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ABSTRACT

RESPONSE OF AN EARTH DAM TO SPATIALLY VARYING

EARTHQUAKE GROUND MOTION

By

Mu—Tsang Chen

The stochastic responses of the Santa Felicia earth dam to spatially varying earth-

quake ground motion (SVEGM) are analyzed. A space-time earthquake ground motion

model that accounts for both coherency decay and seismic wave propagation is used to

specify the support motions, and the results are compared with those for various simplified

excitations. In addition, a preliminary reliability analysis using the Mohr-Coulomb strength

criterion is performed. The effects of propagation speed and direction for SV/P and SH

waves and different coherency models on the responses of the dam are also investigated.

Finally, techniques to simplify the excitation for use with simplified mechanical models of

the dam are presented.

The Santa Felicia dam is represented as a three-dimensional inhomogeneous finite

element model using the I-DEAS VI.i computer program. The variation of shear modulus

with depth from the crest due to confining pressure is taken into account. Finite element-

based random vibration analysis is performed and the statistical moments of the displace-

ment, strain and stress responses are computed. Statistical moments of the maximum shear

stress, which is non-linearly related to the Cartesian stresses, are computed using Monte

Carol simulation as well as an approximate first order second moment method.



The results of the study indicate that the effect of SVEGM is significant, especially

on the stress response of stiff material near the base of the dam. The assumption of fully

coherent support motions is found to slightly over-estimate the displacement and strain

responses but significantly under-estimate the stress response near the base. The wave

passage effect is not as significant as the coherency decay when the ground displacements

are not highly coherent. The sensitivity ofthe stress response to different coherency functions

at the base can be dramatic. For simplified analysis, a 2-D shear beam model should be

capable of yielding good results at locations distant from the base with a suitably modified

seismic excitation. For computing the stress response in stiff material near the base, a 3-D

finite element model is required, but costly dynamic analysis can be avoided if the ground

displacements are not highly coherent; a pseudo-static analysis suffices in this case.
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1. INTRODUCTION

Earth dams have been used in various parts of the world for many centuries. However,

the behavior of earth dams under earthquake excitation has been investigated only during

the past six decades. Because the failure of earth dams can result in large property damage

and loss of life, design, analysis and construction efforts to build safe and economic

structures are very important. Over the years considerable research has been directed

towards the development of analytical and numerical techniques for evaluating the

response of earth dams subjected to earthquake ground motions. While the developments

have enabled the estimation of deformations, strains, accelerations and stresses generated

in earth dams in response to earthquake excitation, the limitations of the models used and

the assumptions made in the analysis should be carefully considered when evaluating the

predicted performance or type of damage.

In many earth-dam studies, the analysis techniques used are quite simplistic. For

example, one of the most commonly used analytical model, known as the “shear beam”

model, characterizes the dam as a uniform one-dimensional elastic beam, with the dynamic

response restricted to horizontal shear deformation in the upstream-downstream direction.

Although some of the more restrictive assumptions of the shear beam model have now been

relaxed, it still remains somewhat unsatisfactory. More realistic and sophisticated models

based on the finite element method have found increasing use since the mid-19605. For the

most part these have been restricted to two-dimensional plane strain model which assumes

that the dam is infinitely long. With advances in computer performance and storage, three-

dimensional models can now be used in order to model the dam more realistically and to

obtain more accurate predictions of the responses to earthquake excitation.

Finite element models are successful in accounting for geometry irregularity and

material inhomogeneity. However, in most studies to date, the ground motion acting at the

base of a dam has been assumed to be identical at all location, or at best due to a simple
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propagating wave. Recent research has shown (Harichandran and Vanmarcke 1986, Loh

1985, Abrahamson et al. 1990, Schneider et al. 1990) that significant variation of

earthquake ground motion exists over the base dimensions of large structures such as dams.

This spatially varying earthquake ground motion (SVEGM) is characterized by wave

propagation as well as by coherency loss. Studies on certain classes of structures have

shown that the coherency loss aspect of SVEGM is very significant (Harichandran and

Wang 1990, Novak and Suen 1987, Sweidan 1990, Zerva 1988).

The Santa Felicia earth dam located in southern California has been selected for

assessing the effect of SVEGM since it has been studied extensively (Abdel-Ghaffar and

Scott 1979a, Abdel—Ghaffar and Scott 1979b, Abdel-Ghaffar and Scott 1981a, Abdel-

Ghaffar and Scott 1981b, Gazetas 1981, Abdel-Ghaffar and Koh 1982, Prevost et al. 1985,

Abdel-Ghaffar and Elgamal 1987, Elgamal and Abdel-Ghaffar 1987). The dam is analyzed

using a three-dimensional finite element model using Integrated Design Engineering

Analysis Software (I-DEAS) developed by SDRC (1987). Some structural properties such

as natural frequencies, mode shapes, modal masses, and stiffness and mass matrices are

obtained using I-DEAS.

In contrast to traditional dynamic analysis, which is based on deterministic concepts,

the theory of random vibration accounts explicitly for uncertainties that almost always exist

in the dynamic loads or inputs that act on the system, especially seismic ground motions.

Further, SVEGM is usually characterized as a random field and hence the responses of

structures subjected to this are most effectively computed using random vibration analysis.

Therefore, the responses of the Santa Felicia dam to SVEGM are computed in this study

using random vibration and probabilistic analysis.

Chapter 2 contains a review of conventional methods used to model earth dams and

techniques for earth-dam analysis and design. In general, there are two different

approaches, theoretical methods and numerical methods. The former is developed on the



basis of the shear beam theory by which the dynamic behavior of earth dams can be solved

analytically. The latter is based upon the finite element method which is a widely accepted

numerical procedure for solving the partial differential equations of motion governing the

system.

Traditionally, earthquake-resistant design of earth dams is performed with slope

stability analysis using the “limiting equilibrium” method. The method is described at the

beginning of the chapter. Following this, the applications of the shear beam model and the

finite element model are briefly reviewed. The limitations and disadvantages of each

method are also discussed. In addition, some sophisticated deterministic analyses treating

soil as viscoelastic material are reviewed. Finally, recent studies on the applications of

probabilistic methods to the seismic analysis of earth dams are outlined.

In Chapter 3, the deterministic response of the Santa Felicia dam to a simulated

earthquake excitation is computed. The constituent material properties and site conditions

of the dam are specified here. Some assumptions in the model such as geometry, soil

pr0perties, hydrodynamic effect, dam-foundation interaction and radiation damping effect

are also elucidated.

A three—dimensional finite element model is used throughout this study. The

modeling and analysis processes using I-DEAS are discussed briefly and further details are

given in the Appendix. The number of modes required to obtain accurate responses is

determined by assessing convergence of deterministic dynamics analysis results. The types

of vibration modes are shown and classified. In addition, the types of damage sustained by

earth dams due to earthquake motions, such as sliding, liquefaction, cracking and piping

failure, are also described.

Chapter 4 presents the background of the theories employed in this study. The

characteristics of earthquake ground motions and engineering interpretation of stochastic

responses are described in the beginning. A ground motion model which accounts for wave



travel and coherency loss is used (Harichandran and Vanmarcke 1986). In the second part,

finite element discretization and modal analysis are introduced. The theory of random

vibration is presented. An expression for the displacement response is obtained using

stationary random vibration analysis.

In addition to the displacement response, stress and strain are also of interest in the

analysis. The covariances of Cartesian stress and strain responses to SVEGM are

formulated using random vibration analysis. The maximum shear stress and strain indicate

where local yielding of dam material will occur. Since principal stresses (strains) are

related non-linearly to the Cartesian stresses (strains), the first-order second-moment

method (FOSM) is employed to approximately estimate the mean and variance of the

maximum shear stress from those of the Cartesian stresses. The accuracy of the FOSM

approach results is assessed by comparing them with results obtained using Monte Carlo

simulation. Another important factor which significantly affects the dynamic

characteristics of earth dams is damping. The effect of two types of damping, hysteretic

damping and viscous damping, are assessed using a one-dimensional shear beam model.

In Chapter 5, the parameters of the ground motion model used are given. The

computational steps of the stochastic response analysis are summarized. The computed

responses due to simplified excitations, such as identical and delayed excitations, as well

as due to general excitation are presented in this chapter. The results for the maximum shear

stress responses using the FOSM method and simulation are compared. Correction factors

are proposed for the mean and standard deviation of the maximum shear stress estimated

by the FOSM approximation.

Details of the responses such as the significance of the various modal responses and

the contributions of the three response components (the variance of the pseudo-static

response, the variance of the dynamic response, and the covariance between the static and



5

dynamic response) to the total response are examined. Finally, reliability against local

yielding under gravity and earthquake loads is assessed in this chapter.

Chapter 6 considers a series of parametric studies. The effect of seismic waves

travelling with a lower velocity or at a shallow incident angle is evaluated. The effect of

having SH waves rather than P/SV waves is assessed. Sensitivity of the responses to the

different coherency models proposed by Abrahamson (1993), Novak (1987), Luco and

Wong (1986) and H80 (1989) are studied in addition to the model proposed by Harichandran

and Vanmarcke (1986). The discrepancies among these models are presented and discussed

and comparisons between the effects of different coherency models are made.

In Chapter 7, a technique of simplifying the excitation in order to enable the use of a

2-D shear beam model is presented. The boundary of the dam where the ground motion

excitation is applied is divided into several strips. Each strip is considered to have a single

degree of freedom and hence fully-correlated excitation is assumed within each strip.

However, ground motion incoherence is still allowed between each pair of strips. The

displacement, maximum shear strain and maximum shear stress responses using this

simplified excitation model are compared with those using the general model. In addition,

the effect of using different numbers of strips on the boundary are evaluated and the

adequacy of this simplified model is discussed.

In the final chapter, Chapter 8, the conclusions of the research and recommendations

for future work in this area are presented.



2. Literature Review

2.1 General

In the past six decades or so, engineers have attempted to better understand the

dynamic behavior of dam structures under earthquake conditions. Theoretical analysis as a

shear beam, numerical analysis as a two-dimensional (2-D) or three-dimensional (3-D)

body using the finite element method (FEM), and full-scale or model tests are the principal

methods of analyzing the vibrations of earth dams.

The one-dimensional (1-D) shear beam model considers the dam as a plate obtained

by slicing it with two cross sections perpendicular to the dam axis and analyzing the in-

plane response of the plate as a wedge-shaped shear beam. The effect of both banks of the

valley is neglected, but it is said to be small when the length of the dam exceeds four times

the height (Hatanaka 1955). However, this limitation has been improved by using a 2-D

shear beam theory which accounts for the variation of deformation along the longitudinal

direction of the dam. The problem is therefore handled in a more realistic manner, but a

precise analysis in this case is rather difficult, especially for modeling a dam with

inhomogeneous material.

The FEM was initially used to analyze the plate model described above as a 2-D

plane—strain model (Clough and Chopra 1966). A dam with an infinite length is assumed in

the analysis. The popularity of the finite-element method stemmed mainly from three

factors: (a) its capability for handling any number of zones with different materials; (b) its

capability of rationally reproducing the 2-D dynamic stress and displacement field during

ground motion; and (c) its capability to account for the effects of excitation by horizontally

travelling waves. Nevertheless, the assumption of plane-strain conditions is inappropriate

for dams built in narrow valleys. In such cases, the stiffening effect due to the short length

may not be neglected. Recent advances in computer hardwares have facilitated the use of

3-D models (Martinez and Bielak 1980).
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In experimental approaches, a scaled model of the dam is typically placed on a

shaking table and vibrated. The test includes an elastic vibration test for investigating the

vibration characteristics of the dam and a dynamic failure test for studying the conditions

of failure due to vibration. The most important consideration in a model test is for a

similarity to exist between the real structure and the model, but with a complex structure,

such as an earth darn, it is difficult to obtain similarities for all characteristics. Therefore,

the model is usually made so that the property being tested is similar to that of the actual

earth dam. Instead of model tests, full-scale forced-vibration tests (Petrovski et a1. 1974,

Abdel-Ghaffar and Scott 1981a) were performed to overcome the drawback in modeling.

Furthermore, field measurement and observation (Seed et a]. 1978) of earth dam responses

during earthquakes can yield direct information for purposes of analysis and design.

2.2 Conventional Approaches

2.2.1 Seismic design criteria

2.2.1.1 Pseudo-static method

For a long time the standard method of evaluating the safety of earth dams against

sliding during earthquakes has been the so called “pseudo-static” method. This method is

based on the assumption that dams are absolutely rigid bodies fixed on their foundations,

and experience a uniform horizontal base acceleration equal to the underlying ground

acceleration. The horizontal ground acceleration was obtained from seismic codes in terms

of a single peak value, giving a horizontal inertia force on a potential sliding mass in the

upstream-downstream direction. The force is determined as the product of a seismic

coefficient and the weight of the potential sliding mass. The stability of slopes can be

analyzed on a trial failure surface, considering the equilibrium of the weight, the inertia

force and the resisting force of the sliding block.

According to this method, a trial failure surface ABC shown in Fig. 2.1 is an arc of a

circle with its center at O and a radius of R. Considering the unit length of the embankment
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perpendicular to the cross section shown, the forces acting on the trial failure surface are as

follows:

1. Weight of the wedge, W.

2. Inertia force on the wedge, khW, which accounts for the effect of an earthquake on

the trial wedge. The factor kh is the average coefficient of horizontal acceleration.

3. Resisting force per unit area, FR, which is the shear strength of the soil acting along

the trial failure surface, ABC.

The factor of safety with respect to strength, FS, is determined by

: Resisting moment about 0 _ FRiABC)R

5 Overtuming moment about 0 WLl + kh WLZ'

  (2.1)

This procedure is repeated with several trial failure surfaces to determine the minimum

value of Fs. The slope is considered to be stable if the minimum value of F5 is greater than

or equal to 1. The magnitude of kh used for the design of many dams in the past ranged from

0.05 to 0.15 in the United States (Das 1993).

 

 

  

  
Figure 2.1 Stability analysis for slope of an earth dam
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Nevertheless, it is now clearly understood that earth dams behave as deformable

rather than rigid bodies, and their response to seismic base excitation is influenced by the

properties of the constituent materials, the geometry, and the nature of the base motion.

Early convincing evidence of such behavior has come from forced-vibration tests

(Keightley 1966), and from observations of response during earthquakes (Okamoto et a1.

1969), although it had been theoretically anticipated much earlier (Mononobe 1936). Other

serious drawbacks of the pseudo-static procedure have been thorough discussed by Seed

et a1. (1973) as follows:

1. The design method considers classical slope instability as the only potential mode

of failure. In fact, over the years, several types of seismic damage have been

observed in earth dams and embankments over the world, such as liquefaction flow

failure, longitudinal cracks, differential crest settlement, loss of free board,

transverse cracks, and piping failure.

2. The horizontal inertia forces do not remain at a constant level for a significant time

duration or act along a single direction, but rather fluctuate rapidly in both

magnitude and direction. Thus, even if the factor of safety dropped momentarily

below unity the slope would not necessarily experience a gross instability but might

merely undergo some permanent deformation. This idea of performance controlled

by magnitude of deformations rather than by limiting value of pseudo-static factors

of safety has been exploited and evolved into a full-fledged standard practical

procedure of assessing the seismic safety of earth dams consisting of nonliquefiable

soils, which will be introduced in the next section.

2.2.1.2 Sliding displacement method

The sliding displacement method is primarily based on the original concept proposed

by Newmark (1965). It is assumed that sliding of an earth mass will begin during an

earthquake when the moment due to extraneous forces exceeds the resisting moment. The

earth mass which has begun to slide will be subject to gravitational force, seismic force and
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resistance, but the sliding will progress. However, resistance will continue to act while the

seismic force reduces and reverses, so that the sliding of the earth mass is decelerated and

then stopped. When earthquake acceleration is again increased the sliding starts once more

and the same behavior is repeated. With each repetition, the total quantity of sliding is

increased, and when the earthquake is over there will be a certain degree of displacement

remaining. If the amount of sliding does not endanger the dam, the dam will be stable after

the earthquake.

To clarify this phenomenon, consider a slope, as shown in Fig. 2.1, subjected to an

earthquake, the stability of the slope will depend on the shear strength of the soil and the

average coefficient of horizontal acceleration. The factor of safety of the soil mass located

above the most critical surface ABC will become equal to 1 when kh is equal to ky. This

value of ky is defined as the coefficient of yield acceleration. If the soil wedge ABC is

subjected to given earthquake accelerograph, the velocity of the sliding wedge can be

determined by integration of the area under the acceleration versus time plot, in which the

acceleration exceeds ky. Similarly, the displacement can be derived from the velocity. With

time, the displacement of the wedge gradually increases. In most cases of embankment

stability, it can be shown (Seed, 1979) that when the crest acceleration does not exceed

0.75g, deformation of such embankments will usually be acceptably small if the dam has

F5 = 1.15 as determined by the pseudo-static analysis.

The sliding displacement method has gained acceptance more recently in the

determination of the displacement of slopes (Sarma 1975, Makdisi and Seed 1978). And it

was proved to be useful in cases where the yield resistance of the soil can be reliably

determined and does not significantly decrease with time during an earthquake. Compacted

cohesive clays, dry sands and very dense saturated sand may belong in this category of soils

since no significant pore water pressure builds up during cyclic loading.
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2.2.1.3 Liquefaction criterion

When dams are constructed of loose or medium dense saturated sands, severe damage

and failures due to build-up of pore water pressure may occur. To evaluate the seismic

stability of such embankments, Seed (1979) developed an analysis procedure which

involves the following essential steps:

1.

2.

Estimate the initial static stresses in the darn by means of finite element analysis.

Determine the dynamic soil properties such as shear modulus, Poisson ratio and

damping characteristics as functions of the strain level.

Compute the stresses induced in the dam by the design ground excitation, using

plane-strain finite element analysis and the dynamic soil characteristics determined

in step 2.

Subject representative samples of the embankment materials to the combined

effects of the initial static stresses and the superimposed dynamic stresses, and

determine their effects in terms of the generation of pore water pressures and the

ensuing reduction in strength and development of strains.

Perform slope stability analyses and semi-empirically convert the strain potentials

to a set of "compatible" deformations. The stability and performance of the dam are

judged from the results of these stability analyses and/or the size and distribution

within the dam of the "compatible" deformations.

This procedure has been employed to explain several cases of liquefaction failures,

most notably those of the Sheffield and Lower San Fernando Dams. However, some

potential limitations of the liquefaction evaluation procedure have been criticized in recent

years. Regarding the definition of liquefaction as that stage in a cyclic laboratory test when

a peak pore pressure ratio reach 100%, it has been argued that development of a 100% pore

pressure ratio does not necessarily lead to zero shear strength. Second, the associated

undrained cyclic triaxial stress-controlled testing of anisotropically consolidated specimens
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is used for evaluating the liquefaction potential. A particular limitation of the cyclic triaxial

test stems from the fact that the orientation of the major principal stress may rotate

intermittently by 900 during each cycle. In reality, it is more likely that the principal stress

directions rotate randomly during shaking, and only momentarily could the planes of

maximum static and dynamic shear stress coincide.

From a practical point of view, these methods are acceptable as preliminary design

criteria. However, for rigorous seismic design of earth dams, more comprehensive

investigations are required. Shear beam and finite element models have been developed to

estimate earthquake induced deformations and stresses in dams, and to be able to predict

various types of damage and failure.

2.2.2 Shear beam model

The shear beam model for earth dams was first introduced by Mononobe (1936). This

model was rigorously exploited in the 1960’s and 1970’s to conduct parametric studies, to

interpret the results of full-scale tests, and to obtain seismic coefficients for use in design.

The following major assumptions are made in the shear beam theory:

1. The dam is a beam with a variable wedge-shaped cross section. Only horizontal

lateral displacements and simple shearing deformations take place, and are

uniformly distributed along horizontal planes across the dam.

2. The dam consists of homogeneous material which can be described by a constant

shear modulus, or a modulus that varies along the height of the dam.

3. The dam is built in a rectangular canyon and is subjected to identical lateral base

motions.

2.2.2.1 One-dimensional shear beam theory

Based on the assumptions of the shear beam theory, closed-form solutions to the

vibration of the dam can be derived as summarized below. Fig. 2.2 shows a typical l-D
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shear beam model. Considering the equilibrium of the inertia force and shearing force

acting on the shaded element in Fig. 2.2,

2

a u _ any _ 8(b1')
 

dy

where

u = displacement along the x axis;

p = density of material;

Q = shearing force; and

T = shearing stress.

At any y location,

awn -212 91-12 a:By —ayr+bay—yt+bay

Thus, equation (2.2) becomes

 

 

  
B

Figure 2.2 One-dimensional shear beam model

V

(2.2)

(2.3)

(2.4)
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Assuming the relation between shear stress and shear deformation to be

t = — (2.5)

= 0 (2.6)

This is the differential equation governing the vibration of the dam.

Let the natural frequency and the mode of vibration be 0) and (My), respectively. Then

assuming u to be u = (Demo! and substituting in equation (2.4),

7- 2

19.1519 29’.
+ (I) = 0 2.7

which is a typical Bessel’s equation.

Let Vs = x/G/p denote the velocity of shear waves. The general solution of

equation (2.7) with arbitrary constants CI and C2 is:

my (Dy
(I>(y) = ClJo(—V—s) + C2Y0(Vs) (2.8)

where J" and Yn are Bessel functions of the first and second kind of order n, respectively.

Using the boundary conditions:

 

1:0 aty=0 :> E) =0 2 C2=0;

By )=0

u=0aty=H => <I>(H)=O => 10(wVH)=0.

S

. . . H
Therefore, the characteristic equation becomes 9:7— = Z1. where Zr are the roots of

5

Jo (Z) = 0.

From this the undamped natural frequencies of vibration are

(1). = ——sZ. (2.9)
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and the vibration modes are

(2")(Di(_v) = JO 7 (2.10)

The shearing stress will be

01'] Ziy ion

1"- = -—Z—J1('fi)€ (2.11)

Modal analysis can now be used to compute the response of the dam to an earthquake.

In modal analysis, the earthquake excitation is distributed to the various normal modes, and

the sum of the modal responses is the total response. The proportion of excitation

distributed to each normal mode, i.e. participation factor, is given by

 
 

2 . (it) .
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Assuming H = 275 ft and V5 = 1,000 ft/sec, the values of frequency, participation

factor, and vibrational shape function for the first four modes are listed in Table 2.1. Their

mode shapes are shown in Fig. 2.3.

2.2.2.2 Shear beam with variable rigidity

In the above theory the shear modulus is assumed to be constant over the entire dam,

but in most cases it is greater in the interior of the dam than near the surface because of the

TABLE 2.] Response of l-D shear beam model
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Figure 2.3 One-dimensional shear beam vibration modes

high confining pressure. As a result, the upper portion of the dam is considerably more

flexible, and the vibration modes can be rather different from those shown in Fig. 2.3.

Sawada and Takahashi (1975) investigated the velocity of seismic waves in the

bodies of existing rockfill dams and obtained important data on the distribution of the

rigidity in dam bodies. According to their tests, the velocity of transverse wave at any depth

can be represented by the formula

v = cry“ (2.13)
S

where VS = velocity of the shear wave, )2 = depth from the surface of the dam, and the two

parameters a and B are determined by the geometry and material properties of the dam.

Table 2.2 shows the typical velocity of a transverse wave and the Poisson’s ratio.
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Further refinement can be performed by adjusting the shear modulus based on the

level of stresses and strains during the response to earthquake motions. This would lead to

an iterative analysis. A simpler method of obtaining equivalent dynamic shear modulus that

accounts for stresses and strains due to the first mode only, has been proposed for 1-D and

2-D shear beam models by Abdel-Ghaffar and Scott (1979a). In their studies, a formula for

the variable shear modulus used in the analysis of the Santa Felicia dam response to

earthquakes was

W
I
—

0 (y) = only?) (2.14)

where p = mass density; 7 = specific weight; and v30 = parameter defined by Price (1956)

to determine G as a function of depth y. Furthermore, Abdel-Ghaffar and Koh (1982) used

the shear modulus as functions of position within the dam to investigate 3-D dynamic

behaviors. It has the form

o
u
r
-
—

 ) 1- B x (2.15)Guy) = G.(
5—2.2(H—))

I
N

where Go is a constant parameter.

It should be noted that the damping ratio increases with increasing shear strain while

the shear modulus decreases with increasing shear strain. More comprehensive

investigations from laboratory and field tests suggest that the main factors affecting shear

moduli and damping factors for soils are strain amplitude, confining pressure, void ratio,

TABLE 2.2 Velocity of Transverse Wave (m/sec)

 

 

 

    

Zone Depth (m) Shell Core

0-5 Vs=245 Vs=210

5-30 VS : 250y0-20 Vs = 180y0-35

30 < Vs : 200y0-315 Vs : 180y0'35

Poisson’s ratio v = 0,49-()_()()1y0.95 V = 0_45_0.006yo.oo
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number of cycles of loading, and the degree of saturation for cohesive soils. For sand, the

modulus values are strongly influenced by the confining pressure, the strain amplitude, and

the relative density but not significantly by variation in grain-size characteristics. In case a

dam is constructed mainly of cohesionless soils, the shear modulus G (at low strain) and

confining pressure p’ are related by

G = 1,000K2(p') ”2 Ib/f12 (2.16)

so that the influence of void ratio and strain amplitude can be expressed through their

influence on the soil parameter K2.

2.2.2.3 Forced vibration analysis

Supposing the dam shown in Fig. 2.2 is subjected to a horizontal upstream-

downstream ground motion, ug(t), the equation (2.6) will become

 

 

__._____—‘_.'. : —~___." (2.17)

03:2 a 2 23> all

The solution to equation (2.17) can be expressed

°° 2] [Z (v/H)] ..
_ 0 n ' - I I

u(y,t) — 2 wnZn‘ll (Z) Lllg81n[wn(t—t)ldt (2.18)

n = l It

If viscous damping is included, then equation (2.18) will be modified to the form

0° 2] [Z (y/H)] .. —Z;u) (r-r’)
_ 0 n n n - _ I I

u(y,t) — 21 wnzn‘ll (Zn) Ouge sm [(udn(r t)ldt (2.19)

n:

where C" = damping factor in the nth mode; and

(odn = (on ,H 1 — C: i = damped natural angular frequency in the nth mode.

For small values of damping, cod" = (on. Thus, from equation (2.19), the absolute

acceleration response is
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.. (Zny/H) .. — a) [—1’

ua(y,t)= 21,120) [Hg—1(2)]ruge8C" "( )sin[(r)n(t—t')]dt’ (2.20)

Equation (2.20) can be rewritten as

 

(1,6,0 = 2 w,v,,(y>vn(t) (2.21)

n=l

where

210(Zny/H)

wntv) — 2.11%) and (2.22)

-- —c.w.<r-t'> .
vnu) = fouge srn[(on(t—t’)]dt’ (2.23)

For a given ground acceleration record, fig (1) , and dam, equation (2.20) can be evaluated

numerically to obtain the absolute acceleration with depth.

Regarding the average value of kh in the Section 2.2.1, it is worth noting that a

theoretical derivation has been recommended by Seed and Martin (1966). Using equation

Bu (.v, t)

3y

(2.19), the distribution of shear stress, I (y, t) = G , can be derived. Considering

the shear force, F(y,t), induced by inertia force at the base of an arbitrary soil wedge, i.e.

F (v. t) = r (y. r) b = (épbyju'a, (r) (2.24)

the average lateral acceleration rim, (r) is

.. °° 4011 (Zny/H)

“mm — glpwnHyJMZ.)
 V" (t) (2.25)

.k —la° (I) _ i 4GJ1(Zny/H)

” " g a “V _ gownHy11(Z,,)
n—l

 

(2.26)

Note that the value of kh is a function of time. Since the average acceleration varies with

the depth y, the magnitude of kh also varies with y.
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2.2.2.4 Two-dimensional shear beam theory

The schematic of a typical dam is shown in Fig. 2.4(a). Fig. 2.4(b) shows the shear

forces on the four internal faces of an infinitesimal element of a dam with sides dy and dz

and width b. The forces acting on the element during free vibrations include the inertia

force, and the shear forces, Q” and Qa. Equilibrium of the forces acting on the element in

the x-direction yields the following equation of motion for a constant shear modulus

(Martin 1965):

+ -— +— (227)

For earth dams consisting mainly of cohesive materials, it is acceptable as a first

approximation to assume a constant shear modulus. However, for dams constructed with

(a)

  
 

(b) 
 

 

 

 

 

Figure 2.4 Shear wedge in a rectangular canyon
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non-cohesive materials, it is more appropriate to assume that the average shear modulus

varies with the depth from the crest in the form (Abdel-Ghaffar and Scott 1978, Gazetas

1980)

y B
G, = C(71) (2.28)

where G is a nominal shear modulus equal to the shear modulus at the base. Substitution of

equation (2.28) into equation (2.27) yields

2 l3 2 2

2;: 0W”) [agflwngmig] (2.29)
a: D By y y dz

where u is the lateral displacement of the dam and p is the mass density of the dam material.

It is assumed that the displacements of the dam at its base and at its banks are zero, whereas

at the crest the lateral shear force vanishes.

Using the separation of variables method, equation (2.27) can be uncoupled. By

enforcing the boundary conditions, the dynamic characteristics of the dam model can be

obtained (Ambraseys and Sarma 1967, Abdel-Ghaffar and Scott 1978, Martinez and Bielak

1980). The natural frequencies of vibrations are given by

V5 2 TC” 2 “2

mm" = fi(zm+("T) ) (2.30)

where tom” is the frequencies of vibration modes, Vs = ./G/p = is the nominal velocity of

propagation of shear waves within the dam, and Zm are roots of the characteristic equation

10(Zm)=0. The corresponding modes of vibrations are expressed as

Z y
(Dnm(y, z) = J0(—}m7)sin(£:—Z) (2.31)

Fig. 2.5, Fig. 2.6 and Fig. 2.7 show the vibration modes for m=1 and n=l, m=l and n=2,

and m=2 and n=2, respectively.
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Figure 2.5 2-D model vibration mode for n=1 and n=1

 

 

 

Figure 2.6 2-D model vibration mode for m=1 and 11:2

 

 
 

 

Figure 2.7 2-D model vibration mode for m=2 and n=2

 

 



2.2.2.5 Relevant research

Although the shear beam model treats earth dams as deformable structures, the

analysis of the 1-D model, in general, overestimates the fundamental frequency and

overestimates the frequencies of higher modes even more. The assumption of pure shear

deformation is reasonable near the vertical axis of the cross section, but results in

significant error near the upstream and downstream faces. The displacement near the faces

of the dam may be significantly different form the center-line displacement, which is

neglected in the theory. Apparently, the analysis does not give an adequate prediction of

the dam behavior because the design criteria for earth dams are based on slope stability

which is controlled by conditions near the free surfaces. Consequently, further work has

been done in order to overcome the shortcomings. A summary of the most significant

developments and studies is presented here.

0 Hatanaka (1952) performed a 2-D shear beam analysis for dams in rectangular

canyons and showed that shearing deformations are predominant. In addition, a

rational design procedure using response spectra was developed.

