
...~
.
1
.
.
.

1
.
9
8
.
"
.

......
....

J
5
:

a
s
.
“...

.
J

.
3

:
5
.

.
9

h
a
r
m

: 1
3
’

)
1
:
v
.

..
:
h
m
.

N
1
0
.
9
.
.
»
t
h

2
.
.
.
.
.
.

a
n
$
.
%
3
«
o
u
.
t

.
1
5
.
“
.
.
1
1
:

g
a
r
.

‘
4
.
x
i
i
s
x
o
.

.
n
u
.
.
.
-

.
:
d
e

1
.
.
.
.
.
-

.
fi
r
t
h
.
»

.
2

‘
'
9

W
u
)
:
H

5
v
.

.

3
.
3
.
:
4
4

t
n
.
.
.
1

z
l
i
a
i
!

L
.
r
L
.

.
.
2

. “5-: ,
’3’? '32

‘i‘n
' “

«at
l0

.
.

.
1
‘

.
«

.
L
i
t
x
f

‘
x
.
.
.

.
:
i
r
u
.

..
«
1
1
.
.

I
n
”
;

1
.
.
.
.
.
.

O

ia

k
u.

x
.
b
!

I
t

l
!
-

a
i

.
3
)

0
9
1
.
5
1
.
.
.
.

\
.

:
9
:

.
3
9
:
1
3
;
?

A

.
3
2
5
.
.
-

=

V
t

3
..

i
.
.
.

.
5
:

u
3
.
.
.
.

:
i

.
t
.
.
.
i
.
L
.
.

:
2
.
.

I

«
a
n

.
<
i

:
.
.

"
q
f
?
!

‘
l
n
l
.
\
.
'
,
'
1
p

"
;
\
.
0
.
h
|
»

n
i
n
m
m
fi
n
f
fl

3
3
$
.
.
.
“

r
|
|
|
|
|
l

fi
fi
w
fi
fi
w
v
i
n

‘
1
1
“
.
.
.

.
r
i
t
z
s
-

:
1
3

1
.
.
.
?

5
.
5
.
.
.
.

1
.
1
.
9
.
4
1
3
1
)
!

3,...
.
4
;

.
;

..
.

a
a

.
.

,
.
l
«
N
E
R
V
K
H

L
a
m

3
%
.
?
»
«
H
i
t

,
.

é
fi
u
h
n
t
.
1

.
:

‘
:
7
9
:

.
.
~
»
.
.
.
.
I
‘
u
.
l
.
.
q
u
4

”
.
l
‘

y
w
%

,
.

n
u

‘
f

,
i
'
-
|
'
,
r
t
n
|
|

I
I

|
-
-

I
'

-
-
.
I

I
n
t
-
,
1
,

.
’

THESIS

NIVERSITY LIB

333333333333333333333333333333333 3 3 32333353:
3 1293 01417

This is to certify that the

thesis entitled

Configuration Management Based on Software

Component Locality and System Structure

presented by

Steven R. Schafer

has been accepted towards fulfillment

of the requirements for

M.S. Computer Science
degree in

“[3222”; N(5/1“?

MLjor professor

Date . 5 /5 M5

MSU is an Affirmative Action/Equal Opportunity Institution

LIBRARY

Mlchigan State

University

PLACE DI RETURN BOXtoromovothh chockommm yomrocord.

TO AVOID FINES Mum on or before date duo.

DATE DUE DATE DUE DATE DUE

usu I: An Affirmative Action/Equal OpportunIly Immwon

WWI

Configuration Management Based on Software

Component Locality and System Structure

By

Steven R. Schafer

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Computer Science Department

1995

ABSTRACT

Configuration Management Based on Software

Component Locality and System Structure

By

Steven R. Schafer

Software configuration management encompasses the entire development and

maintenance phases of a software system. Three problem areas have made it dif-

ficult to construct effective configuration management systems for the development

and maintenance of software systems: file localization, lack of system structure, and

broad effects of change. This thesis presents a new approach to configuration manage—

ment that concentrates on the abstract, logical aspects, and architecture of a software

system in order to effectively support development and maintenance of systems devel-

oped using object-oriented or structured techniques. Based on this new approach, the

software configuration management system (SCM) has been developed to provide a

three-tiered configuration management system that supports abstract concept local-

ization, system structure, and fine-grained version control to systematically manage

the effects of change.

