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ABSTRACT

A PARALLEL ALGORITHM FOR ULTRASONIC

MATERIAL CHARACTERIZATION

By

Chipai Chou

Attenuation coefficient has been considered to be an important feature in material

characterization. However, estimation of an attenuation coefficient in material, especially

in biological tissues, is still a difficult task. Unlike conventional approaches, the proposed

approach extracts several features from the return echoes, then applies a clustering

technique to the extracted features. A modified Hopfield neural network, called the

maximum neural network, is adopted to process the extracted data set. The advantages and

convergence property of the maximum neural network are discussed in this dissertation.

Due to the inherent parallelism in the maximum neural network, material characterization

using parallel processing becomes possible. Both synthetic data sets and a data set taken

from a human sample are used to demonstrate the capability of the proposed system.

Some results were obtained from the proposed scheme which could be achieved by the

traditional methods.



ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my advisor, Dr. Bong Ho, for his

guidance and support. Thanks also given to the guidance committee members, Dr. H.

Roland Zapp, Dr. James A. Resh, and Dr. Wei-Eihn Kuan, for taking time to serve in the

committee. Most importantly, I would like to thank my parents and my wife. Because of

their encouragement and support, I was able to complete this dissertation.



TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

Chapter 1 INTRODUCTION

1.1

1.2

1.3

1.4

Ultrasonic imaging

Artificial neural network

Research objective

Thesis organization '

Chapter 2 BACKGROUND

2.1

2.2

2.3

2.4

The acoustic plane wave equations

Transmission and reflection coefficients

The processing element of artificial neural network

The structure of l-Iopfield neural network

Chapter 3 TIME-DOMAIN AND FREQUENCY-DOMAIN

ANALYSES

3.1

3.2

3.3

3.4

Time-domain technique

Advantages and limitations of time-domain technique

Advantages and limitations of frequency-domain technique

Frequency-domain technique

Chapter 4 MATERIAL CHARACTERIZATION USING

PARALLEL PROCESSING

4.1

4.2

4.3

4.4

4.5

Material characterization

Methodology

Feature selection

The structure of maximum neural network

Classification using maximum cut

Chapter 5 SIMULATION EXPERIMENTAL RESULTS

5.1 Maximum independent set problem

vi

vii

12

16

19

23

23

32

35

36

43

43

45

46

51

58

64

64



5.2 Simulation results

5.3 Ultrasonic tissue characterization

Chapter 6 CONCLUSIONS

6.1 Summary

6.2 Directions for future work

APPENDIX

A Program list for the maximum independent set problem

B Program list for data acquisition and displaying

BIBLIOGRAPHY

7 1

80

87

87

88

9O

96

104



Table 5.1

Table 5.2

I Table 5.3

Table 5.4

Table 5.5

Table 5.6

LIST OF TABLES

Comparison of simulation results for lO-vertex graphs.

Comparison of simulation results for 25-vertex graphs.

Comparison of simulation results for SO-vertex graphs.

Comparison of simulation results for 75-vertex graphs.

Summary of simulation results to demonstrate solution

qualities.

Comparison of the computation time for 50%-density

graph problems.

vi

74

75

76

77

78

79



Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

LIST OF FIGURES

Acoustic wave at interface of two different media.

Schematic diagram of a neuron.

Input/output functions of neurons.

Architecture of the Hopfield neural network.

Bidirectional interrogation for layered model.

The impulse response pairs of dual interrogation.

Experimental setup for measuring r].

Structure of the multi-layered model.

Reflected signal gated by windows.

System diagram.

Stages of data clustering.

Features extracted from the spectrum of a return echo.

Architecture of maximum neural network.

The test result of the proposed algorithm (a) the given graph G

(b) the found independent set S of the graph G.

The test result of the proposed algorithm (a) the given graph G

(b) the found independent set S of the graph G.

Picture of human brain sample with hemorrhaged tumor.

Schematic diagram of the data acquisition system.

Projection of five features in a two-dimensional space.

C—scan image of human brain sample.

vii

13

17

18

20

24

27

3O

37

38

47

48

50

53

72

73

81

82

84

85



Figure 5.7 Reconstructed image of human brain sample.

viii

86



CHAPTER 1

INTRODUCTION

1.1 Ultrasonic imaging

Pulsed-echo ultrasound is an important and valuable tool in non-destructive

evaluation (NDE) [l], non-invasive clinical diagnostics [2], and many other applications

[3]. It employs high frequency acoustic wave to extract information about the internal

structure and characteristics of materials. The attractive features of using ultrasound are

that it provides safety of operation and acquires low examination cost as compared to

other detection techniques. The commonly used x-ray computerized tomography (CT)

uses a high energy x-ray beam to obtain images of material structure. Basically.

transmission technique based on material absorption characteristics is utilized in x-ray

systems and image reconstruction. Quite often, injection of a contrast medium such as

iodine, for visualization of non-bony tissue, is necessary and the procedure is invasive and

hazardous. The nuclear magnetic resonance (NMR) techniques, which are very popular in

recent years, measure the selective resonances of radioactive isotopes in particular organs



and provide a significant medical imaging technique. Since they use extremely strong

magnetic fields, several teslas, the possible bioeffects on the human body are not well

determined at the present time. The cost of equipment and the expense of examination for

both of these techniques are extremely high. Short-term and long-term exposure risks for

both Operators and patients are also of great concerns. Although ultrasonic imaging

systems, which use much lower frequency, can not provide high resolution images as

those from CT and MRI, yet the lower cost and safety of operation continue to favor

ultrasound for material evaluation.

The research work in this dissertation tries to apply neural network technique to

ultrasonic detection in such a way that the imaging resolution can be improved. Non-

destructive evaluation of materials by ultrasound has shown rapid growth in recent years.

especially in the testing of composite materials which have become a major construction

material in aerospace and automotive industries. A great deal of information about the

mechanical properties of materials can be retrieved from the acoustic return echoes. A C-

scan imaging system has been implemented to display two dimensional images for defects

and flaws inside composite materials [1]. However, in order to assure the success and

consistency of non-destructive evaluation, acoustic properties such as impedance,

attenuation, and reflection coefficient have to be obtained with high accuracy. Several

techniques have been proposed to improve the lateral resolution and the range resolution

for better image quality. Lateral resolution is the ability to distinguish nearby objects in the

transverse direction with respect to the ultrasound beam. Due to the inherent drawbacks of

dispersive nature and the spatial profile of acoustic beams, the lateral resolution of

ultrasonic imaging systems is poor. Techniques have been proposed to improve lateral

resolution. Correlation technique has been used in C-scan imaging [4]. Digital filtering

technique has also been implemented [5]. A method of firing a transducer array



repetitively to obtain an adaptive focusing effect for resolution enhancement has also been

reported [6]. Range resolution is the ability to distinguish two different acoustic return

echoes along the beam direction. Theoretically, range resolution can be improved by using

broad-bandwidth and low-Q transducers which can provide narrow transmitting pulses.

Due to fabrication difficulties, such transducers are not available at the present time.

Beretsky employed frequency deconvolution to improve ultrasonic imaging [7]. Steiner

proposed a generalized cross-correlation to improve image quality [8]. Yamada presented

an on-line deconvolution for high resolution ultrasonic pulse-echo measurements under

constraints of narrow-band transducer [10]. However, range resolution in ultrasonic

imaging still has much room for improvement.

Differences in acoustic impedance, velocity, and attenuation of various normal and

abnormal tissue were studied under a variety of controlled ultrasonic field conditions.

These were found to be quantitatively significant and could be correlated with differences

in tissue structure and pathological changes. In the past two decades, there were many

techniques proposed for estimating these quantities. Jones utilized the return echoes

deconvolved with the transmitted wave to produce the impulse response which yields

impedance profiles under the assumption that the wave propagates through non-

attenuating media [11]. Cobo-Parra determined the impedance profile of a multi-layered

ocean floor. However, their treatment of attenuation is overly simplified by the hypothesis

of linear frequency dependency and the same acoustic thickness for each layer [12]. The

propagation velocity in tissue is an important property of material. Kossoff [13] and Lin

[14] demonstrated that this parameter correlates with pathological characteristics of tissue.

Greenleaf used transmission technique [15] and time-of-flight tomography [16] to produce

two dimensional sound speed images of female breast tissue. Propagation velocity can

also be measured by transmission methods [10, 17, 18] and pulse echo methods



[19,20,21]. However, the propagation velocity has not been extensively used in medical

diagnosis because the pathology related changes in propagation velocity are too small to

be accurately measured.

Attenuation has been considered an important characteristic capable of forming the

basis for a tissue differentiation scheme [22]. Transmission methods [23, 24, 25] are

simple and straightforward. However, when these approaches are limited to in-vivo

measurements, very few human organs can be accessed in such a way. Kuc [26, 27, 28]

proposed an approach to estimate the attenuation from return echoes on the assumption

that attenuation coefficient is a strong function of frequency. Based on this assumption,

both spectral-shift and spectral-difference approaches were used to estimate attenuation

coefficients. The spectral-shift approach estimates attenuation coefficient from the

downshift of the echo spectrum as compared with that of the incident pulse. The spectral-

difference approach estimates attenuation coefficient from the deviation of the mean log

spectrum of the return echoes. Several researchers have also proposed time-domain

methods [29, 30]. Although time-domain methods are straightforward, difficulties such as

signal distortion and echo overlapping remain to be solved. Because of the difficulties in

estimating acoustic parameters by traditional methods, image processing and pattern

recognition techniques have been adopted to enhance the results [31, 32, 33]. Almost all

of these techniques are used in the post-processing stage.

1.2 Artificial neural network

The study of artificial neural network systems began in the early 1940s. An artificial

neural network system is a parallel distributed information processing system which

consists of neurons and synapses. Neurons are the processing elements and synapses link



neurons together. Each neuron receives and transmits signals to a number of neurons via

synapses. The function of the neural network system depends on the function of neurons

and the structure of how neurons and synapses are connected. McCulloch and Pitts

modeled a neuron as a simple threshold device which performs a binary logic function

[34]. Later, the neuron model was refined by the use of Rosenblatt’s Percepuon [35] and

Widrow’s Adaline [36].

The neural network architectures can be classified into three categories: feedback

model, feedforward model, and recurrent model. In the feedback neural networks, neurons

are connected to one another by feedback paths (synapses) from the outputs to the inputs

of neurons. Continuous-valued neurons are normally implemented as electrical circuits

and the network dynamics are described by differential equations. A key issue of this type

of network is to define an energy function which always decreases during the dynamical

evolution. The Hopfield neural network is a one-layer feedback network which consists of

interconnected nonlinear analog neurons [37]. In the Hopfield neural network, a gradient

descent method is used to seek a local minimum of the given energy function. Generally,

the energy function is derived from the given constraints and a cost function. Another

canonical circuit model with feedback was proposed by Chua and Kennedy [38, 39]. This

model uses integrators as neurons. The parameters of the Chua-Kennedy neural network

correspond to the coefficients of the objective function and constraints. The Chua-

Kennedy model requires more hardware than the Hopfield model does. However the

model is superior to the Hopfield model in solving linear programming problems because

it guarantees a stable equilibrium point while the Hopfield model does not.

