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ABSTRACT

An Analytical Theory of Arbitrary Order Achromats and Their Applications

By

Weishi Wan

An analytical theory of arbitrary order achromats for optical systems with mid-
plane symmetry is presented. Besides repetition of cells, mirror symmetry is used
to eliminate aberrations. Using mirror imaging around the x-y and x-z planes, we
obtain four kinds of cells: the forward cell (F), the reversed cell (R), the cell in which
the direction of bend is switched (S), and the cell where reversion and switching is
combined (C). Representing the linear part of the map by a matrix, and the nonlinear
part by a single Lie exponent, the symplectic symmetry is easily accounted for and

maps are easily manipulated.

It is shown that, independent of the choice and arrangement of such cells, there is
a certain minimum number of conditions for a given order; for example, this number
is five for the first order, four for the second order, fifteen for the third order, fifteen
for the fourth order, and thirty-nine for the fifth and sixth orders. It is shown that the
minimum number of cells necessary to reach this optimum level is four, and four of
the sixty-four possible four-cell symmetry arrangements are optimal systems. Various
third-, fourth- and fifth-order achromats are designed and potential applications are

discussed.
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Chapter 1

Introduction

1.1 The Map Method in Beam Physics

In the past six decades, accelerators and other beam optical systems have gone
through tremendous improvements [Wied93]. The energy that can be reached by
accelerators rose from a few MeV to 2 TeV [Law32, Dugan91, Finley91]; and the
beam spot size in the Stanford Linear Collider has been decreased to 75 nm x 1
pm [Schwar94]. All these improvements come from the detailed knowledge of the
motion of charged particles in electromagnetic fields, which is governed by a system

of first-order ordinary differential equations (ODEs)

-

7= f(3,1). (1.1)

Q..Ig_‘

t

Since in general the ODEs are nonlinear and complicated, computers become a
very useful tool in solving the ODEs numerically. Through the years, there have
been mainly two ways to do this: The ray tracing method and the map method.
The basic feature of the ray tracing method [Gordon59] is to send many particles
through a numerical integrator derived from the ODEs (for example, a Runge-Kutta
integrator), and obtain the final positions and angles of all particles. By studying

the distribution of the particles in the phase space (at a fixed position around the

1



reference orbit, called Poincare section), the dynamic behavior of the beam is studied.
Two examples for the different computer codes are RAYTRACE [Kowal85], which is
used for spectrographs, and TEAPOT [Tal87], which is used for repetitive systems,

especially synchrotrons.

Although ray tracing is conceptually simple, it is time-consuming and does not
readily provide the direct links between the final and initial coordinates. The map
method, on the other hand, focuses on finding the analytical relation between the fi-
nal and initial coordinates through solving the ODEs. Once these relations, functions
between the initial and final coordinates are obtained (the transfer map), all informa-
tion about the particle motion is known. Therefore, major efforts have been devoted
to find the map of the ODEs. It is customary and advantageous to use curvilinear
coordinates along a reference particle, such that other particles are always close to
the origin and the map is origin preserving. Hence, perturbation theory has been the

major tool for solving the ODEs.

Since all particles stay close to the origin, the nonlinearity in the map is weak.
This is why the map can be approximately represented by a truncated Taylor series.
With orders typically reaching ten, an accuracy in the range of 10 digits can be
achieved. The coefficients in the Taylor series, except 0z;/0z;, Oas/0a;, etc., are
called the aberrations. A intuitive way to obtain the aberrations is to numerically
differentiate the data of the ray-tracing output, like in the code MOTER [Thiess72],
where certain low-order derivatives can be extracted. Yet this method of obtaining
the derivatives is rather cumbersome and limited, due to the loss of accuracy resulting
from the numerical differentiation. This is the main reason for the development of

the map method.

Furthermore, for our convenience, the arc length of the reference particle, rather

than the time, is used as the independent variable. As a result, the phase space



variables are z, p;, y, py, t, and E. Therefore, the ODEs are transformed to

-

%i‘: f(Z, ). (1.2)

In order to keep the variables small and simultaneously canonical, a new set of
variables, z, a, y, b, At, and 6k, are used in computer codes like COSY INFINITY
[Berz93] and also in this thesis, where a = p;/po, b = p,/po, At = (t —to)vey/(1 +7),
and §xk = (Ex — Exo)/Ero. Note that all quantities with subscript 0 are associ-

ated with the reference particle. In these coordinates, the map is denoted by M =

(mz, mq, my, my, my, ms), where

Zy Z;
afs a;
Yr | — a7 Yi
b | =M & | (1.3)
At_f At
& 8

When m; is written as a Taylor series, the coefficient of the term x::'a::“y::"b::"At::‘éf‘ is
represented by (z|z'za'sy'vb*At*§*). The same rule applies to the other functions.
For example, (z|z) is the coefficient of term z; in m, (0z;/0z;), which is the magni-
fication; (a|z) is the coefficient of term z; in m,, which is the defocusing power; and

(z]a?) is the coefficient of a? in m,, which is the second-order opening aberration.

For circular machines, the picture of aberrations can not describe the key aspects
of particle motion conveniently, because they are averaged out over many turns, with
only the ones with the same periodicity as the motion being important. Therefore,
instead of magnification, focusing power, and aberrations, the concepts such as tunes,
betatron functions, and resonances are used to describe the motion in a circular
machine. Generally speaking, the tunes (T') are defined as the remainder of the

number of periods of the motion in one plane over the number of turns, which is



a measure of the entire motion, including the nonlinearities [Berz92a]. To the first

order, the tune of the ith component is
T; = arccos(Tr(L;))/2n, (1.4)

where L; is the linear matrix of one turn for the ith componant and T'r(L;) is the
trace of it. The tunes of the transverse motion are called the betatron tunes and the
tune of the longitudinal motion is called the synchrotron tune. In this thesis, only

betatron tunes (T, and T,) are relevant. When the relation
IT, + mT, =n (I, m, and n are integers.) (1.5)

holds, the motion is said to be on an (I + m)th order resonance. As shown in Section
3.3, there are always aberrations which grow exponentially under this resonance,
called the driving terms of the resonance. A motion which is on a resonance with
nonzero driving terms is unstable and the particle will eventually hit the wall and
get lost. Since there are infinitely many resonances, virtually every particle will be
lost after a long time. Practically speaking, particles are only stored in a machine for
a certain period, which means that mostly the low-order resonances are important,
because they cause the growth of certain lower-order aberrations, which are initially

bigger than higher-order aberrations.