Copyright © by

Steven R. Schafer

1995

To R.H.W., thanks for all you taught me.

iv

ACKNOWLEDGMENTS ‘

I would like to thank my family and friends, for without their never ending support

and understanding none of this would have been bearable. A special thanks goes to

my committee members Dr. Lionel M. Ni and Dr. Mats P.E. Heimdahl. Finally,

my most sincere and dearest thanks goes to my advisor Dr. Betty H.C. Cheng. Her

constant source of knowledge, motivation, and encouragement made this all possible.

I will always be honored to have been her student.

TABLE OF CONTENTS

LIST OF FIGURES

1 Introduction

1.1 Motivation

1.2 Contributions

1.3 Organization

Background

2.1 Software Maintenance

2.2 Configuration Management

2.3 Object Modeling Technique

A New Perspective on Configuration Management Concepts

3.1 Localization

3.2 System Structure

3.3 Fine-Grained Version Control

General Configuration Management Framework

4.1 Framework for Object—Oriented Systems

4.2 Framework for Structured Systems

Object-Oriented Version Control

5.1 Object Localization

5.2 Three-tiered System Revision History

5.3 Formal Model of Object-Oriented Version Control

5.4 Operations on the Version Control Model

Implementation Example

6.1 User Interface

6.2 Code Construction

Related Work

vi

viii

C
H
I
-
B
M
I
-
I

C
O
O
O
N
I
Q

13

15

17

18

21

23

26

28

28

30

34

37

43

43

47

53

7.1 Version Control Systems 53

7.1.1 Component Version Control 54

7.1.2 System Version Control 56

7.1.3 Alternatives to Version Control 64

7.2 Configuration Management Systems 65

8 Conclusions and Future Work 68

BIBLIOGRAPHY 71

vii

2.1

2.2

2.3

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

6.1

6.2

6.3

6.4

6.5

6.6

7.1

7.2

LIST OF FIGURES

An Object Class in OMT Notation 11

Three Types of Associations in OMT Notation 12

Multiplicities in OMT Notation 12

Analysis Model of General Framework Requirements 22

Addition of Configuration Management Operations 24

General Framework for Object-Oriented Systems 25

General Framework for Structured Systems 26

Analysis Model for an Object-Oriented Software System 29

Transformation from an Analysis Model for an Object-Oriented Soft-

ware System to an Analysis Model for a Version of an Object-Oriented

Software System 30

Analysis Model for System Level Version Control of an Object-Oriented

Software System 32

Analysis Model for Version Control of an Object—Oriented Software

System 33

Graphical Depiction of Formal Model 36

Initial Version of System 39

First Revision of System 40

Second Revision of System 41

System Revision History Tree 44

Object Model in Current SCM Prototype 46

Example of Aggregation and Association 49

C++ Header File Example of Aggregation and Association 50

Example of Generalization and Association 51

C++ Header File Example of Generalization and Association 52

Unified Framework Component Hierarchy 58

Unified Framework Version History 59

viii

7.3

7.4

7.5

7.6

7.7

Unified Framework Configuration 60

Unified Framework Equivalence 60

Inverted Approach Variant Level 61

Inverted Approach Revision Level 62

Orthogonal Version Management Concepts 63

ix

CHAPTER 1

Introduction

It is inevitable for software to change. Configuration management is an activity of

software engineering that specifically addresses the control and management of change

in software systems. More importantly, software configuration management should be

an “umbrella” activity that is applied throughout the software engineering life cycle

[1].

Based on studies of commonly used software development approaches, three spe-

cific steps appear to be integral to most software development processes. Specifically,

design, implementation and maintenance are included in software process models such

as the waterfall, iterative waterfall, spiral, and rapid prototyping models [1]. Addi-

tionally, software maintenance typically follows the same phases (design, implementa-

tion, and continued maintenance). As such, a configuration management framework

should concentrate on these three phases and tightly couple them to provide flexibility

and to increase the traceability between the phases [2].

We have identified three problem areas that have made it difficult to construct

effective configuration management systems for the development and maintenance

of software systems: file localization, lack of system structure, and broad effects

of change. This thesis presents a new approach to configuration management that

specifically addresses these three problems in the context of four major directions in

configuration management research [3]: configuration management system architec-

ture, product representation, product software architecture, and domain extensions.