In feedforward neural networks, synapses only exist between consecutive layers of

neurons or between peers. Sample data are needed to train the neural network. Layered



feedforward neural networks were first studied by Rosenblatt [41]. Since then.

feedforward multilayered structures and learning algorithms for the training of the neural

network have been developed. The most well-known learning algorithm is the error back-

propagation algorithm for multilayered feedforward neural networks proposed by

Rumclhart [42]. In recurrent neural networks, connections (synapses) in both directions

between a pair of layers and within a layer are allowed. The Boltzmann machine is a well-

known recurrent neural network with symmetric connections [43]. The Boltzmann

machine consists of visible and hidden units where visible units can be divided into input

and output units. In the training phase, the Boltzmann machine adjusts the connections

such that the states of the visible units have a desired probability distribution. The

disadvantage of the Boltzmann machine is that the training requires an extremely long

convergence time. Simulated annealing procedures have been proposed to shorten the

training convergence time [95].

Since the outputs of a neural network system are the result of cooperative work of all

neurons, the system can still produce useful result even when some connections are

damaged and/or faults exist in some neurons. In other words, neural network systems

exhibit fault tolerance. Because each neuron can function independently, parallelism is

inherent in neural networks. Some massively parallel computational ability is essential for

many applications requiring high computation capacity. Over the years, neural network

models have been applied to various areas. The feedback model has been applied to

several combinatorial optimization problems such as the travelling salesman problem [37]

and the bipartite subgraph problem [44]. The feedforward model has been applied to

robotics [45] and control problems [46]. The recurrent model has been applied to

statistical pattern recognition [47] and constraint satisfaction problems [48].



1.3 Research objective

Material characterization using ultrasound can be achieved by extracting acoustic

parameters from the return echoes as well as the transmitted signals. There are methods to

estimate various acoustic parameters. Echoes returned from non-homogeneous material,

such as biological tissues, are the result of collective scattering inside the target. Due to

the nature of biological tissues, the return echoes from such target are very complex. No

quantitative scheme for estimating the acoustic parameters of non-homogeneous material

has been well developed at the present time.

Instead of solving the tissue characterization problem quantitatively, qualitative

methods can be used to distinguish normal tissue from abnormal tissue. Frequency

domain techniques, especially the dispersive characteristics of the attenuation coefficient.

have been widely used in tissue characterization. Features related to the attenuation

coefficient, which is strongly frequency dependent, are extracted from the return echoes.

Each transducer location on the scanning plane is represented by a feature vector whose

dimension equals the number of features. Then, the data set consisting of all feature

vectors may have enough information to characterize the target. A modified neural

network will be used to classify the data set into two clusters. One cluster represents the

normal tissue, while the other represents abnormal tissue. To accomplish this goal, the

following steps are taken.

(1) Time domain return echoes are sampled and stored.

(2) Various features are extracted from the stored return echoes.

(3) Develop an appropriate algorithm for the modified neural network to classify

the data set.



(4) Classify the data set and display the clustering result in graphics.

Images reconstructed from the clustering result can be further improved by using

image processing techniques.

1.4 Thesis organization

The organization of this dissertation is as follows: In chapter two, some background

material of ultrasound is presented. Important acoustic parameters, such as attenuation

coefficient and reflection coefficient, are defined. Some discussions of artificial neural

network are also included. In chapter three, methods for estimating acoustic parameters in

both the time domain and frequency domain are presented. Advantages and limitations of

various methods will be examined. In chapter four, features used in feature vectors are

presented. Algorithms for improving the existing neural network processing are

developed. In chapter five, several synthetic data sets and a data set taken from a real

sample are used to test the validity of the theory developed. Results are also compared

with those produced by other algorithms. Finally, some conclusions and suggested future

research are stated in chapter six.



CHAPTERZ

BACKGROUND

2.1 The acoustic plane wave equations

Ultrasonic waves are pressure waves with frequencies above the audible range.

Ultrasonic waves consist of pmpagating periodic vibrations in an elastic medium where

the particles of the medium oscillate about their equilibrium position on either

perpendicular or parallel to the direction of propagation. Since the longitudinal vibrations

are dominant in the non-destructive applications [49], only those variation are considered

in this dissertation. The propagation of the resulting motiomstrain effects from the source

results in a longitudinal compression wave that transmits acoustic energy away from the

source. Pressure and particle velocity are two observable parameters of a propagating

acoustic wave.

Assume that the particle at location x0 in a homogeneous medium undergoes a small

compressional force at time to, the relationships between particle velocity v and pressure p

are described as



and

10

av -(_1)92
37 - k a: (2'1)

3p _ 8v
3'} - (—p)5; (2.2)

where k is the elastic coefficient and p is the medium density.

Equation 2.1 is the mass continuity equation, while equation 2.2 is the momentum

equation. Equations 2.1 and 2.2 show the coupling between particle velocity and pressure.

By decoupling these equations, the acoustic plane wave equations can be obtained as

and

32 ka2
J21 = -—’-’2— (2.3)

3: Pax

3 ka2V V

_ = —_ (2 4)

a? Pax2

The general solution forms for pressure and particle velocity are

p = 12(0)! ("’"K" (2.5)
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and

v = v(0)e"‘°""" (2.6)

where K is the wave number given by

K = (OJE (2.7)

The wave number is in general a complex quantity. It consists of the phase constant B and

the attenuation constant a.

K = [3 — jet , (2.8)

From equations 2.2, 2.5, and 2.6, the pressure and particle velocity can be related by

p = QKBV . (2.9)

The characteristic acoustic impedance is defined as the ratio of pressure to particle

velocity. From equation 2.9, the acoustic impedance Z can be expressed as

2524212 (2.10)
v K ,

For a lossy medium, the acoustic impedance is a complex quantity. For a lossless medium,
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the acoustic impedance is a real quantity since there is no attenuation for the propagating

wave and the wave number K becomes a real quantity. For a lossless medium, the phase

velocity VP is

(2.111

As a result, the acoustic impedance of a lossless medium can be expressed as

Z = pvp . (2.12)

2.2 'D‘ansmission and reflection coefficients

Material characterization using ultrasound is either based on the signal reflected

from or transmitted through an interface between two different media. Therefore. it is

important to determine the magnitudes of reflection coefficient and transmission

coefficient. When an acoustic plane wave arrived at a boundary between two different

media, it will be partially reflected. Consider an acoustic plane wave propagating from

medium 1 to medium 2, as shown in Figure 2.1, the law of reflection states that the angle

of incidence 9‘. and the angle of reflection O, are equal when the wavelength of the wave

is small compared to the physical dimensions of the reflector. That is

e. = e . (2.13)

The relationship between the incident angle 9‘. and the angle of transmission 9, is



 

 
Figure 2.1 Acoustic wave at interface of two different media.
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described by the Snell’s law,

sinO‘. vl

" - (2.14)

srnO, v2 .

In the equilibrium state, the pressure on both sides remains the same in order to maintain a

stationary boundary and the normal component of the particle velocity on both sides must

be equal in order to keep the media in contact. Thus,

pint-pr = p! (2.15)

and

vicosOi — vrcosO, = v,cosO, . (2.16)

From equations 2.9 and 2.16, we have

pichosOi erlcosO, lezcosfll

01 91 — 92

 (2.17)

From equations 2.15 and 2.17, the pressure reflection coefficient r and transmission

coefficient t can be obtained as

K1 K2

—cosO‘.——cosO,

r585: pl p2 (2.18)

Pt K1 K2
—cosOi+ —cosO,

pt 92
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and

K2

p Z-p—cosfli

pi K1 K2
—cosOi + —cosO,

P, 132

For normal incidence, O‘- = 9, = O, the reflection and transmission coefficients are

reduced to

K, K2

pl 92
.-.-. 2.20r K1 K2 ( )

P] [32

 

and

z= D2 (221) 

Using the acoustic impedance definition given by equation 2.10, these coefficients are

simplified to

 



l6

and

 t = (2.23)

2.3 The processing element of artificial neural network

The artificial neural network is a nonlinear network which consist of a massive

number of simple processing elements where they are tightly interconnected. The

processing element is called an artificial neuron because it performs a similar simplified

function of a biological neuron. The mathematical model of an artificial neural network is

composed of two important components: neurons and synaptic links. The output signal

generated by one neuron propagates to the others through the synaptic links. The new state

of the neuron is determined by the linear sum of the weighted input signals and a threshold

value. This model is shown in Figure 2.2 where Xi’s is the inputs from other neurons, WU

is the weight between neuron i and neuron j, f(.) is the neuron input/output function. 91 is

the threshold value of neuron i, and Yi is the output of neuron i.

McCulloch and Pitts proposed a simple mathematical neuron model based on

biological computation in 1943 [34]. Their neuron model has a binary input/output

function. Since then, several neuron models have been proposed [50]. There are two most

commonly used neuron input/output functions: linear function and sigmoid function.

These input/output functions are shown in Figure 2.3.



l7
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Figure 2.2 Schematic diagram of a neuron.
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(a) binary (b) linear
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(c) sigmoid

Figure 2.3 Input/output functions of neurons.
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Since neurons can process information independently, the parallel processing ability

is inherent in artificial neural network. Because neurons are simple processing elements.

the fabrication of such parallel system with hundreds of neurons is possible [51, 52, 53].

The output of an artificial neural network is the result of collective efforts of all neurons. It

has been shown a few inaccuracies and faults in the hardware will not paralyze the system

as a whole. This provides an attractive feature of artificial neural network, the fault

tolerance property.

2.4 The structure of Hopfield neural network

The artificial neural network for solving combinatorial optimization problems was

first introduced by Hopfield [37]. The differentiable, continuous, and nondecreasing

neuron model, using sigmoid function, is used in the Hopfield neural network. Figure 2.4

shows the architecture of the Hopfield neural network. The relationship between output V,

and input Ui of neuron i is given by

v‘. = g (1 + tanh (M1,) ) (2.24)

Note that 7t represents a constant gain which changes the steepness of the sigmoid curve.

One key issue in the Hopfield neural network is to find a suitable energy function E. In

general, the energy function is derived from the given constraints and the cost function.

The conductance matrix W in figure 2.4 is determined by the energy function.

In the Hopfield neural network, the symmetric conductance matrix W with zero

diagonal elements must be used to guarantee the convergence to the local minimum [54|.
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Figure 2.4 Architecture of the Hopfield neural network.
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Hopfield mapped the travelling salesman problem onto an N x N artificial neural network.

The energy function E for an N-city problem is given by

x=lt=lj¢t i=lx=lx¢y =lx=1

+D N N N

+x§2 Z deyvxi(vy, i+l +Vy,i-l) (2'25)

x=ly¢xi=1

where (1,,y is the distance between city x and city y and A, B, C, and D are constants.

The conductance matrix W is given by

WM=—A5xy(1—5U)—35ij(1—5x)cDd(51+1+5,;.~-1>, (2.26)

The gradient descent method is used in HOpfield neural network to seek the local

minimum of the given energy function. Consequently, the dynamics of the system follows

the motion equation which is given by

_‘ = _ (2.27)

The Hopfield neural network is guarantee to converge to the local minimum.

Unfortunately, the local minimum is not always equivalent to the feasible solution. In

other words, the proof of the local minimum convergence in Hopfield neural network does
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not always guarantee the feasible solution even through its fast convergence speed is very

attractive. There are no systematic methods to find the constants in the energy function at

the present time. We will discuss further about these problems and pr0pose a modified

Hopfield neural network in chapter four.



