
 ' 1'3: ,.

. 122E;

 

 

 

 

)*.,A
up: nunvt-Vw!

.. . x
“v,

'4

pan-up o “Jilin m: Ilfll II 0"!. 1,21 _ 9-"

 



IIIIUIHIHIWI.[fllflijllwlllflllzllflllflllllll
___

LIBRARY

Michigan state

Universit
y

 

   

This is to certify that the

dissertation entitled

On the Formal Specification of Recursive Functions

presented by

Maureen Green Galsterer

has been accepted towards fulfillment

ofthe requirements for

Ph.D. Computer Science
degree in
  

 

 

MSU is an Affirmative Action/Equal Opportunity Institution 0-12771



”Mo
mnm

ywrecord.

PLACE
ill RET

URN B
OXto remo

ve

To AV
OID F

ines
return

on or bef
or- dd

. duo.

 

 

 

 

 

 

 

 

 



On the Formal Specification of Recursive

Functions

By

Maureen Green Galsterer

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

1995



ABSTRACT

On the Formal Specification of Recursive

Functions

By

Maureen Green Galsterer

Current predicate transformer methods for proving program correctness deal with

bounded loop programs, but these compute only a small fraction of the functions we

deal with. We introduce a proof of correctness method that works for bounded, un-

bounded, and nonterminating loop programs. We develop a mathematical foundation

that allows us to view programs as computational sequences. Using this foundation,

we define iteration as a recurrence relation between predicate transformers, and we

present a predicate transformer that can be used in the recurrence relation. Given

this basis, we present an inductive method that can be used to prove the correctness

of programs computing primitive, total, and partial recursive functions. We demon-

strate the use of our method on example programs that compute functions from each

class.
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CHAPTER 1

Introduction

This research deals with partial recursive functions. Specifically, we are interested in

reasoning about programs that use unbounded iteration or general recursion to com-

pute partial functions. A large body of research already exists on reasoning about

terminating programs that stems from Dijkstra’s weakest precondition (wp) predicate

transformer [1]. All of this work deals with primitive recursive functions since termi-

nation must be guaranteed with an a priori upper bound. This restriction was based

not only on Dijkstra’s firm belief that all meaningful programs terminate [2], but for

simplicity, because it allowed him to define iteration as a recurrence relation between

predicates [1].

We will show that a mathematical foundation for reasoning about unbounded and

nonterminating programs exists. Based on this foundation, we will define iteration as

a recurrence relation between predicate transformers. We will define a new predicate

transformer that can be used with our mathematical foundation to prove the correct-

ness of programs computing primitive recursive, total recursive, and partial recursive

functions.



1.1 Motivation for the Research

While many programs have a priori time bounds, there are important programs that

do not, such as those that manipulate sequential files. These programs are expected to

terminate, but they require unbounded loops. It is also common to use programs that

are not designed to terminate at all, such as operating system daemons and networking

processes. A priori time bounds are meaningless for programs using unbounded loops

to compute total functions, and for programs using nonterminating loops to compute

partial functions.

Program specification techniques based on predicate logic use assertions to pre-

cisely define the condition of a program’s variables before and after a program state-

ment executes. These assertions are called preconditions and postconditions, respec-

tively. The weakest precondition (wp) calculus of Dijkstra is one of the most widely

known of these methods that use predicate transformers. Dijkstra’s predicate trans-

former maps a program statement and its postcondition to a predicate describing the

set of all initial states from which the statement can execute leaving its postcondition

true. Dijkstra envisioned his method as a top-down design tool. The wp calculus is

a total correctness method, i.e., it is only applied to statements that are guaranteed

to terminate. This guarantee ensures that the postcondition of any statement can be

reached and verified. This assurance of always being able to reach a postcondition

allowed Dijkstra to define the semantics of simple iteration as a recurrence relation

between predicates [l], keeping it in the realm of first order logic, but it also restricts

the utility of the method: The only recursions that can be proven to terminate a pri-

ori are direct (tail) recursions. To encompass all the computable functions we need

general recursion.

In the classes characterized by general recursion it is not possible to predict when,

or if, a computation will terminate. Any method for reasoning about correctness in



these classes cannot make termination an issue in its proofs, therefore our solution

does not depend on termination. We can deal with termination if it does occur, but

we concentrate on correctness at each step of a computation not just at its end. So,

whether a computation step leads to a final state or not we can verify its correctness.

Proof of correct design was Hoare’s intention when he proposed predicate logic

with equality as a means for reasoning about programs [3]. Hoare viewed a program

as a logical model and used predicate logic to show that as a sequence of statements

it was a tautology. Dijkstra’s main disagreement with Hoare was that programs are

not recipes for computing, but are agents that when run on a computer can effect a

computation, i.e., programs execute [2]. Dijkstra contended that proving a computing

method is correct is only half of a proof of correctness. In addition, he insisted that

showing termination with correct results was necessary.

1.1.1 Statement of the Problem

Proof of correctness methods that rely on the wp calculus are only suited to pro-

grams computing functions in the primitive recursive class because the top predicate

transformer is too severely structured to accomodate the more powerful classes of

functions. The wp predicate transformer takes a program statement and its postcon-

dition as its arguments. Termination must be guaranteed a priori to ensure that the

postcondition can be reached and verified, and the primitive recursive functions are

the only class of functions for which a priori time bounds exist. A priori time bounds

are meaningless in the classes characterized by general recursion, but limiting proof of

correctness methods to the small class where the wp calculus works limits our ability

to verify the correctness of programs that we use regularly, i.e., all programs that use

general recursion or unbounded looping to compute.

We will show that a mathematical foundation for reasoning about unbounded and

nonterminating programs exists. Based on this foundation, we will define iteration as



a recurrence relation between predicate transformers. We will define a new predicate

transformer that can be used with our mathematical foundation to prove the correct-

ness of programs computing primitive recursive, total recursive, and partial recursive

functions.

1.2 Overview of the Solution

Our research carries Dijkstra’s statement that “programs execute” to its logical con-

clusion. Dijkstra ignored actual execution in favor of its beginning and its end,

concentrating on the predicate logic assertions he could make about the initial and

final states of a computation. We use the results of each stage of a program’s exe~

cution and verify correctness from program state to program state; we use the entire

sequence of a computation. We will show that there is a logical foundation for rea-

soning about unbounded and nonterminating computations. We will provide the

mathematical foundation for reasoning about such computations, and we will give a

concrete method that can be used in proofs of correctness for programs using loops

with and without a priori upper bounds. Our method is based on a definition of

iteration as a recurrence relation between predicate transformers, i.e., functions from

predicate transformers to predicate transformers. Using our predicate transformer,

we will show with examples that we can reason about nonterminating and terminating

programs.

Using computational sequences raises technical issues because a consistent founda-

tion must be carefully laid, and it raises theoretical issues because proofs of correctness

are based on second order logic. We quantify over predicates, so we define iteration

as a recurrence relation between predicate transformers. While this adds complexity

to our foundation because we must reason in second order logic, it extends our abil-

ity to prove correctness of total and partial recursive functions, as well as primitive



recursive functions.

Technically, when we deal with a computational sequence we must first define the

environment that generates the sequence. Because the sequence represents a “run”

of the program we must have a machine to execute it and a language to express it.

The machine we define must be sufficiently general so as to represent the class of

machines available in the real world, so we use the Random Access Machine of Meyer

and Ritchie [4]. The language we need must be simple but must also form a complete

programming system with the machine. Our language is similar to Dijkstra’s except

that we replace his bounded D0 loop with an unbounded WHILEDO.

The semantics of our language are critical because we must be able to express

the meaning of terminating and nonterminating computational sequences with de-

fined results (sequences that represent the computations of total and defined partial

functions, respectively). We must also be able to express the meaning of nonter-

minating computational sequences with undefined results (sequences that represent

partial functions undefined on their input). We provide a formal denotational seman-

tics for our language that admits an undefined element to handle partial functions

in a fashion similar to de Bakker [5] and Nelson [6]. The operational semantics of

our language is the foundation for our computational sequences. The sequences must

be sufficiently abstract so as not to make the method dependent on any particular

implementation but they must make sense given the environment we have defined.

We must also guarantee that the information represented by the variable valuations

in each element of the sequence logically succeeds that of the element before it, that

it represents a useful value (i.e., it was derived as a result of a valid computation step

and not as a side effect), and that it represents a true approximation to the limit of

the sequence itself.

To ensure all this we differentiate operationally between the function computed

by a program and the operational meaning of a program. The function computed



by a program is the value of the variables in a final state or an undefined value if

the program does not terminate. This parallels the usage of the valuation function

in the denotational semantics definition. The operational meaning of a program, or

what it means to compute on our machine, is the computational sequence returned

by our operational semantic function. Our function allows us to express formally the

notion that computers actually execute programs. Making this distinction allows us

to prove that the operational semantics and denotational semantics are equivalent,

and to show that a computation produces more information than can be expressed

by its initial state/final state pair.

Defining the meaning of a program to be a computational sequence gives us a series

of program states to examine. The equivalence of our denotational and operational

semantics ensures that our programs will not display side effects. This is not sufficient

to guarantee that each state of a computation logically succeeds that of the element

before it or that each successive state is a better approximation to the limit of the

computation than its predecessor. For these last two requirements we must impose

a well-ordered structure on our sequences; we must guarantee that in all cases our

sequences are chains. We do this by organizing our state space as a complete lattice,

and then proving that our program statements are monotonic (this ensures that each

state is a valid extension of its predecessor so no unanticipated results will creep into

our sequences) and that both our program statements and the higher order function

used by our Operational semantics to build our sequences are both monotonic and

continuous (this ensures that each element of a chain is a true approximation to the

limit of the computation).

Kleene’s First Recursion Theorem holds that every computational chain has a

least upper bound [7]. We can use this fact to induct over the elements of our compu-

tational chains in our proofs of correctness. We can step from predicate transformer

to predicate transformer to verify that each element of the chain is an approximation



to the least upper bound. For terminating computations the least upper bound is the

final state. It is defined by a logical assertion that fulfills the program’s specification

when the computation is correct. For nonterminating computations we use the least

upper bound of each subsequence in the chain, and view the logical descriptions of

these elements as approximations to the predicate that defines the limit of the com-

putation itself. To do this we have recognized that for every looping construct there

exists a logical assertion that is an approximation to a defined loop’s specification.

If termination occurs the conjunction of the loop invariant, this approximation, and

termination implies the postcondition. If termination has not occurred, the truth of

the conjunction of the loop invariant and this approximation proves the correctness

of the current iteration of the loop.

The theoretical issue that arises from the use of computational chains to prove

correctness is that the predicate transformer we define provides a mapping between

the logical assertions that define each element of the chain, not just for the initial

and final states as the wp predicate transformer does. For noniterative commands the

operator behaves like the wp predicate transformer we are accustomed to because such

commands are atomic (they have an initial state and a final state only). For iterative

commands the operator defines a recurrence relation between predicate transformers

because it maps the predicate transformer of one state to the predicate transformer

of another. We will show in Chapter 6, Section 6.2.3 that the predicate transformer

we define has all of the properties that the wp predicate transformer has.

We show that, given the syntax of unbounded looping and semantics to express

the results of partial functions, a logical basis for reasoning about general recursive

computations exists, and can be extended into a method for proving that they are

correct.



1.3 Organization of the Thesis

In Chapter 2 we present mathematical definitions and preliminaries that we use. In

Chapter 3 we review the related work that led to the development of the wp calculus.

In Chapter 4 we define our machine model and its language, give our denotational

and operational semantics, define formally the distinction we make between the oper-

ational value of a program and the operational meaning of a program, and prove that

our denotational and operational semantics are equivalent. In Chapter 5 we present

the complete lattice induced by our operational semantics and prove the properties of

monotonicity and continuity for our program statements and the higher order func-

tional we use to construct computational chains. In Chapter 6 we introduce our

predicate transformer with the Incremental Progress Theorem, and give its proper-

ties. We show how we can use this theorem in our inductive verification method.

In Chapter 7 we provide examples of the method used on a total recursive function,

a partial recursive function we expect to terminate, and a partial recursive function

that is nonterminating by design. In Chapter 8 we discuss several areas of application

for this research as future work.



CHAPTER 2

Mathematical Preliminaries and

Definitions

2.1 Relations

2.1.1 Definitions

Like Dijkstra [1], Hehner [8], and Nelson [6] we view commands as binary relations

on the set of program states. This state space is composed of machine vectors of

length n, where n is the total number of variables used by a program. Thus a

program command maps one program state (valuation of the machine vector before

the command executes) to another state (valuation of the machine vector after the

command executes).

A command, C, on the set I‘ of program states is a subset of I‘ x I‘. When we

represent individual elements of I‘ we write 7 to mean 7(< 21,rg,. . .,:r,, >), the

valuation of the machine vector. Let (7,7’) 6 C; 7 is an argument in C and 7’ is

an image in C. The domain of relation C is the set of arguments of C; formally,

dom(C) = {7|37’ : (7,7’) 6 C}. The range of relation C is the set of images of C;

formally. m9(0) = {7137: (7.7’) 6 C}-
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The identity relation idp = {(7,7’)I7 E I‘ and 7’ = 7], and the empty relation

0 = {} are constant relations.

A relational is a relation on the set of binary relations (i.e., commands) on I‘.

2.1.2 Operations

Since commands are binary relations, we can obtain other relations using union,

intersection, and difference on these binary relations. In addition to these operations,

we define the following operations on relations.

0 Inverse: The inverse of command C is the relation denoted by C"1 and equal

to {(7,7’)I(7’,7) 6 C}-

. Composition: Let C1 and 02 be two commands on I‘. The composition of C;

with C2 is the relation denoted by C1C2 and defined by

0102 = {(7.7')|37” = (7.7”) 6 Cl A (7”.7’) 6 02}

o Iterated Composition: Let C be a command on I‘. The i“ iterated compo-

sition of C, for i Z 0, is the relation denoted by Ci and defined by

Co = idp,

C’ = Cf‘lC, for i 2 1.

Note that for all i 2 1, dom(C’) Q dom(C).

o 'D‘ansitive closure: Let C be a relation on I‘. The transitive closure of C is

the relation denoted by 0"”, and defined by

0* ={(7,7’)|3i21=(7,7’)€ C’}-
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o Reflexive transitive closure: The reflexive transitive closure of command C

on I‘ is the relation denoted by C“ and is equal to idr U C"’.

0 Image set: The image set of 7 E I‘ of command C is the set denoted by 7.0

and defined by

7.0 = {7’l(7,7’) 6 C}.

A command’s specification defines its image set.

To extend this notation, if I" Q I‘ then I".C = U761» 7.C. We define 0.7 and

C.I" as 7.C'1 and I".C'l.

o Nucleus: The nucleus of command C is the relation

N(C ) = CC'1.

This relation contains the state pair (7,7’) if and only if 7 and 7' map to the

same state 7” under C.

The set of elements that make up the nucleus can be defined by the weakest

precondition of a command and its specification.

2.2 Properties of Relations

2.2.1 Ordering Properties

Let C be a relation on I‘. C is said to be reflexive if and only if idr Q C. C is said

to be transitive if and only if C2 Q C. C is said to be antisymmetric if and only if

C n G-1 g idp.

C is said to be a partial ordering if and only if it is reflexive, antisymmetric, and

transitive.
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2.2.2 Lattices

Let C be a partial ordering relation on I", and let I" be a subset of I‘. An element 7

of I" is said to be C — maximal in I" if and only if there is no 7’ other than 7 in I"

such that (7,7’) 6 C.

Let C be a partial ordering relation on I‘, and let I" be a subset of I‘. An element

‘7 E I" is said to be C — minimal if and only if there is no 7’ other than 7 in I" such

that (7,7) 6 0.

Let 7 and 7’ be two elements of P and let C be a partial ordering on I‘. The set

of upper-bounds of 7 and 7’ is denoted by ub(7,7’) and defined as

ubhm’) = (7-0) 0 (7'0)-

The set of lower-bounds of 7 and 7’ is denoted by lb(7,7’) and defined as

lb(mv’) = (0-7) 0 (07’)-

Let 7 and 7’ be two elements of P, and let C be a partial ordering relation on I‘. A

C — least upper bound of 7 and 7’, if it exists, is a C-minimal element of ub(7,7’),

denoted lub(7, 7’). A C—greatest lower bound of 7 and 7’, if it exists, is a C-maximal

element of lb(7,7’), denoted glb(7, 7').

Let C be a partial ordering on I‘. We say that C is a lattice if and only if every

pair (7,7’) 6 I‘ has a greatest lower bound and a least upper bound.

2.2.3 Measuring the Information Contained in a Relation

Let C and C’ be two relations on I‘. We say that C is more-defined than C' (or C’ is

less defined than C) if and only if

1. dom(C’) Q dom(C),
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2. V7 6 dom(C'), 7.0 Q 7.C’

Example 2.1 Suppose there are two observers watching a deterministic input/output

process. The process draws inputs from the set {a,b, c, d} and has outputs in the set

{0, 1,2, 3,4}. Suppose C and C’ are the reports of the two observers as they view the

process. Let

C = {(0.0),(5: 1),(C. 2M", 3)}

C" = {(0,0), (0, 1), (0,2), (5, 1), (b, 2), (b, 3), (c, 2), (c, 3), (c, 4)}

Report C is more-defined than report C’ because the observer who gives it reports about

more inputs than the observer who gives report C'. This is what condition 1 means.

Report C is more-defined than report C’ for the additional reason that the observer

who gives it is more precise in his assignment of the inputs both have recorded. This

is what condition 2 means.

2.3 Functions

Functions can be viewed as relations that map elements of the domain to unique

elements of the range. For a function f and domain element x, r.f is the singleton

set denoted f(at)

We use a function name f is three distinct ways. First, f denotes a set of pairs

such that for any value a: there is at most one pair (2:, y). Second, a: f y holds if (1:, y)

is in f. Third, f(a:) is the value associated with 3, that is, (:c, f(:r)) is a member of

the function (relation) f. Notice that the usage a: f y denotes a predicate.

We define functions as restricted forms of relations because then the theory and

terminology for relations carries over to functions. Thus we know what image set and

iterated composition of a function mean. Since a function is a relation we know what

the inverse f"1 of function f is. f'1 is a function when f is invertible, i.e., when f

is one-to—one and onto.
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Nucleus. The nucleus of a function f is

N(f) = ff";

which can also be written

N(f) = {(3,1')|f(1=)= f($')}-

2.4 Assertions as Approximations

Each state in a computational chain represents an approximation to the limit of the

computation. These states can be described by logical assertions, and each logical

assertion is approximated by its predecessors. We represent predicates with capital

letters of the roman alphabet: A, B, . . . , P, Q, R, . . . , Z. When we represent the ap-

proximation to a particular predicate, we append a prime (I) to the letter we use for

that predicate. For example, R’ approximates R.

This convention is used when we specify a looping construct. For example:

{Precondition}

{Invariant}

while 9 do

5;

{R’ : Assertion about 5' } this assertion approximates R

od

{R : Assertion about whiledo . . .od}



CHAPTER 3

Previous Work

The application of mathematical techniques to prove the correctness of a program was

proposed in 1969 by C. A. R. Hoare [3]. Hoare’s intention was to provide a logical basis

for proofs of the properties of a program. His primary concern was to demonstrate

that a given program is able to carry out its intended function. Hoare considered

the semantics of computation without addressing the implementation issues. Since

Hoare was interested in the axiomatic semantics his interest was primarily model

theoretic. Hoare made a distinction between a program and the implementation of

the program, sidestepping the issue of termination of a computation. Hoare’s work

defined the notion of partial correctness, that is, programs should guarantee that they

will not produce an incorrect answer. This gave the first half of the requirements used

today to prove that programs are correct.

Hoare specified the intended function of a program by making general assertions

about the values which the relevant variables will take after execution. The assertions

are not specific about particular values each variable will have, but rather specify

certain general properties of the values and the relationships that hold between them.

