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ABSTRACT
FEATURE, FUNCTION, AND NATURE OF
PRATYLENCHUS PENETRANS AND VERTICILLIUM DAHLIAE
INTERACTIONS SSOCIATED WITH SOLANUM TUBEROSUM
By

Jianjun Chen

Potato (Solanum tuberosum) is one of the most important
food crops in the world. Potato Early-Die (PED) is the most
important disease currently limiting potato production in
North America. Penetrans/Dahliae Disease Complex (PDDC), a
component of PED, was caused by an interaction between the
penetrans root-lesion nematode, Pratylenchus penetrans, and
the soil-borne fungus, Verticillium dahliae. PDDC was
studied under growth chamber, greenhouse, and field
ecosystem environments to add new insights about the growth
and development of the below ground system components of S.
tuberosum associated with PDDC, and the individual and

concomitant effect of P. penetrans and V. dahliae

interactions on the below-ground system of S. tuberosum. The
study was assisted by use of the computer simulation,
agroecosystem experimentation, and manipulation of the plant
below-ground architecture. Data and results were
quantitatively and graphically analyzed using classical

statistics and geostatistics.



The below-ground system of S. tuberosum was divided into
basal roots, nodal roots, stolon roots, tuber roots, stolons,
tubers, below-ground stems, and a seed piece. A computer model
written in C++ Language was developed to simulate the growth
and development of the below-ground system components under
the PFE (Pathogen-Free Environment) or PIE (Pathogen-Impacted
Environment). A maximum of 28.7% tuber weight loss (P = 0.05)
was found in S. tuberosum when the stolon system was exposed
to P. penetrans. The impact of P. penetrans and V. dahliae on
the stolon system of S. tuberosum was about equal. P.
penetrans was equally pathogenic on the basal-nodal root
system and stolon system of S. tuberosum. V. dahliae was much
more pathogenic on the basal-nodal root system than the stolon
system of S. tuberosum.

The synergistic, additive, and antagonistic joint
influence of P. penetrans and V. dahliae interactions
associated with an S. tuberosum below-ground system occurred
once, nine times, and twice, respectively. A biological two-
on-one interaction concept was introduced. Kriging from 100
samples and a spherical semivariogram model (r? = 0.902)
provided means of interpolating 676 points not physically
sampled. The three-dimensional soilborne-organism distribution

imaging was computer stereopercepted.
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1.0 Introduction

Potato (Solanum tuberosum) is one of the ten most
important food crops on a world-wide basis. Its volume of
production ranks fourth in the world (Horton et al., 1985).
Premature vine death and declining yields are a limiting
factor in potato production in Michigan, Wisconsin, Ohio,
Idaho, and the Red River Valley (Rowe, et al., 1987). Similar
symptoms are observed in the Pacific Northwest (Rowe, 1983).
In the existing literature, this syndrome is frequently called
Potato Early-Die (PED) (Riedel, et al., 1985). Surveys ranked
PED as the most important disease of commercial potato crops
in North America (National Potato Research Proposal, 1987;
Slack, 1991). In this dissertation, one component of PED will
be studied. It will be referred to as the Penetrans/Dahliae
Disease Complex! (PDDC), caused by an interaction between the
root-lesion nematode, Pratylenchus penetrans functioning as a
predisposition agent?, and the soil-borne fungus, Verticillium

dahliae functioning as a secondary pathogen?.

1. Disease complex: An infectious disease (detrimental physiological
process), caused by the continued interaction of a predisposition agent and
a secondary pathogen. 2. Predisposition agent: A living organism which alters
the physiology of a host which is not usually susceptible to a specific
pathogen at specific population densities. The predisposition agent renders
the host susceptible to the pathogen. 3. Secondary pathogen: A biological
causal agent which is not normally a primary pathogen' of a specific host, but
can cause an infectious disease after the host has been properly altered by
a suitable predisposition agent. 4. Primary pathogen: An organism that can
cause an infectious disease. (Bird, MSU ENT 870 Syllabus).



2

There is extensive literature on PED and various aspects
of PDDC (Bird, 1990; Riedel et al., 1985; Rowe et al., 1987;
etc.); however, there is still a distinct need for additional
research on this topic. The research for this dissertation
employs science and a philosophy of reductionism, interaction,
and synthesis. The below-ground system of S. tuberosum is
defined in this study as a multi-component system consisting
of basal roots, nodal roots, stolon roots, tuber roots,
stolons, tubers, below ground stems, and a seed piece. The
goal of this research was to add new insights about the
understanding of the PDDC system, the multiple below-ground
system components of S. tuberosum, and the individual and
concomitant effect of P. penetrans and V. dahliae interactions
on the below-ground system of S. tuberosum. System science,
interaction biology, and landscape ecology were used to
provide a framework for the growth chamber, greenhouse and
field studies. Both classical statistics and geostatistics
were applied to quantitatively analyze the research results.
The computer simulation, agroecosystem experimentation, and
manipulation of the plant below-ground architecture added
valuable technologies for the research. A proposed biological
interaction concept and associated systems were discussed in
relation to their potential wvalue in helping to understand

biological systems. The results should lead to a significantly
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enhanced understanding of the feature, function, and nature of
P. penetrans and V. dahliae interactions associated with the
below-ground system of S. tuberosum.
The dissertation consists of eight chapters: Introduction;
Goal, Objectives, and Research Approach; Literature Review;
Experimentation; General Discussion; Summary and Conclusion;

Potato Computer Simulation Model Appendix, and Bibliography.



2.0 Goal, Objectives, and Research Approach

2.1 Statement of the Problem

Tuber formation in S. tuberosum is considered to be the
summation of the stolon development and tuberization at the
stolon tip (Booth, 1963). To understand the impact of PDDC
on tuber production, it is necessary to have a comprehensive
understanding of its impact on the stolon system, the
ontogeny of the stolon system, and other aspects of the
below-ground components of this plant species.

The below-ground architecture of S. tuberosum includes
a shoot system and a root system. The below-ground shoot
system contains the seed piece, below-ground stems, stolons,
and tubers. The root system consists of basal roots, nodal
roots, stolon roots, and tuber roots (Kratzke and Palta,
1985). In evaluating the impact of PDDC on S. tuberosum, it
is necessary to account for the specific type, time and
sequence of roots affected.

PDDC is caused by interactions of two pathogens, P.
penetrans and V. dahliae. To evaluate the impact of PDDC on
S. tuberosum, it is also necessary to have an understanding
of the potential of the individual and concomitant effects
of these organisms on tuber production, and the nature of

the concomitant effect of P. penetrans and V. dahliae



interactions.

Pratylenchus penetrans and V. dahliae interactions occur
in an agroecosystem. From a practical perspective, it is
necessary to evaluate the impact of PDDC on S. tuberosum with
an understanding of its linear, spatial, and space features in
an agroecosystem.

2.2 Science and Philosophy
2.2.1 Reductionism

The most successful and influential way of thinking ever
introduced into the field of science is often named after
Isaac Newton. According to Newtonian thinking, if an entity or
phenomenon is to be understood, it needs to be reduced into
its most basic elements or building blocks, which are simpler,
more easily understandable, and often measurable (Schwartzman,
1984) . Once these elements and their properties are known, an
understanding of the whole can be achieved by recombining the
elements.

2.2.2 Interactions
In the Newtonian mode of thinking, the elements are
viewed as connected and interacting with each another through
causality and objective observation (Colapinto, 1979). The
search for the truth about complex phenomena should not only
follow objectivity of observation, but also be dependent of

the way they were observed.
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Pratylenchus penetrans and V. dahliae interactions
associated with an S. tuberosum ecosystem is conceptually
introduced in this dissertation research in Figure 2.1. The
nature of the proposed system is illustrated as a triangular
interaction among P. penetrans, V. dahliae and S. tuberosum,
coupled with the other 19 triangle interactions, and numerous
other linear and polygonal interactions. Biological
interactions in an agroecosystem are complex and extensive
studies are needed.
2.2.3 Synthesis

As more and more fields of scientific inquiry encountered
issues of increasing complexity, understanding the whole by
means of a synthesis of the parts became increasingly
difficult (Maturana, 1975). Dealing with more complicated
phenomena in nature, scientists attach importance to the
method of synthesis in an effort to better understand the
whole as science proceeds into the 21st century. It is very
significant to add new insights to the means of a synthesis of
the parts to understand the whole for the Newtonian mode of
science. For the science of General Biology, studies of the
two-on-one interaction becomes significantly important.
2.3 Objectives

The main objective of this research was to identify and

evaluate basic elements of the target bio-systems, the below
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Figure 2.1. Pratylenchus penetrans and Verticillium dahliae
interactions associated with a Solanum tuberosum ecosystem.
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ground system of S. tuberosum and the Penetrans/Dahliae
Disease Complex system, study features and function of P.
penetrans and V. dahliae interactions associated with S.
tuberosum in an agroecosystem, and explore the nature of the
concomitant effect of P. penetrans and V. dahliae interactions
on the below ground system of S. tuberosum.

Research objectives were:

1. Determine the impact of PDDC on root and stolon
systems through a split root-stolon culture system, a
manipulation of the below ground system architecture of S.
tuberosum.

2. Determine the impact of PDDC on specific below-ground
system components of S. tuberosum by individually assessing
the growth and development of basal roots, nodal roots, stolon
roots, tuber roots, stolon, tuber, and below-ground stem; and
simulating the multi-component below-ground system through the
use of a computer model.

3. Determine linear, spatial, and space features of P.
penetrans and V. dahliae interactions associated with S.
tuberosum ecosystems through classical statistics,
geostatistics, and multi-dimensional approaches, including
conditional simulation of the interaction components of the
system.

4. Determine individual and concomitant effect of P.
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penetrans and V. dahliae on S. tuberosum tuber production
through individual and concomitant infection of P. penetrans
and V. dahliae; and explore nature of P. penetrans and V.
dahliae interactions associated with S. tuberosum.
2.4 Biological Systems

2.4.1 Penetrans/Dahliae Disease Complex System

PDDC is caused by an interaction between the penetrans

root-lesion nematode, P. penetrans functioning as a
predisposition agent, and the soil-borne fungus, V. dahliae
functioning as a secondary pathogen (Bird, ENT 870 Syllabus).
The nature of injury caused by the lesion nematodes makes
roots mechanically and biochemically suitable for invasion and
development by the wilt fungus. It is found that infection of
S. tuberosum by P. penetrans increased symptom expression and
reduced wilt-fungus incubation period (Burpee and Bloom,
1978) . Pratylenchus penetrans and V. dahliae interactions are
documented through experiments that the PED disease complex
has been successfully controlled by soil fumigation or
application of aldicarb to control P. penetrans (Mai et al.,
1981).

2.4.2 Below Ground System of Solanum tuberosum

The plant architecture of S. tuberosum is composed of an

above-ground shoot system, a below-ground shoot system, and a

root system (Figure 2.2). The above-ground shoot system
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contains flowers, leaves, and above-ground stems. The below
ground-shoot system contains the seed piece, below-ground
stems, stolons, and tubers. The root system consists of basal
roots, nodal roots, stolon roots, and tuber roots. A total of
eight components in the below-ground shoot system and root
system constitute the below-ground system of S. tuberosum
(Figure 2.3).
Basal roots, nodal roots, stolon roots, and tuber roots
are four types of adventitious functional roots in an S.
tuberosum plant (Kratzke and Palta, 1985). The anatomy of the
adventitious roots from tubers and stolons is similar to roots
originating from other parts of the plant (Struchmeyer and
Palta, 1986). Xylem connections exist from all four root types
to the tuber as well as to the above ground part of the plant.
Studies of the form and function of S. tuberosum root systems
are few (Allen and Scott, 1992).
2.4.3 Split Root-Stolon System Architecture of Solanum
tuberosum
Although relatively 1little is published about the
architecture of the below ground stem and associated stolon
and root configurations of S. tuberosum, this species appears
to be ideally suited for research designed to evaluate the
edaphic system architecture. Studies wusing split-root

technique (Kotcon and Rouse, 1984) have demonstrated the
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Figure 2.2. System levels of the plant architecture of
Solanum tuberosum: with special reference to the below-ground

system.
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Figure 2.3. Conceptual illustration of the below-ground
architecture of Solanum tuberosum.
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synergistic interactions in peppermint (Faulkner, et al.,
1970) and potato even when fungal and nematode pathogens were
physically separated on halves of the same root system
(Powelson and Rowe, 1993). The procedures have been successful
in providing insight into the nature of disease complexes. The
split root-stolon system architecture used in this research is
a modification of the split root technique.
2.4.4 Agroecosystem

It is well known that the lack of consideration of the
relationships between the root cause of a problem and the
larger context of the overall system in which the problem
exists can be misleading (Brown et al, 1976). An agroecosystem
is viewed in this study as a diverse ecosystem where its
spatial dynamics are captured in a grid-cell area of
agricultural land. The grid approach represents the horizontal
architecture of the ecosystem in two dimensions by using a
grid of squares distributed over the area. Use of the grid-
system facilitates comparison of the results with theoretical
models of the crop and pest system; provides a suitable method
for mapping systems that can be used for model
parameterization, verification, and validation; permits
application of statistical methods; and allows modeling of
agroecosystem patterns, distances between patches, and

biological movements in a straightforward and realistic
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fashion.
2.5 Modeling and Assessment Technologies
2.5.1 System Science

System science is a discipline providing a framework for
the study of interactions among related entities (Bird et al.,
1985). For the term "system science" Sandquist (1985)
designated "the total collection of knowledge, methods, and
skills available for the identification, abstraction,
modeling, quantification, analysis, synthesis, evaluation, and
control of rational systems and their behavior." The major
emphasis in system science is on the quantitative modeling and
analysis of measurable systems. The causality principle should
be translated into a quantitative mathematical model for
systems. Use of system approaches, which have been successful
dealing with complex military operations and space exploration
development, is imperative and of significant value in
scientific studies. Patil (1979) pointed out that for systems
assessment activities to be meaningful and defensible, they
need: (i) a conceptual and philosophical basis, (ii) a
theoretical framework, (iii) methodological support, (iv) a
technological toolbox, and (v) administrative management. It
is necessary to discuss and develop a constructive interface
between quantifiable problems in ecology and relevant

quantitative methods.
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2.5.2 Quantification

When you cannot measure it, when you cannot express it in numbers, your
knowledge is of a meager and unsatisfactory kind: it may be the beginning of
knowledge, but you have scarcely, in your thoughts, advanced to the stage of

science.

