15)

The reflection coefficient of propagating TM modes, Rb, at the interface at z = d can

now be obtained from eqs. (3.2.l4) and (3.2.15) after eliminating l (kx, ky) . The result

for Rb is

8 1“ —EF —21‘d

0‘ 2Je ‘ (3.2.16)
Rb (kx’ ky) = [801‘1+el“2

3.2.2 Matching Boundary Conditions at Waveguide Aperture

After deriving the reflection coefficients of the TE and TM modes at the interface at

z = d by matching the tangential EM fields across this interface, we can now proceed to

match the boundary conditions at the waveguide aperture at z = O.

The field components derived in section 2.2. for both the waveguide and the material

layer are recalled in this section. Since a discontinuity is presented at the waveguide

aperture, higher order modes are excited near the aperture. Therefore the aperture fields

should contain not only a dominant mode but also an infinite number of higher order

modes. Due to the orthogonality property of waveguide eigenmodes, the unknown

amplitudes of these higher order modes can be derived in terms of the aperture fields. As
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a result, two coupled integral equations for the aperture fields can be obtained after

matching the boundary condition at the aperture.

First, we will give the aperture fields at the side of the waveguide, i.e. at z = 0'.

According to eqs. (2.2.37) and (2.2.38), the aperture electric fields E and E110 can be
X0

expressed as:

m1(x y) =jwlLOZZ(I—n-'—bRAH.)”€04—:—x)sin("—1;t—y)

+nZZFn"m(—1-t)8nn“cos(£g£)sin
(mnny) (3.2.17)

a b

 

Eya(x, y) = —jmu0(:)alosin(%x)“ +R)

221—)(111w)
7W

b

m"

+ZZFn..m(r—EE1—t)8num.sin(fi—:—)cos( b ) (3.2.18)

n m

 

Since the TM modes do not exist if one of the mode indices is zero, we can write the

above equations in more compact forms as

- '2'! L“ ,, 1'55 - LU
;;[,11.(,)M.(,)B..1ws( . )....( b 1

(3.2.19)

Em (x, y)

Eyo(x,y) = —jco|.to(: )amsin(n7x)(1+R)

_- L "31123 m_'ny+§§[1mtto( a )An.m.+1“n.m( b )Bnm]sm( a )cos( b )

(3.2.20)

By using the orthogonality properties of the sinusoidal functions, we can determine the

unknown amplitudes a10 , Am". and Bn.m. from eqs. (3.2.19) and (3.2.20). We have
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a . 1tx . 1t b
gE),osm(-EI-)dxdy = —jwp.0(5)a?alo(l +R) (3.2.21)

d
—
.
°
‘

ab . m'n nn

:1" [1”“01 -,,—)e,.1A,.... + 11471311]

(3.2.22)

ba 11: o 1

m ab . n 1: m It

£&E)081n(’ig-—)COS(T)dXdy — I [-](Dllo( 71—)Em'An'm' + 1“".m( T) Bn'm']

(3.2.23)

b0 I o

MExocos('-E7nJ—C)sin( Eggdxdy

or these unknown amplitudes can be expressed in terms of the aperture electric fields as

2/—j(o110 ba , (m)

010 — mglEyOSln -a— dXdy (3.2.24)

11111111111511 1'—.)11511
 

 

 

An'm' = ab [8m(2%—112+) 8,1("11‘ )2] (3.2.25)

b

n'n

1 _ MHz—111#1311511]

"""' .. 1 1”): (":11 1e . — +8. —

m a " b

where for the sake of brev1ty,

E _baE n'nx . m'Tty dd
H m...“ xocos —a- sm b x y (3.2.27)

b0 u I

”E” a uEyosin('—I§5)cos(m7m’)dxdy (3.2.28)
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2 n'=0 2 m'=0

n'¢0’ m. l m'¢0

(
0

II
I

P
M

0
1

II
I

A

(3.2.29)

In eq. (3.2.24) if we let the amplitude of the incident wave, “10' to be 1, then we can

obtain an expression for the reflection coefficient of this incident TE10 mode in terms of

the aperture electric field. That is

2/—'a1 ba

R = {—1—39 (1£5, sin(1t—x)dxdy]—l (3.2.30)
b1t >0 (1

Substituting An.m. , B . . and R back into the aperture magnetic field in eq. (2.2.40) leads
nm

10

Hx(x, y) L0- = (:)Flosin(1-:1—)(l—R)

2211—11—111—11—1

 

 

 

 

  

2r b0 I

-15 -12__10_-12 -n_x11_ 2(a)1‘losm( a )+jcott0absm( a )MEyosmE’ta )dxdy

 

11131 31-131111111)
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Employing the following identities,

Pimakg = (EC-zit} +("—'b—")Z (3.2.32)

111110111 11111“) "1): (21-111;-)1

=11): (M1;— 1111) 11
and substituting them into eq. (3.2.31) yields

1

l

H  

 
- ‘ 9-112)” 1’5.-"12:0. — muoab[2bnmuorl0sin( —j2FOSin uEwsin dxfldy

+ ;;1;:1:...(_.)...(_) 111313311151

+ [hi—(5211‘)z J‘UEW ] ) (3.2.34)

 

where

 

(3.2.35)

Similarly, substituting An.m., B . . and R back into the aperture magnetic field in eq.

(2.2.41) leads to

_ m'rc . m‘n n'nx . m'n

”3““ -' 2.2. _r,.,,.(_b_)A,.m.-111(T)B,.m.]111(T)1m(__by)
n m

( y
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w121sm111 _ _ .2 .
22W1:111)1111“” 1.10111-

_("__)(“Mr” +k0]“E1o) (3.2.36)

 

Using the identities of

2 2 n'1t m'1t

rn'm' +k0 = (7} + (7)2 (3.2.37)

111131 ("171% 1411151“ 111131-1111

#11“) £11111-kz]

and substituting them into (3.2.36) yields

 

#48 - 1 (n'nx) . (m'ny)([ 2 (Mn)?

H = ——"—’1'——cos — sm — — E
0

ylz = 0' ggabwuornw. a b b II 110

n'n m'1t

+ (7)1TMEyo ) (32-39)

As a consequence, eqs. (3.2.34) and (3.2.39) show that the aperture magnetic field at

the waveguide side are related to the integrals of the aperture electric field as defined in

eqs. (3.2.27) and (3.2.28).

Next, we will give the aperture fields at the side of the material layer, i.e. at z = 0+.

From eqs. (2.2.55) and (2.2.56), the aperture electric fields Em and Eyo are expressed as:

Exo(x,y) =(2iJ13 [toukyaF(1+R) jk FG(1— Rb)]ejkexx1k’yxdkdk

(3.2.40)
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1 2°° _ 1k}ejk)

E)_0(x,y) = E U [—wukxF(1+Ra) —jk),I]G(1—Rb)]e dkdk

(3.2.41)

Using the orthogonality properties of the exponential functions, the above two equations

can yield the following relations:

-jk,xe-J'k) .

[WE dxdy (oukyF(l+Ra) —-jer1G(1-—Rb) (3.2.42)

[We-jk,yd .
L”UE dxdy .413);ka +Ra) —112,110“ —Rb) (3.2.43)

Since the aperture electric field components Ex0 and Eyo only ex1st over the aperture

region, 0<x<a, 0<y<b, and vanish on the flange, the double infinite integrals can be

replaced by the two double finite integrals as

b“ -14 k

filer”e’ ”e""‘dxd), (3.2.44)

b0 . .

_ -Jk,X -1’<,..v
J‘E);=‘[lEyoe e dxdy (3.2.45)

The unknown amplitudes F and G can then be solved from eqs. (3.2.42) and (3.2.43) as

 F(kx,ky) = (k2 1:30:21” [kyflEfo- kM] (3.2.46)

 C(kx,ky) = (k: H50-13%) [k”E; +kyflEjo] (3.2.47)
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Substituting F and G back into the aperture magnetic field given in eqs. (2.2.58) and

(2.2.59) leads to

+

      

1 2°° .
jer

=0 = (5;) LL! {—karl F(1_Ra) ’wEk),G(l+Rb)]
e

4i.)33 [:12 112;;5%us;was.)

Rb 81k} jk3

1m” e 2;“k)”E:0+k:I:Ef:)]dkHdk

I; 1’Rbe:k +k:

 

 

 

'k 'k.‘

‘(-)WH ijH_ 21!: - (OI-l F(k2+y2k) 11+ kll_——R x0

y

1 221—R0221+::J

+ Fk——kzk E dkxydk
1

Riki-+14% xl+Ra 1‘1- 1“ yo

 

01'

H -1.” jkflk‘yw k k E"+N (k k) E‘]dk dk

M“ . um... Mu . y

where

M(k k)=— k/(21t) 2+[r21__-R: [(214319)]

x )’ nx(k:+k,) 11+R ll—Rb

3

i 2 l-R 1+R

N3'(kx’k3') E 1/(221t)2 [n2k:1+Ra- f:l-ij
Fl kx+ky a b

and

1 2 °° . 178* J
Hy(x,y)l 0* = (57:) H {—1181} F(1—Ra) +weka(l+Rb)]e e

Z: -°°

#3

e ’ dkxdky

(3.2.48)

(3.2.49)

(3.2.50)

(3.2.51)

'k).y

dkxdky
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—]r 1_ ejkxejk)

=2(11:2).13 [qu1+R: k2 «3k:232(k”Em kkaJEyo)

jk k

“Lg—1:212:81k:2(k”Efowl-kxk),HE;o):ldkxdky 

 

‘k 'k.'

_ (3)217"; 1x8} 0 , 1 L Jib/(2014+k2k2__”Rb]”Ee
21! -00 0.)“. ELki‘Fki) 1 )'1++Ra lxl—Rb x0

kk l-R 1+Rb

+ :3 2 [1121—_R.:+k?-1—-R:]”E;0 dkdk (3.2.52)

[‘1 kx+kv + -

0r

_ -f °° ”9" ”‘3" e k k ‘ d dkHyz=0+ — all”! e e [Nx(ky,kx)”Em+M( y, x) I15w] k}r y (3.2.53)

where

2

= 1/(21t) 2 zl'Ra 2 21+Rb
Nx(k),,kx)_rl k2+k2 [Fl k>‘1+Ra IkXI—Rb (3.2.54)

x y

Equations (3.2.49) and (3.2.53) indicate that the aperture magnetic field at the material

side can also be expressed in terms of the aperture electric field as defined in eqs. (3.2.44)

and (3.2.45).

It is also important to note that the roots of 1 + Ra = O and 1 — Rb = O , the factors

appeared in eqs. (3.2.50), (3.2.51) and (3.2.54), lead to the surface wave pole singularities

in an isotropic dielectric slab. Let us substitute eqs. (3.2.13) and (3.2.16) into 1 + Ra = O

and l—Rb = 0. We have

F - F -2rd

1+R = 1+ M}; ‘ = 0 (3.2.55)

“Orl+”r2



 

I
”
:

7
J
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GOP] —€r2 -2rld

l-Rb = 1— —— e = 0 (3.2.56)
£0F1+8F2

These relations can be rearranged to become

-2r,d

1— ll F
__e___2_r_2 = "OT—l (3.2.57)

1 + e ‘ l1 2

-2r d

1 — e I erg

—2r,d ‘ ”a F
(3.2.58)

1 + e 1

If surface wave modes are excited in the dielectric slab, we can let Fl = jK1 in above

two equations. This leads to

K

tanKld = 31-1 (3.2.59)

M‘z

eI‘

tanKld = —2— (3.2.60)

30K]

It is noted that eq. (3.2.59) is the well known TE-odd mode eigenvalue equation and eq.

(3.2.60) is the well known TM-even mode eigenvalue equation for the guided surface

waves.

Next, we will derive two coupled integral equations for the aperture electric field.

Since the tangential magnetic field components, Hx and Hy, are continuous at the

aperture plane, 2 = O , the equality of eqs. (3.2.34) and (3.2.49), and that of eqs. (3.2.39)

and (3.2.53) will yield two coupled integral equations for the aperture electric field. We

have

For Hyl = H‘,

2:0.

. +

z=0 
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22—(—)(—X[4%Min+':;(lamb-w)

.—_ 0%.]: ejk“xejk-“”[Nx (k), kx) ”1550 + M (k), kx) jj15:0] dkxdk), (3.2.61)

01'

22.1——Z§:,,;..(“)wos(".fl)sm('-"gfl)(l3%MM (—.—X%.—)na..)
+ fleikxejky [N (k k) “E:0+M(ky, kx) ”1350] dkxdk), = 0 (3.2.62)

     

 

 

 

_ 5151:!$1}kaJkWJEfoJrNyMX’ ky) HEdekxd/cy (3.2.63)

— i)m(’%)fiw(¥) ' ,,, f:;,:.(.—t:)x

sin(tix)cos('2:—ylt(¥)(¥)m(ks-(”muted

+178”xejkwmk19,)qu +N(k k)”E;o]dkxdky= Csin(1-:—:E) (3.2.64)

       

where
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C .=_ — 'gCZ—tcour‘m (3.2.65)

Equations (3.2.62) and (3.2.64) are the key coupled electric field integral equations to be

used in the further development.

3.3. Numerical Simulation

In our study, the numerical simulation includes two procedures, theforward procedure

and the inverse procedure. In the forward procedure, the reflection coefficient or the input

admittance of the waveguide probe is determined with assumed EM properties of the

material layer. In this procedure, two coupled electric field integral equations (EFIE’s) for

the aperture electric field are numerically determined. The unknown aperture electric field

is expressed as a sum of incident and reflected dominant mode and a number of higher

order modes due to the discontinuity presented at the aperture. In the inverse procedure,

the reflection coefficient or the input admittance of the waveguide aperture is measured,

and the EM parameters of the material layer are inversely determined through an inverse

technique. In this procedure, a number of higher order modes are included in the

unknown aperture electric field to improve the accuracy of the solutions for the EM

parameters of the material layer. The forward procedure will be discussed in the present

and subsequent chapters, while, the inverse procedure will be discussed in Chapter 5.

In section 3.3.11, the method of moments is employed to convert the EFIE’s to a matrix

equation. Here the EFIE’s are solved by the Galerkin’s method using the waveguide

eigenmodes as the basis and testing functions. Section 3.3.2 develops formulas which are

needed in carrying out the numerical calculation of the matrix equation transforming from

rectangular coordinates into cylindrical coordinates. Finally, section 3.3.3 presents

numerical results of this study, and compares them with the published results to verify the

accuracy of this technique.
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3.3.1 Application of Method of Moments

The coupled integral equations given in eqs. (3.2.62) and (3.2.64) for the unknown

aperture electric field are solved by using the moment method technique. The unknown

aperture electric field is first expanded into a set of appropriately chosen basis functions

{e5 (x, y) } . Since the aperture fields of a waveguide can be expressed as a sum of a

dominant mode and a number of higher order modes, the appropriate basis functions are

the eigenmodes of the waveguide. Let us expand the unknown aperture electric field

components into two finite sums of eigenmodes of the waveguide as follows:

Exo(x’~v) = ZaBeEUJ) (3.3.1)

B

E,.o(x,y) = ébgegb’cfl) (3.3.2)

where 2 represents 22 for summation of all possible higher order modes which

i3 P q

have mode indices {(2p-1), (2q—2)] with p,q = 1,2,3, The set of basis

functions are expressed as

x _ (2p—l)1tx . (2q—2)Tc_v2,6, y) z co.[__a__] [_b-] (3.3...

cg (x, y) 5 sin [LEE—71L”? cos [Ea-7332] (3.3.4)

Substituting eqs. (3.3.1) and (3.3.2) into the coupled EFIE’s yields

261%- [W42 + W;] + gbfl- [W33 + Wei] = 0 (3.3.5)

ga, [de. + wggj + g3, [wg + w; = aging) (3.3.6)

where
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x _ -48,,om- p. (n'nx) . (m'ny)[ 2 (mm)?
de—ggabrn,m,(flojcos 7 sm —b_ [(0— —b— IIBX (3.3.7) 

WC: sf] e’k‘xe"“"N (k k)(He:)dkdk . (3.3.8)

111-2233:6—101'—:x)sm(e)(%)(e)ne. 

E f] ejkfiejky)’M (ky, kx) (J'J‘e;)dkxdky
(3.3.10)

 

W53£2.12?"(1%)“?4lecos(’%9l(?l(’%lflex mm

wcjgfle“‘1ejm‘)M(kx,k)(JIjdkdk (3.3.12)

21“] ba

y H ) 1tx

Wdy= ab “0—)sin(%——)1[([efl (x', y') sin(—x'a )dxfldy

+ZZab::.mm(ll—7))Sin(L:x)cos(’-Zl%l)[k3_(¥7].Ue)' (3'3-13)
 

 

°° 1k} jkyy

EU e e - Ny(kx,ky)(Hef)dkxdky (3.3.14)

and

=ba "(1 .) (GE) ' ("”de 'd' 3315”ex-“65 x,y cos a srn b x y (.. )

 

b0 1 I 1 1

Hey E- gle; (x', y') sin(E—;E-)cos(mgy )dx'dy' (3.3.16)
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b0 _-k 1 —.k. '1

“6:2 ‘MeEU', y') e j "x e j “) dx'dy' (3.3.17)

’9“ . —'k ' :1."