' Martin (1965) conducted parametric studies using the l-D shear beam model, and

proposed a non—linear variation of the shear modulus due to confining pressure, in

which the modulus was assumed to be proportional to the cube root of depth from

the crest. The results differ from those using homogeneous shear beam models

which was shown to be inadequate when dealing with the vibrations of earth dams.

° Ambraseys and Sarma (1967) summarized that the magnitude and time distribution

of inertia force, geometric configuration, damping and strain-rate are the principal

factors that control response characteristics. They used the l-D shear beam model

to obtain seismic coefficients by performing stability analysis on potential sliding

blocks.
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° Gazetas (1981) studied the response of embankment dams to longitudinal

vibrations using a triangular elastic wedge model. Transverse cracks that can induce

uncontrolled seepage through the dam and thereby result in piping failure, are

mainly due to tensile stresses created by longitudinal vibrations of the dam. The

numerical results indicate that, for a narrow dam (L/H S 1.5 ), the fundamental

natural period is independent of the dam height and is only a function of the length

and shear wave velocity. In contrast, the period depends only on the height for long

dams. It was also found that axial deformations are more significant than shear

deformations in narrow dams, while shear deformations are more important than

axial deformations in relatively long dams.

° Oner (1984) studied the shear vibration of inhomogeneous earth dams in

rectangular canyons using a shear wedge model. The effect of the restraint provided

by lateral valley was considered in the analysis. The solutions indicated that the

effect of the valley width to depth ratio and the modulus inhomogeneity are

coupled. This coupling affects the mode shapes, frequencies, and modal

participation factors. The fundamental period can be predicted, within 6-9% error,

by using an average modulus value in the homogeneous shear wedge solution.

- Prato and Delmastro (1987) used a 1-D shear beam model coupled with an

equivalent linear method for approximating the dynamic soil properties to analyze

a gravel shell dam. The results compared favorably the more precise 2-D analyses.

Crest accelerations were predicted within 5% of those given by 2-D analyses. Shear

stress patterns and values within shells exhibited differences between 5 and 12%.

° Emesto-Motta and Zeng (1993) studied the effect of travelling seismic waves on the

dynamic response of earth dams, using a truncated 2-D elastic wedge. For

comparison, 1-D and 2-D wedge models were also used without considering the

travelling wave effect. The results showed that: (l) for the longitudinal mode of

vibration, the greater the ratio of the height to the length of the complete wedge, the



-
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more the natural transverse period of vibration of the 2-D wedge is less than that of

the 1-D wedge; (2) when the phase difference of ground motion at both ends of the

dam equals 1:, the amplification for a 2-D wedge is less than that for a 1-D wedge;

and (3) in general, the displacement caused by an earthquake is greater for a 1-D

model than for a 2-D model when considering travelling waves, but the acceleration

response of a long 2-D wedge to travelling waves with a long dominant wave length

is greater than that of a l-D wedge.

2.2.3 Plane strain finite element model

The FEM for 2-D plane—strain analysis in earth dams was first presented by Clough

and Chopra (1966). The structure was assumed to be of infinite length and loaded

uniformly along the length so as to produced plane strain behavior of the cross section. The

method can account for any arbitrary geometry and material property variations and can be

applicable to the analysis of any elastic system subjected to any type of dynamic loading.

Another significant advantage is that the method can be adapted to take account of non-

uniform base motions in the width direction; that is, of the effects of seismic waves passing

under the dam in which the wave lengths are short compared to the cross-section width of

the dam base.

Concerning the finite element (FE) plane strain analysis procedure in general, it may

be noted that: (1) compatibility is satisfied everywhere in the system; (2) equilibrium is

satisfied within each element; and (3) equilibrium of stresses is not satisfied along the

element boundaries, in general, but the nodal force resultants are in equilibrium. This local

discrepancy in stress equilibrium represents the type and extent of the approximation

involved in the FEM.

It has been the limitations of computer storage capacity and high costs that have

generally restricted the use of FE models to the plane-strain case. The following lists the

evolution of developments related to the 2-D FE model.
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° Chopra (1967) compared the response of a shear wedge model with that of the 2-D

FE model to a prescribed horizontal base acceleration (El Centro earthquake 1940).

The important conclusion from this comparison was that the natural mode shapes

obtained by the FEM differed significantly from those obtained with the shear

wedge model. Only the fundamental mode resembles the shear wedge behavior, but

even in this case the 2-D deformations are much more complex than those assumed

in the shear wedge analysis. On the other hand, stresses near the faces of the dam

computed by the FEM were found to depend significantly on the slope of the sides,

with steeper side slopes resulting in greater stresses; this is in contrast to the shear

wedge approach which yields stresses independent of the side slopes.

° Dibaj and Penzien (1967) studied the response of a 2-D FE model of a dam to

horizontally travelling waves. It was concluded that the time variation of the ground

motion must be taken into account especially for seismic waves with low velocity.

They also concluded that the spatial variation of ground motion was negligible only

when the ratio of base width to wave velocity is less than 0.1 second.

0 Ghaboussi and Wilson (1973) modeled the soil as a porous elastic medium and

studied the dam-reservoir interaction. The upstream shell and the central core were

considered as a coupled two-phase fluid-solid zone. This was the first attempt

determining the pore pressures and the intergranular stresses under earthquake

loading conditions. It should be noted that, while in a local shear failure the soil

regains its strength when the load reverses, once local liquefaction develops, the

soil in that zone is likely to remain liquefied for the rest of the duration of the

earthquake. It was also concluded that an important source of the pore pressure built

up in the earth dams is due to the dilatancy of soil under shear deformation, which

cannot be simulated by linearly elastic material models. Therefore, it was

concluded that nonlinear material properties should be adopted.
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- Martinez and Bielak (1980) combined a 2-D FE discretization of a dam’s cross

section with Fourier expansion in the longitudinal direction to obtain the response

of dams in symmetric canyons.

Mansuri et al. (1983) studied the liquefaction of earth dams due to shear straining,

using a 2-D FE mode] with soil treated as a poroelastic material. The effect of

elastic wave propagation and the volumetric strain resulting from an applied shear

strain were considered. The results of an analysis of a hypothetical dam were

observed to agree well with the observed liquefaction in the lower San Fernando

Dam during the San Fernando Earthquake of February 8, 1971.

Comprehensive comparative studies of the linear viscoelastic predictions by the shear

beam model and plane strain model has been reported by Tsiatas and Gazetas (1982) and

Dakoulas and Gazetas (1985). The following are the main conclusion from these studies:

1. The two models yield very similar fundamental natural frequencies and

fundamental mode shape. Specifically, the shear beam invariably under-predicts

the natural period by about 10% in most cases.

The significant higher lateral modes computed with finite elements exhibit an

increasingly stronger component of vertical deformation. The shear beam neglects

this component and thereby leads to higher natural frequencies.

. Peak values and time histories of horizontal relative displacements computed with

the two models are in very close agreement, the discrepancies being within 10% for

all dams and all seismic excitations studied.

The most significant disagreement of the two models involves absolute

accelerations of relatively flexible dams, for which the shear-beam frequently

overestimates the crest peak acceleration by as much as 50%.

In general, the shear beam also tends to overestimate slightly the largest peak values

of strain, which usually occur within the upper third of the dam. On the other hand,
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shear stresses are in very good accord; the shear beam predictions are

approximately equal to the average-across-the-width shear stress computed using

the FEM.

2.2.4 Three-dimensional model

It has been conventional practice in the past to evaluate the dynamic response of an

earth dam by making plane-strain analyses of several representative sections through the

dam. The assumption of plane-strain conditions is valid for infinitely long dams subjected

to synchronous lateral motion on longitudinal lines along the base. However, for dams built

in narrow valleys, which is the frequent case in mountainous regions, plane strain analyses

can give grossly misleading results. The presence of relatively rigid abutments creates a

3-D stiffening effect. As the canyon becomes narrower, natural frequencies increase and

displacement mode shapes tend to become sharper. Thus while much effort is always

directed towards simplification of the evaluation procedure, it is sometimes necessary to

use more sophisticated analyses in the interest of improved understanding and accuracy.

A number of studies using 3-D model have been performed in the 1980s. For earth

dams with a plane of symmetry perpendicular to the longitudinal axis, Martinez and Bielak

(1980) developed a numerical procedure for 3—D FE analysis, and concluded that the 3-D

deformation behavior yields higher stiffness characteristics than does the 2-D idealization.

Ohmachi (1981) extended the shear wedge model into a simplified finite element model,

and concluded that three dimensionality has an important effect on the earthquake response

of dams located in narrow canyons. Abdel-Ghaffar and Koh (1982) presented a more

rigorous although computationally quite efficient 3-D semi-analytical solution for dams

built in canyons of any shape but having a plane of symmetry. This solution is based on the

Rayleigh-Ritz method with the shear-beam shapes or-even simple sinusoids as "basis

function", and involves an appropriate transformation of the dam geometry into a cuboid.

An attempt was made to reproduce the recorded seismic response of the Santa Felicia dam
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during the 1971 San Fernando earthquake. Of particular significance is the versatility of the

method which has been extended to formulate a realistic approximate solution for the non-

linear inelastic response of dams in non-rectangular canyons (Elgamal et al. 1984). Makdisi

et al. (1982), Mejia et al. (1982) and Mejia and Seed (1983) developed relatively efficient

3-D FE formulations to obtain the steady state and transient responses of homogeneous

dams in triangular canyons. The results show that the presence of the rigid triangular

boundary increases the fundamental frequencies, and seems to substantially increase the

seismic acceleration while decreasing the seismic strains.

More sophisticated deterministic analyses including non-linear effects and differential

ground motion are summarized below:

0 Prevost et a1. (1985) performed 2-D and 3-D non-linear finite element analyses of

the Santa Felicia earth dam utilizing a multi-surface plasticity theory. In the study,

all three orthogonal components of the input ground motions were considered,

rather than only base excitation in the upstream-downstream direction. The results

are more reliable because all possible vibration modes of the dam were taken into

account. Comparing the responses from the 2-D model with that of the 3-D model,

it was found that the 2-D model predicted the permanent shear strain to be 30%

lower when the dam was subjected to strong shaking. The three-dimensionality of

the dynamic earthquake responses of earth dams was shown to be important.

0 Abdel-Ghaffar and Elgamal (1987) developed a simplified analytical-numerical

procedure based on a Galerkin formulation of the 3-D equations of motion. A

simplified elastic-plastic technique was applied to compute the non—linear seismic

3-D response of the Santa Felicia dam. The linear mode shapes were obtained using

low-strain elastic moduli and a variational energy approach utilizing both

Hamilton’s principle and the Rayleigh-Ritz method. The results of the simplified

analysis were found to compare favorably with those of an elaborate 3-D FE model.
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0 Lacy and Prevost (1987) modeled soil as a non-linear two-phase system, and used

FE discretization of the field equations followed by time integration to obtain the

resulting non-linear semi-discrete FE equations. Since earth dams are susceptible to

liquefaction failure, an integrated, coupled treatment of the dynamic interaction

between the soil skeleton and the water fluid phase was used in the analysis. The

results of the numerical calculations were in good agreement with the recorded

response of the dam.

- Haroun and Abdel-Hafiz (1987) performed a deterministic study of the effect of

differential ground motion on the displacement response of earth dams using a 2-D

shear beam model and the FE model. The effective force vector was varied at each

time step to reflect both the temporal and spatial variations of the input ground

motion. The results for spatially uniform ground motion was shown to be

conservative.

2.2.5 Model testing

2.2.5.1 Elastic vibration test

The purpose of performing elastic vibration tests on a model dam is to experimentally

determine the natural period and mode shape. The similarity between the prototype and the

model is determined by the law of similitude. According to elastic vibration theory of the

shear beam model presented in Section 2.2.2.1, the natural period is proportional to

H./p7G Therefore, if subscript p and m are added to express the quantities relating to the

prototype and the model, respectively,

:11 = :11 _pme (2.32)

Tm Hm pmGp

If the natural period Tm of the model is measured in the model test, the natural period Tp of

the prototype may be calculated from equation (2.32). The elastic modulus of a real dam

will vary depending on the soil, construction process and the length of time which has
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elapsed since construction. However, its average value ranges from 50 to 270 kg/cmz. This

was calculated from measurements of propagation velocities of elastic waves in several

existing earth dams (Severn, 1979). The propagation velocity of transverse waves and the

Poisson’s ratio for rockfill dams are given in Table 2.2.

2.2.5.2 Dynamic failure test

In an earth dam failure test, a valid similarity between the displacements, the major

external forces and resisting forces of the prototype and the model is required. In this case

major external forces consist of the weight of the dam and the earthquake-induced inertia

force, and the major resistance force comes from the frictional and cohesive forces. The

following symbols are used: (Okamoto 1984)

L = length; 7» = length scale factor; it = displacement; f= force; I = stress;

5 = strength of materials; and 0 = angle of internal friction.

The similitude of displacement is the same as the similarity of length. Thus,

= _’" = A (2.33)

The ratio between the weight of the model and that of the prototype will be

3

L

pmg ’" = p—"Wf (2.34)
3

ppgLP pp

 

The same ratio must be valid for force f. As stress is force per unit area,

2

1' /L

- f“ ’" = p_,,, (2.35)
m

1:— _ 2 p
p fp/Lp p

 

Since the strength of the material is of the same order as stresses,

_ = —>t (2.36)
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The strength of granular material is given by the product of the normal stress and

coefficient of friction. However, since the similitude of normal stress satisfies equation

(2.35), the coefficient of friction must be identical for the prototype and model. Namely,

tan em = tan 0,, (2.37)

The objective of a vibration test is to determine the displacement and surface strain

of the dam during earthquakes taking the detailed configuration of the valley into

consideration. The type of damage may be observed during the dynamic failure test.

Regarding the material modeling, plaster or dense gelatin is generally used for the valley

and gelatin for the dams, since these materials are convenient for reproduction of the shapes

of valleys and dams.

2.2.6 Field measurement

The seismic behavior of earth dams can be learned by installing instruments to carry

out observations during earthquakes. Measurements have been made on and within dams,

including dynamic earth pressures, dynamic pore-water pressures and residual

deformations after an earthquake. There is no difficulty when instruments are installed on

the dam or on the ground, but when they are set up within the dam, there is liable to be

problems with moisture entering the instruments, tilting of instruments, and breaking of

lead wires due to dam settlement or heavy equipment used during construction. Therefore,

care must be taken on the installation of instruments.

Abdel-Ghaffar and Scott (1981a) performed full-scale dynamic tests, including

ambient vibration tests, forced vibration tests and popper tests, which were carried out on

the Santa Felicia dam. The measuring equipment consisted of: (1) motion sensing

transducers (SS-1 seismometer by Kinemetrics, Inc.); (2) recording instruments including

signal conditioners (SS-1 also by Kinemetrics, Inc.), and an oscillograph recorder (7418A

by Hewlett-Packard), and tape recorders (3460A by Hewlett-Packard); (3) force generating

systems or shaking machines capable of producing a force up to 44,500 N (10,0001bs); and
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(4) data processing instruments including an electronic analog-digital converter (DDS-

1103 by Kinemetrics) and a digital signal processor (SD36O manufactured by Spectral

Dynamics Corp.).

According to the test results, it was found that existing shear-beam theories do not

predict all the upstream-downstream modes, indicating the inadequacy of these theories for

comprehensive earthquake response computation. The correspondence between resonant

frequencies from full-scale tests and those estimated from the spectral analysis of two

earthquake records (San Fernando earthquake 1971 and Southern California earthquake

1976) is reasonably good over the first few frequencies, but higher modes could not be

reliably matched. It should be noted that full-scale tests at levels of excitation much lower

than those experienced during the earthquakes produced substantial changes in the dynamic

properties of the dam. Thus it was concluded that the behavior under real earthquakes was

significantly non-linear.

Several actual measurements of earth dam responses during earthquakes has been

conducted in the past. Attention has generally been paid to three major concerns: (1)

earthquake acceleration; (2) magnification of the maximum acceleration at the tops of

dams; and (3) stresses developed in the embankment. The accelerations of dams induced

by earthquakes is important in determining the earthquake inertia forces acting on the dam.

The ratio of the maximum acceleration at the ground surface and the maximum acceleration

at the crest of a dam is also of interest because most failures occur near the crest. In

addition, the stresses developed in the embankment are mainly due to earth pressure and

pore water pressure. Their magnitude has a significant effect on the seismic stability of

dams. Although the measured responses can give direct information for design, the cost of

testing prohibits its widespread use.
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2.3 Recent Studies

Since most structures are quite sensitive to the details of ground excitation, which are

of an unpredictable nature, little confidence can be achieved form the results of a single

deterministic dynamic analysis using a recorded or artificially generated ground motion. To

avoid the expense and effort required for multiple deterministic analyses, random vibration

methods have been developed. In the 19805, the application of probabilistic methods to the

seismic analysis of earth dams increased notably:

0 Gazetas, DebChaudhury and Gasparini (1981 & 1982) used the random vibration

technique to study the seismic response of earth dams. The Kanai-Tajimi spectral

density function was used to characterize the ground motion, and a shear beam

model with a variable cross section was used to characterize the dam. However, due

to the limitations of the idealized model of the dam, wave passage effects were

neglected.

° Gasparini and Sun (1982) used the FEM in conjunction with random vibration

analysis. They studied the effect of correlation between vertical and horizontal

ground motion components, but did not account for spatially varying earthquake

ground motions (SVEGM).

° Luco and Wong ( 1986), and Harichandran (1987) studied the response of rigid mat

foundations to SVEGM. However, it is rather unreasonable to consider an earth

dam as being located on a rigid mat foundation. If the base of a dam is considered

as rigid, then the averaging effect over its large base dimension would reduce the

earthquake excitation drastically, severely under—predicting the dam response.

0 Novak and Suen (1987) are the first to include SVEGM in the random vibration

analysis of dams. Their study was a preliminary one, in which the darn was modeled

as a prismatic beam, wave propagation effects were neglected, and only vertical

excitation was considered. They did include dam-foundation interaction effects,
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and found that while this was important for concrete dams, it may be neglected for

earth dams. In spite of the rather simplistic model used, their study confirmed that

bending distortions produced by spatially correlated ground motion substantially

increased the stresses within the dams.

° Dakoulas and Hashmi (1992) presented an analytical model for the steady-state

lateral response of earthfill and rockfill dams in canyons subjected to a steady train

of harmonic SH waves incident at an arbitrary angle. The dam was modeled as a 2-

D shear beam with a triangular cross-section, while the canyon was considered to

be rectangular and consisting of elastic rock. The result showed that obliquely

incident waves traveling at an angle of about 550-600 to the horizontal yielded the

maximum response.

0 Ramadan and Novak (1992) addressed dam-reservoir-foundation interaction on a

long gravity dam under SVEGM. A simplified mathematical model which accounts

for spatial coherence effects as well as wave passage effects was formulated in the

study. However, the analysis is adequate only for long gravity dams and may not be

suitable for the analyzing the behavior of earth dams under earthquake conditions.

Based on the above review, it is apparent that although a substantial body of work

exists on the seismic response of earth dams, only marginal attention has been paid to

include the effects of SVEGM. This is due to the fact that spatial variation of strong ground

motion has been quantified only very recently, based on actual observations from dense

seismograph arrays (Loh 1985, Harichandran and Vanmarcke 1986, Harichandran 1987,

Abrahamson et al. 1990, Schneider et a1. 1990). A new thrust is therefore necessary to

include the effect of SVEGM on the seismic analysis of earth dams.



3. DETERMINISTIC RESPONSE OF THE SANTA

FELICIA EARTH DAM

3.1 Description of Santa Felicia Dam

The Santa Felicia earth dam is a modern rolled-fill earth embankment located on Piru

Creek, 65 km northwest of Los Angeles. It is owned by the United Water Conservation

District of Ventura County and was completed in December 1955. The dam, shown in

Fig. 3.1, is 83.8 m (275 ft) high above its rock foundation and 137.2 m (450 ft) long across

the valley at the base. The crest has a width of 9.14 m (30 ft) and a maximum length of

388.6 m (1,275 ft). The dam is made of a central impervious core and pervious shell

upstream and downstream. The core and shell materials are basically alluvial, consisting of

clay, sand, gravel and boulders. The core rises from bedrock with a slope of 0.33:1. The

shells rest on existing stream gravel, 22.9 m (75 ft) in height. Upstream and downstream

slopes have slopes of 2.25:] and 2: 1, respectively.
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PLAN VIEW

Figure 3.1 Structural Details of Santa Felicia Earth Dam
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Fig. 3.2 is the side view of the Santa Felicia dam model, which shows an impervious

clay core covered by a sand and gravel shell resting on a stiff layer of gravel and sand down

to bedrock. Due to confining pressure, the elastic moduli of the soil varies with the depth

from the crest of the dam. The low strain elastic moduli for each material at each depth were

computed from the results of both shear wave velocity measurements and full-scale

dynamic tests performed at the site and have been reported by Abdel-Ghaffar and Scott

(1981). The elastic shear moduli back-calculated from those measurements and used in the

analysis are listed in Table 3.1 (adopted from Prevost et al., 1985). The material zones listed

in Table 3.1 are shown in Fig. 3.3. Poisson’s ratio is assumed equal to 0.45 for the clay core

and 0.30 for the remaining materials. Saturated unit weights of 20.59 kN/m3 (134 pcf) and

22.17 kN/m3 (141 pcf) are used for the clay and the remains, respectively.

Prevost et a1. (1985) simplified the model and assumed zone SS to be stream gravel.

This simplification on author’s model (Case I) causes an error in the fundamental natural

frequency of about 3% compared with the model with pervious shell material at zone SS

(Case 11). The first ten natural frequencies of the model (Case II) used in the study and of

the simplified model (Case I) are compared in Table 3.2.
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Figure 3.2 Santa Felicia earth dam model side view
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Figure 3.3 Illustration for different material zones

TABLE 3.] Low strain shear moduli for Santa Felicia earth dam

 

 

 

 

 

 

 

       
 

 

 

 

 

 

 

 

 

 

 

Depth below Zone Core Zone Shell Zone Gravel

crest (ft) number (lb/ftZ) number (lb/itz) number (lb/rtz)

0—50 1C 2,441,492 1 S 1,725,423

50-100 2C 3,755,302 28 2,939,447

100-150 3C 4,414,405 33 3,781,540

150-200 4C 4,763,929 43 3,972,660

200—275 5C 4,763,929 SS 4,062,370 G 39,726,600

TABLE 3.2 Natural frequencies (Hz) compared with simplified model

M0“ (the 51:3:Ililsed) (simplifift: Model) M°d° (the :22::Ilsed) (simplgifc: Model)

1 1.392 1.427 6 1.859 1.873

2 1.466 1.510 7 1.965 1.982

3 1.582 1.609 8 2.138 2.154

4 1.812 1.812 9 2.244 2.259

5 1.820 1.820 10 2.303 2.338      
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3.2 Model Assumptions

3.2.1 Geometry

The Santa Felicia earth dam is located on Piru Creek whose banks on both sides do

not exactly have the same shape. However, in this study it is assumed to be symmetric about

the middle of the dam axis. This simplification does not have a significant effect on the

response, which was found by Elgamal and Abdel-Ghaffar (1987). Another simplification

made was to terminate the very long dimension of the existing stream gravel in the

upstream-downstream direction shortly after the extent of the pervious shell.

3.2.2 Soil properties

Soil is, in reality, an inhomogeneous, anisotropic, nonlinear and hysteretic material.

During an earthquake, its dynamic shear modulus decreases with increasing shear strain,

while its damping ratio increases with increasing shear strain. However, in this study the

emphasis was on obtaining better insight into the effect of SVEGM rather than on complex

material models and so linearly elastic, isotropic dam materials were assumed in the

analysis. In addition, low strain viscous damping is adopted to facilitate a simple finite

element dynamic analysis. In this study, the increase in the pore water pressure of the soil

during seismic response is neglected.

3.2.3 Hydrodynamic effect

It has been reported that the hydrodynamic effect on earth dams is not significant

compared to the response due to earthquakes. Assuming that water is incompressible and

that the ground motion is horizontal, Zangar (1955) reported that the water pressure acting

against an inclined upstream face decreases with decreasing angle of inclination. For the

case of the Santa Felicia dam, the water pressure is only one—fifth of that acting on a vertical

upstream face. As a result, the hydrodynamic effect may be important for concrete gravity

dams with a steep upstream surface (Chopra and Gupta 1981, Hall and Chopra 1982), but

it is negligible on earth dams.
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3.2.4 Dam-foundation interaction

It has been concluded that soil-structure interaction is important for concrete gravity

dams but insignificant for earth dams built on rigid foundations (Chopra and

Perumalswami 1969, Idriss et. a1 1974, Novak, 1987). Because the material properties of

concrete gravity dams are close to those of rock foundations, resonant vibration is very

likely to occur during earthquake excitation. For the Santa Felicia dam, since the

magnitudes of the earth dam stiffnesses are much smaller than those of the foundation

stiffness, the vibration characteristics of the dam differ greatly from that of the bedrock.

Therefore, dam-foundation interaction can be neglected so that the free-field bedrock

motions may be applied at the base of the dam and the responses analyzed directly.

3.2.5 Radiation damping

When an earth dam subjected to ground motion vibrations, energy dissipation may

take place through feedback into the ground soil. Radiation damping is considered as the

energy loss through partial refraction of the waves in the soil back into bedrock. Finite

element methods have inherent difficulties in modeling the radiation damping effects (Seed

et a1. 1975). Dakoulas and Hashmi (1992) related the radiation damping of the dam-

foundation system to the effect of the impedance ratio. By observing acceleration

amplification corresponding to different impedance ratios between canyon and dam, they

concluded that the flexibility of the canyon rock has a dramatic effect on the response of

earth dams, as it affects the amount of energy radiated back to the canyon. However, for a

dam built in a rigid canyon, the effect of radiation damping is not significant, and hence it

is neglected in this study.

3.3 Modeling and Analysis using I-DEAS VI.i

3.3.1 Introduction

Deterministic analysis of the Santa Felicia dam was performed using I-DEAS VI.i

finite element program. The simultaneous vector iteration technique was used to obtain the

dynamic modes of the dam. The I-DEAS computer software was developed and marketed
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by Structural Dynamics Research Corporation of Milford, Ohio. I-DEAS provides a broad

array of analysis and pre- and post-processing tools that are suited for this study. The main

features of I-DEAS families used in modeling and analysis are briefly presented in

Appendix A.1.

3.3.2 Finite element model

The three-dimensional finite element model, shown in Fig. 3.4, was used for all

analyses in this study. The model consists of 1,004 nodes and 4,140 tetrahedral elements.

Since the dam is located on a rigid rock base, 288 nodes on the boundary surface between

the dam and the valley are completely restrained. A brief description of the modeling

procedures used in I-DEAS VI.i is presented in Appendix A.2.

3.3.3 Free vibration analysis

The free vibration characteristics of a dam is fundamental to understanding the

behavior of the dam during an earthquake. The free vibration characteristics are represented

by natural frequencies and vibration modes and can be computed by performing modal

analysis in I—DEAS. The steps for free vibration analysis are described in Appendix A.3.

In the FE method, there is a trade-off between computational effort and numerical

accuracy. Progressively finer meshes were used to determine the number of elements

required for acceptable accuracy. Four cases using coarser to finer finite element meshes

 

 

 

  

 

       

Figure 3.4 Finite Element Mesh
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are compared in Table 3.3. The elapsed time for the analyses listed in the table is for an HP

model 715/50 UNIX workstation. Ten modal frequencies are solved for in each case. The

results are listed in Table 3.4. Based on the convergence of the first ten modal frequencies,

the third case was selected as being sufficiently accurate. The first eighty natural

frequencies for the third case are listed in Table 3.6, and these agree well with values

reported in previous studies (Abdel-Ghaffar and Scott 1979, Prevost et a1. 1985). The

vibration modes may be either symmetric or antisymmetric about the mid-plane of the dam

TABLE 3.3 Comparison of elapsed time for solving ten vibration modes

 

 

 

 

 

 

Case Average element Total number Total number CPU time

size (ft) of elements of nodes (sec)

I 100 1916 491 196

ll 85 2626 666 363

III 70 4140 1004 810

IV 55 5952 1446 874       

TABLE 3.4 Comparison of natural frequencies (Hz) using different mesh sizes

 

 

 

 

 

 

 

 

 

 

 

 

Mode Case I Case 11 Case III Case IV

Mode 1 1.414 1.400 1.391 1.385

Mode 2 1.491 1.474 1.466 1.458

Mode 3 1.631 1.604 1.582 1.568

Mode 4 1.951 1.802 1.812 1.634

Mode 5 1.993 1.973 1.820 1.648

Mode 6 2.235 2.163 1.859 1.825

Mode 7 2.338 2.261 1.965 1.937

Mode 8 2.355 2.296 2.138 2.088

Mode 9 2.441 2.362 2.244 2.110

Mode 10 2.593 2.464 2.303 2.195       
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axis. The types of the first 20 vibration modes are shown in Table 3.5. And the first eight

mode shapes are shown in Figs. 3.5 and 3.6.

3.3.4 Response to ground motion

A convergence analysis indicated that about 80 vibration modes were required in

order to obtained an adequately accurate response to the earthquake excitation shown in

Fig. 3.7 which is similar to the El Centro accelerogram. The excitation was applied at all

nodes on the boundary in the upstream-downstream direction. A viscous damping ratio of

0.06 corresponding to low strain deformation was adopted for all modes. The steps used in

I-DEAS to perform deterministic dynamic analysis are briefly described in Appendix A4.

The ground acceleration, velocity and displacement in the upstream-downstream

direction was specified at nodes along the dam and rock interface. Figs. 3.8 and 3.9 show

the velocity and displacement time histories obtained by integrating the acceleration time

history in Fig. 3.7. Fig. 3.8 shows that the final ground velocity is not zero as expected.

TABLE 3.5 Types of mode for the first 20 modes

 

 

 

 

 

 

 

 

 

 

 

 

Mode no. Type of Mode Mode no. Type of Mode

1 Symmetric 1 1 Anti-symmetric

2 Anti-symmetric 12 Anti-symmetric

3 Anti—symmetric l 3 Symmetric

4 Anti-symmetric l4 Anti-symmetric

5 Symmetric 15 Symmetric

6 Symmetric 16 Symmetric

7 Symmetric 17 Symmetric

8 Anti-symmetric 18 Anti-symmetric

9 Anti-symmetric l9 Symmetric

10 Symmetric 20 Symmetric       
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TABLE 3.6 Natural Frequencies

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Mm!" Fifi?» M°de 17:13:11) M°d° Fiffiailz) M°d° F1?(:2)

l 1.392 21 2.807 41 3.356 61 3.876

2 1.466 22 2.814 42 3.371 62 3.880

3 1.582 23 2.837 43 3.384 63 3.937

4 1.812 24 2.889 44 3.411 64 3.940

5 1.820 25 2.911 45 3.446 65 3.958

6 1.859 26 2.929 46 3.499 66 3.974

7 1.965 27 2.950 47 3.507 67 4.008

8 2.138 28 2.964 48 3.590 68 4.029

9 2.244 29 2.966 49 3.597 69 4.065

10 2.303 30 2.980 50 3.659 70 4.081

11 2.341 31 3.041 51 3.694 71 4.099

12 2.430 32 3.069 52 3.709 72 4.105

13 2.455 33 3.093 53 3.724 73 4.142

14 2.461 34 3.143 54 3.745 74 4.167

15 2.493 35 3.167 55 3.752 75 4.179

16 2.511 36 3.184 56 3.802 76 4.192

17 2.587 37 3.251 57 3.803 77 4.210

18 2.609 38 3.258 58 3.814 78 4.212

19 2.640 39 3.298 59 3.831 79 4.247

20 2.756 40 3.325 60 3.849 80 4.292          
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Typically, baseline correction procedures are employed to correct the acceleration time

history so that the final ground velocity is zero. However, for the convergence analysis

performed here, base line correction is not necessary and hence it was not performed.