CHAPTER 3

TIME-DOMAIN AND

FREQUENCY-DOMAIN

ANALYSES

3.1 Time-domain technique

The time domain technique extracts material property information, such as

attenuation coefficient, acoustic impedance, propagation velocity, from a one-dimensional

echo sequence (A-mode signals). Consider the object under investigation consists of

multiple homogeneous layers, as shown in Figure 3.1. The parameters (1‘, Z, ri, and d, in

Figure 3.1 are the attenuation coefficient, acoustic impedance, reflection coefficient, and

layer thickness respectively. By the use of the convolution theorem, the relationship

between the received signals Yi(t) and the incident signal X(t) for the left transducer is

Y1“) = IX(I)hl(t—t)dt (3.11

c—N

and for the right transducer is

23
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water tank

   

Figure 3.1 Bidirectional interrogation for layered model.
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Y2(:) = IX(I)h2(t—I)d‘t (3.2)

—N

Y1(t) and Y2(t) are the received signals from the left side and right side respectively, and

mm and h2(t) are the left side and right side impulse responses of the test object

respectively. In general, the process of evaluating the mm and h2(t) from the

measurements Y1(t) and Y2(t) is called the deconvolution process. There are many

deconvolution algorithms been proposed [5, 55, 56, 57], but only a few algorithms for

obtaining the attenuation properties [58]. The impulse response can be expressed as a

sequence of delta functions under the assumption that the acoustic wave propagates

through a non-attenuating medium. When a narrow band transducer is used, the

. -(XX . . .

attenuation process can be modeled as e where 0t 18 the attenuation coefficrent at the

central frequency of the incident signal and x is the distance travelled. Assuming a narrow

band transducer is used, the received signals Yi(t) can be expressed as a sequence of

delayed incident signals. Therefore, the left side and right side impulse responses can be

expressed as

h,(r) = ZafiU-t‘.) (3.3)

and

[22(1) = 217,504,) (3.4)
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where a, is the amplitude of the echo received by the left transducer which is reflected

from the boundary between (i-l)th and ith layers while bi is the amplitude of the echo

received on the right side and reflected from the boundary between (i-1)th and ith layers.

The amplitude a, has the following form,

—or d ["1 2 —2a d

a.=e °°r. (l—rk )e H (3.5)

Similarly, the amplitude bi has a form of

(3.6)

The minus sign in bi accounts for the fact that the reflection coefficient changes sign when

the incident signal is from the opposite side of the object. The magnitudes a, and bi can be

read directly from the impulse responses mm and h2(t). The impulse responses of dual

interrogation is shown in Figure 3.2. The amplitude ratio of successive echoes can be

expressed as

  

a. r.

‘ = ‘ (3.7)

a: 2 —2aidi

”1 ’1+1(1“’1)e

and

2) —2t1,.d,.

bi =rl.1-—rl.+1 e (38)

  

i+l
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Figure 3.2 The impulse response pairs of dual interrogation.
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From equations 3.7 and 3.8, one can obtain

ill-r 2)t ‘I+I 2 (3.9)

 

 

2

’1
R1 = 2 (3.10)

l -— r‘.

Equation 3.9 can then be reduced to

aib‘. R1

__ = 3.11

a b R ( )

ai+lbi+l
R1+1= R17 (3.12)

The reflection coefficient ri can be expressed in terms of R, as follows

Rt
’1 = sgn (at) 1+R (3.13) 
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where

1 for ai >0

sgn(ai) = {

-l for ai < 0

Therefore, the acoustic impedances for successive layer can be related by

1+r‘.

21': l—r.Z“‘ (3.14)

I

 

From equations 3.7 and 3.8, one can obtain

a.b.
1 1+1 _ I (3.15)

. .T —4 ,d,m (Inflows). .
 

 

From equation 3.15, the attenuation coefficient 01‘. of the ith layer can be expressed as

 

1 albi+l( 2X 2)
Oti — Hln[a b l—r‘. l—r‘.+1 - (3.16)

i i+l i

Once the reflection coefficients are determined and the layer thicknesses are available, the

attenuation coefficient for each layer can be obtained from equation 3.16. However, the

layer thicknesses (11 can not be measured directly from the A-mode echo sequence. It is a

distance inferred from the measurement of time delay between two consecutive echoes. A

precise measurement of di will require knowledge of the mean sound velocity in each



30

 

7////////////
 

 
 

    
  

I transducer

  

 

T

l

l

l

l

I

l

I

|

l

I

....................

X(t) 17(2)

  
transducer

Figure 3.3 Experimental setup for measuring r1.
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layer. Therefore, we can only obtain the attenuation-velocity product (av) from the

experimental data [90].

The reflection coefficient of the first interface is

r1 = (1,6 (3.17)

where a] is obtained from the impulse response function. Typically the transducer is

immersed in water, so the attenuation coefficient (10 is a known quantity. The distance d0

between the transducer and the test object can easily be measured. In practice, it is rather

difficult to get a replica of the incident pulse from the transducer. A water-air/water-object

interface setup, as shown in Figure 3.3, can be used to measure the reflection coefficient

r]. Since the reflection coefficient at the water-air interface is approximately -1. the

amplitudes of Y(t) and Y(t) in Figure 3.3 can be expressed as

YpeakU) = —AOe (3.18)

and

“aodo

i'peaka) = rlAOe . (3.19)

From equations 3.18 and 3.19, the reflection coefficient r1 is then

~

_ _ YpeakU)
.. (3.20)

I Ypeak“) .



32

Once r1 is obtained, equations 3.12 and 3.13 can be used to find other reflection

coefficients. Consequently, the attenuation-velocity products can be evaluated from

equation 3.16.

3.2 Advantages and limitations of time-domain technique

The time domain technique described in the previous section provides a simple way

to determine both the reflection coefficient and the attenuation-velocity product

simultaneously. Because of its short processing time, the real-time ultrasonic imaging

becomes possible by using the time domain technique. Needless to say there are

drawbacks in the time domain technique.

(1) Since the incident signal of a given layer is the transmitted signal from the

previous layer, whatever error incurred in the current layer will be carried to

the next layer. So the error will be accumulative along the propagation path.

(2) The time domain technique requires a very precise alignment between the

transducer and the object. A minor misalignment could cause a significant

error in the end.

(3) In reality, the incident signal is not truly a narrow band signal. This can cause

some analytical error which will be discussed next.

Assuming the incident signal has a Gaussian shape in the time domain,



.33

.2 _—i

x(t) = e’ We 2" (3.21)

where f0 is the central frequency and o is the standard deviation. The signal and its

specuum are related by the Fourier transform pair [59]

W

X(f) = [ x(z)e"2"f‘dz (3.22)

and

0° '21th

x0) = [xme’ df (3.23)

The frequency spectrum of the incident signal can thus be obtained as

_2 2 2 - 0 2

X(f) = J2_n<5e M U f) . (3.24)

The transfer function of the medium can be characterized by

H(f) = e-afde’jkd (3.25)

where a is the attenuation coefficient, (1 is the distance travelled, k is the wave number.

and n is the frequency dependent factor. The output signal frequency spectrum can be

expressed as
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Y(f) = X(f)H(f) . (3.26)

In reality, most materials have a linear frequency dependency, i.e. n=1. equation 3.26 can

 

be reduced to

_2 2 2 _ o 2 _ _.

Y(f) = Jfr'me 1‘ 0 U f) e Cl“e ”“1 (3.27)

and

y(t) = [ Ymeiznf’df

(1de ant- kd
= EXP(T2 —' adf0)*EXP(-——2 )*

8n 0 41th

EXP(j27t(f0— “2d 2)(:— 2"—")) (3.28)

41t o “f ,

. kd
The peak amplitude of y(t) occurs at t = 21:7

2 2

a d

ypeaka) = EXP(——2—-i — adfo) (3.29)

Sn 0 ,

Hence, it is apparent that the decay of the peak amplitude in the time domain will not just
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. —ordf .

follow the usual exponential e o manner. As a result, the attenuatron measurement

based on the time-domain analysis becomes inaccurate.

3.3 Advantages and limitations of frequency-domain techniques

If a broadband transducer is used in the ultrasonic imaging system, the attenuation

property of the object can be estimated by using the spectral distributions of the incident

and reflected signals. The frequency domain approaches can be broadly divided into two

categories: the spectral difference [2, 26, 28, 60] and the spectral shift [61, 62, 63]

methods. The spectral difference method estimate the attenuation coefficient,

(X(t) = a0!" , by evaluating the spectral difference between the input and output signals.

The advantage of the spectral difference method is that no spectral form of the incident

signal is required and the attenuation factor n is not restricted to be an integer. Kuc

estimates 010 for liver by comparing the spectra of signals reflected from a planar interface

with / without a volume of liver interposed under the assumption of linear frequency

dependent attenuation in the liver [61]. Insana modified the spectral difference method to

improve the overall measurement accuracy [64]. Insana included the transducer beam

diffraction pattern into the data analysis by using empirically determined correction

factors. In general, the spectral difference between the incident and reflected signals

contains information on both the attenuation coefficient and the reflection coefficient.

These material properties can not be determined simply by using the signal information in

a single trace of return echo. Since the frequency difference method does not consider

reflection and attenuation as separate factors, the estimation results are contaminated and

the accuracy is not as good as that of the spectral shift method which will be described

DCXI.
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When an acoustic signal passes through an medium with attenuation, it experiences

a frequency dependent attenuation. The attenuation experienced at higher frequencies is

larger than that at lower frequencies. The spectral shift method was first suggested by

Serabian [63]. Serabian showed the downshift of the central frequency for a signal

propagating through different thicknesses of graphite. Kuc applied this concept to evaluate

attenuation in linear frequency dependent soft tissue [61, 65]. Ophir extended this method

to nonlinear frequency dependent media [66]. The spectral shift method does not require

the knowledge of the reflection coefficient or transmittance to estimate the attenuation

coefficient. However, the spectral shift method does require a Gaussian-shaped spectrum

for the interrogating pulse. For most ultrasonic imaging system, a Gaussian-shaped pulse

with a corresponding Gaussian power spectrum can be produced by slightly modifying the

transducer driving voltage and the impedance loading. For a linear frequency dependent

attenuation medium, the power spectrum of the signal after going through the medium has

also a Gaussian shape, except that the peak is down shifted to a lower frequency. For a

nonlinear frequency dependent attenuation medium, the power spectrum of the signal after

going through the medium remains in Gaussian shape, but the width becomes narrower.

Narayana derived the theoretical relationship between the central frequency downshift and

the spectral bandwidth of a signal with a sinc(f) spectrum propagating through attenuating

media. The spectral shift method will be further examined in next section.

3.4 Frequency-domain technique

Assuming that the incident signal has a Gaussian-shaped spectrum, the incident

signal in the time domain can be expressed as
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Figure 3.4 Structure of the multi-layered model.
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39

2

x(t) = EXP(—t—2-) sin (27%;) (33(1)

200

where f0 is the central frequency and 00 is the standard deviation of the Gaussian-shaped

envelop. The magnitude of the incident signal spectrum 1X(f)l is

  

 

 

lX(f)| = [ x(:)e"2“f‘dt

(f—f )2
= C-EXP[— 2 J (3.31)

20/

where C = JZKGO isaconstant and of2 = 21 2 is the variance.