”eyes He; (x', y') e j "Xe I Q dx'dy' (3.3.18)

The EFIE’s for the aperture electric field are now expanded into the waveguide

eigenmodes with unknown expansion coefficients a‘3 and bB which represent the

amplitudes of the eigenmodes for the x and y components of the aperture electric field,

respectively. Next, we will use the Galerkin’s method to determine al3 and b3. Since the

Galerkin’s method uses the same set of basis functions as the testing functions, we write

the set of testing functions as

I; (x, y) 5 cos [La-T671225] sin [fig—)9] (3.3.19)

1; (x, y) a sin [$21123] cos [gig—12] (3.3.20)

After taking the inner products of eqs. (3.3.5) and (3.3.6) with the set of testing functions,

we have the following results.

xx xy

gas ‘ DGB + ébfl ’ Dab = 0 (3.3.21)

N )2)‘
gm” - DaB + @630,1B = Fa (3.3.22)

which can be represented in a matrix form of

)0: xy

D0113 Dali “B = [0] (3.3.23)

N N b
Da 0015 B
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where

ba

0;; a Mr; (x. y) [Wj‘y <x.y) + W; (x. y)]dxdy

ba

0;; a (it; (x. 3) [W51- (x, y) + W3, (x. y) ] dxdy

and

ba ‘

Fa a C Mt; (x, y) sin( 1%)dxdy

3.3.2 Evaluation of Matrix Elements

(3.3.24)

(3.3.25)

(3.3.26)

(3.3.27)

(3.3.28)

In this section, elements of the matrix will be evaluated into compact forms to

facilitate the computer programing. Among the evaluations in this section, two-

dimensional Fourier transforms of the sinusoidal functions over the aperture are evaluated

analytically in Appendix.

‘1

In the matrix, the component 0:113 which represents the self-interaction of the y-

component of the aperture electric field is first discussed. Let us divide Dz; into three

parts:

ba

D33 5 ”I: (x. y) [ij (x, y) + W:). (x. y) ] dxdy
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= (1)31"+ <1)"; + (1);" (3.3.29)

where <1)";y represents the contribution coming from the material layer which has

continuous spectrum property, (I)? represents the contribution from discrete higher order

modes of the waveguide and (1%y represents the contribution from the incident dominant

mode. They are expressed as

(DigiI‘ (x ”We:()6 y)dxdy

fit: ()6, 3’) [J3 81k,xejk,)'1v (kx, ky) (Hejjdkxdkyjdx
dy

=J:IN)- (kx’ k,-_,)(”t)(”ejdkdk
(3.3.30)

 

 waiiw(22;:i~':.(.3.)sm(";—:t—)cos(mr)1k:-(a)1113.)”)

=§§:§::(rz)lké—(¥1161.1613)
 

= :a—El- ffliitz;(x, y) sin(1%)dxdy][ileg(x', y') sin(1%)dx'dy']

[(2144011) cos [_____(2r-b2)1ty] sin(1-:1—x)dxdy] x

[IIE—gsinu[__(2p’01) nx'] coss[——(2q—b )ny] sin(1-%-f‘)dxdy]

= 2712' 611351.153 1] [Cl—b2 5101511]

II

“
I

3
‘
l
,
_

t
r
:

0

i

h d
—
a
fi
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d
—
.
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:

m
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ab

= "(5'02)r1051, 15r15p15q1

where some shorthand notations are expressed as

ba

1 1k.ejk. 1
m=lgta (X, y)e dXdy

= [15in [Ly—712B] [cos (kxx) +jsin (kxx) ] dx] x

[Icos[W] [COS (kyy) +jsin (kg) 1611’]

E [511081) +s,2(k,)1 151303.) +s14(k,.)]

ysfité (x y) sin(n:x)cos( thyjdxdy

= Elsi“ [32—12235] cos [fig-13],,in( "'Zx)cos( m'bny)dxdy

8. 8
n, (21- l) m', (2r- 2)8m'

 

_ab

’4

311 (k) =Isin [Ly—711m]cos (kxx)dx

512(kx) stsin [ail—m] sin (kxx) dx

313 (ky)—= icos [filth—2m] cos (kyy) dy

314 (ky) =jicos [Qlefl] sin (kyy) dy

(3.3.32)

(3.3.33)

(3.3.34)

(3.3.35)

(3.3.36)

(3.3.37)

(3.3.38)
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Similar forms for He; and He), are expressed as

Hefafieév'.1.- dxdy

=1“sin (2”——1—:xe)n::|[cos(kxx')—jsin(kxx')]dx']x

(261 211W

61 -. ] [cos (k,.y') —j sin (kyy') 1 dx']

'=- [321(k) +322 (1%)] [523081) +524(k)”

8

 

= T 11', (210—1) m',(2q—2)8m'

321 (kx) E Isin [fly—m] cos (kxx') dx'

s22 (kx) a {1 sin [LZL—a—lfli] sin (kxx') dx'

b ]cos (kyy') dy'323 (ky) =icos[M

324 (ky) a -'icos[
(2(1- 2) 1t)"

b

] sin (kyy') dy'

 

(3.3.39)

(3.3.40)

(3.3.41)

(3.3.42)

(3.3.43)

(3.3.44)
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If we further define

¢12u(kx) 215,109.) +s12(kx)] [s21(kx) +s22(kx)l (3.3.45)

¢12v (ky) E [313 (k),) +sl4(k),)] [323(ky) +524 (k),)] , (3.3.46)

the multiplication of the shorthand notations given in eqs. (3.3.30) and (3.3.31) become

(1.153111%?) Eq’12u (kx) $121418)
' (3.3.47)

and

ab 2 2

(JJGXII‘L’N) = (71—) 8n'. (21— l)5m‘, (2r—2)5n', (2p—1)8m', (24-2)5m' (33.48)

Substituting them into eqs. (3.3.30) and (3.3.31) gives

ch? = j j Ny(kx, ky)¢>12u(kx)¢12v(ky)dkxdky (3.3.49)
—00

-4en

“"3"ééabr.'.:'.(i)[ké—(¥l101511114
2

_ ab [1 8n'm'Em' n.“ 2

" 7([)22 p. . [(7) -k0:|6n',(21—1)5m',(2r—2)8n',(2p-1)6m', (2q-2)

0 n' 01' nm

(3.3.50)

 

 

Moreover, since

N,(k,k,)-=-: 1 —— 1k—
) x ) 1"l ki+k2 x1+Ra yl-Rb

1/(21t)2 [rzkzl’Ra 2 21+Rb]

,

is an even function of kx and ky, (I)? can be further simplified to
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(b? = 4flNy(kx, ky)<i>;92u(kx)(1)182v(ky)dkxdky (3.3.51)

where (bqu (kx) and $162,, (ky) denote the even components of ¢12u(kx) and ¢12v (ky) ,

respectively, and are derived in detail in Appendix.

Since it becomes highly oscillatory if the two-dimensional semi-infinite spectral

integration given in eq. (3.3.51) is calculated in rectangular coordinates, this spectral

integration is computed in cylindrical coordinates to sidestep this difficulty. Let’s change

the coordinates from rectangular to cylindrical with the relations of

(3.3.52)

{kx = kcosrp

k ksintp

where (p is a real variable with range of [0, 21:] and k is a real variable of [0, oo] . The

substitution of eq. (3.3.52) in eq. (3.3.51) yields

eon/2

ch? = 4 (i i N,.<k.(p>¢f2,(k.(p)¢f2,.<k.<p)kd<pdk

= 4{0”, (k) kdk (3.3.53)

where

rt/2 e e

0,, (k) a l N, (k, «m ¢12u (k, <9) $12.. (k. (9) dm (3.3.54)

Next we will discuss the component D3; which represents the self-interaction of the

x-component of the aperture electric field in the matrix. Divide D33 into two parts as

follows:
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ba

BEDautax (x, y) 1:ij (x, y) + W; (x, y) ] dxdy

XX XI

= (bl +<l>2 (3.3.55)

where

(blxfit; 0" Y) We: (x, Y) dxdy

III; (x, y) [1:] 311.381ng (k), kx) ( Hefjdkxdkyjdxdy

= JJ N"(k-V'k‘)(J-1
t:)(116:)dkxdk

y (3.3.56)

 

 

=11W122.;Z§:':1(i)cos("'—::—’f)sm('"2”)[e
m)M

= gg'j—Ii—Z:(lit—()H
kg-(mbltFMH’xXHex

) (3.3.57)

and the shorthand notations are expressed as

6 ba jkxejk)

5:5 t (x, y)e dxdy

lia

= [Icos [Ly—#1 [cos (kxx) +jsin (kxx) ] dx] x

[Isin [Q—b-M’] [cos (kyy) +jsin (kyy) ] dy]

5 [531 (k) + 332 (k)] [333 (ky) + 334 (k),)] (3.3.58)
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(1![Him] 8‘“[m]cos('g’3)sin(r2%rz

ab

= 7%, (21— 1)5m', (2r—2)

531(kx) a Icos [Lg-1:703] cos (kxx) dx

332 (k) ajIcos [flip—E] sin (kxx) dx

1?

s33 (ky) a {sin[W]cos (kyy) dy

b

. . 2 -—2 1t .

s34 (ky) 51‘! sm [(—rE)—-Y:l srn (kyy) dy

Similar forms for IIeIf and ”ex are expressed as

a —'k . -'k."

1.1425 legU', y') e 1 ‘xe J 9 dx'dy'

 icos [ (2p -al)7tx'] [cos (kxx') —jsin (kxx') ] dx'] x

 

b I

(ism [ (2q —b2)1ty] [cos (kyy') —jsin (kyy') ] dy']

s [341(kx) + 342 (kx)] [s43 (ky) + 344 (k),)]

”ex 5:185:05, y') COS('—I¥)sin(flifli
)dxvdy.

  

)dxdy

(3.3.59)

(3.3.60)

(3.3.61)

(3.3.62)

(3.3.63)

(3.3.64)

 = :Icos [ (2P -a1)1tx'] sin [(Zq -b2) 10"] COS('L:£)81D(mZCy')dx'd
y'
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ab
= 75"., (2p—1)5m'. (2‘14) (3.3.65)

341 (k) 2 {cos I: (2p :11) nx] cos (kxx') dx' (3.3.66)

0 0

.542 (k) a —jt[cos [ (2p — DEX] sin (kxx') dx' (3.3.67)

a

b . (2q—2)7tv'
343 (k),) 5 ‘[sm[ b ' :lcos (kyy') dy' (3.3.68)

.” . (2q—2)1tv' .
s44 (ky) E 1]! srn[ b ' :l Sln (kyy') dy' (3.3.69)

If we define the following notations,

¢34u(kx) E [331(kx) +532(kx)] [541(kx) +S4Z(kx)] (3.3.70)

¢34,(k,,) 2 [333(5) (3.934(5)) [s43 (ky) +544(k),)] (3.3.71)

the multiplication of the shorthand notations which given in eqs. (3.3.56) and (3.3.57)

become

UJ’QUPU E ¢34u(kx) $341418) 1 (3.3.72)

and

ab 2

(”’x)(”"x) = (T) 5'13 (21-08%. (2r-2)8n'. (2p-1)6m', (2q-2) (3.3-73)

Substituting them in eqs. (3.3.56) and (3.3.57) gives
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of = j j Nx(ky, kx)<1)3‘m(kx)(1>_.54V(ky)dkxdky (3.3.74)

 

 

n m' 0

ab [1 8n'm' m.“ 2

= 7(f)22r [(7)2 ’k015n'. (21-1)5m'. (2r—2)5n: (2,,_1)5m', (2.1-2)
0 n' m' n'm'

(3.3.75)

Since

2 1 —R l +R

[773—- 73—)' I] kx+ky ' a b

is an even functions of kx and ky, (1)):Jr can be modified to

<61" = 4HNx (k), k) (1);,“ (k) (1);“ (ky) dkxdk), (3.3.76)

where $3,473“) and ¢;4v(ky) represent the even components of ¢34u(kx) and

¢34v (ky) , respectively. As done earlier, changing coordinates from rectangular to

cylindrical, the two-dimensional semi-infinite spectral integration becomes

ecu/2

cf,“ = 4i ,1 N,(k.<p)¢§.,(k.<p>¢;4,(k.(pikdwdk

= 4‘10”“) kdk (3.3.77)

where

1t/2

0,, (k) a l N, (k, <9) (93‘4“ (k, (p) 4’34. (k, <9) dcp (3.3.73)
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Next, let’s evaluate the component D23 in the matrix which represents the mutual-

interaction of the x—component of the aperture electric field as the testing function and the

y-component of the aperture electric field as the basis function. Divide Déé into two parts

as follows:

333:1: (x, y) [ng (x. y) + W; (x. y) ] dxdy

H
I
V
.

C
i
t
—
5
°
-

ll '6
-

?" + (I)? (3.3.79)

where

WE}; (x, Y) W510, y) dxdy

Kit; (X, y) [J3 ejkgejkyyM (ky, kx) (Jje:)dkxdky]dxdy

DMUS" kx) (11t:)(”e;)dkxdky
(3.3.80)

63231:730:, y) Wd:(x, y) dxdy

= 31,363) [223:n.:(r110)(i)(m—bfl)(_n)(m7n)”ey]dmy

22.32:?"(:.)("“)('”)mr)(n)

 

 

According to eqs. (3.3.39) and (3.3.58), we obtain

UPUUIC’U E ¢32u (kx) ¢32v (ky)
(3.3.82)

with the new shorthand notations defined as
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¢32u(kx) E [331(kx) +532(kx)] [521 (k) +522(kx)] (3.3.83)

¢32v(k ,) s [.933 (ky) +534(k),)] [523 (k),) +sz4(ky)] (3.3.84)

and according to eqs. (3.3.40) and (3.3.59), we get

— “b 25 5 5 5
”’3: Hey ‘ ‘4- 12', (21—1) m', (Zr-2) n', (2p— 1) m', (2q—2)€m' (3'3-85)

Substituting them in eqs. (3.3.80) and (3.3.81) gives,

(3.3.86)o3" = j j MUS,kx)(5mm)(53241595115311:y

 

= 2;X§:’.:.(fi:)(£-‘)(i"£~‘ (11001.3)

8 m 5.
’ 'T(—)ZZF.M(la—X b )572 (21— li5m'. (2r— 2)5n' (2;)— I) "1' (24 2)

n m nm

(3.3.57)

 

Since

 

k/(27t) 21-R 213mb]

M(k.,k)-=- 2(1‘ ——"+ —
> It 1:02”); 113 R ll-Rb

X

is an odd functions of kx and ky, (I)? can be written as

chi" = 4[JM (k), kx) 53",“ (kg) 4’32) (ky) dkxdk), (3.3.88)

where (1)302“ (k) and ¢§2v(k) represented the odd components of ¢32u(kx) and

(1)3” (k ) respectively. As before, changing coordinates from rectangular to cylindrical

(I)? in eq. (3.3.88) becomes
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003/2

xy

<I>l = 4i [ Mac,cp)¢§’2,<k,<1)¢;’2.,(k.wicdmdk

00

= 4{on (k) kdk (3.3.89)

where

n/Z 0 0

6,, (k) a 1 M (k, (p) «132,, (k, (p) «132., (1., (p) .75 (3.3.90)

The last step is to evaluate the component Dig in the matrix which represents the

mutual-interaction of the y-component of the aperture electric field as the testing function

and the x-component of the aperture electric field as the basis function. Let’s divide D33

into two parts as follows:

a

Dig {1606’ Y) [Wd: (3‘, .V) + We: (X, y) J dxdyIl
l

C
i
t
—
w
-

x \‘X

+ (Dz (3.3.91)

V

(Di

where

yx ha y x

b0 y °° jkxx jky)» e

l([10! (x, y) j j e e - M(kx,k),) ”ex dkxdky dxdy

DM“I" k)') (.11t;)(j.1e:)dkxdky
(3.3.92)

ba

<19; 2 1111:“ y) W); (x. y) dxdy
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Based on eqs. (3.3.33) and (3.3.64), we have

thflkflea 5 $14“ (kx) 4’14); (1‘)»)
(3.3.94)

With the new shorthand notations defined as

¢14u(kx) E [511(k) +512(kx)] [541(k) +542(kx)] (3.3.95)

¢14v(ky) a [$13 (ky) +sl4(ky)l [s43 (ky) +544(ky)] (3.3.96)

and with eqs. (3.3.34) and (3.3.65), we obtain

ab 2

(JIt3')(JJIex) = (I) 8'1', (21— l)8m'. (2r—2)5n', (2p-1)5m', (2q-2)Em' (3.3.97)

Substituting them in eqs. (3.3.92) and (3.3.93) gives

0}" = J I M(kx,ky)¢l4u(kx)¢14v(ky)dkxdky (3.3.93)

237;:(—)<-2)(9)(n)(n)
ab p 8" n'n m'n

2—T(E)22an=(7)(7)5n',(21-1)5m3(Zr-2)5n'.(2p—1)8m1(29-2)0 n' m' n'm'

(3.3.99)

 

Since

M (kx, ky) E
 

2

-k k,/(21t) l-R 1+R
1,)2 2.[1‘12—_1Ra+k12—1Rb]

1‘1(kx+ky) + a - b
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is an odd functions of kx and k)" (I)? can be written as

dy‘," = 4j0]M (k1, ky) 0;“ (kx) 01"“,(10‘) dkxdky (3.3.100)

where (1)104u(kx) and of4v(ky) are the odd components of ¢14u(kx) and ¢14v(ky) ,

respectively. If we change coordinates from rectangular to cylindrical as before, (I)? in

eq. (3.3.100) becomes

con/2

qr? = 4i (i Mac, 0)¢f4,(k. cp)¢104v(k, <0) kdcpdk

oo

= 4([Gw(k)kdk (3.3.101)

where

n/Z 0 0

ny(k) a 1i M(k, (0)014u(k, (0)014v(k, (0) dcp (3.3.102)

3.3.3 Numerical Results and Comparison with Existing Results

For a specific material layer, the numerical evaluation of the components of the matrix

equation given in eq. (3.3.23) for solving the aperture electric field and other relevant

quantities of the waveguide probe is performed in a FORTRAN computer program. Once

the matrix equation is solved, the aperture electric field is first obtained by summing up a

finite number of modes that we have taken into account in the program. Then the

reflection coefficient or the input impedance of the waveguide probe is determined via

these aperture electric field.