Hoare’s notation is predicate logic.

Hoare recognized that the validity of the results of a program will often depend on

the values taken by the variables before the program is initiated. He used statements

15
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in predicate logic to specify the “initial preconditions” of successful use and also

to describe the results obtained on termination. To state the required connection

between a precondition (P), a program (Q), and a description of the result of its

execution (R), Hoare introduced the notation

called a “Hoare triple.” The interpretation of this statement is: If the assertion P

is true before initiation of the program Q, then the assertion R will be true on its

completion.

Hoare defines one axiom schema to specify the assignment statement, and three

rules: one to specify the decision construct, one for composition of sequential state-

ments, and one to cover iteration.

Building on Hoare’s work in the mid 70’s, Dijkstra [2], [1] observed that computer

programs were not just static sequences of statements, but when programmed on a

computer became dynamic entities. Where Hoare looked at programs as sets of state-

ments to be verified with predicate logic, Dijkstra was concerned with the outcome

of statements after their execution. Dijkstra insisted that the only programs we are

interested in are the ones that terminate and accomplish what we want [2]. Dijkstra’s

work defined the notion of total correctness: partial correctness (provided by Hoare)

and termination (insisted upon by Dijkstra).

Dijkstra’s weakest-precondition calculus is probably one of the most familiar of the

specification methods that use predicate transformers to deal with program state-

ments and control structures. Whereas Hoare was interested in correctness of the

method, Dijkstra was interested in the correctness of the method and correctness

in the implementation of the method. Dijkstra recognized the utility of Hoare’s

work in specifying the preconditions and results of executing a statement (which he
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called “postconditions”), so his method used predicate logic to specify the pre- and

post-conditions of the four basic programming constructs: assignment, sequencing,

decision, and repetition.

Unlike Hoare, Dijkstra was very interested in what actually happens during exe-

cution of one of these basic programming statements, so he introduced notation that

could capture the meaning of “implementing a statement.” Dijkstra defines the se-

mantics of a programming construct in terms of weakest preconditions (wp). In this

notation, {Q}S{R} means that execution of statement (program) 5 begun in any

state satisfying predicate Q will terminate in a state satisfying predicate R. The

different syntax used to present this assertion (or “Dijkstra triple”) is not accidental:

Dijkstra strengthened the meaning of the assertion from correctness (Hoare’s mean-

ing) to correctness and termination. In this context, Q is called the precondition and

R is called the postcondition of a statement 5'. The weakest precondition of S with

respect to R, wp(S, R), represents the set of all states such that execution begun

in any one of them will terminate with R true. The notation {Q}S{R} is another

notation for

Q => wp(5, R),

which is a statement in predicate calculus that is either true or false in any state.

The syntax of the four basic programming statements is as follows. An assignment

statement is denoted by “r := E” where a: is any variable and E is any expression of

the appropriate type. Sequencing is denoted by “.S' 1; 52,” first execute S1 and then

execute 52. The decision construct, IF is denoted by

IfB] ‘4 SL1” ... ”En —+ SLnfi

where the B,- are Boolean expressions called “guards,” and the SL; are statements

(or statement lists) called “alternatives.” To execute an IF statement, execute any
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one of the alternatives whose guard is true.

The repetitive construct, D0, denoted

(1031 —t SL1” ... [18,; —t SLnOd

is executed as follows: repeatedly, as long as some guard B,- is true, execute any

one of the alternatives whose guard is true. The repetitive construct only terminates

in a state in which none of the guards is true. When the repetitive construct has

terminated properly, we know that all of its guards are false.

This definition seems appropriate for unbounded loops but it lacks the mechanism

for proving termination that Dijkstra required. Dijkstra supplied this mechanism by

building the requirement of termination into his semantic definition of the above

syntax. The semantic meaning of the construct is: For at most I: iterations, execute

any one of the guards that is true. Since the repetitive construct can only terminate

when none of the guards is true, the a priori upper bound k is used to design the

guards so that this condition is ensured.

Dijkstra used predicates to define sets of initial and final states the way Hoare

did [3]. The main difference in their methods is that while Hoare introduced sufficient

preconditions such that the mechanisms will not produce the wrong result (but may

fail to terminate), Dijkstra introduced necessary and sufficient, i.e., “weakest” pre-

conditions, such that the mechanisms are guaranteed to produce the right result. The

semantic tool he used was predicate transformers, which specify, for a given statement

5 (which he called a “mechanism”) and postcondition R, the weakest precondition

guaranteeing that S' will establish R.

The weakest precondition (semantic) equations for the four basic programming

constructs are:

1. Assignment: wp(“x := e”,R) = R”.
e



19

Where Rf indicates that e is defined on the domain of R and we replace every

occurrence ofa: in R with e.

2. Sequential composition: wp(“S1;S'2”,R) = wp(“S1”,wp(“S2”,R)).

3. IF: wp(IF, R) = (BB and (Vi : 1 S i S n: B.-=> wp(S'L;,R)).

Where BB is a Boolean expression that ensures there exists a true guard, and

the second term requires that each guarded list eligible for execution will lead

to an acceptable final state.

4. D0: wp(DO, R) = (3k : lc 2 0 : Hk(R)).

Where Hk(R) is the weakest precondition guaranteeing proper termination after

at most I: selections of a guarded list, leaving the system in a final state satisfying

R. Hk(R) is defined by cases:

. [10(3): RA-a(3j:ISan:B,-)

O Hk(R) = wp(IF,Hk-1(R))VHo(R)

The semantics of Dijkstra’s looping construct are defined using tail recursion, with

the predicates describing the state of the computation at each level of recursion.

Dijkstra had to show that his recursions formed a finite decreasing chain to ensure

termination of his looping constructs. This is the basis for the definition of compu-

tational progress which is measured as a decrease in an integer-valued function that

is bounded from below. Computational progress is perfectly suited for functions in

the primitive recursive class because the primitive recursive functions are defined to

be those functions that are computable by bounded loop programs [9]. Dijkstra intro-

duced his finite integer bound function as a free variable that must be manipulated

in each proof of a repetitive construct.

Hehner [8] challenged the utility of the repetitive DO statement and offered the

notion of recursive refinement for specifying looping statements. He argued that the
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semantics of Dijkstra’s DO were the most complicated part of Dijkstra’s language,

because of the requirement of demonstrating a finite decreasing chain of predicates by

manipulating another variable in the semantic equations. Hehner reasoned that since

Dijkstra was defining the semantics of the looping construct with recursion, it would

be easier to throw away the looping construct entirely and just use recursion. He

proposed replacing Dijkstra’s looping construct with recursive refinement, a technique

that uses divide-and-conquer to repeatedly define a repetitive problem in finer and

finer detail until the base definition of the problem is reached. At this point, the

specification is composed entirely of sequential steps which can each be specified

individually without regard to termination, since it is assumed that each sequential

action terminates. In this sense, refinement eliminates loops.

In eliminating the looping construct, Hehner eliminated the need to carry along

and manipulate an explicit counter in his semantic equations. This removed the

added complexity of demonstrating that the recursive computation behaved as a. finite

decreasing chain. It is important to note that Hehner explicitly specified tail recursion,

which was appropriate because his motivation was to replace Dijkstra’s bounded

loops. Limiting the method to tail recursion had two consequences: first, the method

could only be used to specify primitive recursive functions; second, the method had to

be designed to demonstrate termination. Hehner addressed the second consequence

with the same mechanism Dijkstra used: computational progress, incorporating the

requirement to show computational progress into the refinement process.

The recursive refinement technique involves the invention of a name for a portion

of a program, using the name in place of the program portion, and specifying the text

of the program portion elsewhere. Hehner referred to the use of a name in place of

some statements as a “call,” and refered to the specification of the statements as a

“refinement.” A call is a name enclosed in quotation marks; a refinement consists of

the quoted name, followed by a colon, followed by a statement list (SL):
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“name”:SL

Hehner’s “call” gives no semantic equation; a call is given meaning by the details of

its refinement. A refinement gives the equation: wp( “name”,R) = wp(SL, R).

Computational progress is the cornerstone of Dijkstra’s repetitive construct and

Hehner’s recursive refinement because both methods rely on it in their proofs of

termination. In its most formal sense, computational progress refers to a theorem of

Dijkstra’s that shows how a loop invariant and a finite integer bound function can

be used to prove that a repetitive construct is totally correct, i.e., is partially correct

and terminates.

Informally, computational progress refers to the manipulation of a loop counter

to demonstrate that a repetitive construct will make progress towards termination.

In all of its manifestations, computational progress is an explicit reference to an

a priori upper bound on the number of iterations a loop must perform. Because of

this, every method that depends on computational progress is limited to programs

computing in the primitive recursive class of functions.

The primitive recursive class contains only a fraction of the functions we rely on

regularly. Consider this Pascal program segment

while not eof(datafile) do

readln(datafile, value);

This loop depends on the file variable reaching a particular condition independent of

a counter, and cannot be proven to meet its specification using the wp calculus or

recursive refinement. There are many such applications outside the primitive recursive

class: communicating processes, searching, Operating systems processes, networking

services, etc.

de Bakker addressed the problem of unbounded 100ps in 1980 [5]. He added an

unbounded looping construct to Dijkstra’s language and defined a denotational se-

mantics to formally express the function computed by each statement. To accomodate
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nonterminating loops he extended the state space of program variables to include an

undefined element (J.), and called it “bottom” in keeping with Scott’s work on deno-

tational semantics [10]. Thus his program statements as functions could return either

a defined value from the program’s state space of all variable valuations, or they could

return the value .L. de Bakker defined an operational semantics that acted as a func-

tion, returning either a state whose variables had the valuation resulting from correct

execution of a statement, or in the case of a nonterminating statement, a state with

variables undefined.

The availability of both an initial and a final state for any execution of a statement

fulfilled the requirements of Dij kstra’s wp predicate transformer. However, de Bakker

did not redefine the foundation of Dijkstra’s predicate transformer, so the predicate

logic meaning FALSE that defined .1. violated one of the properties of Dijkstra’s

predicate transformers: wp(Statement, FALSE) = FALSE, i.e., statements can-

not lead to undefined states.

Given the proper motivation this property of the wp predicate transformer can be

redefined. In fact this was done subsequently by Nelson [6]. A more serious concern

that arose from de Bakker’s adherence to the initial state/final state pair required

by the wp predicate transformer is that loops designed to be nonterminating, such

as operating system processes, require the postcondition FALSE by definition of his

denotational semantics, and his operational semantics was designed to return only

an undefined state as well. The problem with this is that intuitively much more can

be said about nonterminating computations that are defined on their input, but all

de Bakker could say, in the absence of intermediate states to analyze, was that the

loop did not terminate.

In 1984 Hehner worked briefly at defining program statements themselves as pred-

icates in an attempt to maintain the definition of iteration as a first order recurrence

(a recurrence between predicates) [11]. Motivated by this, Nelson addressed the prob-
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lem of recursively computed partial functions by generalizing the wp calculus [6]. In

Dijkstra’s world all loops terminate so they have descriptive predicate logic (i.e., not

FALSE) postconditions. This is the essence of his Law of the Excluded Miracle

(wp(Statement,FALSE) = FALSE). Nelson rejected this “law,” claiming that

since nonterminating recursions never reach a final state they can be specified by the

predicate logic description FALSE, denoting the empty set. With the predicate logic

description FALSE for postcondition of a nonterminating computation Nelson had

both the set of initial states and the set of final states (although it was empty) he

needed to satisfy the wp predicate transformer. However, the postcondition FALSE

is not helpful for verifying correctness, unless the computation is for a partial function

undefined on its input, and since it is not even possible to identify these computations,

Nelson could certainly not predict them in advance.

Therefore, Nelson focused on the partial correctness conjunct of the wp predicate

transformer. This conjunct, the weakest liberal precondition (wlp) expresses that a

computation will not produce an incorrect answer, i.e., each stage is not wrong.

This is not equivalent to saying that each stage is “right,” because this stronger

statement requires termination of the whole in the wp model. Nelson defined a

recursive computation as a sequence of approximations to the limit and used a pair

of predicates to specify each element of the sequence, making the mapping of the

predicate transformer a recursion between predicates. One predicate expressed what

the variables were not, and the other assured that the recursion would halt. He

showed that his work could be applied to direct recursion and implied that it could

be tailored to general recursion, although the assurance of halting only works if you

have a hand on the power switch in this case.

Nelson provided the mathematical foundation for extending the partial correct-

ness predicate transformer (wlp) into the classes represented by general recursion.

Nelson’s work relied on a limit theorem that required only monotonicity (not mono-
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tonicity and continuity) because his computational model was based on recursion. A

general recursive computation can be modeled as a tree because the computation is

allowed to backtrack, or recover, from “dead ends.” Continuity limits the number of

dead ends that can be recovered from; it precludes unbounded nondeterminism. Nel-

son showed that as a computation progresses correctly monotonicity ensures that no

erroneous values are admitted into the set of states that represent the computation.

He showed that the wlp predicate transformer is an accurate map from the states in

the computation sequence to the initial states that allow them.

Because the wp predicate transformer only discusses initial and final states Nel-

son’s generalization of it could not produce a method for verifying the sequence at

any intermediate stage. Additionally, his lack of continuity, coupled with the fact

that his predicates expressed the compliment of the actual computational sequence

precluded him from making assertions about individual states of the computation it-

self. The wlp predicate transformer only guarantees what a computation is not doing

(i.e., behaving incorrectly). We cannot use it of itself to say anything about what the

values in any stage actually are, because the wlp predicate transformer guarantees

correctness only upon termination.

Hesselink also worked with recursive computations [12]. He developed a language

that included procedure declarations that supported mutual recursion and gave its

semantics in terms of the wp calculus. He used the syntax of his procedure decla-

rations to reason in his semantic equations, but not in his program specifications as

we do. Reliance on the wp predicate transformer only allowed him to show partial

correctness in nonterminating computations. However, this is still more than Dijkstra

could do. Like Nelson, Hesselink showed that the wlp predicate transformer is valid

throughout a general recursive computation.

His result was stronger than Nelson’s because the version of the Knaster-Tarski

limit theorem he used allowed him to show that the Law of the Excluded Miracle
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can be preserved while unlimited backtracking is supported. This work agreed with

Dijkstra and van Gasteren [13] that the restriction to continuity can be lifted in the

wp model. However, use of the wp model with its reliance on termination limited

Hesselink to the initial state/final state pair, so like Nelson, all he could say about a

nonterminating computation was that it would not be incorrect if it terminated.

We have highlighted the work that directly affected the mathematical foundation

of the current model of the wp calculus. Early pioneers in specification and verification

techniques were Floyd [14] who motivated Dijkstra with his work on flow charts of

a program’s execution, Greif and Meyer [15], who gave a critique and tutorial on

Hoare’s work in 1981, Mills [16], who advocated the use of mathematical techniques to

describe programming objects and concepts as early as 1975, and van Emden [17] who

gave the semantics of predicate logic as a programming language in 1976. Cohen [18],

Dijkstra and Scholten [19], Conway and Cries [20], and Cries [21] have all worked

to develop the techniques of specification and verification using the wp calculus, and

have presented their work as text books.



CHAPTER 4

Semantics of A Language

One of the basic tenets of our research is that programs execute. Existing work is con-

cerned with the initial state/final state paradigm of the wp calculus, but we believe

that much more can be said about the execution of a program than an examination of

its initial state/final state pair can show. This is particularly true of programs com-

puting partial functions because they may not terminate. We use the results of each

stage of a program’s execution and verify correctness from program state to program

state. We use the entire sequence of a computation, so whether a computation step

leads to a final state or not we can verify that one execution of the statements that

comprise the step are correct.

In this chapter we define a necessary environment for our computational sequences.

First we give the syntax of a programming language so we will be able to record the

algorithms we use to compute partial functions. The semantics of our language are

critical because we must be able to express the meaning of terminating and nonter-

minating computational sequences with defined results, and the meaning of nonter-

minating computational sequences with undefined results. We provide a denotational

semantics that admits an undefined element so we can express the value of a partial

function that is undefined on its input. The operational semantics of our language

is the foundation for our computational sequences. To generate a computational se-

26
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quence we need a machine. To accurately define the actions of the machine we provide

operational semantics. We define a machine because we expect our programs to exe—

cute, and we use our operational semantics to formalize the meaning of a program’s

execution.

4.1 Syntax of the Language

We compute with the natural numbers. Our programming language has an addi-

tion Operator, and a subtraction operator (monus), and uses a sequence of indexed

variables to store input, output, and intermediate values. We represent individual

variables in the sequence with identifiers. Our language permits Boolean expressions

as guards for loops and we allow unbounded looping. We also include two operators

that allow us to store a sequence of natural numbers in a variable and to retrieve the

leftmost value stored in such a sequence. The numbers in the sequence are separated

by a delimiter that has no value.‘ The programming language is similar to the lan-

guage used by Sommerhalder and van Westrhenen [22]. The syntax of this language

is given in Figure 4.1. Proof that this model forms a complete programming system,

sufficient to express the set of all computable functions, is a standard exercise and is

omitted here. See Sommerhalder and van Westrhenen for details [22].

Let G be the grammar defined by the productions in Figure 4.1, and let L(G)

be the set of all valid sentences that can be constructed from G. We define a pro-

gram to be a quadruple Q = (p, k,n, P) consisting of three natural numbers and a

sequence of statements P E L(G). The identifiers that occur in the sequence P are

the program variables and ultimately will represent machine registers. The numbers

p, k specify that $1,152,. . .,:r,, and $1,132,. . . ,3]. are the input and output variables

‘

‘These Operators are included only for expressibility and notational convenience. They add no

additional computational power to our language.
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< identifier >::= {roumcmb}

< numeral >::=< pos >< numeral > I < digit >

< digit >::= 0I1I2| - - - [9

< pos >::=1I2I3I- - - I9

< expression >::=< expression > + < expression > I

< expression > 4 < expression > I(< expression >)I

< identifier > I < numeral >

<relop>::= <ISI=I7€IZI>

< Boolean constant >::= TRUEIFALSE

< guard >::=< Boolean expression >

< Boolean expression >::=< expression > or < expression > I

< expression > and < expression > Inot < expression > I

(< expression >)I < identifier >< relop >< identifier > I

< identifier >< relop >< numeral > I

< Boolean constant >

< assignment >::=< identifier >:=< expression > I

< identifier >:=< identifier >|I< identifier > I

< identifier >:=II’< identifier >

< statement >::=< assignment > Iwhile < guard > do < sequence > odI

if < guard > then < sequencel > else < sequence; > If

< sequence >::=< statement > I < sequence >; < statement >

< program >::= {(p,k,n, < sequence >);end.| p Z 0, k > 0 and p,lc S n}

Figure 4.1. Syntax of the Language.

and the number n specifies that all these variables and all program variables belong

to the set {x1,xg,. . . ,xn}.

We require that p Z 0 to express that programs may or may not have input. We

require that k > 0 to express that programs have output. The value n expresses that

we require a fixed number of variables for any program. In the syntax of this language,

we Often denote a sequence by S1; S2; . . . ; Sn to imply the individual statements in

the sequence. We denote a guard by Q, and we Often use the letter e to denote

expressions.
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4.2 Semantics of the Language

It is natural to take the meaning of a program to be the actions that a machine takes

upon it. The operational semantics of a program uses a machine to define a language.

The meaning of a program in a language is the evaluation history or computational

sequence that the machine produces when it executes the program. The denotational

semantics method maps a program directly to its meaning, called its denotation.

The denotation is usually a mathematical value, such as a number or a function.

A machine is not a part of the denotational definition; a valuation function maps a

program directly to its meaning.