After the development of the theory of the alternating-gradient synchrotron [Cour5x!.
large synchrotrons took the center stage of high energy accelerators; the map method
has been developed with this. Currently there are dozens of various computer codes in
use, ranging from first-order codes like COMFORT [Wood83] and SYNCH [Gafren75].
to second- and third-order codes based on explicit formulas, like TRANSPORT
[Brown73], MAD [Iselin85, Iselin88], DIMAD [Serv85], TRIO [Matsuo76], GIOS [Wollx7.i .
and MARYLIE [Dragt85], to higher-order codes of the same approach, like COSY 5.0



[Berz87a], and finally to arbitrary-order codes that do not rely on explicit formulas,
like TLIE [Zeijts92], ZLIB [Yan90], and COSY INFINITY [Berz90, Berz93]. It is
worth noting that it is possible to compute transfer maps of an arbitrary order af-
ter the emergence of the differential algebraic (DA) techniques [Berz89]. Among the
high-order codes (beyond the third-order), COSY 5.0 is a fifth-order one, and the
rest are all DA codes. Of all the DA codes, COSY INFINITY is the first and, up to
now, probably the most general code. It has been shown through the history of the
code development that DA techniques are probably the only practical way to obtain
the transfer map of an arbitrary order. Therefore, they should be discussed in more

detail.

Without involving too much mathematics (see, for example, [Berz90, Berz92b}),
the differential algebraic techniques can be viewed as a way to solve the ODEs to
an arbitrary order in one attempt without loosing accuracy. The keys are, first, that
the arbitrary-order Taylor expansion of a large class of functions, whose variables
are Taylor series with constant parts, can be obtained through a finite number of
operations; second, that Taylor expansions of all functions are done simultaneously,
instead of the traditional way of obtaining higher-order solutions through lower-order

ones.

Since it is only necessary and possible to obtain a finite number of terms from
the Taylor series of a function, the truncation order n is always specified when Taylor
expansion is done, and terms of higher orders are neglected. Therefore, infinitely often
differentiable functions, including f of the beam optical systems, can be expanded
around any given point, and the expansion up to order n can be obtained by a finite
number of additions and multiplications, even when f is complicated. Together with
addition, multiplication, and differentiation of polynomials, expressed in the space of

polynomials up to order n and properly implemented in computers, the ODEs can



be solved with a DA-based numerical integrator where the values of the phase space
variables are replaced by the DA vectors containing the constants and derivatives of
those variables. At the end, the solution contains not only the final values but also
all derivatives up to a certain order, which are the aberrations in the transfer map.
It is worth noting that in the code COSY INFINITY, the integrator is a modified
eighth-order Runge-Kutta integrator with automatic step size control to ensure that

the accuracy of the solution is compétible with the specific order.

When the electromagnetic field in a beam optical system does not change lon-
gitudinally, there is a much quicker way to solve the ODEs using the so-called flow
operator. In this case, f in the ODEs does not depend on s, which leads to the result

that the transfer map is
M = exp((s — so)Lf)f, (1.6)

where Lf = f V is the flow operator, and I= (zi, ai, yi, bi, At;, 6;). Thus, the map
is obtained after only one step. Note that when f represents a Hamiltonian system,

the flow operator L7 becomes a Lie operator similar to that discussed in Section 2.1.

The DA techniques offer a power tool to study beam optical systems, includ-
_ing tracking through a high-order map, map manipulations such as composition and
inversion, computing generating functions and Lie factorizations, studying parame-
ter dependence of certain quantities [Berz92c|, and suppressing resonances through

normal forms [Berz92a, Berz92b, Berz93).

1.2 An Overview of Achromats

The search for achromats up to a certain order has generated substantial interest

for the past two decades. Here an achromat is defined as a beam optical system



Order 1 2 3 4 5
Aberrations 6 30 70 140 252
Independent aberrations | 6 18 37 65 110

Table 1.1: The number of aberrations of orders 1 to 5 for a system with midplane
symmetry. The interdependency of aberrations comes from symplecticity, which is a
property of a Hamiltonian system.

whose map of the transverse motion is free of aberrations up to a certain order. The
advantage of achromats is that all aberrations of the transverse motion are cancelled,
as are all aberrations of the longitudinal motion except (¢|6"); hence, an achromat
transports charged particles without distortion of the transverse motion. This is why
first- and second-order achromats have been so widely used in accelerators, storage
rings, and beam transport lines. Last but not least, this is also an interesting and

challenging problem from a purely theoretical point of view.

Since midplane symmetry has been employed in most of the beam optical systems,
cancelling half of the transverse aberrations, all achromat theories consider only sys-
tems with midplane symmetry. Table 1.1 lists the number of aberrations that have
to be cancelled for achromats up to the fifth order. It shows that the number of
independent aberrations grows so rapidly with increasing order that even up to only
the second order it is unrealistic to obtain an achromat by providing each aberration
with a knob. Therefore, the challenge is how to achieve an achromat with as few

knobs as possible.

Due to their simplicity, first-order achromats have been widely used, especially the
partial achromats where only dispersion is corrected. If we exclude the techniques of
dispersion matching and the dispersion suppressor (see, for example [Wied93}), there
are basically two ways of obtaining a first-order achromat, namely, through mirror

symmetry and repetition. The principle of a mirror symmetrical first-order achromat



Figure 1.1: The principle of a mirror symmetrical, first-order achromat. The condi-
tions are the cancellation of (a|é), (a|z), (z|a), (bly), and (y|d) in the middle where
the vertical line lies.

is illustrated in Fig. 1.1. When (a|z), (z|a), (bly), (v|b) and (a|6) vanish in the
middle, mirror symmetry entails that the total first-order map is g (here I stands for

the identity map).

Mirror symmetrical achromats are mainly used as building blocks of synchrotron
light sources [Jack87] due to the low equilibrium emittance achieved (see, for exam-
ple, [Wied93]). As examples, the lattices of the Advanced Photon Source (APS) at
Argonne National Laboratory (ANL), and the Advanced Light Source at Lawrence

Berkeley Laboratory (LBL) are shown in Figures 1.2 and 1.3, respectively [Murphy92].

As shown in Section 3.2, any repetitive system with integer tunes is a first-order
achromat. Since a repetitive first-order achromat (except a 3-cell system) cancels
all second-order geometric aberrations, it has been used for bending arcs of various
synchrotrons and storage rings, especially as a 180° bending arc of a racetrack lattice

[Serv83, Serv83, Litv93, Wu93a, Wu93b]. Fig. 1.4 presents the lattice of the Duke
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FEL (Free Electron Laser) storage ring.