- Quoted from Lord Kelvin
The rigorous formulation of a quantitative scientific
concept requires, and in a sense creates, empirically
measurable quantities. Conversely, the scientific validity of
the concept is totally dependent upon the measured values of
those quantities (Cairns, et al., 1979). This is a capsule
version of the feedback process known as the "scientific
method."” The first procedure may be labeled as "modeling™ and
the second as "curve-fitting." These two processes must
converge - more quantification must be used in concept
validation and more concepts must be incorporated into the
methodology of quantification. There are interdisciplinary
needs of statistics and ecology at advanced instructional
level.
2.5.3 Dimensionality
A physical and mathematical continuum of n dimensions is
a set of n coordinates, that is, a set of n quantities capable
of varying independently from one another and of assuming all
the real values which satisfy certain inequalities (Poincare,

1963) . The number of dimensions can be increased if other
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senses are introduced into the combination. Space is a three-
dimensional continuum about which we would have a clear
intuition. A space coupled with time is a four-dimensional
continuum.
2.5.4 Simulation
Simulation modeling of agroecosystems, when coupled with
appropriate data sources, have a great potential for bringing
agricultural research and development into the age of
information technology (Ritchie, 1986). Conditional simulation
produces a simulation that generate the set of values, one
each for a set of spatially dependent random variables, with
the estimate coincides with the sample value at the sample
locations (Warrick et al., 1986).
2.5.5 Computer Programming
FORTRAN was one of the first and most common machine-
independent high-level computer languages. FORTRAN stands for
FORmula TRANslation. Developed originally in 1954, this
language was first designed to provide easy solutions to
algebraic-type problems (Nickerson, 1975). Its popularity and
ease of use has resulted in its being applied to a wide
variety of computer problem-solving situations. In the early
1970s, Dennis Ritchie at Bell Labs designed a language he
called C (Adams, 1995). With the availability of inexpensive

C compilers for microcomputers, C has become the language in
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which most microcomputer applications are written. In the late
1970s, a new approach to programming called Objected-Oriented
Programming (OOP) was becoming increasingly popular. Bjarne
Stroustrup, another researcher at Bell Labs, added OOP
features and new capabilities to C that eliminated many of the
difficulties C posed for beginning programmers (Adams, 1995).
The resulting language was first called C with Classes, but by
1983, more improvements had been added and the language was
renamed C++.
2.5.6 MSTAT-C Classical Statistics Program

Classical statistics assumes that 1) sampling unit mean
is an expected value everywhere in the unit; 2) variability
about the mean is random; and 3) estimation error is expressed
by within-unit variance. MSTAT-C, written in the C Language,
is an integrated microcomputer program which can be used to
assist scientists in most of the steps involved 1in
agricultural and biological research. MSTAT can be used to
generate experimental designs, manage and transform data and
analyze experimental results from both a biological and
economical perspective.

2.5.7 GS' Geostatistics Software

Geostatistics assumes that the distribution of the object

of concern is spatially dependent. GS' is designed to provide

researchers in the biological, environmental, and agronomic
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sciences with the statistical tools needed to identify and
quantify spatial relationships in geo-referenced data, and to
use this information as desired to create optimal maps or
isopleths of the variate examined. GS*' uses kriging to derive
interpolated map values and associated variance estimates.
2.6 Cyberspace Advance

A comprehensive investigation guided by information
highway and CD-ROM Databases can be used to examine all
existing scientific information related to a research subject.
The databases and networking are helpful at finding references
to journal articles, books, governmental documents, research
reports, newspaper articles, and other publications in
particular subject areas. Some of the databases located in the
Michigan State University Libraries contain the full-text of
an article, and others the abstracts. They include 1)
AGRICOLA: worldwide coverage of agriculture publications from
1984 to present; 2) AGRIS: all aspects of agriculture
publications from 1975 to present; 3) CRIS/ICAR: current U.S.,
Canadian, and state-supported research in agriculture and
related fields; and 4) Cambridge Lifescience: indexes over

journals in biology and life sciences.



3.0 Literature Review

3.1 Pratylenchus penetrans

The penetrans root-lesion nematode (P. penetrans) is an
important migratory endoparasite of roots, stolons, and tubers
of S. tuberosum (Dickerson, et al., 1964). All stages of P.
penetrans are vermiform and migratory. The life cycle can be
completed within 28-65 days. This nematode is commonly found
in soils cropped to potato in the northeastern U.S.A. and
Canada. At least 15 species of Pratylenchus spp. have been
reported to be associated with potato culture (Brodie, 1984).
Pratylenchus penetrans (Cobb, 1917) Filipjev & Schuurmans-
Stekhoven, 1941, is the most highly pathogenic of these
species to S. tuberosum (Brodie, 1984).

In 1938, Hastings and Bosher reported that P. penetrans
retarded the growth of potato plants. The pathogenicity of
this host-parasite relationship was confirmed by Oostenbrink
(1954, 1956) and Dickerson et al. (1965). A 1linear
relationship between initial population density of P.
penetrans and tuber yield was found by Oosternbrink (1966),
and was expanded by Olthof et al. (1973) and Olthof and Potter
(1973) . The pathogenic threshold of P. penetrans was estimated
at 1.0 per gram of soil (Steinhorst, 1950). A range of 0.4 to

1.0 P. penetrans per gram in sandy soil and 0.7 to 2.0 per
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gram so0il in loam and organic soils was identified by
Oostenbrink in 1966. A pathogenic threshold of 2.0 per gram of
soil was established by Olthof and Potter in 1973. The effect
of high populations of lesion nematode on plant growth and
development sometimes resembles the above-ground symptoms of
typical plant stress. Pratylenchus penetrans is capable of
causing an overall growth inhibition of ca. 50% and a tuber
yield inhibition of 10-50% under high population. Superior was
the most susceptible of five cultivars to P. penetrans, and
Russet Burbank was the most tolerant cultivar tested in an
investigation of the ecology and economics of P. penetrans
associated with potato production in Michigan (Bernard, 1973,
and Bernard & Laughlin, 1976). The early potato nematology
research in Michigan was summarized in 1981 (Bird, 1981). It
is 1likely that some of these research projects did not
adequately exclude Verticillium fungi from the research
environment.

Penetration and movement of P. penetrans through the root
tissues 1is both inter and intracellular. Pratylenchus
penetrans colonizes, feeds, and reproduces in root cortex and
other parenchymatous tissue. When necrosis becomes severe,
this nematode tends to leave infected tissue in search of
nonnecrotic roots. Entry may occur on other unsuberized

surfaces of roots, rhizomes, and tubers (Hooker, 1981). Four
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of the 15 Pratylenchus spp., including P. penetrans, have been
known to attack both roots and tubers (Brodie, 1984). Stolon
tissue of S. tuberosum can be infected with P. penetrans as
early as 28 days after planting and can remain infected
throughout the entire growing season. Nematodes inside roots
usually excrete substances causing necrosis of plant cells.
Lesions are not of the magnitude of those observed in the
field where other organisms are present although 1lesion
nematodes alone are fully capable of destroying plant cells
and causing lesions (Brodie, 1984). Lesion formation and root
death usually occur ahead of the invading nematodes. Faulkner
et al. (1970) implied that the root-lesion nematodes not only
provided a court for entry, but also modified the physiology
of the plant to make host suitable for increasing the impact
of other pathogens. P. penetrans reproduced faster in
Verticillium-infected S. tuberosum than in S. tuberosum free
of fungus infection (Schnathorst, 1981).
3.2 Verticillium dahliae

Verticillium wilt of potato was first described by Reinke
and Berthold (1879) and Orton (1914). The term "early dying"
was first used by Pethybride (1916) to describe the symptoms
associated with this detrimental physiological process. The
primary cause of potato early-die was identified as the soil

fungus Verticillium, and the term "early dying" was reported
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by Isaac and Harrison. Two species, V. dahliae and V. albo-
atrum, are known to be pathogens of S. tuberosum. Verticillium
dahliae appears to be the more dominate species in the north
central states and the Pacific northwest where average summer
temperatures frequently exceed 25 C (Rowe et al., 1987). They
also differ in that V. dahliae forms true microsclerotia as
survival structures within infected tissues, whereas V. albo-
atrum forms melanized hyphae.

Verticillium is a monocyclic pathogen, and can be present
in soil at planting. Verticillium produced in roots and stems
during disease development becomes available for infection of
subsequent crops. There are several ways for Verticillium to
colonize noninfested fields. These include introduction on the
surface or within tissue of infected seed tubers, by wind or
mechanical movement of soil particles containing viable
propagules, and occurring naturally in some areas in
association with roots of native vegetation (Rowe et al.,
1987). Once established in a field, Verticillium spp. can
survive in soil for many years in a dormant state as
microsclerotia or melanized hyphae (Powelson, et. al., 1993).
It appears that V. dahliae is capable of survival in dried
artificial cultures or field soils for about 13 years
(Wilhelm, 1955). Verticillium spp. can be free or embedded in

organic debris. Because of its wide host range, this fungus
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can also maintain itself at low 1levels on roots of many
symptomless crop and weed species.

Effects of V. Dahliae on potato plants include toxins,
which are secreted in vessels by the fungi and carried upward
in water, affecting living parenchyma cells adjacent to the
xylem. Talboys (1958) concluded that in either the acute or
mild syndrome necrosis of leaf tissue results from a toxigenic
action of the pathogen. The toxins may also be carried to the
leaves where they cause reduced chlorophyll synthesis along
veins and thus reduced photosynthesis. Toxins disrupt the
permeability of cell membranes and their ability to control
water 1loss by transpiration and thereby result in leaf
epinasty, wilting, interveinal necrosis, browning and death.
The oxidation and translocation of some breakdown products are
also responsible for the brown discoloration of affected
vascular tissues. Wilts occur due to presence and activities
of the fungus in xylem vascular tissues. Entire plant or parts
of plants may die in weeks.

Symptoms of Verticillium wilt in cross sections of
infected stems appear as discolored brown vascular areas. The
fungus was found in xylem vessels of S. tuberosum infected
with V. dahliae (Rudolph, 1931). The plant defense mechanisms
include callose deposition, gel and gum formation in the xylem

vessel, and possibly enzymes and enzyme inhibitors (Francl and
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Wheeler, 1993). Early senescence of infected plants occurs.
Leaves become pale green or yellow and die prematurely, an
"early dying”" or "early maturity”" (Hooker, 1981). Plants may
lose their turgor and wilt during the growing season,
especially on sunny hot days. Infected tubers often present a
light-brown or darkgrey discoloration in the vascular ring.
Cavities can develop inside tubers.

3.3. PDDC (Penetrans/Dahliae Disease Complex)

Although nematodes cause plant diseases by themselves,
most of them live and function in the soil, where they are
constantly surrounded by fungi and bacteria, many of which
also cause plant diseases. In many cases an association
develops between nematodes and certain of the other pathogens.
Nematodes then become a part of an etiological complex. The
interactions resulted in a combined pathogenic potential
greater than the sum of the damage either of the pathogens can
produce individually (Sikora and Carter, 1987).

Pratylenchus penetrans feeds as an endoparasite. Inside
root tissue, P. penetrans causes necrosis of root cells. The
nature of injury caused by P. penetrans makes the roots
particularly suitable for invasion by other organisms (Brodie,
1984). The necrosis wusually occurs ahead of the area
penetrated and serves as an infection court for secondary root

invaders (Mai et al., 1981). Pratylenchus penetrans and V.
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dahliae are two of the documented causal factors for PED
(Riedel, et al., 1985). Infection of S. tuberosum by P.
penetrans increases symptom expression and reduces the
incubation period of V. dahliae and V. albo-atrum. In some
cases V. albo-atrum infection suppresses the number of P.
penetrans in potato roots (Burpee and Bloom, 1978).

Interactions between nematodes and fungi in disease
complexes have been reviewed in detail by N.T. Powell (1971),
and Sikora and Carter (1987). Plant parasitic nematodes
interact with Verticillium spp. in potato production (Jacobsen
et al., 1979). In 1985, researchers at Ohio State University
and the University of Wisconsin confirmed this through their
research with P. penetrans and V. dahliae (Rowe et al., 1985
and Kotcon et al., 1985). A research on disease complexes
showed that predisposition with nematodes caused a significant
increase in fungal infection (Porter and Powell, 1967). An
increase in Verticillium wilt in potatoes was also noted in
the presence of high densities of lesion nematodes (Cetas and
Harrison, 1963). Large numbers of nematodes in the soil
usually increased the incidence of wilts, presumably by
providing more effective penetration points. The role of
nematodes as predisposition agents can involve mechanisms more
complex than root wounding. The S. tuberosum-Pratylenchus spp.

biochemical interactions may alter overall physiology of
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plants that affect response to infection and/or colonization
by Verticillium (Rowe, et al., 1987).