Table 3.7 lists some nodal responses computed with an increasing number of

vibration modes. The maximum acceleration responses at four different locations were

computed in order to study the sensitivity of the response to the number of vibration modes

included in the analysis. The table indicates that using the first eighty modes yields

sufficient accuracy in the computations.
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Figure 3.9 Displacement excitation
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TABLE 3.7 Maximum acceleration (ft/secz) response to different number of modes

 

 

 

 

 

 

 

 

 

Number Of Middle point at Side point at the point on the Point on the

activated . .
the crest crest upstream s1de downstream srde

modes

20 45.1 42.3 11.0 12.0

40 45.0 38.6 11.0 12.0

60 46.0 41.0 11.3 12.3

70 48.1 41.4 11.3 12.0

80 47.1 40.7 11.0 12.0

90 48.1 41.8 11.0 11.7

100 47.6 40.6 11.0 12.0      
 

3.4 Types of Failures in Earth Dams

Over the years several types of earthquake damage have been observed in earth dams

and embankments (Seed et al. 1978). Three major factors affect the stability and

performance of an embankment during an earthquake: (a) section geometry (upstream and

downstream slopes); (b) construction method and compaction procedure; and (c) type of

embankment and foundation material. The possible ways in which an earth darn might fail

during an earthquake include (Sherard et al. 1963):

1. Failure due to disruption of the dam by major fault movement in the foundation.

2. Slope failures induced by ground motions.

3. Loss of freeboard due to differential crest settlement.

4. Piping failure through cracks induced by the ground movements.

5. Overtopping of the dam due to failure of the spillway or outlet works.

In general, the principal types of damage can be classified as sliding failure, liquefaction

failure, longitudinal cracks, transverse cracks, and piping failure.
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3.4.1 Sliding failure

Sliding, as shown in Fig. 3.10, is a major type of damage that can occur in earth dams

subjected to earthquake ground motions. Sliding initially causes settlement and subsequently

leads to dam failure. The slope stability of earth dams is usually evaluated in terms of the

shear strength of soils and the Mohr-Coulomb strength criterion is often used to characterize

local failure. According to the Mohr-Coulomb criterion, the shear strength of the soil, 1'], is

expressed as

If = c+t'tan¢ (3.1)

where t' = effective normal stress on the failure surface, and c and (1) are the cohesion and

angle of internal friction, respectively. When earthquake—induced maximum shear stress

exceeds the shear strength of soils, local yielding is expected to occur. Consequently, if the

shear strength along a trial sliding surface cannot resist destabilizing seismic forces, sliding

failure may occur.

3.4.2 Liquefaction failure

Under earthquake conditions, due to rapid cyclic straining, gravity loading is

transferred from soil solids to the pore water. This results in an increase of pore water

pressure with a reduction in the capacity of the soil to resist loading. This process by which
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Figure 3.10 Sliding failure of earth dam subjected to earthquake motions
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loss of strength occurs in soil is called liquefaction. The phenomenon of soil liquefaction

is primarily associated with medium- to fine—grained saturated cohesionless soils. Sliding

of a slope is attributed to the dam losing stability due to variation in stress, and the soil

losing resistance due to vibration and the rise of pore-water pressure. Such damage induced

by ground motions occurs most often at the upstream slope as shown in Fig. 3.11. If the

earth dam is saturated at the upstream side, it may liquefy when subjected to vibration

exceeding a certain limit.

The occurrence of liquefaction failure is usually related to the volumetric strain in the

soil which is given by

e = 21 +82+€3 (3.2)
V

where 81, £2 and 83 are the principal strains for 3-D problems.

Another method to evaluate possible liquefaction is the use of a threshold strain. If

the cyclic shear strain in soil as a result of an earthquake does not exceed a certain threshold

level, liquefaction should not occur. The peak shear strain caused by an earthquake ground

motion can be estimated by (Commission on Engineering and Technical Systems 1985)

Ymax = . 3“” (33)

U tV ps ream

Liquefaction zone

J

Figure 3.11 Liquefaction at the upstream side
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in which am = peak acceleration of earthquake motions, h = depth from the crest and vs =

shear wave velocity in the soil.

3.4.3 Longitudinal cracks

Longitudinal cracks take place mostly in the crest area as shown in Fig. 3.12. The

formation of wide longitudinal cracks is considered to be due to tensile stresses produced

at the surface. Shear sliding deformation may also contribute to such failure. Another cause

of longitudinal cracks is the uneven settlement of the core or foundation. Uneven settlement

usually occurs when the strength of the foundation is not uniform or when loose river

deposits are left unexcavated. It should be noted that longitudinal cracks are sometimes

concealed. The internal cracks formed in the Hachi Dam in Niigata, Japan were discovered

when the dam was excavated to repair sluiceways damaged in the Niigata earthquake.

Therefore, careful investigation is necessary even when no damage is visible (Okamoto

1984).

3.4.4 Transverse cracks

Transverse cracks consists of four types: (a) those formed due to violent vibration in

the direction parallel to dam axis, (b) those formed near both ends of an embankment

Longitudinal cracks
‘
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settlement
Dumped rock
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Figure 3.12 Cracking caused by differential settlement between embankment sections of

dumped rock and rolled earth



53

because of the difference in the vibration characteristics of the embankment and the banks,

(c) those formed due to nonuniforrnity of consolidation within the dam when repairs were

made on sluiceways, and (d) those due to uneven settlement of the foundation. Typical

transverse cracks due to differential settlement are shown in Fig. 3.13. Generally,

transverse cracks are fewer than the number of longitudinal cracks, but these can serve as

water channels, causing breaking, so early repair is necessary.

3.4.5 Embankment and foundation piping

Piping, or progressive erosion of concentrated leaks, has caused a number of

catastrophic failures. As water seeps through the compacted soil of an embankment or the

natural soil of a foundation, the pressure head is dissipated in overcoming the viscous drag

forces which resist the flow through the small soil pores. Conversely, the seeping water

generates erosive forces which tend to pull the soil particles with it in its travel through and

under the dam. If the forces resisting erosion are less than those which tend to cause it, the

soil particles are washed away and piping occurs. The resisting forces depend on the

cohesion and the weight of the soil particles, as well as on the action of the downstream

filter.

Longitudinal section

Exaggerated crest settlement *—

A

\Opencracks/

   

   

  

 

Figure 3.13 Typical transverse differential settlement cracks



4. STOCHASTIC RESPONSE ANALYSIS USING A

FINITE ELEMENT MODEL— THEORY

4.1 Characteristics of Earthquakes

An earthquake is a phenomenon of strong vibration occurring on the ground due to

the release of a large amount of energy within a short period of time through a sudden

disturbance in the earth’s crust or in the upper part of the mantle. Energy released

underground moves through the earth in the form of wave motions to reach the surface.

Two types of wave motion of different nature, longitudinal waves (P waves) and transverse

waves (S waves), may be transmitted through the ground. In the case of P waves, the

direction of motion of particles of matter coincides with the direction of advance of the

waves. For 8 waves, the direction of motion of particles of matter is orthogonal to the

direction of advance. In particular, the transverse wave is called an SV wave when it is

vertically polarized or an SH wave when it is horizontally polarized.

For any specified ground motion, the responses of any structure can be computed

deterministically. However, earthquake motions are irregular and each one differs from

another in the fine details. It is not possible to predict the precise details of a future

earthquake ground motion. Owing to the variation in ground motion details, stochastic

modeling of strong ground motions is more appropriate and is finding increasing use. In

addition, recent studies of seismograms recorded by the SMART-1 array in Lotung,

Taiwan and other arrays indicate that earthquake ground motions exhibit travelling wave

effects as well as spatial correlation effects. Spatially varying earthquake ground motion

(SVEGM) can only be effectively characterized in terms of stochastic models. Therefore,

the effect of SVEGM on the Santa Felicia dam is studied using random vibration analysis.

4.2 Engineering Interpretation of Stochastic Responses

The trend in civil engineering today, more than ever before, is toward providing

economical designs at specified levels of safety. Earthquake ground motion is one of the

54
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main factors which significantly affects the safety of structures. Current earthquake-

resistant design procedures, which generally have been determined only from a specific

earthquake record, often fall short of expectations in future situations. Little confidence can

be achieved from the results of a single deterministic dynamic analysis. Therefore, to avoid

the expense and effort required for multiple deterministic analyses, probabilistic methods

are employed.

In the simplest case, the time history of earthquake-induced ground motion can be

assumed to be ergodic random process. The ergodic process is characterized by: (a) all the

ensemble averages being stationary with respect to the time scale; and (b) the averages

taken along any single sample function being the same as the ensemble averages. In

practical terms, each sample function is completely representative of the ensemble that

constitutes the random process. Based on this assumption, some statistical properties of

interest, as described in the following sections, can be obtained from a single earthquake

record.

Random vibration is rooted in the theory of probability and random variables. The

behavior of a random variable is characterized by its probability distribution. The most

important probability distribution in theory as well as in application is the Gaussian

distribution. The earthquake acceleration excitation is assumed to be a zero-mean Gaussian

process throughout this study. It follows that most stochastic responses must be zero-mean

Gaussian random processes for a linear system. Two of the most important moments of the

response process are the mean and the variance. The first moment, i.e., the mean, is the

average value of the response. The second moment, i.e., the variance, measures the

dispersion of the response about its mean. The positive square root of the variance is called

the standard deviation which has the same unit as the mean and for a zero-mean, this is

identical to the root-mean-square (r.m.s.). The standard deviation measures the spread of

the distribution.
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As mentioned in the beginning, economics as well as safety is the goal of structural

design. Usually, a structure designed to be almost 100% safe over a certain period of time

will be uneconomical. In general, the expected reliability of most civil engineering systems

is in the range of 0.95 to 0.999. The reliability varies depending on the importance of the

structure. For earth dam structures, a reliability of more than 0.997 is typically required.

Typically, responses such as displacement, maximum shear stress and maximum shear

strain are of primary interest. Mean plus three standard deviation (n+30) values of the

responses are computed in this study.

Fig. 4.1 shows a typical sample of a random response. In deterministic problems, one

is usually interested in designing for the peak response. However, for stochastic loading,

the peak response is itself a random variable. For a stationary response duration T, the

response threshold that will not be exceeded the probability P can be expressed as

 

 

ypeak = ”+TT,PO (4-1)

Response Upcrossing

f point \

ypeak r— ———————————
————————— —

u, __ ‘ A I _ I' _ 1 _ _ L t A ' ‘ ‘l __ _

4’

« > Time

T 
Figure 4.1 First upcrossing of the level ypeak in time history of response
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where u. and 0' are the mean and standard deviation of the response and TT’ P is a peak factor

that is dependent on the duration T and probability of non-exceedance P. Expression for

TT‘ P have been proposed for Gaussian process (Der Kiureghian 1980). In order to compare

peak responses due to different excitations, a value of YT. P = 3 should suffice, and this is

used herein.

4.3 Ground Motion Model

In order to study the response of the Santa Felicia earth dam to SVEGM, the ground

motion model proposed by Harichandran and Vanmarcke (1986) is adopted. The model

which accounts for both spatial correlation and wave passage effects is used to specify the

base motions in the upstream-downstream direction of the dam. In the model the ground

accelerations are assumed to constitute a homogeneous random field. The auto spectral

density function (SDF) of the ground acceleration, $ng ((0), is therefore assumed to be the

same at all spatial locations. The correlation between the accelerations at two different

points is characterized by a coherency function, I'Y(V,(D)l, and all waves are assumed to have

a constant apparent propagation velocity V. The cross SDF between the accelerations at two

locations A and B is then expressed as the product of the point SDF, coherency function

and phase delay

—i(ov/V

511,113 ((1)) = Sag (03) 170% (9)18 (4.2)

Based on the analysis of some events recorded by the SMART-1 array, Harichandran and

Vanmarcke ( 1986) proposed the following empirical coherency function:

2v

(19 ((0)

(1 —A+0tA)] + (1 —A)exp[—6%Z)—)(l —A+0tA)](4.3) 

1m. (9)1 = Aexp[-

where

9(0)) = k[1+ ((1)/(1)0)b]_l/2 (4.4)



58

and A, 0t, k, (00 and b are empirical model parameters; v = separation between locations A

and B; V = apparent wave propagation velocity from A to B; and Sa. (00) 2 auto SDF of

the ground acceleration.

A commonly-used form of the auto SDF is (Clough and Penzien, 1975)

604 + 409091;? 4

Sfig (0)) = [(002 —80)2) 2 + 450210213] [(0)2 — (02):: 4(07-(02C2:l 5" (4'5)
8 8 8 f f f

  

in which the five parameters cog, Cg, (0], Cf and SO can be estimated by fitting the above

function to observed acceleration spectra. This ground acceleration spectrum, is a modified

version of the popular Kanai-Tajimi spectrum.

4.4 Finite Element Formulation of the Equations of Motion

The finite element method has been widely used in many applications. For analyzing

the vibration of earth dams, the finite element method successfully overcomes geometric

irregularity and material inhomogeneity. It is therefore expedient to resort to the finite

element technique for the analysis of the Santa Felicia dam. Tetrahedral elements in which

each node has three translation components, x, y and 2, were used in the analysis. The

equation of motion of the nodal points in the finite element system may be expressed in

matrix form as

[M] {ii} + [Cl {11} + [K] {H} = 0 (4.6)

in which [M] = the mass matrix, [C] = a viscous damping matrix, and [K] = the stiffness

matrix. The vector {u} represents the nodal displacements, and {a} and {131' } are the nodal

velocity and acceleration vectors, respectively.

4.4.1 Finite element discretization

From equation (4.6), by reordering and partitioning [M], [C] and [K], to correspond

to the partitioning of the nodal displacements {u} into free and restrained displacements

{ uF} and {uR}, the dynamic equations of motion become
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[IMFFI [W1] {uF} +[[CFF]
[le “3”

[Mn] [Mme] {tip} [CRF] [CRR] {up}

(4.7)

+ [KFF] [KFR] {HF} =({0})

[KRF] [KRR] {uR} {O}

in which {14F} are the free (unrestrained) degrees-of—freedom (DOF) and {uR} are the

restrained (support) DOF.

The free nodal displacements {uF} can be decomposed into pseudo-static and

dynamic parts, {“5} and {ud}, respectively:

{“F} = {“5} + {“d} (4.8)

The pseudo-static displacements are obtained from the support displacements, { uR}, using

the static equilibrium equations (with no external loading)

IKFFI {Us} + [KFR] {uR} = {O}

yielding

{14,} = —[KFF1"‘[KFR1 {uR} = [A1 {14R} (4.9)

. . -1 . .

in which [A] = -[KFF] [KFR] . These displacements are the 1nstantaneous free

displacements of the structure due to support movement {uR} at a given time t. Substituting

equation (4.8) and equation (4.9) into equation (4.7) yields

[MFFI {ad} + [CFF] {dd} '1" IKFFI {"d}

(4.10)

= -(1Mppl 1A1+1MFR1){17R}-(1CFF1 1A1+1CFRI){L3R}
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For light damping, the second term on the right-hand-side of the above equation may be

neglected. Thus the final equations of motion for the free DOF become

[Mfr] {fid}+[Cppl {lid} +1KFF] {14d} =—(1MFF1 [41+1MFR1) {iip} (4-11)

4.4.2 Modal analysis

In order to simplify the damped equations of motion of the multi-DOF system, the

orthogonality properties of the normal coordinates may be used to decouple equation

(4.11). For undamped free vibration

[MN] {lid} + [KFF] {11,} = 0 (4.12)

Assuming harmonic vibration in the form

04,} = {4,} e...) (4.13)

results in the generalized eigenvalue problem

I

O[[KFFI —wf [Mppl] {4),} - (4.14)

The solutions of these equations yield the natural frequencies of vibration (0]., and the mode

shapes, {$1.}, of the structure. For general vibration, the nodal displacements may be

expanded in terms of the mode shapes as

{ad} = 2 {mil/((0 (4.15)

k=1

where Uk(t) are generalized modal responses. Substituting equation (4.15) into equation

(4.11), premultiplying by the transpose of mode-shape vector {(1)1}T and assuming that the

mode shapes are orthogonal to the damping matrix, i.e.

T

{4,} [Cl {4.} = 0,j¢k

results in the uncoupled modal equations
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Uj+2§jijj+waj = G}, j: l, ...,n (4.16)

where

-1 T T

G}. = fijo-l (IMFFI [141+ [Mppll {17R} = {Fj} {HR} (4-17)

{1]} = X7111Mppl [A] + [MFR]]T{0J.} (4.18)

J

T

in which {Fj} is the modal participation factor, M]. is the normal-coordinate generalized

mass (modal mass), and C} represents the modal damping ratio. In practice, it is common to

assume the damping ratio for each mode than it is to try to evaluate the coefficients of the

damping matrix [C]. It is convenient to collect the excitations Gj(t) into a vector {G(t)} and

the modal participation factors { Fj} into a matrix

in = {{1}} {r2}...{r,,}]

in which case equation (4.17) may be written as

{G} = lFlTUiR} (4.20)

In addition, the mode shapes may be collected into a matrix

l—

[(1)] = [{4.} {42}...{¢,,}]

and equation (4.15) may be written as

{ud} = [(1)] {11(1)} (421)
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4.5 Random Vibration Analysis

4.5.1 Introduction

Assuming that the earthquake-induced ground acceleration is a stationary random

process, it can be shown that the displacement response is also a stationary process.

Consequently, the autocorrelation matrix of the random process {14],} will be independent

of time t and is defined as

{16,501 = E[{u.<r)}{u.(t+r>}1] (4.22)

where E[ ] denotes the expectation of the random variable. Substituting equation (4.8) into

equation (4.22),

T T

[R,,F(I)l =E[{u.<t)+ud<z>}{{u,<r+r)} +{u,,<r+r)} }]

= [R4 (01 + “in. (r) l + 18,,” (r) l + IR... (0 l (4.23)

in which [Ru (1)] and [Rud(t)] are the autocorrelation matrices of the pseudo-static

and dynamic displacements, respectively, and [R 1(0] and [R (1)] are the cross
11,14! udu‘

correlation matrices. For stationary response

1R...” (01 = {wa (4) l

The Fourier Transform of equation (4.23) yields the spectral density matrix of the free

displacements:

[Sur(w)l = [5,,5(m)1 + [Sud(w)l + [Su",,d(w)l + [541(4me (424}

For stationary response, the cross spectral density matrices are related through

{5,3,4 ((0) l = [514.111. (40)] (4.25)

where the overbar denotes the complex conjugate.

The variance of the ith free displacement can be obtained from the ith diagonal terms

of the spectral density matrices
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0 II J SH!" (0)) dm + j Suit. (0)) do) + 2Re [ of Sta—jun, ((0) dw]

(4.26)_oo —00

2 2

= out + oud1+ 2C0v (”s.’ “(1)

l

2 2 .

where Re [ ] denotes the real part of the argument. Cu and 0'“ are the variances of the
dS .

I 1

pseudo-static and dynamic ith free displacement, and Cov (us, “(1) is the covariance

between the static and dynamic displacements.

4.5.2 Variance of dynamic displacements

Let hj(t) be the impulse response function of the jth mode corresponding to equation

(4.16), i.e. the response to Gj(t) = 5(t) is Uj(t)=hj(t). For linear response, applying

superposition for any general excitation, the response can be expressed by

Uj(t) = jhj(0)Gj(r—0)de (4.27)

—00

In matrix notation, the modal response vector may be expressed as

00

{U,<r)} = jlhj(9)l{Gj(t-9)1a'9 (4.28)

—oo

in which the diagonal n x n modal impulse response matrix is

lh(9>l = [diag(hj(9))l

The autocorrelation matrix of the dynamic displacements { “(1} is

[Rud(I)1 5[{ud(()}{ud(r+r)}’]

4.29

E1191 {U(t)}{U(t+0}Tl<I>l’] ( ’

l<blE[{U(t)} {U(t+r)}’] 191T: {<91 {Rum} [(D1T

Using equation (4.28)
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18,/(01 = E[{U(r>} {U(t+r>}’l

WOO

jj[h(0,)]E[{G(i—0,)} {G(t+T—02)}]][h(02)]Td01d02

—°O—OO

(4.30)

0000

j j [h(91)I[RG(T+91—92)][h(92)]T(191d82

—OO—OO

Since {G} = [F]T{iiR},

[RG(r+01—02)] = E {G(t—01)}{G(t+T—02)}]:|

 
= E—[F]T{iiR(t—01)}{l'iR(t+T—02)}T[F]] (4.31)

L

[FlTlR,-,R(I+9,—92)l lrl

Finally, combining equation (4.29), equation (4.30) and equation (4.31),

”in. (r) 1 =

°° °° (4.32)

1¢1[jj[h(9,)l[FlTR,.,-R(I+9,—92)[F1[h(92)1Td9,d02]1¢1T

—-OO —00

The Fourier Transform of the above equation yields the spectral density matrix of the

dynamic displacements:

Sudan) = {<91 [IN—(9)1 {rlTlS,R(w)l {r1 [H(w)lTl<l>lT (4.33)

where the diagonal modal frequency response matrix [H((D)] is

{Hum = jlh<t)1e“"”dr = ldiag<Hj<w))l (4.34)

--00

and Su" (00) is the spectral density matrix of the support accelerations.

R

The diagonal terms of [Sud (0)) ] may be written in scalar form as
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Ste/1m): 2 2 2 2 q)ijcblkrljmkHj(__m)Hk (0‘)) 511,,[HR ((0) (4'35)

j=lk=1l=1m=l R“

where n is the number of free degree-of-freedom and r is the number of restrained degree-

of—freedom. The modal frequency response function has the form

1
H}. ((b) = 2 (4.36)

2 .
(al.-0) +21%.ij

 

The variance of the ith free dynamic displacement is

=j5“,) ((1))d0)= X Z oijoikl1k (4.37)

j—= 1k =1

where

:2 2 firm). j H (——0))Hk((l))Su.I“.m(00)d0) (4.38)

1: lm =1 _oo

4.5.3 Variances of pseudo-static displacements

From equation (4.9), {“5} = [A] {uR} , thus the autocorrelation matrix of the

pseudo-static free displacements {“5} is

[Rpm] E {u,<t)}{u,<r+r)}?

 
= ELI/110mm}{uR(t+I)}T1A1T] (439)

T

[A1 [Rukml [A]

The Fourier Transform of the above equation yields the spectral density matrix

[Sutton = [A1 15,,R((9)l lAlT = i,( [M 15,-,R(w)l 141’) (4.40)
(t)

The diagonal elements of this matrix may be written in scalar form as
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S“.(.((D)= 142 Z AilAimSu'Rl'l'Rm ((1))
(4.41)

' (D 1: 1m-1

The variances of the pseudo-static displacements are therefore

oo

:2 XAilAimJ1'4SliRliRm(w)dw
(4-42)

(0 R1

l=lm=l —00

4.5.4 Covariance of pseudo-static and dynamic displacements

The cross correlation matrix of the pseudo-static and dynamic displacement is

defined as

lR,,_I,,I<r)l = E[{u,(r)} {loom}?

= E-[A] {uR(t)} {U(t+t)}Tl<DlT]

°° T T I (4.43)

= E [A]{uR(t)} [{uR<r+r—9)} lrl [11(0)] 49 [<91]

L -.. 

[A] {j {R,,I,.,I(r-9)} lrl {12(9)le9} [(DlT

Again, the Fourier Transform of the above equation yields the cross spectral density matrix

[SuI,,I(w)1 = [A1 lS,,I,.,.I(m)l lrl [H(9)1T[<I>1T (4.44)

There exists a direct relationship between [SuRiiR ((1)) l and [SIIR ((1)) ] . Consider

2

[R",,II(I)1 = —d—2—E[{uR(t)} {uR(t+t)}7]

d1 .1

=E[{uR(t)} {uR(t+r)}7]_— [RII II. (1)] (4.45)

The Fourier Transform of [R"IIR(t)] is —(02 [SIIR((1))] , and therefore, the Fourier

Transform of the equation (4.45) becomes
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[5,,II,-,-I(w)1 = —w2[S,,II(w)] = —-i2[S,-,-II((9)1 (4.46)
(I)

As a result, equation (4.44) may also be written as

[5,,I,,I(w)l = «‘3141 lS,.,I(co)l {r1 [H(9)1T[<I>1T (4.47)
(D

The diagonal elements of [SII ((I, (0)) ] in scalar form are

S“.(~."d.(w) = _
Z2 2 ¢,,-4 ,,r,,,IH,(w)S,I,.,,(m) (4.48)

lm=1

L

(1)2j

The covariance of the ith free pseudo-static and dynamic displacements is therefore

00

Cov(us, uII) = Re[ I sIIII(6))de (4.49)

—00

4.5.5 Calculation of covariance matrix of nodal stresses

As with the displacement response, any Cartesian stress can also be decomposed into

pseudo-static and dynamic parts, {IS} and {Id}, respectively. Consider two Cartesian

stresses, 1'1 and 12, whlch can be expressed as II = 1315 + TM and 12 = 125+12d,

respectively. Thus,

E [1112] = EH1” + I1d) (125 + T2(1)]

(4.50)

= E [TldTZd + I15123 + TldTZS + Tutu]

Since all Cartesian stresses are zero-mean Gaussian processes, equation (4.50) becomes

Cov(tl,tz) = Cov(tIII,12II) +Cov(tIs, 125) +Cov(tIII, 125) +Cov(tls,12d) (4.51)

Therefore, the total covariance matrix of the six Cartesian stresses at the ith node may be

expressed as

IIIIII)] + [Cov(t[Cov(1:II,tII)]I = [Cov(1: 1’3,qu
pd’

)1I.
(4.52)

+ [Cov(tpd,tqs)]I+ [Cov(tIII,tIIII)]I
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where [Cov (t qu) ] I and [Cov (tPd, tqd) ] I are the covariances matrix of the pseudo-
[’5’

static and dynamic stresses at the 1th node; [Cov (tpd, IIIS) ]I and [Cov (TpS, IIIII) ]I are

the covariance matrix between the static and dynamic stresses, and p=l, .6 and q=1,. .,6

are subscripts denoting the stress components, in which the six stress components III, III, 1,,

’13.r)" 'tIIZ and t),z are denoted by 1'], 1:2, 13, I4, 15 and “to, respectively. In expanded form, the

covariance matrix is

C0v(tI,tI) COV(I],TZ) C0v(TI,T6)

Cov (12, 12) Cov (12, 1:6)

[Cov (III, Tq) ]I = (4.53)

  _ Symmetric Cov (T6, 16)‘ I

4.5.5.1 Dynamic response

As with the dynamic displacement response in equation (4. 15), the nodal stresses may

also be expanded in terms of the stress mode shapes, [‘1’], as

{far} = [‘P1{U(t)} (4-54)

Consequently, following the procedures in Section 4.5.2, the covariance matrix of the

dynamic stresses at each node can be obtained as

n ’1 6 6

1 .
[Cov(rIIII,rIIII)]I= z 2 p12 ([250);III. pIII+uIIwIIII)II.I 1=1,...,NII (4.55)

k=1j=l = =

where subscripts u = 6 (i — 1) +p and v = 6 (i — 1) + q,NII is the total number of nodes,

n is the number of modes used and Ijk was defined in equation (4.38).

4.5.5.2 Pseudo-static response

The pseudo-static stresses may be expressed as

{1,} = in] {up} (4.56)
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where the jth column of [n] are the stresses due to a unit displacement along the jth

restrained DOF. Equation (4.56) is similar to the pseudo-static displacement representation

in equation (4.9). Following the procedures in Section 4.5.3, the covariance matrix can be

obtained as

[Cov (IIII,1::) ] ,

r r 6 1( 0° 1 i: [I ..., N" (4.57)

= 2 21p 61‘]; §( TLilr‘vm + nvlnum) J jsl'iR l'iR ((0) (1(1)

4.5.5.3 Covariance of pseudo-static and dynamic responses

The calculations of the covariance matrix between the pseudo-static and dynamic

stress responses are similar to those presented in Section 4.5.4. It can be shown that the

covariance matrix of the stresses at the ith node may be expressed as

[Cov (t IIII) + Cov (1
pr!’ ps’ chI) l i

= RC 2 z 2 2 z (Wujnvl+ wvjnul):J:rmj:D—ZSII'RliRm((1))d(1)

=ll=lm=1p=lq=l

(4.58)

The covariance matrices of the three strain response components can be obtained

using equations (4.55), (4.57) and (4.58) by replacing w and n with strain mode shapes and

strain responses due to a unit displacement at each restrained DOF, respectively. Finally,

the total covariance matrix of Cartesian strains at ith node can be obtained analogous to

equation (4.52).

4.6 Viscous Damping vs. Hysteretic Damping

It is customary in dynamic analysis to use viscous damping to account for the loss of

energy during vibration. The main shortcoming of viscous damping is that the energy

dissipated is frequency dependent, with more energy being dissipated at higher frequencies.

Experimental results indicate that earth dams exhibit frequency-independent energy

dissipation due to hysteretic damping. However, the equation of motion with exact

hysteretic damping is non-linear. The most common method of accounting for hysteretic
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damping is to linearize the equations of motion by replacing the stiffness of the system, k,

by the complex-valued stiffness I} = k (1 + 2iC) where C is the hysteretic damping

parameter. The effect of viscous and hysteretic damping on the response of earth dams is

examined in the next sections using a simple one-dimensional shear beam model.

4.6.1 Shear beam with viscous damping

The one-dimensional shear beam model was reviewed in Section 2.2.2. 1. It is known

that stress can be expressed as a function of strain and rate of change of strain with time for

viscous behavior. Therefore (Okamoto 1984),

= (G + GI%)(g—:) (4.59)

where G and GI are material constants. Substituting this into equation (2.4),

2

pa—”— (G+GI8)(a—2“+1a“] :0 (4.60)
3,2 at ayz yBy

For each mode of vibration, letting u = (bi U} , the above equation becomes

2 2

(Djd—U (GUI. GdU_)[d—(I:+ ld—(Dj—J O ' 1 (461)_ + - , = n .

p dIz d (1)2 y dt 1

Substituting equation (2.7) into equation (4.61),

d2 U]. G 2de

—7+—5mjd—+mij =0, j=1,. (4.62)

G dt

Letting CI. = 2G0)!",the familiar 1 -D modal equation of motion is obtained:

2

d U de

1+2§..0)—+0)I.UI. =0 (4.63)
dt2 1 Jd).