Although the concept of first-order achromats had been widely used in various
beam optical systems and accelerators for a long time, it was only in the 1970s that a
theory developed by K. Brown enabled the design of realistic second-order achromats

in a systematic and elegant way [Brown79, Brown82a).

The theory is based on the following observations. First, any system of n identical
cells (n > 1), with the overall first-order matrix equaling unity (1) in both transverse
planes, gives a first-order achromat. When n is not equal to three, it also cancels
all second-order geometric aberrations. Second, of all second-order chromatic aberra-
tions, only two are independent. Therefore, they can be corrected by two families of
sextupoles, each responsible for one of them in each transverse plane. These findings
make it possible to design a four-cell, second-order achromat with only one dipole,
two quadrupoles and two sextupoles per cell. Detailed studies on this theory will be

shown in Section 3.2.

Because of its simplicity, the second-order achromat concept has been applied to
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the design of various beam optical systems such as the time-of-flight mass spectrom-
eters, both single-pass(TOFI) [Wouter85, Wouter87] and multi-pass(ESR) [Woll87b,
Woll87c], the Arcs of the Stanford Linear Collider (SLC), the new facility at SLAC,
the Final Focus Test Beam [Brown85, Brown87a, Brown87b, Schwar94], and the MIT
South Hall Ring (SHR) [Flanz89a, Flanz89b).

Since it is hard to generalize the second-order achromat theory to higher orders,
the first third-order achromat theofy was developed by Dr. Alex Dragt based on
normal form theory and Lie algebra [Dragt87]. According to the theory, a system of
n identical cells is a third-order achromat if the following conditions are met: (1) The
tunes of cells T, and T}, are not full, half, third or quarter integer resonant, but nT,
and nT, are integers. (2) The two chromaticities and five independent third-order

aberrations are zero. Details of the theory will be discussed in Section 3.3.

Two examples of third-order achromats have been designed. The first design was
done by Dragt himself, containing thirty cells with T, = 1/5 and T, = 1/6. Each
contains ten bends, two quads, two sextupoles and five octupoles. The whole system
forms a 180° bending arc. The second design was done by Neri [Neri91]. It is a
seven-cell system with only one bend per cell, with the total bend also being 180°.
The tunes of a cell are T; = 1/7 and T, = 2/7, which seems to violate the theory
“ because of the third-order resonance 2T, — T, = 0. However, the achromaticity can
still be achieved because the driving terms are cancelled by midplane symmetry (see

Section 3.3). This approach greatly reduces the number of cells.

Similar to Brown’s theory, the Dragt theory cannot be immediately used to find
arbitrary order achromats in such a way that the number of the cells in a achromat
is independent of the order. The main reason is that for any given order, the tunes of
a cell have to be specially chosen such that most, if not all, of the resonances up to

one order higher are avoided. Thus the number of system cells has to be the smallest
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Figure 1.5: The geometric relationship among cells F, R, S, and C illustrated by
asymmetric boxes.

number possible that makes both tunes of the whole system integers, which depends
on the order and usually increases quickly. A second reason is that as the order
increases, the difficulty of obtaining an analytical formula increases rapidly because

of the complexity of the Baker-Campbell-Hausdorff formula.

Our approach for a general achromat theory does not use the normal form‘ method
and avoids the resonance concern by introducing mirror symmetry to cancel more
aberrations. With these considerations, we are able to study systems with arbitrary
numbers of cells and obtain solutions that are independent of the arrangements inside
a cell. Because of their simplicity, Lie transformations are used to represent symplectic
maps, but instead of an order-by-order factorization, we use a factorization formed
by a linear matrix and a single Lie operator, describing the linear and nonlinear parts
respectively. The introduction of mirror symmetry makes it possible for us to obtain
four total kinds of cells: the forward cell (F), the reversed cell (R), the switched cell
in which the direction of bend is switched (S), and the cell in which reversion and

switching is combined (C) (Fig. 1.5).

This thesis is organized as follows: The Lie representations of symplectic maps are
discussed in Chapter 2, including the definition of a Lie operator, various methods of
Lie factorization, and the Baker-Campbell-Hausdorff formula. As a comparison to our

achromat theory, the theories of repetitive achromats up to order three are presented
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in Chapter 3. In Chapter 4, the analytical theory for arbitrary order achromats is
studied with a detailed proof provided for every theorem. Chapter 5 consists of four
example designs of achromats of orders three to five. Also presented are studies on
various aspects of the nonlinear dynamical behavior of those examples. Finally, a

summary concludes the thesis.



Chapter 2

The Lie Representation of
Symplectic Maps

In the following chapter the Lie representation of symplectic maps, developed by
Dragt and Finn [Dragt76, Dragt81] is outlined, proceeded by the introduction of Lie
transformations and symplecticity. Only the results closely related to the achromat

theory are presented.

2.1 Lie Transformations and Symplecticity

First, let us review the definition and basic properties of the Poisson bracket, since a

Lie transformation is defined based on the Poisson bracket. On a phase space R*™

with variables (q1, --*, ¢m, P1, -**, Pm), a Poisson bracket of functions f and g is
defined as
—~,0f 039 0fdg, =, ;: o,
.g] = — = _—=_)=Vf.J Vg, 2.1)

[£.9] g( adn omag) = ") g (
where

~ 0 af o 0

op_ (O .. Of of  of

50" 0an oo Bpm)

14
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and J is an antisymmetric 2m x 2m matrix
; 0 1
= < . 2.2
i-(34) 22
As an example, note that
[Iiy I]] = Jijv (23)

where I = (g1, ***5 Gm, P15 - -+, Pm) and J;; is the (27) element of the matrix J.

It is well known that Poisson brackets have the following properties:

(f,9+R] = (f,g]+ [, R], (2.4)
[f,tg] = t[f,g] where t is an arbitrary constant, (2.5)
(f,gk] = [f, 9]k + g[S, R], (2.6)
[, (g, 1] + [g, [k, f1] + [R, [£, 9]l = O. (2.7)

With the Poisson bracket defined as the multiplication on R*™, the space of functions

on R?™ form a Lie algebra.

For any function f on R?™, a Lie operator : f : acting on another function g on

R?™ i3 defined as

: fr9=1fg] (2.8)
The zero power of : f : is defined as

:fLg9=yg (2.9)
and the square of : f : is

:f2g=1[f1f 9l (2.10)
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with higher powers being defined in the same way. Similar to the Poisson brackets,

Lie operators have the following properties:

:fi(g+h) =:f:g9+:f:h, (2.11)
:f:(tg) = t:f:g, wheretis an arbitrary constant, (2.12)
:f:(gh) = (- f:9)h+g(: f:h) (2.13)
tfugih—igufih =:[fg]:h (2.14)

Note that, with the multiplication defined as
cfixigi=fug:—:g:uf (2.15)

the Lie operators on R?™ form another Lie algebra.