4.2.1 The Denotational Semantics of the Language

The Objects we have in mind when we compute a value are the natural numbers IN =

{0, 1,2, . . ..} We represent these objects as strings belonging to the set NAT, where

NAT = [x] < numeral >=+> x}. The valuation function for the set NAT maps it to

the set IN in the expected way. We also use sequences of natural numbers separated

by the delimiter II, where I has no value. We denote this set N = NAT(IINAT)'.

Note that NAT C N. Sequences containing delimiters are not used to compute values

so that for a string x, if x 6 N — NAT then the valuation function returns undefined

if computation with x is attempted. Finally, we use the set 13 = {TRUE, FALSE}

of Boolean values.

The Objects we compute with are constructed by a finite number Of applications

Of operators from a set of operators we designate for this purpose. The operators are

applied to three distinct types Of elementary Objects.

1. Three types of objects:

0 NAT: {0,1,2,...,9,10,...}
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. N = NAT(IINAT)‘

. ]B = {TRUE, FALSE}

2. Five operators:

0 0, a nullary Operator.

0 +, representing addition of the natural numbers.

a 4, (monus) representing subtraction of the natural numbers.

a II:N—>N defined by

|| (4331)2 xiv-

II takes 23,3; 6 N and returns the sequence xIIy.

a II': N -+ NAT defined by:

[I(x) 3- a, such that a E NAT for some ay = x 6 N

The sequence 3/ may be empty. [I’takes a sequence x E N and removes the

leftmost natural number a.

Denotational Semantics

Denotational semantics defines a mapping from syntactical entities to the values they

compute in such a way that the meaning or value of a construct is determined in

terms of the meanings of its constituent parts. This is the method of Scott and

Strachey [10]. In this view, a valuation function is defined that maps statements to

their values. We use a variant of de Bakker’s notation [5] that includes the state and

the state function. A state is the condition, at any given moment, of a program’s

identifiers; it is an element of N”. The state function is denoted by 7, and allows us

to obtain the current value of any variables used in a statement. Recall, we represent
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the elements of our program state space I‘ with 7. In a sense, 7 retrieves the result of

the valuation function applied to a statement in a particular state of the computation

so that we can inspect it. The set I‘ is the set of all valuations of a given program’s

variables. Another representation for a given 7 6 I‘ is < x1, . . . ,xn >, the variable

vector used by our programs. We let M stand for the function that maps statements

to their meanings: M : S 6 L(G) x I‘ —> I‘. The valuation function or meaning

function M(S,7) = 7’, for S 6 L(G), reflects that the initial state 7 is transformed

by S into the final state 7’, where 7 and 7’ determine the initial and final values of the

variables before and after S executes. In the recursive class M is a partial function,

because nontermination is a possibility. It may be that for a given 7 and S there is

no 7’ such that M(S,7) = 7’.

To address the possiblity of nontermination in denotational semantics it is cus-

tomary to extend M to a total function by adding the undefined state:

M:SxI‘U{.L}—»I‘U{J.},

where “.L” (“bottom”) is the undefined state. Since .1. ¢ I‘ and 1" contains

all valuations of a program’s variables, .L is usually associated with the ev-

erywhere undefined state [10], [5], [6]. For example, in denotational semantics

M(while TRUE do S Od,7) = .L. The extended meaning function

M:SXI’U{i}—»FU{.L}

is strict (notation: M : S x F U {.L} —), I‘ U {.L}). A function is called strict if

f(.L) = i. That is, the value computed by a function undefined on its arguments

is undefined. The translation to strictness with respect to a denotational semantics

meaning function can be expressed by the acronym, Garbage In, Garbage Out, that
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is, defined outputs cannot be Obtained from undefined inputs. Strictness applies to

functions for which meaningful valuation of a statement’s variables may not exist

because the statement represents a partial function undefined on its argument. Our

extended meaning function is strict and we rely on strictness to guarantee that if a

meaningful valuation is impossible in a given state, then a valid definition cannot

magically be assigned by any statement. A formal discussion of strictness is given in

Section 4.2.3.

The only statement in our language for which termination is an issue is the while

do od statement. Letting d stand for the result of a typical element of the set Of

extended meaning functions M : S x I‘U {i} —» I‘U {.L}, we must determine a d such

that M(while 9 do S Od,7) = 45. Intuitively by this statement we mean: repeat

execution of S zero or more times as long as Q = TRUE. This description can be

represented as the limit of a sequence of approximations ¢;,i = 0,1,2, . . ., (notation:

LL20 45;). The limit of a sequence Of approximations is the actual function value, if

it exists. For example, with f(x) = x!, f(4) = 24 is the limit and 1,2, 6, 24 is the

sequence of approximations to f(4) If a limit does not exist, e.g., f(x) = x +1, then

the limit is undefined, but for each i = 0,1,2, . . ., U220 43; represents the limit of its

subsequences since for each i Z 0, d.- is the meaning that results from executing S

at most i - 1 times. The denotational semantics of a statement in our language is a

variant of de Bakker’s [5] that makes use of the state .1. and function 43 just defined.

Definition 4.1 The denotational semantics of S E L(G) is given by the function

M:SxI’U{_L} —+,I‘U{_L}.

I. MCI}; := 131' + xk,7) =

A {< $17,. . .,$,‘7 = 27ft + $k7,$;+1‘7,. .. ,xn'v >} 17131317]; 6 NAT

‘7.

.L otherwise

x;-. E 7(x,-), the value of x,- in 7. Recall, 7 represents a state, and allows
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us to obtain the value of variables in a state. M returns the least 7 such

that variable x.- obtains a new value because the arguments to addition represent

natural numbers. The state that results is J. if the arguments represent elements

ofN - NAT because variables containing delimiters are not used to compute.

2. M(x; := xj;$ks7) =

{< x11,” .,x.-1 = qu — xm,x,-+11,. ..,x,,1 >} iij,xk E NAT and x51 2 xn

1‘87 {< x11,. . . ,x;-. = 0,x;+11,. . . ,xn-y >} ifx.,-,x;c e NAT and 2,": < 1:“

J. otherwise 
If the arguments to monus represent natural numbers, then the value returned

is the result of subtraction on the natural numbers. Otherwise, one or both

arguments contain delimiters, so we return .L.

3. M(x; := xj,7) == A.7{< x11“ . . ,xn = xj1,x,'+1~:, . . .,x,,-: >} x,- 6 N

I. M(x; := c,7) = A.7{< x11,...,x;-. = c,x.-+p,...,x,n >}, c E NAT

If the right-hand side of the assignment statement is a natural number, then the

variable on the left-hand side of the assignment statement takes on the value of

that constant.

5. M(Sl;S2,7) = A7.M(S2,M(Sl,7))

The semicolon is used to combine adjacent, independent commands into a single

command [21]. We will formalize this notion in Definition 4.3 and discuss it

in depth in Chapter 4. To obtain the value of computing the whole statement

S1; S2, we find the value of S1 and then use this state when we operate to obtain

the value of S2.

6'. M(if g then 51 else S2 fi,7) =
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M(Sl,7) ifg is TRUE in 7

M(S2,7) ifg is FALSE in 7

The decision construct returns the value of executing 51 if the guard is TRUE,

i.e. if 7(9) = TRUE; it returns the value of executing S2 if the guard is

FALSE.

7. M(while 9 do S od,7) = U§O¢;(7), where

10.

do = A7.i

at,“ = A7.if 9 then ¢;(M(S,7)) else 7 fi,i = 0,1,. . .

The loop has no meaning until it terminates. We obtain the value of each succes-

sive iteration by applying the loop ’3 statements to the most recent approximation

to the computation’s limit as long as conditions for termination are not met. See

Figure 4.2 for an example.

M(end-.7) = 7

The “end.” statement does not affect the value of variables in a state.

M(x; := x,- II xk,7) = A.7{< x11,. . . ,xn = $j7II$k7,$g+17,. . .,x,n >}

The concatenation operator appends the first identifier onto the left hand side

of the second operator and produces a state with the updated string as one of its

values.

M(x; :=II’x,-, < x17,...,x,~~ = 0'1II0'2II”'fi01,$j+17,...,xn1 >) =

A {<317,...,$.’7=01,...,$J‘7=02II'°°II0(,$j+1'1,...,$n7 >} 1ft, EN

7.

_[_ otherwise

The deconcatenation operator moves the leftmost representation of a natural

number to the variable on the left hand side of the assignment operator, leav-
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M(while x > 0 do x := x — 1 od,7(< 2 >)) = (Ln-:0 .-)7(< 2 >) = 7(< 0 >), since

40(7(< 2 >)) = J-

¢1(7(< 2 >)) = ¢o(7(< 1 >)) = J-

¢2(7(< 2 >)) = ¢1(‘7(< 1 >)) = ¢o(7(< 0 >)) = J-

¢3(3(< 2 >)) = ¢2(7(< 1 >)) = ¢1(7(< 0 >)) = 7(< 0 >)

¢a(‘7(< 2 >)) = 7(< 0 >),i > 3.

(U320 £)(7(< 2 >)) = 20¢:(7(< 2 >)) = Uf’iov(< 0 >) = (7(< 0 >))

Figure 4.2. Example of the denotational definition of whiledo od.

ing the remainder of the string in the variable on the right hand side of the

assignment operator. If x,- has not legally acquired a meaningful value through

execution of a previous statement, then .L is returned.

4.2.2 The Operational Semantics of the Language

The fixed point argument that leads to our inductive proof method hinges on the

computational sequences built by our operational semantics. We contend that the

initial state/final state model used by the wp calculus is insufficient for partial func-

tions because the moment of termination for programs computing them cannot be

known or even guaranteed. Lacking the information “contained” in the final state of

a computation leaves the wp method dependent on the partial assurance that the wlp

conjunct can give: The computation will not be incorrect if it terminates. Consider

an Operating system. In such a context this means that all we can do is start the

program running and wait. We may assume that “something is happening” because

we see disk lights flashing and hear whirring sounds, but we cannot say anything

about what is happening for certain, because we must wait for termination since

the wp method depends on the postcondition. The wp method uses only the initial
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state/final state predicate pair, so until we reach a final state we cannot apply the wp

predicate transformer. Meanwhile, the operating system is managing the machine,

perhaps servicing requests from users, initiating remote printing jobs, or whatever.

With the ability to “examine” intermediate results of a computation via its evaluation

history, we can Observe all these activites, and check to see that they are executing

correctly.

The concept of evaluation history or computation sequence is tied to a machine.

The Machine

We specify computations with algorithms (finite descriptions of computations over a

certain data type for any given input), and represent algorithms as programs written

in the language we have described. Because we are interested in the correct behavior

of computations and not just in the correctness of the algorithms that specify them,

we need a computer to execute algorithms and produce an evaluation history of each

execution.

The machine model we use is the Random Access Machine (RAM) described by

Meyer and Ritchie [4]. The RAM consists of an instruction register of arbitrary

length that holds the program. The operational semantics of our language defines

the Operation Of the machine on this program. The RAM has a Boolean test register

for evaluating any guards the program uses, and a data memory that is unbounded

and composed of registers of arbitrary (but finite) length. See Figure 4.3. Prior

to execution of any program the variable vector of our machine is composed of n

undefined variables. Once input is introduced, but before execution commences, the

variable vector of our machine is composed of p defined input variables, with the

remaining n — p variables undefined.
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Figure 4.3. Random Access Machine (RAM).

The Operational Semantics

When we say that a program executes, we mean that our operational semantics

produces a unique computation sequence that contains an evaluation history for ex-

ecution of each statement, and the machine mirrors what the Operational semantic

function is doing. We formalize this notion of computation sequences and program

meaning with Operational semantics for our language.

First we formalize the way our machine implements the natural numbers. The

machine consumes input and produces output. We require that all objects used in

computing be finitely representable. The objects we use are the binary encodings of

the natural numbers. To specify these objects, we fix a data type to formalize the

data elements and the Operators used by our machine.

The data type we use has three sorts. First is the set of binary strings represent-

ing the natural numbers BIN = {0,1,10,11,100,101,110,lll,...}. We normalize

these strings by deleting leading zeros. This is the sort that our machine computes
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values with; it is the type of interest. Second is the set BIN = BIN(IBIN)‘, where

syntactically I is used as a delimiter and has no semantic value in a computation.

The semantic meaning of I is undefined. When we say that a variable in our machine

vector is undefined, we mean that the position of that variable within the vector is

set to I. Finally, we use the set 13 = {TRUE, FALSE} Of Boolean values.

1. Three sorts:

. BIN: {o,1,1o,11,100,101,110,111,...}

. BIN = BIN(IBIN)*

0 13 = {TRUE, FALSE}

2. Ten operators:

0 The functions 0 and 1, representing the elements 0 and 1 from the binary

numbers.

0 +, representing addition Of the binary numbers denoted by two strings.

o 3—, (monus) representing subtraction of the binary numbers denoted by

two strings.

. u: BIN —» BIN defined by

H (1‘, y) g $va-

. y; BIN —» BIN defined by:

[I(x) é a, such that a e BIN for some ay = x e BIN

The string y may be empty.

0 idBIN : BIN -> BIN and idguf : BIN —> BIN, the identity functions.
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o Predicate OBIN defined by:

®a(x) s [if x®a then TRUE else FALSE], a,x e BIN, G) e {<, s,=, 752, >}

Our data type is B:

3 = {BIN’BIN’IB’idBINtidBINs'I'a;’ ll, lI’,0,1,®BIN}

We express our input and output as natural numbers, IN = {0,1,2, . . ..} We do this

for readibility, because it is easier for people to think in the natural number domain

than in the binary number domain. Our machine is equipped with a coding function

e : IN -b BIN which maps zero onto 0 and any number greater than zero onto its

binary representation, with leading zeros removed. Our machine is also equipped

with a decoding function dc : BIN —+ IN. Since the function e is a bijection we define

the function do in the logical way. No decoding of elements using the I delimiter is

necessary.

Definition 4.2 A configuration 6 of the machine is a pair 6 =< P,7 > where P E

L(G) is a sequence of command statements and 7 is a state in which the next command

S E P can execute.

Since our machine is digital, execution will move through discrete stages i, from

a configuration, which are represented (if possible) by further configurations. These

configurations will either have the form < S;, 7.- > where 7; is the state at stage i and

S.- represents the remaining computation, or they will have the form < end.,7.- >

where i is the final stage at termination and the resulting 7,- is the machine vector in

a terminal configuration.

Definition 4.3 A functional 1' over L(G) maps the set ofstatements L(G) into itself.

That is, 1' takes any statement S E L(G) in a given state 7 as its argument and yields
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a statement 7(5) 6 L(G) in a state 7’ as its value.

In our language, the functional we define is the symbol “;.” For readibility, we may

let 1' denote “;.”

Definition 4.4 A computational sequence, < 50,70 >l-< 51,71 >l- . . ., is a sequence

of configurations which is infinite when no S,- 5 end. A computational sequence is

finite when an end. statement is encountered, i.e. < 50,7 >,...,< end.,7 > .

The symbols 6.- b 6.41 represent the transition from one configuration to its successor

under our functional that maps program statement/program state pairs to program

statement/program state pairs.

Definition 4.5 The operational semantics of program statements is given by the

function 0 : L(G) x F —i L(G) x I‘. Let 0 denote a remaining sequence of pro-

gram instructions that may be empty.

1. 0(2); 2: 2:,- + xk;a,7) =

< 0,311,...,:r,-,: = x,» + $k1,$i+11,...,$n‘7 > iij,a:k e BIN

< a,fl1,...,fln > otherwise

an E 7(35). It represents the value of variable x,- in state 7. If the arguments to

addition represented binary encodings of natural numbers, then the remaining

program sequence and a new state with values reflecting the result of addition is

returned. Otherwise, the remaining program sequence and a state with undefined

values denoted by the valueless delimiter fl is returned.

2. 0(3; := xj;xk;a,7) =

7

< 0,117,...,a:,-.,r = I)». —$k1,l‘,‘+17,...,$n1 > if.1:,-,ac;g 6 BIN and 1:51 2 21.1

t < a,x11,...,:r,-,: = O,x,+1~,,...,:rm > if$j,$k E BIN and rep < 31:1

 L < a,fl1,...,fln > otherwise
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If the arguments to monus represented binary encodings of natural numbers,

then the remaining program sequence and a new state with values reflecting the

result of subtraction of binary encodings of natural numbers numbers is returned.

Otherwise, the remaining program sequence and a state with undefined value,

denoted by the delimiter fl, is returned.

. 0(x; := xj;a,7) = < a,xn,. . . ,x,-.,: = $j7,$.’+11,. . .,x,n >, x, E BIN

We obtain the remaining program sequence and a new state with the value of x.-

updated to the value of 3),, and x,- and all other variables remain as they were

before the operation.

. 0(x; := c;a,7) = < x17,...,x,-.,I = c,x.~+1~,...,xn1 >, c6 BIN

We obtain the remaining program sequence and a new state with the value ofx;

updated to the binary encoding of the natural number c represents, and all other

variables remain as they were before the operation.

- 0(51;52;a.7) = 0(52;0.H§(0(51.7)))

I]: is the function Ax1x2---xp[xk], projecting a p-dimensional vector onto its

1:“ component. We project into the computation sequence to obtain the state

resulting from execution of 5'1 and use this state in our computation of 52.

. 0(if Q then 51 else 52 fi; 0,7) =

0(Sl;a,7) ifg is TRUE in 7

0(52; 0,7) ifg is FALSE in 7

If the Boolean test register shows that the value of g is true when tested, then

we execute SI. We execute 52 ifg is false when tested.
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7. 0(while g do 8 od;0,7) =

0(S;while g do 5' od; 0,7) ifg is TRUE in 7

< 0, 7 > otherwise

We extend our computation sequence one more step by unfolding the loop each

time the Boolean register shows that the guard tests true. When the guard tests

false, we obtain the program sequence that remains after the loop and the state

that resulted from the last execution of the loop.

8. 0(end.0,7) =< 0,7 >

When an end. statement is executed, the final program state is returned and

the instruction register is cleared.

9. 0(x; := x,- ” xk;0,7) = < 0,2217,” . ,x,,: = xj-ylika,xg+p,. . .,x,.-: >

We obtain the remaining program sequence and a new state with variable x.-

containing the string xJ-fixk.

10. 0(x; :=ll’x,';a, < x17)"°9xj7 = 01fi02l° "l01,.-o,$nv >) =

<0,xn,...,x,-.,a =01,...,xj,:=02fi---fl0‘1,...,xm > iijEBIJV

<0,tl1,...,tln > otherwise

If x,- has acquired a legal value by a previous computation step, then we obtain

the remaining program sequence and a new state with x,- containing the leftmost

element of a string of binary representations of natural numbers separated by

delimiters, and 2:,- containing the string that remains after removing its leftmost

element. Otherwise, we return a state with coordinates set to )1.

Definition 4.6 The operational meaning of a program P E L(G) with 70 an initial
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state, is given by:

0‘(P’70)9

where It indicates repeated composition of the operational semantic function with itself.

That is, the operational semantic function continues to manipulate the sequence of

program statements in the instruction register until termination.

Thus the operational meaning of a program is the computation sequence that

is induced by the functional we use operating on the program statements. From a

computation sequence we can extract the functional meaning of a program.

Definition 4.7 For any computation sequence induced by executing a program Q =

(p, lc,n, P), the function FQ computed by the program is defined by

FQ(H1...;.(70)) = n1""‘(ng(03(Pa’70))) if Hi(0’(P.7o)) =< end.,7j >

undefined otherwise

Program P computes the partial function FQ((II1,,,k(70)) = f(x1,. . . ,xp).

At this point we give an example of how the operational semantics of a simple

program builds a computation sequence, and how we can use the sequence to obtain

the operational meaning of a program and the functional meaning of the program.

Example 4.1 Let Q =(1,1,1,while x > 0 do 2: := x — 1 od;end.) and let 70 = 2.