For a base acceleration of fig, the modal equation of motion becomes

UJ+2ijjUj+mj2 Uj -—-1“I.x'g (4.64)

where 1"}. is given in equation (2.12). The frequency response function is therefore
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1
H]. (0)) = 2 (4.65)

2 .
(1)]. —a) +21%ij

 

so that

 

 

IH. ((1)) '2 = 1 (4.66)
J ( 2 2)2 + 4C2 2 2

Using the Kanai-Tajimi spectrum for jc'g,

m4 + 4602612§2

5.. (1) = g g g 4.67

"x( ) [(wg-w2)2+4w2w&?§§] " ( )

The two parameters (0g and Cg are taken to be 15.0 rad/s and 0.55, respectively. The

intensity parameter So is adjusted such that the standard deviation of the ground

acceleration is 0.09g.

4.6.1.1 Displacement response

It

Using random vibration analysis with n vibration modes (i.e., u = 2 (DjUj), the

displacement variance for widely separated modes can be approximated by}

n

of; z ofrffwmjmuzsmmww (4.68)

j: 1

in which modal cross correlation have been neglected. The mode shape of the 1-D shear

beam model was shown to be a Bessel’s function in Section 2.2.2.1. Therefore, the

displacement response at the top (y = O) is

2 n 2 2 .2

614(0): 210(0)rj£!11j(m)( ng((1))dw (4.69)
.=1

4.6.1.2 Shear force

For the generalized single-degree-of—freedom system, using the principle of virtual

work, the elastic forces f3 for each mode developed during an earthquake response can be

estimated by
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f, (.v. t) = (02m (2') u (y. I) = wzm (y) <I>j (1’) U,- (I) . j= 1. n (4.70)

where m (y) = pyB/H for a unit width of the dam. The same notation was used in the

1-D shear beam theory in Section 2.2.2.1. Consequently, the base shearf3 for each mode is

given by

fB(t)= fipyHCDj (_\)th02 U]. (I), j=l,. (4.71)

Taking the Fourier Transform, the spectral density function of the base shear is then

SfB((1))= (rpv—<D(\)d))fIHj(0))|sz'(0)) (4.72)

j__ .

Therefore, the variance of the shear force at the base ()7 = H) is

n

2 B Z')’ 2 4 2 2
of8 = 2(pryl—110(#)dy) to]. 1‘]. _°o:Hj(0))| ng((t))d(1) (4.73)

1' = 1

4.6.1.3 Bending moment

Similarly, from the above result, the base moment for each mode can be expressed by

28 2 .

The spectral density function of the base moment is then

SMB((1)) = z(fipyzgcb(_v)dy)“mjrf|Hj(m)lzsxcm) (4.75)

j=1 L

Therefore, the variance of the bending moment at the base of the dam is given by

ZUO’pyzg102%)d)’)2(11j41“fmlHj(u))|ZS_.r.g(w)dw (4.76)

j-—21

4.6.2 Shear beam with hysteretic damping

For an analysis with hysteretic damping, a complex modulus is used instead of an

elastic modulus. For mathematical convenience, a complex-valued stress E and a complex—
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valued displacement E are used. The stress and the corresponding displacement must satisfy

an equation similar in form to equation (2.4), i.e.

Substituting 1: = (G + iGz)Ea—u into the above equation,
)1

2 2

p-a—zl—l— (64-102) [%u+-lz-a§-u] : O

at 8y y y

For each mode of vibration, letting it = (bk-(7k , the above equation becomes

2_

d . G 2_

—(:"+(l +i——2)w Uk = 0, k=1.....n

dt G k

Letting C = GZ/G , equation (4.79) becomes

Uk+ (1 +2iC)w:L—/k = O, k=1,...,n

and the modal equation for base excitation becomes,

4' . 2— ..

Uk+ (l +21§)(1)kU,< = 4“ng

Therefore, the frequency response function is

l

Hk((0) = 2

(1 +2i§)wk—w

 

2

so that

1

2 2 2 2 2

(wk—co) +4C wk

 

IHk("’)|2 =

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)

(4.83)

The variance of the displacement, base shear and base moment are obtained by using these

frequency response functions in equations (4.69), (4.73) and (4.76).
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4.6.3 Discussion

The following values were used for the dimension and material properties of the

Santa Felicia dam: dam height H = 275 ft, dam width B = 1,050 ft, soil mass density p =

4.02 lb-sz/ft4 and damping ratio C = 0.06. Four vibration modes were used in the analysis.

The results of three cases: constant modal viscous damping ratios, modal viscous damping

ratios varying with frequency and hysteretic damping, are compared in Table 4.1 and Table

4.2. For the case with varying modal viscous damping ratios, the damping ratio of the first

mode was set at 0.06 and the ratios for higher modes increased with the natural frequency

so that they were consistent with a constant damping c. The values listed in the Tables are

TABLE 4.1 Comparison of responses using hysteretic damping and varying viscous damping

 

 

 

 

 

    

R.m.s. R.m.s. R.m.s.

Case displacement shear force at the base bending moment at the

at the top (ft) (kips/ft) base (kips-ft/ft)

Hys‘eiet‘c 0.19111 7.41576x108 1.86148x10”
dampmg

vary” Y‘scous 0.18993 4.80325x108 1.20568x10“
damping

Difference -0.6% -35.2% -35.2%

 

TABLE 4.2 Comparison of responses using hysteretic damping and constant viscous damping

 

 

 

 

 

    

R m 8 dis Iacement R.m.s. R.m.s.

Case ' a;t.the t: (ft) shear force at the base bending moment at the

" (Rips/ft) base (kips-ft/ft)

Hys‘eiet'c 0.19111 7.41576x108 1 .86148x10ll
dampmg

“mm“ .V'SCOUS 0.19143 7.46685x103 1.8743lx10ll
dampmg

Difference 0.17% 0.69% 0.69%
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the root-mean-square (r.m.s.) values of the responses. Table 4.1 indicates that for the case

of varying viscous damping the r.m.s. values of the base shear and base moment are

significantly lower than those for the case of hysteretic damping due to frequency-

dependent energy dissipation. At higher frequencies, the loss of energy is higher.

On the other hand, if the viscous damping ratio for each mode is kept constant, as was

done in the 3-D finite element model Table 4.2 indicates that the responses are very similar

to those obtained from a hysteretic damping model. This indicates that although soil

displays hysteretic behavior, the simpler viscous damping model with constant modal

damping ratios is adequate for evaluating the seismic responses.

4.7 Statistical Moments of Maximum Shear Stress

4.7.1 Introduction

The random vibration analysis described in Section 4.5.5 yields the statistical

moments of Cartesian stress components. However, an important quantity of interest in the

seismic analysis of earth dams is the maximum shear stress 1mm. Several approximate

methods have been developed to estimate the moments of functions of random variables.

The first-order second-moment (FOSM) method is one of the simplest and most popular.

This method is based on truncating the Taylor series expansion of a function to retain only

linear terms. Since the relationship between maximum shear stress {max and Cartesian

stresses is nonlinear, the FOSM method may be employed to approximately estimate the

mean and variance of 1mm.

As an example, consider a function of two variable F(x, )1). Its Taylor series expansion

about the point (E3), retaining only linear terms, is

- 25 - a_F .,
F(x.1) ~F(x..)) + ax (x—X) + ay(.v-.1) (4.84)
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Commonly, E and y are taken to be the mean values (in which case the method is called the

mean-value FOSM method). As a result, the mean and variance of function F(x,y) can be

expressed as

E [F(x, '11)] 2 F (X, 3'1) (4.85)

and

2 2

Var[F(x,_v)] =(g—fl ) Var[x] +(g—Ifl ) Var[_v]

+20” )(a—F
1,9 8y

8?

where all derivatives are evaluated at the expected values of the variates.

(4.86)

)Cov [x, y]

  i, 5'

4.7.2 Calculation of maximum shear stress for special cases

It is well known that for 2-D case 1mm can be determined by

1' — 1' 2
x y 2

Irma: ,J( 2 ) + Txy (487)

The exact moments of 1mm can be computed for certain specified cases, and these cases are

 

 

first used to gain insight into the adequacy of the FOSM method.

4.7.2.1 Uniaxial loading I},

In this case,

TX 2 '1‘!

Tm? F (1..) = (3) = -2'— (4.88)

Assumin that r is a zero-mean Gaussian random variable with a robabilit densit
g x P Y y

T2

. 1 .

function fI = exp ———x7 , the exact first two moments of 1mm are

. ./21rotx 20
IX

T T .

518....-.1 = E['—;—'] = £984..

6
l

= i( J: Trftrdt.r+foo_1xftxdt.r) = 2

1‘.

TC

 

(4.89)
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and

 

  

2 2
2 2 T, or,

var [THICK] = E[TIN(II] — (E [Tmax] ) = r jft dTX —[ ‘ J

-°° " 27! (4.90)

_ l 2 1 2 _ 2
— 401,. — 2176‘: — 0090845611

Therefore, the standard deviation of the maximum shear stress is 0.30146I .

Using Ix as the basic variable, the mean-value FOSM method yields

_ |E [all
E[‘tmm_] =F Tx 2 —2— = 0 (4.91)

_
. aF(tr) lalt‘i -

and the variance of 1mm. unable to obtain because at ‘ = :2- 81' 1s undefined.

x _ X

I 0  

These are clearly not good approximation. However, if I‘txl is’used as the basic variable,

then the mean-value FOSM method yields

  Emmi :4m) = 2" = J21: (4.92)

8F (ltxl)

varltmaxl ‘7 WIT—I—

l

A N
I
—

 
.K

_1 2 2 2

‘2. 02-59.,

which are exact results for E [T

2
2 [- 2

2

)Varllfxll - ) X(ELTx]_ (EHTle) )
m

(4.93)

0.0908450:

and (SI . The reason for this is as follow:

M(II

max]

0 With II as the basic variable, Fax) is bilinear as shown in Fig. 4.2(a).

Linearization of F (1)) at any value of It yields a poor approximation for half the

range that Tx can assume.

0 With ltxl as the basic variable, F (ltxl) is linear as shown in Fig. 4.2(b), and hence

the FOSM method yields exact results.

If consider I: as the basic variable, rm“: F( 1:) = alt}. Using the FOSM

method,
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(a)

 

 

  

 

 

  
 

  

 

‘ F(Ix)

TI

r +

/ \

/ \

\

/ / \ \ <\

fl, \

linearization of F(1‘) V fI linearization 0f F(t_,)

at any Ix > 0 ' " at any 12x < 0

Probability density of “Ex showing

the range of values Ix can assume

(b) +

4 F(l'cxl)

Density function of 1mm.

Itxl

% n

f '

Density function of III! 
11:1

Figure 4.2 Illustration of probability distribution of maximum shear stress for 1-D case



 

 

‘2 1 2 1

E [Tmax] “(1.) = 5 Elk] = 50. (494)

2 7 2
BF TX 2 l 2

Varhmm] z 2 Var [Ix :l = 2 x 2 (Var [3])

81x —. 4 It

I: ' :7. = O: (4.95)

= 2 X20: = 0.]250':

I60T " "

Consequently, the standard deviation of 1mm is 0.353601‘ . Table 4.3 shows the differences

of the results using different basic variables, and indicates that using FOSM method with

I: as the basic variable has 25.3% error for the mean value and 17.3% error for the standard

deviation of 1mm. Note that the correction factors (CF) defined as the ratio of the exact

mean and standard deviation to the approximate mean and standard deviation are CF11 =

0.80 and CFO = 0.85, respectively.

4.7.2.2 Pure shear loading In

. 2 . . . . .

For th1s case, 1' F (In) — ,l‘cxy = '14,)" . As 1n the preV1ous sect1on, 1f It”! 1s
max—

taken as the basic variable, then 1mm is linearly related to l‘tnl and the FOSM method yields

exact results. If ‘13:, is used as the basic variable, the FOSM method yields the same

percentage error percentage as for uniaxial loading.

4.7.2.3 2-D beam bending problem with stresses Ix and Txy

For this case, since Iv = 0, equation (4.87) reduces to

TABLE 4.3 Comparison of statistical moments of 1mm using different approaches

 

 

 

 

Maximum Basic variable used in FOSM method

shear stress Exact value 2

Tx lTxl Ix

Mean Value (3'T /x/21[ 0 (31'T /./21t 0'1 /2 (CFp = 0.80)

5‘31“?“ 0.30146 undefined 0.30146 0.35366 (c1: = 0.85)
dev1at1on 1'. T... T. 9       



2

T 2
rmax = F (TX, I”) = I" +1”, (4.96)

If Ix and In, are used as the basic variables, the FOSM method yields zero for the

mean value of 1mm and an undefined variance for 12mm since F(Ix, I“) is not differentiable

at the origin. Fig. 4.3 shows F(TX, 1:“) with the cusp at the origin.

Alternatively, if ITxl and I1:”I are used as the basic variables, for all positive values, the

function F can be rewritten as

 

Tmax = F(|Txl’lt.r1'l) = (4-97)

and the FOSM method yields

- — — _ 1( 2

El‘mwl~Fllr.1’11..1l - J f
(4.98)

 

 

 

 

  
 

2 2

Figure 4.3 Display of function F (TX, I”) = .11x/4 + In
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2 2

Varnnm] z[% ] Var[|rx|] +[élaTF—l ] Var[|1x).|]

.. 122—112.1 " 127121271 (4.99)

BF 8F

[211 _ 1121—21 _ 1... ”‘1’ ""‘-"“  
  

IBI’ I‘m-l IRI‘ Ital

in which the variances of l‘ttl and I‘tnl are

Var[|rxl] E[’C:] - (EMT-Al)2

2 2 (4.100)
2 2

— E61} = 0.363401!
I

I

and Var [ITxyl] = 0.363403“, respectively; the covariance is (Papoulis 1991, p. 179)

Cov ['14, Irwl] = E [ ltxlltxxvl] - E [Itxl] E [ Iti‘yl]

‘ , -1 . —l 2 2
261x614 cos(s1n (P) j + PSI“ (P) L“ — #GTA/TY‘IGTH (4,101)

20T (3T

1’; “(cos(sin_l (p) ) + psin_I (p)_1) 

where p is the correlation coefficient between It and In; and the derivative terms are

  

  

 

 

 

 
 

3F _ l 117/2 - l G“ (4102)
atx|__—2J_2 _21 _4(/2/4 2 '

it!" lrn'l ITII /4 + ITXVI — — 611 + 01-0

' ' ITJ‘ I‘m-l

and

——aF - GT“ (4103)

612.1 _ ’ J 2 4 2 '

- l1!" ltul 011/ + Ctr.)-

. . 2 2 . .

F1nally, 1f TX and I“, are used as the bas1c variables,

2 2 j 2 2

1”!th = F(Tx’ T1"): Tr/4 +11.)
(4.104)

and the FOSM method yields

 

E[r"m1=F(r I) = (Tr/4+5: (4.105)
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2
2

BF 2 BF 2
Var [Imax] 7 V3.1‘[:Tx] + —_2_ Var [In]

an _ _ at“ _ _ '

3, I;
' tit?)

-
(4.106)

+2 9% ‘a_}:' C V[I:’T:v

at, _ _ 31x, _ _ .

If” I: i I: Til

in which

2 4 2 2
Var 13 = E T - (E T JI: x] I: x3 [ x] 2 2 (4.107)

= 3x (Var[1'x]) — (Varltxl) = 2X Warn.“

2 2 2 —2 2 T 2 2 2 2
COVEI: T”. = Ell 1; —:x)(:3)'2- 14.1)] = E[Txtxy] _ (:t-‘o-T“ (4.108)

___ 611011." + 2(511x1’nj) — 61‘s,”: 2 x (Cov [1,, 1,1,1)

81:2 = '8 2 1 2 (4.109)

8‘;ro lo"T /4+0'T

Ir’ 1;)" x U

and

a): = 1 1
(4.110)

 

2 2 2

. _2 _2 61/4 + or"

,T ' "

As an example, consider a cantilever beam supporting a concentrated load P at its free

end. Distributions of the normal stress TX and shear stress I)“, along the depth of the beam

are illustrated in Fig. 4.4. The normal stress 15x at any distance y from the neutral axis is

determined by

r = —- (4.111)

where M is the bending moment at the cross section under consideration, and I is the

moment of inertia of the cross section with respect to the neutral axis. The shear stress Txv

is determined by



83

‘
p

T T ,

. .ir . ' ..X) t

distribution distribution

.... ?
[é

 

  

 

 

 

V

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

 
Figure 4.4 Illustration for stress distributions of beam bending problem

1:193.ry I, (4.112)

in which t is the width of the beam and Q is the first moment with respect to the neutral axis.

For this problem, Fig. 4.4 shows that the sign of the shear stress may be the same as

or opposite to that of the normal stress depending on whether the point under consideration

is above or below the neutral axis. This implies that the correlation coefficient between Ix

and In could be positive or negative. For some specified cases given in Tables 4.4, the

. . . . 2

mean and standard deViation of 1m were computed usmg the FOSM method With 1x and
at

2 . . .

In, as well as I‘txl and Itxvl as the ba51c variables. These results are compared With those

computed by using a sufficient number of simulated samples. The details for simulation are

described in Section 4.8. Two correction factors CF11 and CFO for the mean and standard

devration of 1mm, respectively, are defined by

_ it based on simulation
CF —

1‘ tt based on FOSM

 (4.113)

and

0' based on simulation

CF = 4.
° 0' based on FOSM ( “4)
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which can be used to improve the accuracy of the FOSM method.

Table 4.4 shows that using ltxl and I'cxvl as the basic variables in the FOSM method

yields estimates for Ehmax] that are quite close to the simulation results for all cases (i.e.,

fluctuate and are not uniformly accurate. On the other
max

CFu z 1 ), but estimates of 0’I

hand, if I: and 1:, are used as the basic variables, then the FOSM method yields estimates

of 0'T and E[t
"I01

mar] that are consistently on the low side. Therefore, correction factors of

0.82 and 0.85 for the mean and standard deviation of 1mm, respectively, may be used for

this case to correct the FOSM estimates so that they are close to the simulation results. The

TABLE 4.4 Simulation results and correction factors (CF) for the mean and standard deviation of

tmx estimated by FOSM methods using different basic variables

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

2 2 Simulation results Barrie Zraaiafles: Basizc variabges:

Case 611 0'!" p I x." 1:x and 1:xy

' Ehmr] 01...... Ci:Ll CFO C1:L1 CFo

1 1 1 1.0 0.8896 0.6725 0.9972 0.9979 0.7957 0.8508

2 1 1 0.5 0.9469 0.5818 1.0615 0.9957 0.8470 0.8441

3 1 1 0.0 0.9735 0.5621 1.0913 1.0114 0.8707 0.8600

4 1 1 0.5 0.9577 0.5904 1.0736 1.0103 0.8566 0.8533

5 1 l —1.0 0.8924 0.6690 1.0004 0.9928 0.7982 0.8507

6 10 1 1.0 1.4905 1.1253 0.9985 0.6168 0.7967 0.8479

7 10 1 0.5 1.6200 0.9493 1.0853 0.6623 0.8659 0.8599

8 10 1 0.0 1.6237 0.8904 1.0878 0.6855 0.8679 0.8829

9 10 1 0.5 1.6125 0.9436 1.0803 0.6583 0.8619 0.8573

10 10 1 -1.0 1.4843 1.1231 0.9944 0.6156 0.7934 0.8549

11 l 10 1.0 2.5489 1.9195 0.9978 2.9877 0.7961 0.8476

12 1 10 0.5 2.5953 1.8582 1.0160 3.0578 0.8106 0.8466

13 l 10 0.0 2.6137 1.8520 1.0232 3.1008 0.8163 0.8353

14 1 10 0.5 2.5946 1.8682 1.0157 3.0743 0.8104 0.8322

15 1 10 -1.0 2.5558 1.9276 1.0005 3.0002 0.7983 0.8589
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2 2 . .

reason that the use of Ix and In, as the base variables produces good results is that the

relationship between 1mm and these variables is flatter than when 1111 and 11“] are used as

the basic variables.

To sum up, using I? as basic variables in the FOSM method does not yield exact

results for 1-D problems while the use of 1111 does yield exact results. However, for 1-D and

2-D problems, the use of 11.2 as basic variables yields estimates that are under-predicted by

consistent factors.

4.7.3 FOSM method for 3-D problems

For 3-D problems, the maximum shear stress, 1mm, is a function of all six Cartesian

stresses. The Six stress components Ix, I), 12, TX)" In and I): are denoted by I1’ 12, 13, T4, 15

and 1:6, respectively. The closed-form solution for 1: is too complicated to work with.
max

However, I . may be expressed as
”“11

T —T

—"‘”3 (4.115)
Tmax — 2

where “cpl and Tp3 are the major and minor principal stresses, respectively, and are the

largest and smallest eigenvalues of the matrix

r- 7

T1 T4 T5

.14 12 16 (4.116)

115 T6 13—

It should be noted that since the input earthquake excitation is assumed to be a zero-

  

mean Gaussian process, the expected values of all Cartesian stresses are zero. However, as

with the 1-D and 2-D cases, the expected value of 1mm is not zero.

4-7 -3.1 Using Itil as basic variables

For this case, the maximum shear stress is expressed as

Ipl_Tp3

1mm = F(|‘C]|, |12|, |r3|, |t4|, |15|, [16]) = —2— (4.117)
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The FOSM method yields the expected value of I as
max

E[ ]~F(——————j—TIL—_I—'_’3 4118
Tmax ‘~ 111117211131114111511161 " 2 ( ° )

where Ip1 and Ip3 are the largest and smallest eigenvalues of

  

 

  

”_ _ _T

111111411151

M [I] lit—6| (4.119)

JISll‘bllt3L

The FOSM estimate of the variance of Immis

6 31? 2

Var ”mm-1 = 2,1411-) Var [IE-ll
1:

6 6 iI a (4.120)

8F F 1

'11]; 21'? _aT-J]_COV [ITiI’ ‘ITJ-l]

‘ ,2; 111 17,1

in which the variance is (see Section 4.7.2.3)

Var[|Ii|] = E[1:f]— (E[|Ii|])2 = (xii—£0f_ 0.363403 (4.121)

and the covariance is (see equation (4.101))

COVHTil’ l’tjll E[|Ti|ltj|] —E[ltii]E[lTJ-|]

. -1 . —1 2 2
201,01,(C05(5'“ (pij))+P,-,-Sln (Pull/“nflgcmflzcg (4.122)

206 . —1 . —1 )
7t ’(cos(sm (pij))+pijs1n (pip—1 

where pi]. is the correlation coefficient between Ti and 15].; and the derivative terms can be

de‘iemined by

8F _ 1(81121 81.123
am _ 2 a—lfi—a—li-l] fori=1,...,6 (4.123)
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The derivatives of “CPI and Tp3 with respect to W can be determined from the characteristic

equation governing the eigenvalue problem. II) I and TM are the largest and smallest roots of

 

rIl -}. 1'4 1'5 1

I4 IZ—k T6 = (II —2.) (132—2t) (13—71.) +2141516

(4.124)

L 1'5 I6 T3—2:   

4: (1'2— X) 42(11 —— k) 4: (I3 — 2») = O

Denoting 11,1 by al., i = 1, 6, for all ‘ti 2 0, equation (4.124) becomes

3 2
g(2\.,(11,(12,(13,a4,(15,(16) = 2» —(0t1+0t2+0t3)l

+(0t10t2+0t10t3+a2a3—aé—az—ai)?» (4.125)

2 2 2

— ala2a3 — 2040(5a6 + 0150:2 + a6a1+ a40i3 = 0

Equations (4.124) and (4.125) are equivalent only for all 11.2 0 , but this is sufficient since

the partial derivative in equation (4.120) are always evaluated at positive values of the

BI

variables. —pl and 5L3 required in equation (4.123) can be computed by treating k as a

809. oci

function of (1,, (12, ..., (16, taking the derivative of equation (4.125) with respect to al.,

solving for i and evaluating it at A = Ipl and 2t. = IP3, respectively.

8a.
1

The total derivative of equation (4.125) is

6

dg = 2 (ffiingajflaa. = 0 (4.126)

Since equation (4.126) must be true for arbitrary aai, this yields

53% Eli _ -_
828013800. — 0, l— l, ..., 6 (4.127)

ax dg/dai

Z) a—(XI — —m, 1:], ..., 6 (4-128)

Thus,
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BI a /80t.
P1__g__'

,1=I,...,6

8a,. Bg/dl k:

and

GI a /80t.

...L3 = _;g_—l
, i=1, ..., 6

Bat. ag/dk k=1
 

The partial derivatives in equations (4.129) and (4.130) are:

2 2 2 2
31;: = 3?» —22\.((1]+(12+a3) +(Otlaz+0t10t3+(12a3—OtS—Otb—Ot4)

3_8

8a]

—(22— (0t2 + 0:3) 2+ (120t3 — 01(2))

L8

as,

2 2

—(7s —((11+(13)2\.+a1(13—(15)

is; 2 2

8&3 —(}\. — (0tl +0t2)}t+0110t2—oc4)

— - —2 (0%)» + a5a6 — Ot4Ot3)

4 - —2 ((152 + a40t6 — a5012)

and

—2 (016?» + was — (160(1)

437-32 Using 1,2 as basic variables

For this case, Tmax can be expressed as

-F 2 2 2 2 2 2
t — I], 12, T3, T4, Ts, T6

max

The FOSM method yields the expected value of I as
mar

‘2‘2‘2‘2‘2—2 Tpi—Tp3

E[Tmax] =F(T],TZ,T3,I4,TS,16) — 

(4.129)

(4.130)

(4.131)

(4.132)

(4.133)

(4.134)

(4.135)

(4.136)

(4.137)

(4.138)

(4.139)
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where I]; and 173 are the largest and smallest eigenvalues of

REE (4.140)

The FOSM estimate of the variance of I , is
"1th

  

7

6 -

Varleaxl z 2 —2

6 6

Varlrfl2 2:;
i=1 317,-_ i: =

1J

I; i¢j

Cov [I33 I12] (4.141)

“
'
S
J
I
N

l
-
N
I
:

   T: T;

where Var[If] and Cov [112,112] were shown in equations (4.107) and (4.108),

respectively, and the derivative terms can be determined by

as? 2
l

 

BI 3:

BF— ][_”2_‘_ ”3] fori=l,...,6 (4-142)
2

31". 81:1.

The derivatives of IN and 1,73 with respect to 1".2 can be determined from the characteristic

e(ll—lattion governing the eigenvalue problem. Ip, and Tp3 are the largest and smallest roots

0f equation (4.124). Denoting It? by B1., i = 1. 6, for all I12 0 , equation (4.124) becomes

“1,131,132, [33’ [34,135, Bo) = A3‘ijl3—I+a/B_2+(/B
—3J7xz

W“82 +34 +BB23 --B5 136 134)
(4.143)

—VBIBZB3_2
1::B566+B5

@+66JB—1+B
4JE=0

Again, equations (4. 143) and (4.124) are equivalent since the partial derivatives in equation

BIN

(4- l 41) are always evaluated at positive values of the variables. and —3requiredin

3B 3B,-

e(ll—lemon (4.142) can be computed by treating K as a function of B1’ [32, [36, taking the

derivative of equation (4.143) with respect to Bi, solving for g}: and evaluating it at

B.-
)k 2 — 'Ipl and A — Ip3, respectively.
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The total derivative of equation (4.143) is

8h 81 811

d” E(@7813- BB,-lab“

Since equation (4.144) must be true for arbitrary 881., this yields

8h ax 8h

 

     

 

     

a—Xa—B—‘l'a—E =0,i=l,...,6

BA Bh/BBi . l 6

2) TB, — —ah/a}\,, l— ,...,

Thus,

ail. : —— l— l 6

913,. ail/ax L

and

.aig : —— i: 1 6

1913,. 311/31 ,_ ’
 

The partial derivatives in equations (4.147) and (4.148) are:

§¥,=312—2B(B+B2+JB3)

+(J7+B+J7+ B2133-B5—B6—B4)

313—1: TfllHUB—2 J57)“ 5253-36)

53—52 37,—} -(JBTMumB.)

59—53 -2—}_3( -+(JBT Mum—134)

J—sJB;

%;=_;,_ f 3
 

(4.144)

(4.145)

(4.146)

(4.147)

(4.148)

(4.149)

(4.150)

(4.151)

(4.152)

(4.153)
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ah _ _ JEJE53;— x J13: +fi‘2 (4.154)

and

(4.155)
ah _ JBlJB—s

aB.-"“W*B

4.8 Simulation

The use of higher order terms in the Taylor series expansion in equation (4.84) would

be expected to increase the accuracy in the moment estimates of 1mm for the 3-D case.

However, such an analysis becomes intractable in practice. An alternative and more

reliable approach is to use Monte Carlo simulation. Numerous samples of Gaussian

Cartesian stresses consistent with a specified covariance matrix can be simulated, samples

of 1mm can be computed for each Cartesian sample set, and the mean and variance of the

samples can be computed. The Naval Surface Warfare Center mathematics
Tmax

SUbroutines library (NSWC 1993) provides a routine to generate multivariate normal

random samples with a specified mean and covariance matrix. The density function of the

x ]T is ' b., g1ven y
”I

mLIItivariate Gaussian distribution for {x} = [x,,

Jun—{111) [41"(1x1- {111)T) (4.156)f(x) = 1 exp( 2

J(2n>”’der(1A1)

in Which [A] is the covariance matrix of the variates {x} and {u} is the mean vector. lln the

 
 

Case studied, {u}={0}.

A sufficient number of samples must be generated to obtain sufficient accuracy in the

mOl‘nent estimates. Figs. 4.5 and 4.6 show typical estimates of the mean and standard

deviation of 1mm, respectively, as the number of samples is increased. The figures indicate

that 8,000—10,000 samples are required to accurately estimate the first two moments of

T

ma.x‘
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A typical histogram of 1mm based on 10,000 sample is shown in Fig. 4.7. Although

the probability density function of {max is a function of the covariance matrix of the

Cartesian stresses It at the point under consideration, typically about 99.55% of the samples

lie below the mean plus three standard deviations of 1mm.

0-25 1 1
 

2

0.2 .
517.11.]: 745 mm

a,” = 328 mm2

0-15 *

(11*

0.05 *

  
0.0

 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

2

TM (ft/lb )

Figure 4.7 Probability density distribution of maximum shear stress



5. STOCHASTIC RESPONSE OF THE SANTA

FELICIA DAM— CASE STUDY

5.1 Ground Motion Model

The ground motion model shown in equation (4.2) is based on the analysis of

recordings made by the SMART-1 seismograph array in Lotung, Taiwan. The model which

considers the spatial as well as the temporal variation of earthquake ground motion is used

in this study. The parameters of the auto spectral density function (SDF) S“.g were

estimated from the El Centro earthquake record by fitting the function expressed in

equation (4.5) to observed acceleration spectra. Fig. 5.1 shows the normalized

autospectrum and the fitted model. The parameters (0g, Cg, (of and wahich control the shape

TABLE 5.1 Double-filter Autospectrum Parameters

 

 

 

     
 

 

 
 

  
 

wg(radls) Cg cof(rad/s) Cf

15.0 0.55 3.0 0.60

100 . T I r 1 1 1 I

; — Estimated

5 : —- Fitted

LL. 2 \

a 10" - I \ -

o E l \

g 5 I \

1: Z l ‘ \

0 l
.E 2 . l \ v

-2 ,_ ..