41: 00

Consider a multi-layered structure, as shown in Figure 3.4, where ri, Zi, di, and H,(f) are

the reflection coefficient, the acoustic impedance, the layer thickness, and the transfer

function of the ith layer respectively. The magnitude of the transfer function can be

characterized by

[Him] = EXP(—af'd‘.) (3.32)

where (1‘. is the attenuation coefficient of the ith layer.

After the incident signal propagates through the structure, echoes come back from

various boundary. We can use a window to gate a nonoverlapped sequence of pulses, y,( t),
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y2(t),..., yN(t), from the reflected signal y(t), as shown in Figure 3.5. The magnitude of

each gated signal |Yi(f)l can be expressed as

[13(7)] = 121mm,] (3.33)

and

i

|Y1+1<f>l = |X(f)I|R‘.+1(rl...,r‘.+,)|1'_I|H,‘(f)|2 (3.34)

k=l

where R‘. H (r1...,r‘.+ l) is the reflection function and can be expressed as

1‘

2
Ri+1(r1...,r‘.+1) = r”1 ”(I —rk) (3.35)

k=1

Assuming that the object has a linear frequency dependency and the coupling medium is

water whose attenuation is practically negligible. The spectrum of the signal reflected

from the (i+l )th interface is

2

-(—f—_—f‘—+—‘)—J (3.36)
IY1+1mI = C1+1IR1+1IEXP{’ 2

20/

where Ci+1 is a frequency independent constant and
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1'

2

fi+1 =fo‘20f Xakdk (3.37)

k=1

From equation 3.36, we observe that the reflected signal spectrum maintains a Gaussian

shape as that of the incident signal, but the central frequency has been down shifted by

Afi.

Af‘. = 20f (1‘. i . (3.38)

From equation 3.38, the attenuation coefficient is then

Af.

at. = 2‘ (3.39)

20f d.

 

I

In order to obtain the reflection coefficient of each layer, the peak spectral

amplitudes pi are needed and can be obtained as

pI = |X(fl)“r1| (3.40)

and

p...=1w...>11R.-..1111~.<n..>12 mm
k=1 .

The amplitude ratio of successive return echoes is
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1

1m. 2114-. .1 1'1 114.4. .12
k=1

pi i-l

1x<r.->1 IR) 11 1114212
k=1

 

 

|X(fi+l)l H Iii/(«141”2

 

 

  

 

2

= (=1 ri+l(l_ri) (342)
I-I 2 _ ‘ ' '

IXWI II [HM-ll ‘
k = 1

From equation 3.42, the reflection coefficient of each layer can be obtained as

i—l 2

IXWI H IHkWI
IriI pi +1 I: = r

_ , ,

I IX(fI+1)|I-I|Hk(fi+l)l

k=l .

Once r1 is known, equation 3.42 can be used to find the successive reflection coefficients.

r1 can be measured by a simple experimental setup as shown in Figure 3.3 and explained

in section 3.1. Once the reflection coefficients ri are determined, the acoustic impedance

can be evaluated as

 

Z- = 21-1- ‘ (3.44)



CHAPTER 4

MATERIAL

CHARACTERIZATION USING

PARALLEL PROCESSING

4.1 Material characterization

The measurement and estimation of the attenuation coefficient of biological tissue

have received much attention in the field of ultrasonic material characterization. From

chapter two, the pressure of the sound wave propagating in the x direction can be

expressed as

p(x,t) = p(0)cos (21tft—kx) (4.1)

where f is the frequency and k is the wave number. When a sound wave propagates

. -or

through an attenuating medium, the wave will experience an exponential decay e ’1 in its

amplitude where ml is the attenuation coefficient at the operation frequency and x is the

distance the wave travelled. Therefore, the pressure of a sound wave propagating through

an attenuating medium can be expressed as

43



p = p(0)e—a’xcos(21tft—kx) . (4.2)

In an ultrasonic imaging system, the transducer sends out a pulse which composes of a

band of frequency components. The pressure P of the pulse propagating through an

attenuating medium consists of many frequency components which can be expressed as
"
U

l p(fI)EXP (-af1x) cos (21tflt— kx) +

p(fz)EXP (—0tf2x) cos (21tf2t— kx) +

2pm)EXP (—0tqu) cos (21tfit— kx) (4.3)
i I

where p(f,-) is the amplitude of the excitation at frequency fr

As described in chapter three, the high frequency components will be attenuated

more than the lower frequency components. As a result, the spectrum of the pulse is down

shifted in frequency domain. Based on this phenomenon, Dines [67] and Schattner [68]

have proposed techniques for ultrasonic imaging. Clinical evaluations on liver, breast, and

other biological tissues have demonstrated the correlation between pathological status and

tissue attenuation properties [69, 70, 71]. The correlation implies that the attenuation

measurement of biological tissues may provide a unique method of clinical diagnosis.

However, the tissue attenuation measurement remains a difficult task [72, 93]. Difficulties

arise from the fact that the acoustic wave is scattered by the biological structure, which is
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very complex and dispersive in nature. Although some improvement can be made in data

acquisition, tissue characterization based on information obtained from the back-scattered

ultrasonic signals is not a trivial task.

4.2 Methodology

Methods for estimating attenuation coefficient can generally be grouped into two

categories: time-domain methods and frequency-domain methods. Time-domain methods

have the advantage of being easily implemented and thus are suitable for real-time

imaging applications. However, the time-domain method can only provide limited amount

of information. On the other hand, the frequency-domain method can retrieve more

information and provide better accuracy. The trade-off is that the frequency—domain

method requires more processing procedure such as windowing, sampling and Fourier

transfonn.

Material characterization utilizing the conventional estimation of attenuation

property is not reliable at the present time. In order to improve the accuracy, we proposed

a method of applying a clustering technique based on features extracted from the return

echoes. To speed up the processing, a parallel algorithm based on a modified Hopfleld

neural network is proposed. The modified Hopfield neural network is called maximum

neural network and will be described in detail in section 4.4. The maximum neural

network is used to classify the multi-dimensional data set into clusters after features are

extracted from the return echoes. The spatial information is then added to the clustering

result for image reconstruction. Several general features of our proposed scheme are

outlined as follows:
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(1) For good material identification, both time-domain and frequency-domain

information should be utilized.

(2) Features can be added or deleted from the feature space for optimal

classification.

(3) Knowledge of input spectrum or relationship between attenuation coefficient

and frequency is not required. Conventional frequency-domain techniques,

however, require such information for material characterization.

The rest of this chapter are as follows. Features extracted from the return echoes are

given in section 4.3. The method for selecting independent features in the feature space is

also given in section 4.3. The structure of the maximum neural network and its

convergence property are described in section 4.4. Clustering using the maximum neural

network is explained in section 4.5. The system diagram is shown in Figure 4.1. The

stages of data clustering are shown in Figure 4.2.

4.3 Feature selection

Five different features are extracted from each reflected signal at the initial phase of

the process. That is, at each scanning position, five frequency-dependent features are

extracted from each echo return. These features are the total energy, central frequency,

peak frequency, 3-dB bandwidth of echo spectrum, and correlation coefficient between

incident and reflected signals.

Total energy
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Total energy of the reflected signal is related to the reflection coefficient which

contains the information of acoustic impedance of the medium. Let the sampled return

echo be s(i), the total energy E1 can be put in the form of

N

E, = 2 |s(i)|2 (4.4)

i: 1

where N is the number of sampling points of each return echo.

Central frequency, peak frequency, and 3-dB bandwidth

Attenuation coefficient has been shown to be highly related to spectral-shift and

specual-difference of the echo specuum [73]. This phenomenon cause central frequency

and peak frequency shifted downward and the 3-dB bandwidth of the echo spectrum

widened. Because of the Gaussian—shaped spectrum, the central frequency can be

estimated by the mean frequency Fm and is given as [74]

N

2 F,P(F,)

F = i=_1__ (4.5)
m N

2 HF.)
i=1

where HE) is the ith element of N-point FFT which ranges from the lower 3-dB to the

upper 3-dB level. Peak frequency PK(F) is the frequency having the maximum magnitude

within the 3-dB bandwidth. Figure 4.3 shows how these three features extracted from an

echo return are defined.



SO
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Figure 4.3 Features extracted from the spectrum of a return echo.



51

Correlation between incident and reflected signals

Correlation between incident and reflected signals at a given interface can provide

useful information about the medium under interrogation. Properties such as elasticity,

stiffness, velocity, and attenuation are all embedded in this feature.

Feature dependence test

In order to avoid redundance of features, linear dependence test is used to measure

the degree of dependence between features. The linear dependence between two features. 1

and j, is measured by [94]

2
1
'
—

v

M
2

(xki " m1) (xkj ’ mj)

1
(4.6)

S-S

4021') = k

where S, and mi are sample variance and sample mean for feature i respectively. The

absolute value is required because the correlation could have either positive or negative

value. Nevertheless, the magnitude is used as an index for dependence. If d(i,j) = 0, the

features i and j are linearly independent. On the other hand, when d(i,j) approaches unity.

one of the features can be discarded.

4.4 The structure of maximum neural network

The NP-complete problems are classified as hard problems. It is believed at the

present time that no polynomial time algorithm exists for those problems. Therefore, a

near-optimum solution is acceptable as long as it can be obtained in a reasonable
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computation time. In 1985, Hopfield [37] used an artificial neural network to solve

optimization problems such as travelling salesman problems. In a Hopfield neural

network, the gradient descent method seeks a local minimum of the given energy function.

The energy function is usually composed of two parts. When the first part is minimized the

network output represents a valid solution. The second part is described as the cost of the

solution. The sum of these two terms forms a specific energy function. In general, the state

of the system in the Hopfield neural network is guaranteed to converge to one of the local

minima instead of the global minimum [54]. However, the local minimum is not always

equivalent to the feasible solution. In other words, the proof of the local minimum

convergence in the Hopfield neural network does not always guarantee a feasible solution

although its fast convergence speed is very attractive. Furthermore, the determination of

the parameters in the energy function is usually based on a process of trial and error. No

theoretical analysis has been reported for the general case at the present time.

A modified Hopfield neural network for classifying an N-point data set into two

classes is proposed in this section. The modified Hopfield neural network is called the

maximum neural network and is shown in Figure 4.4. The maximum neural network

consists of N clusters and each cluster is composed of two processing elements. The total

number of required processing elements is then 2N. Processing element of the ith neuron

in the xth cluster has an input Ux, i and an output Vx’ 1.. The input/output function of the

neuron xi is given by

1 if Um- =max{U Ux,2}
x,l’

0 otherwise
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Therefore, only one processing element per cluster is always encouraged to fire in the

maximum neural network. The gradient descent method is also used in maximum neural

network. The approach is very similar to the Hopfield neural network which seeks the

local minimum of a given energy function. The dynamics of the system follows the

motion equation which is given by

de 1' 8E

E — F—-aV. (4.7)

Convergence property of the maximum neural network

Theorem 4.1 and Theorem 4.2 below are introduced to prove that the proposed

system can always converge to a stable status. The convergence of the Hopfield neural

network is given in [50] and is restated in Theorem 4.1 for completeness.