In order to demonstrate the feasibility and practicality of our approach, we have de-

veloped a prototype Software Configuration Management (SCM) system to address

current configuration management problems by providing a three-tiered configuration

management system that supports abstract concept localization, system structure,

and fine-grained version control to systematically manage the effects of change [2].

Thesis Statement: A software configuration management system that concentrates

on the abstract, logical aspects of a system is more efl'ective than traditional approaches

to configuration management in supporting development and maintenance of large

scale software systems developed using object-oriented or structured techniques.

1 . 1 Motivation

The key tasks identified in software engineering and software maintenance are comple-

mented by a number of “umbrella” activities [1]. These activities include documen-

tation, quality assurance, reviews, and change control. These activities are all tasks

of software configuration management, a collection of techniques that coordinate and

control the identification, organization, construction and modification of a software

system [4]. As such, configuration management is an umbrella activity encompass-

ing the entire cyclical model of software engineering and software maintenance. This

cyclical model defines the software life cycle, which begins at the conception of the

software idea, and ends only when the software system is no longer in use.

Based on the importance of configuration management, it is essential for a con-

figuration management system to provide a solid foundation for all other software

engineering activities to build upon. Five key principles have been identified as the

necessary ingredients to ensure effective configuration management [4].

o Proactive: Configuration management should not be viewed as a solution

to the problems of software development. Correct configuration management

procedures should be developed to ensure that the problems do not arise.

0 Flexible: Configuration management procedures should be flexible to com-

pensate for the differences in developing different software systems.

0 Automated: Configuration management tools must be developed to ease the

burden of performing the procedures manually.

0 Integrated: Configuration management should integrate all aspects of the

software development project, including planning, management, development,

and maintenance.

0 Visible: The relationships between the configuration items and how they have

changed should be identifiable and accessible by all involved in the project.

The approach taken by existing configuration management systems make it diffi-

cult to adhere to these principles in an effective manner. Each step in the software

life cycle is localized around a different concept, whereas software systems are devel-

oped with software components that are often organized according to their logical

relation throughout the entire software life cycle. Specifically, during the implemen-

tation phase, current version control systems localize around files [5, 6], leaving the

software engineer with enormous configuration and maintenance problems. Although

management practices such as, placing one software component per file or one object

class per file, alleviate many maintenance problems, they do not, however, success-

fully relieve the engineer from problems at the system level. Specific consequences of

this focus on files result in broad effects of change in the system for a small change

in a portion of one file, and complete versions of a system are composed of many

different versions of the files that make up the system. This approach imposes upon

the developer or group of developers the cumbersome task of remembering which file

versions make up a given system version. Given the size and complexity of current

systems, the effects of change and the focus on files must be minimized or eliminated

and replaced with a focus on a more localized concept.

Likewise, current configuration management systems put little emphasis on the

structure of the system components. Most methods are only concerned with the indi-

vidual components that make up a system, and not with how these components inter-

act with each other. Many modeling and design notations, such as entity-relationship

diagrams, structure charts, and object models [7] have been developed to serve as a

means for describing the interaction of the components of a software system. Cur-

rently, there exist systems [8, 9] that use tree-like structures to represent subsystems

or variants of the software system, however these tree structures do not represent the

interaction and communication between the subsystems. Therefore, the complexity

of most configuration management problems could be significantly reduced with a

means to describe the software architecture that facilitates the implementation and

propagation of changes [10].

This thesis emphasizes three main concepts as the basis for a new approach to

configuration management systems for software development and maintenance that

adheres to the principles identified for an effective configuration management system:

concept locality, limited effects of change, and system structure

1.2 Contributions

There are two main contributions presented in this thesis. First, a new approach

to software configuration management has been developed. A generic framework

developed from the approach is based on three key concepts: concept locality, system

structure, and fined-grained version control. Based on the generic framework, specific

frameworks for the object-oriented analysis and design and structured analysis and

design are then developed.

The second contribution of this work is the development of a fined-grained version

control model for object—oriented systems. A formal model and basic operations are

presented for the version control model. Finally, a proof of concept software config—

uration management system, based upon the configuration management framework

and version control model, is described.