O 10 :l \\\\

Z i, \ ‘
5 " \\4

2" 3

2 u-

1

10-3 1 L l 1 l 1 I 1 l 1 l 1 l 1 l

O 2 4 6 8 10 12 14

Frequency (Hz)

Figure 5.1 Fitted Autospectra for Ground Motion Accelerogram
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of the spectra are listed in Table 5.1. In the auto SDF, the intensity parameter So was

adjusted such that the standard deviation of the ground acceleration is 0.09g corresponding

to a peak acceleration of about 0.27g.

For the coherency function l'y(v,(o)l in equation (4.3), the five parameters used in the

analysis are listed in Table 5.2. These parameters correspond to Event 20 recorded by the

SMART-l array. In general, the coherency decreases with increasing separation and

increasing frequency, as shown in Fig. 5.2 and Fig. 5.3. To account for the wave passage

effect, an exponential function, exp(-i(1)v/V), is used, in which v is the separation distance

and V is the apparent wave velocity. Since the Santa Felicia dam is located on bedrock, an

apparent wave velocity of 4,267 m/s corresponding to waves in the bedrock propagating at

2,134 m/s with an incident angle of 60° to the horizontal was assumed. An incident angle

of 60° was found to be critical by Dakoulas and Hashmi (1992). This angle is used to

determine the delay due to wave propagation for the nodes along inclined base surfaces.

Unless noted otherwise, the waves are assumed to propagate in the upstream/downstream

direction (x-direction). Consequently, the delay time between two locations was computed

as (vxcose + vysinB) /Ve, in which V9 is the actual wave propagation velocity in the

bedrock, 0 is the incident angle to the horizontal, and vx and vy are separations between two

nodes in the x and y directions, respectively.

In order to obtain a physical feel for accelerograms that are consistent with the

prescribed SDF, coherency function and propagation velocity, stationary accelerogram

segments at the extreme downstream and upstream comers and the middle of the base along

the axis of symmetry were simulated. These three accelerograms are shown in Fig. 5.4.

TABLE 5.2 Coherency Function Parameters

 

A a k (m) 0),, (rad/S) b
 

 

0.636 0.0186 31,200 9.49 2.95
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5.2 Computation Steps

A series of computer programs were written to perform the stochastic response

analysis of the earth dam. The basic steps of the analysis are summarized below:

1.

3.

In equation (4.17), mode shapes {(1)} and modal mass Mj as well as the mass matrix

[M] and the static constraint matrix [A] are required in computing the participation

factor matrix [F]. {(1)} and Mj can be obtained directly from regular output in

I-DEAS, but [M] and [A] need to be generated by special techniques which are

described in Appendix A.5.

Using equation (4.18), the participation factor matrix [F] was computed. [1"] is of

order r x n , where r = number of restrained DOFs with excitation and n = number

of modes (for the model used, r = 288 and n = 80). The static constraint matrix [A]

has a size of N x r, in which each column represents the deformation shape due to

unit displacement at a restrained node, and N = total number of DOFs in the model

(for the model used, N = 3012 and r = 288).

The lower triangular part of the integration matrix of equation (4.38) was computed

by using the numerical subroutine DQAGI in the NSWC mathematics library, and

stored in a 1-D array oforder n (n + 1) /2.

. l . .

The integrals F 71512 11 ((1)) do) were computed and stored 1n an array of srze
.01; RI Rm

r(r+1)/2. The integrals r

—00

15H . ( (11)) S .. ._ ((0)610) were computed and stored in
J uRluRm

an array of size n x r. It should be mentioned that the calculations of the

integrations using the adaptive algorithms in DQAGI are extremely time-

consuming. The approximate elapsed time using an HP Model 715/50 workstation

is shown in Table 5.3.
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TABLE 5.3 Approximate elapsed time for calculation of integration

 

Static Dynamic Static-Dynamic

 

 

15 minutes 21 days 16 hours

    
 

. The variance of the total displacement responses were computed using equations

(4.37), (4.42) and (4.49) for each degree of freedom. The three displacement

components in the x, y and 2 directions were computed at each node.

. For 3-D problem, six Cartesian stresses and strains were computed and the

covariance matrix for each node is of order 6 by 6. Because of symmetry, only 21

components in the matrix were calculated. The total covariance matrix of stresses

(strains) was computed using equations (4.55), (4.57) and (4.58) for each node, in

which the integration values are identical to the results computed in step 4. The

stress mode shape [‘P] is of order N X n (for the model used, N = 6024 and n = 80).

The static constraint matrix [n] has a size of N X r (for the model used, N = 6024

and r = 288).

. Using the covariance matrices for stresses and strains computed in step 6, 10,000

normal random samples were simulated for the six Cartesian stresses and strains at

each node. 10,000 values of the maximum shear stress and strain were computed at

each node using the Cartesian stresses and strains, and the u+30’ values were

estimated from the simulated data.

. The “+30 of maximum shear stress were also estimated using the FOSM method

w1th Ti 1n add1t10n to With 11:11 as the ba51c var1ables (see Sectlon 4.7.3).

. Mohr-Coulomb strength criterion is employed to determine the shear strength of

soils. By considering gravity and earthquake loads, reliability analysis was

performed.
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5.3 Numerical Results

Finite element analysis yields a vast amount of results, and a good post—processor is

essential to suitably display relevant quantities. Fortunately, the excellent post-processor in

I—DEAS can be utilized to display response quantities computed with customized programs

for random vibration analysis. The techniques to display response contours are described

in Appendix A.6. Shaded image contours of the displacement, stress and strain responses

are displayed over the entire dam in this section. All responses should be symmetric about

the middle axis of the dam and any observable asymmetry is due to the variability in the

simulated data on either side of the axis of symmetry. The origin of the coordinate system

used in the study is located at the mid—point of the base in the core clay region.

5.3.1 Responses to general excitation

This section shows the dam responses to general SVEGM. Both correlation and wave

propagation effects were included for the base excitations.

5.3.1.1 Displacement

Since the excitations are assumed to be zero-mean Gaussian processes, the mean

value of the displacement response must be zero. The variance of the total x-, y- and

z-displacements at each node was computed using equation (4.26). The standard deviation

(0) is taken to be the positive square root of the variance. Fig. 5.5 shows four different

views of the 30’ x-displacement response contours so that the displacements on the dam

surface and within the dam can be easily visualized. The scale for the contour is shown on

the right edge of each picture. The darker contour shades signify larger response values.

The figures show that the maximum x-displacement occurs at the middle of the crest, with

a 30' value of 191.8 mm (0.630 ft). The displacements decrease with increasing distance

from the mid-point of the crest.

In 3-D analysis, the total displacement response consists of the x, y and 2 components.

Fig. 5.6 shows the 3G contours for each displacement component. As expected, the
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x-displacement dominates the total displacement response. Since the magnitudes of the y

and 2 components are very small in comparison to the x-displacement, it is reasonable to

neglect them.

5.3.1.2 Stress

As with the displacement, for zero-mean excitations, the mean of the Cartesian

stresses is zero. Figs. 5.7 (a), (b) and (c) show the 30' contours of the stresses, Ix, Txy and

In, respectively at the base where they are critical. These three components are the most

significant. The stress component try is mainly caused by bending effects. In at the base is

primarily caused by the spatial variation of the base excitation. According to the Mohr-

Column failure criterion, the failure of soil material is related to the maximum shear stress,

I and the soil properties. The mean plus three standard deviation (u+3o) contours of
max’

Tm at the base are shown in Fig. 5.7(d). It should be noted that the high values of stresses

occurring on the upstream and downstream sides are due to the artificial cut-off boundary

and should be disregarded. Excluding responses near the boundary, Table 5.4 lists the

maximum u+3o nodal stress for each component. A maximum shear stress of 1,670 kPa

(34,869 lb/ftz) occurs at nodes 138 and 274 where try is maximum.

TABLE 5.4 Maximum u+30 nodal stress response for each component

 

 

 

 

 

 

 

 

 

Component Nodes Node Location (x,y,z) (ft) Stress (kPa)

Ix 102, 241 247.7, 0.0, i150.0 3,222

Iv 132, 268 289.5, 0.0, i172.5 772

12 102, 241 247.7, 0.0, 1150.0 1,005

In, 138, 274 —-l60.2, 0.0, i121.8 1,467

In 105, 244 176.3, 0.0, i225.0 1,187

In 138, 274 -160.2, 0.0, i121.8 394

1mm 138, 274 —160.2, 0.0, i121.8 1,670     
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5.3.1.3 Strain

Although stresses are critical at the base, strains are critical at the top free surface of

the dam because the material at the top is not as stiff as the material of the base. The “+30

values of the three dominant strain components, yx, ny and sz’ and the maximum shear

strain 7mm at the top surface of the dam are shown in Figs. 5.8 (a), (b), (c) and (d),

respectively. In Fig. 5.8(a), the high values of 7x along the side boundaries are due to ground

straining. The contour pattern of ymax is similar to that of ny’ which indicates that ny

contributes most to 7mm. The critical shear strain responses occur on both surfaces of the

upstream and downstream sides. Table 5.4 lists the maximum 114-30 nodal strain for each

component. It is shown that M dominates the strain response, which gives most

contributions to 7mm.

5.3.2 Modal contributions

The dynamic response variances consist of individual modal response variances and

covariances between pairs of modal] responses as indicated in equation (4.37). The relative

modal contributions to the x-displacement are examined in detail at the middle of the dam

crest (which has the maximum displacement). Table 5.6 shows the percent contribution of

TABLE 5.5 Maximum u+3o nodal strain response for each component

 

 

 

 

 

 

 

 

      

Component Nodes Node Location (x,y,z) (ft) Strain

yx 336 —212.5, 187.5, 0.0 9.4008x10‘4

y), 644, 977 147.7, 125.0, i647 4.9636x10‘4

72 438 195.0, 185.0, 0.0 5.1313x10‘4

yr), 591, 924 129.1, 176.1, i392 2.2613x10‘3

7,, 504, 837 —125.3, 226.1, :3490 9.8622x10“4

7),, 627,960 —203.3, 180.8, i187.0 6.2395x10'4

7m, 591, 924 129.1, 176.1, i392 1.9340x10‘3
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the model variances (diagonal terms) and covariance (off-diagonal terms). The variances

(diagonal elements in Table 5.6) of modes 1, 6 and 16 and the covariances between modes

1 & 6 and 15 & 16 contribute more than 1% to the dynamic displacement. However, the

mode 1 variance dominates, with a contribution of 96%.

The relative modal contributions to the x-displacement are also examined at node 329

(x=-15 ft, y=275 ft, 2:354 ft) which is located approximately at quarter length along the

crest. Table 5.6 shows the percent contribution of the modal variances and covariances. The

variances of modes 1, 3, 6, 9, 13 and 19 and the covariances between modes 1 & 6 and 6 &

l9 contribute more than 1% to the dynamic displacement. At this node, modes 1 and 6

dominate with contributions of 34% and 40%, respectively. While only symmetric modes

contributed to the displacement at the middle of the crest, but symmetric and antisymmetric

modes contribute to the displacement at the quarter-length locations.

The In, component at node 275 (x=-167 ft, y=0 ft, z=-57.9 ft), which has the

maximum dynamic variance, is selected for a detailed examination of the relative modal

contributions. Table 5.6 shows the percent contribution of the modal variance and

covariance. The variances of modes 1, 6, 10 and 16 and the covariances between modes 1

& 6, 1 & 10 and 10 & 16 contribute more than 1% to the dynamic TX), at this node. As with

the displacement at the mid-crest, mode 1 dominates with a contribution of 94%. Basically,

symmetric modes give some contribution to the dynamic Ix), while anti-symmetric modes

do not contribute at all at this node. Anti—symmetric modes may of course have larger

contributions at other nodes.

The largest dynamic variance of 7n, occurs at node 441 (x=181 ft, y=108 ft, z=0 ft).

The percent modal contributions to the total dynamic response at this node are listed in

Table 5.6. The variances of modes 1, 6 and 10 and the covariances between modes 1 & 6,

1 & 10 and 6 & 10 contribute more than 1% to the response. Again, mode 1 dominates with



T
A
B
L
E

5
.
6

P
e
r
c
e
n
t
m
o
d
a
l
c
o
n
t
r
i
b
u
t
i
o
n
t
o
t
h
e
d
y
n
a
m
i
c
x
-
d
i
s
p
l
a
c
e
m
e
n
t
r
e
s
p
o
n
s
e
a
t
t
h
e
m
i
d
d
l
e
o
f
t
h
e
d
a
m

c
r
e
s
t

 

1

O

2
3

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0
  

9
5
.
9
 

.
0
0
0
 

.
0
0
0
 

.
0
0
0
 

-
.
2
2
 

4
.
7
7
 

.
0
4
7

.
0
0
1
 

.
0
0
0
 

gfiNMfl‘lfl9l‘wQ

.
0
0
0
 

\O

O

G

1-1

.
0
0
0

 

8,

.
0
0
0

 

8,

 

V

N

(‘1

1")

1-1

.
0
4
9

 

8,

 

N

"l

I!)

1-

.
0
1
2

-
.
0
1

.
3
1
6

 

\O

\D

M.

\0

1-1

.
1
8
6

-
.
0
1

-
.
1
1

1
.
3
7

1
.
5
0
 

\O

N

o.

l‘

1-1

-
.
0
1

.
0
0
2

—
.
0
1

-
.
0
2

.
0
0
0
 

8,

 

\O

N

O.

a

1-1

-
.
0
3

.
0
0
1

.
0
1
3

-
.
O
9

-
.
2
1

.
0
0
1

.
0
1
0

  

o

O.

c
N

  
  

  -
.
0
1

  
  

  
  

  -
.
0
1

 .
0
0
0

  .
0
0
1

  
 

108



T
A
B
L
E

5
.
7

P
e
r
c
e
n
t
m
o
d
a
l
c
o
n
t
r
i
b
u
t
i
o
n
t
o
t
h
e
d
y
n
a
m
i
c
x
-
d
i
s
p
l
a
c
e
m
e
n
t
r
e
s
p
o
n
s
e
a
t
q
u
a
r
t
e
r
l
e
n
g
t
h
a
l
o
n
g
t
h
e
c
r
e
s
t

 

1
2

3
4

6
l
0

1
3

1
5

1
6

1
7
  

3
4
.
1

 

.
0
0
0
 

.
0
0
3

5
.
5
4

  

.
0
0
0

.
0
0
0

.

 

3
9
.
9

 

.
4
0
6

.

 

.
2
8
2

 

.
3
6
0

.
0
0
0

.

 

.
3
3
3

.
.
0
0
9

   

.
7
3
6

.
-
.
O
l

.
.
1
4
6

 

.
0
0
0

.

 

-
.
0
2

.
.
0
2
6

.
-
.
0
4

.
.
0
8
9
 

-
.
0
2

.
-
.
0
1

.
.
0
3
0

.
0
0
3

 

.
7
6
4

.
.
0
1
1

.
.
0
5
8

.
-
.
0
9

-
.
0
2

.
0
8
3
 

.
0
0
0

.
 

cFflqumel‘wa
“vamehwe‘fifififlfiflflfififig

1
.
1
4

-
.

-
.
0
9

.
.
2
7
4

.
-
.
6
0

-
.
1
1

.
2
8
5

.
 

  
  

  
 -

.
O
l

.

  
  

 
  

  
  
 

109

  
  



T
A
B
L
E

5
.
8

P
e
r
c
e
n
t
m
o
d
a
l
c
o
n
t
r
i
b
u
t
i
o
n
t
o
t
h
e
d
y
n
a
m
i
c

I
x
)
,
r
e
s
p
o
n
s
e

-
N
o
d
e
2
7
5

 

m
o
d
e

3
6

7
8

9
1
0

l
l

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0
    

.
3
0
5
   

1
.
2
1
 

.
2
3
8

.
   

1
.
1
8
   

.
0
3
2

.
0
0
5

.
0
0
1

  

.
4
3
3

.
2
0
3

 

l
.
4
9

.
0
2
2

1
.
5
5

3
.
0
0
 

.
3
3
8

-
.
0
8

.
0
0
3

.
0
8
8

.
3
9
0

.
0
3
9

  

61-1618) "3950003:

"vamebwafifivflv—tz—tfifififlfil

.
0
0
3

.
0
0
8

.
0
3
2

.
0
0
2

   
-
.
l
8

  
  

  
  

 .
0
0
7

  
  

 -
.
0
5

 -
.
2
2

 -
.
0
3

  
 .

0
1
5

 
 

110



T
A
B
L
E

5
.
9

P
e
r
c
e
n
t
m
o
d
a
l
c
o
n
t
r
i
b
u
t
i
o
n
t
o
t
h
e
d
y
n
a
m
i
c
n
y
r
e
s
p
o
n
s
e

-
N
o
d
e
4
4
1

 

a

E

l
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0
       

-
4
.
4

.
0
0
0

.
0
0
0

.
0
0
0

—
.
1
4

2
.
6
7

 

.
7
7
4

.
0
0
0

.
0
0
0

.
0
0
0

.
0
1
7

-
.
3
5

.
0
5
1

  

.
0
0
0

.
0
0
0

.
0
0
0

.
0
0
0

.
0
0
0

.
0
0
0

.
0
0
0

.
0
0
0

.
0
0
0

 

2
.
8
6

.
0
0
0

.
0
0
0

.
0
0
0

.
0
3
8

-
1
.
1

.
2
1
7

.
0
0
0

.
0
0
0

1
.
4
4
   

.
1
7
3

.
0
0
0

.
0
0
0

.
0
0
0

.
0
0
1

-
.
0
9

.
0
0
0

.
0
0
0

.
0
0
0

-
.
0
3

.
0
0
0

.
0
0
0

.
0
2
9

  

-
.
1
4

.
0
0
0

.
0
0
0

.
0
0
0

.
0
0
0

.
0
0
0

-
.
0
3

.
0
0
0

.
0
0
0

-
.
2
5

.
0
0
0

.
0
0
0

.
0
1
3

.
0
0
0

.
0
5
6
 

-
.
1
4

.
0
0
0

.
0
0
0

.
0
0
0

-
.
0
1

-
.
0
5

-
.
0
5

.
0
0
0

.
0
0
0

-
.
4
6

.
0
0
0

.
0
0
0

.
0
3
3

.
0
0
0

.
2
2
4

.
2
3
0
 

-
.
4
8

.
0
0
0

.
0
0
0

.
0
0
0

.
0
0
0

.
1
8
9

-
.
0
1

.
0
0
0

.
0
0
0

-
.
1
3

.
0
0
0

.
0
0
0

-
.
O
2

.
0
0
0

-
.
O
6

-
.
1
5

.
0
7
5

  

g—vamwbwai=2‘23‘2£2°§3£

.
0
0
7

.
0
0
0

.
0
0
0

.
0
0
0

.
0
0
1

-
.
0
1

.
0
0
0

.
0
0
0

.
0
0
0

-
.
0
2

.
0
0
0

.
0
0
0

.
0
0
3

.
0
0
0

.
0
1
0

.
0
2
1

-
.
0
1

.
0
0
0

.
0
0
1
 

  
.
2
5
7

.
0
0
0

.
0
0
0

.
0
0
0

.
0
0
1

-
.
O
9

.
0
0
0

.
0
0
0

.
0
0
0

.
0
1
1

.
0
0
0

.
0
0
0

.
0
0
7

.
0
0
0

.
0
3
9

.
0
8
4

-
.
0
6

.
0
0
0

.
0
0
5

.
0
2
9

 
  

 
 

  
  

 
  

 
  

  
  
 

111  



112

a contribution of 98%. Detailed examination of modal contributions indicates that a

dynamic analysis using only the first mode should be sufficient in preliminary design.

5.3.3 Responses to simplified excitations

In conventional seismic analysis of earth dams, simplified ground motion models are

typically used. In order to assess their adequacy, three simplified ground motion models are

considered in addition to general SVEGM model.

0 Case I: Propagation only without coherency decay. Correlation effects between

support excitations is neglected in the case, i.e. Iy(v, 0))I = 1 . However, the time

delay for seismic waves to propagate from one support to another is considered.

0 Case II: Identical ground motion. This case considers the earthquake excitation to

be identical at all support points, an assumption often used in practice. For this case,

—'0)v/V .

17W, (1)) Ie ' 1s equal to one.

0 Case 111: incoherency only without wave passage effect. For this case the wave

—i(0v/V _

propagation effect is neglected and hence e 1 .

For cases I and II, Harichandran (1991) developed closed-form solutions for the

integrals in equations (4.38), (4.42) and (4.49). Use of closed-form solutions instead of

numerical integration result in a tremendous saving of computation time, especially for the

dynamic response. Computation of the dynamic response using the closed-form solutions

took only about 6 hours on a HP 715/50 workstation compared to about 21 days when

numerical integration was used.

5.3.3.1 Displacement

Fig. 5.9(a) shows 36 x-displacement contours for the general SVEGM model, while

Figs. 5.9 (b), (c) and (d) show the contours for the simplified excitation cases: propagation

only, identical and incoherency only, respectively. The x—displacement contours for the

four types of excitation are similar to one another. However, the maximum x-displacement

response to identical excitation is 8.1% larger than that due to general SVEGM. The critical
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responses for these four cases are listed in Table 5.10. The figure indicates that for the

assumed seismic wave speed, the wave propagation effect is not very significant. The effect

of incoherent ground motion slightly decreases the displacement response. The use of

identical excitations (typical practice) appears to be adequate and conservative as far as

predicting displacements.

5.3.3.2 Maximum shear strain

The 1.14-30' maximum shear strain responses are depicted in Figs. 5.10. (a), (b), (c) and

(d) due to cases of general excitation, wave propagation only, identical excitation and

incoherency only, respectively. There is no significant difference among these contour

patterns, and the critical values are listed in Table 5.10. The effect of SVEGM slightly

lowers the maximum shear strain response. The wave passage effect does not affect 7mm

significantly.

5.3.3.3 Maximum shear stress

The u+3o contours of 1mm response are shown in Fig. 5.11 in which figures (a), (b),

(c) and (d) are for the cases of general, propagation only, identical and incoherency only

excitations, respectively. A comparison of figures (a) & (d) with (b) & (c) indicates that

incoherency of the base excitations has a very significant effect on the magnitude and

distribution of 1mm at the base. The critical response for each case, excluding that on the

cut-off boundaries, is also listed in Table 5.10 and indicates that the traditional assumption

TABLE 5.10 Comparison of maximum “+36 response for displacement, maximum shear stress

and maximum shear strain for four different excitation models

 

 

 

 

 

 

     

Case x-displacement (mm) 1m (kPa) 7m“

General Excitation 191.8 1.670 1.934x10"3

Propagation Only 207.2 51 1 2. 127x 1 0—3

Identical Excitation 207.4 498 2. l 33X10—3

Incoherency Only 195.0 1669.9 1 .975X10—3
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of uniform earthquake ground motion significantly underestimates the stress response. The

response of Tmax to general SVEGM is 3.35 times larger than that due to identical

excitation. This is because the stress component, IV, significantly increases due to the base

shearing effect caused by SVEGM.

The contours in Fig. 5.1 l were generated using 10,000 simulations of Imax at each

node consistent with the covariance matrix of the Cartesian stresses computed by random

vibration analysis. In addition, the mean-value FOSM method was also employed to

estimate the u+3c contours of I’m”. The main advantage of using the FOSM method is that

the elapsed computing time was only about 4 seconds on a HP Model 715/50 workstation,

while simulating 10,000 samples and computing moments required about 21 minutes. The

FOSM estimates using lIil as the basic variables (see Section 4.7.3. 1) for the four excitation

cases are displayed in Fig. 5.12. A comparison with Fig. 5.11 indicates that the FOSM

estimates are clearly unacceptable. The poor estimates are due to the derivative terms

evaluated at the mean values of all variables in equation (4.120) being unexpectedly high

at some nodes, as a result of which the variances of Tmax at these nodes deviate excessively

from simulation results. A similar observation was made for the illustrative 2-D beam

bending problem in Section 4.7.2.3. Therefore, it may be concluded that the accuracy of the

FOSM estimate for the standard deviations of I can be poor and fluctuating if lIil are
mar

used as the basic variables.

The FOSM approach with If as the basic variables was presented in Section 4.7.3.2.

The u+3o Tmax responses computed for this case are shown in Fig. 5.13, in which figures

(a), (b), (c) and (d) are contours for the general, delayed, identical and incoherency only

excitations, respectively. The contour patterns are now closer to those in Fig. 5.11,

especially for cases yielding higher stresses. Thus, the use of 112 as the basic variables in

the FOSM approach is better than using IIiI as the basic variables. The differences between

critical u+3c estimates of I"m using the simulation and FOSM approach with 1".2 as the
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TABLE 5.1] Comparison of critical p.+3o estimates of Im (kPa) using simulation and FOSM

approaches with If as the basic variables

 

 

 

 

 

 

Case Simulation FOSM Difference

General Excitation 1,670 1,812 8.5%

Propagation Only 51 1 623 22%

Identical Excitation 498 605 21 %

lncoherency Only 1,670 1,812 8.5%     
 

basic variables are compared in Table 5.1 l. A difference of 8.5% occurs for the general

excitation case while a larger error of 21% occurs for the identical excitation case.

Figs. 5.14 (a) and (b) show the u+3o contours of 7mm at the top free surface using the

FOSM approach with IIiI as the basic variables for the general and identical excitations,

respectively. As with the I’m“ response, the FOSM estimates are clearly unacceptable.

However, Figs. 5.14 (c) and (11) show the 7mm response using the FOSM approach with 112

as the basic variables for the general and identical excitations, respectively. The contour

patterns are quite similar to those using simulation samples as shown in Figs. 5.10 (a) and

(c). Therefore, the FOSM method with If as the basic variables can be used to estimate

statistical moments of maximum shear stress and strain.

5.3.4 Correction factors for the FOSM method

The linearization of the non-linear function of Tmax using the mean-value FOSM

method can be efficient and have acceptable accuracy if calibrated correction factors are

used. By comparing the Tmax responses over the entire darn estimated by the FOSM method

with those obtained using simulation, correction factors CF“ and CFO as defined in

equations (4.113) and (4.114) can be determined for the mean and standard deviation of

I respectively, at each node. The statistics of these correction factors are shown in
max’

Table 5.12. The two cases of general and identical excitations are selected to illustrate the

accuracy of the FOSM method using IIiI as well as If as the basic variables. In addition to
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the mean and standard deviation of the CFs, the coefficients of variation (c.o.v.) are also

shown in Table 5.12. The c.o.v. of a random variable x is defined as

- gmx 100 (%)C.O.V. — ELY] (5.1)

The higher the coefficient of variation, the greater the scatter. The maximum and minimum

values of the CFs for each case are also given in Table 5.12.

Table 5.12 shows that CFO computed by the FOSM method with I} as the basic

variables are more consistent (i.e., have less scatter) than those obtained by the method with

lIil as the basic variables for both excitation cases. For the identical excitation case, the

FOSM method using I} as the basic variables yields a c.o.v. for CFO only 3.3%. However,

the FOSM method using IIiI as the basic variables yields a c.o.v. as large as 47% for the

general excitation case. For CF“, however, the two FOSM approaches yield the same c.o.v.

for both excitation cases. Therefore, if 1.".2 are used as the basic variables, then it is possible

to arrive at a CF11 and CFO that can be used to correct estimates of the mean and standard

deviation, respectively, computed using the FOSM method.

 

TABLE 5.12 Statistics of the correction factors CF11 and CF<I

 

 

 

 

 

 

         

General Excitation Identical Excitation

Statistics Basic variables Basic variables Basic variables Basic variables

of 11,1 1,2 11,1 1}

CFs

CFl1 CFO CF“ CFO CFLl CFO CF" CFO

Mean 1.223 0.526 0.976 0.856 1.076 0.644 0.858 0.826

Std. Dev. 0.075 0.247 0.060 0.072 0.052 0.191 0.041 0.027

Coefficient of 6.1 47.0 6.1 8.4 4.8 29.7 4.8 3.3

Variation (%)

Maximum 1.476 1.337 1.178 1.095 1.408 2.289 1.124 1.158

Minimum 1.059 0.006 0.845 0.757 0.994 0.006 0.793 0.777
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Fig. 5.15 show the u+3o tmax contours at the base using the corrected FOSM method

with 112 as the basic variables compared with those using simulation results. Figs. 5.15(a)

and (b) show the Tmax responses due to general excitation for the simulation and corrected

FOSM methods, respectively. Correction factors of CFH=1.04 and CFO=0.91 were used to

correct (multiply) the estimated mean and standard deviation of Tmax at each node. The

difference between the maximum I using the corrected FOSM method and simulation
mat

samples is only 4%.

Figs. 5.15(c) and ((1) show the Tmax responses due to identical excitation for the

simulation and corrected FOSM methods, respectively. Correction factors of CFH=0.86 and

CFO=0.83 were used. The Tmax contours using the corrected FOSM method and simulation

results are almost identical, and the difference in the maximum I’m“ value is less than 0.5%.

In summary, the use of approximate correction factors for the mean and standard

deviation estimated by the FOSM method with If as the basic variables can yield fairly

accurate results. The corrected results are considerably more accurate for the identical

excitation model than for the general excitation model. The correction factors must be

arrived at through a calibration process which uses simulation, which partially offsets the

computational advantage of using the FOSM method. However, if several analyses are to

be performed, then the calibration process and the subsequent use of the corrected FOSM

method may be justified. Owing to its better accuracy, the simulation approach was used to

generate all contour presented in this study hereafter.

5.3.5 Response details over the dam

Although the cr1t1cal values of Tmax occur at the base and the crrtical values of 'ymax

occur at the top free surface as shown in previous sections, in order to have global insight

on the responses of the dam, Tm: at the top free surface and on the cutting plane at z = 0

and y at the base are also depicted in this section.
mar
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Figs. 5.16 (a), (b), (c) and ((1) display the u+3o contours of 1mm at the top free surface

for the cases of general, delayed, identical and incoherency only excitations, respectively.

All figures are shown on the same scale. The dark regions which signify high Tmax on both

upstream and downstream sides are due to the artificial cut-off boundaries and should be

disregarded. At the top free surface, the I response due to identical and delayed
mat

excitations are larger than those due to the other two cases.

Figs. 5.17(a), (b), (c) and ((1) display the u+30 Tmax contours on the cutting XY plane

at z = 0 for the cases of general, identical, delayed and incoherency only excitations,

respectively. Identical excitation case yields the critical Tmax in the core, while the general

excitation yields the critical Tmar in the gravel streambed. Table 5.13 shows the critical

u+30 values of Tmax in the core, shell and gravel material for all these cases and indicates

that the traditional assumption of identical earthquake excitation overestimates the Tmax

response in the core and shells by about 10% and 8%, respectively. The wave passage effect

slightly lowers the Imax response in the core, while it does not affect the Tmax response in

the shell significantly.