The progression of wilt disease was logically deduced
into well-defined spatial and temporal components (Beckman,
1987). Possible fungus-nematode interaction mechanisms
considered were that nematodes could cause a number of
physiological changes that limit structural responses, reduce
the quantity and timing of biochemicals released, and provide
additional substrate for the invader so that a systemic
invasion proceeds (Beckman, 1989). The P. penetrans and V.
dahliae interactions may involve effects of the nematode
feeding on S. tuberosum that alter the plant's susceptibility
to infection by the fungus or facilitate more rapid invasion
by V. dahliae (Powelson, et al., 1993).

3.4 Solanum tuberosum

Potato (Solanum tuberosum L.), 1is a solanaceous
cultivated plant, with its origin in the highlands of South
America (Burton, 1989). Evidence indicates that two separate
introductions of potato appeared in Europe during the
sixteenth century, and then spread throughout the world
(Brodie, 1984). The first route and earliest date that potato
arrived in North America was from England via Bermuda to
Virginia in 1621 (Hawkes, 1978) . By 1980 the potato was grown

in 126 countries, with a global production of 66 kg per capita
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(Horton, 1982). The U.S. alone produces in excess of 20
million metric ton annually with an annual worth of over 1.2
billion dollars (U.S. Department of Agriculture, 1980).

Milthorpe (1963) assigned three phases of potato growth:
pre-emergence, haulm growth and tuber growth. Tuber formation
in the potato plant can be regarded as the summation of two
separate processes: stolon development and tuberization at the
stolon tip (Booth, 1963). Stolons of potato plants represent
modified 1lateral shoots which arise from the nodes of
underground stems. Stolons differ from normal stems in having
elongated internodes, hooked tips, and small scale-leaves.
Stolons lack chlorophyll and a diageotropic habit (Kumar and
Wareing, 1972). There appears to be a significant relationship
between stolon emergence and root growth (Booth, 1963). Stolon
emergence was retarded 1in excised plants and occurred
initially only at the basal nodes which carried adventitious
roots. The first-formed and longest stolon developed at the
lowest node. Katzke and Palta (1986) demonstrated the presence
of functional tuber and stolon roots and their roles in
transporting water to tubers under field conditions. These
roots may play a role in tuber calcium uptake which is thought
to move primarily with the water in the xylem. Iwama (1979)
assumed that the relationship between root system and tuber
yield was not due to the direct contribution of the root

system, but due to the pleiotropic expression of the
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earliness. Iwama et al. (1981) reported that clones with
larger root, stem and leaf dry weights tended to have longer
growing periods and higher yields. A tuber is formed at the
stolen tip, with a 64-fold cell division and enlargement
volume of lateral proliferating storage tissue increasing. A
tuber consists of 1) medullary tissue; 2) cortical regions,
filled with starch; 3) vascular ring; 4) storage parenchyma;
5) lateral/apical bud, etc. A tuber contains water (>50%),
carbohydrates, protein, fat, vitamins, etc. Tuber initiation
begins with the production of a small structure on a stolon of
the mother plant. Cessation of stolon growth results in the
initiation of tubers (Booth, 1963).

Basal roots originate at the base of the below ground
stem. They supply water primarily to the above-ground
vegetative portion of the plant (Kratzke and Palta, 1985).
Basal roots do not appear to transport water to the tuber
under field conditions (24 h period) though there is a xylem
connection from the basal roots to the tuber. They do not
contribute to Ca accumulation in the potato tuber (Kratzke and
Palta, 1986).

Nodal roots arise from nodes on the below ground stem at
the junction of the stolon to the mainstem (Stem-stolon
junction roots). They supply water primarily to the above-

ground vegetative portion of the plant (Kratzke and Palta,
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1985). They do not appear to transport water to the tuber
under field conditions.

Stolon roots are adventitious roots found at the nodes of
stolons. They have normal root anatomy (Struckmeyer and Palta,
1986) . Under field conditions, stolon roots transport water to
the vegetative parts of the plant, including tubers. Stolon
roots are capable of supplying water and perhaps some
inorganic nutrients to the tuber (Kratzke and Palta, 1985).
Tubers produced on longer stolons with numerous stolon roots
may be larger since they have more access to water and
nutrients. Sixty percent of the tuber Ca enters through stolon
roots. Dixon (1922) estimated the area of phloem in a stolon
and observed a high rate (50 cm h™?) of carbohydrate flow. The
S. tuberosum stolon is clearly an organ capable of and
structurally adapted for unusually efficient translocation. It
has been shown that the growth rates of individual tubers are
correlated with the cross sectional area of stolon tissue.

Tuber roots are roots growing directly from the base of
the buds on the tuber (Struckmeyer and Palta, 1986). Many
tubers have small roots growing directly out of the tubers.
They are capable of supplying water and perhaps some inorganic
nutrients to the tuber. They transport water to the tuber
under field conditions. Stolon and tuber roots may, in part,

transport water to the tuber, since basal and nodal roots
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failed to transport water to the tuber during a 24 h period;
whereas, tuber and stolon roots were able to provide water to
this tuber within two hours (Kratzke and Palta, 1985). The
occurence of tuber roots varies among cultivars. Russet
Burbank and Superior were found to have 34% and 18% of tubers
with tuber roots (Kratzke and Palta, 1992).

Early tuber ontogeny was anatomically described by
Hayward (1938, 1967). The stolon tip enlarges radially after
ca. 3-4 inch elongation of the stolon. The first region to
grow actively is the pith. The coincidental compensating
growth takes place in the cortex with tangential enlargement
and radial divisions of cells to fill with starch. Pericyclic
cells surrounding the outer groups of primary phloem divide,
enlarge rapidly, and become filled with starch. The endodermis
constitutes a line of demarcation between cortex and outer
pericyclic zone in early ontogeny, and disappeared later as a
distinct layer.

A tuber-forming stimulus appears to be formed by active
growing points or entire plants subjected to ca. 14 short-day
(9-hr. photoperiod) cycles (Chapman, 1958). Booth (1963)
described the influences of growth substances such as GA, IAA,
KIN, IAA/GA, IAA/KIN, etc. on the lateral growth. There was an
inverse relationship between stem diameter and lateral shoot

length because they are competing for a limited supply of
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nutrients or a more specific growth factor (Booth, 1963).
Kumar and Wareing (1972) showed that darkness and a moist
atmosphere favor stolon emergence, and raised the question as
to whether normal stolon development is regulated through
endogenous hormones.

Wurr (1977) suggested that the development of potato
tubers followed an approximately sigmoidal curve, but some
grew linearly. The allometric relationships between number of
cells, the volume of the individual cells and tuber weight
indicate that «cell multiplication was the factor most
responsible for an increase in size of the tuber (Plaisted,
1958). Plaisted (1958) reported that the number of
subterranean nodes producing stolons on the potato plant
increased upward as the plant became older, but the largest
tubers were produced on the lower, older stolons of the plant.
Wurr (1977) found that the tested potato varieties formed
similar numbers of stolons but different numbers of tubers,
and more tubers were formed at the first node.

3.5 Engineering Solanaceous Plants

Engineering is the science of making practical
application of knowledge in any field (Webster, 1961).
Manipulation of plant genetic information produces a
genetically engineered plant. Manipulation of plant

architecture results in an architecturally engineered plant.
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Kotcon and Rouse (1984) employed a split root technique to
study the impact of pathogens associated with PED on root
deterioration. The procedures are helpful in providing insight
into the nature of disease complexes.

The potential of utilizing tomato-potato hybrids for
breeding will not be fully realized without a development of
new techniques such as DNA transfers, engineering solanaceous
plants, etc. (Taylor, 1987). Studies involving interspecific
crosses with Solanum species have been widely reported
(reviewed by Magoon, Ramanujani, and Cooper, 1962). Solanum-
Lycopersicon interrelationships have generated much interest
amongst systematists, geneticists, and plant breeders (Rick,
et al., 1986). Potato genotypes grafted onto PVY-infected
tomatoes showed reactions with extreme resistance or systemic
hypersensitivity. Recent success in generating progeny from
crosses between Cycopersicon and Solanum offers exciting new
possibilities (Rick et al., 1986). It has been shown by
further grafting experiments that the foliage of a tomato
scion cannot induce tuber formation in a potato stock, but can
support the development of tubers which have been previously
induced (Madec and Perennec, 1959). Some features of the
below-ground system of a potato-tomato grafting plant appear
similar to that of the split root-stolon culture system of S.

tuberosum used in this research.
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3.6 Simulation modeling

A model is something that imitates relevant features of
the situation being studied. An M is a model of an N if 1)
Some of the components of M correspond in a one-to-one manner
with some of the components of N; and 2) For at least some
relationships, the relation between the components of M is
analogous to that between the corresponding components of N
(Eisen, 1988).

Agricultural crops, pests and the environment interact on
each other in a dynamic manner. Simulation models of
agricultural systems can be highly significant research tools.
They must, however, be able to accurately simulate the
dynamics of the system, including the impacts of pests.
Nematologists have developed simulation models. For example,
a model of Heterodera schachtii infecting Beta vulgaris was
established (Caswell et al., 1986). There are, however,
relatively few nematode simulation models. Agricultural
scientists have developed a number of simulation models. For
example, SUBSTOR is a sister simulation model of potato growth
and development from the CERES grain models. Only a few of the
crop models that predict yield include the influences of pests
(Ritchie, 1986). A systems approach to achieving additional
knowledge useful for interpreting the soil inoculum/disease

and yield loss relationships has been initiated using a potato
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plant growth model (Rowe et al., 1987). A Verticillium
submodel, which includes independent functions for both
infection and colonization, has been coupled to the growth
model. Environmental variables can be incorporated to
influence each of the components of the disease cycle
separately. Additionally, other pathogens or pests can be
coupled to the plant growth model, thus modifying growth and
yield in the presence of Verticillium. Environmental effects
on the plant itself are accounted for by the plant growth
model. Additional experimental data are being developed to
allow proper empirical relationships to be inserted into this
model.
3.7 Interaction Biology

The importance of disease in population dynamics is
increasingly being suggested and confirmed (Myers, 1988). It
is also becoming apparent, however, that it is dangerous to
consider the interaction between parasites and hosts as though
there are only two components to the interaction. The
influence of a parasite on its host may well be to change its
response to competitors and mutualists, alter its reaction to
physical conditions of the environment and damage its ability
to garner resources (Begon, Harper, and Townsend, 1990).
Models of host-parasite interactions are increasingly having

to incorporate the behavior of at least a third biological
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entity in order to increase their realism and predictive value
(Holt and Pickering, 1985; Anderson and May, 1986). It is
apparent that the development of a Verticillium wilt epidemic
can be retarded or accelerated depending on which interactions
are favored (Schnathorst, 1981). The complexity arises when
one considers the possibilities of triple and quadruple
interactions.

3.8 Landscape Ecology

A landscape is a portion of territory that can be viewed
at one time from one place (Webster, 1988).

Landscape ecology 1is the study of the horizontal
physical-biological relationships that govern the different
spatial units of a surface area. A vertical physical-
biological relationship 1is a relationship among plants,
animals, air, water, and soil within a relatively homogeneous
spatial unit. It deals with the broad field of ecology. A
horizontal physical-biological relationship is a relationship
among spatial units that makes landscape ecology unique
(Forman, 1986).

Landscape ecology focuses on three basic characteristics
of the landscape: structure, function, and change. The seven
general principles of landscape ecology are: landscape
structure and function, biotic diversity, species flow,

nutrient redistribution, energy flow, landscape change, and
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landscape stability (Forman, 1986).

Development of the science of landscape ecology can be
traced to the writings of scholars in every period of history.
The outlines of a distinct discipline or field of study were
provided by a series of pioneering geographers and
biogeographers, primarily during the 1960s. Landscape
ecologists recognize the relevance of work in several sister
disciplines, such as geography, ecology, biogeography,
environmental ecology, geographical ecology, community
ecology, geographical population, planning and landscape
architecture, etc (Jongman, 1987).

There are examples of landscape ecology research related
to pests. The susceptibility of forests in a Douglas-fir
region to selected insect and fungal pests was studied on a
landscape ecology basis, and highly species specific responses
of pests and pathogens to a developing patchwork was found
(Franklin et al., 1987). A concept of the landscape as the
spatial dimension of the biotically-driven episodes that alter
landscape structure is represented in a conceptual model
linking insect-host and landscape mosaic interactions (Rykiel
et al., 1988).

One of the purposes of landscape ecology applications is
to use information about a system in the design of procedures

to optimize landscape management. These systems should provide
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spatial balances, high resistance to disturbance, high biotic
diversity, 1low energy maintenance, and high harvestable
productivity (Forman, 1986). There is a relationship between
cropping systems and landscape heterogeneity/monogeneity in
farming areas which cover large parts of the USA. It is,
therefore, possible to provide new insights about PDDC by
studying it through the use of the principles and approaches
of landscape ecology.