1 .3 Organization

The remainder of this thesis is organized as follows. Chapter 2 provides background

information relevant to the area of software configuration management, software main-

tenance, and object—oriented modeling. The contributions of this work are described

in detail in Chapters 3 through 6. Chapter 3 identifies the key problems with current

configuration management systems and presents new perspectives of major configu-

ration management concepts on which new systems can be based. Using these new

perspectives, Chapter 4 develops a new framework for configuration management.

Chapter 5 defines the fined-grained version control model for object-oriented sys-

tems. Chapter 6 presents a prototype implementation of a software configuration

management system for object—oriented systems. Related work in the area of config-

uration management is described in Chapter 7, and Chapter 8 draws conclusions and

discusses possible directions for future research.

CHAPTER 2

Background

One of the first definitions of software engineering was coined by Fritz Bauer [1]

The establishment and use of sound engineering principles in order to

obtain economically software that is reliable and works efl‘iciently on real

machines.

Today there are many more rigorous definitions, however, the underlying principle is

that software engineering should use sound engineering procedures for the develop-

ment of software. The use of these sound procedures suggests a disciplined approach

through analysis, design, implementation, testing, and maintenance stages for the

production of software. This sequential approach to software production is com-

monly known as the “waterfall model” to software development [1]. In attempts to

model how real software is developed, other models have been developed, including

rapid prototyping, the spiral model, and the recursive/parallel model [1, 11].

Study of the many software development models leads to the observation that

four specific steps appear to be inherent in all of the models. Specifically, definition,

design, implementation, and maintenance appear in all. The definition phase of soft-

ware development focuses on what the software system must do. The requirements

of the system and software are specified. During the design phase, how the require-

ments of the definition phase are going to be satisfied is specified, along with the

6

detailed architecture of the complete system. The implementation phase focuses on

translating the design into a specific programming language. Finally, the error cor-

rection, enhancements, and maintenance of the software system are performed during

the maintenance phase.

2.1 Software Maintenance

The life time of a software system does not end once it is delivered to the customer.

There will be errors to fix, new platforms to move to, new functionality requirements,

and other enhancements to incorporate into the system. Software maintenance is con-

cerned with these changes that may be necessary due to error correction, enhance-

ments, or changes in requirements. The types of maintenance needed on software

systems fall into three basic categories [1]:

o Corrective maintenance: changes due to defects or errors discovered in the

system.

0 Adaptive maintenance: changes due to change in requirements or change in

environment, such as a new operating system.

0 Perfective maintenance: changes to enhance functionality, make the system

more efficient, or make the system more robust for later modifications.

While performing the different types of software maintenance, the same basic software

engineering steps are repeated. That is, the definition of what change is to be made,

the design of how the change will be implemented, and the actual implementation

of the change are performed in a sequential manner. Furthermore, after a change is

implemented, additional maintenance may need to be performed. Thus, software de-

velopment and software maintenance are integrated into a continuous iterative model.

2.2 Configuration Management

Configuration management is an activity of software engineering that specifically

addresses the identification, organization, and modification of software systems. Be-

cause change in software is inevitable and because the change usually takes place

during the maintenance phase, it is important to distinguish the difference between

configuration management and software maintenance. Software maintenance begins

after the software product has been delivered to the customer and the system is in

need of maintenance. In contrast, configuration management is a collection of track—

ing, control, and management activities that begin at the conception of the software

product and end only after the software is taken out of service [1]. Therefore, configu-

ration management encompasses software maintenance and the software development

phases.

Configuration management involves five main tasks. First, configuration items

must be identified. A configuration item is any piece of information that needs to

be managed. These items can include source code, documentation, test cases, status

reports, and memos. An important task for performing configuration management is

to identify exactly what entities will be under management control.

Second, due to the large amount of change to the configuration items, there is

the need for some type of procedure for identifying and retrieving different versions

of the configuration items. The most common approach is the use of a repository

or database that contains all the configuration items. This task of configuration

management is commonly referred to as version control.

In a disciplined environment, it is unwise to allow change to happen randomly.

Therefore, a third important task for configuration management is to create and

enforce change control policies. A common practice is to create a change control

board consisting of members of the project. This board will evaluate change requests,

and determine both whether a given change is necessary, and what effects it will have

on the system.