A useful relation that : f :" obeys is the Leibniz rule

fr )= ( " )(z ) £ Ry, (2.16)

m=0 m

where

n n!
(m) = e

To prove it, the mathematical induction method is used. First, for n = 1, we have
:f:(gh)=(f:9h+g(: f:h),

which satisfies eq. (2.16). Second, for n — 1, we assume eq. (2.16) holds. Third, for

n, we have
:f"(gh) = :f:(: f:"77 (gh))
= . f: (f; ( -l )(:f:"‘g)(:f:"“‘"‘ h))

= S ("Rt )ermrae s
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n-1

+Z(";1 )(:f="‘g)(:f="""h)

m=0

- > (ny)ermaeren

m=1

"5_:(",;‘ )(:f:"‘g)(rf:"‘"‘h)

m=0

= S (r)ermotramn,

m=0

which concludes the proof.

A Lie transformation associated with a function f on R?™ is defined as
exp(: f:) = Z — = f". (2.17)

To avoid the subtle questions connected to the convergence of a Lie transformation,
where even the definition of the norm is not clear, we require that f is a polynomial of
orders 3 and up, expansion is always truncated at order n, and the functions, on which
the Lie transformation acts, are also polynomials. Since no infinite series is involved,
the conclusions are completely rigorous. On the other hand, due to the fact that n is
an arbitrary natural number, this approach does lose generality. Practically speaking,
this is always the case for the DA maps, which makes this treatment fit perfectly to
the implementation of the Lie transformation. Therefore, the new definition of a Lie

transformation is:

exp(: f:) =n i:—' N (2.18)

=0 "*
Lie transformations have the following properties:

exp(: £ :)(g + h) =n exp(: f :)g +exp(: f :)h, (2.19)

exp(: f :)tg =, texp(: f:)g, (2.20)
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exp(: f :)(gh) =n (exp(: f :)g)(exp(: f :)h), (2.21)

exp(: f :)[g, h] =n [exp(: f :)g,exp(: f :)A], (2.22)
The proof of eq. (2.21) makes use of the Leibniz rule (eq. 2.16):

(exp(: f :)g)(exp(: f :)h)

| "] n
=~ (Saree) (S
_ . : 1. .m 1 . .l—mh
o (,Z(mzﬁf STy ))

— = 1 : I . m . .l-mh
= (§ﬁ<§oml(l—m)!'f' 9:f: ))

- nl l(l). m oo .l—mh))
(Er(x(n)irmers
=p z":ll_' : f ' (gh) (Leibniz rule)
1=0 **
=. exp(: f :)(gh). (2.23)

Equation (2.22) can be obtained directly from eq. (2.21).

Now let us look at a Lie transformation acting on a polynomial

g(ql,.. .’qm,pl,...,pm) = Z aiql.---,ipmq;ﬂ ...q:.:mp'lﬂl ...p::m’ (2.24)

iql “"viqm 'g'pl v"'v“Pm

where i, + -+ + 14, +1p, + -+ ¢p, < n. Using egs. (2.19) and (2.21) repeatedly, we
obtain

exp(: f:)g =n exp(:f:) ( ) Bigy oipm @i QDY "'P;’i"')

iqy v++sigm 1ipy v-ripm

=n > @igg osipm, €XP(: f ) (@™ -+ - Gam Y™ -+ - PEm)

igy v+ riqm Py v 1ipm

_ S Gigueipn (exp(: £ @) - (exp(: f )gm )

g1 igmoipy vt hipm
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(exp(: f :)p1)™ -~ (exp(: f :)pm)""™
=n g(exp(: f ), ,exp(: f :)qm,exp(: f :)p1,- -+, exp(: f :)pm),
which leads to the following important theorem:

Theorem 2.1 If f is a polynomial of order 3 or higher on R*™, and g is an arbitrary

polynomial, then we have

-

exp(: f :)g =n g(exp(: f :)1), (2.25)

where

exp(: £ )T = (exp(: £ :)a1,---,exp(: f )gn,exp(: f )a1,- -, exp(: f )an)-  (2:26)

Theorem 2.1 is ready to be generalized to the case where g is a polynomial of a

map M. Thus, we have the following theorem:

Theorem 2.2 If M is a map and g is an arbitrary polynomial on R?™, then we have

—

exp(: f :)g(M) =, g(exp(: f :)M). (2.27)

Theorem 2.2 is probably even more important than Theorem 2.1 because in most
cases, the linear map of a system is unity. Therefore, it is the one which is used

directly and very frequently in Chapter 3 and 4.

Another useful concept is symplecticity. A 2m dimensional vector function M is

symplectic when its Jacobian matrix Jac(M) satisfies

Jac(M) - J - Jac(M)t = J. (2.28)
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This kind of function is important in that the transfer map of a Hamiltonian system is

always symplectic [Gold80, Arnold89]. Symplectic maps have the following properties:

[£(M),g(M)] = (f,9))(M), (2:29)
det(Jac(M)) = 1, (2.30)
Jac(M o N)- J - Jac(M o N)* = J, (2.31)

Jac(M™) - J - Jac(M™)t = J, (2.32)

where M and N are symplectic maps and “o” denotes the composition of two func-
tions. Equations (2.29) and (2.31) can be proven using the chain rule of derivatives.
The proof of eq. (2.31) can be found in reference [Dragt81]. Since the Jacobian of

M- is the inverse of that of M, we obtain
Jac(M~™')-J - Jac(M™)
= Jac(M)™' . J - (Jac(M)™")!
= Jac(M)™' . J - (Jac(M)™)!
= (Jac(M)t- =J - Jac(M))™?
= (=J)!
= J,
which shows that M~! is also symplectic (eq. 2.32). Equations (2.31) and (2.32)

indicate that, with the composition “o” as the multiplication, symplectic maps form

a group.

From eq. (2.21), we have

[exp(: f :)Li,exp(: f )] (2.33)
=, exp(: f )L, [;] (2.34)
=n exp(: f :)Ji; (2.35)

=n Jij, (2.36)
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which leads to the following theorem:

Theorem 2.3 If a map M on R?™ has the form M =, exp(: f 1, it is symplectic.