Nematode distributions are generally aggregate or clumped
(Ferris, 1984). Little work, however, has been done to
quantify or describe that clumping (Ferris, 1984). Validation
of nematode distributions is important for meeting assumptions
of certain parametric statistical tests, for adding in the
development of sampling techniques, for assessing temporal
changes in density and distribution, and for comparing
interspecific distribution patterns. No working hypotheses
with landscape ecology, however, has been previously generated
to address nematode problems in general and the PDDC system in
specific. Certainly, exploration is needed to establish this
research area for nematology and potato pest management. The
possibility of a better understanding of the PDDC system on a
landscape ecology base will increase opportunities to identify
attractive options for novel methods of management of plant

parasitic nematodes and other potato pests.
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3.9 Geostatistics

Geostatistics consists of a set of statistical tools
which offers a way of identifying, quantifying and analyzing
spatial relationships in geo-referenced data (Isaaks, 1989).
A geo-referenced datum exists when a sample is geographic in
nature and a non-zero spatial autocorrelation is present; and
should have to do with the relative location of the areal unit
under study (Griffith, 1988). Classical statistics (e.qg.,
classical sample mean) is not sufficient for geo-referenced
data; since it fails to embrace any locational information.
One of the fundamental assumptions of classical statistics is
that the elements of a population take on numerical values in
an independent fashion (Griffith, 1980). However, it has long
been recognized that conditions of independent random sampling
are rarely met in practice (Smith, 1980). The assumption of
independence 1is frequently violated in geo-referenced
situations. Moreover, the value of some phenomenon in a given
areal unit tends to be related to those values of this
phenomenon taken on by juxtaposed areal units. The spatial
autocorrelation viewpoint does not ignore randomness. Rather,
it maintains that a geographic distribution is composed of
both pattern (a spatial structure component) and random error
(an independent noise component). Violating classical

independence of observations assumptions uncovers
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complications that tend to 1lie dormant in <classical
statistical analysis (Griffith, 1980).

Geostatistics is one of the most rapidly growing areas of
statistics. If geostatistics becomes as mature as classical
statistics, it seems certain that we will understand nature
much better (Griffith, 1988). As a young discipline, spatial
statistics has components of all the classical areas of
statistics. Classical statistics and spatial statistics are
equally efficient if zero spatial autocorrelation is present.
Autocorrelation refers to the pairwise correlation of
univariate observations. A plot of the autocorrelation values
versus the lag (distance of separation) 1is called an
autocorrelogram (Trangmar et al., 1985). Traditionally science
has been concerned, in part, with the study of structure
amongst variables. More recent attention has been turned to
the study of structure among observations of a single
variable. Considerable attention has been focused on this
spatial autocorrelation approach in recent years. More recent
extensions and developments, especially in terms of kriging,
offer far more promise (Griffith, 1988). The strength of
geostatistics over more classical statistical approaches is
that it recognizes spatial variability at both the "large
scale” and the "small scale", or in statistical parlance, it

models both spatial trend and spatial correlation.



4.0 Experimentation

The research consists of three major topic areas:

* Initial ontogeny of the below-ground system of S.
tuberosum in the presence and absence of microorganisms
associated with potato production

* Joint impact of P. penetrans and V. dahliae on S.
tuberosum, with special reference to interactions in an
etiological complex

* Linear, spatial, and space feature of an S. tuberosum
ecosystem: with special reference to P. penetrans and

V. dahliae

4.1 Simulation modeling of the Solanum tuberosum below-ground
system associated with Pratylenchus penetrans and Verticillium
dahliae
4.1.1 Introduction

Development of mechanistic computer models to simulate S.
tuberosum growth and development associated with pests has
made a new approach available for development of IPM
strategies and procedures (Bird, 1990). Models are able to be
coupled to identify reference on healthy S. tuberosum yields,
pest-infested crop yields, and firm-level estimates of tuber
yield losses. In 1987, an empirical potato model of moderate

40
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complexity, POTATOPEST, was converted to MICROPOTATOPEST using
Microsoft FORTRAN Version 3.2 (Bird, 1990). It was calibrated
for simulation of the growth and development of S. tuberosum
cv Russet Burbank using 1985 Michigan State research data.
Studies of the form and function of S. tuberosum root
systems are few (Allen and Scott, 1992). Root development,
expansion, and death is much less understood that plant top
development and growth. Computer simulation models, however,
are only as accurate as is the information contained within
them (Ritchie, 1986a). There are four types of S. tuberosum
function roots: basal, nodal, stolon, and tuber roots (Kratzke
and Palta, 1985 and 1992; Struckmeyer and Palta, 1986).
Although these specific types of S. tuberosum roots were
reported, extensive literature involving S. tuberosum have
been associated with a very general concept of roots. The
below-ground system of S. tuberosum in this research was
reduced to eight basic components, which are basal roots,
nodal roots, stolon roots, tuber roots, stolon, tuber, below-
ground stem, and seed piece. The main objective of this study
was to construct a computerized model simulating S. tuberosum
cv. Superior growth and development using C++ programming
language, with special reference to seven of the eight below
ground components associated with P. penetrans and V. dahliae.

The seed piece was not included in the model. The related
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objectives of the research consisted of:

* Identifying and demonstrating individual growth and
development of S. tuberosum basal roots, nodal roots, stolon
roots, tuber roots, stolons, tubers; and below-ground stems.

* Displaying and detecting best-fit linear, polynomial,
logarithmic, or exponential function indicating trends,
correlations, or forecasting of the growth and development of
S. tuberosum basal roots, nodal roots, stolon roots, tuber
roots, stolons, tubers, and below-ground stems.

* Determining and simulating growth and development of S.
tuberosum basal roots, nodal roots, stolon roots, tuber roots,
stolon, tuber, and below ground stems under a pathogen-free
environment (PFE) and a pathogen-impacted environment (PIE)
associated with P. penetrans and V. dahliae interactions.

4.1.2 Materials and Methods

4.1.2.1 Growth and development of a multi-component S.
tuberosum below-ground system

1. A conceptual potato plant model system driven by
water, with special reference to seven components of the below
ground system, is proposed in Figure 4.1.1. The eighth

component, the seed piece, is not included in the model.
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2. Biomass production. Biomass production is a continuous
time process in the plant system. The net change in biomass at
a given time interval 1is W(t+at) - W(t). The biomass
production of the below-ground system of S. tuberosum system
included: 1) basal roots; 2) nodal roots; 3) stolon roots; 4)
tuber roots; 5) stolons; 6) tubers; and 7) below-ground stems.
The sum of the two or more components included 1) basal-nodal
roots; 2) stolon and stolon roots; 3) all roots in total; and
4) below ground system in total. The above ground S. tuberosum
biomass production included leaves and above ground stems.

3. Biomass Partitioning. For any organ of a plant, such
as roots, leaves, tuber, etc., the biomass accumulation for
that organ at a given time interval is a function of the
proportion of new biomass partitioned to the organ and the
attribution to remobilization of the assimilate stored in it.
Biomass produced is partitioned between organs. Weight of
roots, for example, is allometric to the weight of the whole
plant. The S. tuberosum biomass partitioning included the
root/shoot ratio, the below-/above-ground ratio, etc. The
biomass partitioning of the S. tuberosum below-ground system
included: 1) the basal-/nodal-/stolon-/tuber root ratio; 2)
the roots/stolon ratio; and 3) the root/tuber ratio.

4. Curve fitting. Curve fits are a visual way of
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indicating trends or correlations in plotted data, and can
also be used as a method of forecasting data. Curve fitting
was applied to scatter graphs of the S. tuberosum growth and
development in this research using microcomputer software of
Cricket (Graph 1.3.2). Curve fits of 1linear function and
equation with r? values were generated for the growth and
development of the basal roots, nodal roots, stolon roots,
tuber roots, stolon, tuber, below-ground stem, root systenm,
below-ground system, above-ground system, and whole plant in
PFE and PIE.
4.1.2.2 Experimentation

1. Experiment. Two so0il environments were used in the
greenhouse experiment of the computer simulation model
development. The PFE (Pathogen-Free Environment) soil
environment was created by planting S. tuberosum cv. Superior,
susceptible to P. penetrans, and V. dahliae, in steam-
sterilized (2 hours, 98 C) Montcalm sandy loam soil. The PIE
(Pathogen-Impacted Environment) was created by using field
soil from a site where a high incidence of PED was observed
throughout the previous 10 years. The site is located at the
Michigan State University Potato Research Farm at Entrican,
Michigan. Both soils were loamy sand (75.3% sand, 13.7% silt,
11.0% clay). The experiment was conducted in a randomized

design with five replications each in PFE and PIE.
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2. Growth and development assessment of the below ground
system of S. tuberosum. Plants were destructively sampled 10,
15, 20, 25, 30, 35, 40, and 45 days after planting. Five
plants from each of two soil environments were randomly
selected. The 30.5 cm pot was first submerged in a water tank
for 30 min. Soil was then removed from the plant by careful
washing with a strem of water. The growth and development of
the S. tuberosum production system, with special reference to
the below-ground system, were recorded as 1) basal root weight
and number; 2) nodal root weight and number; 3) stolon root
weight and number; 4) tuber root weight and number; 5) stolon
weight and number; 6) tuber weight and number; 7) below-ground
stem weight and number; 8) above-ground stem weight and
number; 9) leaf weight and number; 10) above-ground plant
height; and 11) seed tuber weight. The plant dry weights were
also measured 30, 35, 40, and 45 days after planting.

3. Population density assessment of P. penetrans and V.
dahliae. The soil assay method for P. penetrans used a
modified centrifugation-flotation technique. The root assay
method for P. penetrans employed a shaker technique (Bird,
1971). The soil assay method for V. dahliae utilized a
dilution plating technique. Verticillium dahliae population
density in soil was assessed at planting. Pratylenchus

penetrans population density under the PIE was assessed in
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soil at pre-planting and 45 days after planting in soil, and
in root and stolon tissues 15, 20, 25, 30, 35, 40, and 45 days
after planting. The presence or absence of P. penetrans under
the PFE was validated by sampling soil at planting, and a gram
of root and stolon tissue randomly selected every five days.
4.1.2.3 Simulation Models

The potato simulation model was compiled and linked in
the UNIX computing environment by Mr. Joseph Alexander at
Michigan State University Computer Department using GNU g++
Compiler v.2.4.5. The potato model can also be developed in
the DOS environment using Turbo C++ Compiler v.3.0. Figure
4.1.2 shows the flow chart of the computer model simulating
the growth and development of S. tuberosum basal roots, nodal
roots, stolon roots, tuber roots, stolon, tuber, and below-
ground stem under a pathogen-free environment (PFE-Clean Soil)
and a pathogen-impact environment (PIE-Field Soil) associated
with P. penetrans and V. dahliae interactions. The outputs
included plant fresh weight in PFE and PIE, plant dry weight
in PFE and PIE, and P. penetrans population dynamics. The

program written in C++ Language is enclosed in appendix 7.0.
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Main Menu Exit
1 | |
. oo Clean Sail Field & Clean
Field Sail Option Option Soll Observation

Menu prampts user to enter a valld section of
the underground part of the Potato Plant that
will be abserved.

1 ]
Calculations Calculations
[ i -
Output of calculations based on the user's Cambination
. . of both Fleld
chaice of what section of the underground part and Clean Sail
of the Potato Plant is being observed. Results

Figure 4.1.2. Flow chart of the computer model simulating the
growth and development of S. tuberosum basal roots, nodal
roots, stolon roots, tuber roots, stolon, tuber, and below-
ground stem under a pathogen-free environment (PFE-Clean Soil)
and a pathogen-impact environment (PIE-Field Soil).
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4.1.3 Results
4.1.3.1 Running of the potato simulation model

The potato simulation model was run in a UNIX system at
Michigan State University Computer Laboratories. An IBM-PC DOS
version of the model can be made to run in microcomputers.

4.1.3.2 The growth and development of the Solanum
tuberosum below-ground system.

Root System. The S. tuberosum cv. Superior basal root,
nodal root, stolon root, and tuber root were first observed
10, 10, 30, and 40 days after planting under the PFE soil
environment, respectively. A similar sequence of events took
place in the PIE except for the tuber root which was not
observed until 45 days after planting (Figure 4.1.2-5).

Below-Ground Shoot System. The S. tuberosum cv. Superior
below-ground stem, stolon, and tuber were first observed 10,
20, and 35 days after planting under the PFE soil environment,
respectively. A similar sequence of events took place in the
PIE except for the tuber which was not observed until 45 days
after planting (Figure 4.1.6-8).

Soil Environment. Differences between S. tuberosum cv
Superior growth and biomass production under the PFE soil
environment and that under the PIE were observed as early as
10 days after planting. They were consistent throughout the

growing period. Basal root, nodal root, stolon root, tuber
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root, stolon, tuber, below-ground stem, root system, below-
ground system, above-ground system, and whole plant exhibited
more growth throughout the growth period under the PFE
compared to the PIE soil environment (Figure 4.1.2-12). The
growth of the basal root and tuber were impacted to a much
greater extent than that of other S. tuberosum below-ground
system components (Figure 4.1.2, 4.1.7).

Biomass Production. Linear curve fitting was associated
with the growth of S. tuberosum system components (Figure
4.1.2-12). The average r? value under the PFE was 0.818,
compared to 0.739 under the PIE.

Significantly higher dry weights of basal roots, nodal
roots, stolon roots, and tuber roots under PFE were observed
30, 30, 45, and 40 days after planting, compared to that under
PIE, respectively (Table 4.1.1). Significantly higher dry
weights of stolon, tuber, and below-ground stem under PFE were
observed 40, 35, and 40 days after planting, compared to that
under PIE, respectively (Table 4.1.1).