Then the operational semantics gives the computation sequence

60 =< while x1 > 0 do x1 := x1 -1 od;end.,2 >|-

61 =< x1:= 2 - l;while x1 > 0 do an: x, — 1 od;end.,2 >|-

62 =< while x1 > 0 do x1 := x1 -1 od; end.,1 >}-

63 =< x1:=l—1;while x1 > 0 do x1:= x1 —lod;end.,1>l-

64 =< while x1 > 0 do 3:, := x1 — 1 od;end.,0 >}-

65 =< end.,O >
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We can see from examination of the computation sequence of our program that its

operational meaning is 60 l- 61 l- 62 l- 63 l- 64 l- 65. Furthermore, examination of the

sixth configuration provides the additional information that the program terminates.

The functional meaning of the program can be identified by projecting onto the

output variables of the program vector of the last element of the computation se-

quence FQ(H1(70)) = I11(II§(05(P.70)) = 0-

Our Operational semantics allows us to use a projection operator and our state

valuation function 7 to investigate the intermediate stages of a computational chain

as a computation progresses, e.g. II,(II§(02(P, 70)) = 1. In the theory of fixed points,

projection onto the computation sequence built by our functional allows us to obtain

the approximations to the function finally computed by the program. Note that the

least fixed point of the function computed by our example Q is reached at the fifth

configuration, i.e., H1(H§(04(P,70)) = 0, since for i > 4 projection onto our output

vector returns the value 0.

4.2.3 Semantic Equivalence

Our operational semantics agree with our denotational semantics with respect to the

function value computed by a program, since J. is equivalent to undefined.

We support this conclusion by proving equivalence between our operational se-

mantics and our denotational semantics, using two lemmas. The first step is a lemma

that establishes that the function 0(5; 0, 7) is strict in the same sense that the func-

tion M(3,7) is strict, i.e., it is impossible for our machine to produce a meaningful

value for a partial function that is undefined on the given input. The reason why we

wish to establish strictness is continuity. It is continuity that guarantees we can ob-

tain accurate approximations of final results at intermediate stages of a computation

because the limit of a computation is predictable.

The second lemma deals with monotonicity. It says that if the execution of a
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statement causes a state change, then we have moved one iteration closer to resolution.

The functional “;” has produced the next stage in the computational chain.

Lemma 4.1 Suppose the variables upon which S E L(G) depends are undefined.

That is, let x;,...,xk E S = 11, where l S i,...,lc S n. Represent the fact that

particular undefined variables exist in S with L. Then 0(S; 0, .L) =< 0, .L >.

Proof. Structural induction on S E L(G).

l. S E x := e, where e is not a natural number. 0(x := e; 0, .L) =< 0, J. >. Since

.1. ¢ I‘, i.e., the variables in e are undefined, substitution achieved by computing

an expression cannot give definition to other program variables. Substitution

does not change the meaning of .L. The two cases where the concatenation

operator and the deconcatenation Operater are used have the same argument.

2. S E SI;S2. 0(Sl;52;0,.1.) = O(SZ;0,H§(O(SI,.L))

= O(S‘2.;0, .L) =< 0,.L > .

3. S E ifg then SI else 52 fi. O(if Q then 51 else S2 fi;0,.L) = < 0,.L > by

definition of the operational semantics of if fi.

4. S E while g do S od. O(while 9 do S od;0,.L) =< 0,J. >. G, the guard

function, maps a Boolean expression to the set TRUE, FALSE.

0 Case 1: g is TRUE in .L, (e.g., while TRUE do S od).

The operational semantic function produces the sequence

0(while TRUE do 5 od; 0, .L) = O(S;while TRUE do S od;0, .L) =

0(while TRUE do S od; 0, .L) = 0(S; while TRUE do S od;0, .L) . . .

which is infinite because no statement/state pair is < end.,7j >, j =

0,1, . . . and because all 7,,j = 0,1,... 6 I‘, the only state we can return

is .L.
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a Case 2: g is FALSE in .L. This follows directly from the operational

definition of the whiledo od statement.

5. S 5 end. O(end.; 0, .L) =< 0, J. > by definition.

Lemma 4.2 Let ¢,~,i = 0,1, . . ., be as in the denotational definition of the while 0

do S od statement. Then for every 7 E I‘ and 7’ 6 I‘ U {J.}, and for alli 2 0,

7’ = «tn-(7) if and only if there is a j,0 Sj < i, such that M(Sj,7) = 7’. [Comment:

7’ is the result of no more than i — 1 applications of 5.]

Proof. (“=>”) Induction on i.

Basis: If i = 0 then j = 0, so there is nothing to prove.

Hypothesis: Assume 7’ = ¢,(7),0 S j < i, i > 0.

Show: 7’ = ¢;+1(7),0 S j < i + 1. This is 7’ = A7.if Q then ¢;(M(S,7)) else 7 fl.

0 Case A: Q is TRUE in 7. Then the integer j we need is greater than 0

since we will execute S at least once. This implies that 7” = M(Sj‘1,7’”)

for some 7” and 7’”, so 7” = ¢;_1(M (S, 7”’)). One more execution gives us

‘7' = ¢i(M(S:‘7")) = ¢i+1(7),0 Sj <i+1-

a Case B: Q is FALSE in 7. If g is FALSE then 7’ = 7,j > 0 since we

have executed S at least once because 7 6 I‘, i.e., 7 is defined. Thus for

some 7”, ’7 = M(St .7”) = ¢.(S,7”) = 7’, which is by defintion ¢a+1(5.’7), 80

05j<i+L

(“ <=”) Induction on i.

Basis: If i = 0, then ¢o = A7..L ¢ I‘, so there is nothing to prove.

Hypothesis: Assume 7’ = M(Sl,7), 0 S j < i, i > 0.

Show: If 7’ = M(Sj,7), O S j < i + 1, then 7’ = ¢,+1(7) =

if 9 then qS,-(M(S,7)) else 7 fi.
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0 Case A: G is TRUE in 7. Then 7’ = ¢.-(M(S,7)) which is ¢,(7”) a previous

element of the computational chain. We have assumed that there is a 1" such

that 7’ = M(Sj',7”). Lettingj = j' +1 gives us that 7’ = M(Sj,7),0 Sj <

i + 1.

a Case B: Q is FALSE in 7. If G is FALSE then 7 = ¢;(M(S,7”)) for some

previous element in the chain and there was a j such that 7 = M(Sj,7”), but

this is '7 = M(S’n”) = 7’ = ¢;+1('7),0 Si < i+1-

Theorem 4.1 0(S; 0,7) = M(S,7).

Proof. Let 0 = 0, and use structural induction on S E L(G). If S is not an iterative

statement, the result follows immediately from the definitions of operational and

denotational semantics. Now let S 5 while g do S od. Assume that 0(S, 7) = 7’.

Either 7’ 6 I‘ or 7’ = .L.

0 Case A: 7’ E I‘. Then there is aj 2 0 such that 7’ = M(Sj,7). Let 4’0 =

A7.J. and let <75,“ = A7.if Q then ¢i(M(S,7)) else 7 fi,i = 0,1,.... The

denotational definition of S is M(S,7) = (Di-:0 ¢.-)(7). By Lemma 4.2, 7’ =

¢i(7)a0 51 < 5+1, 30 7' = Lil-3.3.0 ¢£(7) = ( .20 430(7) = M(Sfll-

a Case B: 7’ = .L. By Lemma 4.1 we have that our computation sequence is

infinite and for all lc = 0,1,. . ., 452(7) = J_, since if for some i Z 0, ¢£(7) = 7" e

I‘, by Lemma 4.2 there would exist a j,0 S j < i such that 7” = M(Sl,7) and

this would give us that O(S,7) = 7” E I‘ and 0(S, 7) = .L, a contradiction.

Therefore for all k 2 0 45;,(7) = J. and this is the same as M(S, 7) = .L.



CHAPTER 5

Mathematical Foundation for

Reasoning About Nonterminating

Computations

In this chapter we give the mathematical foundation we use to reason logically about

unbounded and nonterminating computations. We have already given our machine

and its language, and we have defined formally what we mean when we say that

program statements execute. Operationally this meaning is the computational se-

quence induced by our higher order function from program statements to program

statements. The computational sequence is the vehicle we use to reason about a

computation.

There are two types of postconditions for loops:

1. Descriptive postconditions define non-empty sets of program states. The Dijk-

stra/Gries [2], [21] method requires proof of termination by manipulation of an a

priori upper bound. In fact, the requirement of a known upper bound limits this

method to the primitive recursive class. Therefore, descriptive postconditions

can be written for every loop.

48
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2. Nondescriptive postconditions, i.e., FALSE, define empty sets of program

states. Nelson [6] allows nontermination. In his generalization of Dijkstra’s

wp calculus, Nelson addresses recursively specified programs but provides a

method for showing only overall partial correctness of these partial functions.

In Nelson’s method the postcondition of a nonterminating recursion is FALSE

because a final state cannot be reached, i.e., the set of final states is empty.

Like Nelson, we consider FALSE an appropriate postcondition for a nonter-

minating loop. Unlike Nelson we use much more descriptive predicate logic

sentences for nonterminating computations than FALSE. We eschew the ini-

tial state/final state paradigm in these computations because we model them as

chains composed of intermediate stages, where each stage is an approximation

to the limit of the computation, so each stage has a predicate logic sentence

that is an approximation to the goal the loop’s designer intended.

Gries has said that “loops are designed for specific purposes—to establish the truth

of one particular postcondition” [21]. For total recursive functions the “specific pur-

pose” of a loop and the postcondition of the loop are identical. The “specific purpose”

or goal of the loop is the machine state at termination, and this state can be described

logically. Postconditions are assertions that hold about the output of a loop after the

loop terminates. Outside the total recursive class, the goal of a loop can still be

expressed logically, but it may not be the same as the postcondition of the loop.

The goals of some loops are achieved independent of termination, the loops produce

output and so require output assertions, but these assertions cannot be considered

“postconditions” using the accepted definition of the word.

Loops that are “defined on their input” are loops that accomplish the specific

purpose of their designer whether they terminate or not. An example of a loop

that is defined on its input and terminates is Ackermann’s function, a total recursive

function. Another example of such a loop is the primitive recursive function for
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factorial. An example of a loop that is defined on its input and does not terminate

is an Operating system service procedure that loops until it receives a request, then

fulfills the request and returns to its waiting state. The example of the nonterminating

operating system service procedure highlights the need for a logical description of a

loop’s goal independent of the postcondition. Since the loop does not terminate its

postcondition must be FALSE, but the specific purpose of such a loop is certainly

more descriptive than that.

We are interested here in those partial functions with descriptive goals. These are

functions defined on their input. When these functions are computed by programs,

the purpose of the program is to reach a state whose logical description is equivalent

to the designer’s specific purpose. For terminating loops the conjunction of this logical

expression, the loop invariant, and a false guard implies a descriptive postcondition.

For nonterminating loops defined on their input we can use the conjunction of the

logical description of the loop’s goal and the invariant to prove that each iteration of

the loop is correct.

To achieve this goal we show that programs that use loops induce computational

sequences that are chains. The existence of computational chains guarantees that we

can obtain accurate information about the computation at intermediate stages (chains

have the property of monotonicity). Chains also guarantee that the information we

obtain is an approximation of the final result because the limit of a computation is

predictable (chains have the property of continuity). From this we show that defined

loops have descriptive goals that can be used with the loop invariant to prove the

loop is incrementally correct.

It follows from a result of Kleene that all chains have least upper bounds, and that

these are fixed points of the computation [7]. Fixed points can be viewed as “closed

form” expressions of recursively specified programs [23], [6], or as approximations to

the solution of repetitive computations [5], [24]. The program state that occurs at the
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least upper bound of a computational chain has a logical sentence that defines the

specific purpose of the loop because it is the first true approximation to the function

computed by the loop; all other approximations are extensions of it [7].

In order to establish the existence of computational chains induced by programs

with loops we define a functional that maps program statements to program state-

ments. We prove that the functional is continuous for all noniterative statements,

that the functional is continuous over one application of our looping construct, and

that the functional is continuous over multiple applications.

To impose the structure we need for discussing continuity and for establishing

the correspondence we need between our mathematical foundation and the predicate

transformer of our proof method, we show that the state space composed of all possible

variable valuations of our programs is a complete lattice. Like Nelson [6] we provide

for the possiblity of a program mapping a defined initial state to an undefined set

of final states. This is the mapping that occurs in the case of a nonterminating

computation, and it is the justification for the FALSE predicate logic postcondition

of a loop which we use as our least element. Every continuous chain induced by

a program within this lattice has a least upper bound, and this gives us our top

element [7].

The organization of our lattice depends on a partial ordering relation “more de-

fined,” imposed by our program statements which we, as others (Dijkstra [2], [l],

Hehner [8], Gries [21], Nelson [6]) view as commands mapping states to states. We

view the relation as a means of measuring the information content of the states our

commands map to, and use it to describe the quality of the approximation to a

solution each state in a computational chain represents.
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5.1 The Semi-Lattice of Computations

More-defined is a relational on the set of commands on a set of program states I‘.

Definition 5.1 Let C and C’ be two commands on F. We say 0 is more-defined

than C’ , notation: C" -< C, if and only if

1. dom(C’) Q dom(C),

2. V7 6 dom(C’), 7.0 Q 7.C".

Proposition 5.1 -< is a partial ordering.

Proof:

0 C -< C. Therefore < is reflexive.

a Let C and C’ be two commands such that C’ -< C and C -< C’. From dom(C’) Q

dom(C) and dom(C) Q dom(C’) we have that dom(C) = dom(C’). For all

7 6 dom(C), 7.C Q 7.C’ and 7.C' Q 7.C, so 7.0 = 7.C’, so C = 0’. Therefore

-< is antisymmetric.

a Let C, C’ and C” be three commands such that C” -< C" and C" -< G. Then

dom(C’) Q dom(C) and dom(C”) Q dom(C’), so dom(C”) Q dom(C). Let 7 be

an element of dom(C”) so it is in dom(C'). From 7.0 Q 7.C’ and 7.C’ Q 7.C"

we have that 7.0 Q 7.C”. Therefore, -< is transitive. D

We want to show that this partially ordered structure is a lattice so we can use

the lattice properties of more-defined to measure the information content of elements

in a computational chain. Given two commands C and C’ on I‘, we are interested

in the existence of lub(C', C"). The least upper bound of two commands represents

the sum of the quantities of input and output information contained in them. Those

quantities can only be summed if the two relations defined by the commands have
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at least one element in common. The property of monotonicity guarantees that the

application of successive commands in a computational chain does not disturb the

established ordering relation, i.e., if two commands have a common initial state then

the application of the commands must yield a state that is more-defined than the

initial state. In this sense the application of commands in a computational chain

yields results that are approximations to their mutual least upper bound; they are

consistent in maintaining the ordering relation more-defined on the lattice.

Consistency expresses the property of monotonicity and is a necessary and suf-

ficient condition for the existence of a least upper bound in a computational chain

induced by commands in a lattice ordered by more-defined. Mili, Boudriga, and

Mili [25] formalized this.

Proposition 5.2 Two commands C and C' satisfy the consistency condition

dom(C n C”) = dom(C) fl d0m(C’)s

if and only ifC and C" have a unique least upper bound.

Mili et. al. [25] express the unique least upper bound as the union of the states

in C and in C’, unioned with the intersection of states in C and C":

lub(C, C') = (idr(dom(C) — dom(C’))C) U (idp(dom(C") — dom(C))C") U (C n C").

This expression is suitable for the commands of our language within a lattice ordered

by more-defined. It is an upper bound because it is equal to dom(C) U dom(C"),

therefore larger than both dom(C) and dom(C"), condition one of our definition of

more-defined. Informally, the expression is minimal because for any other possi-

ble upper bound, say C”, dom(C) Q dom(C”) and dom(C’) Q dom(C”). Thus,

dom(C) Udom(C’) Q dom(C”). Because of the expression of lub(C, C’), we have that
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dom(lub(C,C')) Q dom(C”), so C” is more-defined than lub(C,C').

In a sense, the least upper bound of two commands in a lattice organized by the

relation more-defined can be compared to the weakest liberal precondition of the wp

calculus, because both address the expected result of program execution.

The greatest lower bound of two commands represents the amount of redundancy

between the quantities of information they carry. Greatest lower bounds provide

common initial information for pairs of commands. In a sense, glb(C’, C’) for two

commands C and C’ on I‘ in a lattice organized by the relation more-defined parallels

the weakest precondition on a set of states in the wp calculus because both define the

largest set of initial states from which the two commands can execute correctly. The

greatest lower bound of any pair of commands always exists in this lattice.

Proposition 5.3 [Mili et al [25]. Any pair of commands C and C" have a greatest

lower bound, which is given by the expression

glb(C, C") = iddom(C)ndom(C')(C U 0’).

Since we want to map FALSE to some state, like Nelson [6] and Mili [25], we

define the everywhere undefined relation, a relation capable of mapping defined states

to no states:

C¢=Fx(l).

C. will be the minimum in our lattice.

For this relation we extend the definitions of domain and image set to have the

following identities:

O d0fl1(Co) = F,

o V7,7.Co = 0.

As a relation Co is more-defined than all other relations because it has the largest
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domain which is condition one of our definition of more-defined. According to con-

dition two of our definition of more-defined, we see that any other relation is more

defined than Cg, since for any other relation C, V7 6 dom(C), 7.Co Q 7.C.

In summary, the set of commands viewed as binary relations is partially ordered

by the relational more-defined, and each pair of commands has a greatest lower bound.

Under a condition of mutual consistency, each pair of commands has a least upper

bound. This partial ordering defines a lattice on the state space.

Next we investigate the requirements for mutual consistency among commands,

and show that computations can be represented as ascending chains in the lattice of

our state space, and that in each such chain mutual consistency exists among all the

commands used to induce it. We show that because every ascending chain has a least

upper bound, our lattice is actually complete.

5.2 Fixed Points

Our programs Q = (p, lc,n, P) represent n-ary partial functions, n _>_ 0, from vectors

of natural numbers to vectors of natural numbers. That is, for every element of

N", f((31,172, . . . ,xn) either terminates and yields some element of N“ or results in

a computational sequence of infinite length which does not produce a final value.

Guard functions are n-ary partial predicates that map N" into {TRUE, FALSE}.

Because we are dealing with partial functions and also because sequencing is

an element of our syntax it is possible that we may attempt to compute functions

undefined on some x,-, 1 S i S n. We use w to represent variables for which definition

is impossible or no value is given, and so we extend our domains JV” and IE to

N" U {w} and IB U {to}. We denote these extended domains ML)" and 13“,.
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5.2.1 Interpretation of Fixed Points

The operational semantics of our loops is based on a continuous functional operating

on program statements whose variables obtain their valuation from our extended

domain 0%,)". Our functional is “;” which we denote by the symbol 1’ for readibility.

In Chapter 4 the operational semantic function relied on r to distinguish the next

executable statement from the sequence of statements in the instruction register.

Recall, from Section 4.2.2, 0(S; 0,7) =< 0,7 >, for 0 a possibly empty sequence;

1' is functionally defined by this statement and performs a task that parallels the

operational meaning of “;.”

Once we give valuation to the variables of our commands, the commands become

specific partial functions of the variables they manipulate. Other program variables

not appearing in a command are not affected by that command. We view specifically

valued commands as maps from program states to program states. That is, all of our

commands are functions and belong to the set {(Nw)" -—> (Nw)"}. We will prove that

these functions are monotonic.

The functional 1' maps a program statement to its logical successor in a program.