Theorem 4.1:

dB . . . . dUi BE .
a? $0 rs guaranteed by the conditions. E = - 87 and vi = f(Ul.) where f(U1) rs a

nondecreasing function.

Proof:

gig ___ zfl/idviaE

dt i dt dUiaV‘.
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dUi 2W1 h BE. 1 db dUi d" 1
_-22—t mwerewrsrepace y-E (con rtron)

II

dV.

5 0 where 7171‘.) 0 (condition 2) Q.E.D.

i

In Theorem 4.2, the convergence of the maximum neural network for the clustering

problem is guaranteed.

Theorem 4.2:

£5 S 0 is guaranteed by the two conditions, they are

(l) —"'i=- and 

(2) V“. = 1 if U“. = max {U U1,2 }, Ootherwise.
1.1’

Proof:

The derivative of the energy E with respect to time t is
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(IE _ .

Z? ' €23 dumavm

 
 

 

de i Zde 1 BE . de i . .
- ;;[E ] Ill—LT, where 31: rs replaced by - :1? (condition 1).

S' de,1 _ Ux, i(t+dt)— Ux’ [(t) d de. _ Vx,,-(t+dt)- V1,,(I) ,f I

"me E = dt 3" de, 1 = Una +dt) — U,,,-(t)’ ' we 61

U; d(t + dt) be the maximum at time t+dt and UJlr b(t) be the maximum at time t in the

cluster x, then

U1, d(t + (1!) = max{ U1, 1(t + dt), Ux. 2(t + dt) }

and

Ux. b(t) = max{ Ux, 1(1), Ux’2(t) }.

It is necessary and sufficient to consider the following two cases:

(1)a=b

(2)a¢b.

If case (1) is satisfied, then there is no state change in the cluster x. As a result,
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2

de, i dvx, i
. .

Z — —— must be zero. If case (2) rs satisfied, then

dr dUm.

  

  

  

  

  

 

dU .de . U (t+dt)-U (t) 2V (t+dt)—V (r)
2 _X,I AI = 1,0 1,0 ) 1,0 x,a +

1 dt de’i dt Ux, a(t + dt) - Ux, d(t)

(U1, b(t + dt) — Ux' b(t))2 VI, b(r + dr) - VI, b(t)

dt U1, b(t + dt) — Ux, b(t)

(Ux, d(r + dt) — Ux’ 0(1) 2 1

' dt Ux. “(z + dt) - Ux, 0(2) +

(UL b(r + dt) — U1, b(t) )2 _1

dt Ux‘ b(r + dt) - U1, b(t)

Ux, d(t + dt) — Ux‘ 0(1) Ux, b(t + dt) — Ux, b(t)

(dt) 2 (dt) 2

= 1 2(UJr a(t+dt) - U; b(t+dt) + Ux b(t) - U)c 0(1))

(dt) ' ' ' '

> O .

Notice that U1 “(I + dt) is the maximum at time t+dt and Ux b(t) is the maximum at time

t in the cluster x. The contribution from each term is either zero or positive, therefore
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2 2

iUxJ] dV [dz/x, i] de,i dEx,i

Theorem 4.1 guarantees the convergence of the system. Theorem 4.2 states that the

solution quality improves as the time elapses until no further improvement can be made.

The maximum neural network performs a parallel improvement algorithm which can be

implemented either on the sequential machine or on the parallel machine. The termination

condition is given by the convergence state of the system. As long as the system reaches

an equilibrium state, the execution is terminated. The equilibrium state is defined that all

firing neurons have the smallest change rate of the input per cluster. The condition of the

equilibrium state is as follows

Vx’i(t) = l and 1U)" i(t) = min {
d d

dr 75%, (ml, IEUL2(I)I l for x = 1,..., N. (4.8)

 

4.5 Classification using maximum cut

When an N-point data set is classified into two classes, we would like to have data

points in the same class to be as similar as possible, whit data points in different classes

are as different as possible. If the N-point data set is mapped onto an N-vertex graph and

the relationship between data points is regarded as weights on the edge between vertices,

the clustering problem can be viewed as the maximum cut problem. As explained in

section 4.4, the energy function E of the maximum neural network is the same as that of

the Hopfield neural network. Those parameters in the energy function of the maximum
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neural network need to be determined. If the clustering problem is mapped onto the

maximum cut problem while using the maximum neural network, we will see that the

number of the parameters will be reduced to one. The advantages of the maximum neural

network will be presented next. First, the maximum cut problem is defined in the

following manner [75].

Maximum Cut Problem:

Instance: Graph G = (V, E), weight W(e) e Z + for each e e E , positive integer K.

Question: Is there a partition V into two disjoint sets V1 and V2 such that the sum of the

weights of the edges from E that have one endpoint in V1 and one endpoint in

V2 is at least K?

Optimization description:

N N 2 2

maximize z 2 2 XWX,)V,,,-Vy,) Vme {1.0)

x=lx¢yi=1j¢i

2

subject 2 V; l. = 1 for x = 1 to N where N is the number of vertices.

i=1

Note that W}.r y represents the weight of the edge between vertex x and vertex y and WK. x

= 0. If V“. = 1, the vertex x belongs to the ith partition.

Remark:



N N 2 2

To maxrmrze Z 2 2 2 Wx‘ ny, iVyJ rs equivalent to mrnrmrze

= 1x¢yi = 'at '

Proof:

N N 2 2

Let Sum= 2 2 2 2 Wx’ny'iVy’j

x: =1j=llxatyi

N N 2 2

Let M* be the maximum of 2 2 Z Zwmvx iv)”. and

x=lx¢yi=1j¢i

N N 2

S*bethe minimum of 2 Z wayVXJVY", then

x=lx¢yi=l

N N 2 2 N N 2

Sum=zzzzlwJ“VJHVy. + ZZZnyl/X‘VYI=M*+S*.

x=lx¢ yi=1j¢i X=IX¢YI=I

Since M* is the maximum of the maximum cut problem, the maximum cut can be

obtained by the minimization of S*. Q.E.D.

The maximum neural network model is composed of 2N processing elements for

solving the maximum cut problem of an N-vertex graph. The input/output function for
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each neuron is given by

1 ifo’i=max[Ux,1,Ux’2}

0 otherwise

where x and i represent the vertex and partition respectively. With this function, there is

always one neuron fired for each vertex x. The maximum cut problem can be solved by

minimizing the energy function E which can be expressed as

C N N 2

Wizzzwxyxivyi
(4'9)

x lxatyizl

The motion equation for the xi-th neuron is

dU

czwUvy, (4.10)

yatx

It should be noted that the parameter C does not affect the performance of the system. For

simplicity, it is assigned to be unity hereafter.

In summary, the maximum neural network approach has the following features for

the clustering problem:

(1) The maximum neural network always generates a valid solution. Wherever or

whenever the system converges, the corresponding output is a valid solution.
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Note that none of the existing algorithms based on Hopfield neural networks

can guarantee this property.

(2) No trial-and-error parameters need to be evaluated in the maximum neural

network. None of the existing algorithms based on Hopfield neural networks

can avoid this trial and error process.

(3) The maximum neural network has an exact condition for convergence listed in

equation 4.8. Most of the algorithms used in the neural networks, the states of

convergence are defined by a tolerance range. None of the existing algorithms

based on Hopfield neural networks clearly defines the condition of the system

convergence.

The parallel algorithm based on the maximum neural network has been implemented

in C language on a sequential machine such as Sun SPARC 10. The following procedure

describes the proposed parallel algorithm based on the first order Euler method.
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step 0: Set t = 0

stepl: forx=1toNdo

for i =1 to 2 do in parallel

Ux, i(t) <— random number 6 (-1, 1)

step 2: for x = 1 to N do

for i =1 to 2 do in parallel

Vx".(t) = 1 if Um“) = max [Up 1(t), Ux‘ 2(t) ]

0 otherwise

step 3: forx =1 toN do

for i =1 to 2 do in parallel

N

aux, ,(z) = - Z wmvy’ .-

y = 0

step 4: forx =1 toN do

for i =1 to 2 do in parallel

Ux. i(t + 1) = Ux, 1(1) + AUX, [(1)

step 5: Increment t by 1.

step 6: If the state of the system reaches an equilibrium state then stop, otherwise go to

step 2.



CHAPTER 5

SIMULATION AND

EXPERIMENTAL RESULTS

5.1 Maximum independent set problem

In order to verify the validity of the proposed algorithm, two types of problem are

solved by the maximum neural network: the maximum independent set problem and the

tissue characterization problem. For the maximum independent set problem, a massive

number of simulation runs are performed. The simulation results are compared with

results published by other researchers. For the tissue characterization problem, the result is

compared with the result of the conventional C-scan imaging. The experimental setup is

also described.

An independent set in a graph G = (V, E) is a subset S g V such that. for all

v, w e S , the edge (v, w) is not in E. The maximum independent set problem is to find

the maximum size of the independent set in G. The problem is one of the fundamental

problems in graph theory and has many useful applications such as RNA secondary

structure prediction [76]. It is also known to be NP-complete [75]. Algorithms for the
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maximum independent set problem have widely studied. Gavril developed an O(m3) time

algorithm for the maximum independent set problem in a circle graph, where m is the

number of edges in the graph [77]. Supowit proposed an O(mz) time algorithm on the

circle graphs [79]. Masuda gave an O(m log m) time algorithm on the circle graphs [80].

Hsu gave an O(n4) time algorithm on the planar perfect graphs, where n is the number of

vertices [81]. Several parallel algorithms have been proposed by Karp [82], Luby [83],

and Goldberg [84], where the computation time is O(log4n). Takefuji gave a nearly 0( 1)

time parallel algorithm on circle graphs [76].

Given a graph G, a clique is a maximal complete subgraph of G. The maximum

clique problem is to find the maximum complete subgraph of G. The problem is known to

be NP-complete [75]. It is also useful and has been investigated in many areas including

clustering analysis, classification theory, graph coloring, information retrieval systems.

and VLSI circuit design [85]. Pardalos proposed an algorithm where the maximum clique

problem is formulated and solved as a linear constrained indefinite quadratic global

optimization problem. Although the supercomputer Cray 2 was used, their algorithm

could not solve larger than 75-vertex graph problem [86]. Carraghan proposed an

algorithm based on a partial enumeration [87]. Although it could solve up to 3,000-vertex

graph problems on the mainframe IBM 3090, it required a prohibitively long computation

time even for a middle-size graph.

In fact, the maximum independent set problem and the maximum clique problem are

equivalent as pointed out in [75]. For clarity, the equivalence is restated here. Given G =

(V, E), two vertices v, w are adjacent if (v,w) e E. A set S of vertices is independent if

(v,w) e E for all v, w e S. A set of vertices is a clique if (v,w) e E for all pairs of distinct

vertices v, w e S . Clearly S t; V is an independent set of G if and only if S is a clique of

G, where G is the complement of G. Therefore, finding the maximum independent set of
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graph G is equivalent to finding the maximum clique of graph G.

The equivalence between the maximum independent set problem and the

unconsuained quadratic zero-one problem has been pointed out by Pardalos [86]. The

equivalence between the quadratic zero-one problem and the maximum cut problem has

also been pointed out by Hammer [88] and Barahona [89]. The equivalence between the

maximum independent set problem and the maximum cut problem will be established in

this section. The procedure of using the maximum neural network to solve the maximum

independent set problem will also be presented in this section.