Biomass Partitioning. The average root/tuber, root/shoot,
root/stolon, and below-ground/above-ground system ratios of S.
tuberosum during the growing period under the PFE were 0.26,
22.2, 2.96, and 0.45, respectively. Those ratios under the PIE
were 0.24, 16.6, 95.65, and 0.42, respectively (Figure

4.1.13). The average biomass partitioning under the PFE were
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that the basal roots accounted for ca. 5%, nodal roots
accounted for 12%, stolon roots accounted for 0.1%, tuber
roots accounted for 0.001%, stolons accounted for 1%, tubers
accounted for 6%, below-ground stems accounted for 7%, and
above-ground system accounted for 69%. The average biomass
partitioning under the PIE were that the basal roots accounted
for ca. 1%, nodal roots accounted for 14%, stolon roots
accounted for 0.1%, tuber roots accounted for 0.0001%, stolons
accounted for 1%, tubers accounted for 0.2%, below-ground
stems accounted for 14%, and above-ground system accounted for
71%.

4.1.3.3 Pratylenchus penetrans population biology in PIE

P. penetrans was recovered from the basal root, nodal
root, stolon root, and tuber root of the S. tuberosum 15, 15,
35, and 45 days after planting under the PIE. This nematode
was also recovered from the stolon 30 days after planting
under the PIE (Figure 4.1.15). No P. penetrans was recovered
under the PFE.

Second-stage juveniles and male adults of P. penetrans
were recovered from the basal root, nodal root, stolon root,
and stolon. Female adults of P. penetrans were recovered from
the basal root, nodal root, stolon root, tuber root, and
stolon. A second-stage juvenile with body length of 0.211 mm

was recovered from the stolon 45 days after planting.
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Observations from randamly selected root samples showed
that about 70% and 40% of P. penetrans were counted for the
second-stage Jjuveniles 25 and 45 days after planting,
repectively. About one thirty of P. penetrans were counted for
the male adults 45 days after planting.

The population density of this nematode in basal roots,
nodal roots, stolon roots, and stolons continued to increase
throughout the growing period of S. tuberosum. By 45 days
after planting, Fifty-six, 53, 33, 20, and 5 P. penetrans per
gram of plant tissue were recovered from the basal roots,
nodal roots, stolon roots, tuber roots, and stolons,
respectively (Figure 4.1.14). A linear curve was observed
better-fitted for P. penetrans population dynamics in basal-
nodal roots (Figure 4.1.15-16).

4.1.4 Discussion
This research reduced the below-ground system of S.
tuberosum into basal roots, nodal roots, stolon roots, tuber
roots, stolon, tuber, and below-ground stem. Results showed
that there were significantly less basal roots of S. tuberosum
under the PIE than that under the PFE soil environment.
Additional research is needed to explore its significance.

The recovery of a young second-stage juvenile with body

length of 0.211 mm from the stolon tissue suggested that the

reproduction of P. penetrans could be accomplished in the S.
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tuberosum stolon.

With a validation of this potato simulation model, it
should be incorporated into the SUBSTOR. SUBSTOR is a potato
simulation model developed at Michigan State University as

part of the CERES crop model system.
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Table 4.1.1. Dry weights (g/plant) of the below-ground
system components of Solanum tuberosum under the
Pathogen-Free Environment (PFE) and Pathogen-Impacted
Environment (PIE).

Days after planting

Plant Soil 30 35 40 45
Basal roots PFE 0.22 0.48 0.53 0.88
PIE 0.03 * 0.02 * 0.03 * 0.03 *
Nodal roots PFE 0.78 1.55 1.74 2.20
PIE 0.43 * 0.72 * 0.92 * 1.18 *
Stolon roots PFE <0.01 <0.01 < 0.01 0.02
PIE <0.01 <0.01 < 0.01 0.01 *
Stolons PFE 0.03 0.10 0.36 0.26
PIE 0.04 0.06 * 0.11 * 0.15 *
Tuber roots PFE 0.00 0.00 < 0.01 < 0.01
PIE 0.00 0.00 0.00 * < 0.01
Tubers PFE 0.00 0.03 1.63 3.69
PIE 0.00 0.00 * 0.00 * 0.03 ~*
Below-ground stems PFE 0.58 1.06 1.52 2.13
PIE 0.57 0.84 1.10 * 1.05 *

Note: "*" indicates that the dry weight (g/plant) under
the PIE is significant (P = 0.05) lower than that under
the PFE by t-test.
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Figure 4.1.3. Basal root growth of Solanum tuberosum
associated with the linear function under PFE and PIE.
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associated with the linear function under PFE and PIE.
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4.2 Effect of Pratylenchus penetrans and Verticillium dahliae

on isolated below-ground system components of Solanum

tuberosum

4.2.1 Introduction

Tuber formation in S. tuberosum is regarded to be the
summation of the stolon development and tuberization at the
stolon tip (Booth, 1963). Field studies have shown that stolon
tissue of S. tuberosum can be infected with P. penetrans as
early as 32 days after planting and can remain infected
throughout the entire growing season (Bird, 1987). A field
nematicide trial has demonstrated that stolon tissue from
plants grown in nematicide treated soil can have significantly
greater biomass as early as 28 days after planting. This trend
can continue throughout the growing season, resulting in
greater tuber yield. Hence, there is a distinct need to learn
more about the nature of the interactions between P. penetrans
and Verticillium fungi with specific reference to the impact
of phytopathogenesis on the ontogeny of stolon tissue and
tuber production.

Although relatively little is published about the below-
ground system architecture and associated stolon and root
configurations of S. tuberosum, this plant appears to be
ideally suited for research using a modification of the split

root technique. The split root technique was effective in
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providing insight into the nature of disease complexes, and
was used by Kotcon and Rouse (1984) to assess the impact of
pathogens on root deterioration. This study presented a split
root-stolon culture system architecture. The below-ground
system of S. tuberosum was architecturally manipulated into
isolated root system and stolon system. The root system
consists of basal roots and nodal roots. The stolon system
consists of stolon and stolon roots. The technique and results
of research should lead to a significant improvement in the
understanding of the nature and potential concomitant impacts
of P. penetrans and V. dahliae on tuber production.
4.2.2 Material and Methods

Architecturally isolated below-ground system of S.
tuberosum: Microtubers of S. tuberosum cv Superior (average
15 grams) were incubated in vermiculite in a growth chamber
programmed at 24+2 °C until the stolon tissue of the uppermost
node of the below-ground stem had elongated to 6-10 cm. The
stolon tissue of the uppermost node, nodal root tissue of
lowermost nodes of the below-ground stem, and basal root
tissue were selected. All other root and stolon tissue were
excised. Isolated basal-nodal root and stolon tissues were
individually inserted into opposite chambers of two-chamber
growth containers (Figure 4.2.1).

Experiments: The isolated S. tuberosum below-ground
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system was inoculated with individual and concomitant inocula
of P. penetrans culture from peas, and a highly-virulent
isolate (H2) of V. dahliae . There was a total of 12 treatment
combinations wusing a randomized block design with four
replications. Randomly selected S. tuberosum plants, with
special reference to basal-nodal root system and stolon
system, were photographed (Figure 4.2.2-11). Tubers were
harvested 55-60 days after the below-ground system was
architecturally isolated into basal-nodal root system and
stolon system. Differences in tuber yields among treatment
means were tested for significance (P = 0.05) using Duncan's
multiple range test procedure. Experiment A was repeated in
Experiment B.
4.2.3 Results

The architecturally isolated S. tuberosum below-ground
system without the impact of the P. penetrans and V. dahliae
interaction exhibited normal, healthy, and optimal growth of
the basal roots, nodal roots, stolon roots, stolons, and
tubers (Figure 4.2.2). The individual and concomitant effect
of P. penetrans and V. dahliae on S. tuberosum resulted in
less plant growth and development, below-ground system
biomass, and tuber production, compared to that in the absence
of individual or both pathogen. (Figure 4.2.3-11)

Stolon systems exposed to individual or both pathogens
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resulted in significantly (P = 0.05) less tuber weight in each
experiment than that in the absence of those organisms (Table
4.2.2). Seventeen to 29% (P = 0.05) less tuber weights were
found in S. tuberosum infected with P. penetrans in the stolon
system than in the control. Eighteen to 25% (P = 0.05) less
tuber weights were found in S. tuberosum infected with V.
dahliae in the stolon system than in the control. Twenty-eight
to 42% (P = 0.05) less tuber weights were found in S.
tuberosum infected with P. penetrans and V. dahliae in the
stolon system than in the control.

The basal-nodal root system exposed to either V. dahliae
or P. penetrans or in combination resulted in significantly (P
= 0.05) less tuber weight in Experiments A and B. Twenty-five
to 30% (P = 0.05) 1less tuber weights were found in S.
tuberosum infected with P. penetrans in the basal-nodal root
system than in control. About 45% (P = 0.05) 1less tuber
weights were found in S. tuberosum infected with P. penetrans
in the basal-nodal root system than in the control. About 60%
(P = 0.05) less tuber weights were found in S. tuberosum
infected with both P. penetrans and V. dahliae in stolon
system than in control (Table 4.2.2).

The basal-nodal system exposed to P. penetrans and stolon

root system exposed to V. dahliae resulted in about 34% (P =
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0.05) 1less tuber weight than in control. The basal-nodal
system exposed to V. dahliae and stolon root system exposing
to P. penetrans resulted in about 50% (P = 0.05) less tuber
weight than in control. The basal-nodal system exposing to
both pathogens and stolon root system exposing to both
pathogens resulted in about 64% (P = 0.05) less tuber weight
than in the control (Table 4.2.2).
4.2.4 Discussion.

This method of isolating the stolon from the basal-nodal
root system makes it possible to demonstrate that P. penetrans
could have a significant (P = 0.05) impact on tuber yield
through parasitism of the stolon system. A maximum of 29%
tuber weight loss (P = 0.05) could occur when only the stolon
system was exposed to P. penetrans. This result places an
increased emphasis of the 1role of stolons in tuber
development, and justified the incorporation of a stolon
system component into the S. tuberosum development simulation
model.

More studies are needed on the nature of the pathogenic
stolon system such as: 1) influence of necrotic injury, 2)
influence of fungal toxin; 3) decreased water transport from
stolon roots to mainstem and aerial part of the plant, and
tuber, 4) decreased water transport from tuber roots to tuber,

and 5) increased wilt-fungus spread.
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Table 4.2.1. Twelve experimental combinations of
individual and concomitant infestation of Pratylenchus
penetrans and Verticillium dahliae in isolated root

system and stolon system of Solanum tuberosum in
Experiments A & B.

Treatment Basal-Nodal Stolon
Root System System
1 Ck!? Ck
2 Pp? Ck
3 Ck Pp
4 Pp Pp
5 va? Ck
6 Ck vd
7 vd vd
8 Pp vd
9 vd Pp
10 Ppvd* Ck
11 Ck PpVvd
12 PpVd PpVvd
Note:

1. Noninfested Solanum tuberosum.

2. S. tuberosum infested with Pratylenchus penetrans.
3. S. tuberosum infested with Verticillium dahliae.

4. S. tuberosum infested with P. penetrans and V. dahliae
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Experimental unit used for separating the below-ground system of

Figure 4.2.1.

Solanum tuberosum.
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4.3 Synergistic, additive and antagonistic nature of
Pratylenchus penetrans and Vbrticiliium dahliae interactions
associated with Solanum tuberosum
4.3.1 Introduction

Interactions between nematodes and soilborne fungi have
received considerable attention (Bergeson, 1963, Riedel, et
al., 1985). Atkinson (1892) observed that infection by root-
knot nematodes was shown to increase the severity of Fusarium
wilt. The concept of interactions between nematodes and fungi
in disease complexes was documented by Powell (1971).
Synergism and antagonism are terms describing quantitative
plant disease interactions in which the combined effect of a
phytoparasite nematode and another plant disease organism is
either greater or less than the sum of the effects of the
individual organisms (Sikora and Carter, 1987). Joint effects
of P. penetrans and V. dahliae have been shown to be affected
by abiotic factors including temperature and moisture
(Powelson and Rowe, 1993).

Synergistic interactions between P. penetrans and V.
dahliae in PED disease development of potato yield inhibition
were found (Martin, et al., 1982, Rowe, et al., 1985). Recent
work has shown that the impact of Meloidogyne hapla on yield
could be additive with V. dahliae (MacGuidwin and Rouse,

1990). There has been 1little research on the effect of
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combined infection by these pathogens on tuber quality
(MacGuidwin and Rouse, 1990). There is still a distinct need
to learn more about the nature of the interactions between P.
penetrans and the Verticillium fungi. Results of this research
should provide insight into the nature of disease complexes
and lead to a significant improvement in the understanding of
potential concomitant impacts of P. penetrans and V. dahliae
on tuber production, which could impact pest management for
potato crops.

The main objective was to determine the qualitative and
quantitative nature of P. penetrans and V. dahliae
interactions associated with S. tuberosum through six growth
chamber and greenhouse experimental studies, and a three-year
S. tuberosum ecosystem study. The purpose was to explore 1)
synergistic, additive, or antagonistic concomitant influence
of P. penetrans and V. dahliae in six growth chamber and
greenhouse experiments, and in a three-year agroecosystem; and
2) S. tuberosum basal-nodal root system and stolon system
interactions associated with P. penetrans and V. dahliae.