In the next section, it will be shown that any symplectic map can be represented

by either one or a series of Lie transformations up to an arbitrary order.
Next let us study the composition of exp(: f :)g(f) and map M. Note that this

operation plays a key role in the development of achromat theories.
Theorem 2.4 If a map M on R*™ is symplectic, we have

(exp(: £ :)g) 0 (M) = exp(: f(M) :)g(M). (2.37)
If a map M on R*™ is antisymplectic, i.e., Jac(M) - J - Jac(M)t = —J, we have

(exp(: f :)g) o (M) =, exp(— : f(M) :)g(M). (2.38)

Proof:

First assume that M is a symplectic map, which implies that a Poisson bracket is

an invariant under the transformation M (eq. 2.29), i.e.:

[£(M), (M) = (f, g))(M).

The rest of the proof is straightforward:

-

exp(: £(31) )g(4)
= () + [F(¥1), (W) + SL7CMR), LF(OT), g(BT)] + -
= g(¥) + (UF, ) (M) + 3L31), (LF, ) (HE) + -
= (M) + (U, D (FE) + (1S, L, (D) + -

=. (exp(: f :)g) o (M).
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In the case of M being antisymplectic, the proof is basically the same except that

the Poisson bracket changes sign under the transformation, i.e.:

—

[F(M),g(M)] = —([f,g])(M (2.39)

Therefore we obtain

— —

exp(—: f(M) :)g(M)
=n g(MT) = [J(), (1)) + SL7(A1), LF(AA), ()] + -
=n 9(M) + ([, g (M) + [f )y =(Lf, (D) + --
= g(81) + (1f, sl (41) + 5(LF, L, (80 + -+
=n (exp(: f :)g) o (M),

which concludes the proof.

2.2 Lie Factorizations

In this section, proofs are given for the fact that any symplectic map can be repre-
sented, up to a given order, by a product of Lie transformations, which is referred to
as a Lie factorization. Various methods of Lie factorization are presented, including

Dragt-Finn factorization [Dragt76] and the single-exponent factorization.

Theorem 2.5 Let M be a symplectic map on R?™. Then, to an arbitrary order n,
there ezists a matriz L and homogeneous polynomials f3, fy, -+, fay1 of orders 3, 4,

- and n + 1, respectively, such that

n (L) o (exp(: f5:)]) o (exp(: fa )} 0 -+ 0 (exp(: fasa :)1). (2.40)
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Note that L is simply a matrix; LI, on the other hand, is the linear map, which
is a set of functions. Similarly, exp(: f :) is just an operator while exp(: f )T is the

map generated by it.
Proof:
The induction method is used.

(1) The second order:

Define M, = (L"f) oM and N, = M, — I. According to eq. (2.31), M, is
symplectic. Besides, note that Ml = I and 1\72 contain terms of orders two and up.
Suppose M, =, exp(: f3 )f We have

Ml =3 f+[f3,i] =2 —6f3'j,

which entails that

—

vf:; =2 —(M1 —f) j =2 —Nl 'j.
On the other hand, the symplecticity of M, gives

Jac(M,) - J - Jac(My)* = J,

A
.

= (I 4+ Jac(MNy))-J - (I + Jac(M,)!) = J,

= J+ Jac(Ny)J + JJac(M,)! =, J,

= Jac(N)J =, (Jac(N,)J)!. (2.41)
Here, Jac(N;) - J - Jac(V,)! is eliminated because it contains terms of orders two and
up. According to the potential theorem [Meyer91], there exists a function f, which

satisfies Vf = §, if and only if § satisfies

99i _ 9y;
5z, = e (2.42)

Therefore, eq. (2.41) shows that f3 does exist.
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(2) The (n — 1)st order:

Assume that the theorem holds, i.e.:

M =n_y (L) o (exp(: f3:)I) 0+ o0 (exp(: fu :)]).

(3) The nth order:

Define
Mu_y = (exp(: fo ))™ 0 ---0 (exp(: f3:)[)™ o (L) o M.

Hence M,_y =n_ 1. According to Theorem 2.3 and eq. (2.31), M,_, is symplectic.

-

Now define N,_, = M,_, — I. Note that N,_; contains terms of orders n and up.

Suppose M,y =, exp(: fa+1 )f Similar to the second-order case, we have

Mn—l =n f+ [fn+l’i] =n _6fn+1'j-

Since Jac(ﬁ,,_l) contains terms of orders (n — 1) and up, the symplecticity of

-

M, _, entails that
Ja.c(ﬁn_,)j =p-1 (Jac(]\?,,_l)j)'.
Hence f,41 exists. Finally, it has been proven that
M =, (LI)o(exp(: fs:)]) o (exp(: fa:)I) o+ 0 (exp(: fatr :)]),

which concludes the proof.

Using Theorem 2.4 repeatedly, eq. (2.40) can be written into

M=, exp(: fa+1 :)exp(: fn:)---exp(: fa :)(L'lf), (2.43)

where exp(: f; :) (: = 3,---,n + 1) are operators acting on functions obtained from

previous Lie transformations. Please note the difference between exp(: f :)exp(: g )
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and (exp(: f :) )I) o (exp(: g :)I). In the former expression, exp(: f :) acts on the
map exp(: g :)I; in latter expression, exp(: f :) and exp(: g :) act on the unity
map I separately, and the resulting maps exp(: f )f and exp(: g :)I are composed

afterwards.

It is worth noting that M can also be expressed in the reverse order, where

B = (xp(: frsr D)) 0 (exp(: fu )1 0+ 0 (exp(: fs :)T) o (L), (2.44)
The proof is the same except that M; is defined as
M;=Mo(L'T)o(exp(: fs:)[)™ oo (exp(: fira :)))7".

The next theorem shows that it is also possible to represent a symplectic map

using a single Lie transformation.

Theorem 2.6 Let M be a symplectic map on R*™. Then to an arbitrary order n,

there ezists a matriz L and a polynomial H of orders 8 and 4, up to n+ 1, such that

M =, (L) o (exp(: H :)). (2.45)

Proof:
First, define M, = (L) o M.
(1) The second order:

From the proof of the last theorem, we know that there exists a function f3 of

order 3 satisfying
Ml =, exp(: f3 )f

(2) The third order:
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Suppose there is a function fy of order 4 such that

My = exp: fo+ fu)

=5 T4 U+ foll+ 3+ fulfs+ fu Tl

=5 T+ 15 N+ 3l U 1 + U ]

=3 exp(: fo )T+ [fo, )

=3 exp(: fs:)[+Vfa-J. (2.46)

The removal of f4 from [f3 + fa,[fs + f4, i]] is due to the fact that fy is of order 4;
hence [fs, [f4, I)] and [f4, [f3, I)] give fourth-order terms.

Now define N, = Ml — exp(: f3 )f, which contains terms of orders 3 and up.