The unconstrained quadratic zero-one problem can be formulated as follows:

minimize f(X) = ch + xTQx (5.1)

where Q is an N x N symmetrical rational matrix with zero diagonal elements, X is an

integer N-vector and C is a rational N-vector. Equation 5.1 can be reformulated as

N N N

minimize f(X)= Xcix‘. + 2 241%in xie {0,1} (5.2)

i=1 i: 1) =1

where q”. is the ij-th element of Q, xi is the ith element of X and "'1 is the ith element of

C. If AG is the adjacency matrix of G and l is the identity matrix, the minimization of the

following unconstrained quadratic zero-one problem is equivalent to finding the

maximum independent set in G [86]:

minimize f(X)=XT(AG-I)X xie (0,1) (5.3)
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Equation 5.3 is reduced to

N N N

minimize f(X)= z (—1)x‘. + 2 zquxixj xie [0,1] (5.4)

i=1 i=1j=1

where q‘. j = 1 if there exists an edge between vertex i and vertex j in graph G, 0 otherwise.

The quadratic problem also is one of the NP-complete problems. The equivalence

between the quadratic zero-one problem and the maximum cut problem has been proven

[88]. Barahona also proved the relationship [89]. For completeness, the reduction process

is also presented here. Let s‘. = 2x1. — 1 , equation 5.4 can be reduced to the following form

1

i=1j=l i=1j= i=1j=1 i=1

II

M
2

M
2

A
l
t
—
-

.
2
“

:
9
1

“
y
: +

M M

k
h
—

:
9

k

“
i
n +

M
2

M
2

h
l
—
t

Qf(s)

N N

where s‘. e {1,-1] and C, = 2 2 .1141.) - g, with an additional variable 50 = l and

i=1j=1
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Equation 5.4 can then be transformed into

N N

f(s) = 2: Wijsisj + C] with so =land sie 11,—1) . (5.5)

r=o)'=o

A graph GM = (V, E) with node set V = [0, 1, 2,..., N} and edge set E can be defined

where W‘. 1' represents the edge weight between vertex i and vertex j. The assignment of

each si, either +1 or -1, corresponds to a partition ofV into V’r = {is V I st. = +1 } and V‘

= [i e V l s‘. = -1 }. Note that the vertex 0 has been assigned to the partition VJ". Because

C1 is a constant, the minimization of equation 5.4 can be rewritten as

minimize f(s)
2 W1.) + 2 Wt.) ' 2, W), + C1

51" sje V+ svsje V' 31.6 V+and 316 V'

=C1+C2-2*[ 2 WW. 1 (5.6)

3,6 V+ and 51.6 V‘

N N

where C2 = z 2 WI. j and C2 is a constant.

1‘: 0) = 0
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The minimization of equation 5.3 has been transformed into equation 5.6. Equation

5.6 is equivalent to the maximum cut problem. In other words, finding the maximum

independent set in graph G and finding a maximum cut in graph GM are equivalent.

Therefore, the maximum independent set problem can be solved by substituting Wi.) in

equation 5.6 into W,“y in equation 4.9.

The relationship between the set of local minimum and the maximum independent

set in a given graph is presented next.

Theorem 5.1:

Given a graph G, a graph GM is defined by following equation 5.5. Then every local

minimum in the maximum cut problem for the graph GM corresponds to a maximum

independent set in the graph G if the maximum neural network is used.

Proof:

Suppose that the system reaches an equilibrium state, i.e. local minimum, at t = T. then

there exists a partition of V+ and V' in the graph GM. Since the system stays in the

equilibrium state and the maximum neural network is used, the following conditions must

be satisfied

forte vt, vmm = 1 and lumm >2?!
dr U" 2(7)



7O

forie V', V1320) = l and %UL1(T) <%Ui'2(7) .

Suppose that the final state does not correspond to an independent set in the graph G, then

3 vertex a and vertex b e V"’ and there exists an edge between vertex a and vertex b in

G. It is defined that if there exists an edge between vertex i and vertex j then (i, j) = 1. ()

otherwise. LetS= {il ie V+and(i,a)= l inG} andQ= [il is V'and (i,a)= l inG}.

=> ISI 2 l where ISI denotes the number of elements in 8.

Since a e V”, then

=> 5,U,m> 5351,20)

N N

=> 20W0 yVy 1<20Wa yVy 2 where W"j. is defined in equation 5.5

N

=9 00 + Zwavy y] <2 Wa‘yvy’2 w (because soe V+)

y=l

=> -4-(deg(a) 1) +-4ISI <—2-11lQl where deg(a) denotes the degree of the vertex a in G.
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1 1 1

=> |S|<-

Since ISI 2 1 , we reach a contradiction.

Therefore, every local minimum for the maximum cut in the graph GM corresponds to a

maximum independent set in the graph G if the maximum neural network is used for

solving the maximum independent set problem. Q.E.D.

5.2 Simulation results

A program in C language was written to test the validity of the algorithm. The

program listing of the main program is given as Appendix A. More than a thousand

examples including up to IOOO-vertex problems have been examined. In order to

demonstrate the performance of the proposed parallel algorithm, the graphs in Figure 5.1

(a) and Figure 5.2 (a) are first tested. Figure 5.1 (b) and Figure 5.2 (b) show the

independent set found by the proposed algorithm.

Our algorithm is then compared with Pardalos’s algorithm [86] where graphs with

vertex size varying from 10 to 75 and with density varying from 0.1 to 0.9 were tested on

the Cray 2 supercomputer using one processor. For the sake of comparison, the published

results for the maximum clique problem have been converted to the results for the

maximum independent set problem as given in section 5.1. The comparison of the results
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Figure 5.1 The test result of the proposed algorithm (a) the given graph G (b) the

found independent set S of the graph G.
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1

1,. .2

93

@4

.5

8. .6 (b) S = {5,7,10,12,13}

Figure 5.2 The test result of the proposed algorithm (a) the given graph G (b) the

found independent set S of the graph G.
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Table 5.1 Comparison of simulation results for 10-vertex graphs.

 

 

 

 

 

 

 

Cray 2 Sun SPARC 10

Average Average Average Average Average Average
. . comp. . . comp.

densuy set Size . densny set 8126 .
time time

0.88 2.1 0.3 0.91 2.0 0.021

0.75 2.9 0.5 0.76 2.7 0.028

0.50 3.7 0.6 0.51 3.8 0.022

0.22 5.5 ~ 0.4 0.26 5.4 0.026

0.10 7.0 0.2 0.11 7.5 0.025     
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Table 5.2 Comparison of simulation results for 25-vertex graphs.

 

 

 

 

 

 

 

Cray 2 Sun SPARC 10

Average Average Average Average Average Average

(1 . . comp. . . comp.
ensuy set Size . densuy set Size .

time t1me

0.91 2.6 6.7 0.91 2.7 0.18

0.75 3.4 7.3 0.76 3.5 0.19

0.49 5.5 7.3 0.51 5.4 0.14

0.24 8.7 6.7 0.26 9.2 0.19

0.09 14.2 4.7 0.11 14.5 0.17       
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Table 5.3 Comparison of simulation results for 50-vertex graphs.

 

 

 

 

 

 

 

Cray 2 Sun SPARC 10

Average Average Average Average Average Average

. clique comp. . clique comp.
densxty . . densuy . .

Size time Size time

0.90 2.7 93.6 0.91 2.9 0.91

0.75 3.6 98.1 0.76 4.1 0.96

0.50 5.9 86.3 0.51 6.8 0.83

0.25 10.4 78.7 0.26 12.4 0.93

0.10 18.8 69.2 0.11 21.8 0.88     
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Table 5.4 Comparison of simulation results for 75-vertex graphs.

 

 

 

 

 

 

 

Cray 2 Sun SPARC 10

Average Average Average Average Average Average

. . comp. . . comp.

denSity set Size . densny set Size .
time time

0.91 3.0 2283.0 0.91 3.1 2.29

0.75 4.0 3690.1 0.76 4.5 2.48

0.49 6.0 2837.1 0.51 7.6 1.98

0.24 11.0 2941.4 0.26 14.5 2.22

0.09 22.0 3879.6 0.1 1 26.7 2.45       
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Table 5.5 Summary of Simulation results to demonstrate solution qualities.

 

 

 

 

 

 

 

 

 

 

 

75% density 50% density 25% density

Graph Avg. Solution Avg. Solution Avg. Solution

Size steps quality steps quality steps quality

100 214.7 4.9/6 180.6 8.2/10 264.7 15.3/17

200 251.0 4.7/6 177.5 8.9/10 114.8 185/21

300 246.9 5.6/7 224.2 9.4/12 226.3 196/22

400 287.0 5.3/7 209.0 1 1.0/13 292.2 206/22

500 316.6 5.3/7 376.8 9.2/12 276.3 212/26

600 259.7 5.7/7 364.6 10.2/1 1 260.9 222/24

700 282.8 4.7/5 353.2 11.7/13 347.2 21.8/24

800 388.8 5.3/6 355.0 10.2/13 283.5 24.7/26

900 392.2 5.8/7 449.0 10.6/12 388.3 24.2/27

1000 395.2 6.0/8 398.2 10.8/13 452.8 22805       
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Table 5.6 Comparison of the computation time for 50%-density graph problems.

 

 

 

 

 

 

 

 

 

 

 

Graph size IBM 3090 Sun SPARC 10

100 0.14 4.5

200 4.16 17.0

300 46.04 47.8

400 235.68 79.5

500 1114.78 227.4

600 362.0

700 407.5

800 534.2

900 817.6

1000 953.4     
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are shown in Tables 5.1 - 5.4. Each element in the tables represents by the average value of

100 simulation runs of randomly generated graphs with given Sizes and densities. The

maximum neural network converges within 200 iteration Steps.Our computation times on

the Sun SPARC 10 are shorter than theirs on the Cray 2 and our solution qualities are

comparable to theirs.

Our algorithm is also compared with Carraghan’s algorithm [87] on IBM 3090

mainframe where graphs with vertex size varying from 100 to 1000 and with density

varying from 0.25 to 0.75 were tested. Table 5.5 shows the average number of iteration

steps to converge to solution and the average/maximum sizes of independent sets found by

our algorithm. The same conversion between the maximum independent set problem and

the maximum clique problem as given {in section 5.1 has been used. Each element in Table

5.5 represents by the average value of 10 simulation runs of randomly generated graphs

with given sizes and densities. Table 5.6 compares the computation time between our

algorithm on the Sun SPARC 10 and Carraghan’s algorithm on the IBM 3090.

Tables 5.1 - 5.6 show that our algorithm is superior to the best existing algorithms in

term of computation time while still maintains similar solution quality.

5.3 Ultrasonic tissue characterization

Experimental data sets obtained from a human brain sample with hemorrhaged

tumor, as shown in Figure 5.3, are used in this section. The data set are taken from the data

acquisition system in our Ultrasound Research Laboratory. A program written in C

language is developed to do the data acquisition and displaying. The program listing of the

main program is given in Appendix B. The experimental setup includes a PC-486, a PC-

based A/D converter board, a Panametrics 5050 pulser, and a Panametrics V306

transducer, as shown in Figure 5.4. The pulser is used to trigger the transducer and receive
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Figure 5.3 Picture of human brain sample with hemorrhaged tumor.
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reflected Signals. The received signal is sampled at 40 MHz with 8-bit resolution by the A/

D converter. The sampled data is stored in the computer for further analysis.