4.3.2 Materials and Methods
Experiments A-F. Experiment A was conducted in the
greenhouse using 1) S. tuberosum cv. Superior microtubers with
average weight of 15 grams; 2) V. dahliae highly-virulent

isolate H2; and 3) P. penetrans greenhouse culture maintained
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on Pisum sativum. Experiment B was a repeat of A with the same
experimental design (Table 4.3.1). Populations of P. penetrans
on Pisum sativum cv. Sugar Ann were maintained wunder
greenhouse conditions. The greenhouse was programmed for 26 +
2 C with a 16-hour of photoperiod.

Experiments C-F were conducted with less treatment
combinations and more variables to capitalize on what had been
learned (Table 4.3.1). The modified experimental design
includes 1) S. tuberosum cv. Superior microtuber average 27
grams; 2) V. dahliae mildly-virulent isolate 355; 3) P.
penetrans growth chamber monoxenic Gamborg's B-5 culture on
Zea mays cv. Iochief; 4) growth chamber environment; and 5)
change of inoculum levels. The growth chamber was programmed
for a 16-hour of photoperiod at ca. 26 C, and 8-hour night at
18 C. Isolates H2 and 355 of V. dahliae, and Gamborg's B-5
culture of P. penetrans were from the Nematology Laboratory at
Ohio State University Department of Plant Pathology.

Ecosystem: The S. tuberosum ecosystem consisted of
cropping schemes involving two leguminous crops, alfalfa
(Medicago sativa) and yellow sweet clover (Melilotus
officinalis), two grain crops, corn (Zea mays) and sudax
(Sorghum halupeuse x Sorghum sudanese ), and potato (Solanum
tuberosum L. cv. Superior). The research was initiated at the

Montcalm Potato Research Farm in 1989, and concluded in 1991.
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A randomized block design with five replications of each of 10
treatments was implemented. Each 4-row plot was 15 m in length
and consisted of a loamy sand soil. Seed pieces of S.
tuberosum were machine-planted to a depth of ca. 10 cm on 21
May 1991, with 21-cm spacings within the row and 0.86 m
between rows. The research site was irrigated and managed
following soil test results for fertility, weeds, and pests,
according to conventional recommendations for commercial
production of potatoes in Michigan.

Pathogen population densities were transformed using
ln(x+1) for ANOVA procedures and regression analyses.
Appropriateness of linear regressions of the tuber yields of
S. tuberosum over pathogens fitted for each cropping scheme
was evaluated by r? values. A DWLS computer model was used to
view the tuber yield response surface of S. tuberosum.

4.3.3 Results

Nature of P. penetrans and V. dahliae interactions
associated with S. tuberosum. Synergistic, additive, and
antagonistic influences of P. penetrans and V. dahliae on S.
tuberosum occurred once (Table 4.3.2), nine times (Table
4.3.2-4) and two times (Table 4.3.2-4), respectively in this
research.

Nature of S. tuberosum basal-nodal root system and stolon

system interactions associated with P. penetrans and V.
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dahliae. Additive and antagonistic influences of S. tuberosum
basal-nodal root system and stolon system on tuber yields
associated with P. penetrans and V. dahliae occurred five
times, respectively (Table 4.3.5-9). There was no occurrence
of synergistic influences of S. tuberosum basal-nodal root
system and stolon system associated with P. penetrans and V.
dahliae in this research.
Additive joint influences of S. tuberosum basal-nodal
root system and stolon system on tuber yields occurred when 1)
both plant systems were associated with P. penetrans; and 2)
both plant systems were associated with V. dahliae (Table
4.3.5-7). It also occurred when the basal-nodal root system
was associated with V. dahliae, and stolon system was
associated with P. penetrans in Experiment A, but it did not
occur in Experiment B (Table 4.3.7).
Antagonistic joint influences of S. tuberosum basal-nodal
root system and stolon system on tuber yields occurred when 1)
basal-nodal root system was associated with P. penetrans, and
stolon system was associated with V. dahliae; and 2) both
plant systems were associated with P. penetrans and V. dahliae
interactions (Table 4.3.7-8). It also occurred when the basal-
nodal root system was associated with V. dahliae, and stolon
system was associated with P. penetrans in Experiment B, but

it did not occur in Experiment A (Table 4.3.7-8).
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Individual and joint influence of P. penetrans and V.
dahliae. The impact of P. penetrans on the basal-nodal root
system of S. tuberosum was less severe than V. dahliae (Table
4.3.10). The impact of P. penetrans and V. dahliae on the
stolon sys£em of S. tuberosum was about equal. The joint
impact of P. penetrans and V. dahliae on the basal-nodal root
system and stolon system of S. tuberosum was probably additive
(Table 4.3.2-3).

Pratylenchus penetrans was equally pathogenic on the
basal-nodal root system and stolon system of S. tuberosum
(Table 4.3.11). Joint impact of P. penetrans on basal-nodal
root system and stolon system was probably additive.
Verticillium dahliae was much more pathogenic on the basal-
nodal root system than the stolon system of S. tuberosum
(Table 4.3.11). Joint impact of V. dahliae on the basal-nodal
root system and stolon system was probably additive, but might
be antagonistic (less yield loss than the predicted).

Antagonistic responses (less inhibition than predicted)
occurred when both below-ground components were exposed to
joint impact of P. penetrans and V. dahliae (4.3.8). The
impact of P. penetrans on the basal-nodal root system of S.
tuberosum, plus the impact of V. dahliae on the stolon system,
resulted in antagonistic responses (Table 4.3.7). The impact

of V. dahliae on the basal-nodal root system of S. tuberosum,
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plus the impact of P. penetrans on the stolon system, resulted
in an additive or antagonistic response (Table 4.3.7).

P. penetrans and V. dahliae interactions associated with
a three-year S. tuberosum ecosystem. The highest preplant
population density of V. dahliae (34 cfu/g soil) coupled with
P. penetrans population density of 12 per 100 cm® of soil was
observed in the sudax-sudax-potato rotation scheme which
resulted in the lowest potato tuber yields. The highest
preplant P. penetrans population density (54/100 cm® soil)
coupled with V. dahliae population density of 19.5 cfu per
gram of soil was observed in the corn-corn-potato rotation
scheme which resulted in the second lowest potato yield in
1991. Both the two-year legume and two-year grain rotations
with potatoes resulted in significantly (P < 0.01) lower P.
penetrans population densities at the end of the three year
rotation compared to three years of continuous potato
production. Average potato tuber yield responses over all
cropping regimes provided a negative regression with the
natural log of preplant V. dahliae population density (r? =
0.53), P. penetrans population density (r> = 0.38), and both
pathogens (r! = 0.75) at end of the three-year rotation
(Figure 4.3.1).

4.3.4 Discussion

The two pathogens have different pathogenic impacts on
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different components of the below-ground system of &S.
tuberosum. At relatively high population densities and when V.
dahliae is impacting something other than the basal-nodal root
system, the joint impact is additive. When V. dahliae is at
relatively high population densities, and associated with the
basal-nodal root system, the reverse S curve theory applies
and the resulting yield inhibition is significantly less than
expected or antagonistic (Figure 4.3.2). Soil environmental
conditions in relation to the activity of V. dahliae and the
rate of development of S. tuberosum would have a major impact
on the severity of PED in a specific growing season.

Basal-nodal root system impact appeared to be dependent
on preplant population densities of P. penetrans and V.
dahliae. High and low preplant population densities of these
organisms resulted in less and more impact on S. tuberosum
than predicted, respectively (Table 4.3.2-). The stolon system
impact appeared to take the same trend (Table 4.3.3).

Synergism, additivity, and antagonism were introduced as
terms describing the nature of the P. penetrans and V. dahliae
interactions associated with S. tuberosum where the predicted
concomitant influence of both pathogens on the third organism,
S. tuberosum, is either greater, the same, or less than the
sum of the effects of the individual organisms. This study

developed a statistical testing procedure to test the
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quantitative nature of the P. penetrans and V. dahliae
interactions associated with S. tuberosum. A synergistic
influence of P. penetrans and V. dahliae on S. tuberosum
occurs when the predicted joint impact of these organisms is
greater significantly (P = 0.05) than the actual joint impact
of these organisms. An additive 3joint influence of P.
penetrans and V. dahliae on S. tuberosum occurs when the
predicted joint impact of these organisms is the same (P =
0.05) as the actual joint impact. An antagonistic joint
influence of P. penetrans and V. dahliae on S. tuberosum
occurs when the predicted joint impact of these organisms is
less significantly (P = 0.05) than the actual joint impact of
these organisms. (Table 4.3.4).

In most of the growth chamber and greenhouse studies, the
predominantly P. penetrans and V. dahliae interactions
associated with S. tuberosum observed were additive. Most of
the additive nature of S. tuberosum basal-nodal root system
and stolon system interactions were associated with the same
pathogen, P. penetrans or V. dahliae. Most of the antagonistic
nature of S. tuberosum basal-nodal root system and stolon
system interactions were associated with P. penetrans and V.
dahliae. Additive or antagonistic nature of S. tuberosum
basal-nodal root system and stolon system interactions

associated with P. penetrans and V. dahliae may suggest an
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independent nature of the plant systems.

The r? value of tuber yield in regression with the
natural log of preplant densities of P. penetrans or V.
dahliae alone in the three-year S. tuberosum ecosystem study
is much lower than that of both pathogens. This may suggest a
P. penetrans and V. dahliae interaction. Francl et al. (1987)
constructed regression and discriminant models relating
preplant soil population levels of both fungus and nematode to
subsequent tuber yield. The minimum population of fungal
propagules necessary to cause at least a 10% yield reduction
in the absence of nematodes was 11-18 cfu/cm of soil. In most
cropping regimes of this ecosystem study, S. tuberosum tuber
yields were more highly correlated with V. dahliae than P.
penetrans; and in all cases, the regressions produced the
best-fit when tuber yields of S. tuberosum were regressed with
both V. dahliae and P. penetrans population densities.

Strong interactions appeared to occur at preplant P.
penetrans densities of less than ca. 30 nematodes per 100 cm?
of soil in the disease complex (Figure 4.3.2). There has been
little research on the effect of combined infection by these
pathogens on tuber quality. More small B-size tubers were
recovered and were highly correlated with the presences of V.
dahliae and P. penetrans at the beginning of the 1991 season.

It is evidence that continued work is needed in this area.
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complex under a three-year Solanum tuberosum ecosystem.
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4.4. Linear, spatial, and space features of Pratylenchus
penetrans and Verticillium dahliae interactions associated
with Solanum tuberosum in an agroecosystem.
4.4.1. Linear Model

4.4.1.1. Introduction

P. penetrans and V. dahliae interactions associated with
S. tuberosum in an ecosystem were analyzed several ways.
First, each variable was analyzed separately, then the
bivariate features of the interactions were analyzed. The
univariate approaches are used to describe the distributions
of individual variables. The bivariate approaches are used to
describe the relationships and dependencies between variables
in the interactions.

4.4.1.2 Materials and Methods

Field experiments with a 10 x 10 grid of an ecosystem

associated with S. tuberosum stressed by P. penetrans and V.
dahliae interactions were conducted at Michigan State
University Montcalm Potato Research Farm, Entrican, Mid-
Michigan in 1991, 1992, and 1993; and Jon Haindl's Farm, Cook,
Upper Peninsula of Michigan in 1993.

The grid-ecosystem used in this study consists of several
variables measured at each of one hundred sample points on the
rectangular grid system. The continuous variables were the

population densities of P. penetrans and V. dahliae, and tuber
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yields of S. tuberosum. The discrete variable was viewed as a
number that assigns each point to one of two possible
categories, the presence or absence of PED symptoms and the
presence or absence of the pathogens.

All S. tuberosum plants were uniformly distributed in a
geo-referenced research site. A plant is 1located in the
central spot of the area (34 x 34 inches, or 86.36 x 86.36
centimeters, or 0.8636 x 0.8636 meters). The 100 plants of the
Loc 1 - Loc 100 are uniformly distributed 34 inches, or 0.8636
meters apart (Figure 4.4.1.1).

4.4.1.3 Results
Univariate features of P. penetrans and V. dahliae

interactions associated with S. tuberosum.

The normal probability plot of 100 P. penetrans data
resulted in a straight line, although some values departed
from the trend. It indicated that the P. penetrans
distribution had properties that favored its use in
theoretical approaches to estimation (Figure 4.4.1.2). The
straight line also exhibited a normal population density
distribution between 10 and 50 P. penetrans per 100 cm?® soil.
A lognormal probability plot of the same 100 P. penetrans data
showed same trend (Figure 4.4.1.3).

Bivariate features of P. penetrans and V. dahliae

interactions associated with S. tuberosum.
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A g-q plot indicated that there was a similarity in
distributions of P. penetrans and S. tuberosum biomass (Figure
4.4.1.4)

The 100 pairs of P. penetrans and S. tuberosum
interaction values were shown on a scatterplot in Figure
4.4.1.5). Though there was some scatter in the cloud of
points, the larger values of the P. penetrans population
densities tended to be associated with the smaller values of
the S. tuberosum tuber yields.