Figs. 5.18 (a), (b), (c) and ((1) display the u+3o contours of ymax at the base for the

cases of general, delayed, identical and incoherency only excitations, respectively. The

contour patterns have no significant difference among these cases. High 7mm values occur

in flexible material regions, i.e., core and shell. However, shear stresses are related to shear

TABLE 5.13 Critical u+3o values of “cm (kPa) in different material zones

 

 

 

 

 

 

Case Core Shell Gravel

General Excitation 373.8 161.9 1,670

Delayed Excitation 405.5 174.6 511

Identical Excitation 410.6 174.1 498

Incoherency Only 380.5 164.2 1,670      
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strains through the shear the shear moduli of the materials, and the extremely high values

of 13mm that occur at the base is due to the very high shear modulus of the gravel.

5.3.6 Contribution of response components to total response

As indicated in equation (4.26), the variance of the total response consists of three

components: the variance of the pseudo-static response, the variance of the dynamic

response, and the covariance between the pseudo-static and dynamic responses. It is

instructive to deduce which component gives most contributions to the total response.

5.3.6.1 Displacement

The maximum variance of 15 displacement responses in the upstream-downstream

direction are extracted to show the contributions of the response components. The 15 nodes

having the largest responses are the same for the three cases: general excitation, identical

excitation and delayed excitation. The coordinates of these nodes are listed in Table 5.14.

The percentage contribution of the three response components to the total variance at these

nodes are shown in Table 5.15. Clearly, the dynamic response component contributes the

most for all the cases but the other components are also significant. It should be noted that

for identical excitation, the pseudo-static response consists of a pure rigid body translation

of the dam and the static displacement component at all nodes is identical to the ground

displacement.

TABLE 5.14 Coordinates of the nodes (ft) at which the 15 largest

x-displacement responses occur

 

Node x y 2 Node x y 2 Node x y z

 

 

291 -15 275 0 333 -15 275 71 692 -15 275 -l42

 

299 15 275 0 338 -81 246 O 332 - 15 275 142

 

732 15 275 -71 436 75 245 O 963 67 249 -95

 

382 15 275 71 731 15 275 - l 42 630 67 249 95

 

693 ~15 275 -71 381 15 275 142 816 -61 254 -120                   
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5.3.6.2 Strain

The strain component 7”, is selected to show the contribution of the response

components to the total variance. The coordinates of the nodes at which the 15 largest ny

response occur for the two cases of general and delayed excitations are listed in Table 5.16.

The maximum responses occur near the top free surface of the dam for both cases. The

percentage contribution of the response components are shown in Table 5.17 and indicate

that the dynamic response is dominant for both cases. The pseudo-static and covariance

components can be neglected when estimating y” at the free surface.

5.3.6.3 Stress

The stress component TX), is selected to show the contribution of response components

to the total variance. Since the largest variance of TX), occurs at different locations for

different excitation models, the nodes at which the 15 largest 13x), responses for the two cases

of general and delayed excitations are listed separately in Table 5.18. The percentage

contribution of the three response components at these nodes are listed in Table 5.19 for

each excitation case. For the general excitation the static component contributes the most

to the total response, although the dynamic component is also significant at some nodes.

For delayed excitations with an apparent wave speed of 4.27 km/s, the static response is not

significant, but the covariance between the static and dynamic responses becomes

significant. It should be noted that for identical excitation the static stress component is zero

since this consists of a pure rigid body translation of the dam. As a result, the covariance

between the static and dynamic components is also zero, and the total stress response

consists of only the dynamic component.

In addition, it is of interest to examine the contribution of the response components

to the total response at the critical point in the core. Node 396 (0 ft, 125 ft, 0 ft) was found

to have the maximum u+3o 1mm value. Table 5.20 shows the percentage contribution of

response components to the total variance of the shear stress In, at node 396 and indicates
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TABLE 5.16 Nodal coordinates (ft) for the largest 15 variances of ny
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             
 

 

 

 

 

 

 

 

 

 

 

 

    
 

 

 

 
 

 

Sorted General Excitation Delayed Excitation

Order Node x y 2 Node x y z

1 591 129 176 39 352 -104 150 0

2 924 129 176 -39 353 — 161 125 0

3 441 181 108 441 181 108 0

4 440 114 142 440 114 142 0

5 352 -104 150 311 -99 195 0

6 353 -161 125 295 -48 175 0

7 977 148 125 -65 591 129 176 39

8 644 148 125 65 924 129 176 -39

9 437 135 215 857 -185 114 ~35

10 446 114 100 524 -185 114 35

11 418 91 195 446 114 100 0

12 857 -185 114 -35 856 -153 128 -57

13 524 -185 114 35 523 -153 128 57

14 417 151 165 977 148 125 -65

15 295 -48 175 644 148 125 65

TABLE 5.17 Percentage contribution of response components to the total variance

of the shear strain 7:9

Sorted General Excitation Delayed Excitation

Order Static Dynamic Covariance Static Dynamic Covariance

1 f 0.1 100.0 -0.1 jFPOD 100.1 -0.1

2 0.1 100.0 -0.1 0.0 100.5 -0.5

3 0.3 100.4 -0.8 0.0 99.4 0.6

4 0.1 100.1 -0.1 0.0 99.9 0.1

5 0.1 99.8 0.1 0.0 100.1 -0.1

6 0.3 99.4 0.3 0.0 100.0 0.0

7 0.2 100.3 -0.5 0.0 99.9 0.1

8 0.2 100.3 -0.5 0.0 99.9 0.1

9 0. 1 100.0 -0.1 0.0 100.8 -0.8

10 0.2 100.2 ~0.3 0.0 100.8 -0.8

1 l 0.0 100.0 0.0 0.0 99.8 0.2

L 12 0.4 99.1 0.5 0.0 100.4 -05

L 13 1.9 97.5 0.6 0.0 100.4 -0.5

1 14 0.1 100.1 -03 0.0 99.7 0.3

15 0.1 99.9 0.0 0.0 99.7 0.3
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TABLE 5.18 Nodal coordinates (ft) for the largest 15 variances of Txy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Sorted General Excitation Delayed Excitation

order Node x y 2 Node x y z

1 274 - 160 0 -122 275 -167 0 -58

2 138 -l6() 0 122 139 -167 0 58

3 176 595 75 ~338 274 - 160 0 -122

4 26 595 75 338 138 -l60 0 122

5 284 -322 25 -263 110 -189 0 0

6 148 -322 25 263 276 -224 0 -47

7 177 595 0 —225 140 -224 0 47

8 28 595 0 225 270 176 O -44

9 150 -452 0 112.5 134 176 0 44

10 286 -452 0 -112.5 396 0 125 0

11 110 -189 O 0 273 -218 0 -103

12 40 -535 O 0 137 -218 O 103

13 245 -l89 O -225 269 176 0 -113

14 107 -189 0 225 133 176 O 113

15 285 -452 50 -300 662 -228 38 0          
TABLE 5.19 Percentage contribution of response components to the total variance

of the shear stress Txy
 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

Sorted General Excitation Delayed Excitation

Order Static Dynamic Covariance Static Dynamic Covariance

1 89.8 12.3 -2.1 1.55 91.44 7.01

2 89.8 12.3 —2.1 1.55 91.44 7.01

3 100.0 0.0 0.0 2.82 87.40 9.78

4 100.0 0.0 0.0 2.82 87.40 9.78

5 98.0 1.9 0.2 1.03 93.51 5.46

6 98.0 1.9 0.2 0.72 94.62 4.66

7 99.9 0.1 0.0 0.72 94.62 4.66

8 99.9 0.1 0.0 1.73 106.20 -7.92

9 98.8 0.7 0.5 1.73 106.20 -7.92

10 98.8 0.7 0.5 0.00 99.92 0.08

11 74.1 28.9 -3.0 0.82 93.92 5.26

12 99.1 0.3 0.6 0.82 93.92 5.26

13 93.5 6.4 0.1 2.09 106.98 —9.08

14 93.5 6.4 0.1 2.09 106.98 -9.08

15 99.5 0.3 0.2 0.61 95.11 4.28        
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TABLE 5.20 Percentage contribution of response components to the total

variance of the shear stress In at the critical node in the core

 

 

 

General Excitation Delayed Excitation

Node

Static Dynamic Covariance Static Dynamic Covariance

396 0.4 99.7 -0.1 0.0 100.0 0.0          
 

that for the general excitation the dynamic component contributes the most to the total

response, which is in contrast to the response at the base. However, for the delayed

excitation, the dynamic component is dominant for the critical response in the core as well

as at the base.

It should be noted that the contribution of the stress response components to the total

response also depends on the shear modulus of the material. Fig. 5.19 shows u+3c contours

of 1mm at the base. Figures (a) and (c) show the total response and (b) and (d) show the

static component, both due to general excitation. The difference between the total response

and static component would indicate the contribution of the dynamic component. The

contour patterns in figures (a) and (b) are very similar to each other, which indicates the

static component dominates the total response in the base gravel region. For figures (c) and

(d), the scales were adjusted so that the 1mm response in the core can be displayed. The

figures show that significantly higher Tmax values occur in the clay core and shell for the

total response, which indicates the dynamic component is significant for the stress response

at the base for flexible material.

In addition, to examine the contribution of the stress response components inside the

dam, the 1m contours on the horizontal cutting plane at a height of 21.3 m (70 ft) (i.e., near

the top of the gravel streambed) are displayed in Fig. 5.20. Figures (a) and (c) show the total

response and (b) and ((1) show the static component. Figures (a) and (b) are similar in the

gravel region, which indicates that the static component dominates the total response
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through the gravel layer. However, in the core region the dynamic component is significant

since figures (c) and ((1) show difference in this region.

The u+3o 1mm contours at a height of 38.1 m (125 ft) (figures (a) and (b)) and 61 m

(200 ft) (figures (c) and (d)) are shown in Fig. 5.21. Figures (a) and (b) are the total

responses and (b) and (d) are the static components. Clearly, at these layer heights, the

dynamic component is significant in the shell as well as in the core since the static

responses are much lower than the total responses.

To sum up, ground straining at the base due to SVEGM causes higher stresses in rigid

material like gravel, and the static component is dominant for these material. On the other

hand, flexible materials are more sensitive to the ground vibration, and hence the dynamic

component is more significant for these material.

5.4 Reliability against Local Failure under Gravity and Earthquake Loads

5.4.1 Introduction

Since the main motivation of this study is to assess the effect of SVEGM, gravity

effects are generally neglected and only the seismic response of the dam is considered. This

section illustrate how gravity effects can be included in a more complete investigation.

Only one failure mode, local yielding governed by the Mohr-Coulomb criterion, is

considered in this illustration.

The Mohr-Coulomb failure criterion is usually expressed as

Is = c + I'tanq) (5.2)

in which c = cohesion, o = friction angle, 1' = effective normal stress and '1:5 = shear strength

of the soil. If the shear stress due to loading exceeds the shear strength given by equation

(5.2), then the soil would fail locally. In terms of principal stresses, equation (5.2) can be

written as
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3 .
2 .. 2 s1n¢+ccos¢ (5-3)
 

 

in which I] and “c3 are the major and minor principal stresses, respectively. The effect of

intermediate principal stress in 3-D problems is neglected by the Mohr—Coulomb criterion.

When the stresses 1] and T3 and/or the material parameters c and 41 are random, safety

against failure may be expressed by the safety margin failure criterion

Tl-l-T Tl-

Y= 2 3sin¢1+ccosq>— 2 
 (5.4)

Failure occurs when Y < 0, and hence the probability of failure is pf = P [Y< 0] . Rather

than using Pp a popular measure that is used to assess the reliability of engineering

structures is the reliability index defined as

B = cl, (5.5)

where Y and CY are the mean and standard deviation of Y, respectively. For a non-linear

failure criterion the magnitude of the reliability index is dependent on the form of the

failure criterion. For example, a failure criterion written in terms of the factor of safety can

yield a different B-value than a criterion written in terms of the safety margin. A

comprehensive reliability analysis should use the Hasofer-Lind reliability index (Madsen

et al. 1986), which is invariant with respect to different but mechanically equivalent

formulations of the failure criterion. However, to keep this illustration simple, the

reliability index based on the safety margin is used. For most civil engineering structures,

a reliability index of 3 is considered acceptable.

One method of assessing the safety against local failure in a finite element analysis of

earth dams is to compute the B-value at each node. The principal stresses 1'] and T3 should

include the effects of both gravity and seismic loads. In this illustration, the material

parameters c and q; are assumed to be deterministic (i.e., constant), and the values used for

the three material types are given in Table 5.21.
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TABLE 5.21 Physical properties of the core, shell and gravel

 

 

 

 

Physical property Core Shell Gravel

Friction angle 20 36 42

Cohesion (kN/mz) 100 0.72 0.72     
 

A high degree of compaction on the dam materials is assumed and thus a small

cohesion of 0.72 kN/m2 for the shell and grave] is used. Typical friction angles of 36° and

42° are adopted for the shell and gravel, respectively. The determination of the

consolidated-undrained shear strength of clay is described in Lowe (1967) and Johnson

(1975). A typical friction angle of 20° and cohesion of 100 kN/m2 are used for the clay core.

Those nodes at the interface between the core and shell or between the core and gravel were

assigned to have the properties of the core, and those nodes between shell and gravel were

assigned to have properties of the gravel material. For simplicity, these properties are

assumed to be homogeneous for each material region. The excess dynamic pore water

pressure induced during earthquakes is neglected.

5.4.2 Gravity load

Soil strength depends on effective stresses. The Santa Felicia dam has a free board of

20 ft as shown in Fig. 3.1. In this study, the situation of full water level is considered so that

on the upstream side the effective vertical normal stress due to gravity load is determined

by

'c’ = (height of the soil column) x Y (5.6)

where y’ = — yw equals the submerged unit weight of soil.
sat

The gravity-induced stresses can be obtained using I-DEAS by performing a static

analysis of the Santa Felicia dam subjected to an acceleration of Ig in the vertical direction.

The steps of the analysis are described in Appendix A.7. The computed horizontal normal

stresses were about 50%~60% of the vertical normal stresses 1'.
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The values of the safety margin, Y, due to gravity induced stresses are shown in

Fig. 5.22. Figures (a), (b), (c) and (d) are the contours shown at the base, at the top, on the

XY cutting plane at z = 0 and on the YZ cutting plane at x = 0, respectively. Note that the

lighter contours signify lower safety. The lightest color regions have negative Y values,

where local failure is predicted. It is unreasonable that the gravity-induced stresses at some

locations near the uppermost layer of elements indicate local failure as shown in

Fig. 5.22(c). The reason for this is that the finite element analysis yields tensile principle

stresses at these nodes. It is well known that finite element analysis is an approximate

procedure, and computed stresses usually have greater error than displacement. The order

of the error in nodal stresses arising from finite element analysis is close to the magnitude

of the gravity-induced stresses near the top free surface. Yet the Mohr-Coulomb criterion

predicts a very small shear strength near the free surface for the cohesionless shell since

effective normal stresses are very small. Thus, the results of the analysis in material zone

IS (see Fig. 3.3) is not reliable. For more acceptable and accurate analysis, a finer element

mesh near the top free surface should be used.

5.4.3 Results

The reliability analysis was performed considering gravity and earthquake loads for

the cases of identical and general excitations. Again, the root-mean-square ground

acceleration was set to 0.09g, which corresponds to a peak ground acceleration of about

0.27g. The computed reliability index is shown as shaded image contours over the entire

dam. Fig. 5.23 shows the contours for the identical excitation case, in which figures (a), (b),

(c) and ((1) show the base view, plan view, XY cutting plane at z = 0 and YZ cutting plane

at x = 0, respectively. The area in which the reliability index is less than zero is the potential

failure zone. It is seen that the material in the bottom half of the dam has high reliability

against local failure. However, the soils at about two-thirds the height of the dam in the

shell as well as in the core show local failure. When the potential failure zones are narrow

and isolated, sliding failure does not develop. However, if the potential failure zones
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expand to some extent and are connected with each other, sliding of the slope as shown in

Fig. 5.23(c) may occur (Okamato 1984). Note that the zigzag shape of contour boundaries

is due to the coarse resolution of the finite element mesh.

Figs. 5.24 (a), (b), (c) and ((1) show the reliability index contours at the base, at the

top, on the XY cutting plane at z = 0 and on the YZ cutting plane, respectively, for the

general excitation case. The figures show larger regions of local failure in the dam due to

the general excitation than due to identical excitation, especially in the gravel streambed.

As shown in Fig. 5.24(c), it would appear that a greater variety of sliding failures could

occur due to the SVEGM than due to identical excitation. In particular, sliding masses

could include parts of the gravel streambed.

The Santa Felicia earth dam located in southern California experienced the

Northridge earthquake of January 17, 1994. The ground acceleration of the Northridge

earthquake had a peak value of about 0.27g in the upstream—downstream direction, which

is close to the peak acceleration of the simulated El Centro earthquake used in this analysis.

However, no severe damage except a 1/8 inch transverse crack in fill placed to connect an

access road to the crest of the dam at the abutment was reported due to the Northridge

earthquake (Stewart 1994). The analysis results therefore appear to be unrealistic. There are

several reasons why the results of the analysis may be over-conservative:

0 Linear analysis of the dam was performed by assuming that the entire construction

took place in a single operation. In reality, earth dams are constructed in a definite

sequence of operations. In embankments, the behavior of soil at a particular stage

of loading is dependent upon the state of stress and stress history. Thus the stresses

in the final configuration depend on the sequence of intermediate configurations

and loadings (Desai and Abel 1972). Nonlinear finite element analysis can be used

to compute the stresses in the final configuration of the slope under the effect of

gravity (Dunlop and Duncan 1970). The computed horizontal normal stresses in
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this analysis were typically about one-half of the vertical stress. However, for over-

consolidated dam soil, the lateral earth pressure may be larger than the vertical

stress, i.e., the lateral earth pressure coefficient can be greater than unity. These

under-estimated horizontal stresses could significantly affect the shear strength of

soil against seismic force. However, the effect of sequential construction and

compaction was not considered in this study.

To determine sliding failure, the number of cycles of peak shear stresses required

to cause failure at points along a potential sliding surface should be taken into

account (Peakcock and Seed 1968). The Mohr-Coulomb criterion assumes that

failure occurs even under a single excursion of the shear strength during dynamic

response. However, in reality, several excursions of the shear strength are required

during dynamic response to cause sliding failure; the required number of excursions

is a function of confining pressure, void ratio, relative density, etc. Thus, a more

realistic failure criterion should include not only the shear strength of soil but also

the number of excursions of the shear strength by the dynamic load induced shear

Stl'CSS.

Earthquake induced sliding failure in the shell has been found to be related to the

gradient of the slope (Okamoto 1984). The intensity of vibration necessary to cause

sliding failure is lower for steeper slopes. The local yielding failure criterion

governed by the Mohr-Coulomb relationship does not account for this effect. For

global failure, the effect of slope gradient on the sliding of the slope should be taken

into account.

Earthquakes, in reality, are non-stationary random processes. Fig. 5.25 shows the

accelerogram of the Northridge earthquake at the base of the Santa Felicia dam in

the upstream-downstream direction. High accelerations occurred only for the short

duration from about 3 to 7 seconds. In this study, stationary earthquake excitation

(see Fig. 5.4 for a typical stationary accelerogram) and response were assumed.
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Figure 5.25 Accelerogram at the base of the Santa Felicia dam in the upstream-downstream
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Clearly, the assumption of stationary response is conservative; a dam that would fail

under stationary response may not fail under non-stationary, transient response.

Consequently, the reliability analysis based on stationary response is conservative.

° The dynamic analysis of the Santa Felicia dam subjected to the Northridge

earthquake is described in Appendix B. Comparison of the computed results with

seismograph records indicates that a modal damping ratio as high as 0.45 is

appropriate. A higher modal damping ratio would reduce the magnitude of the

computed stresses and hence the analysis based on a modal damping ratio of 0.06

is conservative.

This section merely illustrates how the computed earth dam responses can be used to

assess reliability against local failure. The reasons given above indicate why the simplistic

approach used in this section may yield over-conservative results. Nevertheless, this

illustration shows how SVEGM can aggravate sliding failures in earth dams. More accurate
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global failure criteria need to be developed in order for a more realistic assessment of

reliability against sliding failure.

5.5 Summary

Due to SVEGM, a maximum 30' displacement of 193 mm occurs at the middle of the

crest with the upstream-downstream displacement dominating the total response. A u+30

maximum 1mm of 1,670 kPa occurs at the base with the TX), component being dominant. The

critical 7mm of 0.193% occurs at the top free surface on the downstream side with the 7.1311

component contributing the most.

The conventional identical ground motion model slightly over-estimates the

displacement and ymax responses, and significantly under—estimates the 1mm response at the

base. However, the critical 1mm response in the core as well as in the shell is over-estimated

by the identical excitation model. In addition, the contour patterns of the displacement and

7mm responses due to identical excitation are similar to those due to general excitation,

while the contour patterns for the 1mm, responses at the base are dissimilar for the two types

of excitations.

Modes 1 and 6 contribute most to the dynamic component of the displacement, strain

and stress responses. The dynamic component dominates the displacement and strain

responses for all types of excitations. However, the pseudo—static component dominates the

stress responses in the gravel near the base for general excitation, while the dynamic

component dominates for identical and delayed excitations. On the other hand, for the

critical stress response in the core, the dynamic component dominates for all cases.

The stochastic moments of the maximum shear stress response were generally

computed using Monte Carlo simulation. However, the use of mean-value FOSM methods

were also investigated and found to be fast and acceptable if appropriately calibrated

correction factors were employed. Finally, reliability against local failure was investigated

for the identical and general excitations using the very simple Mohr-Coulomb criterion.
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Soils on the upstream side are not as strong as those on the downstream side due to the static

pore water pressure. The critical regions susceptible to local failure under identical

excitations are typically within the upper one-third height of the dam. However, under

SVEGM, the gravel streambed is also susceptible to local failure, and a larger variety of

sliding blocks appear feasible.



6. RESPONSE TO DIFFERENT GROUND MOTIONS

— PARAMETRIC STUDIES

6.1 Effect of Propagation Speed and Direction for SV/P Waves

Earthquakes, in general, release two types of body waves: P waves and S waves, in

which S waves may consist of SV waves and SH waves. P waves are compression waves

that cause motions along the direction of wave propagation. S waves are shear waves that

cause motions perpendicular to the direction of wave propagation. SV waves are polarized

vertically while SH waves are polarized horizontally. P and SV waves are coupled, i.e., one

type generates the other upon reflections and refractions. SH waves, on the other hand,

remain pure SH waves. For seismic waves propagating in the upstream-downstream

direction, SV/P waves would cause critical responses of the earth dam.

According to Abrahamson’s investigation (1992), the lowest apparent velocity of

S-waves in California is about 2.0 km/s. Therefore, in addition to the apparent speed of

4.3 km/s used in Chapter 5, a wave speed of 1.0 km/s (3,300 ft/s) with an incident angle of

60°, as shown in Fig. 6. l (a), was also used so that the apparent wave velocity (Va) is close

to 2.0 km/s. Further, since the location of earthquake source is usually uncertain and the

incident angle of seismic waves approaching the dam will depend on the hypocentral

distance and depth, the effect of a shallow incidence angle of 30°, as shown in Fig. 6.1(b),

is also investigated. In this case, the apparent velocity is Va = 2.1 km/s.

60°; 30):”
V = 1.0 km/s (3,300 ft/s) V = 2-1 km/s (7,000 W5)

Figure 6.1 (a) SV/P waves at lower speed, (b) SV/P waves at shallow incident angle
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TABLE 6.1 Maximum [1+30' responses to different apparent wave velocities

 

 

 

 

Response 4.27 km/s (60°) Infinity (90°) 2.0 km/s (60°) 2.47 km/s (30°)

x-displacement (mm) 207.4 207.6 202.8 203.2

{mm (kPa) 511.0 498.0 595.3 567.8      
 

The 30' responses of displacement in the x direction due to apparent wave velocities

of Va = 4.27 km/s (60°), Va = infinity (90°), Va = 2.0 km/s (60°) and V2‘ = 2.47 km/s (30°)

are shown in Figs. 6.2 (a), (b), (c) and (d), respectively. The displacement responses for the

four cases are plotted on the same scale. These contour patterns are very similar to one

another and the maximum response in each figure is given in Table 6.1. A higher apparent

velocity results in a larger x-displacement response, but the increases are not very

significant.

In addition, the u+3o maximum shear stress responses at the base are also compared

for the four wave speeds, and the corresponding contours shown in Fig. 6.3 arranged in the

same order as the displacement contours. These patterns of the stress distribution are

significantly different from each other and indicate that lower apparent wave speeds can

cause significant stress increases, especially in the base gravel region. The critical response

value for each case is given in Table 6.1. The 1mm due to the lowest wave speed of 2.0 km/s

is about 20% higher than that due to identical excitation (i.e., infinity apparent wave

velocity). The reason for the stress increase is that waves with lower speed have shorter

wave lengths, and hence the ground movement at the dam base is less in phase giving rise

to greater spatial variation.

6.2 Effect of Propagation Speed for SH Waves

Since all particle motion for SH waves takes place in a direction horizontally

perpendicular to the direction of wave propagation, SH waves traveling in the longitudinal

direction of the earth dam, as shown in Fig. 6.4, will give rise to upstream-downstream
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\ /\ 4

V = 2.1 km/s (7,000 ft/s) V = 1.0 km/s (3,300 ft/s)

 
 

Figure 6.4 SH waves propagating in the longitudinal direction of Santa Felicia dam

motion and hence the critical response of the dam. The two cases illustrated in Fig. 6.4(a)

and (b) were used to study the effect of SH wave excitations with high and low propagation

speed, respectively.

Displacement response due to SV/P and SH waves, both having a high speed of

2.134 km/s and an incident angle of 60° are compared in Fig. 6.5. Figures (a) and (b) show

x-displacements at the top free surface for SV/P and SH waves, respectively, while Figures

(c) and (d) show x-displacements on the vertical YZ plane at x = 0 for SV/P and SH waves,

respectively. The displacement responses are very similar for these two kinds of waves

with the same high speed. However, if SH waves propagate at the lower speed of 1.0 km/s,

the x-displacement contours have a significant shift in the propagation direction as shown

in Fig. 6.7(a) and (b). Table 6.2 lists the critical response values for all these cases and

indicates that at the same speed the difference between the maximum x-displacement

response to SV/P and SH waves is negligible. The lower wave speed yields a slightly

smaller displacement response. However, it should be noted that for SH waves the location

of the maximum response is no longer at the middle of the crest.

The comparison of the u+3o maximum shear stress responses are shown in Fig. 6.6,

in which figures (a) and (b) are 1max responses at the base, and (c) and (d) are Tmax on the

vertical YZ plane at x = 0 for SV/P and SH waves, respectively. At a wave speed of

2.1 km/s, the distribution of 17mm along the YZ plane has a slight shift in the negative
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TABLE 6.2 Maximum ”+36 responses due to different wave types and speeds

 

 

 

 

 

Response SV/P waves (2.1 km/s) SH waves (2.1 km/s) SH waves (1 km/s)

x-Displacement (mm) 207.41 207.36 204.55

1mm (kPa) 510.97 499.43 519.40    
 

z—direction for SH waves, compared to SV/P waves. The shift is more significant for the

response corresponding to the lower SH wave speed of 1.0 km/s as shown in Fig. 6.7(d).

On the other hand, for 1mm along the base (see Fig. 6.7(c)), the higher stresses shift to the

positive 2 direction, and the critical responses occur at the comer between the base and

inclined boundary.

The maximum 1mm value for each case is also given in Table 6.2. The critical 1mm

value due to SH waves is about 2% lower than that due to SV/P waves at the same speed.

However, as mentioned earlier, waves with lower speed have smaller wave lengths and

cause the stress responses to increase due to out-of-phase motions. The maximum tmax for

SH waves with a low velocity of 1.0 km/s is about 4% larger than that for waves with a

higher speed of 2.1 km/s. It should be noted that although the magnitude of the stress

response does not change significantly, the critical response regions due to SH waves differ

considerably from those due to SV/P waves.

6.3 Effect of Different Coherency Models

The effects of spatial variation of seismic ground motion on large structures has been

studied by several investigators in the last decade. A number of empirical models for the

coherency function have been proposed based on strong motion records obtained at dense

seismography arrays. The discrepancy between these models can be quite significant. In

general, the ground motions is considered to be a homogeneous random field and the

coherency function is assumed to be direction-independent. In this section, the effects of

different coherency models on the responses of the Santa Felicia dam are investigated.
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6.3.1 Coherency models

6.3.1.1 Abrahamson’s model

Abrahamson (1993) investigated a number of earthquake events in California and

Taiwan. His coherency model was determined empirically based on from several

seismography arrays data (Abrahamson 1992), and is

 

I102 v)| = lvltflv)|h(f.v) (6.1)

where

[y] (f,v)| = tanh[ C3(v) + (4.8—c3 (V))exp (c6(v)f) +0.35] (6.2)

l+c4(v)f+c7(v)j2

f is the frequency in Hertz, and v is the separation distance in meters. The CI. functions in

equation (6.2) are given by

c3(v) — , 3°95 1 +0.85exp(—0.00013v)

11 + 0.0077v + 0000023112)

0.4[1——1—3]

1+ (v/S)

[1+ (v/190)8:1[1+ (v/180)3]

C6(V) 3(exp (—v/20) - 1) -0.0018v

67 (v) = — 0.598 + 0.1061n (v + 325) — 0.0151 exp (—0.6v)

 

 

C4 (V) =

In addition, the plane wave factor h (f, v) is

h (f, v) = 1 (6.3)

+1681V))6

 

 

where

c8 (v) = exp (8.54- 1.07ln (v + 200)) +100exp(—v)

This function has smaller coherency loss at lower frequency as shown in Fig. 6.8

compared to Harichandran’s model. The relationship between the coherency and

separation distance is shown in Fig. 6.9. Abrahamson’s model is not based on a single



C
o
h
e
r
e
n
c
y

C
o
h
e
r
e
n
c
y

0.8 1

0.7

0.6 -

0.5 1

0.4 1

0.3 -

0.2 -

0.11

0.0

1.0

0.9

0.8

0.7

_
o
o

0.4

0.3

0.2

0.0

160

 

 

  

 
1 A L 1 I 1 1 1 l 1 1 1 l 1 l   

0.5

0.1  

1 2 3 4 5 6 7 8

Frequency (Hz)

Figure 6.8 Coherency vs. frequency for Abrahamson’s model
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event, but in the average coherency for several events and sites. Abrahamson claimed that

the event to event and site to site coherency variations are not statistically significant and

hence justified the averaging.

6.3.1.2 Novak’s model

Novak (1987) proposed the following single exponential coherency function for

SVEGM

 
Mm, v)! = exp1—a12n‘fiW1B) (6.4)

where 0t and B are empirical constants and V is a wave velocity.