Five features, as mentioned in section 4.3, are extracted from returned echoes. The

use of the multidimensional data is to catch as much as the information of the target tissue

as possible. However, some of those features may contain Similar information. In order to

reduce the redundancy in the data set, the dependence between features is measured by

equation 4.6. The dependence between features is Shown by the eigenvector projection of

the five features onto a two-dimensional space in Figure 5.5. Total energy and peak

frequency are discarded due to their Strong dependence to correlation coefficient and

central frequency respectively.

Since the number of data points in the data set is large, it will take a long processing

time and large memory capacity. The background data points are removed to reduce the

Size of the data set. The background data points can easily be removed because it is very

uniform. The reduced three-feature data set is used to generate the conductance matrix

W,“y for the proposed algorithm. The WK,y is given as

WK,y = d(x, y) (5.7)

where d(.) is the Euclidean distance between data points x and y. The W matrix

characterizes the maximum neural network. Spatial information is then added to the

clustering result for subsequent image reconstruction. The C-scan image is shown in

Figure 5.6 while the reconstructed image is Shown in Figure 5.7. From Figure 5.7, the

clustering result does Show the abnormal tissue portion. However, a detail identification of

the brain sample requires further investigation for conclusive result. Physicians could

contribute their expertise to the eventual identification.
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Figure 5.5 Projection of five features in a two-dimensional space.
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Figure 5.6 C-Scan image of human brain sample.
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Figure 5.7 Reconstructed image of human brain sample.



CHAPTER 6

CONCLUSIONS

6.1 Summary

In this dissertation, some basic principles of linear acoustic waves have been

reviewed. Time domain and frequency domain techniques for acoustic parameter

estimation were described. Their advantages and limitations were also discussed.

Ultrasound is a useful tool in many applications, such as non-destructive evaluation

of materials and tissue characterization. The conventional ultrasonic detection technique

uses the A-mode signal directly for material characterization. The proposed approach is

first to extract features from the return echoes. Then, use these features to construct the

feature vectors from the data set. A modified Hopfield neural network is adopted for

clustering the data set. We refer to this modified Hopfield neural network as the maximum

neural network. It has several advantages: (1) The maximum neural network always

generates a valid solution. (2) No trial-and error parameters are needed in the maximum

neural network. (3) The maximum neural network has exact condition for convergence.

87
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The maximum independent set problem and the tissue characterization problem have been

used to test the proposed system. For the maximum independent set problem. shorter

computation time has been achieved from the proposed algorithm. For the tissue

characterization problem, the abnormal portion of the sample has been identified. Due to

the inherent parallelism in the maximum neural network, parallel processing for the

material characterization is also achieved.

6.2 Directions for future work

Modern acoustic imaging is Still in its infancy, combining recent achievements in

data acquisition and computer science techniques. Much improvement can be made in the

areas of non-destructive evaluation and clinical applications. Some of the topics to be

pursued in the future are as follows:

(1) Pre-processing knowledge: Currently no preference has been given to any

feature in the feature vector. However, some feature may be more relevant than

others. Those features should have greater influence to the outcome of the

characterization.

(2) Initial state: Randomly generated initial state in the maximum neural network

may not be appropriate for specific problems. Some pre-processing knowledge

can be used to adjust the initial state. This adjustment can further shorten the

processing time.

(3) Post-processing knowledge: A knowledge base of acoustic response of various

biological tissues should be established and incorporated into the proposed
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system. Therefore, conclusive results could be obtained.

Real-time system: Most of the components in the proposed system are built in

software and run in sequential computers. Hardware implementation of the

processing elements or the use of parallel computers is needed to take full

advantage of the proposed system. Since the basic processing elements in the

maximum neural network are very simple, hardware implementation Should be

feasible and may be more economical than the use of parallel computers.
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APPENDIX A

PROGRAM LIST FOR THE

MAXIMUM INDEPENDENT

SET PROBLEM

/*****************************************************************/

/* */

/* Maximum Neural Network approach for solving */

/* Maximum Independent Set problem */

/* */

/* By C.P. Chou */

/*
t/

/**************************************************************it*iry'

#include <stdio.h>

#include <stdlib.h>

#define MaxN 2000

#define M (MaxN+1)

/* random generator for initial U */

#define random() ((rand()%(1000))/10.0)-50.0

/* random generator for adjacency matrix */

#define random1() ((rand()%(100))/50.0)-1.0

main(){

FILE *fp;

char Infile[40],0utfile[40];

int i,j,x,y,N,flag,iteration,min,count;

float q[M][M],W[M][M],V[M][2],U[M][2],deltaU[M][2],deltaT;

float exist[M],deg[M],set[M],min_deg;

/* man—machine interface */

N=0;

while ((N != 1) && (N != 2111

printf("(1) Use user given adjacency matrix \n"):

printf("(2) Use randomly generated adjacency matrix.\n"):

90

 



/*

if

91

printf("Your choice: "i;

scanf("%d",&N);

1

(1) Use user given adjacency matrix. */

(N == 1) 1

printf("Input adjacency matrix file name:\n"):

scanf("%s",Infile);

fp=fopen(Infile,"r"):

fscanftfp,"%d ",&N):

if (N > MaxN){

printf("Vertex number is too large.\n");

exit(1):

}

for (i=1;i<=N;i++)

for (j=l;j<=N;j++)1

fscanf(fp,"%d ",&x);

q[i][j]=(float)x;

l

fclose(fp);

1

/* (2) Use randomly generated adjacency matrix. */

else {

printf("Input vertex number = ");

/*

/*

/*

/*

/*

scanf("%d",&N):

if (N > MaxN){

printf("Vertex number is too large.\n");

exitll):

i

generat the adjacency matrix */

This graph has N vertices. */

q[i][j]I 1<= ilj <8 N 1"/

q[][] is a symmetric matrix with diagonal zeros. */

for (i=2;i<=N;i++)

for (j=1;j<=(i-l);j++)1

if (random1() <= 0.0)

Qii11j1=0.0:

else

Qiilljl=1.0:

Qijlli1=Q[i][j1:.

1

for (i=1;i<=N;i++)

q[i][i]=0.0:

printf("Generated adjacency matrix:\n"):

for (i=1;i<=N;i++)l

for (j=1;j<=N:j++)

printf("%d ",(int)q[i][j]);

printf("\n"):
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*/

1

/*

printf("0utput file name:\n"):

scanf("%s",0utfile);

*/

/* calculate conductance matrix W[][] from q[][] */

for (i=1;i<=N:i++){

W[0][i]=0.0;

for (j=1;j<=N:j++1

W1011i1=W[0][i1+q[i][j];

W[0] [i]=W[0] [i]-1.0;

W[0] [i]=W[0] [i]/4.0;

Wli1101=W[0][i1:

1

for (i=1;i<=N;i++)

for (j=1:j<=N;j++)l

W[i][j]=q[i1[j]/4.0;

W1j][i]=W[i][j]:

1

W[0][0]=0.0;

/* The main algorithm starts here */

/* generate initial Ulli] (step 1) */

for (x=0:x<=N;x++)

for (i=0:i<=1;i++)

U[x][i]=random();

flag=0;

iteration=0;

printf("iteration = %d\n",iteration);

while(f1ag==0)1

/* calculate the V[][] (output) (step 2)*/

for (x=0;x<=N:x++)

if (U[X][0] > U1x][1])1

V[x][0]=l.0:

V[x][l]=0.0;

1

else{

V[x][0]=0.0:

V[x][1]=l.0:

1

/*

printf("V[x][i]\n"):

for (i=0;i<=l;i++)1

for (x=0;x<=N;x++)

printf("%d ",(int)V[x][i]):
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printf("\n"):

1

*/

/* calculate the delta U[][] (step 3) */

for (x=0:x<=N:x++)

for (i=0;i<=l;i++)1

deltaU[x][i]=0.0;

for (y=0;y<=N:y++)

deltaU[x][i]=deltaU[x][i]+W[x][y]*V[y][i];

deltaU[x][i]=(-1.0)*de1taU[x][i]:

1

/*

printf("de1taU[x][i]\n");

for (i=0;i<=1;i++)l

for (x=0;x<=N;x++)

printf("%5.2f ",deltaU[x][i]);

printf("\n");

1

*/

deltaT=1.0:

/* update U[][] (input) (step 4) */

for (x=0;x<=N;x++)

for (i=0;i<=1;i++)

U[x][i]=U[x][i]+deltaU[x][i]*deltaT;

for (x=0;x<=N;x++)(

if ((U[x][0]-U[x][1]) > 100.011

U[x][0]=50.0;

U[x][1]=-50.0:

1

if ((U[x][1]-U[x][0]) > 100.011

U[x][1]=50.0;

U[x][0]=-50.0;

1

1

/*

printf("U[x][i1\n");

for (i=0;i<=l;i++)i

for (x=0;x<=N;x++)

printf("%5.2f ",U[x][i]);

printf("\n");

1

*/

/* Is the sysyem in equilibrium state? (step 5) */

/* If any neuron is unstable, set flag = 0. */

flag=1:

for (x=1:x<=N;x++)l

if (deltaU[x][0] > deltaU[x)[1])
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i=0;

else

i=1:

if (V[x][i] == 0)

f1ag=0:

1

iteration=iteration+1;

printf("iteration = %d\n",iteration);

1 /* end of while() */

/* End of the algorithm */

/* Output the result */

for (x=0;x<=N;x++)

if (U[X110] > U[xllllll

V[x][0]=1.0;

V[x][1]=0.0;

1

else{

V[x][0]=0.0;

 

V[x][l]=1.0:

1

/*

printf("V[x][i]\n");

for (i=0;i<=1;i++){

for (x=0;x<=N;x++)

printf("%d ",(int)V[x][i]);

printf("\n");

1

*/

/*

fp=fopen(0utfile,"w");

*/

/* Vertices in the same group as vertex 0 belong to Independent Set. *1

if (V[0][O] == 1.0)

j=0:

else

j=1:

/*

fprintf(fp,"V+(Max Independent Set):\n"):

*/

printf("V+(Max Independent Set):\n");

i=0;

count=0:

for (x=l;x<=N;x++){

if (V[x][j] == 1.0)1

/*

fprintf(fp,"%d ",x);

*/

printf("%d ",x);

i++;

count++;

1
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if (i >= 1511

/*

fprintf(fp,"\n");

*/

printf("\n");

i=0;

1

1

/*

fprintf(fp,"\nsize = 8d",count):

*/

printf("\nsize = %d",count);

if (j==0)

i=1:

else

i=0:

/*

fprintf(fp,"\nV-:\n"):

*/

printf("\nV-:\n");

i=0;

for (x=1;x<=N;x++)1

if (V[x][j] == 1.0)1

/*

fprintf(fp,"%d ",x);

*/

printf("%d ",x);

i++;

1

if (i >= 1511

/*

fprintf(fp,"\n");

*/

printf("\n");

i=0;

1

1

/*

fprintf(fp,"\n");

*/

printf("\n"):

/*

fclose(fp):

*/

1/* end of the main program */



APPENDIX B

PROGRAM LIST FOR DATA

/*******

/*

/* Data

/*

/* By C.