If the function is atomic, i.e., not iterative, then its logical successor is the next

sequential statement of the stored program. 7' is clearly a continuous functional for

noniterative functions. If the function r operates on is iterative, then the result 7

maps to depends on the condition of the guard. We will prove that r is continuous

for one application of our iterative functions, i.e., r correctly maps the sequence of

statements within the scope of a while do od statement when the guard of the

statement becomes false. We will prove that r is continuous for multiple applications

of our iterative functions, i.e., r correctly maps the last executable statement of a

looping construct to the first executable statement when the statements in the loop

have executed and the guard of the loop tests true. With the proof of continuity we
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ensure that whether we take the least upper bound of a chain 1' has built or apply 1' to

the least upper bound of such a chain we obtain identical results, because continuity

preserves limits. That is, because our program statements are monotonic and because

our functional 1' is continuous, the computational sequences that result are chains and

1' takes us to the statement in each chain that computes the least upper bound of the

chain. The least upper bound of a chain represents the limit of the computation.

Definition 5.2 The functional 1' maps the set of partial functions into itself, 1' :

{(Nw)” -+ (NL)"} -+ {(Nu)" H (Nw)"}. That is, for a program P = S;P’ in L(G)

where S is a statement in L(G) and P’ is a program segment in L(G), (we view P,

S, and P’ as partial functions f, f1, and f2 respectively in {(Nw)" —» (Nw)"}),

1'(P) = P’.

This mapping is defined explicitly in Section 4.2.2.

Kleene’s First Recursion Theorem [7] states that every algorithmic description of a

partial function can be defined in terms of a partial function and its arguments.

Theorem 5.4 First Recursion Theorem[Kleene]

For any n 2 0, let F(6; x1,...,x,,) be a partial recursive functional, in which the

function variable 6 ranges over partial functions of n variables. Then the equation

(€;$1,---.xn) = F(€;$1.---.xn)

has a partial recursive solution (t forfi such that any solution (25’ for{ is an extension

of d).

This theorem says that every continuous functional 1' has a least fixed point that is

actually the least upper bound of the computational chain induced by the functional.
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What this theorem means to us is that every value computed by a partial function

is computed by some program, and furthermore, that of all the programs capable

of computing that value (there are an infinite number of such programs), there is

one that does the job with the least amount of information (or as Kleene phrases it:

“. . .on the smallest range of definition,” i.e., that subset of the domain where the

function is total).

One way of describing fixed points is to say that the functional 1' maps a function to

itself (notation 1'(f) = f). This is the “f(x) = x” view of Davis [24] who describes an

approximation relation that relates approximations of function values to the actual

function value, and also of Scott and Stoy [10]. When we view 1' in this way we

consider not so much the mappings from statement to statement (as when we are

building computational chains), but we see the chain of statements as code that is

itself a function that computes a value when it is executed. In this view, 1' maps the

code segment to the value it actually computes.

Nelson [6] and Manna [23] take the view that the fixed point produces the “best”

definition of a recursively specified function. For example, consider the recursive spec-

ification of the factorial function:
Il
l

5
"
.

f(x) is defined as: if x = 0 then 1 else x * f(x — 1)

(1) (2)

In (1) we have the recursive specification for a program. In (2) we have the “closed

form expression,” a non-recursive representation of the code. When we relate this

equation to Kleene’s theorem, we see that (1) is the algorithmic description of the

function, and (2) is the the primitive recursive function that computes it. xl is the

least fixed point of this recursive specification because it exactly defines the function

f(x) and it is minimal because it is defined for all 0 S x < x + l, and undefined



59

everywhere else. x! has the “smallest range of definition.”

In this latter view, fixed points are used to describe the values we intend our

functions to compute. The translation to loops (that are not recursively specified)

is that the specification of a loop (the right-hand side of Kleene’s equation) is the

“specific purpose” or goal of the loop. As discussed in the introduction to this chapter,

for total and primitive recursive functions this specific purpose is the postcondition.

For partial recursive functions which may have postcondition FALSE, we say the

specification of the loop is a logical description of the goal of the loop. In both cases,

the conjunction of the loop invariant and the goal of the loop allows us to verify the

correctness of each iteration of the loop.

We view the fixed point of a loop as the specification of the loop because it

describes the value we expect to compute. Consider the equation for a loop:

while(x) is defined as : while (,7 do S od 5 R

(1) (2)

Notice that (1) is Kleene’s algorithmic description, or “formula” for computing and

(2) is a description of the value we expect the loop to compute. Our continuous

functional 1' maps the computational chain it induces to the least upper bound of

that chain, and this least upper bound is a program state that has logical description

R when the loop is correct. When the program executes there is an i,i Z 0, such

that the i‘“ iteration of while do od on a variable x, denoted while‘(x), computes

our intended value, and for all k > i, while(x) does it with the least amount of

information.

A good example of this is a program that computes the it“ prime number in

ascending order. (We assume there is a macro that tests whether a number is prime

by directing a search for divisors within the range 2 S i S number — 2, returning 1

if no divisor is found, because it is the while loop we are interested in for now.) By
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“macro” we mean that there is a body of code that can be substituted inline for the

statement isprime := Prime(y). We formalize this notion of macro in Section 6.1,

and present the macro in Section 7.3.

Program Primes

z := 0;

:4 == 0;

while y 2 0 do

3/ == 3/ + 1;

isprime := Prime(y);

if isprime = 1 then

P i: 3/;

z := z + 1;

fi

od

The least fixed point of the entire program is the undefined element because the

loop that computes it is nonterminating by design, so we can never match a descriptive

postcondition (we can never reach the postcondition, so we expect no final value).

Thus, the established postcondition of this loop must be FALSE.

This corresponds to the denotational semantics we have defined which say that

the meaning of a nonterminating loop is “everywhere undefined” or i.

This also corresponds to our operational semantics because an infinite computa-

tional sequence cannot produce final results. The infinite computational sequence is,

however, a concatenation of computational subsequences each of which is a chain as

we will show in Section 5.3. Since every subsequence has a least upper bound which

is its fixed point, and these fixed points are not the same as the least fixed point of

the entire sequence, we have an infinite number of intermediate approximations to

the set of prime numbers.
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5.3 Theory of Fixed Points

Our primary objective is to show that our functional 1' induces computational chains

within our state space, and that each such chain has a least upper bound, giving us a

complete lattice. First we introduce the property of monotonicity and show that all

of our program statements have this property. We then formally define the properties

of monotonicity and continuity for functionals and show that our functional has these

properties for single and multiple applications of a loop. We also show that 1' is

continuous for all of our noniterative statements. Given that our program statements

are monotonic and that our functional is both monotonic and continuous, we are

assured that our computational sequences are chains. From this we invoke Kleene’s

First Recursion Theorem that guarantees all of our chains have least upper bounds.

5.3.1 Monotonic Functions

We wish to extend our notation for the relation more-defined to states in the logical

(but consistent) way on our extended domain (Nw)”. We let

4

1. x-<x'forallx'€N”.

2. 545m ally'E (ALF—N" and alli’EN".

-<37andy”-<:i:'forallx,yEN".S
i

3.

This ordering has nothing to do with the natural ordering S on the natural numbers.

Definition 5.3 Monotonic Functions

An n-ary function f from (1%)" into ML)" is said to be monotonic if (x1, . . . ,xn) -<

(3/1, . . . ,yn) implies f(x1,. . .,x,,) -< f(yl, . . . ,yn) for all (x1, . . . ,xn), (y1,. . . ,y,.) 6

Win)"-

By this definition we require that whenever the “input” vector 37 is more-defined than

or equal to the “input” vector 55, the “output” vector f(3,) is more defined than or
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.0

equal to the “output” vector f(x) The class of all monotonic functions mapping

(N...)” into (1%)” is denoted by {(Nw)" —»M (Nw)”}.

5.3.2 Properties of Monotonic Functions

The following properties hold for monotonic functions:

1. If f is a unary function, f : N“, —i N”, then f is monotonic if and only if either

a f(w) is w or

0 f(x) is c for some constant c E N and all x 6 NW.

2. For n 2 2, if an n-ary function f, f : ML)” ——> Uta)", is monotonic then either

a f(wl, . . . ,wn) is w or

0 f(x;, . . . , xn) is c for some constant 56 ML)" and for all 53' 6 ML)“.

Monotonicity will guarantee that our results will be predictable from one iteration to

another. We rely on the property of natural extension to ensure monotonicity.

Definition 5.4 An n-ary function f mapping (1%)” into (1%)" is said to be naturally

extended if f(xl, . . . ,xn) = w whenever at least one of the {135,8 is as.

Natural extension assures us that no undefined computation sequence can map to

a meaningful value. Natural extension also ensures that functions undefined on the

variables they manipulate cannot produce defined results.

Example 5.1 Consider the extension of the decision construct in the following way:

0 if TRUE then 51 else to fi(:i:') is 51(5). When the guard tests true we expect

S1 to be defined and will execute it, regardless of the definition of S2.

0 if FALSE then no else 52 fi(f) is 52(5). When the guard tests false, we expect

S2 to be defined and will execute it, regardless of the definition of SI.
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o if «2 then SI else 52 fi(:i:') is (.0. When the guard is undefined, we cannot

execute S1 or 52 regardless of their definition. ‘

The definition of natural extension allows us to apply the Natural Extension

Lemma of Manna [23]:

Lemma 5.1 Every naturally extended function is monotonic.

We have given the operational definition of our functions in Chapter 4. Now we

show that they preserve monotonicity because we can naturally extend them.

Definition 5.5 Natural Extension of Commands.

s The assignment statement naturally extended to yield the value to whenever its

right hand side is w is monotonic since we have w 4 w.

o The decision statement mapping {TRUE,FALSE} x N” into N” is defined

for any 51, S2 6 L(G) as follows:

51(5) 515(5)::1'5115

52(5) ifg(5:')=FALSE

if 9 then 51 else S2 fi(:E) =

This function can be naturally extended to a monotonic function mapping IB“, x

(Nw)” into ML)” by letting, for any SI, S2 6 L(G),

51(5) if QUE) = TRUE

if Q then 51 else S2 fi(:i') = 52(5) ifg(5;‘) = FALSE

w 219(5) = w

 

‘While this function is not the natural extension of ifLfi, we can show it is monotonic by

showing that for input vectors 5." and x’ whenever if -< x’, (if G then 51 else S2 fi)(5:') <

(if 9" then 51' else 52' 5)(&). Let 5 4 a? and assume g = TRUE. Then if 5(5) = 51(5) <

51(5) = 11' 5(5"). Let 5 < 5' and assume a = FALSE. Then if 5(5) = 52(5) < 52(5) = u: 5(5).

Let 5 -< 5" and assume 5 = w. Then if 5(5): 52 < w = if 5(5).
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o The while do od function mapping {TRUE, FALSE} XN“ into N” is defined

for any S E L(G) as follows:

5(5) ifg(§)=TRUE

5 119(5) =FALSE

while 9 do S od(i:') =

We extend this naturally into a monotonic function mapping IB“, x

ML)" into Wu)" for any S E L(G) by letting

5(5) if 9(5) = TRUE

while 9 do S od(5) = f ifg(;i‘) = FALSE

so if 9(5) = w

Monotonicity is an important property for commands as units and also for com-

mands composed into sequences. Composition allows sequences of functions to be

defined in terms of simpler functions. If f is a function from (A0)” into (1%)” and g

is a function from Mfg)" into ML)“, then the composition off and g is a function from

(1)/w)” into (1%)" defined by g(f(x')) for every 5 in (My)? If f and g are monotonoic

functions, then so is their composition since if f and g are monotonic, and if 5 -< 5."

then f(i") -< f((P), which implies g(f(:i:')) -< g(f(:i”) for all f, at" 6 (1)/w)”. So the

composition of f and g is also a monotonic function.

5.3.3 Least Upper Bound

We are using our functional syntactically to build computation sequences, and se-

mantically as a vehicle to produce a computation sequence. We view commands as

partial functions naturally extended to total functions. We restate “-<” in terms of

functions.
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Definition 5.6 Let f, g E {(Nw)” —iM (Nw)”}. We say that g is more-defined than

f, (f -< 9), if f(5) -< 9(5) for all 5 6 ML)“. This relation is a partial ordering an

{(Nw)” —>M (Nw)”} since we have 09 -< f for any f E {(Nw)” -+M (Nw)"}.

Definition 5.7 Let f, g E {(Nw)” -+M (Nw)"}. We say that f is equal to g, (f = 9),

if f(5) = g(5) for all 5 6 ML)".

Proposition 5.5 f = g if and only iff 4 g and g -< f.

Iff = 9 then dom(f) Q dom(g) and dom(g) Q dom(f), and for all 7 6 dom(f),

7.g = 7.]. Now suppose f -< y and g -< f. Then dom(f) Q dom(g) and dom(g) Q

dom(f), so dom(f) = dom(g). Since g 4 f, for 7 6 dom(g), 7.f = 7.g. But since

f<y.for1 6 dmn(f). 1-9 =1.f. 30 f =9- 0

Definition 5.8 Let fo,f1,f2, . . ., be a sequence offunctions in {(Nw)” —tM (.M,)"}.

We denote this sequence by {f,}. Then {f,-} is called a chain iffo -< f1 -< f2 -< .. ..

Definition 5.9 Let {fg} be a sequence offunctions in {(Nw)" ->M (Nw)"}, and let

I 6 {(Nu)" ->M (Nw)"}. We say that f is an upper bound of{f,-} if f.- < f for every

i Z 0. Additionally, iff -< 9 for every upper bound g of {f,-}, then f is called the

least upper bound of {f,-}, denoted lub{f,-}.

The least upper bound of {f,-}, if it exists, is unique since if both f and g are least

upper bounds of {fl}, then f -< g and g -< f so f = g.

Lemma 5.2 hfili [25] Every chain {f,} has a least upper bound.

The least upper bound of a computational chain is the fixed point of the compu-

tation [7]. In our model the fixed point is the first state in the computation where the

specification is met. In the next section we prove that our computational sequences

are chains.
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5.3.4 “;” When Viewed As A Functional Is Continuous

Our functional 1' over {(Nw)“ —1M (Nw)"} maps the set of functions {(N..)” ‘75!

(Nw)”} into itself. That is, 1' takes any monotonic function f defined in a given state

7 as its argument and yields a monotonic function r(f) defined in state 7’ as its value.

The properties of monotonicity and continuity are important for 1'. Monotonicity

and continuity guarantee that we can obtain accurate information about the computa-

tion at intermediate stages. Monotonicity ensures that 1' accurately maps a program

statement to its logical successor. Continuity guarantees that this mapping is correct

over an entire computational sequence.

Definition 5.10 Properties of the functional 'r

I. 1', a functional over {(Nw)" —>M (Nw)"}, is said to be monotonic iff -< g

.mp1... rm < To) for all f, g 6 {war —+M (Aer).

2. The monotonic functional 1' over {(Nw)” ->M (Nw)"} is said to be continuous

iffor any chain offunctions {f,}

1'(lub{f,-}) —:— lub{1'(f,-)}.

Note that since {f;} is a chain and 'r is monotonic, 1'(fo) -< 1'(f1) -< 1'(f2) -< . . .; i.e.,

1'({f,-}) is also a chain. Therefore, by Lemma 5.2, both lub{f,-} and lub{1'(f,-)} must

exist.

We view 1' as the composition operator of known monotonic functions, i.e., for

P0 = So; P6 with So a statement in L(G), and P0, P6 program segments in L(G), Pa =

So; P6 : So; P6 E 1'(Po) = P6. The following theorem shows that 1' is continuous. It

is a variant of a theorem by Manna.

Theorem 5.6 The functional 1' defined by composition of monotonic functions is

continuous.
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Proof:

If 1' consists of just S, a monotonic function, then 1' is clearly continuous. We

showed monotonicity of program statements by naturally extending them. We show

continuity of 1' for the while e do S od statement. The proof consists of showing

a (i) 1'(while 9’ do S od) is monotonic and continuous for one application of the

statement.

0 (ii) 1'(while 9 do S od) is monotonic and continuous for multiple applications

of the statement.

Proof. of (i).

The proof is in two parts. First, 1'(while 9 do S od) is monotonic, second,

1'(while 9' do S ad) is continuous. That is, you can operate on the least upper

bound of a chain and get the same results as if you operate on the least upper bound

of all of its elements, i.e., continuity perserves limits. Suppose while g do S 0d; and

S = S1;S2; - - - ; Sn is a chain of program statements.

r(while 9 do S od) is monotonic.

If G is initially false or g is undefined, then while (4' do S ad is monotonic by natural

extension, so r(while 9 do S od) is monotonic. Suppose g is true for one application.

Then 1' maps 1'(Sl; S2; - - - ; Sn). We write this

J

T(:("'T[§))°") = T(T"(5))

ntimes

to denote that each Si, 1 S i S n, is mapped to its logical successor by 1'. We assume

that 1'", 1 S i S n, is monotonic because the Si, 1 S i S n, are not iterative, and

show that 1""11 is monotonic. First, if Si 4 Si’, 1 S i S n, then by monotonicity

of 1",1'“,...,'r" we have that rj(Si) -< rj(Si’), 1 S j S n. Then, since by natural

extension while 9 do S ad is monotonic, r‘+‘(1'"(Si)) -< ri+1('r"(Si’)). So 1"“(5i) is
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a monotonic functional.

1'(while 9 do S od) is continuous.

Now we show that 1' is continuous, i.e., we show that r(lub{Si}) E lub{1'(Si)} for any

chain {Si} within the scope of the while 5 do S od statement. Since Si -< lub{Si}

for every i 2 0 (each command approximates the lub of the chain of commands by

the definition of least upper bound of a chain), by monotonicity of the functional

1", . . . , 1'" and the while 9 do S od statement, we have 1'(Si) -< 1'(lub{Si}) for every

i 2 0. Therefore, lub{1'(Si)} -< 1'(lub{Si}).

Now let 5 6 ML)". Since the Si, 1 S i S n, are not iterative, we as-

sume that 1'", 1 S i S n, is continuous. We have defined 1'(while 9 do Sod) as

ri+l(,-i(. --1(.S')) . . .) so,

r‘+‘(lub{5i})(s a r‘+'(r‘(- - - (1(1ub{5i}(i’)) - - -))

E Ti+1(lub{Tl(T“l(' ' ' (TH-90(5)» ' ' °))})-

From Lemma 5.2 we know that for every j, 1 S j S 11, there is an i, such that for

every I: _>_ ij:

lub{Tj(Si)}(5) E Tj(Sk)(5).

(every chain has a tub).

Let i0 be the maximum of i1, . . . ,in (we have a series of statements Si). Then for

everyj, l Sj S n:

lub{rj(Si)}(5) z TJ'(52'0)(5),

and so

¢i+1(lub{1"(1'“1('"(T((5i)(5)))"'))l)

a ri+1(1-‘(r"1(-" (7(5i)(5)))”')))

5 ri+1(r‘(r"‘(- - - (1(Si)) ' ' ')))(5)

E 1‘+1(Sio)(5)

-< lub{r‘+‘(5;)}(5)
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And since 5 was an arbitrary element of the domain,

eruuusm -< whirlwin-

r(lub{Si}) -< lub{1'(Si)}.

This concludes the proof of part (i). It shows that 1' is continuous for all of our

noniterative program statements and for one iteration of the while 9’ do S od. Next

we show that 1' is continuous for multiple iterations of the while Q do S od.

Proof. of (ii)

Let W denote while 9 do S od. From the operational semantic definition of W

in Chapter 4, we must show that for S a statement in L(G), while 9 do S od;=>

S; while 9 do S od 5 1'(while 9 do S od) = while 5 do S od. That is, 1' correctly

maps the last exectuatble statement within a while loop to the first executable state-

ment when the guard tests true.

There are two clarifying remarks we can make about this part of the proof:

1. We will presently define 1'(while Q do S od) to be

T(f(- - ' T(W)) ° ' ']= T(T"(W))
V

ntimes

 

This is the case where we have termination. From here the proof is very similar

to the previous proof, except that now we have monotonicity of each one of

the 1"(Wi), 1 S i S n, and we use this to show that 1'(while 9 do S ad) is a

monotonic functional for multiple iterations.
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For continuity, when showing that

lub{1'(Wi)} -< 1'(lub{Wi}),

we recognize that {Wi} -< lub{Wi} instead of that Si -< lub{Si} as we did

previously, because each occurrence of 1'(Wi), 1 S i S n, is now a chain.