The increase of the P. penetrans population density
resulted in a decrease of the S. tuberosum tuber yields. The
covariance was used as a summary statistic of the scatterplot.
The covariance of P. penetrans and S. tuberosum interactions
was -1788.94. The correlation coefficient was -0.496, where
the scatterplot appeared as a cloud of points. A measure of
the linear relationship of P. penetrans and S. tuberosum was
provided by the correlation coefficient. The rank correlation
coefficient was - 0.561 for P. penetrans and S. tuberosum
interactions. A line was superimposed on the scatterplot for
the linear relationship (Figure 4.4.1.6)

4.4.1.4 Discussion

A normal and lognormal probability plot of the 100 P.

penetrans data indicated that the P. penetrans distribution

and properties favored its use in theoretical approaches to
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estimation. The shape of the plot clearly indicated that the
values were distributed lognormally.

Some of the most important and interesting features of P.
penetrans and V. dahliae interactions and pathogen-host
interactions are the relationships and dependencies between
variables including the comparison of the two distributions,
scatterplots, h-scatterplots, moving window statistics,
correlation, and linear regression.

A g-q plot of two identical distributions plot as the
straight line x = y. For distributions that are very similar,
the small departures of the g-q plot from the line x = y will
reveal where they differ. For the biological distributions in
the Montcalm Data Set, a g-q plot of two distributions is some
straight line other than x = y, then the two distributions
have the same shape but their location and spread may differ.
The similarity of an observed distribution to any theoretical
distribution model can be checked by the straightness of their
g-q plot.

Scatterplot is the most common display of the bivariate
feature of the biological interaction. It is necessary in the
early stages of the study to check and clean the data; the
success of any estimation method depends on the reliability of
the data. The scatterplot can be used to help both in the

validation of the initial data and in the understanding of
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later results.

A strong interaction between two variables can help us
predict one variable if the other is known. The simplest way
we can do is linear regression, in which we assume the
dependence of one variable on the other. It can be described
by the equation of a straight 1line. The slope 1is the
correlation coefficient multiplied by the ratio of the
standard deviations of P. penetrans and S. tuberosum

interactions.
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Geo-referenced Research Site
10 X 10 Grid of Ecosystem

Y-axis

Z
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Figure 4.4.1.1. Geo-referenced research site of 10 x 10 grid
of Solanum tuberosum ecosystem.
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4.4.2 Spatial Model

4.4.2.1 Introduction

Geostatistics is a set of statistical tools which offer
a way of identifying, quantifying and analyzing spatial
relationships in geo-referenced data. One of the important
characteristics of P. penetrans and V. dahliae interactions
associated with S. tuberosum is that the interactions exist
some locations in two-dimensions. The spatial description
describes the degree of continuity, the overall trend, and the
location of the extreme values. Spatial features of P.
penetrans and V. dahliae interactions associated with S.
tuberosum included the location of extreme values, the overall
trend, and the degree of continuity. None of the univariate
and bivariate descriptive tools capture spatial features. The
objective of this study was to look at the spatial aspects P.
penetrans and V. dahliae associated with S. tuberosum,
including contour maps, indicator maps, correlation functions,
covariance functions, and variograms.

4.4.2.2 Materials and Methods

Ecosystem. Biological information of P. penetrans and V.
dahliae interactions associated with S. tuberosum in an
ecosystem was derived from a 10 x 10 grid of ecosystems
associated with uniform potato plants along with the presence

of various P. penetrans and V. dahliae combinations at
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Michigan state University Montcalm Potato Research Farm, and
Jon Haindl's Farm. Organization and presentation were
considered to in communicating the essential feature of P.
penetrans and V. dahliae interactions associated with S.
tuberosum in a large spatial agroecosystem. The spatial
biological information obtained by the descriptive tools as
desired was used later to perform semivariance analysis and
create optimal isopleths of the variates examined, with the
use of kriging to derive interpolated map values and
associated variance estimates.

Autocorrelating Biological Data. Autocorrelation analysis
provides a quantitative estimate of the degree to which sample
points in space (or time) are correlated with one another by
virtue of distance. Because samples taken closer together are
typically more closely related than are points taken from
locations farther apart, it is useful to calculate
autocorrelation indices for pairs of points separated by a
variety of "lag" distances. The resulting graph of
autocorrelation vs. different lag distances yields a composite
picture of spatial or temporal autocorrelation in biological
interactions.

Semivariance is a type of spatial autocorrelation
analyses are provided for quantifying spatial dependence. The

plot of semivariance of lag distance class h vs. all h's
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evaluated is the semivariogram. Semivariance analysis includes
a least squares algorithm for fitting viable semivariogram
models. Semivariance analysis 1is relatively sensitive to
skewed frequency distributions. Because a lot of biological
data tend to be log-normally distributed, the data can be
normalized by choosing an appropriate data transformation
In(z+1). Semivariance analysis can also be very sensitive to
active step size and active lag distance. The smaller the step
size, the greater the number of lag classes but the fewer the
number of sample pairs in each class and thus the greater the
"noise" in the semivariogram.

There are five potential isotropic models. They are
linear, linear to sill, spherical, exponential, and Gaussian
models, each of them defined in terms of nugget variance (Co),
sill (structural variance C + Co), and range (Ao) parameters.

Kriging Biological Data. Kriging provides a means of
interpolating values for points not physically sampled using
knowledge about the underlying spatial relationships in a data
set to do so. Semivariograms provide this knowledge. Kriging
is based on regionalized variable theory and is superior to
other means of interpolation because it provides an optimal
interpolation estimate for a given coordinate location as well
as a variance estimate for the interpolation value. Two types

of interpolation statistics are provided, block kriging and
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punctual kriging. Because the nematode samples were taken to
represent an area around the actual sample point, the block
kriging was more appropriate and selected. If samples were
taken to represent point values in a field, or in time,
however, then punctual kriging is more appropriate.

Mapping Biological Data. The spatial biological
relationships in the geo-referenced S. tuberosum ecosystem was
used to create optimal and kriged maps of the variate for the
geographic area of interest.

Two-dimensional maps are presented as pattern isopleths
with isopleth contour intervals. The map resolution for the
nematode population and potato tuber yields was controlled by
the interpolation interval at which the data were kriged. The
minimum value for contour level 1 is always the minimum value
for z within the range mapped; the maximum level for the
highest contour level is always the maximum value for z within
the range mapped. The automatic five levels of the contour was
chosen for mapping P. penetrans population and S. tuberosum
tuber yields.

4.4.2.3 Results

The overall trends for the distributions of P. penetrans
distribution were described using a contour map generated by
computer (Figure 4.4.2.1). The closeness of the contour lines

in the southwestern corner indicated a steep gradient and drew
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attention to the fact that the highest data value is very
close to the lowest data value.

The P. penetrans population density ranges of less than
10, 30, 50, and 70 were used as thresholds rather than each
individual value itself. Four classes of the P. penetrans
population densities were designated. A grayscale map (Figure
4.4.2.2) provided an excellent visual summary of the data.

A series of six indicator maps corresponding to the six
class boundaries from the symbol map were showed in Figure
4.4.2.3. Each map indicated in white the data locations at
which the P. penetrans population density was less than the
given threshold and in black the 1locations at which P.
penetrans population density was greater than or equal to the
threshold. This series of indicator maps recorded the
transition from high P. penetrans population densities that
tended to be aligned in an east to west direction to low
nematode population densities.

The linear isotropic model described a straight line
semivariogram, and was not appropriate for the P. penetrans
population in this study. The linear/sill isotropic model had
an r? value of 0.903 for P. penetrans. The spherical isotropic
model had an r? value of 0.902 for P. penetrans, and was a
modified quadratic function. The exponential isotropic model

was found with a relatively low r? value of 0.601 for the P.
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penetrans population. The Gaussian isotropic model was found
with a r? value of 0.901 for P. penetrans population (Table
4.4.2.1).

Five anisotropic models were also used to evaluate
geometric anisotropy, which presumed different C's and ranges
for each direction examined but identical Co's. They were
linear (r? = 0.401), linear to sill (r? = 0.676), spherical
(r? = 0.659), exponential (r? = 0.414), and Gaussian (r? =
0.669) models.

4.4.2.4 Discussion

The contour map provided a helpful visual display. Some
features that were not obvious from the data posting alone
became more prominent. It is noted that the contour map may be
useful in qualitative displays with questionable quantitative
significance.

It is probable that nematode distributions in some
locations are more variable than in others. Such anomalies may
have practical biological implications. The calculation of a
few summary statistics within moving windows can be used to
investigate anomalies both in the average value and in the
variability. The area 1is divided into several 1local
neighborhoods of equal size and within each 1local
neighborhood, or window, summary statistics are calculated.

The uniformity in the local means indicates generally well
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behaved data values. If the uniformity does not exist, then we
may look for what causes the big variations. Here we see that
the mean P. penetrans population density ranges from 19 to 34,
a 1.79- fold difference. The mean S. tuberosum tuber yields
range from 783 to 1954 grams, a 2.5-fold difference. The
standard deviations of P. penetrans population density range
from 7 to 15, a 2.14-fold difference; and the S. tuberosum
tuber yield standard deviations range from 194 to 376, a 1.93-
fold of difference. It 1is interesting to note that less
anomaly of P. penetrans population resulted in more anomaly of

S. tuberosum tuber yields.
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Figure 4.4.2.1. Computer generated contour map of
Pratylenchus penetrans at intervals of 10 nematode/100 cm’
soil.
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Figure 4.4.2.2. Pratylenchus penetrans population grayscale
map with 4 classes of densities: 10. 30, 50, and 70
nematode/100 cm® soil.
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Pratylenchus penetrans population densities.
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Semivariance vs Lag Distances -
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Figure 4.4.2.5. Semivariogram spherical model for Pratylenchus
penetrans,
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4.4.3 Space Model
4.4.3.1 Introduction
A space model in this research and the spatial model
presented in 4.4.2 were a three-dimensional and two-
dimensional study, repectively. The objectives of this three-
dimensional study were to 1) investigate stereo effects and
distribution of Pratylenchus penetrans and Verticillium
dahliae interactions associated with Solanum tuberosum; and 2)
present a mathematical three-dimensional model of S. tuberosum
tuber yield response surface associated with P. penetrans and
V. dahliae interactions in an ecosystem.
4.4.3.2 Materials and Methods
An S. tuberosum field ladder-shaped polyhedron model
representing a north-south field-row (0.4 m? x 0.8 m? x 0.3 m)
was used in this study (Figure 4.4.3.1). The ladder-shaped
soil polyhedron was sampled in two dimensions, and then in the
third dimension. Sixty samples were collected from the 6 x 10
sectors of upper zone (ca. 0.5 x 0.9 x 0.1 m), 80 from the 8
X 10 sectors of middle zone (0.7 x 0.9 x 0.1 m), and 100 from
the 10 x 10 sectors of lower zone (0.9 x 0.9 x 0.1 m) (Figure
4.4.3.2).
A computer-based three-dimensional imaging methodology
was used to visualize numerical image representations,

manipulate & display electronic biological and ecological
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imaging, extract desired information from the three-
dimensional data set, and cognition and understanding of the
image content and spatial relationships.

A three-year S. tuberosum ecosystem associated with P.
penetrans and V. dahliae was used in this study to reveal a
three-dimensional tuber yield response surface.

4.4.3.3 Results
P. penetrans population densities in the upper, middle,
and lower zones were 1.8, 8.7, and 14.4 nematodes per 100 cm?
soil, respectively. Verticillium dahliae population densities
in the upper, middle, and lower zones were 2.0, 0.6, and 0.7
cfu per 1.0 g dry soil, respectively (Table 4.4.3.1).

P. penetrans populations were distributed independently
in the upper and middle zones, but in a spatially dependent
distribution in the lower soil cuboid zone (Table 4.4.3.2).
Verticillium dahliae distributions appeared to be independent.

Population densities of P. penetrans and V. dahliae were
associated with the three-dimensional-visualizing sub-divided
Solanum tuberosum polyhedron system (Table 4.4.3.3-4)

Three—dimensional distributions of the soilborne-organism
imaging was computer-stereopercepted (Figure 4.4.3.3).

A three-dimensional S. tuberosum tubef yield response

surface associated with P. penetrans and V. dahliae

interactions was presented by a mathematical model (Figure



139
4.4.3.4).

4.4.3.4 Discussion
The three-dimensional soilborne-organism distribution
imaging was useful in the computerized stereopercepting.
Three-dimensional viewing & thinking may be a way of

challenging nature in the future.
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Z-axis is potato tuber yield
Three-dimensional presentation of Solanum tuberosum tuber yield

X-axis is Verticillium dahliae initial population density
(cfu/g soil). Y-axis is Pratylenchus penetrans initial population

(ton/ha).

density (nematode/100 cm3 soil).
Figure 4.4.3.4.