To verify the accuracy of this technique, as well as the validity of the computer

program, data of the input admittance of the waveguide probe placed against various
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material layers which have been published using a waveguide (RG 52U rectangular

waveguide, X band) are recalculated and compared with the existing results.

Figures 3.1(a) and (b) show the real and imaginary components of the input

admittances of a waveguide probe when the probe is placed against a layer of quartz with

a dielectric constant of er = 3.76 and a thickness of 0.1299 inch. Our results are

compared to the theoretical and experimental results of Croswell et al. [22] where only a

dominant TE10 mode was considered in their theoretical calculation. These figures show

that our numerical results compare quite well with the theoretical value of Croswell et a].

when we considered only a dominant mode in our calculation. However, when higher

order TE and TM modes are taken into account in our calculation, our numerical results

match very well with their experimental results, much better than their theoretical results

do.

We considered two multi-mode cases; the one with a dominant TE10 mode plus three

higher order modes (T5530, T1512 and TM12) and the other one with a dominant TE10

mode plus eight higher order modes (T1330, TE”, TMIZ, TESO, TE32, TM32, TE52 and

TM52 ). It is noted in Figs. 3.1(a) and (b) that the 4 modes case and the 9 modes case

yielded almost identical results. This indicates that a good convergence can be obtained

when only the first four modes are used in the numerical calculation.

Figures 3.2(a) and (b) show the real and imaginary components of the input

admittances of a waveguide probe which is placed against a material layer with a

dielectric constant er = 2.25 and a thickness of 0.3201 cm. For this case our numerical

results obtained by using one, four and nine modes are compared to the theoretical and

experimental results of Bodnar et al. [24]. These figures show a good agreement between

our numerical results with multi-mode consideration and their theoretical and

experimental results.
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Figure 3.1(a) Input conductances of a waveguide probe (a = 0.4 in, b = 0.9 in)

as a function of frequency when the probe is placed against a material layer with a

dielectric constant of er = 3.76 and a thickness of 0.1299 in. The comparisons are

made between our numerical results and theoretical and experimental results of

Croswell et al. [22].
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Figure 3.1(b) Input susceptances of a waveguide probe (0 = 0.4 in, b = 0.9 in)

as a function of frequency when the probe is placed against a material layer with a

dielectric constant of er = 3.76 and a thickness of 0.1299 in. The comparisons are

made between our numerical results and theoretical and experimental results of

Croswell et al. [22].
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Figure 3.2(a) Input conductances of a waveguide probe (a = 0.4 in, b = 0.9 in)

as a function of frequency when the probe is placed against a material layer with a

dielectric constant of er = 2.25 and a thickness of 0.3201 cm. The comparisons are

made between our numerical results and theoretical and experimental results of Bodnar

et al. [24].
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Figure 3.2(b) Input susceptances of a waveguide probe (a = 0.4 in, b = 0.9 in)

as a function of frequency when the probe is placed against a material layer with a

dielectric constant of Sr = 2.25 and a thickness of 0.3201 cm. The comparisons are

made between our numerical results and theoretical and experimental results of Bodnar

et al. [24].
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The last comparisons are shown in Figs. 3.3(a) and (b) which show the real and

imaginary components of the input admittances of a waveguide probe that is open to free

space. Our numerical results are compared to the theoretical results of Baudrand et al.

[30] and the experimental results of Bondar et al. [24]. Our results using four modes and

nine modes agree well with above published results.

In this chapter, we established a forward procedure for the theoretical study of

measuring EM parameters of isotropic materials using an open-ended waveguide probe

system. The accuracy of the technique and the validity of the computer program have

been verified by comparing our numerical results with the published results.
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as a function of frequency when the probe is opening onto free space. The comparisons

are made between our numerical results and theoretical of Baudrand et al. [30] and

experimental results of Bodnar et al. [24].
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are made between our numerical results and theoretical of Baudrand et al. [30] and

experimental results of Bodnar et al. [24].



CHAPTER 4

OPEN-ENDED RECTANGULAR WAVEGUIDE

PROBE TO MEASURE EM PROPERTIES OF

ANISOTROPIC MATERIALS

4.1. Introduction

In Chapter 3 we have studied the forward procedure of the nondestructive

measurement of material parameters using a waveguide probe system. However, it is

limited to isotropic materials because the EM fields inside the material layer are expressed

in terms of Hertzian potentials which are only suitable in an isotropic medium.

In this chapter we will employ the similar procedure to conduct theforward procedure

for measuring the parameters of anisotropic materials using the transverse field method to

express the EM fields inside the material layer. The EM fields derived with the transverse

field method were presented in section 2.3. where a general case dealt with the fields

inside an anisotropic medium and a degenerate case with the fields inside an isotropic

medium. As presented in Chapter 3, after matching the boundary conditions at the

discontinuity interfaces, two coupled electric field integral equations (EFIE’s) for the

aperture electric field can be obtained. Similarly, this chapter will include the derivation

of the EFIE’s, as well as the numerical solutions to these EFIE’s. Also the numerical

81
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examples illustrated in the preceding chapter will be recalculated and compared with the

existing results to validate this technique.

The derivation of the coupled EFIE’s for the aperture electric field is first presented in

section 4.2.. After the EFIE’s are derived, the reflection coefficient or other quantities of

interest such as the input impedance or admittance of the waveguide probe can then be

determined to be a function of the aperture electric field. In section 4.3. the method of

moments is implemented to convert the EFIE’s to a matrix equation. In that section, the

elements of the matrix are evaluated in detail. Finally, some numerical results are

compared to the published results by other workers to verify the accuracy of the

technique. The numerical results on the input admittances of the waveguide probe

attached to a layer of assumed known anisotropic material are also presented.

4.2. Coupled Integral Equations for Aperture Electric Field

Two coupled EFIE’s via matching the tangential electric and magnetic fields at

discontinuity interfaces are derived in this section. The EM fields inside the waveguide

are given in the previous chapter, while the EM fields inside the material layer and the

open free space are established based on the transverse field method as described in

section 2.3..

4.2.1 Matching Boundary Conditions at z=t

Let’s assume that the waveguide probe is placed against a layer of anisotrOpic material

which is backed by open free space and has a tensor permittivity 1:: and the free-space

permeability 110.

Recalling from section 2.3., the spectrum-domain transverse EM fields inside an

anisotropic medium can be expressed as
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I. 714:-A) A9 123A) 32A)
— lvle + 2v2e + 31238 + 4V4€ (4.2.1)

  

+ 341/40 8 (4..22)

  
. 9 9 .

where the e1genvectors, vn and v are g1ven as
ma,

V V
nl mla

1,2, 3,4

2,4

vn2 9 = vm2a n

m

vm3a

c
w

ll v
:

(4.2.3)

vn3

    vn4 Lvm4a_
b .1

and A1 , A2 , A 3 , A4, 32 and B4 represent the unknown amplitudes of eigenmodes for

both regions. Notice that these unknown quantities are all functions of kx and ky.

At 2 = t, the spectrum-domain transverse fields satisfy

13:,(kx, ky, t) = i5m(kx, k), 1) (4.2.4)

Ey(kx, k), t) = Eya(kx,ky,t) (4.2.5)

nofixwx, k), 1) = noilxa(kx,ky,t) (4.2.6)

110171), (kx, k), t) = no”)... (kx, k), 1) (4.2.7)
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Substitute eq. (4.2.3) into eqs. (4.2. 1) and (4.2.2) and define the following notations for the

field components as

A'1’
ll!

’11="119 ’ ’21="12"

2.21 2.21

’12="21€ ' ’22=V228

2.31 2.31

'13="31" ' ’23="32"

2.41 2.41

r14=v4le ' ’24="4ze

’155V21a' ’255V22a

’10 E V4101: ’26 E V420 (4'2'8)

Alt 1.11

’31="13e ' ’41="14"

2.21 1.21

’32 = ”233 ' ’42 = ”24"

2.31 A31

’33 = V33e ' ’43 = ”348

A41 7141

r35 E ”2322’ r45 E V240

’305V43a’ ’405V440

Then eqs. (4.2.4) to (4.2.7) can be rewritten as

Air11 +A2r12+A3r13 +A4r14 = Bzr15 +B4r16 (4.2.9)

A1rz1+A2"22 -1-A3r23 +A4r24 = 32'25 + 34’26 (4.2.10)

Alr31+AZr32-1-A3r33+A4r34 = Bzr35-1-B4r36 (4.2.11)

Alr“ +A2r42 ~1-A3r43 + A4r44 = Bzr45 + B4r46 (4.2.12)
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If we transfer all the terms with unknown amplitudes Al and A2 on the left-hand side of

the equations to the right-hand side and transfer the terms with B2 and B4 on the right-

hand side to the left-hand side of the equations, we have

A3rl3 ~1-A4rI4 — Bzr15 - B4r16 = —A]rH—A2r12 (4.2.13)

A3r23 +1114r24 —Bzr25 —B4r26 = —A]r21—A2r22 (4.2.14)

A3r33 -+-A4r34--Bzr35 —B4r36 = —A1r3l—A2r32 (4.2.15)

A3r43 +A4r44 — Bzr45 —B4r46 = —A]r4l —A?_r42 (4.2.16)

To eliminate the unknown quantity 32 (kx, ky) first, subtract eq. (4.2.13) multiplied

by r45 from eq. (4.2.16) multiplied by r15:

A3(’15’43"13’45) +A4(’15r44"14r45) +B4(’16’45‘r15’46)

= A1(’11’45"15’41)+A2(’12’45"15’42) (42-17)

Subtracting eq. (4.2.14) multiplied by r45 from eq. (4.2.16) multiplied by r25 yields

A3(’25’43"23’45) +A4(’25’44“’24’45) +B4(’2csr45"’25r40)

= A1(’21’45“r25’41) +"122(r22’45‘r25’42) (42-18)

Subtracting eq. (4.2.15) multiplied by r45 from eq. (4.2.16) multiplied by r35 yields

A3('35r43"33’45) +A4(’3sr44"r34"45) +194(r36’45"35'40)

= A1(’31"45‘r35’41)+A2(’32’45-’35r42) (42-19)

By defining the following notations

'05’15’43"13’453 ’15r21’45"25r41

’05’15’44‘fi4’45’ ’j5'22’45"’25’42

’c5’10’45"15’40' 'k5’35’43"33'45
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’d5’11r45"15’41’ ’15’35’44"34’45 (42:20)

re5’12’45‘r15’4r 'mE’30r45‘r35’40

75’25’43‘53'45' rnar31’45"35’41

’g5’25’44"24’45' '05’32’45"35r42

'h5’20’45"25’40'

eqs. (4.2.17) to (4.2.19) are simplified to

A3ra+A4rb+B4rc = Alrd-t-Azre (4.2.21)

A3rf+A4rg+B4rh = Alri-t-Azrj (4.2.22)

A3rk+A4rl+B4rm = Alrn +A2r0 (4.2.23)

Similarly, B4 (kx, ky) can be eliminated from eqs. (4.2.21) to (4.2.23) to give

A3 (rarh—rcrf) +A4 (rbrh—rcrg) = A1 (rdrh—rcri) +A2 (rerh—rcrj) (4.2.24)

A3 (rarm—rcrk) + A4 (rbrm—rcrl) = A1 (rdrm—rcrn) + A2 (rerm—rcro) (4.2.25)

Let us define

rp E rarh—rcrf, rv a rarm—rcrk

rq E rbrh—rcrg, rw E rbrm—rcrI (4.2.26)

rr E rdrh_rcri ’ rx 5 rdrm_rcrn

ru 5 rerh—rcrj, r), E rerm—rcro

and rewrite eqs. (4.2.24) and (4.2.25) as a form of

A3rp+A4rq = Alrr+A2ru (4.2.27)

A3rv + A4rw = A 1 rJr + Azr), (4.2.28)
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Now, using eqs. (4.2.27) and (4.2.28), two unknown quantities A3(kx,k\,) and

A4(kx,ky) canbeexpressed in terms ofA1 (kx, ky) and A2(kx,k),) as follows:

rr —rr rr —rr,

A3(kx,kv) = A][J—w——q5J+A2[—“—W—q—’]EAlrl+Azr2 (4.2.29)
- rr —rr rr —rr

P W 4 V P W q V

rr —rr rr,—rr

214(k), k\,) = A,[l’—¥J+42[L‘——L¥)541r3+42r4 (4.2.30)
. rr —rr rr —rr

p w q v p w q v

Substituting eqs. (4.2.29) and (4.2.30) back into eq. (4.2.1) yields

21,2 2» A9 9 z 9 l: 9 NZ 9 _z 9 712

=Al(v]e +r1v3e3+r3v4ei)+A2(vze +r2v3ei+r4v4e4) (4.2.31)

  

It is important to note that to derive these formulas for numerical calculations, it needs

to avoid creating singularities during the process of elimination of a term from a set of

equations. Once a singularity occurs in the elimination process, an alternative process

needs to be found. Since the process of choosing an alternative elimination is

straightforward and explicit, it will be considered directly in the computer program.

4.2.2 Matching Boundary Conditions at Waveguide Aperture

Equation (4.2.31) indicates that the spectrum-domain transverse fields inside a

material layer are expressed in terms of two unknown quantities only. If the aperture

fields are studied (i.e. at z = 0) and the electric field is chosen as the reference, the two

unknown quantities can be represented as functions of the aperture electric field first.

Then the aperture magnetic field at the material side can be expressed in terms of the

aperture electric field in terms of these two unknown quantities. Recalling from section

3.2.2 that the aperture magnetic field at the waveguide side can also be expressed in terms
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of the aperture electric field. As a result, two coupled EFIE’s for the aperture electric field

can be derived after matching the tangential magnetic fields at the waveguide aperture.

By eq. (4.2.8), eigenvectors 31 , 32 , 1’23 and in; can be rewritten as

    

’11 "12 ’13 ’14

9 r —A1 9 r A! r -At 9 r A:
v1: 218', v2: 2281' 33: 23123, v4: 2463

’31 ’32 ’33 ’34

I41. .’42. 1’43. I44.    

          

 

' ~ ' f- - - - — - \

x ’11 ’13 ’14

. f A(z-1) r A (z—t) r -A (z—I)

i =Al 21el +r123e3 +r3 24c 3

11on ’31 ’33 ’34

" r r
31011,; ( _ 41_ _ 43_ _’44_ )

(- 1 r - r - )

’12 ’13 ’14

r —A (2—1) r A (Z-I) r -A (z—t)

+A2 22 e ' +r2 23 e 3 +r4 24 e 3 (4.2.32)

’32 ’33 ’34

r r r
(_42 -43. _44 }       

Let’s write out the spectrum-domain aperture electric field components (at z = 0) as

- -A,t -A31 A3

Ex(kx,ky,0) = A1[r”e +’1’13e +r3rl4e A]

I: All -A3t Ag]

+ A2 rue + r2r13e + r4r14e (4.2.33)

.. -A,r -A31 A3

E), (kx, ky, O) = A1 [r216 + r1r23e + r3r24e i]

A1! -A31 A3

+ A2 [’2ze + r2r23e + r4r24e {:1 (4.2.34)
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If we define

-A 1 A31-A,t 3

C1(kx,k),) Erne +r1r13e +r3r14e

—A 1 A31
"1' 3

C2 (kx, ky) = ’1ze + r2r13e + r4r14e

—A 1 A31
"‘1’ 3

C3 (kx, ky) 5 r216 + r1r23e + r3r24e

—A 1 A31
A1’ 3

C4 (kx, ky) :—: r2263 + r2r23e + r4r24e

(4.2.35)

(4.2.36)

(4.2.37)

(4.2.38)

and employ the definition of the inverse Fourier transform of the aperture fields, eqs.