2. Finally, we must show that the result holds in the general case when 1' contains

any number of occurrences of W.

The proof is in two parts. First, 1(while g do S od) is monotonic, sec-

ond, 1'(while 9 do S od) is continuous for multiple applications. Suppose

while g do S od = W, and g is true for multiple applications.

1'(while 9 do S od) is monotonic.

Since 9 is true for multiple applications, 1' maps 1'(W1; W2; - - . ; Wn). We write

this

r(r(- - ~1-(W)) - - -) = new»
ntimes

to denote that each Wi, 1 S i S n, is mapped to its logical successor by 1'. This

assumes that the loop terminates. In the previous proof we showed that 1'(W) is

continuous for one application, therefore it is monotonic, since continuity ensures

monotonicity. For each i, 1 S i S n, Wi is continuous, so 1'i is monotonic for each

i, 1 S i S 11. Now we show that 1"“(Wi) is monotonic. First, if Wi -< Wi',

1 S i S n, then rj(Wi) 4 rj(Wi’), 1 S j S 11. By natural extension, the function

whileg do Sod is monotonic, so r‘+1(r‘(Wi)) -< 1"+1(1'"(Wi’)). So 1"“(Wi) is

monotonic over 11 applications.

1'(while 9 do S Cd) is continuous over n applications.

That is, 1'(lub{ Wi}) E lub{r(Wi)} for any chain {Wi} (multiple applications of the

while g do S od statement). Since {Wi} -< lub{Wi} for every i Z 0, by monotonic-
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ity of the functional 1'", 1 S i S n, and the while g do S od statement (from the pre-

vious proof, they are continuous therefore monotonic), we have 1'(Wi) -< 1'(lub{ Wi})

for every i Z 0. Therefore, lub{1'(Wi)} -< 1'(lub{Wi}).

Now let 5 E (1%)". We know 1", 1 S i S n, is continuous (therefore monotonic),

and since 1(Wi) is defined as 1".“(1"'(---1'(W))- - ):

T‘+‘(’ub{Wi})(5) E T‘+‘(T‘(' ° ' (T(lub{Wi}(5)) ' ' °))

2 r‘+'(tub{r‘(r'-'(~- «(wean-~11».

From Lemma 5.2 we know that for every j, 1 S j S 11, there is an i,- such that for

every I: 2 ij:

Iub{~ri(wz')}(5) a ri(w1c)(5).

(every chain has a lab).

Let in be the maximum of i1, . . . ,i,, (we have a series of statements Wi). Then for

everyj,1 Sj S n:

lub{rj(l"Vi)}(5) E rj(l’Vio)(5),

and so

r‘+1(lub{1"(r"‘(--'(T((1‘Vi)(5)))”'))}l

E Ti+1(ri(r‘-1(---(1(Wi)(f)))-~)))

E 7i+1(ri(r‘-‘(- - - (1(Wi)) - - -)))(i")

E 1"+1(Wio)(5)

4 lub{r‘+‘(Wi)}(a‘=’)

And since 5 was an arbitrary element of the domain,

Ti+l(lub{l/Vi}) ‘4 [UbiTi+l(Wi)}

1'(lub{Wi}) 4 lub{1'(Wi)}.
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This shows that 1'(W) is continuous for 11 applications, with n ranging over the

natural numbers since 11 is arbitrary. Cl

5.3.5 Fixed Points of the Functional 1'

Fixed points of continuous functionals are states in a computational chain where the

specific purpose or goal of the computation is met because they represent the best

approximation to the limit of the computation [7]. Formally, let 1' be a functional

over {(NL)” -+M (Nw)”}. We say that a function f 6 {(Nw)” -+M (Nu?) is afixed

point of 1' if 1'(f) = f. If f is a fixed point of 1' and f -< 9 for any other fixed point g

of 1', then f is called the least fixed point of 1'.

1' is a continuous functional over {(Nw)" -—»M (Nw)"}. Let 1'°(w) = o; be the totally

undefined function. Consider the sequence of functions r°(w), 71(0)), 72(w), . . ., where

1"“(52) is 1'(1"(w)) for i Z 0. Each function 1‘(w) is a member of {(Nw)” -*M

(1%)”). By definition, to -< 1(5)), and since 1 is monotonic (it is continuous, therefore

monotonic), {1"(w)} must be a chain. That is:

w<r(w)<r2(w)~-.

So by the least upper bound lemma, liib{rl(w)} must exist. That is, for the continuous

functional 1' over {(Nw)" —>M (Nw)"}, the sequence {1"(w)} is a chain and has a least

upper bound.

Because of this property, we can invoke Kleene’s First Recursion Theorem.

Theorem 5.7 [First Recursion Theorem]

The continuous functional 1' has a least fixed point that is the least upper bound of

{T‘(w)}-

Denote the least upper bound of {1"(w)} by fp,. fp, is a fixed point of 1' because 1'
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is continuous so

7(fP1) = 1'(lublr'lwl) = lub{T‘+‘(w)} = lul){T"(w)} == fPr-

fp... is a least fixed point of 1' as well, i.e., fp, -< 9 for any fixed point 9 of 1'. First of all,

1'°(w) = w -< 9. Then, if 1'“1(w) -< 9 for some i 2 1, since 1' is monotonic (because 7

is continuous) and g is a fixed point of 1', we have that 1"(10) = 1'(1'“1(w)) -< 1(g) = g.

30 r‘(w) -< g for all i Z 0. This implies that g is an upper bound of {1"(w)}, but

since fp, is the least upper bound of {r‘(w)}, it must be that fp, -< g.

We have defined operational syntax that constructs computation sequences using

the functional “;” that we have proven is continuous for all of our program statements.

This gives us the existence of a least upper bound for any sequence because we have

defined our state space to be a complete lattice with 0 the least element. Note that

0 -_'=. FALSE -'._=. J. E [l -_=. w are used to represent undefined at the various levels of

abstraction in our environment. Thus, even for partial functions for which no value

is defined, we have that lub{} = FALSE, and for partial functions defined on their

input and for all total functions, lub{O} = 7 6 P (where 0 represents a nonempty

sequence), which by definition has a descriptive logical sentence.



CHAPTER 6

The wpw Predicate Transformer

The wp predicate transformer uses the initial state/final state pair to reason about

correctness. In this model all program statements are atomic, even loops. While the

semantics of the wp predicate transformer allude to execution of a loop, the proof

of termination ignores it by focusing only on final results. The class of functions

addressed by the wp method is the primitive recursive class. It is an easy exercise

to show that all primitive recursive functions are computed by bounded loop pro-

grams [4],]22],[26].

Our interest is in verifying the correctness of unbounded loop programs. Whereas

bounded loop programs require a given number of applications of a loop to its argu-

ments and then terminate, unbounded loop programs correspond to repeated appli-

cations of a loop to its arguments until some condition of the arguments is satisfied.

Unbounded loop programs are defined by each iteration of the loop, as Sommerhalder

and van Westrhenen formalize [22].

Definition 6.1 The i-iteration of a function f is a function from (1%)“ to 0%,)"

denoted by fv" and defined as follows.

I. Let V,(5) é {mlfm(5) is defined}.

That is, V,-(5) is the set of indexes m such that f(5) is defined form iterations.

74
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2. Let minV,(5) denote the least element of V,(5). Then f“ g A5[if (571(5) at 0

and f'”(5) l for all m S min V,(5)) then f'"“‘ “(5) else T].

Note that the fixed point, fv‘(5), is the least upper bound of a well ordered

sequence of approximations that defines the loop.

In our model loops are not atomic because each iteration is represented as an

element in the computational chain. Dijkstra applied his iterative function to its

variables once and obtained a single predicate as his result, enabling him to define

iteration as a recurrence relation between predicates. We apply the iterative function

repeatedly, each time to updated values of the variables, and obtain a new predicate

at each iteration. In essence, we iterate through a family of functions. Because of

this we need a series of maps from predicate to predicate, so we define iteration

as a recurrence relation between predicate transformers. At this point Dijkstra’s

“. . .the semanticsstatement about the difficulty of general recursion becomes clear:

of a repetitive construct can be defined in terms of a recurrence relation between

predicates, whereas the semantic definition of general recursion requires a recurrence

relation between predicate transformers. This shows quite clearly why I regard general

recursion as an order of magnitude more complicated than just repetition” [l].

6.1 Macros

Writing programs that use only subscripted elements of a program vector can be

tedious. More importantly, because we wish to express the set of predicates that

describe each element of a computational chain, we need notation to distinguish

them. Like Hehner [8], we use the convention of inventing a name for a program

segment, using the name in place of the segment, and specifying the text of the

segment elsewhere. We use these names directly in our specifications to reason about

the code segment the specification describes. Hehner referred to the use of a name
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in place of some statement as a “call.” We use the term “macro.” In both cases

the process is one of simple inline code substitution. Hehner used his call names

as placeholders in a recursive refinement. We use our macro names directly in our

specifications to reason logically about the correctness of the program segment that

uses them.

Example 6.1 The program Q = (p, k,n,P) = (2,1,4,x4 := x3;x1 := xg;while x1 74

0 do x1 := x1 +1;x4 := x441; od;end.) adds the value Of$2 to the value ofx1.

We allow giving variables arbitrary names that are strings of characters beginning

with a character. All of the registers used must be listed in a header that names the

macro. The program variables naming the registers must be listed in a specific order:

output variables first, next input variables, last local variables.

macro ADD(registers: sum, x, 1 ,count);

count := y;

sum := x;

while count 31$ 0 do

sum := sum + 1;

count := count-11;

od;

To convert a macro into the program segment it represents, number the variables

in the register list upwards from 1 in the order given. Remove the header with the

register list.

To transform macro ADD into the code segment it represents:

1. Number the variables in the register list: sum = x1, x = xg,y = x3,count = x4.

2. Remove the header with the register list.

3. The program sequence is:

x., := x3; 4: count := y;
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1'1 3: 1'2; 4: sum :2 x;

while x4 2,19 0 do (it while count at 0 do

x1:= x1 +1; (1) sum := sum +1;

x4 := x441; {it count := count-Ll;

od; 4: od;

Each occurrence of a macro name in a program sequence must be converted to the

program segment it represents before it is executed. To make use of a macro name in

a program we use a macro statement: x := ADD(x,y).

6.1.1 Syntax of Macros

Macros involve simple in-line substitution of program text. Macros may be composed

of any legal statement in our language. The syntax of a macro is:

macro< string > (registers : < stringl >, < string; >, . . . , < stringn >);

< sequence >;

< string >::=< character > I < string >< character > I < string >< numeral >

< character >::= AIBI - - - |Z|a|b| - - - |z

The macro statements are:

a (21,...,zk) := f(l‘un-s-Tp),

o (21,...,zk):= (21,...,zk)+f(1’1.---,$p),

a (21,...,zk) := (21,...,zk)4f(x1,...,xp),

where f : IN” —1 IN" is a computable function. The above macro statements stand for

a sequence P computing the function value f(x1,..., x,,) = (y1, . . . , yr) and assigning
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the values of the variables y; to the variables 2,, 1 S i S k. The values of all other

variables occurring in the program containing the macro statement remain unchanged.

6.1.2 Use of Macro Names

We use macro names directly in our specifications. Macros allow us to name specific

code sequences.

Example 6.2 Suppose we have this code sequence:

S1 ;

S2;

Sn;

We can name the sequence 51; S2; - . - ; Sn “S” and we can verify the correctness of

S by verifying the correctness of SI; S2; - - - ; Sn.

A transformation of a macro name to the code it represents consists of a direct

substitution of the code sequence for the macro name in such a way that side effects

are not allowed. A macro names the partial function computed by the code sequence

the macro represents. We reason about the correctness of a computation of the partial

function with the preconditions and postconditions we write for the code sequence

that computes it. Because a macro represents this code sequence, the preconditions

and postconditions of the code sequence are preconditions and postconditions for the

macro.

When we use a macro to name a partial function in a computational sequence, we

may interpret the function name as a predicate.

Example 6.3 Consider a representation of a computational chain of a simple code

segment, with precondition Q, invariant I, and postconditions Hi, 1 S i S 5. This

small program, similar to Example 6.1, is composed of two sequential statements (SI
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and S2), followed by a loop containing statements S3 and S4 that executes twice. The

postcondition of the loop is R5.

{Q}SI; {R1}S2; {R2}{I}S3; {R3}S4; {R4}{I}S3; {R3}S4; {R4}{R5}

A macro will allow us to name a piece of code, say P = S3; S4 and verify its correct-

ness once. When we verify the entire code segment, we can substitute this name in

a computational chain. For verification of the entire code segment the computational

chain becomes

{Ql51;{131}52; {R2}{IIP;{1}P;{R5}

We can write a postcondition asserting the correctness of the macro since we have

verified it elsewhere, say R5’ (because each execution of P should provide a better

approximation to the state where R5 is fulfilled), and the computational chain becomes

{Ql51;{31}52; {RP-HOP;{R5'I{I}P;{R5'I{R5}

Since our computational chains are well-ordered we have a structure we can investi~

gate inductively. The result is a logical and consistent method for reasoning about

bounded, unbounded, and nonterminating computations.

6.2 The wpw Predicate Transformer

We denote our predicate transformer wpw. Like the wp predicate transformer our

wpw predicate transformer is a conjunction. The wp predicate transformer is a con-

junction of termination and partial correctness [I], [19]:

wp(A, R) E wp(A, TRUE) A wlp(A, R).
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wlp(A, R) states that the computation will be correct if it terminates. wp(A, TRUE)

guarantees that the computation will terminate after a predefined number of itera-

tions of any loop [1].

Our wpw predicate transformer includes the wlp predicate transformer which takes

a command and its postcondition as arguments because the wlp predicate transformer

asserts that the postcondition will be fulfilled if the command terminates.

The other conjunct of the wpw predicate transformer expresses incremental cor-

rectness. This conjunct defines a recurrence relation on an ascending chain of pred-

icate transformers. For noniterative commands, the chains are composed of a single

element and the arguments to the predicate transformer of that element are the com-

mand and its postcondition. For the iterative command the chains may be finite

or infinite. The arguments to the predicate transformers in the chains of predicate

transformers are the command obtained by combining the statements of the guarded

command and the logical assertion of the command’s specification. We interpret this

assertion as a logical approximation to the predicate describing the limit of the com-

putation for each iteration. Each appearance of this assertion in a computational

chain represents the least upper bound of a subchain within the chain, and describes

the most recent member of the family of functions to execute. We describe this as-

sertion by appending a prime (I) to the letter we use to represent the postcondition

(see Section 2.4).

We adopt the same semantic definition for statements where termination is not an

issue as Dijkstra, except that the semantic definition of our decision construct reflects

its deterministic nature. The semantic equations for our noniterative commands are:

1. Assignment: wpw(“x := e”, R) = R:

2. Sequencing: wpw(“S1;S2”, R) = wpw(“Sl”, wpw(“S2”, R))

3. Decision: wpw(“if Q then S1 else S2 fi”, R) = 9 => wpw(“Sl”, R) A «9 =>
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wpw(“S2”, R)

4. wpw(“end.”, R) = R since end., like Dijkstra and Gries “skip” is a no-op.

6.2.1 Formal Definition of an Unbounded Loop

Let WHILEDO represent the command while 9 do S 0d. Let IF represent the

command if Q then S fi. The formal semantic definition of our looping command

is given by cases using the predicate Ik(R) which describes the set of all states from

which WHILEDO can execute k times leaving R true.

Definition 6.2 For guard Q, postcondition R, and approximation R’:

s 10(R) = FALSE. This predicate represents the set of states before the guard is

initially tested.

a Ik+1(R) = Ik(R) V wpw(IF,Ii.(R’)), k > 0. This predicate represents the set of

all states from which WHILEDO has executed correctly k times such that either

so A R’ A R after I: iterations or g A R’ A -1R, i.e. either the loop has terminated

and R is true (Ik(R)) or another interation is required (wp(IF,Ik(R’))).

Note the similarity between this notation and Dijkstra’s notation [1]. The principal

difference is that our chains are ascending, while Dijkstra begins with a descending

chain that he proves is bounded from below by zero, since he always assumes ter-

mination a priori. Given this definition we can define our semantic operator for our

iterative command.

Definition 6.3 wpw(lVI-IILEDO, R) = (Vk: k > 0 : Ik(R)).

This definition says that either termination and Ik_1(R) is true or the computation

is correct to this point and one more iteration is needed wp(IF, Ik-1(R’)).



6.2.2 Incremental Progress

In the definition above we gave the formal definition of a loop in terms of the chain

of predicates that describe the computation. Next we propose a definition for a loop

in terms of the predicate transformers we use to evaluate the chain of predicates. We

will show that this proposed definition exactly defines the semantics of a loop in our

model.

Definition 6.4 Incremental Progress

wpw(WHILEDO, R) E wp,(S, R2) A wlp(WHILEDO, R),i = 0,1,2, . . .

where wp,-(S,R§) E wp(S, TRUE) /\ wlp(S, R2).

This predicate transformer captures the meaning of our formal definition be-

cause it addresses the situation where termination has occurred and R is realized

(wlp(WHILEDO,R)) [1],[19],[6]. It also addresses the situation where more itera-

tion is required (wp;(S, R[)) but the computation is correct to this point. In this case

the statements within the loop have executed i times, and for each discrete execu-

tion j, l S j S i, we have reached a state that represents the least upper bound of

the computational subchain induced by those statements. Each of these least upper

bounds has a predicate logic sentence identified by the predicate Rg.

Continuity of our computational chains ensures we can obtain better and better

approximations to a computation’s limit as we map from predicate transformer to

predicate transformer. We will show that at each fixed point the command of our

predicate transformer is more defined than its predecessor because its nucleus is larger.

Monotonicity ensures that wp-1(S, R’l) => => wp,_1(S, Rf_,) => wp;(S,R:-) => -- -.
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Theorem 6.1 Incremental Progress Theorem

wpw(WHILEDO, R) a wp,(5,12:.) A wlp(WHILEDO, R), i: o,1,2,...

where wp;(S, R:) E wp(S, TRUE) A wlp(S, R:).

Proof. Induction on i, the index of a state in a computational chain.

0 Basis: i = 0. This is the initial state before execution, described by 0, the

minimal element in our lattice. Since S has not executed, R3 = no, so

wpw(WHILEDO, R) = wp0(S,w) A wlp(WHILEDO, R)

= w A wlp(WHILEDO, R)

= {}

= FALSE

0 Hypothesis: We assume that for each index i > 0 in the chain, we have

that S executes once, i.e., wp(S, TRUE) and for that execution we know that

wlp(S, R:). Thus, because of the structure of our state space and by continuity of

computational chains, we have N(S‘) = (S’)(S‘)"l = wpg(S, 12:), i.e., our initial

states were such that after i iterations R:- is true, and iterated composition of S

with itself produces a nucleus of states that map into the lub of the chain, the

state described by R:.

0 Case A: Index i is the tub of the entire computation, i.e., the loop has

terminated. In this case we have Invariant A R:- A pg => R, since R: is

met and the loop has terminated we certainly have wlp(WHILEDO, R),

so wpw(WHILEDO, R) E wp(.(S, R:) A wlp(WHILEDO,R),O S k S i.