Note:
response surface associated with Pratylenchus penetrans and Verticillium dahliae

interactions under cropping regimes in 1991.
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5.0 General Discussion

5.1 Implications of the manipulating Solanum tuberosum below-

ground system architecture and configuration.
The manipulating of the below-ground system of S.

tuberosum below-ground system architecture and configuration

was implemented in this dissertation research. The success

of an in vitro excised root assay of this Solanaceous plant

which accurately identified Lycopersicon esculentum Mill

cultivars with known susceptibility and resistance to

Meloidogyne incognita has been reported (Kofoi and White)

Chitwood. The reported effectiveness of applying tissue

culture in other S. tuberosum improvement efforts suggests

that the application of an excised root assay for nematode

resistance is feasible (Wang and Hu, 1985). A split root

technique was employed to study the impact of pathogens

associated with the PED on root deterioration (Kotcon and

Rouse, 1984). The split root-stolon culture system used in

this research enables us to study the impact of P. penetrans
and V. dahliae on an isolated stolon system.
The potential of using tomato-potato hybrids for breeding

will not be fully realized without a development of new

techniques such as DNA transfers, engineering solanaceous

plants, etc. (Taylor, 1987). It has been shown by further

148
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grafting experiments that the foliage of a tomato scion cannot
induce tuber formation in a potato stock, but can support the
development of tubers which have been previously induced
(Madec and Perennec, 1959). The isolated stolon system
practiced in this research could be grafted into a tomato
plant. The success in grafting a tomato-potato plant would
offer exciting future for certain researches in nematology,

plant pathology, and crop science.
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5.2 Relationship between distances and the impact of

Pratylenchus penetrans on Solanum tuberosum

It is practically impossible to sample every inch of the
target area in biological field research. The impact of one
biological population on another biological population over
distances becomes a fascinating topic. The landscape ecology
and geostatistics employed in this research may enable us to
study relationship between distances and the impact of
Pratylenchus penetrans on Solanum tuberosum. It can be studied
using P. penetrans and S. tuberosum interactions as a model

system. It can also be studied by applying statistical

approaches and graphic approaches, such as the cross h-
scatterplot, correlation coefficient, rank correlation

coefficient, distance weighted least squares smoothing,

weighted quadratic multiple regression, and simple regression.

The concept of a cross h-scatterplot is developed through
the idea of an h-scatterplot. Instead of pairing the value of
one variable with the value of the same variable at another
location, values of different variables at different location
will‘ be paired. It 1is obviously of an interest to
nematologist, entomologists, and environmentalists due to the
analysis of risk organisms and materials and their potential
to damages in an area.

The correlation coefficient and the rank correlation

ri
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coefficient that we used to describe the spatial continuity of

one variable, are also useful for describing the spatial

continuity between two variables. The distance weighted least

squares method was applied in this study (Figure 5.2.1) which

is useful for a regression of one variable on another without

being positive about the shape of the function.

In Figure 4.4.1.6, a cross h-scatterplot was superimposed

between P. penetrans population densities and S. tuberosum
tuber yields for h = (0,0). More cross h-scatterplots (htl-9)

of the 100 P. penetrans and S. tuberosum yield data at various

separation distances in the north-south direction were

performed. The x-coordinate of each point is the P. penetrans
population at a particular data location and the y-coordinate

is the S. tuberosum yield data at a separation distance h to
the north. Figure 4.4.1.6 could be considered as that the x-

corresponded to the nematode

coordinate of each point
population and the y-coordinate to the potato yield data at

the same location. A comparison between the ten h-scatterplots

showed that as h increased, the relationship between the

nematode population and potato yields over distances became

appeared almost no correlation beyond some

weaker and
There was a negative correlation between the

distances.
nematodes and potato yields at the same location shown in

Figure 4.4.1.6. The biological relationship between the
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nematode population and potato yields became progressively

weaker over distance. There was almost no negative correlation

occurred at a distance of 2.59 meters apart, and correlations

fluctuated beyond a distance of 2.59 meters (Figure 5.2.1).

The Pearson correlation coefficients and Spearman rank
correlation coefficients were calculated in this study. Figure
5.2.1 was produced by the calculated Pearson correlation

coefficients over 7 distances. Distance weighted least squares

fits a line through a set of points by least squares, and the

surface is allowed to flex locally to fit the data better.

Both Pearson correlation coefficients and Spearman rank

coefficients could be used for the analysis and had a 2-3 time
higher r? value in a ca. 7 m?® area than in a ca. 9 m® area.
A simple linear regression model, with a multiple r wvalue

of 0.73, was temporarily used to analyze the impact of the

nematode population on the potato tuber yields over distances:

Y =-0.295 + 0.062X

distances between the analyzed nematode

X: Separation
It ranges from 1 to 7

population and potato tuber yields.
for this model, with a length of 0.8636 meter at each level.

Y: Correlation between the nematode population and potato
A negative correlation means that

yvields over distances.

nematode population have an impact of decreasing potato

yvield over distances.




153

02 T T T T
01 F

00

Correlation Coefficient
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Figure 5.2.1 The biological relationship between Pratylenchus
penetrans population and Solanum tuberosum yields over
distances.
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5.3 Biological concept of two-on-one interactions
The dissertation research data had showed that combined
effects of P. penetrans and V. dahliae on S. tuberosum could
be synergistic, additive, or antagonistic. A biological
concept of two-on-one interaction, other than one-on-one
interaction, was then stimulated.

Reductionism asserts that if a phenomenon is to be
understood, it needs to be reduced into its most basic
elements. An understanding of the whole can be achieved by
recombining the elements. Dealing with more complicated
phenomena in nature, scientists attach importance on means of
a synthesis of the parts to understand the whole as science
proceeds into 21st century.

Plant pathologists, entomologists, and nematologist
frequently note that a plant is attacked by two or more pests
of the same or different kinds (Bird, 1981, Gage and Russell,
1987, Powell, 1971, Rowe, at al., 1985). In-depth studies in
this area, like the effect of multiple-pest interactions on
crops, help to drive the development of the disciplines of
plant pathology, entomology, and nematology into a new stage.
For the science of general biology, two-on-one interaction,
other than one-on-one interaction, is yet to be explored.

The biological two-on-one interaction concept was

developed in this research by exploring its qualitative and
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quantitative properties, with special reference to: 1)
introduction of two-on-one interaction in nature; 2)
construction of a Disease Complex Triangle model, 3)
development of a statistical testing procedure, and 4)
incorporation of mathematical functions.

Introduction of two-on-one interaction in nature.
Synergism, additivity, and antagonism were proposed as terms
describing the nature of two-on-one interactions that the
predicted synthetic influence of two organisms on the third
organism is either greater, same or less than the sum of the
effects of the individual organism. Other related subjects of
mode, model, mechanism, function, quantification, definition,
flexibility, etc. could also be explored.

Construction of a Disease Complex Triangle model. In the
discipline of plant pathology, a disease triangle is used to
represent the interactions of three components of disease,
which are pathogen, host, and environment (Agrios, 1988). This
study introduced a disease complex triangle (Figure 2.1;
5.3.1) to visualize the two-on-one interactions of the disease
complex. Each side of the triangle represents one of the three
biological entities, which are P. penetrans, V. dahliae, and
S. tuberosum. The shape and quantification of the triangle
provided insights on the nature of two-on-one interactions and

disease complexes. Major differences exist between the disease
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triangle and the disease complex triangle (Table 5.3.1).
Development of a statistical testing procedure. The
quantitative plant disease interactions for synergism and
antagonism are combined effect of a phytoparasite nematode and
another plant disease organism is either greater or less than
the sum of the effects of the individual organism. The study
developed a statistical testing procedure using the PDDC as a
model system (Table 4.3.4). A synergistic joint influence
occurs when predicted joint impact of P. penetrans and V.
dahliae on S. tuberosum is significantly (P = 0.05) greater
than the actual joint impact. An additive influence occurs
when predicted joint impact of P. penetrans and V. dahliae on
S. tuberosum is the same (P = 0.05) as the actual joint
impact. An antagonistic influence occurs when predicted joint
impact of P. penetrans and V. dahliae on S. tuberosum is
significantly (P = 0.05) less than the actual joint impact.
Incorporation of mathematical functions. An S-shaped
curve (logistic function) differs from a geometric curve
(exponential function) in two ways: 1) it has an upper
asymptote, i.e., the curve does not exceed a certain maximal
level; and 2) it approaches this asymptote smoothly, not
abruptly (Krebs, 1989). The relationship between yield and
tenderometer was described by a second-order polynomial (Steel

and Torrie, 1980). The mathematical functions of exponential,
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logistic, and 2nd-order polynomial were hypothesized and
linked with synergistic, additive, and antagonistic effects,
respectively (Figure 5.3.2).

The development of a new biological concept of two-on-one
interactions should lead us to provide insights into the
nature of P. penetrans and V. dahliae interactions and disease
complexes, potential concomitant impacts of P. penetrans and
V. dahliae on the tuber production, and measure of control and
pest management for potato crops. Potentials appear from
existing pesticide researches to molecular biological studies.

Discussions showed, for example, that environment as the
third side of the disease triangle was not a biological
entity, but connected with the other two. Reduction of
Newtonian mode of science might not be applied in the disease
triangle for a disease in fields in which two or more pests
are very likely involved.

Results should 1) add new insights on means of a
synthesis of the parts to understand the whole for Newtonian
mode of science; 2) help to drive the development of the
disciplines of entomology, plant pathology, nematology, etc.
into a new stage; and 3) fill a blank research area, two-on-
one interactions other than one-on-one, for science of general
biology.

The two-on-one interaction is a triangle relationship
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among three entities. It is two-dimensional. It contains
linear relationships between any two entities, and the one-on-
one interaction is influenced by the third entity. The joint
effect of any two entities on the third entity is synergistic,
additive or antagonistic. Numerous triangle and linear
relationships exist when it is coupled with time, environment
and society.

Although the one-on-one interaction is a fundamental way
of thinking in science and human ecology, a new way of
thinking and philosophy may be helpful and significant as we
advance into 21st century. Discussions were optimistic that
this new two-on-one concept could eventually rise to a law of

nature, against or together with one-on-one interaction.
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HOST

The Disease Triangle

ORGANISM C

The Disease Complex Triangle

Figure 5.3.1. Graphical presentation of the disease triangle
and the introduced disease complex triangle.
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Synergism
(exponential function)

Additive impact
(logistic function)

Pathological Impact

Antagonism
(second order polynomial)

Organism Organism Predicted Actual
No. 1 No. 2

Figure 5.3.2. Mathematical functions of exponential, logistic,
and 2nd-order polynomial associated with synergistic,
additive, and antagonistic effects, respectively.
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6.0 Summary and Conclusion

The S. tuberosum below-ground system was divided into

basal root, nodal root, stolon root, tuber root, stolon,

tuber, and below-ground stem. A computer model was developed

to simulate the growth and development of these below-ground

system components under the PFE (Pathogen-Free Environment)

and PIE (Pathogen-Impacted Environment). There were very
significantly less basal root biomass and tuber yield of S.

tuberosum under the pathogen-free environment than that

under the pathogen-impacted environment. The computer

simulation model was written in C++ language.

P. penetrans was recovered from all four types of roots.
This nematode was recovered from the stolon as early as 30
days after planting. A young second-stage juvenile with a body

length of 0.211 mm suggested that the reproduction of P.
penetrans could be established in the stolon.

The exposition of stolon system to P. penetrans and/or V.
dahliae resulted in significant tuber weight losses (P =
0,05). A maximum of 28.7% tuber weight loss (P = 0.05) was

found in S. tuberosum when the stolon system was exposed to P.

penetrans. The greatest tuber weigh loss of 66.2% occurred
when both basal-nodal root system and stolon system of S.

tubexrxosum were concomitantly exposed to P. penetrans and V.

162
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dahliae. The synergistic, additive, and antagonistic joint

influence of P. penetrans and V. dahliae interactions

associated with a S. tuberosum below-ground system occurred
once, nine times, and twice in the growth chamber and
greenhouse experiments, respectively.

P. penetrans was equally pathogenic on the basal-nodal
root system and stolon system of S. tuberosum. Verticillium
dahliae was much more pathogenic on the basal-nodal root
system than the stolon system of S. tuberosum.

The impact of P. penetrans on the basal-nodal root system of

S. tuberosum was less severe than V. dahliae. The impact of P.

penetrans and V. dahliae on the stolon system of S. tuberosum

was about equal. The joint impact of P. penetrans and V.

dahliae on the basal-nodal root system and stolon system of S.
tuberosum was probably additive.

The two pathogens have different pathogenic impacts on
different components of the below-ground system of S.
tuberosum. When V. dahliae is at relatively high population

densities, and associated with the basal-nodal root systen,
the disease reverse S theory applied and the resulting yield
inhibition is significantly less than expected or
antagonistic. Soil environmental conditions in relation to the
activity of V. dahliae and the rate of development of S.

tuberosum would have a major impact on the severity of PED in
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a specific growing season.

Indicator maps were useful for illustrating P. penetrans
population dynamics in space. Distributions properties of P.
penetrans & Solanum tuberosum favored the used of theoretical
approaches to estimation. A spherical semivariogram model (r?
= 0.902) provided a quantitative estimate of the degree to
which P. penetrans or S. tuberosum sample points in space are
correlated with one another by virtue of distance. Kriging
from 100 samples and a best-fit spherical model provided means
of interpolating 676 points not physically sampled. There was
very little negative correlation between P. penetrans and S.
tuberosum at distances of equal or greater than 2.5 m. There
was very little negative correlation between P. penetrans and
S. tuberosum at distances > 2.5 m.

Three-dimensional soilborne-organism distribution imaging
was computer stereopercepted. Upper zones in the sub-divided
S. tuberosum production polyhedron system resulted in less P.
penetrans population densities than middle and lower zones.
Upper zones in the sub-divided S. tuberosum production
polyhedron system resulted in more V. dahliae population
densities than middle and lower zones. Pratylenchus penetrans
populations were in an independent distribution in the upper
and middle zones, but in a spatial dependency distribution in

the 1lower soil <cuboid zone. Independent V. dahliae
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distributions were suggested.

The implication of manipulating S. tuberosum below-ground
system architecture and configuration, relationships between
distances and the impact of P. penetrans on S. tuberosum, and
development of a new biological two-on-one interaction concept

were discussed.
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