In order to compare Novak’s and Harichandran’s models, the constants 0t and B were

adjusted so that the two coherency functions matched to some degree. Using the

non-dimensional parameter x = ccov, where c = 21t/V, Novak’s coherency model

becomes exp1—axB). Since v = x/ (C00) ,Harichandran’s model, equation (4.3) can be

rewritten as

|y(v,0))| = Aexpl:—%g%(;l)—(l —A+0tA)]

(6.5)

+ (l—A)exp[—2—X-e/(—(wc)(—9-)—(l—A+aA)]

It is not possible to match the two coherency models closely over all separations. Two

types of fits are considered:

Case I — The coherency curves are matched at lower normalized separations as shown in

Fig. 6.10. In this case the values of the three parameters, 0t, B and c, are 1.1, 0.9 and

0.00069, respectively. This coherency function exp1—0.001572 (fv) 0'9) is shown in

Fig. 6.11.

Case 11 — The coherency curves are matched at higher normalized separations as shown in

Fig. 6.12. In this case the values of the three parameters, 0t, B and c, are 2.0, 0.31 and

0.00002827, respectively. The coherency function exp1—0.077797 (fv) 0'31 J is shown in
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Figure 6.10 Match of Novak’s and Harichandran’s models (Case I)
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Figure 6.11 Coherency vs. frequency for Novak’s model (Case I)
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Figure 6.12 Match of Novak’s and Harichandran’s model (Case 11)

 

0.2 -

0.1 - 

  

 

l 1 l 4 l 1 l 1 l 1 l 1 l 1 4 1 l 1   
0.0

l 2 3 4 5 6 7 8 9

Frequency(Hz)
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Fig. 6.13. Case 11 has lower coherencies at lower frequencies compared to Case I, while at

higher frequencies Case I has lower coherencies.

6.3.1.3 Luco and Wong’s model

Luco and Wong (1986) used the coherency function

2 2 2

Iy(v,(1))l = expi—a (1) v J (6.6)

where a is an empirical constant, (1) is the frequency in rad/s and v is the separation distance

between two stations. In order to assess the effects of this coherency function on earth dam

responses, two rates of coherency decay are considered:

1. a = 2 x 10'4 s/m is used to represent low coherency decay. Iy(v, (0)] for this

value of a is shown in Figs. 6.14 and 6.15, and is somewhat similar to

Abrahamson’s model. The relatively flat curve at a frequency of 1 Hz indicates

nearly fully correlated ground motions at low frequencies.

2. a = 1 x 10.3 s/m is adopted to represent high coherency decay, and the

corresponding coherency function is plotted in Figs. 6.16 and 6.17. The abrupt drop

of the coherency at low frequencies implies highly incoherent ground movement.

6.3.1.4 Hao’s model

Hao et a]. (1989) proposed a coherency function based on the study of 17 events

recorded by the SMART-l array. This function is anisotropic and has the form

y<vlflvT,w) = exp(—Ble—BZVT)Xexp(—(al«/\7“+a2«/\7)(%)2) (6.7)

where vL and VT are the projected distances between two points in the longitudinal or radial

(i.e., wave propagation) and transverse directions, respectively; B] and B2 are empirical

constants, and 0tl and a2 are defined as

21m b0)

(1 = —+—+

' (D 2

0.314 S (o S 62.83 (rad/s)

21rd ea)

(12 - —+—+



C
o
h
e
r
e
n
c
y

C
o
h
e
r
e
n
c
y

 

165

 

  

  
  

Frequency (Hz)

Figure 6.14 Luco and Wong’s low coherency decay model plotted against frequency
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Figure 6.15 Luco and Wong’s low coherency decay model plotted against separation
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Figure 6.16 Luco and Wong’s high coherency decay model plotted against frequency

 

 

  

  

1.0 .- l r I

“2“:
i _ f: l HZ

0.9 —\\ ------ f: 3 Hz
. |\

' ' ' ‘ f: 5 HZ

0.8 - \\ i. 1..
' f: 7 HZ

~ ‘. _
—- f= 9 Hz

0.7 — l: -.

L ll 2
0.6 l. "\ -. _

0.5 - -\ 1 ~

\l '.

0.4 — .'\ 1 -

0.3 - ll —

0.2 — \\ '. -

0.1 — \\.\ '. _

0.0 - \.\. l 1 1

0 100 200 300 400

Separation (m)

Figure 6.17 Luco and Wong’s high coherency decay model plotted against separation
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TABLE 6.3 Parameters in coherency function ( X 10—4 )

 

 

 

 

Event B, 32 a b c d e g

45 l .109 0.673 35.83 -0. 181 1.177 51.63 -0.076 - l .905

30 2.250 5.100 106.6 0.265 —0.999 66.55 0.588 -1 l.l8          
 

where a, b, c, d, e and g are constants. For to > 62.83 rad/s, the coherency is assumed to be

constant and equal to the value at (1) = 62.83 rad/s.

The constants computed by Hao for the SMART-l Events 45 and 30 are given in

Table 6.3 (Hao 1993) and are plotted in Fig. 6.18 to Fig. 6.21. It is apparent that the

coherency decay for Event 30 is larger than that for Event 45. Fig. 6.19 indicates that at

f = 5 Hz, the coherency decay along the longitudinal and transverse directions is similar for

Event 45. However, Fig. 6.21 indicates greater anisotropy for Event 30, with coherency

decaying faster in the longitudinal direction than in the transverse direction.

6.3.2 Responses due to different coherency models

6.3.2.1 Displacement and strain

Displacement and strain responses using different coherency functions are presented

in this section. The 30' x-displacement responses due to four coherency models are shown

in Fig. 6.22. The four coherency models are: (a) Harichandran’s, (b) Abrahamson’s, (c)

Hao’s (Event 30) and (d) Hao’s (Event 45) models, respectively. The figures indicate that

displacement response is not very sensitive to the coherency model. The maximum 30'

x-displacements are given in Table 6.4 for each coherency model. Basically, higher

coherency decay models result in smaller displacements. The largest difference between

the critical 3o x-displacements is about 10.3% (between Abrahamson’s and Hoa’s

Event 30 models).
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Figure 6.18 Hao’s coherency model for SMART-l Event 45
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Figure 6.19 Hao’s coherency model for SMART-1 Event 45 (at f = 5 Hz)
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Figure 6.20 Hao’s coherency model for SMART-1 Event 30
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Figure 6.21 Hao’s coherency model for SMART-1 Event 30 (at f = 5 Hz)
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TABLE 6.4 Maximum responses (n+30') corresponding to different coherency models

 

 

 

 

Response Harichandran’s Abrahamson’s Hao’s (Event 30) Hao’s (Event 45)

x-Displacement 191.8 mm 202.0 mm 183.2 mm 193.2 mm

7mm 0.001934 0.002060 0.001839 0.002050      
 

The “+36 contours of the maximum shear strain viewed from the top using these four

coherency models are shown in Fig. 6.23, all plotted to the same scale. There is some

difference among the contours, especially for Abrahamson’s model. However, the critical

responses for all cases are similar, occur around both the upstream and downstream surface

regions, and are also given in Table 6.4. Basically, higher coherency decay models give rise

to lower strain. The largest difference between the critical u+3o 7mm, values is about 12%

(between Abrahamson’s and Hao’s Event 30 models).

6.3.2.2 Maximum shear stress

It was found in Section 5.3.3.3 that stress responses at the base have a significant

increase due to SVEGM and that the static response component dominates the total

maximum shear stress response for the general excitation case. Since 1mm is much more

sensitive to the coherency model than displacement and strain, eight different coherency

functions are used to evaluate their impacts on the maximum shear stress. The total 1mm

responses corresponding to these models are compared. In addition, the static 15mm

component is also shown so that the contributions of response components can be

recognized.

Fig. 6.24 shows the 114-30' total 1mm response along the base computed using (a)

Harichandran’s, (b) Abrahamson’s, (c) Novak’s Case II and (d) Novak’s Case I models,

respectively. The corresponding u+3o static response contours of are shown in Fig. 6.25.

Note that the magnitudes and distributions of 1mm are significantly different for each case.

The contours are not drawn on the same scale because of the large differences in the
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response magnitudes. The total and static rm“ responses are quite different for

Abrahamson’s coherency function, indicating that the static component does not dominate

for this low coherency decay model. For the other three high coherency decay functions,

however, the static response dominates the total response.

The total u+3o 1mm response for (a) Luco & Wong’s low coherency decay model, (b)

Luco & Wong’s high coherency decay model, (c) Hao’s model for SMART—l Event 45,

and (d) Hao’s model for SMART-l Event 30, respectively, are shown in Fig. 6.26. The

corresponding static responses are shown in Fig. 6.27. The tmax response due to Luco &

Wong’s low coherency decay model (Fig. 6.26(a)) is similar in magnitude and distribution

to the response due to Abrahamson’s model (Fig. 6.24(a)), and is also not dominated by the

static component (see Figs. 6.26(a) and 6.27(a)). The other three responses in Fig. 6.26,

however, are dominated by the static component. Note that although the magnitude of the

TMa response due to Hao’s two models is significantly different, their distributions are

similar (see Figs. 6.26(c) and (d)).

Excluding responses around the artificial upstream and downstream boundaries, the

maximum u+3o total 1mm, responses are given in Table 6.5 for each coherency function,

and the numbers listed in parentheses are the static components. There is a wide variation

in the maximum 1mm response, with Novak’s model (Case 11) being ten times higher than

that due to Luco and Wong’s low coherency decay model. For high coherency decay cases,

TABLE 6.5 Maximum u+30' Tm response (kPa) to different coherency models

 

Harichandran’s Abrahamson’s Novak’s (case I) Novak’s (case 11)

 

 

1,670 (1,636) 523 (342) 2.650 (2,639) 4,866 (4,859)

     
 

 

Luco & Wong’s (low Luco & Wong’s (high

decay) decay) H30 5 (Event 45) Hao 5 (Event 30)

 

 

476 (231) 1,083 (1,074) 1.368 (1,319) 2,026 (2,000)
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the static stress component alone is a very good approximation of the total stress response.

Surprismgly, the critical 13mm responses occur at the same location for all these high

coherency decay models (x = -160 ft, y = 0 ft, 2 = i 122 ft).

Note that for the low coherency decay models (Abrahamson’s and Luco & Wong’s),

the 1mm responses are very similar to that due to identical ground motion (see Fig. 5.1 1(c)),

and hence the effect of SVEGM can be neglected for these cases.

6.3.3 Discussion

The pseudo-static stress component contributes the most to the total responses. This

component is based on the calculation of the integral of the ground displacement spectrum

as shown in equation (4.42). Fig. 6.28 shows plots of the integrand 5113 (00) Iy(v, (OH/(1)4

against frequency for various separations for Harichandran’s model, and indicates that only

low frequencies up to about 10 rad/s contributes to the area and hence the static stress

component. The fact that the curves shown in Fig. 6.28 for different separations are distinct
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Figure 6.28 Plot of static response integrand for Harichandran’s ground motion model
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implies that the coherency loss is significant at the low frequencies that contribute to the

static stresses. Thus, a plot of the static response in integrand, as in Fig. 6.28, can be used

to assess whether or not the static stress response will be significant for the coherency

model used.

To illustrate this further, the static response integrand is plotted in Figs. 6.29 and 6.30

for Novak’s Case I and Case 11 models, respectively. The integrand values decay much

faster than for Harichandran’s model, and so it can be concluded that stress responses at the

base would be more critical for these models than for Harichandran’s model.

Another two coherency models proposed by Hao were developed according to Events

30 and 45 from SMART-l array. Plots of the pseudo-static response integrand for the

coherency models proposed by Hao for the SMART-1 Events 30 and 45 are shown in Figs.

6.31 and 6.32, respectively. Six combinations of the longitudinal and transverse separations

are used in these plots. Based on these two figures alone, it can be concluded that the static

stress responses at the base will be greater for Event 30 than for Event 45, since the family

of curves are more distinct for the former event. A comparison of Harichandran’s model

used in the study, which corresponds to Event 20 recorded by the SMART-1 array, and

Hao’s model for Event 30 & 45 reveals that coherency loss and hence the stress response

may change significantly from one earthquake ground motion to another.

Finally, according to Abrahamson’s coherency model for horizontal ground motions,

coherency loss results in only 5% increase of Tmax' The curves for the static response

integrand at different separations almost overlap each other as shown in Fig. 6.33. Within

the dimensions of the Santa Felicia dam, the effect of SVEGM is not significant for

Abrahamson’s model. One possible reason is that Abrahamson averaged the coherency

curves for a number of earthquake events and sites which may have resulted in high

coherencies at low frequencies.
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Figure 6.33 Plot of the static response integrand for Abrahamson’s horizontal ground motion

To sum up, the stress response at the base of earth dams are sensitive to the specific

coherency model used. The stress response at the base is governed by low frequency

excitations while displacement and strain responses are dominated by medium frequency

motions. At frequencies less than 0.5 Hz, Abrahamson’s model is essentially unity for most

separations as a result of which the stress responses at the base are essentially the same as

those due to identical excitation.

In fact, coherencies in the frequency range from 0 to 0.5 Hz cannot be reliably

estimated from data. The reason for this is that estimation of the coherency requires

adequate smoothing of the auto and cross spectral estimates (Jenkins and Watts 1969).

However, smoothing results in a loss of resolution. For limited duration accelerograms (e.g.

10 second long records sampled every 0.01 second), the bandwidth of the smoothing

window used in spectral estimation is typically about 0.5 Hz. If at any frequencies the

spectra vary very rapidly within the bandwidth of the smoothing window centered at those
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frequencies, then the spectral estimates and hence the coherency at those frequencies will

be highly biased and unreliable. For frequencies approaching zero, physical considerations

require that the auto and cross spectra of accelerograms must rapidly decay to zero. Since

this rapid decay usually occurs within the frequency range of 0 to 0.5 Hz (see Fig. 5.1 El

Centro spectrum) which corresponds to the bandwidth of the smoothing window, the

coherency estimates in this frequency range are unreliable.

Thus, most coherency models that are developed are reliable only for frequencies

above 0.5 Hz. The extrapolation of the coherency from 0.5 Hz to 0 Hz is strongly

influenced by the functional form chosen for the empirical coherency model, and is

somewhat arbitrary. However, since ground displacements are dominated by low

frequency components, the coherency in the range of 0 to 0.5 Hz is extremely important for

characterizing the correlation between ground displacements at different spatial locations.

Although a few coherency functions have been proposed in the last decade, the

investigation of SVEGM is still at an early stage. It has been shown that the coherency

models presented in this study are rather inconsistent. It appears important to address this

incoherency in future efforts at processing seismograph array data.



7. Simplified Modeling and Analysis Techniques

7.1 Introduction

A finite element-based random vibration analysis of a 3-D earth dam model subjected

to earthquake ground motion is time—consuming and costly. From a practical point of view,

it is of interest to explore simplified modeling and analysis that may be capable of yielding

acceptable results. In other studies, simplified earth darn models such as 2-D shear beam

models and plane strain finite element models have been used. As mentioned previously,

SVEGM cannot be represented exactly for such models in reduced dimensions. Techniques

to simplify the SVEGM at the base, so that a 2-D shear beam model can be used for

approximate analysis, are explored in this chapter.

7.2 One-dimensional Excitation Model

For a 2-D shear beam model of an earth darn, as shown in Fig. 7.1, the base consists

of a finite number of truncated wedges. The base of each wedge is a strip along the

upstream to downstream width of the dam. The strips where ground motion excitation is

applied each have a single degree of freedom. As a result, all points within a strip have

 
 

Figure 7.1 Illustration of truncated wedges in 2-D shear beam model
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identical excitations. However, the ground motion at two points on different strips may be

incoherent. One method of obtaining “equivalent” excitations for each strip is to assume

that it is the average of the correlated excitations at each point within the strip. The

coherency between the equivalent excitations at different strips would then be the

coherency between each average excitation. However, the calculations required to obtain

the SDFs of the average excitations and the coherency between them is tedious. Therefore,

as a first step, the coherency decay along the width of the dam is neglected, and the SDF of

the equivalent excitation for each strip is taken to be the point SDF, 5115(0)) . Further, the

coherency between the excitations at two different strips is taken to be the coherency

evaluated at the average separation between all pairs of points in the two strips. For any pair

of strips i and j as shown in Fig. 7.2, the average separation between a point on strip i and

a point on strip j is

 

1 IA“ '1

V.. :

U AXIAZIAXZAZZ x|=0 21:0

7.1

l+Ar2 2+Az2
2 2

( )
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Figure 7.2 Illustration for calculation of average separation between two rectangular areas



186

where Ax] and A2, are the width and length of strip i; sz and A22 are the width and length

of strip j; and L1 and L2 are separations between the lower left comers of these two strips

in the x and z directions, respectively.

The analytical expression in equation (7.1) cannot be evaluated in closed-form.

However, Vi]. may be estimated by taking the average separation of a sufficient number of

simulated pairs of points on strips i and j. The average separation is used to determine the

coherency loss in the simplified excitation model, which is called a l-D excitation model

because only separation in the longitudinal direction of the dam (perpendicular to the length

direction of strips) is used to account for the incoherency effect. For the general excitation

model, coherency loss in the upstream-downstream direction as well as the longitudinal

direction at the base was considered. The base of the dam was divided into 15 strips for the

l-D excitation model. In addition, the effects of using a different number of strips at the

base on the earth dam responses were investigated by considering 9 and 21 strips in

addition to the lS-strip case.

It should be noted that a 2-D shear beam model of the darn was not actually used. Both

the 1—D and general excitation models were used with the 3-D finite element model of the

darn. For the 1-D excitation model, all base nodes located within a strip were assumed to

have identical excitations. The intent of the analysis was to assess the effect of simplifying

the excitation model. If the simplified excitation model is acceptable, then it could be used

with a 2-D shear beam model of the dam.

7.2.1 Fifteen strip subdivision of the base

7.2.1.1 Introduction

It is convenient to use a new Cartesian coordinate system as shown in Fig. 7.3. The

origin is located on the left-hand side of the base instead of at the middle of the base so that

the coordinates of every point of the darn are always positive. In Fig. 7.4, the boundary of

the dam was divided into 15 strips. The ith strip is denoted by Si. Each strip has a reference
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Figure 7.3 YZ Cutting Plane at x=0
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point which is denoted by Pi. The point closest to the origin of each strip was selected to be

the reference point. The length Ax and width A2 of each strip and the x and z coordinates of

each reference point are given in Table 7.1. Because the length Ax is variable along the

width on the inclined boundary, an average value of Ax was adopted as shown in Fig. 7.4.

In order to randomly generate points on strip i, n pairs of independent random

numbers were simulated in the range between 0 and 1 using a uniform distribution function

U(0,1). If the pairs of random number sequences are denoted by ax. (n) and a, (n) , the x

and z coordinates for each point at the ith strip can then be determined by

TABLE 7.1 Strip dimensions and reference point coordinates (ft)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strip Strip Width Strip Length Reference

Number (Az) (average Ax) Point 2 x

81 75 130 P1 0 472.75

32 75 330 P2 75 378.25

S3 75 530 P3 150 283.75

S4 75 730 P4 225 189.25

SS 1 12.5 980 P5 300 71

S6 90 1130 P6 412.5 0

S7 90 l 130 P7 502.5 0

SS 90 l 130 P8 592.5 0

S9 90 l 130 P9 682.5 0

510 90 1130 P10 772.5 0

811 112.5 980 P11 862.5 71

512 75 730 P12 975 189.25

813 75 530 P13 1050 283.75

514 75 330 P14 1125 378.25

SIS 75 130 P15 1200 472.75        
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x . = xPi+AxSiXaxi(n)
III

(7.2)

2 . = zPi+AzSiXazi(n)
IN

The y coordinate has the following relationship with the 2: coordinate:

(412,5 _ Zni) tang if 0.0 S zm. < 412.5 ft

Ym' = 0 if 412.5 S 2,". S 862.5 ft

(Z,,,- - 862.5) tanG if 862.5 < 31115 1275 ft

275

412.5

(7.3)

where 0 is the angle of inclination shown in Fig. 7.3 (tan0 = = 0.66667).

A total of m points on strip j can be generated in a similar manner using two other

pairs of random number sequences ax. (m) and a,_ (m) . Consequently, the average

separation between strips i and j can be calculated by

 

n m

1 2 2 2

Va- = akinilflxki-x.) +<.v..-—.v,,-> +<z..—z,,> (7.4)

For the two strips 81 and S] l, the average separation corresponding to different numbers

of samples are plotted in Fig. 7.5, and the figure indicates that using one hundred samples

 970.,.,.,.,
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Figure 7.5 Convergence of average separation between S] and 811
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is adequate to estimate 9. The average separation between each pair of strips using 100

randomly generated points in each strip is shown in Table 7.2. The responses due to the

simplified l-D earthquake excitation were obtained using these values for V in equation

(4.3).

7.2.1.2 Displacement and maximum shear strain responses

The 30' x-displacement responses for the 1-D and general excitation models are

shown in Fig. 7.6, in which figures (a) and (b) are plan views of the response contours, and

figures (c) and (d) are contours on the XY cutting plane at z = 0. All contours are set to the

same scale. It is apparent that x-displacement responses inside the dam as well as on the top

surface due to the 1-D excitation model agree well with those due to the general excitation

model. Using the 1—D excitation model, the maximum 30' x-displacement response is only

1.3% higher than that using the general excitation model. Note that the maximum 36

displacement response due to the identical excitation model is 8.1% larger than that due to

the general excitation model.

The u+3o maximum shear strain responses using these two excitation models are

shown in Fig. 7.7. Figures (a) and (b) are plan views of the ymax contours, and figures (c)

and (d) are the ’ymax contours displayed on the XY cutting plane at z = 0. Although ymax is

slightly different near the side boundaries between the two excitation models, the critical

response regions are quite similar to each other. The maximum u+3o 'ymax response is about

1.9% larger for the 1-D simplified model compared to the general model. Note that for the

identical excitation model, the maximum 114-30' 'ymax response is 10.3% higher than that

using the general excitation model.

7.2.1.3 Maximum shear stress response

The u+3o maximum shear stress responses at the base are shown in Figs. 7.8(a) and

(b) for the 1-D and general excitation models, respectively, and these are quite dissimilar.

The maximum 13mm response is 50% larger for the 1-D excitation model compared to that
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due to the general model. Figs. 7.8(c) and ((1) show the u+3o tmax contours on the XY

cutting plane at z = 0. Although the l-D excitation model does not predict 1mm well near

the base, the predictions at locations away from the boundary are reasonable. Figs. 7.9(a)

and (b) display the 1mm contours on the horizontal cutting plane at the mid-height of the

dam, and show that the two contour patterns match each other very well. The Tmax responses

in the core clay region are shown in Figs. 7.9(c) and (d) which display the YZ cutting planes

at x = 0. The 1mm response due to the l-D simplified excitation is very similar to that due

to general excitation over the entire dam except near the base.

7.2.2 Effect of different number of strips on the boundary

7.2.2.1 Introduction

As the number of strips on the base is reduced, the accuracy of the l-D excitation

model would be expected to become poorer. Analyses with 9 and 21 strips on the base were

performed to assess this effect. The horizontal and two inclined portions of the base were

divided into 3 strips each for the 9-strip case, and 7 strips each for the 21-strip case,

respectively.

7.2.2.2 Responses

The 30' x-displacement response contours are shown in Fig. 7.10, in which figures (a)

and (b) are plan views of the contours for the 9- and 21-strip cases, respectively, and figures

(c) and (d) show the x-displacements on the XY cutting plane at z = 0 for the 9- and 21-strip

cases, respectively. Generally speaking, the displacements do not vary significantly

between the 9-, 15- and 21-strip cases. The values of the critical x-displacement response

for all excitation cases used in this study are given in Table 7.3, which indicates that as

more strips are used on the base, the maximum x-displacement response becomes closer to

that due to the general excitation. However, the use of 9 strips, which appears minimal,

seems adequate, and the improvement with 15 and 21 strips is marginal. In the limit, as
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TABLE 7.3 Maximum 36 displacement responses using simplified and general excitation models

 

 

 

 

Identical l-D excitation model General

Response excitation excitation

model 9 strips 15 strips 21 strips model

x-displacement (mm) 207.4 194.93 194.26 194.02 191.80          
 

TABLE 7.4 Critical l.l+36 maximum shear strain responses using simplified and general

excitation models

 

 

 

 

Identical l-D excitation model General

Response excitation excitation

model 9 strips 15 strips 21 strips model

—3

'ymm( X10 ) 2.133 1.979 1.972 1.970 1.934          
 

fewer and fewer strips are used on the base, the l—D excitation model approaches the

identical excitation model.

The u+3o maximum shear strain responses are shown in Fig. 7.11, in which the

responses for all cases are set to the same scale. Figs. 7.] 1(a) and (b) show 'ymax responses

at the top free surface for the 1-D excitation model with 9 and 21 strips, respectively; and

Figs. 7.11(c) and ((1) show 'ymax responses on the XY cutting plane at z = 0 for the 9- and

21-strip cases, respectively. The use of 21 strips on the base yields ymax response contours

very similar to those shown in Fig. 7.7(b) for the general excitation model. The maximum

u+3o ymax responses for the cases of identical, l-D and general excitations are listed in

Table 7.4 and indicates that the 1-D excitation model yields better 7mm responses than the

identical excitation model. As with the displacement response, the accuracy of the 1-D

model becomes better as the number of strips is increased, but the improvement beyond 9

strips is marginal.

The u+3o maximum shear stress response contours at the base are shown in

Figs. 7.12(a) and (b) for the 1-D excitation model with 9 and 2] strips, respectively.
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Fig. 7.12(a) shows that high stresses occur near the edge of each strip in the gravel material

regions due to the relative displacement between adjacent strips. For this 9-strip case, each

strip is quite wide and since the excitations at all nodes in a strip are fully—correlated, the

1mm responses are small within the strip and are relatively high on the boundary between

adjacent strips. In Fig. 7.12(b), even larger 1mm values occurs over the gravel region.

Instead of becoming closer to the results obtained with the general excitation model the

“cm response at the base becomes worse as the number of strips is increased. The contour

pattern is also quite different from that due to the general case. However, for the core and

shell regions, the 21-strip case is better than the other two. Figs. 7.13 (a), (b), (c) and ((1)

show the u+3o 1mm response contours at the base for the shell and core using the general,

9-strip, 15-strip and 21-strip models, respectively. The scale has been adjusted so that

details within the core and shell are displayed. The contour pattern for the 21-strip model

is similar to that for the general model, except around the central part of the base where the

response is overestimated.

In order to assess the stress distribution inside the dam, some cutting planes were

taken. Figs. 7.12(c) and ((1) show the u+3o 1mm response on the XY cutting plane at z = O

for the 9- and 21-strip models, respectively. These figures, along with Fig. 7.8(c), indicate

that the stress response near the base is sensitive to the number of strips used. However, at

locations distant from the base the stress responses is not very sensitive to the number of

strips used.

This is investigated further by plotting the contours of 1mm response on the horizontal

plane at the mid-height (137.5 ft) as shown in Figs. 7.14(a) and (b) for the 9- and 21-strip

cases, respectively. In addition, the responses on the YZ cutting plane at x = 0 are shown

in Figs. 7.14(c) and (d) for the 9- and 21-strip cases, respectively. It is seen that the stress

contours on these cutting planes are very similar to each other. The contours on these two

cutting planes for the identical excitation case are also shown in Figs. 7.15(a) and (b),
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which indicate that higher 1max responses occur in the core clay region due to identical

excitation than for the l—D and general excitations.

Various horizontal cutting planes were used to assess the minimum height at which

stresses due to the simplified l-D excitation were acceptable, and it was found that this

minimum height was about 120 ft, which is just below the mid-height. Figs. 7.16 (c) and

(d) show 1mm contours at a height of 120 ft, and these are reasonably similar. Figs. 7.16 (a)

and (b) show Tm contours at a height of 75 ft, and these are quite dissimilar. Figs. 7.15 (c)

and ((1) show Tmax contours on horizontal cutting planes at 75 ft and 120 ft heights for

identical excitation. Clearly at 75 ft, the identical excitation model significantly under-

estimates 1mm response in the gravel region, while at 120 ft 1t overestimate 1mm in the core.

The maximum tmax responses are given in Table 7.5 for each excitation model. The

1-D excitation model yields stress responses that are only 1.5% to 2% larger than those due

to general excitation at the mid-height of the dam, with marginal improvement as the

number of strips is increased from 9 to 21. However, stresses predicted at the base using

the l-D excitation model is poor (over-conservative) and becomes worse as more strips are

used.

To sum up, for the critical displacement and 7mm responses and for the tmax response

away from the base, the use of 9 strips is sufficient and little improvement is obtained by

TABLE 7.5 Critical 114-30' Tm responses (kPa) using simplified and general excitation models

 

 

 

 

 

        

Identical l-D excitation model General

Cutting plane excitation excitation

model 9 strips 15 strips 21 strips model

At the base (excluding

response on the 498 2,607 2,749 3,212 1,670

artificial boundary)

Horizontal plane at

mid-height (same as 410.57 379.1 378.2 378.0 373.8

on YZ cutting plane)    
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increasing the number of strips. However, when using a 2-D shear beam model, the number

of strips at the base would equal the number of wedge-type finite elements used along the

length of the dam, and the analyst may as well consider correlation effects between all such

strips.

7.3 Conclusion and Discussion

For the dynamic analysis of earth dams, the 2-D shear beam model exhibits slightly

higher natural frequencies and has larger responses than the 3-D model. Similarly, for

earthquake ground motion models, using the simplified l-D excitation model discussed in

this chapter gives rise to slightly larger displacement, stress and strain responses than using

the general excitation model. As a consequence, the use of the 2-D shear beam model in

conjunction with the simplified l-D excitation model would be expected to yield

reasonable and slightly conservative results at locations distant from the base.

For the prediction of stresses in the bottom half of the dam, especially in the stiff

gravel, the simplified l-D excitation significantly overestimates the response and is

unacceptable. On the other hand, the use of identical excitation significantly under-

estimates the stress response when ground displacements are not highly coherent.

Therefore, a 3-D model is required in order to predict stresses in the lower half of the dam

accurately under SVEGM. However, it was shown in Section 5.3.6.3 that the use of static

response component can approximate the stress response in the stiff gravel region well such

that the time-consuming 3-D dynamic analysis can be avoided.



8. Conclusions and Recommendations

8.1 Summary and Conclusions

This research was conducted to study the effect of spatially varying earthquake

ground motions (SVEGM) on the response of earth dams. The Santa Felicia earth dam was

selected for analysis because it has been studied extensively and data was easily available

for it. The Santa Felicia earth dam located on southern California is a modern rolled-fill

embankment with a central impervious core and pervious shell upstream and downstream

resting on a rigid bedrock. The dam is 83.8 m (275 ft) high above its rock foundation,

388.6 m (1,275 ft) long at the crest and 137.2 m (450 ft) long across the valley at the base.

A three-dimensional inhomogeneous finite element model consisting of 1,004 nodes and

4,140 tetrahedral elements was used for the dam. The model was assumed to be symmetric

about the middle of the dam axis. Shear modulus increasing with depth from the crest was

used to account for the effect of confining pressure. A response convergence analysis

indicated that eighty vibration modes were required to obtain accurate responses to

earthquake excitation. A viscous damping ratio of 0.06 corresponding to low strain

deformation was adopted for all modes.