(4.2.33) and (4.2.34) become

00

JIEx(x,y,O)e

—oo

._ij —jk\')'

e ' dxdy

—jk{t —jk\'y

e ' dxdyI] E), (x, y, 0) e

Al-C1+A2-C2

A].C3+Az-C4

(4.2.39)

(4.2.40)

As mentioned in the preceding chapter, since the aperture electric field components,

I

E 0 = Ex (x, y, 0) and Eva = By (x, y, 0) , only exist over the aperture region 0<x<a,

0<y<b, and vanish on the flange, the double infinite integrals can be replaced by the two

double finite integrals as

10

b0 —jkxx -jk‘.y

“E e e 'dxdy =41-C14142-C2

5“ —'k -'k,

I[‘[Eyoe J Ixe J "ydxdy = A1 - C3+A2 - C4

Let’s denote

(4.2.41)

(4.2.42)
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E. e e " dxdy (4.2.43)

’7“ :1. -—'k,‘
”5):, 5 ME“; I ’re 1 ’idxdy (4,244)

and substitute back into eqs. (4.2.41) and (4.2.42) to solve for the unknown quantities

A1 (kx, ky) and A2 (kx, ky) . We have

 A1(kx,ky) C1C41C2C3[C4HE:0— C2][15:0] (4.2.45)

 142(k), ky) C1C4‘1C2C3 [C3HE:0 — C1 I[12:0] (4.2.40)

Similarly, the aperture magnetic fields can be derived by defining

-Al! -A31 A31

Dl (kx, ky) .=_ r31e + rl r33e + r3 r34e (4.2.47)

All —A31 A31

D2 (kx, ky) E r32e + r2r33e + r4r34e (4.2.48)

—A,t —A3t A3:

D3 (kx, ky) E r41e + r1r43e + r3r44e (4.2.49)

Alt —A31 A31

D4 (kx, ky) ‘5 r42e + r2r43e + r4r44e (4.2.50)

and taking the two-dimensional inverse Fourier transform of the spectrum-domain

magnetic field components given in eq. (4.2.32) after substituting z = 0. We obtain

_ l )2 1 0° 'k‘x jky)’

Hx(x,y)L=O+ - (21: “0!”! [Al D1+A2 Dzle' e dkxdk), (4.2.51)

H — 1 2‘ .. A D A D e’“ jk’ydk dk
y(x,y) z=0*- 5;; figiul 1' 3+ 2' 4] e x y (4.2.52)
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Substituting eqs. (4.2.45) and (4.2.46) into above two equations yields

 

  

  

sz=0, - 53ij e e [M9049 ky) jJEXO+N),(kx, ky) Imay/.91.), (4.2.53)

H - "j .. 11,1 5" N k k " k k " d dk
y|z=0+ _ fijje e I: X( >” X)HEIO+MX( )" I).IIE)'0] kx .1' (4'2'54)

where

CD-CD CD—CD

M>'(k1’k>')5 (011 2C4C1 C3C2’ N>'(kx’ky)5 0011 2C1C2 CZCl
11100-1!) 1 4_ 2 3 jn0(2n) 1 4‘ 2 3

CD—CD CD—CD

11411491515 (0)1 203; C46}, M,(k,,k,1a “’11 20303 clc4

111007!) 1 4— 2 3 ' jn0(21t) 1 4’ 2 3

(4.2.55)

Recalling from section 3.2.2 that the aperture magnetic field components in the

waveguide side are derived as

H
x

 

_ 1 . 1tx . . 11x b“ .(nx') , ,
2:0 — wuoab[2bnm’lor10$m( a )—12F103m( a )“Eyosm a dx dy

4%- 410 11911111"1.1 8‘““1 '7;— ”Em
1'

+2.21
nm It

. . ("'2‘

“<31 ”(1.51511114411

 

 

 

n'm'

14114114.

where
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(1'31 +(—“1°a b

En'm E 1 2 1 '1
(4.2.58)

nn m1! “

84(7) ”4177)

E =baE c (m)sn(m—n—X)d d 4259
II 210-!!! 110 05 a 1 b x)’ (.. )

E _baE . n'1tx m'Tty dd
H yo: (I! yosm 7 cos 7 x y (4.2.60)

e-{2 "i=0 8 -{2 "1.: (4201)

"w n'¢0i mi— m'¢0 H

Since the tangential magnetic field components, Hx and Hy, are continuous at the

aperture plane, 2 = 0 , the equality of eqs. (4.2.53) and (4.2.56), and that of eqs. (4.2.54)

and (4.2.57) will yield two coupled integral equations for the aperture electric fields. We

have

H     

 ly—

z=0

 

2an 1T0)””(Ea—""HEIE>'0“"(1")‘1x‘1’22m:"’11?0X)

8412151081911911'9‘1114. 4413119111140]

+ f] 811.484.3[115 (kx, 1),) ”E; +Ny(kx, ky) “2,321,111: Csin(—ax) (4202)

9
)9

z=0+

and for H’l . = H
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22:1:.:.11,1ws1"2—?1sm1fi:—¥11 11319111113»191191114...)

+ f] ej1,18,), [Nx(ky, kx) jjEf0+Mx(k),, kx) j15:0] dkxdk), = 0 (4.2.03)

 

where

C a —'2—(:-tcou1‘m (4.2.64)

Equations (4.2.62) and (4.2.63) are the two coupled integral equations for the aperture

electric field components, Em and Em. These EFIE’s are the key equations to be used

for further development.

4.3. Numerical Simulation

In this section the similar scheme used in section 3.3. will be employed to solve two

coupled EFIE’s for the aperture electric field. As mentioned before, the unknown aperture

electric field is expressed as a sum of incident and reflected dominant mode and a number

of higher order modes due to the discontinuity presented at the aperture.

In section 4.3.1, the method of moments is employed to convert the EFIE’s to a matrix

equation. This matrix equation is then solved by the Galerkin’s method using the

waveguide eigenmodes as the basis and testing functions . Section 4.3.2 develops

formulas which are needed in carrying out the numerical calculation of the matrix

equation transforming from rectangular coordinates into cylindrical coordinates. Finally,

section 4.3.3 presents numerical results compared to the published results to verify the

accuracy of this technique.
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4.3.1 Application of Method of Moments

The coupled integral equations given in eqs. (4.2.62) and (4.2.63) for the unknown

aperture electric field components are solved by using the moment method technique. The

unknown aperture electric field components are first expanded into a set of appropriately

chosen basis functions {13‘3 (x, y) } . Since the aperture fields of a waveguide can be

expressed as a sum of a dominant mode and a number of higher order modes, the

appropriate basis functions are the eigenmodes of the waveguide. Let us expand the

unknown aperture electric field components into two finite sums of eigenmodes of the

waveguide as follows:

Exo (x’y) = 20581; (x’-’)
(4.3.1)

13

E,,.(x 1’) = 21936(3(x .1) (4.3.2)

where 2 stands for 22 for summation of all possible higher order modes which

13 p 9

have mode indices [p, q] with p,q = 1, 2, 3, The set of basis functions are

expressed as

P7” 470’
eB(x, y) =cos[—a ]sin[—b :l (4.3.3)

eb(x, y) = sin [p_:1t_x]cos [(12.1] (4.3.4)

Substituting eqs. (4.3.1) and (4.3.2) into the coupled EFIE’s yields

gafl ' [Wdrx + Weir] + ébfl . [Wdyx + We);

I O (4.3.5)

Csin(1—;5) (4.3.6)ZBZaB-[W‘g,+w3+2), [WNW]
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where

x_ ‘48,)", u (n'nx) . (m'ny) 2 (m'n)2
de=ggabrn.m.(l—l—0)COS -—a-- sm —b— [ko— —b— :|Hex (4.3.7) 

WC:EJ°°Je’k"e’k’NM(k),k)(”ejdkdk (4.3.8)

 k (A) - (Mr—(M)de_;;abrn'm(uo)cos a Sin b a b He) (4.3.9)

exajjejk}ejk)Mx(kvk“DUIyex)dkdk (4.3.10)

 

w.:-223?:,6—)sin("—-':.”)cos('-"—;?)("%‘)('"Ti")m

5‘1“] ejkxxejkyyMy (kx, ky) (J‘J'exejdkxdky

(4.112)

2r, b0 1

y _ y . ). - fix . .
Wdy_= filliojsin(1%—x)uefi (x, ) ) s1n(—a )dx dy

-4€,,om» u . n'nx m'1ty 2 n'n

+§§abr,.m.(fo)sm(7)°°s( b )[k0‘(7fl”ey ‘43-”)

we); a f] ej1,.ej"~""Ny (kx, ky) ( j]e;)dkxdky (4.3.14)

 

 

and

 

b0 1 v I I

= x , , n TEX . m 1ty . .

”ex—MeB (x, y) cos(—a)sm( b )dx dy (4.3.15)
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b0 v v v v

. , , . n 1tx m It . ,

‘UeyEIUeé (x,y) sm(-—a—)cos( byjdxdy (4.3.16)

b0 _‘k . -.k, .'

”(2:5ue; (x', y') e 1 ’xe } ") dx'dy' (4.3.17)

ba . —'k . -'k y.

”efsueg (x', y') e I ‘xe j "" dx'dy' (4.3.18)

The EFIE’s for the aperture electric field are now expanded into the waveguide

eigenmodes with unknown expansion coefficients aB and b‘3 which represent the

amplitudes of the eigenmodes for the x and y components of the aperture electric field,

respectively. Next, we will use the Galerkin’s method to determine aB and bB' Since the

Galerkin’s method uses the same set of basis functions as the testing functions, we write

the set of testing functions as

x _ lnx . my

ta (1:, y) = C08 [7] 8111 [7] (4.3.19)

y _ . lnx my
(a (x, y) = $111 [7] C08 [7] (4.3.20)

After taking the inner products of eqs. (4.3.5) and (4.3.6) with the set of testing functions,

we have the following results.

1 yy

which can be represented in a matrix form of
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DIX nya

043 0:13[:B]_ [P9] (4.3.23)

DGBHDGB [3 a

where

xx ba

DGBE Mt; (x, y) [Wj(x, y) + W"(x, y)]dxdy (4.3.24)

X) ba x v )'

DGB aura (x, y) [Wéx (x, y) + ch (x, y)]dxdy (4.3.25)

VI b0 X

Daflgut: (x, y) [W(;:(x, y) + WC),(x,y)]dxdy (4.3.26)

vy ba y

Dag silt; (x, y) [W3 x,y) + WC'),(x,y)]dxdy (4.3.27)

and

ba x

FHEC‘MI (x, y) sin(—a )dxdy (4.3.28)

4.3.2 Evaluation of Matrix Elements -

In this section, elements of the matrix will be evaluated into compact forms to

facilitate the computer programing. Among the evaluations in this section, two-

dimensional Fourier transforms of the sinusoidal functions over the aperture are evaluated

analytically in Appendix.



98

In the matrix, the component Dig which represents the self-interaction of the y-

component of the aperture electric field is first discussed. Let us divide 03% into three

parts as follow:

ba

Dégsglt; (x, y) I:(x y) + W:(x y)]dxdy

-_- ¢;'>'+¢;>'+¢;>' (43.29)

where (17:), represents the contribution coming from the material layer which has

continuous spectrum property, (1):), represents the contribution from discrete higher order

modes of the waveguide and (1%y represents the contribution from the incident dominant

mode. They are expressed as

(1)” _ be t), ( .v
1 =‘M a x, y) ch (x, y) dxdy

1": (x, y) [f] ejkxxejk‘yNy (kx, ky) (JJe)€)dkxdk),]dxdy

:j N(kx, k)(”z5)( ”(3:)dkxdk), (4.3.30)

II

[
.
_
‘
8

d
—
.
Q
"
‘

h
a

 

(DHEII (x ”(z-2M1“:(11%)“"
(T)C°S(TEQ)["0 “(gfll

legdxcb

=§3§abr::it“0szvigi
lllW(3)) (4.3.31) 

(I);y 5 fit: (x, y) [%Ti)sin(?)fieg(xfi y') sin(%x—')dx'dy']dxdy

= —a—b”ll—0X3}; (x, y) sin(1%)dxdy][:’:ieg(x', y') sin(1-:l£)dx'dy']
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{[sinIEa—[llx] cos[[J] sin(T-E£)dxdy]x

b a

[ban pnx qny nx'

(ti [—)4—l-Hm»a b a

21“I 11 ab

= 7? (7,)[251.15r.ol[2541540]

ab p.
= 2—(p—O)I‘108, 152 05,, 18,] 0 (4.3.32)

2r, 11 b

‘44.)!

where some notations are expressed as

{13in [112x] [cos (kxx) +jsin (kxx) ] dx] x

(icos[%—yy][cos(ky)+jsin(k),y)]dy]

E [311(k) +512(kx)] [513(k),) +s]4(k),)] (4.3.33)

b

y”(1513‘ (x Y) Sin(n7n-x)cos(mz
ty)dxdy

b131n[]cos[r_1
bty]

sin(%)cos(m
%)dxdy

a—bé. 5 . e . (4.3.34)
4 ml m,r m

 

a

51‘ (k) E gsin [LE-x] cos (kxx) dx (4.3.35)

0

512 (k) Ej! sin I??? sin (kxx) dx (4.3.36)



b

.913 (ky) sicos [$1 cos (kvy) dy

sly4(k) =jIcos[2:52]sin (ky)dy
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Similar forms for IIef and Hey are expressed as

ejk \"

JIe;s Iieé (x', y'e) — ... dx'dy'

=[Hsin —']x'[cos(kx)-jsin(kx")]dx]x

[i::s][LEV] [cos (kyy') —jsin (kyy') ] dy']

E [521(kx) +522 (kx)] [523 (ky) +524(k_)’)]

 ”eysfieg (x', y')sin( n.—::—x')cos(m1tb y )dx'dy'

{1414232424144

$95.52
4 n',','pmqm

a v

521 (kx) a i sin [2%] cos (kxx') dx'

=_-"- m - . .522(k) .. Jlsml: a ]sm (kxx)dx

nnx ) (
cos

a

m'n
 

b

y )dx'dy'

(4.3.37)

(4.3.38)

(4.3.39)

(4.3.40)

(4.3.41)

(4.3.42)
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b .

523 (k) s leos [fig—v] cos (kvy') dy'

324(k)) E-jicos [Lby]sin (ky')dy'

If we further define

$1222“?E [511(kx)+312(kx)] [521082) +522(kx)]

¢12v(k),) E [513 (ky) +S]4(k).)] [52308) +324(k).)]

the multiplication of the notations given in eqs. (4.3.30) and (4.3.31) become

Ul’flUH} 5 (912.04) 412412).)

and

(1144112.) = (4)25.

Substiting them back into eqs. (4.3.30) and (4.3.31) gives

Y)’ 0°

<1) 1 = _U N),(kx, ky) 512“ (kx) ¢12v(ky) dkxdky

 ¢:Y=;§;Z§j:.(i)[3- (’%HOMO!)

=“”(1..)22"’"'"[("-kl2.2;]5 Smanpfimq

(4.3.43)

(4.3.44)

(4.3.45)

(4.3.46)

(4.3.47)

(4.3.48)

(4.3.49)

(4.3.50)

Since it becomes highly oscillatory when the two-dimensional infinite spectral

integration given in eq. (4.3.49) is evaluated in the rectangular coordinates, this spectral
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integration is computed in the cylindrical coordinates to sidestep this difficulty. Let’s

change the coordinates from rectangular to cylindrical with the relations of

kx kcosq)

. (4.3.51)

k), ks1n (p

where (p is a real variable with range of [0, 21:] and k is a real variable of [0, oo] . The

substitution of eq. (4.3.51) in eq. (4.3.49) yields

0027!

<19." =1 N,(k,<p>¢.2.(k,<p)¢12.(k.<p>kd<pdk

= l Gyy (k) kdk (4.3.52)

where

2n

G)... (k) a 1”)“, 4)) 412.414 (p) 4.2.414 <p)d<p (4.3.53)

Next we will discuss the component D23 which represents the self-interaction of the

x-component of the aperture electric field in the matrix. Divide Dz; into two parts as

follows:

ba

0;; a (111'; (x, y) [W51 (x, y) + W; (x. y) J dxdy

where

ba

4’,“ a 111'; (x, y) W; (x, y) dxdy
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a

I; (x, y) [In] ejkxxejknyx (k), kx) (”ejadkxdkyjdxdy

j Nx (k), kx) (”’31”(2:)dkxdk), (4.3.55)
—-00

I

1

 

 = z. .;:§:1:.(.%.)[4-("2‘“i141144112)

and the shorthand notations are expressed as

Icos [1%1 [cos (kxx) +jsin (kxx) ] dx] x

b . my . .