0 Case B: Index i is the lab of a subsequence of the entire computa-

tional chain, i.e., the loop has not terminated and R:- is an approxima-

tion to R. wlp(WHILEDO,R) insures partial correctness of the loop;
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it is the set of initial states from which R will be satisfied if the com-

putation terminates. We have already shown by continuity of computa-

tional chains that wpk(S,R’k),0 S k S i, therefore to this point we have

wpw(WHILEDO, R) E wpk(S, R1.) A wlp(WHILEDO,R),O S k S i.

a Show: wpw(WHILEDO,R) E wpg+1(S,R:-+1) A wlp(WHILEDO, R). By

continuity of computational chains one more iteration of the loop produces the

result we need, because by iterated composition of the command S with itself

we have N(S‘“) = (S"S)(S’S)‘1 = wpg+1(S, R:+,). The two cases, either i +1

is a final state or i + 1 is a non-final state, are the same as we asumed in our

hypothesis, with i+ 1 replacing i. So wpw(WHILEDO, R) E wpg+1(S, R2“) A

wlp(WHILEDO, R), i = 0,1,2,. .. .

6.2.3 Pr0perties of the wpw Predicate Transformer

Like Nelson [6] and de Bakker [5] we eliminate Dij kstra’s Law of the Excluded Miracle:

wp(S, FALSE) = FALSE because nonterminating computations return an empty

set of final states. There are other properties that are important to our reliance on

computational chains for verifying the correctness of programs.

a Property 1a: The predicate transformer wpw is monotonic for terminating

loops. Let (Q’ A Q) => (R’ A R). Then

wpw(S. (Q' A 62)) => wpw(S. (3 A R))-

Proof: (Q’ A Q) A (R’ A R) = (Q’ A Q). Therefore

wpw(S. (Q’ A 62)) = wpw(S, (Q’ A Q) A (R’ A R))

= tva(5, (Q’ A Q)) A wpw(S, (R’ A R))

=> wpw(S, (R’ A R)).
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a Property 1b: The predicate transformer wpw is monotonic for nonterminating

loops. For iterations i and j, with i < j, let Q: => Q:. Then

wp'w(3.QZ-) => wpw(5.Q§-)-

Proof: Q: A Q:- = Q:. Therefore

wpw(S. as) = wpw(s, o: A c231

= wpw(S. on A wpw(s, (2;)

=> wpw(S. Q3)-

0 Property 2a: The wpw predicate transformer is continuous for terminating

loops.

wpw(S, Q’ A Q) V wpw(S, R’ A R) = wpw(S, (Q’ A Q) V (R’ A R)).

Proof:

(=>): Let 7 6 wpw(S,Q’AQ) or let 7 E wpw(S, R’AR). Then 7 6 wpw(S,(Q’A

Q) V (R’ A R))-

(<=): Let 7 6 wpw(S, (Q’ A Q) V (R’ A R)). Then either 7 E wpw(S, Q’ A Q) or

7 e wpw(S, R’ A R), or both. If both, then we are done. If 7 e wpw(S, Q’ A Q)

then 7 E wpw(S,(Q’ A Q) V wpw(R’ A R). If 7 E wpw(S,R’ A R) then 7 6

wW(5,(Q’ A Q) V (R‘ A R))-

0 Property 2b: The wpw predicate transformer is continuous for nonterminating

loops. For iterations i and j, with i < j:

wpw(S. on v wpw(s, as) = wpw(s, o:- v C23).
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Proof:

(=>): Let 7 E wpw(S,Q:) or let 7 E wp-w(S,Q:-). Then 7 6 wpw(S, Q: V Q:).

(4:): Let 7 6 wpw(S, Q:VQ:). Then either 7 E wpw(S, Q:) or 7 E wpw(S,Q:),

or both. If 7 is in both, then we are done. If 7 6 wpw(S,Q:) then 7 E

wpw(S,Q:)prw(s,Q;-). 117 e wpw(S, as) then 7 e wpw(s.os)prw(s.Q:-).

Property 3a: The wpw predicate transformer distributes over conjunction in

a terminating computation.

wpw(S, Q' A Q) A wpw(S, R' A R) = wpw(S, (Q' A Q) A (R’ A R)).

Proof:

(=>): Let 7 E wpw(S, Q’AQ) and let 7 E wpw(S, R’AR). Then 7 E wpw(S,(Q’A

Q) A (R’ A R)).

(<=): Let 7 E wpw(S,(Q’ A Q) A (R’ A R)). Then 7 E wpw(S, Q’ A Q) and

7 E wpw(S, R’ A R). Therefore, 7 E wpw(S, Q’ A Q) A wpw(S, R’ A R).

Property 3b: The wpw predicate transformer distributes over conjunction in

nonterminating computations, provided that the index range of the predicates

it takes as arguments is not empty. This restriction ensures we cannot map an

undefined intermediate state to an defined state. For iterations i and j, with

i < j:

wpw(S, Q:) A wpw(S, Q:) = wpw(S, Q:- A Q:).

Proof:

(=>): Let 7 6 wp'w(S,Q:-) and let 7 E wpw(S,Q:). Then 7 6 wpw(S,Q:- A Q:).

(<=): Let 7 E wpw(S,Q: A Q:). Then 7 E wpw(S,Q:) and 7 6 wpw(S,Q:).

Therefore, 7 E wpw(S, Q:) A wpw(S, Q:).
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6.2.4 Relationship Between I, R’, and R.

The logical relation between the invariant (I), the approximating predicate (R’), and

the postcondition (R) of a loop is implication: I => R: => R5, => - - - => R whenever a

loop is terminating.

If the loop is bounded then the invariant and the approximation may be the same.

This work is not intended to address this case because it has been fully explored by

others, and, given that we have a priori knowledge of the moment of termination, an

approximation to the postcondition is superfluous. We have the fact in advance that

the postcondition is the loop’s specification and that it will be fulfilled. This research

is valid for this case because R’ can certainly be defined, but is intended to be used

beyond the primitive recursive class of functions.

If a loop is unbounded but terminating (it computes a total recursive function), it

is “controlled” by a Boolean guard that is a logical sentence describing the condition

of the loop’s variables (usually the condition we expect them to be in at termination).

It may be the case here that several iterations are required before anything nontrivial

can be said about the loop’s variables. The example we give in Chapter 7 of a total

recursive function is a good example of this phenomenon. Before the loop iterates

at all the only variables it manipulates that we can comment on are the variables

set elsewhere in the program. But one pass of the loop allows us to say much more

because the loop has been able to compute a partial solution and set its variables to

reflect this.

Where the invariant of a loop defines upper and lower bounds for some variables in

the loop, the approximating predicate allows us to be more specific. First, it enables

us to pinpoint the values within the bounds set by the invariant (for those variables the

invariant can describe). Second it allows us to make a statement after each iteration

about the variables involved with the guard of the loop (that the invariant may not
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apply to). Third, it allows us to make a statement about the variables specific to the

computation but not involved with the guard or the invariant. We do this by showing

that each pass leaves I A R’ = TRUE.

If the loop is nonterminating then its postcondition is FALSE. The approxima-

tion predicate, true after each iteration, allows us to actually say something about the

variables (Dijkstra could say nothing, Nelson could say FALSE, which is not very

useful). In this case the relationship between the invariant and the approximation is

still implication. The postcondition is not involved because it will never be reached.

Technically, it doesn’t exist. We have: I => R’1 => R: => - - -



CHAPTER 7

Application of the wpw Predicate

Transformer

7.1 Description of the Method

We use the Incremental Progress Theorem to help us develop programs that compute

recursive functions. The wp calculus method of predicate transformers is the moti-

vation for our method and, while we have extended the range of programs for which

proofs of correctness can be written using our method beyond what the wp calculus

can do, we have attempted to design a method that is easy to use.

The concept of an invariant is fundamental to the correctness of all loops, bounded

and unbounded. We write Invariant A g => wpw(IF, Invariant) to mean that one

execution of the guarded command list S encompassed by while 9 do S ad, which

is equivalent to executing if Q then S fi one time will not affect the truth of the

invariant, provided it is true before execution commences. Given this, any number of

iterations leaves the invariant true. Furthermore, since the invariant is independent

of the guard of a loop it remains true if the loop terminates.

Our proof of correctness method addresses the truth of the loop invariant, both

before execution and after each increment. Our proof of correctness method also

89
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recognizes the important role of the specification of the code that comprises the loop

body (the approximating predicate). Since it is the definition of the purpose of the

code within the loop it must be fulfilled after the first iteration and remain true for

all subsequent iterations. Finally our method recognizes that in conjunction with

the invariant of the loop and a false guard the specification of the loop body implies

the truth of the postcondition. Unfortunately, in this class of functions termination

cannot always be predicted and so in the face of nontermination, we depend on the

truth of the conjunction of the invariant and the specification of the loop body at

each fixed point in the computational subchain to verify that our code can execute

correctly as written.

To prove correctness using our method it is necessary to show the truth of the

entites we have been discussing for every loop. We provide a checklist so that a pro-

gram developer can be certain that nothing has been forgotten.

Checklist for showing correctness of a loop:

1. Show that the invariant (I) of the loop is true before execution of the loop

begins.

2. Show that an execution of the loop body terminates with the invariant of the

loop and the specification of the code within the loop both true. For postcondi-

tion R and the approximation to R, R’, this means show that I A R’ = TRUE.

R’ is an approximation to the postcondition R. It is obtained by combining

the postconditions of each statement within the loop by conjunction, and then

simplifying the predicate logic sentence that results.

3. Show that if termination occurs the postcondition is true, i.e., show that I A

R’A-Q=>R.
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4. For S (the statement list within the scope of the guard) show wp;(S,R:),i =

1, 2, . . ..

7.2 Examples

Code for the programs we use may be found in Section 7.3 at the end of this chapter.

7.2.1 Proof of Correctness of a Total Recursive Function

We demonstrate our method on a total recursive (but not primitive recursive) func-

tion. The program that computes this function requires an unbounded loop, so even

though it terminates, the methods of Dijkstra and Gries cannot be used to prove that

it is correct.

We write gm(x) for the result of composition of g with itself m times. In particular,

9°(z‘) = 1%

f(x) = 906).

92(3) = g(9(a=)).

and so on. In general we can write this as the recursion

9°(x) = x,

y'"“($) = 9(9’"(1‘))-

For the function we want to compute we define

x+l ifx=00rx=1

fut”):

x + 2 otherwise,

fn+1(1‘) = f§(1)- Where fn+1(€v) = 5(1) = fn(fn ' ' ' (fn(1))'°°)

.1: times

A basic property of this function is given by a lemma found in Davis and Weyuker [26].



Lemma 7-1 fn+1(33 '1' 1) = fn(fn+1(1'))-

Proof:

fa+1(x +1) = fif“(1)

= fn(f.f(1))

= fn(fn+1(1‘))

With this lemma we can show that f,,(x) = A(n,x):

fi+1(-’L' +1) = f£(f£+1($);

and

A(i+1,x +1) = A(i,A(i+1,x)).

For the base cases we have

A(i,0) = 1 = f;(0)

x+l ifx=0,l

A(Oa'T): =f0($)

x+2 ifx>1.

The recursively specified function A(i, x) is a variant of a function introduced by W.

Ackermann.

We note that fn(0) = 1,71. 2 O and fn(1) = 2,n Z 0 since f,,(1) = f,,_1(1) =

- - - = fo(1) = 2. We can prove that this function is total by showing that f,,+1(x) =

f,,(fn - - - (fn(1)) . - ) = ff(l), for all n 2 1 and x _>_ 0, i.e., the function is defined on

all of its arguments. We demonstrate that it is computable by giving an algorithm that

computes it and showing the proof of correctness using our method. We demonstrate

that this function is not primitive recursive by the fact that it contains an unbounded

loop. We must use an unbounded loop because the function f,- is monotonically

increasing for all i Z 1, i.e., we cannot find an a priori upper bound for the function

in general because the runtime is dependent on the index of the function for all indices
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greater than or equal to one.

We present our algorithm in the form of a macro to make it more easily readable.

See Figure 7.1 in Section 7.3. The program calls one small macro that represents the

base case of our functional specification, see Figure 7.3. The program calls the macro

that computes values other than the base (see Figure 7.2) from within a bounded

loop.

We prove the correctness of macro F1111. In this proof we show how our method

works for bounded and unbounded loops, assignment statements, sequencing, and

decision statements. Once the correctness of macro FM1 is shown, the proof of the

bounded loop in macro Examplel in Section 7.1 is an easy exercise of the notation.

The sequence operators II and V have been defined in Chapter 4, Section 4.2.1 and

Section 4.2.2. We use them here to manipulate a register we call Stack.

Proof of the bounded loop:

j := 0; i := i — 1; x :=]]’Stack; x := x — 1;

{Pre :j = 0 A pushing > 0}

{IzOSjSpushingAOSxSm—I}

{Bound : t = pushing — j}

whilej < pushing do

Stack := x [I Stack;

i := i + 1;

i ==j + 1;

{R’:1SjSpuslzingAStack:,-=x:i—jSiSi+j}

od

{R :j = pushing A Stack,- = x : i — pushing S i S i + pushing}

1. Show that the invariant I is true before execution of the loop.
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o wpw(“j := 0”, 0 Sj S pushing)

a 0 S 0 S pushing

a TRUE

2. Show that an execution of the guarded command terminates with I A R’ true.

a wpw(“Stack := x l] Stack;i:= i+1;j :=j+1”, 0 S j S pushing Al S

jSpushingAStackgzxzi—j SiSi+j)

s wpw(“Stack := x [I Stack;i := i+1”, wpw(“j := j + 1”, 0 S j S

pushingAStackgzxzi—j SiSi+j))

o wpw(“Stack := x I] Stack”, wpw(“i z: i+ l”, 0 S j +1 S pushing A

(Stack;=x:i—j+1SiSi+j+1)=w)

s wpw(“Stack := x H Stack”, 0 S j+ 1 S pushing A (Stacie-+1 = x :

i+l—j+1 Si+1Si+1+j+1)=co)

a O S j S pushing A Stack,- = x : i -j S i S i+j. Implied by the invariant.

3. Show that upon termination the postcondition is true, i.e., show that I A R’ A

“(9) => B.

a 0 Sj S pushingAl Sj S pushingAStack; = x : i-j S i S i+jA-1(j <

pushing) => j = pushing A Stack,- = x : i — pushing S i S i + pushing.

a j = pushing A Stack,- = x : i — pushing S i S i+ pushing.

4. Show wp,(A,R:),i=1,2,...

0 Basis: If the index of the computational chain is 1 then we have executed

once and j = 1 and by 2 we have that 0 S j S pushing A Stack,- = x :

i—jSiSi+j. Sol SjSpushingAStack;=x:i—jSiSi+j.

o Hypothesis: Assume for index k > 1 that 1 S j S pushing A Stack,- =

x:i-—jSiSi+j.
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0 Show: For index k + 1.

Case A: j = pushing. Then termination has occurred and by 3 we have ‘

that I A R’ A “(9) => R, i.e., j = pushing A Stack,- = x : i— pushing S

i S i + pushing.

Case B: j < pushing. Then the computation has advanced one more step

and by2 wehaveO Sj+1SpushingAStack,-+1 = x :i—j+2 Si+l S

i+j+2, i.e., 0 Sj SpuslzingAStackg+1 = x : i+1—j S i+l S i+l+j.

Proof of the major IF...FI statement:

if top 2 1 then

{j = pushing A Stack,- = x : i — pushing S i S i + pushing}

else

val := val + F0(1);

fi

{(I = pushingAStack, = 33 i i—pushing S i S i+Pushing)V(top = 0Aval =

val+ F0(1))}

Proof:

wp(IF...FI,R’) = (top 2 1V top = 0)/\

s (top 21=> wp(“IF...FI”,j = pushing A Stack,- = x: i—pushing S i S

i + pushing)A

(top = 0 => wp(“val := val + F0(1)”, val = val + F0(1))

TRUEA(top _>_ 1 =>j = pushingAStack, = x : i—pushing S i S i+pushing)

A(top = 0 => val = val + F0(1))

TRUE A TRUE A TRUE.
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Proof of the unbounded loop:

i := 1; Stack := index || Stack; x := index;

{Pre:Stack1 = m — 1 A val 2 0}

{IziZOAOSxSm—I}

{Bound : none}

while i at 0 do

if top _>_ 1 then

else

6

{(j = pushingAStack; = x : i—pushing S i S i+pushing)V(top = OAval =

val+ F0(1))}

i := i - 1; top :=[]’Stack;

{R’:(top=0Aval=k*F0(1):l S k Spushing)V(top21AStack,- =x:

i —pushing S i S i + pushing)}

od

{R : i = 0 A val = pushing =1: F0(1)) and pushing * F0(I) = FO”““”‘9(1)

1. Show that the invariant I is true before execution of the loop.

0 = 0 S x S m — 1 is true by the Precondition of the loop, since the stack

only holds the value m — 1.

a = TRUE.

2. Show that an execution of the guarded command terminates with I A R’ true.

a wpw(“IF...FI;i:=i— 1”, IAR’)
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s = wpw(“IF...FI”, wpw(“i :2: i — 1”, IA R’)

s = wpw(“IF...FI”, IA R’)

a 2 (top 2 lAj = pushing A Stack,- = x : i -pushing S i S i+pushing) V

(top = 0 A val = k :1: F0(1) : 1 S k S pushing)} which is true from the

proof of the if...fi statement, the truth of the invariant, and continuity of

computational chains.

3. Show that upon termination the postcondition is true, i.e. show that I A R’ A

-(Q) => R.

s i 2 GAO S x S m—1A(top 2 1AStack,~ = x:i—pushing SiS

i +pushing V top = 0 A val = k =1: F0(1):1 S k S pushing) A -1(i 79 0) =>

i=0Aval=k*F0(1).

a OSx Sm—lAi=0Aval= k*F0(1)A1 S k Spushing=>i=0Ak=

pushing A val = pushing =1: F0(1), because the stack is empty, there were

pushing copies of index 0 on the stack, and the stack is decrimented at the

end of each pass of the loop, so the line “val := val+ F0(1)” was executed

exactly pushing times.

4. Show wp,-(A,R:-),i=1,2,...

0 Basis: The index in the computational chain is 1. Then by 2 we have that

iZOAOSxSm—IAR’.

o Hypothesis: Assume that for index k > 1 we have i Z 0 A 0 S x S

m — 1 A R’.

a Show: For index k + 1.

Case A: i = 0. Then the stack is empty and termination has oc-

curred. So by 3 we have I A R’ A -‘(g) => R, i.e., i = 0 A val =

pushing =1: F0(1). But val = pushing =1: F0(1) = FO”“”“"9(1), but this
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is fm_1(fm-2("'(f0(1))"')) = f,,,_1(1), because each time we iterate

through the loop, the variable representing the index (x) is decrimented.

0 Case B: i 75 0. Then the computation has advanced one more step and

by 2 we have IA R’.

Using the foundation of Dijkstra, neither Dijkstra nor Gries are able to say any-

thing about the correctness of this program because of the a priori demonstration of

termination that is required. Using our foundation we can show that the invariant

we write for a loop is a true invariant. We can show that the conjunction of the

loop’s invariant and the approximation to the postcondition imply that each incre-

ment of the loop is correct. We can show that the conjunction of a loop’s invariant,

the approximation to the postcondition of the loop, and a negative guard for the

loop implies that the postcondition is true. We can apply induction to each index

of the computational chain induced by the program statements, and show that as

the computation progresses each element of the computational chain has a logical de-

scription that either accurately approximates the limit of the computation or is itself

the limit of the computation, depending on the condition of the loop’s guard. With

our method we can show the total correctness (partial correctness and termination)

of this total recursive function.