In most cases, the SVEGM model proposed by Harichandran and Vanmarcke (1986),

which accounts for both spatial correlation and wave propagation effects, was used to

specify the base motions in the upstream/downstream direction. However, the effect of

using coherency models proposed by other researchers was also investigated. The auto

spectral density function of the ground acceleration estimated from the El Centro record

with a root-mean-square intensity of 0.09g was used. The coherency decay was

characterized by a double exponential function based on Event 20 recorded by the

SMART-1 array in Lotung, Taiwan. An apparent wave velocity of 4,267 m/s corresponding

to waves in the bedrock propagating at 2,134 m/s with an incident angle of 60° to the

horizontal was assumed in the study. In addition, conventional simplified ground motion

208



209

models such as identical excitation and a simple propagating wave were also used so that

the effect of SVEGM on earth dam responses could be evaluated. The effects of soil-

structure interaction, hydrodynamic impact, radiation damping and topography were

neglected in this study.

Stochastic moments of the displacement, stress and strain responses were computed

and displayed as shaded image contours over the entire dam. SVEGM, characterized by

wave propagation as well as by coherency loss, was found to have a significant impact on

the responses of the dam, especially on the maximum shear stress in the stiff gravel in the

streambed. A study of the reliability analysis against local failure characterized by the

Mohr-Coulomb criterion further highlighted the significance of SVEGM. SVEGM can

cause local failure in the granular streambed In addition to the core and shell material,

thereby making a larger variety of sliding failure possible. However, the stress response due

to SVEGM is very sensitive to the low frequency decay of the coherency used. The

coherency model proposed by Abrahamson (1992), which is highly coherent at low

frequencies, has very little effect on the stress response. It is therefore imperative that the

current discrepancy in the low frequency coherency decay in different coherency models

be investigated further and resolved. Finally, method of simplifying SVEGM excitation so

that it can be used with a 2-D shear beam model of the dam is described. More detailed

summaries are given below. Except for Section 8.1.6, in all other sections the Harichandran

and Vanmarcke’s coherency model was used to characterize the SVEGM.

8.1.1 Responses

Compared to SVEGM, the identical and delayed (wave propagation only) excitation

models both overestimate the maximum three standard deviations (30') x-displacement

response at the middle of the crest by about 8%. However, the contour patterns of the

displacement responses are quite similar to each other for all the excitation cases. The two

simplified excitation models both over-predict the critical mean plus three standard
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deviations (u+3o) maximum shear strain (7mm) response by about 10%. As with the

displacement response, the contour patterns are similar for all excitation models.

The critical u+3o maximum shear stress (Imax) response in the stiff granular material

at the base due to SVEGM is about 3.5 times larger than those due to identical and delayed

excitations. In addition, the contour pattern of the 1mm response due to SVEGM differs

greatly from those due to identical and delayed excitations. However, the effect of SVEGM

is not very significant on flexible materials such as the core and shell. For these regions, the

identical excitation model slightly overestimates the critical 1mm response. In addition, the

1m response at the top free surface and the ymax response at the base both are larger due to

identical excitation compared to SVEGM. Although higher strains occur in flexible

materials at the base, the larger stresses occur in the stiff gravel material because of the

much higher shear modulus of the gravel.

8.1.2 Modal contributions

The dynamic response variances consist of individual modal response variances and

covariance between pairs of modal responses. The relative modal contributions to the

upstream-downstream displacement (x-displacement) at the middle point of the crest were

examined. Basically, symmetric vibration modes contribute much more than anti-

symmetric modes under SVEGM. Mode 1 dominates the dynamic variances with a

contribution of more than 90% for all the critical displacement, stress and strain responses.

Identical support motions on the other hand do not excite anti-symmetry modes at all.

8.1.3 Contribution of response components

The variance of the total response consists of three components: the variance of the

pseudo-static response, the variance of the dynamic response, and the covariance between

the pseudo-static and dynamic responses. For the 15 largest x-displacements, the dynamic

response component contributes the most for all the excitation cases: general, identical and

delayed excitations, but the other response components are also significant. For the 15
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largest ny responses Wthh occur at the top free surface, the dynamic response component

is dominant for all excitation cases and the pseudo-static and covariance components can

be neglected.

The largest variance of 1:)0, occurs at different locations for different excitation

models. For the general excitation, the static component contributes the most to the largest

113’ response. For delayed excitations with an apparent wave speed of 4.27 km/s, the static

response is not significant, but the covariance between the static and dynamic responses

becomes significant. Note that for identical excitation the static stress component is zero

since this consists of a pure rigid body translation of the dam. Consequently, the covariance

between the static and dynamic components is also zero, and the total stress response

consists of only the dynamic component.

However, for the critical Txv response in the core region, the dynamic component

overwhelms the static component for all excitation cases. On the other hand, for the 1mm

responses in the base gravel layer due to general excitation, the pseudo-static component is

dominant and the other two components can be neglected.

8.1.4 Reliability against local failure

As a simple illustration of the failure analysis of earth dams subjected to a

combination of gravity loads and SVEGM, the reliability against local shear failure is

assessed. The effective shear strength of soils is determined by the Mohr-Coulomb criterion

and the static pore water pressure on the upstream side is accounted for. The reliability

index against local failure was computed at each node and shown as shaded image contours

over the entire dam for the identical and general excitations. The soils on the upstream and

downstream surfaces and at around two-thirds the height of the dam violate the Mohr-

Coulomb criterion due to identical excitation having a r.m.s. acceleration of 0.09g. For the

SVEGM, the potential failure zones become larger, and include the base gravel material
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because higher stresses occur in this region. Reasons why this simplistic illustration is

likely to be over—conservative are discussed.

8.1.5 Effect of wave propagation

The wave passage effect is not so significant as coherency decay if the ground motion

is significantly incoherent. In general, seismic waves with lower apparent velocities cause

smaller displacements but result in larger stresses at the base due to out-of—phase motions.

For upstream-downstream excitation, the responses to SV/P waves propagating in the

upstream-downstream direction are more critical than for SH waves propagating in the

longitudinal direction at the same apparent velocity. However, the critical responses due to

these two kinds of waves do not occur at the same locations. SH waves cause the critical

response locations to shift in the longitudinal direction. The shift is more significant for

responses corresponding to lower SH wave speeds.

Variation of the incidence angle of the seismic waves within realistic limits (30° to

600 to the horizontal) did not significantly affect the responses in this study.

8.1.6 Effect of coherency function

In the last decade, a number of empirical coherency functions have been proposed

based on strong motion records. In this study, in addition to Harichandran’s model (1986),

coherency functions proposed by Abrahamson (1993), Novak (1987), Luco & Wong

(1986) and Hao (1989) models were also used to investigate the effect of the different

models on the Santa Felicia dam.

The x-displacement response is not very sensitive to the coherency model. Higher

coherency decay models give rise to smaller x-displacements. The largest difference

between the critical 30' x-displacements is about 10% (between Abrahamson’s and Hao’s

Event 30 models). For the u+3o 7m response, higher coherency decay models result in

lower 7mm, but the largest difference between the critical u+36 ynm values is about 12%

(between Abrahamson’s and Hao’s Event 30 models).
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Stress responses are very sensitive to the coherency functions. The Tmax response

using Novak’s model (which was fitted to Harichandran’s model in this study) has the

largest value among the models investigated. Hao’s model calibrated to SMART-1 Events

45 and 30, respectively, yields 1mm responses that are closer to Harichandran’s model

which is calibrated to SMART-1 Event 20. Surprisingly, the 1mm response corresponding

to Abrahamson’s coherency model is very similar to that due to identical excitation. This

is because the stress response at the base is dominated by low frequency excitations (i.e.,

ground displacements) while displacements and strains are governed by medium frequency

motions. At frequencies less than 0.5 Hz, Abrahamson’s model yields essentially unit

coherency for most separations. Consequently, the u+36 1mm response at the base are

essentially the same as those due to identical excitation. Harichandran’s and Hao’s models

yield significantly lower coherencies at lower frequencies than Abrahamson’s model (i.e.,

ground displacements that are more incoherent), which is why they yield large stresses at

the base. However, coherencies in the frequencies range from O to 0.5 Hz cannot be reliably

estimated from data using conventional spectral analysis, and yet the coherency in this

frequency range strongly affects the stresses in stiff material at the base. It is therefore

extremely important to focus future research on accurately describing the coherency at low

frequencies.

8.1.7 FOSM method for estimating the statistics of the maximum shear stress

The 114-30' 1mm response at each node is non-linearly related to the Cartesian stresses,

and its statistics were computed based on 10,000 Monte Carlo simulations. However, for

more efficient computation, the first-order second-order (FOSM) method was also

employed to approximately estimate the statistics of 1mm. The FOSM method using the

square of each Cartesian stress component as the basic variable was found to be most

suitable. The use of correction factors for the mean and standard deviation of 12mm enabled

the FOSM estimates to be sufficiently accurate, but the correction factors needed to be

calibrated using simulation results, which partially offset the computational saving of the
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FOSM approach. Correction factors for the mean and standard deviation of 13mm of 1.04 and

0.95, respectively, for general excitation and 0.86 and 0.83, respectively, for identical

excitation produced good results, but the optimal correction factors for the general

excitation may change for different coherency parameters than the ones used.

8.1.8 Simplified ground motion excitation model

A finite element—based random vibration analysis of a 3-D earth dam model subjected

to SVEGM is time-consuming and costly. Therefore, simplified modeling and analysis that

is capable of yielding acceptable results were explored.

Attention was focussed on simplifying the excitation for use with a 2—D shear beam

model which could at least represent the excitation incoherence along the length of the dam.

The base of the dam was divided into several strips along the length of the dam to simulate

the bases of truncated wedge elements of the 2-D shear beam model. To be consistent with

each wedge element of a 2-D shear beam model having a single DOF, the excitation within

each strip along the base was taken to be fully correlated. However, the ground motion

between two different strips could be incoherent. The coherency between the excitations at

two different strips was taken to be the coherency evaluated at the average separation

between all pairs of points in the two strips. Since only separation in the longitudinal

direction of the dam (perpendicular to the length direction of strips) was used to account

for the incoherency effect, the simplified excitation model is called a 1-D excitation model.

Using the l-D excitation model, the maximum 36 x-displacement response is only

1.3% higher than that using the general SVEGM model, while the response due to identical

excitation is 7.6% higher than that due to SVEGM. The maximum u+30 7mm response is

about 1.9% larger for the 1-D simplified model compared to the general model, while it is

10.3% higher for the identical excitation model. Apparently, the improvement on the

displacement and 'ymmr responses using the ID excitation model is significant.
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For the maximum u+3o Imax response, the l-D excitation model does not yield good

results in the gravel material since it is very sensitive to the relative displacement between

each pair of strips, but the predictions at locations away from the boundary are reasonable.

The 1-D excitation model yields critical u+3o rm responses in the core as well as in the

shell that are only 2% larger than that due to general excitation. Therefore, the use of a 2-D

shear beam model in conjunction with the simplified 1-D excitation model would be

expected to yield reasonable and slightly conservative results at locations distant from the

base. To predict stress responses at the base in the gravel streambed, the pseudo-static

component from a 3-D analysis can be used as long as ground displacements are not highly

coherent because this component dominates the total response. As a result, in many cases

a costly 3-D dynamic analysis can be avoided.

The effect of using a different number of strips on the base for the l-D excitation

model was evaluated. Models with 9, 15 and 21 strips were used in this study. It was found

that the displacement, 7mm and 1mm responses using the 21—strip model, were all closer to

those due to the general excitation than using the 9- and 15-strip models, except for the 1mm

response in the gravel streambed. However, the improvement in the responses from the 9-

to 21-strip models was not very significantly. In general, when using a 2-D shear beam

model, accuracy considerations would govern the discretization along the length of the dam

and more than 9 elements would be expected at the base.

8.2 Recommendations for future research

8.2.1 Topographic effects

This research is restricted to assessing the effect of spatial variation due to

incoherence and global wave propagation effects on earth dam responses. It is well known

that SVEGM can also occur due to amplification of ground motions that is dependent on

the canyon shape, the relative rigidities of the canyon and the dam, and the type of

excitation wave (SH, SV, P, Rayleigh, etc.). In general, intensity and phase variations due
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to topographic effects should be combined with the spatial variation due to incoherence

effects when specifying the input motions at the base of the dam.

8.2.2 2-D shear beam model and SVEGM

In Chapter 7, techniques to simplify the general SVEGM model to a 1-D excitation

model that can be used with a 2-D shear beam model of the dam are proposed. The

simplified excitation model was used with the 3-D finite element model of the dam, and the

results were found to be slightly conservative but acceptable for most responses. Although

the proposed excitation model should be applicable to a 2-D shear beam model, a 2-D shear

beam model of the dam was not actually used. The use of 2-D shear beam models for earth

dams subjected to conventional excitation models has been found to cause slightly higher

natural frequencies and larger responses than 3-D models and hence conservative results

are expected. However, this postulate should be verified by investigating the responses of

a 2-D shear beam model excited by the simplified l-D SVEGM model.

8.2.3 Nonlinear analysis

In reality, soil exhibits nonlinear hysteretic behavior. When large responses occur

under strong ground motion, linear random vibration analysis might not be adequate for

predicting the dam response. The restoring force of a hysteretic system depends not only

on the instantaneous displacement but also on its past history. For lightly damped systems,

the method of equivalent linearization including the effects of strain-dependent shear

modulus may be used for an approximate solution by performing iterative analysis.

8.2.4 Dynamic pore water pressure

Increasing pore water pressure during an earthquake may affect the stability of earth

dams significantly. More realistic models of the saturated granular soil, account for the

two-phase fluid-solid mixture, can be used to account for the build-up of pore water

pressure during the dynamic response. The use of such advanced models with SVEGM

input may yield insight into the effect of SVEGM on liquefaction failure.
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APPENDIX A

Outline of the Use of I-DEAS VI.i Computer Software

A.1 Introduction

The I-DEAS families including Solid_M0deling, FE_Modeling_&_Analysis and

System_Dynamics_Analysis were used in the modeling and analysis of the Santa Felicia

dam. Each one offers a set of interactive, graphically-oriented tasks.

0 Solid_M0deling: The Solid Modeling application offers a full range of tools needed

to develop geometric concepts and detailed mechanical designs for parts,

assemblies, and mechanism.

0 FE_M0deling_&_Analysis: I-DEAS Finite Element Modeling (FEM) is a

mechanical design automation tool which can be used to build a complete finite

element model, including physical and material properties, loads, and boundary

conditions. With FEM, the linear statics and dynamics behavior of mechanical

component and structures can be modeled and analyzed.

- System_Dynamics_Analysis: The System Dynamics Analysis family is an interac-

tive, graphically-oriented system modeling and analysis module which can be used

to simulate the dynamic response of complex mechanical systems. This application

evaluates the dynamic performance in terms of modal, frequency, and transient re-

sponse of interconnected linear systems.

A.2 Finite Element Modeling Procedures

The Santa Felicia earth dam was modeled as a three-dimensional inhomogeneous

finite element model using I—DEAS VI.i. The following is a brief description of the

modeling procedures:

1. The Solid_M0deling/0bject_M0deling/Credte command was used to generate a

block for each material zone, and Construct/Cut was used to trim its dimension to
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match the geometry of the dam. Twenty-two objects are needed to satisfy the

discretization requirement for elements with different material properties. Since the

dam is assumed to be symmetric about the mid-plane of the dam axis, only half of

the dam is generated as shown in Fig. A. 1.

The Solid_M0deling/Assembly_M0deIing/Create command was used to put

together parts which were modeled and stored as objects into a system. Because

each object was created according to its own coordinate system, some orientations

to desired location need to be done in the assemblage of these parts to an entire darn

model.

The FE_M0deling_&_Analysis/Geometry_Modeling/Su(face/Create command

was used to import the dam system from the solid modeling module to the FE

module. In this step, the default for the Model_file/I’olerances/Point_C0incidence

needed adjustment to avoid dangerously large or unnecessarily tight tolerances.

 

  

 

  
 

Figure A.1 Display of half of the Santa Felicia dam model consisting of twenty-two objects
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The Mesh_Creati0n/Mesh_Areas and Mesh_Creati0n/Mesh_Volume commands

were used to create mesh areas and mesh volumes, respectively. The

Mesh_Creati0n task can automatically apply free meshing to the geometry as it is

extracted from solid objects or assemblies. Material properties were defined for

each volume at this stage.

The Mesh_Size/Free_Meshing/Settings command was used to specify global

element sizes, and the Generate_Mesh/Solids command was used to generate the

finite element mesh. Linear tetrahedral solid elements were used throughout.

Coincident nodes lying on the interfaces of the various assembled objects were

merged to obtain a single monolithic model. Nodes were renumbered for

convenience. After these steps it was necessary to reload the graphics database

using the Model_FiIe/Reload_Graphics_Db command.

The FE_M0deling_&_Analysis/Boundary_C0nditi0ns/Restraints command was

used to specify boundary conditions. The nodal degrees of freedom (DOF) for solid

elements consist of the three translation components (X, Y and Z translations) and

these were all restrained at the nodes on the boundary between the dam and the

canyon.

A.3 Steps for Free Vibration Analysis

Free vibration analysis of the Santa Felicia dam model was performed using I-DEAS

so that its natural frequencies and vibration modes were obtained. Subsequent to the finite

element modeling procedures described in the last section, the following steps were used

to perform a free vibration analysis:

1. The Case_Management/Create command was used to generate a case set. For free

vibration analysis, the case set includes only restraint conditions.

The Model_Solution/Normal_M0de_Dynamics/Case_Set command was used to

specify the case set to be used.
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The Method/Simult_Vect0r_IteraIi/Solution_C0ntrol command was used to define

the number of flexible modes to be solved.

Modes, Stresses and Strains were selected for output. This yielded the stresses and

strains corresponding to each mode.

A.4 Deterministic Dynamic Analysis

The steps using I-DEAS VI.i to conduct deterministic dynamic analysis are briefly

described below.

1. The FE_M0deling_&_Analysis/Boundary_C0nditi0ns/Restraints command was to

set the upstream-downstream DOF at the nodes on the boundary to be free, and the

D0f_Sets command was used to define these as kinematic DOF. In I-DEAS VI.i,

enforced motion can only be applied along kinematic DOF.

The Solution/Control command was used to specify the case set to be used and the

number of rigid body modes. The N0rmal_M0de_Dynamics command was used to

perform modal analysis.

The C0mp0nent_Definition/Create__C0mp0nent/Analytical_m0dal command in the

System_Dynamics_Analysis module was used to import analytical modes from the

FE_Modeling_&_Analysis module. Damping ratios were specified at this step.

The System_Definition/Components/Degrees_0f_Freedom/Physical command was

used to restrain all kinematic DOFs.

The System_Soluti0n/I'ransfonnation_Meth0d command was used to solve damped

vibration modes.

The Excitati0n_Definition/Functions command was used to create an acceleration

excitation function at the restrained nodes. The time history of velocity and

displacement were obtained from the acceleration function using the Integrate

command.
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7. The L0ad_Cases command was used to combine acceleration, velocity and

displacement functions into a load case.

8. The Response/Madal_Properties/M0de_Shapes command was used to activate the

number of vibration modes used in the enforced motion analysis. The load case in

step 7 was set to be active using Response/Load_Set.

9. The Response_DOF_Sets command was used to select component entities and

physical DOF at nodes where responses were to be evaluated.

10. The Evaluate/Options/Limitsfl‘ime command was used to specify the desired length

of the responses. The types of responses were defined using the Response_Form

command and the analysis was performed using the Evaluate/Response command.

A.5 Generating [M] and [A] Matrices

In I-DEAS, the mass matrix [MFF] in equation (4.17) corresponding to DOF is

identical to the matrix [Mu] corresponding to independent DOF, and [MFR] is identical to

[M‘s]. Program files written in a special language are used in I-DEAS to drive each type of

computation. By modifying these program files, intermediate or specialized results can be

output. The program files and modification are briefly described below:

1. Copy files nbb42.prg and svi.prg from I-DEAS programs library directory to the

directory in which normal mode analysis will be performed.

2. Edit the file nbb42.prg so that it calls the local copy of svi.prg, instead of

svnores.prg. Change the lines

 

C : TO RUN A USER DEFINE PROGRAM FILE CHANGE “HMPACK” TO

“MODEL_FILE ”

C .' IN THE FOLLOWING LINE

K : /I-IMPACK PROGRAM_FILE RUN

K : "SVNORES.PRG"

  
 

To:
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K : /MODEL_FILE PROGRAM_FILE RUN

K : "SVI.PRG"

 
 

Edit the file svi.prg to write the mass matrix MII immediately after

EIGENRATPRG is called, because in the process of checking orthogonality ratios

and eigenratios M11 is deleted. After the first line shown, add the remaining lines

that follow in the boxed section below:

 

 

C .' CALCULATE AND LOG ORTHOGONALITY RATIOS AND EIGENRATIOS

.' WRITE MASS MATRIX MII

TO UNIV FILE MII. UNV

: /LOG MESSAGE "Writing mass matrix M1] tofile "

: /HMPACK UNIVERSAL_FILE WRITE_READABLE MII

' " MII.UNV "

 

E
N
W
G
O
G
G

 
 

Edit the file svi.prg to write MIS immediately after SREACTPRG is called. In the

process of computing reaction forces, M18 is deleted. After the first line shown, add

the remaining lines that follow in the boxed section below:

 

 

C: CALCULATE REACTION FORCES

.' WRITE MASS MATRIX MIS

TO UNIV FILE MIS. UNV

.' /LOG MESSAGE "Writing mass matrix MIS tofile"

.' /HMPACK UNIVERSAL_FILE WRITE_READABLE MIS

: " MIS. UNV "

 

N
R
K
G
C
G
Q

 
 

Run the normal mode solution. Use the Executi0n_0pti0ns command, turn off

profile reduction so that the mass matrix components will be sequenced using the
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user-specified node numbers. By default I-DEAS internally renumbers nodes to

minimize the bandwidth of the stiffness matrix and this shuffles the elements of the

mass matrix. Since the mode shape matrix and displacement vector are output

according to the user-specified node number sequence, the elements of the mass

matrix must be consistent with these.

Use the simultaneous vector iteration method and select the User_Defined method.

The program will prompt for the name of the program file to run. Enter the name

given to the copy of nbb42.prg.

Use the 0utput_Selection command to select reaction forces as well as vibration

modes, because M13 is created only when the reaction forces are selected for

output.

Watch the solution log to ensure that the proper version of the program runs, and

that the mass matrix is written. If the files are edited at the wrong locations, a

message saying that the M11 and/or MIS matrix does not exist will usually be

reported.

The universal files MII.UNV and MIS.UNV contain the mass matrices. The format

of these files is documented in the Model Solution Manual, in the Open

Architecture section. It should be noted that SI units are used in these files. If the

model file is based on other units, appropriate conversion of units is necessary.

The [A] matrix is expressed as [A] = — [KFF] ‘1 [Km] in equation (4.9). Each

column of [A] consists of the deformed shapes of the model subjected to a unit

displacement at each restrained node. The [A] matrix can be obtained directly in I-DEAS

using static constraint analysis, and hence there is no need to obtain the stiffness matrices

and invert [KFF]. The following steps are used to obtain the [A] matrix:

Since only upstream-downstream excitation (x-direction) is considered, the unit

displacements are applied only in this direction at the boundary nodes. All
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x-translation DOFs of restrained nodes were set to be active using the

Boundary_Conditions/Dof_Sets command, and then defined to be connection DOF

using the Case_Management command. The other two translation components (y

and 2 components) are kept restrained.

2. The ModeI_Solution/Constraint_Mode_Dynamics command was used to select the

case set specified in step 1. The other procedures are similar to those in normal

mode analysis. Since displacement, stress and strain responses are of interest, all of

these were selected for output. It is of interest to note that the stress or strain output

file occupied about 500 MB of storage space.

3. Stress and strain constraint modes are computed for each element. The average of

the element stresses and strains at nodes from adjacent elements was used to

represent the nodal stresses and strains. A computer program was written to extract

the nodal values from the I-DEAS output files.

4. It should be noted that the static constraint modes are derived corresponding to a

one meter displacement at connection DOF. If the model uses other units, the output

should be converted appropriately.

A.6 Techniques to Display Response Contours

The Manage_Models command in the I-DEAS Finite Element Modeling family can

be used to read and write universal files. Universal files provide a means of passing data in

and out of I-DEAS model files. An I-DEAS universal file is a sequential formatted file

consisting of one or more I-DEAS universal datasets. An universal dataset is a group of

records that define the properties of an I-DEAS entity such as a profile or a point. The I-

DEAS Core Utilities User’s Guide documents the record format for each type of universal

dataset. In order to display response contours through I-DEAS, the first step is to write

nodal response values in the format required for the universal file. Fig. A.2 shows a partial

dataset of a typical displacement file.
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-1

151

lusr/hpideas_tmp/chenm/con/contour

Santa Felicia Earth Dam

SDRC I-DEAS VI.i: Monitor

05-DEC-94 11:04:49 6 0

Never Never

SDRC I-DEAS VI.i: FE_Modcling_&_Analysis

05-DEC-94 12:46:50

-1

-1

164

2British grav 2

3.28083989501 312330E+00 2.2-”18089430997 10450E-0 1 l .80000000000000000E+00

4.59670000000000000E+02

-l

-1

800

1

WORKING_SET1

-l

-1

770

1 0

MAIN

-1

-l

771

l 1 1

FE MODEL]

-1

-1

55

General Excitation (38D)

Model Solution

NONE

ThetimeofAnalysis was 05-DEC-94 11:33:41

NONE

1 2 3 8 2 6

2 3 0 0

0.00000E+00 3.43029E+08 0.00000E+00

l

.28800E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00

2

.28800E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00

3

.28800E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00

Figure A.2 Partial dataset of an universal file
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The upper part (the first line down to the seventh line from the bottom shown) can be

reproduced by copying it from any contour universal file written from within I-DEAS. The

remaining part specifies nodal numbers and nodal values, which have been replaced by the

values of the mean plus three standard deviations of the displacement, stress or strain

responses in order to display contours of these quantities. Using I-DEAS, the modified

universal file is read back to create a new analysis dataset. Subsequently, contours of the

new data component can be displayed using the Post_Processing command. I-DEAS

assumes that the values read from the universal file are the six displacements at each node,

but this is of no real significance.

A.7 Gravity-induced Stresses

The stresses due to gravity were obtained using the following steps:

1. The finite element model and restraint boundary condition used for the free vibra-

tion analysis were used.

2. The Boundary_Conditions/Structural_Loads/Acceleration_Load/Create command

was used to apply an acceleration vector of Ig in the vertical direction. An

acceleration vector represents the loading effects from the acceleration on the entire

model.

3. The Case_Management/Modifv command was used to add the acceleration load to

the case set.

4. The Linear_Statics command was used to solve the static loading problem and the

stress response was selected for output.



APPENDIX B

Comparison between Seismograph Records and Computed Responses

for the Northridge Earthquake of January 17, 1994

The Northridge earthquake having a magnitude ofM = 6.7 occurred at 4:30 am (PST)

on January 17, 1994 under the north-western end of the San Fernando Valley, Los Angeles.

The epicenter location determined by the US. Geological Survey is 34.213 N and

1 18.537 W, with a focal depth of 18.4 km. The Northridge earthquake was recorded by two

seismographs located on the Santa Felicia dam; one on the downstream abutment and the

other on the crest of the dam (Stewart et a1. 1994). Fig. B] shows the location of the

seismographs and directions in which the ground accelerations were recorded. The

instrument and baseline-corrected acceleration, velocity and displacement in the upstream-

downstream (U-D) direction at the downstream station are shown in Figs B2, B3 and 3.4,

respectively. The peak U-D acceleration is 0.27g.

The U-D ground motion recorded at the downstream station was used as input to the

3-D finite element model of the dam and the response at the node (x = 15 ft, y = 275 ft,

2 = -71 ft) closet to the crest station was computed. Fig. 8.5 shows the recorded and

computed displacement responses due to U-D excitation only. The station at the crest

triggered 1.18 seconds before the downstream station, and hence the recorded motions

were translated to the left by 1.18 seconds. Although the peak displacements are in

reasonable agreement, the computed response has many more oscillations than the

recorded response indicating that the assumed modal damping ratio of 0.06 is too low.

In reality, the Northridge earthquake ground motion contains three components in the

upstream-downstream, vertical and longitudinal directions. To examine the adequacy of

the earth dam model, all three recorded components at the downstream station were applied

as excitations at those nodes on the boundary between the dam and the bedrock. Fig. B6
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Figure B.2 Ground accelerations of Northridge earthquake in the upstream-downstream direction

60 l l I I Ii r I l l l I f I I I l I I I I I

40 - -

20

V
e
l
o
c
i
t
y
(
c
m
/
s
e
c
)

O 

I

 

.22.; M [\va AL rA'\/\ AVAVA /\

W V W V “v \/

mlilnlnlililnlilil11.1111 1 1 1 1 ILLLILILIL  
 

123456789101112

Time (second)

13 14 15 l6 17 18 19 20

Figure B.3 Ground velocities of Northridge earthquake in the upstream-downstream direction
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Figure B.4 Ground displacements of Northridge earthquake in the upstream-downstream direction
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with computed response due to upstream-downstream excitation
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shows the time history of computed U-D displacement at the crest corresponding to modal

damping ratios of 0.06 and 0.25. It is seen that the displacement corresponding to a

damping ratio of 0.06 is higher for each vibration cycle than that corresponding to a

damping ratio of 0.25, and both responses are higher than the recorded response shown in

Fig. B.5. Fig. B.7 shows the response computed using a modal damping ratio of 0.45 as well

as the recorded displacement, and the two are in reasonable agreement although the

computed peak response is a little higher. Figs. B8 and B9 show the computed and

recorded velocity and acceleration traces, which also agree reasonably well. It appears

therefore that a modal damping ratio of 0.45 is more appropriate for the level of excitation

imparted by the Northridge earthquake. The Northridge data became available after most

of the research described in this study (which is based on a modal damping ratio of 0.06)

was completed.
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Figure 8.6 Comparison between the computed upstream-downstream displacement responses

at the crest of the dam having damping ratios of 0.25 and 0.06.
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Figure B.9 Comparison between computed displacement response of Santa Felicia dam

with a damping ratio of 0.45 and seismograph records

The maximum U-D displacement, velocity and acceleration for all the cases

investigated in this study are given in Table B]. The best agreement is obtained for the

three-component excitation and a modal damping ratio of 0.45.
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TABLE B.1 Critical computed and recorded responses of the Santa Felicia dam

at the crest to the Northridge earthquake

 

 

 
 

 

 

 

Upstream] Three-component excitations

Response type downstream

(Upstream! . Recorded
d t excitatmn only
owns ream) (C =0.06) Q: 0,05 C: 0.25 C = 0.45

Displacement 16.2 30.4 22.6 19.3 15,6

(cm)

Velocity
(cm/sec) 125 155 82.3 57.9 38.]

Acceleratron 1024 1039 485 326 243.8

(cm/secz)           
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