[£s1n[7] [cos (kyy) +Jsm (kyy) ] dy]

a 1.23, 4k.) + s32 4k.) 1 [s33 (k,.) + s34 (15,11 (4.3.57)

”Ix 5 fit; (x, y) cos(’%£)sin(n—1?)dxdy

.115 - :12 (wj-(m_'n_y)
cos[a]s1n[b]cos a 5m b dxdy

. 8 . 2. (4.3.58)

I
II

a

53, (k) a lcos [1%] cos (kxx) dx (4.3.59)
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532 (k) Ejlcos [£13] sin (ktx) dx
a -

 

 

(4.3.60)

1’ my
533 (ky) a {sin [T] cos (kyy) dy (4.3.61)

b m

534(k).=j‘gsin[by] sin (k),y)dy (4.3.62)

Similar forms for ”e: and ”ex are expressed as

b“ rte-1K)" , ,

”e:E (“6506“,,ey') ' dxdy

[cos ][cos(kx’) —jsin(kx’)]dx']x

[Eisin[—1%] [cos (kyy') -jsin (kvy') ] dy']

E [541(kx) +S4Z(kx)] [543(ky) +544(k),)] (4.3.63)

b“ x , , n'nx' . m'ny' , ,
J‘J'exauefluy) cos Tjsm b )dx dy

b0 I o o 1 1

= ” ' — (—) (m )
tMCOSI: ]s1n[ b ]cos b d dy

b
= 9:522',p5m'.q5n' (4.3.64)

0

s41 (kx) :gcos [p ]cos (k x) dx (4.3.65)

342 (kx) _ —}l cos [p :lsm (k x) dx (4.3.66)
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b .

343 (k\,) 2 {sin [g] cos (kyy') dy' (4.3.67)

b V

544(k) =—j£sin[q—'b]sin (ky")dy (4.3.68)

If we further define the following notations,

¢34u(kx) '5 [331(kx) +332 (kx)] [841(kx) +s42(kx)] (4.3.69)

$34,,(k),) E [533 (k),) +534(ky)] [s43 (ky) +344(k),)] , (4.3.70)

the multiplication of the shorthand notations given in eqs. (4.3.55) and (4.3.56) become

”PUMPS E ‘1’3412 (kx) ¢34v (ky)
(4.3.71)

and

(115)11163) = (eszan'. 15mg 25,13,223»); (,5: (4.3.72)

Substituting them back into eqs. (4.3.55) and (4.3.56) gives

ch,“ = J [ Nx(ky,kx)¢34u(kx)(1)34v(ky)dkxdky (4.3.73)

"‘ £2323"(5.)[3- ("'—74114411)b

ab n"m8'n "1
=—(:O)Zzif;[(%j"(14]5'15m'r5nm5m4 (4.3.74)

 

As mentioned before, changing the coordinates from rectangular to cylindrical, the

two-dimensional infinite spectral integration becomes
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002“

chi" = [ N.(k, (p) 434,414 45434.44 4) kdcpdk

(4.3.75)

00

= 16”“) kdk

where

21:

Gxx (k) E le (k, (P) (1)34“ (k, (P) ¢34v (k, ‘9) 61¢ (4.3.76)

Next, let’s evaluate the component D3 which represents the mutual-interaction of the

x-component of the aperture electric field as the testing function and the y-component of

the aperture electric field as the basis function in the matrix. Divide D:g into two parts as

follows:

ba , .

0.; a b)": (x. y) [m‘, (x, y) + WC". (x, y)]dxdy

= ¢T>'+¢:Y
(4.3.77)

where

xy ba x y

(1)] Elli“ (x9 Y) ch (x, y) dxdy

ba x 0° jkxx J'ky)’ e

= [E{20, (x, y) j j e e M(ky,kx) Hey dkxdky dxdy

(4.3.78)= £1w.4415:)(114544

b

«>5 2 [1436, y) W}. (x, y) dxdy



n. m,.44::(3J...('zf_4)5m("ig_)(_)('1b£)JJJ...

‘ 5543?:1:(5X“)(’57(Hr
)(n)

According to eqs. (4.3.39) and (4.3.57), we obtain

 

 

 

 

(114411454344.43.4..)

with new shorthand notations defined as

432,, (k ) -=- [53, (k.) + s32 (k.)] [s21 (k.) + s.. (k.)] (4.3.81)

¢32v(k ) 2 [533 (k),) +334(k),)] [523 (ky) +sz4(ky)] (4.3.82)

and according to eqs. (4.3.40) and (4.3.58), we have

(Mme) = (3})25,‘,5m.,5n.,p5m.‘qem.en. (4......

Substituting them back into eqs. (4.3.78) and (4.3.79) yields

51>? = D Mx (k), k) 532,, (kx) ¢32. (ky) dkxdk) (4.3.34)

33’ = 22.122'.:(5)(’5‘)(5‘ (1144114)

Like before changing the coordinates from rectangular to cylindrical, (I), g1ven 1n eq

(4.3.84) becomes

«.21:

“ = J M.(k. 4)) 432.04 (p) 4.2.04 (p) kdcpdk



108

= 1G“ (k) kdk (4.3.86)

where

21:

G... (k) a J M. (k. 4) 432.414 4) 432.414 <4) d<4 (4.3.87)

The last step is to evaluate the component D“,3 which represents the mutual-

interaction of the y-component of aperture electric field as the testing function and the x-

component of aperture electric field as the basis function1n the matrix. Let’s divide D:(1,3

into two parts as follows:

ba

DHMIE (.., 5) [W3(4 y) +W.§.(x.y)]dxdy

YX

<14+ (142 (4.3.88)

......

5;" a fit; (4:. 5) W5; (.., y) 4444

1.; (.. 5)m .1’5."“14'-"My(4x,4y5(j).;)..x..J....

:m4444114M.74..
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=2.2.5:.4—)4"—;:-‘)4'"."‘)414.)414.)
n m

 

Based on eqs. (4.3.33) and (4.3.63), we have

1115711185)544.444.4444

With new shorthand notations defined as

(1’14..("‘..) 5 [511084) +512(kx)] [541(kx) +S4Z(kx)]

(p14,, (1‘)) E 1513 (kv) '1' 514 (18)] [S43 (1‘)) '1' S44 (18)]

and with eqs. (4.3.34) and (4.3.64), we obtain

(144.4445) = (5)264. .. 4.1.4.....

Substituting them back into eqs. (4.3.89) and (4.3.90) yields

<14" = J J M. (k. k.) 4... 4k.) 4... 4k.) .14....

22...—54—.)4"—:-‘)4'"5'")414.)4n4)

_ -44 4 Max:424)
— 4 (“Ojgg rn'm' a b 8n', 16m', ran', pfim', q

 

If we change the coordinates from rectangular to cylindrical as before, <19,“

(4.3.95) becomes

0021C

<14)" = J M,.4k.<4)4...4k.<4)<4,..4k.<4)kd<44k

(4.3.90)

(4.3.91)

(4.3.92)

(4.3.93)

(4.3.94)

(4.3.95)

(4.3.96)

in eq.
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= J G” (k) kdk (4.3.97)

where

211

G... (k) a 1‘44"“ 4) <4... 4k. <4) 4....4k, <4)d<4 (4.3.98)

4.3.3 Numerical Results and Comparison with Existing Results

For a specific material layer, the numerical evaluation of the components of the matrix

equation given in eq. (4.3.23) for solving the aperture electric field and other relevant

quantities of the waveguide probe is performed in a FORTRAN computer program. Once

the matrix equation is solved, the aperture electric field is first determined by summing up

a finite number of modes that we have taken into account in the program. Then the

reflection coefficient or the input impedance of the waveguide probe is determined via the

aperture electric field.

To verify the accuracy of this technique, as well as the validity of the computer

program, numerical examples illustrated in the previous chapter are recalculated and

compared with the existing results.

Figures 4.1(a) and (b) show the real and imaginary components of the input

admittances of a waveguide probe when the probe is placed against a layer of quartz with

a dielectric constant of er = 3.76 and a thickness of 0.1299 inch. Our results are

compared to the theoretical and experimental results of Croswell et al. [22] where they

only considered a dominant TE,0 mode in their theoretical calculation. These figures

show that our numerical results employed by two different techniques given in Chapters 3

and 4 compare quite well to each other. Also our numerical results used a dominant TE,0
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Figure 4.1(a) Input conductances of a waveguide probe (a = 0.4 in, b = 0.9 in)

as a function of frequency when the probe is placed against a material layer with a

dielectric constant of 8. = 3.76 and a thickness of 0.1299 in. The comparisons are

made between our numerical results and theoretical and experimental results of

Croswell et al. [22].
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Figure 4.1(b) Input susceptances of a waveguide probe (a = 0.4 in, b = 0.9 in)

as a function of frequency when the probe is placed against a material layer with a

dielectric constant of Sr = 3.76 and a thickness of 0.1299 in. The comparisons are

made between our numerical results and theoretical and experimental results of

Croswell et al. [22].
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mode plus three higher order modes (TE3O, TE12 and TM,2) match very well with their

experimental results, much better than their theoretical results do.

Figures 4.2(a) and (b) show the real and imaginary components of the input

admittances of a waveguide probe which is placed against a material layer with a

dielectric constant er = 2.25 and a thickness of 0.3201 cm. As mentioned before, our

numerical results are obtained by using four modes in our theoretical calculation; and in

these figures, they compare quite good for both techniques we used. These figures also

show a good agreement between our numerical results and the theoretical and

experimental values of Bodnar et al. [24].

The last comparisons are shown in Figs. 4.3(a)-(b) which show the real and imaginary

components of the input admittances of a waveguide probe that is open to free space. Our

numerical results are compared to the theoretical results of Baudrand et al. [30] and the

experimental results of Bondar et al. [24]. Our results using four modes for both

techniques agree well to each other, as well as to the above published results.

Now if we use the waveguide probe to measure an assumed known anisotropic

material layer with a thickness of 0.11 inch and three principal permittivities of

a, = 5.4 -j0.3 , £2 = 5.8 —jO.4 and 83 = 3.8 -j1.7 , the theoretical input admittance at

the probe aperture can be obtained. Figure 4.4 shows the real and imaginary components

of the input admittance of a waveguide probe which is placed against the assumed known

anisotropic material layer at the orientation of 0 degree. In this figure, we considered three

cases; (a) with a dominant TE10 mode only, 6)) with a dominant TE10 mode plus one

higher order mode (TEZO) and (c) with a dominant TE,0 mode and two higher order

modes ( T1520 and TE01). Since two multi-mode cases yield almost identical results over

the frequency range of 8 to 12 GHz, it is then obvious that a good convergence can be

obtained when the first two modes (TE10 and "’20) are employed in the numerical

calculation. It is also noted that the numerical results obtained by considering the
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made between our numerical results and theoretical and experimental results of Bodnar

et al. [24].
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function of frequency when the probe is placed against an assumed known anisotropic

material layer with a thickness of 0.11 inch and three principal permittivities of

a] = 5.4-103,82 = 5.8—j0.4 and a3 = 3.8—j1.7.
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dominant mode only in the theoretical calculation match very close with the results using

the multi-mode cases. This indicates that the aperture electric field is dominated by the

dominant TE,0 mode and when the waveguide probe is attached to an anisotropic

material layer, higher order modes contribute insignificantly to the electric field at the

input admittance of the waveguide probe.

To further verify this observation, we use the waveguide probe to measure another

assumed known anisotropic material layer which has higher permittivity and conductivity

in the principal direction perpendicular to the waveguide aperture. Figure 4.4 shows the

real and imaginary components of the input admittance of a waveguide probe which is

placed against a layer of anisotropic material, with a thickness of 0.053 inch and three

principal permittivities of £1 = 5.4 -j5.3, £2 = 5.8 —j6.4 and £3 = 30.8—j100.5, at

the orientation of 0 degree. As observed earlier, our numerical results obtained by using

the first two and three modes in the theoretical calculation are almost identical, while the

theoretical results obtained by using only the dominant mode match very well with those

of multi-mode cases. Therefore, using a dominant TE10 mode plus one higher order

mode TE20 in the numerical calculation, we can expect a good convergence on the probe

input admittance; even using a dominant TE,0 mode only, good results can be obtained

over the major portion of the frequency range. As a result, in the interest of saving

computation time, only the dominant TE 1 0 mode will be assumed for the aperture field if

the waveguide probe is attached to an anisotropic material layer. This approximation will

be used in the next chapter to inversely determine the measured EM parameters of

anisotropic material layers.

In this chapter, we established a forward procedure for the theoretical study of

measuring EM parameters of anisotropic materials using an open-ended waveguide probe

system. The accuracy of the technique and the validity of the computer program have

been verified by comparing our numerical results with the published results. The
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Figure 4.5 Input admittance of a waveguide probe ((1 = 0.4 in, b = 0.9 in) as a

function of frequency when the probe is placed against an assumed known anisotropic

material layer with a thickness of 0.053 inch and three principal permittivities of

£1 = 5.4—1'53, £2 = 5.8 —115.4 and £3 = 30.8 -j100.5.
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theoretical calculation on the input admittance of the waveguide probe placed against a

layer of assumed known anisotropic material was also presented and discussed in detail.

The experiments for measuring the reflection coefficient or the input admittance of the

waveguide probe and the inverse technique of this measurement method for determining

the EM parameters of the material layer will be discussed in the following chapter.



CHAPTER 5

EXPERIMENTS

5.1. Introduction

In this chapter we discuss the experiments for determining the EM parameters of

isotropic and anisotropic samples using an open-ended rectangular waveguide probe

system. The calibration procedures of this waveguide probe system and the measurement

procedures to obtain the complex permittivity e of isotropic and anisotropic materials are

explained. Also, the experimental input admittances of the waveguide probe when placed

against various material layers and their complex permittivities determined from the

inverse procedure are presented.

Section 5.2. presents, experimental setups and calibration procedures of the waveguide

probe system. In this section, two different calibration procedures for the waveguide

probe system are discussed in detail. Also the reactive characteristics property of the

adjustable shorting device used for the calibration procedure is studied. Section 5.3.

includes the experimental results of the input admittances of the waveguide probe placed

against various isotropic and anisotropic material layers. Section 5.4. develops an

inversion technique to determine the material parameters such as permittivity,

permeability and the thickness of the material, etc., using the Newton’s iterative method.
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After the theoretical analysis of the parameter retrieval and technique descriptions, the

inverted results of the EM parameters for various material layers measured in the

preceding section are presented.

5.2. Experimental Setups and Calibration

A waveguide probe system for measuring the complex permittivity e of isotropic and

anisotropic materials has been constructed at MSU electromagnetics laboratory. The

waveguide probe system and associated equipment are schematically shown in Fig. 5.1.

The waveguide probe consists of an X-band open-ended rectangular waveguide with a

cross-sectional dimensions of O.4"x0.9" terminated on a 18"x18"x0.25" metallic flange. It

was experimentally found that the metallic flange is sufficient large to act as an infinite

plate as the theory assumes. An acrylic tank is also built to measure liquid materials. In

case the EM parameters of a liquid material are measured by this waveguide probe, a thin

Scotch 3M Mailing tape is taped on the aperture to prevent the leakage of the liquid into

the probe. It was also found that the effect due to this thin tape is neglible when we

measured the input impedance of the probe open into space with and without the tape on

the aperture.

An HP 87208 Network analyzer is connected to the waveguide probe and it excites a

dominant TE10 mode of wave into the waveguide in the frequency range of 8 GHz to 12

GHz. The waveguide used in the system is 16" in length and it is sufficient long to permit

only the dominant TE10 mode of wave to be reflected back to the network analyzer. That

is higher-order modes excited near the waveguide aperture have attenuated greatly and

will not reach to the network analyzer.

A layer of material to be measured is placed against the waveguide aperture and it is

backed by free space. The material layer is also required to be sufficiently large to reduce
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Figure 5.1 Experimental setup of a waveguide probe system to measure the EM

parameters of materials.
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the possible edge effect of a layer of finite size. Due to the discontinuity presented at the

aperture, a part of the incident T510 mode of wave penetrates into the material layer and

the rest of it is reflected back to the waveguide. Additionally, higher-order waveguide

modes are excited near the probe aperture. The theoretical analysis of the EM fields at the

probe aperture was conducted in the preceding chapters and it showed that the reflected

dominant mode of wave at the aperture is dependent on the material parameters such as

permittivity, permeability and the thickness, etc.. Therefore, by measuring the reflection

coefficient of the dominant mode at the waveguide aperture, the material parameters can

be determined inversely.

The experimental reflection coefficient at the probe aperture is automatically measured

and recorded with an HP network analyzer. As shown in Fig. 5.2, the equivalent two-port

network between the probe aperture and the measurement reference plane of the network

analyzer can be represented as a equivalent network characterized by [S] matrix. The

scattering (S) parameters of the equivalent network can be determined via a calibration

procedure. In this section two different calibration procedures for this equivalent two-port

network are developed and will be discussed in the following subsections. With these S

parameters, the measured reflection coefficient at the reference plane of a network

analyzer can then be converted to the reflection coefficient at the probe aperture.