7.2.2 Proof of Correctness of a Partial Recursive Function

This program reads a sequential stream of 8-bit ASCII characters; these characters

are represented as natural numbers in the range 0 . . .255. We assume that end offile

(eof) is < RETURN >, so the program will read the input stream

cliar1,c/1ar2,clz.ar3,...,char1,,< RETURN > .
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In ASCII, < RETURN >= 10. The value of k is unknown until the program

ends. We use the notational convenience of multiplication in this example for clar-

ity. A macro for multiplication and its transformation into our language is given

at the end of this section. This macro could be invoked with the macro statement

y := MULT(y,thousand) with thousand = 1000, and the register list changed to

reflect this.

macro Example2(registers : y, x, co], 2, count);

2 := x;

3! == 0;

count := 0;

while x 75 eof do

count := count + I;

y:=y*1000;

y:=y+z;

z:=x;

od

This simple program works by concatenating the current value in the input register

onto the right end of the string held in the output register by first multiplying that

value by 1000 and then adding the new value. No a priori bound can be defined

for this loop because the number of characters read (the final value of count) will

be unknown until the program terminates. None of the current methods based on

the wp predicate transformer is able to verify the correctness of this loop because it

is unbounded. Since the loop has no a priori upper bound, Nelson, Hesselink, and

de Bakker would have to assign the postcondition FALSE to this loop. We use our

method to say much more than FALSE in a proof that it is correct.

Proof of the unbounded loop

{Pre:countzOAy=O}
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{1:0 S 2 S 255}

{Bound : none}

while x 75 eof do

count := count + 1;

y:=y*1000;

y==y+2;

z:=x;

{R’ : y = y *1000 + xcoum}

od

{R;x=eof/\y=$:0SiScoui'ztzy=y*1000+$.'}

1. Show the invariant I is true before the loop executes:

a wpw(“z := x”,0 S 2 S 255)

a TRUE

2. Show that an execution of the guarded command terminates with the invariant

and the specification of the code within the loop (R’) true.

a wpw(“count := count + 1;y :2 y :1: 1000;y := y + z;z := x”,0 S 2 S

255 A y = y *1000 + xcoun,))

I
A

5
;

I
A0 wpw(“count := count + 1; y := y * 1000; y := y + z”,wpw(“z := x”,0

255 A y = y *1000 + seem)

a wpw(“count := count+1; y := y*1000”,wpw(“y := y+z”,0 S 2 S 255Aw))

o wpw(“count := count + l”,wpw(“y := y =1: 1000”,0 S 2 S 255 A w))

s wpw(“count :2 count + 1”0 S 2 S 255 A w)

s 0 S 2 S 255 A y = y =1: 1000 + xcoum. Implied by the invariant.
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3. Show that if termination occurs as we expect the postcondition is true, i.e.

show that I A R’ A -(g) => R.

s 0S2S255Ay=y*1000+xcoumA-(x#eof)=>x=eofAy=E:0S

iS count:y* 1000 +x,-

s0S2S255Ay=y*1000+xcoumAx=eof=>x=eofAy=E:OS

i S count:y*1000 +x,-

0 x=eofAy=Ez0SiScount:y*1000+x,~

4. Show wp;(A,R:),i=1,2,...

0 Basis: Index = 1. Then we have executed the loop one time and count = 1.

By step 2 we have y = y :1: 1000 + x,

s Hypothesis: Assume for index k > I we have count > 1 and y = y :1:

1000 + xcount, i.e., the computation is correct to this point.

a Show: Show that the hypothesis holds for index k + 1.

0 Case A: x = eof. Then termination has occurred and by step 3 and

our hypothesis we have that x = eof A y = E : 0 S i S count : y =

y :1: 1000 + x,- because count was not incremented.

0 Case B: x 75 e0f. Then the computation has advanced one more step

and by step 2 we have that y = E : O S i+1 S count+1 : y*1000+x;+1.

We now give code that could constitute a macro to perform multiplication.

macro MULT(registers : y, x, z, eof, count, thousand, sum);

sum := 0;

while thousand 75 0 do

sum := sum + y;

thousand := thousand; 1;



od;

thousand := 1000;

y := sum;

To convert this macro to a code segment in our language:

1. Number the registers: y = x1, x = x2, 2 = x3, eof = x4,count = x5,thousand =

226,811”! = $7

2. Remove the header with the register list:

x7 := 0;

while x6 76 0 do

$1 1= 1'7 + 1'1;

333 i: 5176—1;

od;

1:6 2: 1000,

$1 3: 337;

7.2.3 Proof of Correctness of a Nonterminating Computa-

tion

The program we present here computes the z’“ prime number in ascending order,

see Figure 7.4. The program is designed to be nonterminating, so no method that

depends on the wp predicate transformer alone can be used to prove it is correct. The

program uses two macros, one that performs division without remainder returning

the value 1 when a divisor for the natural number being tested is found (Figure 7.5,

Section 7.3), the other that checks the range 2 S i S x — 2 for possible divisiors of the

natural number x (Figure 7.6). Both of these programs use bounded loops. The main

macro, Example3 (Figure 7.4) uses an unbounded loop to calculate the set of prime
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natural numbers in ascending order. We prove the bounded loop in macro divides,

use this proof to show the correctness of macro Prime, and then use the correctness

of macro Prime to prove the unbounded loop in Example3 is correct in all of its

increments.

Proof of the bounded loop of macro divides:

Let IF. . . FI stand for the decision construct.

1. Show the invariant I is true before the loop executes.

a wpw(“t := x”,x > 0)

o x>Osincex7$0

a TRUE

2. Show that an execution of the guarded command terminates with the invariant

and the specification of the code within the loop (R’) true.

a wpw(“t :=t+x;IF...FI”,x> 0A(t =yAz =1)V(t<yAz=0))

s wpw(“t := t+x”,wpw(“IF...FI”,x > 0A(t = yAz =1)V(t< yAz = 0)))

a wpw(“t := t + x”,x > 0 A w)

s x > GA (t = y A z = 1) V (t < y A z = O). Implied by the invariant.

3. Show that upon termination the postcondition is true, i.e., show that I A R’ A

«(G)=>R.

o x>0A(t =yAz =1)V(t <yAz=O)A-1(t <y)=>(t=yAz= 1)V(t>

yAz=0)

s x >0A(t = yAz =1)V(t < yAz = 0)A-1(t < y) => (t =yAz= 1)V(t >

yAz=0)

o (t=yAz=1)V(t>yAz=0)
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4. Show wp,(A,R:), i = 1,2, . ..

0 Basis: Index = 1. Then we have executed the loop one time and by step

2wehave(t=xAz=1)V(t<xAz=0).

o Hypothesis: Assume for index k > 1 we have (t = y A z = l) V (t <

y A z = 0).

a Show: Show that the hypothesis holds for index k + 1.

0 Case A: t _>_ y. Then termination has occurred. By step 3 we have

that x>0A(t=yAz =1)V(t>yAz=0),sincetheloopdidnot

iterate again, and t was not increased.

0 Case B: t < y. Then the computation has advanced one more step,

sot=t+xandby2wehavethat (t=yAz=1)V(t<yAz=0).

Proof of the bounded loop in macro Prime

Let IF. . . FI denote the decision construct.

1. Show the invariant is true before the loop executes.

o wpw(“i := 0”,0 S i S count)

0 0 S 0 S count

a TRUE

2. Show that an execution of the guarded command terminates with the invariant

and the specification of the code within the loop (R’) true.

0 wpw(“z :2 divides(d,x); IF. . . FI;d :2 d +1;i :=i+1”,0 S i S count A

R’)

s wpw(“z := divides(d,x);IF. . . FI;d := d +1”,wpw(“i :=i+1”,0 S i S

count A R’)
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wpw(“z := divides(d, 1:); IF. . . FI”,wpw(“d := d+1”,0 S i S count Aw))

wpw(“z := divides(d,x)”,wpw(“IF. . . FI”,0 S i S count Aw))

wpw(“z := divides(d,x)”,0 S i S count A w)

o 0 S i S countA3 S d < xA((divides(d,x) = TRUEAy = 0)V

divides(d, x) = FALSE A y = 1)). Implied by the invariant.

3. Show that when termination occurs the postcondition is true, i.e. show that

IAR’A-w(g)=>R.

s 0 S i S count A R’ A -1(i < count) =5 i = count A ((divides(d,x) =

TRUE A y = 0) V (divides(d,x) = FALSE A y = 1))

o i = count A ((divides(d, x) = TRUEAy = 0) V (divides(d,x) = FALSEA

:1 =1))-

4. Show wp,(A,R:-), i = 1,2,...

0 Basis: Index = 1. Then we have executed the loop one time and d = 3,

so by Step 2 we have that 3 S 3 < x A ((divides(3,x) = TRUE A y =

0) V (divides(3,x) = FALSE A y = 1)).

s Hypothesis: Assume for index k > 1 that 3 S d < x A ((divides(d,x) =

TRUE A y = 0) V (divides(d, x) = FALSE A y =1)).

0 Show: Show that the hypothesis holds for index k + 1.

0 Case A: i = count. Then termination has occurred and by Step 3 and

our hypothesis we have that i = countA((divides(d, x) = TRUEAy =

0) V (divides(d,:lr) = FALSE A y = 1)).

0 Case B: i < count. Then the computation has advanced one more

step and d = d+1, so by Step 2 we have 3 S d S xA ((divides(d,x) =

TRUE A y = 0) V (divides(d,x) = FALSE A y = 1)).
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Proof of the unbounded 100p in macro Example3

Let IF . . . FI denote the decision construct.

1. Show the invariant is true before the loop executes.

0 10PM“?! == 0”,.1/ Z 0)

o 0 Z 0

a TRUE

2. Show that an execution of the guarded command terminates with the invariant

and the specification of the code within the loop (R’) true.

0 wpw(“y := y +1;isprime:= Prime(y); IF. . . FI”,y Z 0 Ap, S y)

o wpw(“y := y +1;isprime := Prime(y)”,wpw(IF. . . FI”,y Z 0 A p, S y))

o wpw(“y := y + 1”,wpw(“isprime := Prime(y)”,y 2 0 A y))

0 wpw(“y == 5 +1”,y 2 0 A y)

o y 2 0 A pZ S y. Implied by the invariant.

3. Show that since termination will not occur FALSE is the correct postcondition.

s yZOApzSyAp(y>0)=>F/1LSE

s TRUEATRUEAFALSE: FALSE

0 FALSE

4. Show wp,-(A,R:-), i = 1,2,...

0 Basis: Index = 1. Then we have executed the loop one time, y = 1, z = 0

or z = 1, so by Step 2 we have pz S y.

o Hypothesis: Assume for index k > 1, with y = k and 2 S y, that p, S k.
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a Show: Show that the hypothesis holds for index k + 1. y + l = I: +1 and

2+1 S k+l so 2 S k+1. Then by Step2 we have that p2.” S k+1.

This proof shows that it is possible to verify the correctness of a nonterminating

loop that is defined on its input. With his method Dijkstra could say nothing about

such a loop. With their methods do Bakker and Nelson could say only that the

loop does not terminate since the postcondition is FALSE. With the availability of

computational sequences and a recurrence between predicate transformers we can say

that while the loop is nonterminating, each iteration produces the z‘“ prime number

in ascending order.
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7.3 Annotated Program Code for Examples

macro Example1(registers : val, m, 11, index, count, i, stack, top, pushing,j, x);

{m _>_ 0 A n 2 0}

val := 0;

if m = 0 then

val := F0(n);

{m = 0 A val = F0(n))

else

ifn = 0 then

val := F0(n);

{m >0An=0Aval= F0(0)}

else

val := 1; index := m — 1;

count := 0;

{Pre:m>0An >0}

{Inv :0 S count S n}

{Bound : t = n - count}

while count < 12 do

val := Fhll(index,val);

count := count + 1;

{R’ : 1 S count Sn A val = count * Fhll(m — 1,val)}

od

{R : count = n A val = n =1: thl(m — 1,1)} since val was first set to 1

fi

{(n = 0 A val = F0(0)) V (n > 0 A val = n =1: FM1(m — l,l))} and

n =1: FM1(m — 1,1) is FMl"(m — 1,1)

fi

{(m = 0Aval = F0(n))V(n = OAval = F0(0))V(n > OAval = n*FM1(m-—l,1))}

When the index of the function (variable m) is zero and the argument of the function is

greater than zero, we compute the base case (macro F0(n)) and the output (variable

val) is equal to fo(n) = n+1. When the index of the function is greater than zero, but

the argument equals zero, we compute the base case (macro F0(n)) again because of

the function’s behavior (see the note after the function definition). Here, the output

val is equal to fm(0) = 1. When both the function index and the function argument

are greater than zero we compute n * FM1(1) = FMI"(1) since we initialize the

output variable val to 1 before executing the bounded loop. This is equivalent to the

functional specification in the second definition by cases. The first variable used by

macro FM1 is the largest index in the family of functions used in the computation.

Figure 7.1. Example 1, A Total Recursive Function.
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macro FM1(registers : val, m, 11, index, count, i, stack, top, pushing,j,x);

i := 1; Stack := index || Stack; x := index;

{Pre : Stack,- = m — 1 A val Z 0}

{Inv:iZOAOSxSm-l}

{Bound : none}

while i719 0 do

top :=]]’Stack; Stack :2 top I] Stack;

if top 2 1 then

if val = 1 then

val := F0(1);

else

if val = 0 then

val := F0(1); pushing := val;

else

pushing :2 val; i :- i+1; val := 0;

fi

{pushing > 0}

j := 0; i := i — 1; x :=]]’Stack;x :2 x -— 1;

{Pre :j = 0 A pushing > 0}

{Inv:O Sj SpushingAO S x S m— 1};

{Bound : t = pushing — j}

whilej < pushing do

Stack := x [I Stack;

i := i + 1;

j:= i + 1;

{R’ : 1 Sj S pushing A Stack,- = x : i —j S i S i +j}

od

{R :j = pushing A Stack,- = x : i — pushing S i S i + pushing}

fi

else

val := val+ F0(1);

{top = 0 A val = val + F0(1)}

fi

“.7 = pushing A Stack,- = x : i — pushing S i S i + pushing) V (top = 0 A val =

val + F0(1))}

i := i — 1; top :=|]’Stack;

{R’ : (top = 0 Aval = k=1= F0(1):1 S l: S pushing) V (top 21A Stack; = x:

i - pushing S i S i + pushing)}

od

{R : i = 0 A val = pushing * F0(1)} pushing ... F0(1) = F0”"”""9(1). But this is the

result of functional iteration, since we only decriment the index (denoted by x), so

we compute fm_1(fm-2(' ' ' fo(1)) ' ' '))-

Figure 7.2. Major Macro for Example 1.
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macro F0(registers : val, m, 71, index, count, i, stack, top, pushing,j, x);

ifn=00rn=1then

val := n + 1;

else

val := n + 2;

fl

Figure 7.3. Minor Macro for Example 1.

macro Example3(registers: z, y, x, isprime, t, count,d, i);

z := 0;

31 == 0;

isprime := 0;

{Pre : z = 0}

{Inv : y 2 0}

{Bound : none}

while y 2 0 do

:1 == y + 1;

isprime := Prime(y);

if isprime = 1 then

9 == y;

z := z + 1;

fi

{R’ : pz S y} Where p, represents the 2"” prime

od

{R : FALSE}

Figure 7.4. Example 3, A Nonterminating Program.
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macro divides(registers : z, y, x, isprime, t, count,d, i);

z := 0;

ifx7€0Ay5£0 then

t := x;

{Pre:x>0Ay>0}

{Inv : x > 0}

{Boundzbzy—t}

while t < y do

h=t+x;

ift=ythen

z:=1;

fi

{R’:(t=yAz=l)V(t<yAz=0)}

od

fi

{S:(x750Ay#0A((t=yAz=1)V(t>yAz=0))}

Figure 7.5. Example 3, The Macro divides.



macro Prime(registers : z, y, x, isprime, t, count, (I, i);

z := 0;

ifx S 1 then

:1 == 0;

else

count := x42;

:1 == 1;

d := 2;

i := 0;

{Pre:countsz2Ay= 1Ad=2}

{Inv :0 S i S count}

{Bound : t = count — i}

while i < count do

2 := divides(d,x);

ifz=1then

y==0;

fi

d:=d+1;

i:=i+1;

{R’ :3 S d < x A ((divides(d,x) = TRUE A y = 0) V (divides(d,x) = FALSEA y =

1)}

od

{R: i = countA((divides(d,” = TRUE/)3! = 0V(divides(d,x) = FALSE/W =1)”

fi

{S : (((x S lVdivides(d, x) = TRUE)Ay = 0)V(divides(d,x) = FALSEAy = 1)))}

Figure 7.6. Example 3, The Macro Prime.



CHAPTER 8

Conclusion

Current techniques using the wp predicate transformer are unable to deal with pro-

grams computing functions in the total recursive and recursive classes because they

use the initial state/final state model that relies on termination in proofs of correct-

ness.

We have given a language and a computing environment for it. We have given

the denotational semantics and operational semantics for the language in terms that

allow us to write programs to compute partial functions, and we have shown that

these programs can compute only the results we expect because side effects are not

possible.

We have also shown that as programs in our language are run they induce compu-

tational chains in our variable state space whose elements are both logical extensions

of their predecessors (they are monotonic) and are faithful approximations to the

computation’s limit (they are continuous). That is, our computational chains are

structures that contain valuable and reliable information about a computation in

progress, whether it will eventually terminate or not.

We have defined a new predicate transformer as a conjunction of partial correct-

ness and a recurrence relation between wp predicate transformers. This relation is

the basis for our inductive proof method for program correctness.

113
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Our results provide a mathematical foundation for reasoning about terminating

and nonterminating processes, and a concrete method with which to reason about

such processes.

8.1 Future Work

A basic property of the function specified in Example I of Chapter 6, Section 7.1 is

given by a lemma found in Davis and Weyuker [26].

Lemma 8.1 fn+1($ + 1) = fn(fn+l($))v

Proof:

fn+1($ +1) = ffoll

= fn(f.f(1))

= fa(fn+1(:v))

With this lemma we can show that f,,(x) = A(n, x):

fi+1(17 + 1) = fi(fi+1(l'));

and

A(i+1,x +1) = A(i,A(i+1,x)).

For the base cases we have

A(‘t,0)= 1: fi(0)

x+1 ifx=0,l

A(0111’) = = f0(5'3)

:l' + 2 if .1? > 1.

The recursively specified function A(i, x) is a variant of a function introduced by W.

Ackermann.
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Unbounded looping and general recursion are equivalent methods for computing

functions in the recursive class. Both methods work with families of functions.

In this example we have related the indices of a specific family of functions in a

one-one fashion to two structurally equivalent but syntactically different functional

specifications. Is the relationship shown by Davis and Weyuker an exception to or

an example of a rule that can be used to relate a compositional syntax to a general

recursive syntax? That is, is there a consistent system of transformations between

recursively specified and compositionally specified (but structurally equivalent) func-

tions? If such a system exists, we can use our proof technique on the version expressed

compositionally, apply the transformation, and be sure that the recursive version is

also correct.

A second issue deals further with recursive syntax in programming languages. The

computational model we have used is deterministic and so continuous. The model

Dijkstra used was nondeterministic, but because he insisted on bounded nondeter-

minism his model was also continuous. In both cases this makes sense because in

models that use looping constructs an unbounded number of alternatives within the

loop is not computationally possible. On the other hand bounded nondeterminism is

a detriment when the computational model is recursive syntactically, because the re-

quirement of continuity prohibits unlimited backtracking. In his paper Nelson [6] was

careful to use a limit theorem that did not require continuity so that he could apply

his model to partial functions (backtracking may not be bounded in a nonterminating

computation). This question was also addressed by Hesselink [12], who showed that

for syntactical recursion the Law of the Excluded Miracle holds, so continuity can be

maintained in his model.

This raises two questions. First, can our wpw predicate transformer be conformed

to a model that relaxes the continuity requirement somewhat. Because it defines a

recurrence relation between predicate transformers in a repetitive situation we have
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subchains of a computational chain at our disposal to investigate the computation’s

behavior. Is continuity of a subchain sufficient for recursive computations? If the

answer is yes, then we ask whether a multiple induction scheme can be used in

verification proofs involving the wpw predicate transformer.
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