/*

/*******

ACQUISITION AND

DISPLAYING

**********************************************************/

*/

acquisition and displaying. */

*/

P. Chou */

*/

***************‘k****************************************‘k‘k/

#include <alloc.h>

#include <stdio.h>

#include <stdlib.h>

#include <graphics.h>

#include <time.h>

#include <conio.h>

#include <dos.h>

#include <string.h>

#include <math.h>

#define MAXSIZE 131072L /* 128K memory */

#define SEGMENT 0xd000 /* fixed segment */

#define PORTO 0x178 /* default setting */

#define PORTl 0x179 /* all switches are off */

#define PORTZ 0x17A

#define PORT3 0x178

#define PULSER 0x301 /* port for triggering pulser */

#define CMDO "Czchange setting sttatic Dzdynamic ESC:exit"

#define ESC 27

#define YES 1

#define NO 0

unsigned int huge *sig: /* sampling signal */

unsigned int huge *sigold; /* old sampling signal */
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int israte; /* index of sampling rate */

long startpoint,endpoint;

float sx,sy; /* scales of x and y */

int lx,ly; /* size of window 1 */

int wlt,w1b,wlr,wll; /* parameters of window 1 */

int w2t,w2b,w2r,w21; /* parameters of window 2 */

long secs_now; /* current time in seconds */

char *str_now; /* currnet time in string */

long cursor,oldcur; /* cursor position */

long curscale; /* cursor inc (dec) step size */

int drawn,curdrawn;

void main()

1

int done,goodans:

int cmdflag,initflag,plotflag,curflag;

char ans,ansl:

if ((sig = farmalloc(sizeof(unsigned int)*MAXSIZE)) == NULL) 1

printf("Memory allocation failed!\n");

exit(1):

1

if ((sigold = farmalloc(sizeof(unsigned int)*MAXSIZE)) == NULL) {

printf("Memory allocation failed!\n"):

exit(l);

1

outportb(PULSER + 2, 0x88):

outportb(PULSER, 0x00):

done = NO;

initflag = YES;

plotflag = YES;

curflag = NO;

do 1

if (initflag == YES){

getndata();

init_graphics();

drawn = NO:

curdrawn = NO:

initflag = NO;

cmdflag = YES;

1

if (cmdflag == YES){

dispcmd1);

cmdflag = NO:

1

if (plotflag == YES)1

sampling_all(50);

plotsigna1();

cmdflag = YES;

1

if (curflag == YBS){
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plotcursor1):

curflag = NO;

cmdflag = YES;

1

do 1 /* do loop for command */

goodans = YES;

if (kbhit(1 !=0)1

ans = getch();

ans = toupper(ans);

switch(ans)

1

case '\0': /* arrows */

ansl = getch1):

if (plotflag == N011

switch(ansl)

1

case 'M':

case 'K':

oldcur = cursor;

if (cursor > curscale && ansl == 'K') /* left

arrow */

cursor-=curscale;

if (cursor < (endpoint-startpoint-curscale1 &&

ansl == 'M')

/* right arrow */

cursor+=curscale;

plotcursor1):

cmdflag = YES:

break;

default:

goodans = NO;

break;

1

} else {

goodans = NO;

1

break:

case 'C': /* change setting */

closegraph11:

initflag = YES:

plotflag = YES;

curflag = NO:

break;

case 'S': /* static */

oldcur = cursor;

plotflag = NO;

curflag = YES;

break:

case '0': /* dynamic */

plotflag = YES:
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if (curdrawn == YES){

curdrawn = NO;

plotcursor(1:

curdrawn a NO;

1

break:

case ESC:

done = YES:

break;

default: /* any illegal command */

goodans = NO;

break;

1 /* do loop for command */

1

1 while(goodans == NO);

1 while(done == NO);

closegraph1):

farfree1sig):

farfree(sigold1;

1 /* main */

 

getndata11

1

long sampleno;

clrscr11;

do 1

printf("\nChoose the sampling rate:\n“);

printf("\n 8: 4OMH2");

printf("\n 9: 4MH2");

printf("\n 10: 400KH2");

printf("\n 11: 4OKH2");

printf("\n 12: 4KH2");

printf("\n\n Sampling rate = "1;

scanf("%d",&israte1:

1 while(israte > 12 ll israte < 81:

do 1

printf("\nStarting point of sampling (inside [0, %ld]) = ",MAXSIZE);

scanf("%ld",&startpoint):

1 while (startpoint < 0 1| startpoint > (MAXSIZE-11);

do 1

printf("\nNumber of sampling points (inside [0, %ld]1 = ",(MAXSIZE-

startpoint11:

scanf("%ld",&sampleno);

1 while (sampleno < 0 ll sampleno > (MAXSIZE-startpoint11;

endpoint = startpoint + sampleno — 1;

cursor = sampleno/2;

curscale = cursor/10;

1 /* get data */

init_graphics()

1
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int graphdriver; /* graphics card, eg. Hercules.

int graphmode; /* graphics mode

int maxx,maxy; /* max x and y in graphics

float dx,dy; /* differences of x and y

detectgraph(&graphdriver,&graphmode);

initgraph(&graphdriver,&graphmode,"\\tc\\");

maxx = getmaxx1);

maxy = getmaxy();

1x = (maxx - 40); /* parameters for window 1

1y = (maxy - 401;

wll = 30;

wlt = 10:

wlr = wll + 1x;

wlb = wlt + ly:

w21 = 0; /* parameters for window 2

w2t = wlb + 2;

w2r = maxx:

w2b = maxy;

dx = endpoint - startpoint; /* parameters for graphics

sx = lx/dx;

dy = 256.0:

sy = ly/dy:

setcolor1GREEN);

rectangle(wll-2,w1t-l,wlr+l,wlb+l1;

1 /* init graphics */

plotsignal() /* display the signal */

1

int px1,py1,px2,py2,pyoldl,pyold2;

long j:

setviewport(w11,w1t,w1r,wlb,1);

pxl = 0:

pyl = ly - sig[startpoint1*sy;

pyoldl = 1y - sigold[startpoint]*sy;

sigold[startpoint] = sig[startpoint]:

for (j=startpoint+1;j<=endpoint;j++11

px2 = (j-startpoint1*sx;

py2 = ly-sigtj1*sy:

if (drawn == YES)1

pyole = 1y - sigold1j]*sy;

setcolor1BLACK):

line(pxl,pyold1,px2,pyold2);

1

setcolor(LIGHTCYAN);

line1px1,py1,px2,py2);

pxl = pr;

pyoldl = pyoldz:

pyl = py2:

sigoldtj] = sigtji;

1

.*/

*/

*/

*/

*/

*/

*/

in
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drawn=YES:

1 /* plot signal */

sampling_all(troffset)

unsigned int troffset:

1

unsigned int trigger,sample_all();

unsigned int i,j,control;

long k;

/*

Low byte : (Port21 7654 3210

bit 6,5,4 : sampling rates : xxx

000 = 20MHz (israte= O) or 40 MHz (israte= 8)

001 = ZMHz (israte= 1) or 4 MHz (israte= 9)

010 = .2MHz (israte= 2) or .4 MHz (israte=10)

011 = ZOKHz (israte= 3) or 40 KHz (israte=ll)

100 = ZKHz (israte= 4) or 4 KHz (israte=12)

101 = external clock

110 = no clock

*/

control = 0xa00c l ((israte % 8) <<4 1;

load_trigger_offset(troffset); /* trigger offset */

trigger = sample_all(control); /* data acquisition */

trigger <<= l; /* address = trigger*2 */

i=0; /* access low 64K */

outport1PORT2,0x806f1; /* enable WAGII RAM */

for (k=0;k<(MAXSIZE/2);k++){

j = trigger+i;

sig[k] = (unsigned int)peekb(SEGMENT,j);

i++;

1

i=0; /* access high 64K */

outport(PORT2,0x906f1: /* enable WAGII RAM */

for (k=(MAXSIZE/2);k<MAXSIZE;k++)1

j = trigger+i:

sig[k] = (unsigned int)peekb(SEGMENT,j);

i++;

1

} /* end of sampling_all() */

unsigned int sample_all(c)

unsigned int c;

1

int count,busy;

outport1PORT2,0x806f1: /* initialize */

outport(PORT0,0xffff); /* clear counter */

outport(PORT0,0xffff);

count = 0; /* count for 128K samples */

outport1PORTO,count); /* load count */

outport(PORTO,count1;
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outport(PORT2,c & 0xbffc1; /* start counter */

outportb(PULSER, 0x01):

outportb1PULSER, 0x001:

busy = 1:

while (busy11 /* wait for sampling to be completed */

if(inportb(PORT2) & 01) busy = O; /* sampling is done */

1

return1inport1PORT01); /* read trigger address */

1 /* end of sample_all() */

load_trigger_offset(char x)

1

outport(PORT2,0xc06f); /* enable trigger offset */

pokeb(SEGMENT,00,x1: /* load offset value */

outport1PORT2,0x806f);

1

 

plotcursor() /* display the curson line */

1

int px,j:

int gcolor,pcolor: /* orignal and new colors */

setviewport(wll,wlt,w1r,wlb,1);

if (curdrawn == YES){

px - oldcur*sx;

for (j=1:j<ly:j++11

gcolor = getpixel(px,j);

pcolor = abs(gcolor-15);

putpixel1px,j,pcolor1:

1

1

px = cursor*sx;

for (j=l;j<ly;j++11

gcolor = getpixel(px,j):

pcolor = abs(gcolor-15);

putpixel1px,j,pcolor);

1

curdrawn 8 YES:

1

dispcmd1)

1

int x,y:

double samplerate;

setcolor(LIGHTCYAN);

setviewport(w21,w2t,w2r,w2b,1);

clearviewport();

time(&secs_now);

str_now=ctime(&secs_now);

str_now[241='\0': /* delete '\n' in str_now */
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x = 28:

y = 4:

samplerate=((int)(israte/81+l)*2.0*pow10(l-(israte % 8)):

gprintf(&x,&y,"%6.3f MHZ",samplerate):

x = 120:

y = 4:

gprintf1&x,&y,"Display [%ld, %ld1",startpoint,endpoint);

x = 320;

y = 4;

gprintf(&x,&y,"Cursor=%ld",cursor+startpoint1;

x = 435;

y = 4;

gprintf(&x,&y,"%s",str_now);

x = 120:

gprintf(&x,&y,"%s",CMDO):

1 /* display command */

/* GPRINTF: Used like PRINT? except the output is sent to

the */

/* screen in graphics mode at the specified co-

ordinate. */

int gprintf( int *xloc, int *yloc, char *fmt, ... )

1

va_list argptr: /* Argument list

pointer */

char str1140]: /* Buffer to build sting

into */

int cnt; /* Result of SPRINTF for

return */

va_start1 argptr, format 1: /* Initialize va_

functions */

cnt = vsprintf( str, fmt, argptr 1: /* prints string to

buffer */

outtextxy( *xloc, *yloc, str 1: /* Send string in graphics

mode */

*yloc += textheight( "H" ) + 2; /* Advance to next

line */

va_end( argptr 1: /* Close va_

functions */

return( cnt ); /* Return the conversion

count */

1
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