For a layer of anisotropic material with a diagonal form of the complex tensor

permittivity as given in eq. (2.3.3), there are three complex permittivities with respect to

the principal axes of the anisotropic material layer. Since the electric and magnetic fields

of the dominant mode inside the waveguide are orientated in specific directions, the tensor

EM parameters of an anisotropic material layer can then be determined by measuring the

reflection coefficient of the dominant mode at various orientations of the waveguide with

respect to a reference axis of the material layer. Thus, for this kind of anisotropic material

layer, it is required to make measurements of the probe input admittance at three or more
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Figure 5.2 Representation of the equivalent two-port network between the

waveguide aperture and the measurement reference plane of a network analyzer.



127

different orientations for inversely determine the three unknown quantities of the tensor

permittivity. In a serious of experiments for an anisotropic material layer, we measured

the reflection coefficient or the input admittance of the probe aperture at four different

angles, 0, 30,45 and 90 degrees, with respect to a reference axis of the material layer. If a

laminated composite material is concerned, the reference axis of the material layer is

chosen to be the axis parallel to the fibers in the first ply of the laminated composite.

5.2.1 Fixed-Stub Calibration

It is common practice to use combined calibration devices of short circuit, offset short

circuit, perfect matched load and open circuit to calibrate the equivalent network between

the actually measured plane of a material sample and the reference plane of a network

analyzer. Usually, these calibration devices are assumed to be lossless and their lengths

introduce only phase changes between the terminations[43].

For a waveguide probe system, the calibration scheme using all short circuits is most

convenient. The signal flow diagram of the calibration scheme using short circuit devices

is shown in Fig. 5.3. It is noted that R: , RE and R3 denote the measured reflection

coefficients at the terminal of the network analyzer with the offset short circuits connected

in the waveguide probe, while R11), R: and R: denote the respective theoretical reflection

coefficients at the probe base plane I = II . Since the shorting circuits are assumed to be

lossless, we can express the theoretical reflection coefficients as

l

Rb = —1 (5.2.1)

--2 z.—1

R: = —e 1 B1 ‘ ') (5.2.2)

—'2 1—1

R2 = —e I B( 3 ') (5.2.3)
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With kg =

1 1/1- (re/112'

According to [12], the equivalent network characterized by [S] matrix as shown in

where B =

Fig. 5.2 can convert the measured input impedance or reflection coefficient at the

reference plane of a network analyzer to the input impedanCe or reflection coefficient at

the probe aperture plane, or vice verse. The relation between the reflection coefficient R,

at the reference plane and that Ra at the probe aperture plane 15 expressed as

Rr — S1 1
R = (5.2.4)

0 (Rr_ 511) S22 ‘1’ 512521

 

01'

S S R
R = 12 21 0+ 1]

’ I'SZZRa

(5.2.5)

This shows that only three scattering parameters S 11 , 522 and 512521 need to be

determined if both Rr and Ra are known.

With reference to Fig. 5.3, three offset short circuits are used to determine the S

parameters of the equivalent network. Using eqs. (5.2.4) and (5.2.5) for the three short

circuits, the S parameters of the equivalent network can determined as

[R3-R3)[R1‘.—RZ]-[Rl-R3)[R2-RZ)
522 = ' 3 RZ‘LIR] R2) 3 R1 R2XR3 szRl (5'2'6)

Rr- r b_ b Rb- r_ r b_ b b

3 2

R —R 3 2

Rb—Rb
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3

3_ 512521Rb
511 = R 3.

l-SZZRb

(5.2.8)

Based on these S parameters, the reflection coefficient of the probe aperture Ra can be

transformed to be

'2 1
R = Rbe’ B1 (5.2.9)
0

where the reflection coefficient at the probe base plane Rb is

= Rr-Sll

(Rr—Sll)S22+SIZSZI

 

Rb
(5.2.10)

The easiest calibration scheme using three offset short circuits is to use three fixed

shorting stubs which can be attached tightly on the probe aperture. Since the operating

frequency covers the range of 8 GHz to 12 GHz, and in order to provide sufficient phase

differences over this frequency range, three shorting stubs are chosen to have 5 mm, 10

mm and 20 mm in length, respectively. When these shorting stubs are used, we use a short

circuit at the aperture and two offset short circuits with 5 mm and 10 mm in length to

calibrate the frequency range of 8 GHz to 10 GHz. On the other hand, a short circuit and

two offset short circuits with 10 mm and 20 mm in length are used to calibrate the

frequency range of 10 GHz to 12 GHz. That is, three shorting stubs with lengths

ll=0mm, [2:5 mm and 13:10 mm, or ll=0mm, 12: 10mm and

I3 = 20 mm are used to calibrate the equivalent network for the two frequency ranges.

It is noted that the reflection coefficient of the probe aperture in eq. (5.2.9) is now becomes

Ra = Rb since the probe base plane is chosen to be the same as the aperture plane in the

present arrangement. The calibration scheme discussed here is referred to the 'fixed-stub

calibration" since this calibration uses fixed shorting stubs.
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The drawback of this fixed-stub calibration is the problem caused by poor contact

between the edges of the stubs and the inner surface of the waveguide. This may affect the

accuracy of the calibration greatly. In order to overcome this difficulty, an adjustable

shorter is used instead of fixed shorting stubs. This alternate scheme will be discussed in

the next section.

5.2.2 Adjustable Shorter Calibration

An adjustable shorter with a dumbbell-shaped loading in front of the termination

provides a reactive contact with the waveguide and ensures a very large standing-wave

ratio (SWR) in the waveguide. This allows the adjustable shorter to reduce the resistive

loss at the contact point with the waveguide and become an ideal short circuit device.

However, due to the reactive characteristics of the adjustable shorter, it is difficult to

determine the actual offset shorting length of the shorter directly by measuring the

distance from the probe aperture to the shorting termination inside the shorter. Therefore,

to use the adjustable shorter in the calibration, the offset shorting length of the shorter over

the frequency range of 8 GHz to 12 GHz needs to be found first.

The offset shorting length of the shorter for various frequencies can be found by

comparing the equivalent phase of the shorter to the phase of the shorting plate at the

aperture and they can be determined accurately by using a slotted-line measurement[44].

The simplified block diagram as shown in Fig. 5.4 illustrates the arrangement of the

instrumental setup in the slotted-line measurement. An HP 809B slotted line consists of a

section of waveguide into which a small antenna, or probe, can be introduced through a

slot. The probe extracts a small fraction of the power flowing in the waveguide, and is

connected to an HP 415E SWR meter. An HP 8620B sweep oscillator is used to generate

the dominant T1310 mode of wave inside the waveguide at the X-band frequencies. Also,

an HP X532A frequency meter is used to monitor the frequency. Between the oscillator
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Figure 5.4 The block diagram of the slotted-line measurement.
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and the slotted line, a type 1203 isolator is connected to block the reflected wave back to

the generator.

When a shorting plate is connected to the end of the slotted line, using the movable

probe in the slotted line and monitoring the SWR meter, the position of a voltage

minimum at a specific frequency can be found. Replacing the shorting plate with the

adjustable shorter, the equivalent shorting location of the shorter can then be determined.

Also the measured half-wavelength at this specific frequency can be obtained by

measuring the distance between one voltage maximum and the adjacent voltage minimum.

Repeating above procedure over discrete frequencies between 8.5 GHz to 12 GHz, the

equivalent shorting locations of the shorter are obtained and they are shown in Fig. 5.5. In

this figure, the ’+’ marks represent the measured data by the slotted-line measurement at

discrete frequencies, and the solid line represents the fitting curve interpolarized from the

measured data by using MATLAB’s LEASTSQ program.

From above measured data, we can also plot a figure to show the reactive

characteristics of the adjustable shorter. In Fig. 5.6, we compared the half-wavelength

differences of the experimental results with that of the theoretical results versus frequency.

Both of them represent the differences of the half-wavelengths measured over the

frequency range of 8.5 to 12 GHz and that at 12 GHz. If this adjustable shorter is a simple

waveguide shorting terminator, the experimental and theoretical differences should be

identical. However, as shown in the figure, there are some small discrepancies between

theoretical and experimental results over the frequency range. Therefore, a proper

calibration procedure is needed for using this adjustable shorter.

To calibrate the system with the adjustable shorter, the following procedure was

designed.
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Figure 5.5 The equivalent shorting locations of the adjustable shorter obtained by

the measurement of the slotted line over frequencies between 8.5 GHz to 12 GHz. The

’+’ marks represent the measured equivalent shorting locations of the adjustable shorter

at discrete frequencies. The solid line represents the fitting curve of the equivalent

shorting locations.
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Based on the scales indicated on the surface of the adjustable shorter, 40 evenly spaced

positions are chosen to be the reference offset shorting locations. Also, in order to obtain

sufficient calibration data for the calibration procedure, the distance between the first and

the last reference shorting locations should be sufficient long to provide at least one

wavelength in length over the frequency range of 8 GHz to 12 GHz.

When the adjustable shorter set at a specific reference position is attached to the

waveguide aperture, an HP network analyzer automatically measures 201 measured

reflection coefficients of the waveguide probe sweeping over the frequency range of 8 to

12 GHz. Repeating the measurements for all 40 reference shorting positions, the database

(40 x 201) of the probe reflection coefficients can be obtained. Now if we replace the

adjustable shorter with a shorting plate, 201 measured reflection coefficients of the

waveguide probe placed against the shorting plate are recorded. Therefore, for each

specific frequency, the location of the equivalent short circuit corresponding to the

aperture shorting plate can be determined by selecting the equivalent phase of the probe

reflection coefficient from the database. Two reference locations whose phases lag 120

and 240 degrees with respect to that of the equivalent short circuit are also determined to

be two offset short circuits for the calibration procedure and their corresponding offset

shorting lengths are denoted as 12 and I3 as shown in Fig. 5.7. Thus, an equivalent short

circuit with 11 = 0 and two offset short circuits with 12 and 13 in length are used in the

calibration procedure. Once the equivalent network characterized by S parameters is

calibrated, the reflection coefficient at the probe aperture placed against a layer of

unknown material can be obtained using eqs. (5.2.9) and (5.2.10).

The primary advantage of using the adjustable shorter as a short circuit device is that it

provides a low resistive loss at the contact point with the waveguide and a high SWR for

the system. It was also found that the calibration procedure designed for this adjustable

shorter is a direct and stable method to deal with the reactive characteristics of this shorter.
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However, this calibration procedure turns out to be rather time consuming. Moreover, a

small oscillation (less than 5%) occtrrs to follow the curve of the calibrated data. This is

probably due to the inaccuracy of the numerical interpolation process in finding the offset

shorting lengths in the calibration procedure. This may be improved by increasing the

number of the reference offset shorting locations to 400 or 800 points in the calibration

process, if this practice is not too cumbersome. A better method may be to use an HP

waveguide calibration kits for calibrating the system. Unfortunately, such a calibration kit

system is not available to us at the present.

5.3. Experimental Results for Materials

We have conducted a serious of experiments to measure the reflection coefficients or

the input admittances of a waveguide probe system attached to various material samples

as shown in Fig. 5.1. As discussed in the preceding section and shown in Fig. 5.7, the

waveguide probe system can be represented by an equivalent two-port network

characterized by [S] matrix and calibrated by using an adjustable shorter with a proper

calibration procedure.

The reflection coefficients or the input admittances of the waveguide probe attached to

various material layers are first measured at the reference plane of the network analyzer.

After calibrating the data by the scattering parameters of the equivalent network, these

quantities of interest can be converted from that measured at the reference plane to that at

the aperture plane. In this section, we present the results of the input admittances at the

probe aperture attached to various material layers over the frequency range of 8 to 12

GHz. These material layers include isotropic materials such as air, acrylic, plexiglass,

teflon and liquid materials such as distilled water and acetone, and anisotropic materials

such as an epoxy/glass-fiber manufactured by Composite Materials and Structures Center

laboratory of MSU and a dielectric-fiber manufactured by Boeing Airplane Company.
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Figure 5.8 shows the real and imaginary components of the experimental input

admittances of a waveguide probe when the probe is open to free space. In these figures,

the solid line represents the experimental data, while the ’*’ marks represents the

smoothed curve of the experimental data. As mentioned earlier, an oscillation of less than

5% magnitude along the measured data is probably due to the inaccuracy of the numerical

interpolation process. It seems reasonable to treat the smoothed curve of the experimental

data as the measured input admittance at the probe aperture.

As shown in Fig. 5.9, the results of Fig. 5.8 are also compared with our theoretical

calculations based on two different techniques, Hertzian potential method and transverse

field method, with four mode assumption and the published experimental results by

Bodnar[24]. Figure 5.9 shows good results for the input conductance at the probe

aperture, but a little discrepancy is observed for the results of the input susceptance at the

probe aperture. Since the imaginary component of the probe input admittance is strongly

dependent on the field distributions at the aperture, the discrepancy of this component may

indicate the imperfection of our probe aperture. This is probably caused by a slight

curving nature of the flange and four non-smooth filled holes around the aperture which

are used to connect the adjustable shorter to the flange while calibrating.

Figures 5.10 to 5.12 show the real and imaginary components of the experimental

input admittances of the waveguide probe when the probe is placed against various

material layers such as an acrylic layer of 0.06 inch, a plexiglass layer of 0.06 inch and a

tefion layer of 0.51625 inch, respectively. As before, these figures show both the

experimental data and the smoothed curves of the data. It was found that the contact

between the material layer and the waveguide probe is very important. In our

configuration the material layer to be measured is backed by free space, an unintentional

air gap may exist if the material layer is not tightly attached to the probe aperture. This
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probe (a = 0.4 in, b = 0.9 in) as functions of frequency when the probe is placed
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probe (a = 0.4 in, b = 0.9 in) as functions of frequency when the probe is placed
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Figure 5.12 Experimental input conductances and susceptances of a waveguide

probe (a = 0.4 in, b = 0.9 in) as functions of frequency when the probe is placed

against a material layer (teflon) with a thickness of 0.51625 inch.
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may cause considerable inaccuracy in the measurement as well as the inverse results on

the EM parameters of the materials.

Figure 5.13 shows the real and imaginary components of the experimental input

admittances of the waveguide probe when it is placed against two layers of liquid

material, distilled water, with thickness’s of 0.2344 inch and 0.3125 inch. These two sets

of measurements will be both used later to inversely determine the complex permittivity

of the distilled water via an inverse technique. The purpose is to verify the precision of

the reading of the thickness for a liquid material layer which is difficult to determine

accurately in a tank.

Figure 5.14 shows the real and imaginary components of the experimental input

admittances of the waveguide probe when the probe is placed against a layer of liquid

material, acetone, with a thickness of 0.345 inch. The figures show both the experimental

data and the smoothed curves of the data.

Figure 5.15 shows the real and imaginary components of the experimental input

admittances of a waveguide probe when the probe is placed against a layer of anisotropic

material, epoxy/glass—fiber, with a thickness of 0.1105 inch. These figures show the

measured results at four different orientations of the waveguide aperture with respect to a

reference axis of the material layer. As defined in section 5.2., the measurements at O, 30,

45 and 90 degrees mean that the experiments are conducted when glass fibers in the first

ply of the material layer are making an angle of 0, 30, 45 and 90 degrees, respectively,

with the direction of the electric field of the dominant mode at the probe aperture.

The smoothed curves of the above experimental results are shown in Fig. 5.18. These

curves represent the real and imaginary components of the smoothed waveguide input

admittances when the probe is placed against the epoxy/glass-fiber layer. These data will
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Figure 5.13 Experimental input conductances and susceptances of a waveguide

probe (a = 0.4 in, b = 0.9 in) as functions of frequency when the probe is placed

against two liquid material layers (distilled water) with thickness’s of 0.2344 inch

(dash line) and 0.3125 inch (solid line).
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Figure 5.14 Experimental input conductances and susceptances of a waveguide

probe (a = 0.4 in, b = 0.9 in) as functions of frequency when the probe is placed

against a liquid material layer (acetone) with a thickness of 0.345 inch.
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Figure 5.15 Experimental input conductances and susceptances of a waveguide

probe (a = 0.4 in, b = 0.9 in) when the probe is placed against a layer of anisotro-

pic material (Epoxy/Glass-Fiber) with a thickness of 0.1105 inch measured at four dif-

ferent orientations with respect to a reference axis of the material layer.
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Figure 5.16 Smoothed curves of the experimental input admittances of a waveguide

probe (a = 0.4 in, b = 0.9 in) when the probe is placed against an anisotropic

material layer (Epoxy/Glass-Fiber) with a thickness of 0.1105 inch measured at four

different orientations with respect to a reference axis of the material layer.
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be used in the next section to inversely determine the complex permittivities of the

anisotropic material layer.

Figure 5.15 shows the real and imaginary components of the experimental input

admittances of a waveguide probe when the probe is placed against a layer of anisotrOpic

material, dielectric-fiber, with a thickness of 0.053 inch. These figures show the measured

results at four different orientations of the waveguide aperture with respect to a reference

axis of the material layer.

Figure 5.18 shows the smoothed curves of the experimental results of Fig. 5.15. These

curves represent the real and imaginary components of the smoothed waveguide input

admittances when the probe is placed against the dielectric-fiber layer. These data will be

used. in the next section to inversely determine the complex permittivities of the

anisotropic material layer.