Thus from eq. (2.46) we obtain

- -

Vfi =3 —(M—exp(: f5:)D)-J
Since M, is symplectic, we have
Jac(My) - J - Jac(My)! =, J
(Jac(M) + Jac(exp(: f:)1)) - J - (Jac(My)! + Jac(exp(: fo :)I)') = J,
= Jac(Ny) - J - Jac(exp(: fs :)D) + Jac(exp(: f3 :)I) - J - Jac(Vy)",
+Jac(exp(: fs :)T)) - J - Jac(exp(: f3:)I)* =2 J,
= Jac(Ny) - J - Jac(exp(: f3 :)1)t + Jac(exp(: f3:)I) - J - Jac(Ny)! =, o
(exp(: f3 :)T is symplectic.)
= Jac(Ny)-J-It+1-J-Jac(N) =,0,
(Jac(N,) is of orders 2 and up.)
= Jac(N,)J =, (Jac(Ny)J).

Therefore f, exists. Choosing H = f3 + f4, we have

-

M =3 (LD) o (exp(: H :)]).
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(3) The (n — 1)st order:
Assume that the theorem holds, i.e.
M =n_y (LT) o (exp(: H 2)1),
where H = f3+ f4 + - + fa.
(4) The nth order:

Suppose there is a function f,4; of order n + 1 such that

—

My, =, exp(: fa+ fa+- -+ fapr )f

=n exp(: fat+ fat -+ fo )+ V oy - J. (2.47)

Define N,_, = M; — exp(: H )f, which contains terms of orders n and up. Thus

from eq. (2.47) we obtain
6}'4 =, —(M — exp(: f) J

Similar to the third-order case, the symplecticity of M, gives

a

= Jac(Nn_1)J =a_1 (Jac(N._1)J),
which implies that f,,, exists. Choosing H = f3 + f4 + -+ + fa41, we have

n (LT) o (exp(: H :)),

which concludes the proof.

Note that the proofs for the above factorization theorems provide algorithms for
obtaining the Lie factorization of arbitrary orders. In practice, they are used by

Differential Algebraic codes such as COSY INFINITY [Berz93).
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2.3 The Baker-Campbell-Hausdorff Formula

In this section we will study an important formula, the Baker-Campbell-Hausdorff
formula, which combines two Lie transformations into one. The complete proof of it
involves knowledge of Lie algebra that is beyond the scope of this thesis [Dynkin62,
Vara84]. Instead, we will present a partial proof to show that it holds to the third

order for Lie operators.

Theorem 2.7 Let A and B be two functions on R*™. The following relation holds:

exp(: A:)exp(: B :)

=2 exp(: A+ B + 5[4, Bl + 15((A,[4, Bl + [B, (B, Al) ),

where A and B are polynomials of orders 3 and higher, and “ =7 means the truncation

of the polynomial of Lie operators at the third order.

Proof:

From eq. (2.14), we have
tAuB:—-:B:A:=:[AB]:.

Using this relation repeatedly, the rest of the proof is straightforward.

The left-hand side can be transformed to

exp(: A :)exp(: B:)

_ . . _1_ .2 l 3 . . _l_ .2 l 3
_3(1+.A.+2.A.+6.A.)(1+.B.+2.B.+6.B.)
1
=31+:A:+§:A:2+%:A:3+:B:+:A::B:+-;—:A:2:B:
1 ga l 4. pa2.l pa
+2.B.+2.A..B.+6.B.

1
=31+:(A+B):+§(:A:2+:A::B:+:B::A:+:B:2+:[A,B]:)
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+%(:A:3+3:A:2:B:+3:A::B:2+:B:3)

1 1
=3 1+:(A+B):+—:(A+B):2+§:[A,B]:

2

+%(:A:3+:A:2:B:+:A::B::A:+:A::[A,B]:+:B::A:2

A:[ABl:+:[AB]:A:+:A:B*+:B:A:B:
+:[(A,B]=B:+:B:*A:+:[A,B]:B:+:B:[AB]:+:B:?
1 1 1
=3 1+:(A+B):+§:(A+B):2+-2-:[A,B]:+€:(A+B):3

+é(2:A:: (A,B]: +:[A,B]::A:+:B::[A,B]: +2:[A,B]:: B:).

The right-hand side can be transformed to

exp(: A+ B+ [A B]+ ([A (A, B]]+[B [B,A]])+---1)
=314+:(A+B+ [A B]+ ([A (4, B]]+ [B,[B, A]))) :
+%:(A+B+§[A,B]):2+-6:(A+B):3

1 1 1
=3 1+:(A+B):+—-:(A+B):"’+§:[A,B]:+g:(A~+-B):3

2
+i(; (A+B):[A,B]:+:[A B]:(A+B):)
+112( ::[A,B]: - [A,B]::A:+:B::[AB]:—:[AB]::B)
=31+:(A+B):+%‘(A+B) 5+ [4,B]: + :(A+B)

+%(2:A::[A,B]:+:[A,B]::A:+:B:: [A,B]):+2:[A,B]:: B

Altogether, the left-hand side equals the right-hand side, which ends the proof.

It is worth noting that only commutators appear in the right-hand side of the
B-C-H formula, which is remarkable in that, for any Lie algebra, the manipulation of
the corresponding Lie transformation does not require extra operations. Besides, the

B-C-H formula links the Lie operators with the Poisson brackets.
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A direct result of the B-C-H formula is that we are able to find the inverse of

exp(: f :) easliy. Since [f, f] = 0, we obtain

exp(: f:)exp(: =f:) = exp(: f+(=f):)=exp(:0:)=1.

Therefore, the inverse of exp(: f :) is exp(: —f :). Futhermore, the inverse map of M,

in the form of a single-factor Lie factorization, i.e., M = (LI) o (exp(: H D), is

= (exp(: —H )f) o (L'lf), (2.48)
which is shown below:

M7 oM = (exp(: —H :)I)o (L™"I) o (LI)o (exp(: H :)I)
= (exp(: —H :)[) o exp(=H=)13
= exp(: H:)exp(: —H :)[ =T

MoM™ = (LD)o(exp(: H :)I)o (exp(: —H :)I) o (L7'1)
= (LI)o(exp(: H :)exp(: —H :)I) o (L7'I)
= (LDo(L'N=T.



Chapter 3

Repetitive Achromat Theory

In this chapter the theories of repetitive achromats up to order three will be dis-
cussed. This will give us an overview of what has been achieved and the remaining
difficulties. All achromat theories, including the arbitrary-order theory presented in
Chapter 4, deal with systems with midplane symmetry. The first section is devoted

to the definition and implications of midplane symmetry.