5.4.Inverse Technique and Results

Theoretical development up to this point has been to express the effect of material

parameters on the reflection coefficient or the input admittance of a waveguide probe. In

this section, the material parameters as functions of the reflection coefficient or the input

admittance of a waveguide probe are determined numerically by using an inversion

technique based on the Newton’s iterative method [45].

The newton’s method, an extension of the Newton-Raphson method, is well known to

have a key relationship of

—1
ka = xk-(fk') ~fk (5.4.1)



151

 

3.6,.....

3.44»-

N
o
r
r
n
a
l
i
z
e
d
c
o
n
d
u
c
t
a
n
c
e

 
   ~ L l 1

7.5 a 8.5 9 9.5 10 10.5 11 11.5 12 12.5

Frequency ( GHz)

(3)

1.4 I 1 1 1 1 1 1 I I

 

12*

0.8“ .1 . .,

0.6—-~~~

0.4»-

N
o
n
n
a
l
i
z
e
d
s
u
s
c
e
p
t
a
n
c
e

   
9.5 11) 16.5 1L1 111.5 112 12.5

Frequency ( GHz)

0))

l
 l .

0
«
b 1.

Figure 5.17 Experimental input conductances and susceptances of a waveguide

probe (a = 0.4 in, b = 0.9 in) when the probe is placed against a layer of anisotro-

pic material (dielectric-fiber from Boeing) with a thickness of 0.053 inch measured at

four different orientations with respect to a reference axis of the material layer.
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Figure 5.18 Smoothed curves of the experimental input admittances of a waveguide

probe (a = 0.4 in, b = 0.9 in) when the probe is placed against an anisotropic

material layer (dielectric-fiber from Boeing) with a thickness of 0.053 inch measured

at four different orientations with respect to a reference axis of the material layer.
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It also follows that, in order to extend the method to higher dimensions, an analogue of the

derivative f'(x) is developed to be an n Xn matrix Jk which can be determined by

evaluating the Jacobian matrix J (3:) whose entries are the partial derivatives

_ 8f,- (3:)
(J) :31 — ax. .19,an (5.4.2)

I

As an example, suppose that we are using the Newton’s method to solve three

equations for three unknowns simultaneously, say,

f1 (x1: x29 x3)

F (I) = f2 (x1, x2, x3) (5.4.3)

  [3 (x1, x21x3)d

and

N
V

II

R
N

(5.4.4)

  

Then the Jacobian matrix can be evaluated as

:35 a a
8x1 8x2 8x3

1(3) = 31:2 % iffi . (5.4.5)

3x1 8x2 3x3

% % 31:3.
3x1 8x2 3x3  

With this definition, we have, as the analogue of eq. (5.4.1),

-1
3c“, = 3,,— (Jk) Fk (5.4.6).
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I . .
where Fk = F 8‘11) , Jk = J ($11) 1111111,, denotes the k” iterative values of 1%.

In the programming implementation, the Jacobian matrix is carried out by using a

finite difference approximation for each component of Jk . That is,

  (5.4.7)

f,-(?r)-f,-(3c') 1113(3)

(Jk) — k k ~[ )—. o — ’ ’ ~

1,, (x1), - (1,1)}. 319-

where (xk —xk.) = 8 denotes apreset difference.

To solve n equations for n unknowns, this Newton’s iterative method can be regarded as

an n-dimensional analogue of the secant method. Substituting eq. (5.4.7) in eq. (5.4.6),

the (k+ 1)’h iterative value of 3 is calculated. If 19(1):,” 1) 20 is satisfied at some

preset accuracy then the problem is solved with 11k“ to be the roots of equation

F (it) = O and the iterative process is terminated. Otherwise, a new approximation will

be generated to continue the iterative procedure defined by the recursion formula (5.4.6).

As developed earlier, since the reflection coefficient or the input admittance of the

waveguide probe is an implicit function of the material parameters such as permittivity 8 ,

permeability 11 and the thickness of the material layer, etc., the inversion of material

parameters can be achieved by the Newton’s iterative method. Let in, be a vector

representing the n different measured reflection coefficients or the input admittance of the

waveguide probe with the unknown material layer, and 131;. be the corresponding vector

for the n theoretical reflection coefficients or the input admittances at the probe aperture.

The nonlinear equation, F (3c) = 0 , with n unknowns is constructed as

9 9 9 '>
F(x) = R1). (x) -Rm = 0 (5.4.8)

With an appropriate set of guess values 5:0 and the use of the recursion formula given

in eq. (5.4.6), the correct material parameters, ;, can be determined inversely that lead to

the n measured reflection coefficients or the input admittances.
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With the assumption of free-space permeability (p. = 110) for all measured materials

discussed in the preceding sections, the complex permittivities of these materials are

inversely determined from the measured waveguide input admittances. For an isotropic

material layer, one measurement of the waveguide input admittance is needed to inversely

determine the complex permittivity of the material layer via the inverse technique, while,

for an anisotropic material layer, three measurements of the waveguide input admittance

will be required to inversely determine three complex permittivities with respect to the

three principal axes of the material layer.

In Fig. 5.19, we show the permittivities of the open space inversely determined from

the measured input admittances of the waveguide probe as shown in Fig. 5.8. Two sets of

results obtained by the inverse technique based on two different methods, the Hertzian

potential method and the transverse field method, which have been addressed in Chapter 3

and 4, are shown in this figure. The marks with ’*’ represent the results which are

inversely determined from technique based on Hertzian potentials, and the marks with ’0’

represent that from the technique based on the transverse field method. Both methods

give good and consistent results for the complex permittivities of free space.

Since the computation time of the inverse procedure based on the transverse field

method is longer than that based on the Hertzian potential method, the inverse results of

the measured complex permittivities of the following isotropic materials were determined

by employing the technique based on Hertzian potentials only. On the other hand, the

measured permittivities of the anisotropic materials were determined by using the

technique based on the transverse field method.

Figure 5.20 shows the measured complex permittivity of an acrylic layer with a

thickness of 0.06 inch. The results indicate 8,2 2.5 ~ 2.7 and Biz—0.1 ~0 for the

most part of frequency range. These results are quite consistent with that obtained by Li

[46].
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based on the Hertzian potential method, while the ’o’marks represent that based on

transverse field method. The upper curVes show the real part of the complex relative

permittivities, while the lower curves show the imaginary part.
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curve shows the imaginary part.
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Figure 5.21 shows the measured complex permittivity of a plexiglass layer with a

thickness of 0.06 inch. The results indicate er z 2.5 ~ 2.7 and 8'. = —O.1 ~ 0 which are

close to the published results.

Figure 5.22 shows the measured complex permittivity of an tefion layer with a

thickness of 0.51625 inch. The results indicate 8r 2 2.05 and 8(- z 0 for the most part of

the frequency range. These results are considered to be quite accurate.

Figure 5.23 shows the complex permittivity of a layer of distilled water inversely

determined from the measured input admittances of the waveguide probe as shown in Fig.

5.13. Two set of results are obtained from two measurements of distilled water with two

different thicknesses of 0.2344 inch and 0.3125 inch. Both cases give very consistent

results on the real and imaginary components of the permittivities. At 10 GHz, the

measured results indicate er z 59 and Si z —17 which agree very well with the published

results of Metaxas and Meredith et al. [47] who gave er 2 59 and 8'. z -—20 ~ —30. While

there is a good agreement between the real components of the permittivity, the

discrepancy of the imaginary components of the permittivity is probably due to different

degrees of pureness of distilled water used in the experiments.

Figure 5.24 shows the measured complex permittivity of a layer of acetone with a

thickness of 0.345 inch. The results indicate er z 6 ~ 8 and El. == 0 for the most part of

the frequency range. These results are considered to be reasonable.

The measured complex tensor permittivities of a layer of anisotropic material, an

epoxy/glass-fiber supplied by Composite Material Laboratory of Michigan State

University, with a thickness of 0.1105 inch , are shown in Fig. 5.25. In the figure, the

real components of three complex relative permittivities in the three principal directions

are shown in the upper graph (a), while the imaginary components of the corresponding

permittivities are in the lower graph (b). Both graphs contain two sets of results; the solid
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(plexiglass) which has a dielectric constant of 8’, = 2.59 and a thickness of 0.06 inch.

The upper curve shows the real part of complex relative permittivity, while the lower

curve shows the imaginary part.
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Figure 5.25 Measured complex tensor permittivities of an anisotropic material layer

(epoxy/glass-fiber) with a thickness of 0.1105 inch. The solid lines represent the mea-

sured results inversely determined by employing three measurements of the probe input

admittances with the probe orientations of 0, 45 and 90 degrees with respect to a princi-

pal axis of the material, while the dash lines represent the corresponding results with the

probe orientation of 0, 30 and 90 degrees.
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lines represent the measured permittivities obtained by employing three different

measurements of the probe input admittances with the probe orientations of 0, 45 and 90

degrees with respect to a principal axis of the material, and the dash lines represent those

with the probe orientations of 0, 30 and 90 degrees. As shown in the figure, both cases

give quite consistent results on the real and imaginary components of the permittivities. It

is also important to note that these measured permittivities are inversely determined by

assuming a dominant TE10 mode only for the aperture electric field in the solution of the

matrix equation. As discussed in Chapter 4, since the effect of the higher order modes in

the aperture electric field is insignificant when the waveguide probe is attached to an

anisotropic material layer, the inverse results with only a dominant mode consideration

should be sufficiently accurate.

Figure 5.26 shows the measured complex tensor permittivities of a layer of anisotrOpic

material, a dielectric-fiber manufactured by Boeing Airplane Company, with a thickness

of 0.053 inch. The results are determined inversely by employing three measurements

of the probe input admittances with the probe orientations of 0, 30 and 90 degrees with

respect to a principal axis of the material. In the figure, we only show the real and

imaginary components of the principal permittivities in the transverse directions, while the

permittivity in the perpendicular direction is omitted because it is found to be of highly

unstable giving a value between 10 to 10000 for both real and imaginary components.

The difficulty encountered in this case will be discussed in the next section.

5.5.Analysis on the Effects of Material Parameters

The reflection coefficient or the input admittance of a waveguide probe placed against

a layer of material has been shown in the preceding chapters to be a function of the EM

parameters of the material, such as permittivity, permeability, conductivity and sample

thickness. In our measurements, with the assumption of having free-space permeability
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Figure 5.26 Measured complex tensor permittivities of an anisotropic material layer

(dielectric-fiber) with a thickness of 0.053 inch. The results are determined inversely

by employing three measurements of the probe input admittances with the probe orienta-

tions of 0, 30 and 90 degrees with respect to a principal axis of the material. The com-

plex permittivity in the direction perpendicular to the waveguide aperture is determined

to be unstable and is omitted.
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and fixed known thickness for the material layer, there is no difficulty in determining the

permittivity and conductivity of isotropic materials inversely; however, for anisotropic

materials, there exist some constraints. In this section we will discuss the effects of the

material parameters on the input admittance of the probe and the constraints one needs to

consider in the measurements of anisotropic materials.

As discussed in the preceding section, we have difficulty in the inverse determination

of the EM parameters of a layer of anisotropic dielectric-fiber manufactured by Boeing

Airplane Company. In that measurement, the conductivity in the direction perpendicular

to the waveguide aperture was found to be highly unstable. To find out the reason for

causing this problem, we develop the following scheme.

Let’s assume that a waveguide probe is placed against an anisotropic material layer

with three principal complex permittivities of £1 = 5.4 -j5.3, 82 = 5.8 —j6.4 and

£3 = 3.8 —j5.7. For this kind of materials, we can first plot the input admittance of the

waveguide probe as a function of the material thickness. If we further change one of the

imaginary components of three principal complex permittivities in the theoretical

calculation, the effects of the specific conductivity associated with the thickness on the

probe input admittance can be sought.

Figure 5.27 shows the real and imaginary components of the input admittance of a

waveguide probe as functions of the material thickness when the probe is placed against a

layer of anisotropic material at an operating frequency of 10 GHz. In the figure, the

anisotropic material is assumed to have three principal complex permittivities of

£1 = 5.4 —jx, £2 = 5.8 —j6.4 and 83 = 3.8 —j5.7 , wherextakes the values of 0.3, 10.3

and 1000.3 in three different cases. Since the aperture electric field is dominated by the

dominant TE10 mode which has an electric field in the y-direction only, changing the

material conductivity in the x direction does not change the induced current in the material

layer, leading to an insignificant change in the probe input admittance. This phenomenon
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Figure 5.27 Input admittance of a waveguide probe as a function of the material

thickness at 10 GHz when the probe is placed against an anisotropic material layer sup-

plied by Boeing Airplane Company with various conductivities in the x direction.
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can be verified from the figure that shows almost identical curves for the three different

cases of x.

At the same operating frequency of 10 GHz, Fig. 5.28 shows the real and imaginary

components of the input admittance of a waveguide probe as functions of the material

thickness when the probe is placed against a layer of anisotropic material with three

principal complex permittivities of 8] = 5.4—15.3 , 82 = 5.8 —jx and e3 = 3.8 —j5.7 ,

where x is assumed to have values of 0.4, 10.4 and 1000.4 in three different cases. Since

the electric field of the dominant TE10 mode is in the y-direction, the change in the

material conductivity in the y direction should cause a great change in the probe input

admittance. We can observe in this figure that the probe input admittances for three

different cases are highly distinguishable over a range of material thickness. It is also

noted that when the measured anisotropic material is highly conductive in the y-direction,

the probe input admittance becomes independent of the material thickness because the

material layer essentially becomes a short circuit.

Similarly, Fig. 5.29 shows the real and imaginary components of the input admittance

of a waveguide probe as functions of the material thickness when the probe is placed

against a layer of anisotropic material with three principal complex permittivities of

£1 = 5.4 —j5.3 , £2 = 5.8 -j6.4 and £3 = 3.8 —jx, where x assumes the values 0f 0.7,

10.7 and 1000.7 in three different cases. In the figure, we found that when the anisotropic

material is highly conductive (such as $10.7 and 1000.7) in the direction perpendicular to

the waveguide aperture, the probe input admittance remains nearly constant for the

material thickness smaller than 0.07 inch. This phenomenon is maybe due to the fact that

the induced current in the perpendicular direction of a thin conducting layer is quite small

and is independent of the conductivity in the perpendicular direction.

From Fig. 5.26, we found that three principal permittivities of the dielectric-fiber from

Boeing Airplane Company are approximately of £1 = 3.5 —j5, 82 = 3.2 -j6 and 83
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Figure 5.28 Input admittance of a waveguide probe as a function of the material

thickness at 10 GHz when the probe is placed against an anisotropic material layer sup-
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thickness at 10 GHz when the probe is placed against an anisotropic material layer sup-

plied by Boeing Airplane Company with various conductivities in the z direction.
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with an unstable value of between 10 to 10000, which is just the same order of quantities

used in the calculation of the results shown in Figs. 5.27-5.29. The thickness of this

dielectric-fiber is 0.053 inch and at this thickness the conductivity in the z direction causes

very small change in the probe input admittance. Therefore, it is very difficult to inversely

determine the 83 (in the z-direction) from the measured probe input admittance.

Employing the similar scheme, the measurement using a waveguide probe placed

against a layer of epoxy/glass-fiber supplied by MSU Composite Material Laboratory can

also be analyzed. From Fig. 5.25, we found that three principal permittivities of the

epoxy/glass-fiber at 10 GHz are approximate of 81 = 5.1—j0.2, £2 = 5.3 -j0.3 and

£3 = 2.5 —j l .7. From a plot of the probe input admittance as a function of the material

thickness, if we further change one of the imaginary components of three principal

complex permittivities in the theoretical calculation, the effect of the specific conductivity

associated with the thickness on the probe input admittance can be determined.

Figure 5.30 shows the real and imaginary components of the input admittance of a

waveguide probe as functions of the material thickness when the probe is placed against a

layer of anisotropic material at an operating frequency of 10 GHz. The anisotropic

material is assumed to have three principal complex permittivities of £1 = 5.4 —jx,

£2 = 5.8 -j0.4 and 83 = 3.8 —jl.7 , where x takes the values of 0.3, 10.3 and 1000.3 in

three different cases. As mentioned earlier, since the aperture electric field is dominated

by the dominant TE10 mode which has no electric field in the x direction, the change in

the material conductivity in the x direction has insignificant effect on the probe input

admittance, as shown in the figure.

Figure 5.31 shows the real and imaginary components of the input admittance of a

waveguide probe as functions of the material thickness at 10 GHz when the probe is

placed against a layer of anisotropic material with three principal complex permittivities

of 81 = 5.4 —j0.3, 82 = 5.8 -jx and £3 = 3.8 —jl.7, where x assumes the values of
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0.4, 10.4 and 1000.4 in three different cases. As shown in the figure, the probe input

admittances for three different cases are very different over a range of material thickness

because the change in the conductivity in the y-direction will cause significant change in

the induced current in the material layer.

Figure 5.32 shows the real and imaginary components of the input admittance of a

waveguide probe as functions of the material thickness at 10 GHz when the probe is

placed against a layer of anisotropic material with three principal complex permittivities

of £1 = 5.4 —j0.3, £2 = 5.8 —j0.4 and 83 = 3.8 —jx, where x has the values of 1.7,

10.7 and 1000.7 in three different cases. In the figure, we found that when the anisotropic

material becomes highly conductive in the direction perpendicular to the waveguide

aperture, the effect of the conductance on the probe input admittance become significant if

the material layer is thicker than about 0.07 inch. Since the thickness of the epoxy/glass-

fiber is 0.1103 inch which is thicker than 0.07 inch, we can then inversely determine three

principal complex permittivities of the epoxy/glass-fiber without any difficulty.

We also analyzed the measurement using a waveguide probe placed against a layer of

isotropic material with a complex permittivity of e = 2.046 -j0.1 . In Fig. 5.33, we show

the real and imaginary components of the probe input admittance as functions of the

material thickness at 10 GHz when the probeis placed against a layer of isotropic material

with a complex permittivity of 8 = 2.046 —jx , where x has the values of 0.1, 0.2 and 0.5

in three different cases. We found that those probe input admittances of three cases are

clearly distinguishable. It is also noted that when the material is highly conductive, the

probe input admittance becomes independent of the material thickness, which is the same

phenomenon as in the anisotropic materials and is not shown in this figure.

Figure 5.34 shows the real and imaginary components of the probe input admittance as

functions of the material thickness at 10 GHz when the probe is placed against a layer of

isotropic material with a complex permittivity of e = x—jO.1 , where x assumes the
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various conductivities.



177

 

N
o
r
m
a
l
i
z
e
d
C
o
n
d
u
c
t
a
n
c
e

e
.
-

.-
‘

N
.
N

N
&

O
,

a
:

N
N

b
O
)

I
I

I
I

I
I

T .4

I
I

.
5

N

I

  
 0.8

0 0.6 
(a)

 1.4

0.8- ..

N
o
r
m
a
l
i
z
e
d
S
u
s
c
e
p
t
a
n
c
e

0.2 ~   
 

o 0.1 0.2 0.3 0.4 0.5 0.6

Thickness( inch)

(b)

Figure 5.34 Input admittance of a waveguide probe as a function of the material

thickness at 10 GHz when the probe is placed against an isotropic materiallayer with

various permittivities.



178

values of 2.046, 2.146 and 2.546 in three different cases. In this figure, the probe input

admittances clearly show distinguishable differences between three different cases, even

when the change in the permittivity is of small quantity.

To summarize this analysis, we found that for the measurement of the EM properties

of isotropic materials the thickness of the material is not important factor; while for

anisotropic material, the material layer needs to be thicker than some value if accurate

results on the EM parameters are sought.

 



CHAPTER 6

CONCLUSIONS

The purpose of this research was to determine the EM properties of materials

nondestructively using a waveguide probe system over the X-band of 8 to 12 GHz. In this

chapter, we review the techniques we have developed as well as the limitations for the use

of this waveguide probe system. Finally, suggestions for future studies are addressed.

There are two major contributions from this research: two proposed theoretical

techniques for the measurement of the EM properties of isotropic and anisotropic

materials using a waveguide probe system, and the development of the experimental

procedure for this system to achieve the nondestructive measurement of materials.

To measure the EM properties of a layer of material, a nondestructive measurement

can be achieved by placing a waveguide probe system, which consists of an open-ended

rectangular waveguide terminated on a flange and a network analyzer, against the material

layer

In Chapters 3 and 4, we have conducted theoretical and numerical analyses of the

waveguide probe system attached to a layer of assumed known material. In these

analyses, the reflection coefficient and other relevant quantities such as the input
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admittance and the EM fields of the probe aperture were formulated as functions of the

assumed EM parameters of the material layer.

The theoretical analyses of the system were based on two coupled integral equations

developed for the aperture electric field by matching the tangential EM fields across the

probe aperture. The method of moments was applied to solve these electric field integral

equations numerically. After the Galerkin’s method was used to convert these EFIE’s into

a matrix equation, the unknown aperture electric field can be determined numerically.

Then, the reflection coefficient or the input admittance of the probe aperture can be

calculated.

The technique presented in Chapter 3 employed the EM fields expressed in terms of

Hertzian potentials to construct two EFIE’s for the electric field at the waveguide aperture.

Since the EM fields expressed in terms of Hertzian potentials are only suitable in an

isotropic medium, this technique was then limited to the measurement of the EM

parameters of isotropic materials. The numerical results on the input admittances of the

waveguide probe obtained with this method were compared with the existing results

published by other workers and they showed a good agreement between them. It was also

found that a good convergence in the numerical calculation can be achieved when only the

first four waveguide modes (TE10 , TE30 , TE12 and TM1 2) were used.

The technique presented in Chapter 4 used the EM fields determined by the transverse

field method to construct two EFIE’s for the aperture electric field. Since the transverse

field method can deal with a general case of the EM fields inside an anisotropic medium

and a degenerate case of the EM fields inside an isotropic medium, this technique is

suitable for the measurement of the EM parameters of both isotropic and anisotropic

materials. The numerical examples illustrated in Chapter 3 for isotropic materials were

also recalculated by the transverse field method and compared with the existing results.

The results showed that our numerical results using four modes for both techniques agreed
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well to each other, as well as to other published results. We also conducted the theoretical

calculation of the input admittance of the waveguide probe placed against a layer of

assumed known anisotropic material. The numerical results indicated that the aperture

electric field is dominated by the dominant TE10 mode when the waveguide probe is

attached to an anisotropic material layer, while using a dominant TE10 mode plus one

higher order mode TE20 in the numerical calculation, we can obtain a good convergence

on the probe input admittance.

Chapter 5 described the experiments and the inverse procedure for the nondestructive

measurement of EM properties of materials. A series of experiments were conducted to

measure the input admittances of the waveguide probe system attached to various

materials, which included solid and liquid materials, as well as isotropic and anisotropic

materials over the frequency range of 8 to 12 GHz. Two calibration procedures for the

waveguide probe system were developed and discussed in detail. In the calibration

procedure, we found that an oscillation of less than 5% amplitude along the measured data

occurred probably due to the inaccuracy in the hardware and software of the calibration

method. Therefore, a better calibration technique is needed for improving the accuracy of

the measurement. It was suggested that a better method may be to use the HP waveguide

calibration kits with an HP network analyzer to calibrate the waveguide probe system.

An inverse procedure to determine the EM parameters of the measured materials from

the measured input admittances of the waveguide probe was described in Chapter 5. The

measured probe input admittances were used to determine the conductivity and

permittivity of the measured materials inversely by this numerical inverse procedure. The

inverse results showed that the inverse procedure based on the Newton’s iterative method

provided a stable and efficient method to evaluate the EM properties of isotropic

materials; while for anisotropic materials, the measured EM parameters are sensitive to

the guess values given in the computer program. This was due to the increasing
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complexity in the inverse procedure for determining three unknown complex

permittivities of the anisotropic material simultaneously. The analysis of this difficulty

was also presented detailedly in Chapter 5.

As mentioned in section 5.3., since we assume that the material layer to be measured is

backed by free space in our configuration, an unintentional air gap may occur if the

material layer was too thin or too light to secure a tight contact with the aperture. This

may cause considerable inaccuracy because the EM fields excited inside the material layer

were found to localize around the probe aperture. Therefore, the extension of the analysis

of the waveguide probe system with a stratified material layer is suggested to further

improve the accuracy of the measurement.

Finally, the forward procedures presented in Chapters 3 and 4 showed that the

reflection coefficient and the input admittance at the probe aperture can be expressed as

functions of the assumed EM properties such as the conductivity, permittivity,

permeability and thickness of the material layer. Thus, it is possible to determine these

quantities of interest simultaneously. However, it may require a faster computer to solve

more quantities simultaneously.
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APPENDIX A

2-1) FOURIER TRANSFORM OF SINUSOIDAL

FUNCTIONS OVER WAVEGUIDE APERTURE

In this appendix the two-dimensional Fourier transforms of the sinusoidal functions

are derived analytically. The simplified expressions of the notations are used to facilitate

the implementation of a computer program. The shorthand notations of the transforms

given in Chapter 4 are first rewritten in eqs. (A.1) to (AA). They are based on the mode

indices of the basis and testing functions represented as [p, q] and [1, r] , respectively.

On the other hand, to use these notations in Chapter 3, the mode indices are replaced by

[ (2p - 1), (2q — 2) ] and [(21—1), (2r— 2) ] , respectively, for the basis and testing

functions.

Isin [1%] [cos (kxx) +jsin (kxx) 1de x

b

[‘[cos [Cg-X] [cos (kyy) +jsin (kyy) ] dy]

E [311(kx) +512 (1%)] [313 (ky) +514 (1%)] (A-l)
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a

l

= [Isin [35):] [cos (kxx') -jsin (kxx') ] dx'] x

b .

[loos [(11%] [cos (kyy') -jsin (kyy') ] dy']

E [321 (kx) + 522 (kg) [523 (ky) + 524 (19)] (A2)

Icos [1%] [cos (kxx) +jsin (kxx) ] dx] x

b . my . .

(ism [7] [cos (kyy) +jSlI1 (kyy) ] dy]

E [331(kx) +532(kx)] [S33 (ky) +534 (18)] (A3)

= [Icos [p111] [cos (kxx') -jsin (kxx') ] dx'] x

b .

( I[sin [II—71?] [cos (kyy’) -J‘ sin (kyy') l dy']

a [341(k) +s4z(kx)] [543(5) 4.544(5)] (AA)

The following derivations list the analytical results of the single finite integrals which

represent sub-items of each inversion. Each result divides into two conditions as shown in

the following.

 



511(kx)

312 (kx)

$13 (ky)

a

a t! sin [11%] cos (kxx) dx

art! (1 + cosakx)

22 2 2

ln—akx

 

O

.a . [fix .

5]"; sm [7] sm (kxx) dx

artl sin akx

22 22

ln-akx

 

=j

a

511—508)]

 

b

_ ”‘)’
=t[cos [7] cos (kyy) dy

bzk ' bk— ysrn y

= J rzrtz—bzky2

b

28*. 

b

_ . my .

=1gcos [—b]srn (kyy) dy

’ 2

—b ky (l — cosbky)

22 22

=jJ rrt—bky

 

O 
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11:
for kx¢z

In:
for kx = g

In
for kxlf-‘Z

In
for kx = 3

fit

for k $3

_ ”I

for ky - 3

fit

for 18$?

for k, = it

(A.5)

(A.6)

(A.7)

(A.8)
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=" - m . .s21(kx) _Jsrn[ a ]cos(kxx)dx

a1tp( l + cosakx)

 

 

 

 

 

 

: p21t2_azkx2

0

a RX.

522 (k) 5 fl“! sin [”7] sin (kxx') dx'

anpsinakx

2 2 2 2 for
_ —j p It —a k}.r

a

§[1—5(kx)] for

b qnyi

523 (ky) alcos [7] cos (kyy') dy'

, —b2k sinbk

2 2y 2 2 for
= J q 1: —b k),

b

58k), for

b qny.

524 (ky) s—j‘[ cos [T] sin (kyy') dy'

r bzk (1 bk )— — cos

y y for
2 2 2 2

= _jl q 1t —b ky

O for

p11:

kx¢7

(A.9)

_ PTt
kx — 7

p11:

kx¢7

(A.10)

_ PTc
kx — 7

fl
k)¢ b

(A.ll)

_ ‘11ky — b

21‘
ky: b

(A.12)

k =



_ a [fix
53.1 (kg) =lcosl: a ]cos (kxx) dx

S32 (kx)

s33 (ky)

S34 (ky)

l

2 .

a kxsrnakx

_ J lzrtz—azk2
- X

 

a

sjlcos [1%t] sin (kxx) dx

[ —a2kx (l + cosakx)

22 22

=jJ [TC-altI

 

 O

b

t[sin [$1] cos (kyy) dy

brtr (1 — cosbk),)

2 2 2
—bky

 

2

r1!

0

 

b

sjgsin [2)] sin (k ,y) dy
b )

—b1trsinbkv

. r21:2 — bzk ,2
= J .l

b

511—6091]
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In
for kx #5 Z

(A.l3)

In

for kx = Z

11:

for kx at -a—

(A.l4)

In
for kx = 2

fit

for ky 7': ?

(A.lS)

fit

for ky — f

m

for ky ¢ b

(A.l6)



s41 (kx)

S42 (kx)

S43 (ky)

s44 (ky)

a 1

a figcos [p%] sin (kxx') dx'

([COS [p—ZJE] cos (kxx') dx'

 

'J
J

2 .

a kxsmakx

 

2 2 22

prt—akJr

f

 

28k.

—a2kx (l + cosakx)

22 22

pn-akx

 

O

b .

_ ' qny 1 1

= t[srn [7] cos (kyy ) dy

brtq (l — cosbky)

(121:2 _ bZkyZ

 

O

b .

—jt[8in [7%] sin (kyy') dy'

-f

—b1tq sin bky

q2n2 _ b2ky2

 

b

2[1-5(k)')]
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31‘
for k¢b

#—
fOI k E

(A. l 7)

(A.18)

(A. l9)

(A20)
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As given in Chapters 3 and 4, these inversion functions are used to define the

following notations such as

¢12u(kx) E [51108) +512(kx)] [52103) +522(kx)]

«112,031 a [513(k,.) +s,,<k_,.>1 623(k).) +s24(k,.)1

to be used in Dag, and

¢34u(kx) E [531081) +532(ka [541(kx) +542(kx)]

¢34v(ky) E [533 (ky) +534(ky)] [S43 (ky) +344(ky)]

in D313, and

“P32110895 [531(kx) +532(kx)] [52108) +322081)]

¢32v(k).) E [333 (ky) +334 (ky)] [523 (ky) +324(k).)]

in D33, and

¢14u(kx) E [511(kx) +512(kx)] [54108) +342(kx)]

¢,.,<k,) a (snag) +s..(k,)1 1s,,(k,.> +s,.,(k,>1

. yx

1n DaB°

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A26)

(A27)

(A28)

If we further denote Sf) as the finite integral result for the multiplication of two sinusoidal

functions with different arguments and 5:), as the result with the same argument, where

xy is the index of the above sub-inversion functions, then eqs. (A21) to (A.28) can be

tabulated in Table A.l to be used in Chapter 4 and Table A2 in Chapter 3 if the symmetric
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Table A.1 Summary for simplified expressions of notations used in Chapter 4.

 

yx xy

D0113 D0113 D0113

¢l4u (kx) ¢32u (kx) (b34u (kx)

111A ... (53.57,). (55.53). (531.2,). (55.2,).

x a (55“5‘22) (5401+532) (5201+522) (541+532)

“‘37!” =th (511+5‘112JSI22 (511+5‘112JSZ (531+5‘312JS’2’2 (50+S;2)5b

 

 

 

 

 

 

 

 

 

k1: gAkx=p7n 572532 5113521 $15122 $21521

yx xy XX

Dan 00:13 Dan
 

 

q)l4v (ky) ¢32v (ky) ¢34v (ky)

laggTA/(gtfl (S':+Slll4)x ($103+574JX (533+5a34JX ($303+Sa34)x

.1 a .1 a (553+534) (5.6-+5044) ($203+S‘2'4) (543+Sa44)

 

 

k)-¢%[Ak1~=q7n (312+5‘1’4JSl23 (513+5‘114JSL (533+5l314JSI2’3 (532+5034JSZ4
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Table A.2 Summary for simplified expressions of notations used in Chapter 3.

 

 

)‘y )‘x x )' xx

0 ”0,70% D013 0043 DUB D045

0 , 0
0

od’l‘joo (')qu (kx) ¢104u (kx) ¢32u (kx) ¢3:411 (kx)

 

 

[1t p11: a a a a a a a a a

kx¢zAkx¢7 511521+572522 511522+5l112541 S31522+St§2521 S31541+S325f12

 

 

 

 

 

 

I a a

WE”. = I? 511522 5112531 5:2522 531521

I a a

kx = '3" kx ¢ p7“ $2521 5113522 531522 531541

.45...- was; 0 o sass.

y) yx xy xx

p1) , DaB DorB DaB D018

of

000d- [0’7 c o o e

10.00 ¢12v (ky) ¢l4v (ky) $3212 (ky) $34v (ky)

 

1'7! (In a a a a a a a a

k)“ 7 A k)‘ 1‘ 7 513523 + 574524 5135044 + 514543 533524 + 5034523 533543 + 5345044

 

 

 

I")! It

k)‘ ’t '5' A I“ = ()7; 3103523 5114524 5034533 5303524

__ r1: qrt

ky " 7 A k)‘ at $ 51135203 £3524 $34524 $13,454?

_ m _ ‘17I
k). - 2- A k), - 7 51:35.33 0 0 534524      
 

Note that in this table I, p, r and q represent (21-1), (2p-I), (Zr-2) and (2q-2),

respectively.



192

properties of these‘notations are considered. Note that in Table A.2 the mode indices need

to be replaced by [(2p— 1), (2q-2)] and [(21—1),(2r-2)] instead of [p, q]

and [1, r] .
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