3.1 Midplane Symmetry

In a system with midplane symmetry, two particles that are symmetrical about the
midplane at the beginning stay symmetrical afterwards. In other words, let us con-
sider a beam optical system with transfer map M. Suppose a particle enters it at
(24,ai,yibisti,6) and exits at (zy,a7,y5,b5,t5,67). Another particle that enters it at

(ziyai,—Yi,—bisti,6;) will exit at (zg,as,—ys,—bys,ts,65). Now the matrix P is defined

as
10 0 000\ /z
01 0 000]|[a
- loo-1 oo00]]y
PI=1f49 o0 -100]]|5 (3.1)
00 0 o010]|]:¢
00 0 001/\5s

31
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Hence, midplane symmetry can be expressed as
(PDoMo(P'D)=M. (3.2)

Since we are only interested in symplectic maps, M can be represented by a linear

matrix and a Lie transformation (see Section 2.2):
M = (LD o (exp(: H :)).
Inserting into eq. (3.2) and using Theorems 2.4 and 2.2, we have
(LT) o (exp(: H :)I) = (PI) o (LI) o (exp(: H :)I) o (P7')
= (L1) o (exp(: H:)]) = exp(: H(P'I) :)(P- L- P']).

For first-order matrices, midplane symmetry requires that
L=P.L.-P, (3.3)

which implies that for higher orders

exp(: H(I) :) = exp(: H(P™'I) ),

= H(I)= H(P]). (3.4)
Equations (3.3) and (3.4) determine that

(z|z) (zla) O 0 (z|t) (<16)
(a|lz) (ala) 0 0 (alt) (a6)
=] 0 0 (vly) (5 0 0
0 0 (bly) (blp)) O 0
(tlz) (tla) O 0 (tt) (t]¢é)
(8lz) (la) 0 0 (8]t) (416)

(3.5)

and

H = E C.',;u,',.-b,«,.-,z"’a""y"bibt“éi‘, (36)

izialylipieis
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where iz + 1, + 1y + % + 3¢ + 25 > 3 and 1, + 1, is even. Here the independent variable

is the arc length of a reference trajectory s and z;,a;,y;,bi,t;,6; are canonical variables.

An achromat can be achieved only when acceleration is not present and syn-
chrotron radiation can be neglected. Therefore, the transfer map of such a system is
not only symplectic but also time-independent (static) and energy-conserving. These

put more constraints on the transfer map, and we now have

(z|z) (zla) 0 0 (z]6)
(a|z) (ala) O 0 (alé)

0
0
o 0 G @y o o
L=| o o () ) o o (3.7)

(tlz) (tla) O 0 (tt) (t6)
0 0 0 0 0 (66

and

H= 3 Ciiiiz=a yvbs®, (3.8)
txtatytpls

where i + i, + ¢, + 15 + 15 > 3 and 1, + ¢ is even.

It is clear that, from eq. (3.8), we have

H=Y" Copp0.,b"* (3.9)

i"=3
when an achromat is reached. Hence, only the terms (¢|6") (n = 2,3,---) are left in

an achromat. Futhermore, symplecticity [Berz85] implies that

(tlz) = —(zlz)(aléi) + (al)(z]6k), (3.10)

(tla) = —(z|a)(aléx) + (ala)(z|és), (3.11)

which means that this is also true for the first order.
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3.2 Second-Order Achromat Theory

Since a second-order achromat is always based on a first-order achromat, let us first
study how to obtain a repetitive first-order achromat. Consider a system consisting

of n identical cells (n > 1) and let L, be the z-matrix of one cell, which has the form

(2l2) (zla) (219)
L,=((a|x) (ala) (a|6))=(ﬁ,‘
0 0 1

- €

) . (3.12)

Therefore, the total z-matrix L, is

Ly, = L"
(M" (M""+M""+---+i)d)‘)
0 1

( Mr (M™ = (M - ) ) . (3.13)

0 1
Equation (3.13) shows that the dispersion vanishes when M™" = I, i.e., the phase
advance equals a multiple of 27r. Together with the requirement that L, = I, a

first-order achromat is reached when the tunes of the whole system are integers.

Brown’s second-order achromat theory is built on a repetitive first-order achromat,

as described above. It consists of the following two theorems:

Theorem A: If a system contains N identical cells (N > 1 and N # 3), all
second-order geometric aberrations vanish when, for a cell, both transverse planes

have the same non-integer tunes and the phase advance of the system is a multiple

of 2r.

Proof:
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Here we adopt K. Brown’s original notation where the linear matrix is represented

by R and the second-order matrix is T'. Therefore, the second-order map is
zip =Y Rijzjo+ Y TijeTjotio, (3.14)
3 5k

where z;0 and z;; are initial and final coordinates, respectively. According to pertur-
bation theory, high-order solutions can be obtained through the lower-order solution
and the inhomogeneous part of the ODEs. In the case of Brown’s theory, the ODEs
are expanded to the second order, where the the terms in the inhomogeneous part
are called the driving terms [Brown82b]. With all driving terms obtained, T;;x can

be expressed as a function of R;;, which is
L .
Tin = [ Kp(s)(Ris(s)"(Rue(s))™ds,  with (n+m) =3, (3.15)

and where K,(s) is the multiple strength at s. For geometric aberrations, R;; should

come from the geometric part of R only, which is

( cos (8) + a(s) siny(s) B(8) sin(s) )
—v(8) siny(3s) cos P(s) — a(s)siny(s) /-

As a result, T;;i can be written into
L .
Tijx = /0 Fy(s)sin™((s)) cos™(1(s))ds. (3.16)
Since sin™(¥(s)) cos™(¥(s)) (m +n = 3) gives only e**¥(*) and e*3¥(*), the conditions
for all second-order geometric aberrations to vanish are

L . L .
/ FefYds=0 and / Fe**¥ds = 0.
0 0

Due to the fact that the system consists of individual cells, the integral conditions

above become the following sums

N N
Z Fret¥* =0 and z Fle¥ =,
k=1 k=1
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where
Fk — /NL+.10+A3 )eii(’l’(-’)-*‘l’k(so))ds
L+ao—Ac
= / L+so+s) Hi(W( 3 L+30+3) vk (%)) g3
= / §)e£i(av3) g5, (3.17)
- As . i
o= / F(3)eX¥(av@) g5, (3.18)
-As

Here, N, L, so, and As are the number of cells, the length of the system, the position of
the center of the element considered, and the half-length of the element, respectively.
Repetition of the system is used to obtain eq. (3.17) and (3.18). Since F} and F] are

independent of k, eq. (3.17) is further reduced to
N N .
Z er¥* =0 and Z eF3vr =,
= k=1

In conclusion, all second-order aberrations vanish when N # 3, Ny, , = 2m_, 7, and

mzy, #2mN (m =1, 2, -.-) (see Figs. 3.1 and 3.2).

The second theorem deals with the correction of second-order chromatic aberra-

tions left in a system satisfying Theorem A.

Theorem B: For a system that satisfies Theorem A and N > 3, a second-order
achromat is achieved when two families of sextupole components are adjusted so as
to make one chromatic aberration in each transverse plane vanish. In other words,

only two chromatic aberrations are independent.

The proof of this theorem can be found in reference [Carey81]. Another proof using
normal form theory will be given in Section 3.3 as part of the third-order achromat

theory. A typical four-cell, second-order achromat is shown in Fig. 3.3.
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| ev 14 eV
3 1 3 1
— o — —

Figure 3.1: Complex plane diagram for second-order geometric aberrations of a four-
cell repetitive system with phase advances 2.

2 " 39
1 1,2,
B— P——
3

Figure 3.2: Complex plane diagram for second-order geometric aberrations of a three-
cell repetitive system with phase advances 2r.
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Figure 3.3: K. Brown’s four-cell, second-order achromat. Quadrupoles are used to
tune the system to phase advance 27 in both transfer planes, and two families of
sextupoles, SF and SD, are used to correct chromatic second-order aberrations in the
z- and y-planes, respectively. To make the sextupoles weak, they are placed such that
Bz is larger at SF and S, is larger at SD.

3.3 Third-Order Achromat Theory

In the mid 80’s, Dragt [Dragt87] developed a third-order achromat theory for repet-
itive systems based on the normal form theory [Dragt79]. Although the same result
can be obtained from other normal form algorithms, the Lie factorization has the ad-
vantage of explicitly showing the number of independent aberrations to be corrected.
In practice, however, it is difficult to implement the Lie normal form beyond the
fifth order; hence DA techniques have to be used, either combined with Lie algebraic

techniques [Forest89] or by themselves [Berz92a], to compute the normal form map.

The key idea of this theory is that when an achromat is achieved in the normal
form coordinates, it is achieved in any set of coordinates. Since the transfer map
in the normal form coordinates is much simpler than that in the original curvilinear
coordinates, the conditions for an achromat become much clearer. Consider an n-ccll
symplectic system with midplane symmetry. From Section 2.2, the transfer map of

one cell can be written into

M =, (L1) o (exp(: f3:)0) o (exp(: fo :)[) 0 -+ 0 (exp(: fas1 :)]).
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To order 3, we have
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-

M =3 (LT) o (exp(: f5:)]) o (exp(: fu:)]). (3.19)

Since ¢ is not of interest, it is discarded. Therefore I = (z,a,y,b,6). The normal form

transformation is done order by order [Forest89]. For the first order, there exists a

5 x 5 symplectic matrix

aix a2

a2 a2
A= aszz Qasz4q
a43 Q44

which satisfies

A-L-A"'=R,

where

ei“t
e "i#z

R= e"“!l

as
Qazs
(3.20)
1
(3.21)
(3.22)
ey

Suppose s, is the eigenvector of e'#=v. The fact that L is real entails that 3, is the

eigenvector of e~*#=v,

Now let us define N; as the transfer map in the eigenvector coordinates, which

can be transformed to

=Y

N, = (ADoMo(A'))

= (Al o (LI) o (exp(: f3 :)I) o (exp(: fa:)I) 0 (A'])
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= (AD)o(LD)o(A™']) o (Al) o (exp(: fs:)I) o (A7)
o(Al) o (exp(: fo:)T)o (A-‘f)
= (RD)o(exp(: fs(A7']) :)I) o (exp(: fa(A™*]) :)I)
= (Rf)o(exp(:gaz)f)o(exp(: g4 )1). (3.23)

Note that I is the unity map in the eigenvector coordinates.

Next we define
Ny = (exp(: G5 :)I) o Ny o (exp(: —G3 :)1). (3.24)
To the second order, we have
N, =, (exp(: G )I-) oNo (exp(: —G3 )I-)
=; (exp(: G3(RI) :)RI) o (exp(: g5 :)I) o (exp(: —Gs :)I)
=, exp(: —G3 :)exp(: g3 :) exp(: Gg(Rf) :)(RI-')
=2 exp(: g3 — (Gs — Gs(RI)) :)(R]), (3.25)
where use of the B-C-H formula has been made.

Since G5 and g3 are polynomials of order 3, in general they have the form

Gy = ) I €/ — 'I"‘s"’s"‘"s"'é" (3.26)
Mmsnsmynyis

g3 = 2 GmansmynyisSe Sy s'"‘s"“5" (3.27)
mznymynyis

where m; + n; + my, + n, + is = 3 and m, + n, is even. Therefore, we have
93— (Gs — Ga(Rf))

- Z ( manemynyis — (1 _ ex‘((mz—-nx)#=+(my—ny)#y)) Gm,ngm,nyio)

MzRzMynyis

S8y sm"é"“ 5'

z (gm,n,myn,i6 - (1 - eig.(,ﬁ-ﬂ)) Gm,n,mynyig) mz§"’3"‘".§n’¢5‘6 (328)

Menzmynyis
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where 7 = (gz,py), m = (mz,my) and @ = (nz,ny). As a result, all the terms which
satisfy g (m — ) # 2n7 can be removed. This is why normal form transformation

simplifies the transfer map.

Futhermore, there are two categories of terms that remain in the normal form

map. The first category satisfies m = 7, i.e.,
m; =n, and my, = n,, (3.29)

which does not depend on f. Since these terms cannot be removed intrinsically
by any normal form transformation, they are the minimum independent conditions
for obtaining an achromat. Note that they are also responsible for the amplitude-

dependent tune shifts.

The other category of terms remaining in the normal form map consists of the

nontrivial solutions to the equation
g (m—q)=2nm, (3.30)

which are tune-dependent and can be removed by carefully choosing the tunes or by
having a certain symmetry. The tunes that give eq. (3.30) non-trivial solutions are
called resonances; and the terms associated with the solutions are called the driving

terms.

In the case of the second order, 1 and 7 must also satisfy
mg+ny; +my+n, <3. (3.31)

Therefore, from eqs. (3.29) and (3.31), the tune-shift terms are g110015:3z6, goo1115, %, ¢

and goge036°, and from eqs. (3.30) and (3.31) the resonance driving terms can also be

obtained.
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