Once a change has been approved by the change control board, the development

team must be notified that the change is being made, who is performing it, why it

is being performed, how long it will take, and what effects it will have on the rest of

the development. In addition, when the changes are complete, a record of what was

done, by whom, and when it was done must be retained for future reference. This

type of status reporting activity is a critical task in configuration management.

Finally, in order to ensure that changes have been made properly and the software

development is proceeding smoothly, periodic reviews and audits of the project must

be performed. This task may take the form of technical code reviews and walk-

throughs, or reviews of status reports and other documentation to ensure that the

proper procedures are followed.

With these and many other tasks, configuration management easily becomes a

major component of any software development project. To aid in the understand-

ing of the policies and procedures to be enforced, one of the earliest tasks in the

development process is to create a configuration management plan. This plan is a

document that describes in detail the procedures that will be implemented to ad-

dress the configuration management needs of a project. The diversity of software

makes it impossible to create a standard plan for all software projects. As such, the

configuration management plan needs to be tailored to the project environment [12].

2.3 Object Modeling Technique

The Object Modeling Technique (OMT) [7] is an object-oriented analysis and design

methodology that uses three complementary modeling techniques to describe a sys-

tem. The functional model uses data flow diagrams to describe the data flow and

10

services. The dynamic model uses state charts to describe behavior in the form of

states and transitions. The object model describes the static structure of object classes

in the system. The object model’s strength is that it supports the description of not

only the design and implementation of a system, but it also enables for the analysis

of the problem to be described at a very high, abstract level and then refined into the

design and implementation. Taking advantage of these features, this thesis uses the

object model notation to describe concepts throughout. We give an overview of the

object model notation used in this thesis.

An object model contains two main concepts: an object class and an association.

An object class is any distinguishable entity or concept. It may be concrete, such as

a file or a chair, or conceptual, such as a list or policy. Each object class has specific

data (attributes) and operations (methods) which it can perform. For example, a file

might have attributes, such as contents (the information in the file), size (the number

of bytes in the file), and type (binary or text file); and it may have methods, such as

open, close, read, and write. In an object model, an object class is represented by a

rectangle partitioned into three sections. The top section contains the class name, the

middle section contains the attributes, and the bottom section contains the methods.

Figure 2.1 depicts the notion graphically. For simplicity the attributes and methods

are often not shown in most models.

11

Class Name

attribute : data type

method (arg-list) : return type

Figure 2.1. An Object Class in OMT Notation

In an object-oriented system object classes communicate with or have relation-

ships with other object classes. These relationships are called associations. There are

three types of associations in the object model notation: association (a simple rela-

tionship), aggregation (a stricter is-part-of relationship), and generalization (an is-a

relationship). An association is represented by an arc (line) between the two object

classes. An aggregation is represented by an arc (line) decorated on the aggregate

class side of the are by a diamond. A generalization is represented by an arc (line)

decorated with a triangle pointing to the refined class. Figure 2.2 depicts each of

these types of associations, where class A is associated with class B, class C is-part—of

aggregate class D, and class E is a generalization of refined class F.

In addition, each association can be decorated with a multiplicity. A multiplicity

specifies how many objects of one class may relate to a single object of another class.

Figure 2.3 describes some of the multiplicities available.

Figure 2.2. Three Types of Associations in OMT Notation

Class

Class

—d

Class

——o

Class

Exactly one

Many (zero or more)

Many (one or more)

Optional (zero or one)

Figure 2.3. Multiplicities in OMT Notation

CHAPTER 3

A New Perspective on

Configuration Management

Concepts

The management and control of all items produced during the software development

process continues to become more difficult as the size and complexity of software

systems grows, compounded by the frequency in staff changes for a given project.

Configuration management systems are developed to alleviate this difficulty. Numer-

ous sources including software engineering texts [1, 13], configuration management

texts [4, 14], papers [15, 16], and standards attempt to define the functional require-

ments for a configuration management system. Dart [16] defines the functionality

requirements of a configuration management system as follows.

0 Component: identifies, classifies, stores, and retrieves the components which

make up the software product.

0 Structure: defines the system architecture or structure of the software product.

0 Construction: supports the construction of the software product and its arti-

facts.

13

14

o Auditing: reviews the progress of the software product and its process, to

ensure policies are followed.

0 Accounting: gathers statistics about the software product and development

process.

0 Controlling: controls how and when changes are made to the software product,

artifacts, the development process, or management policies.

0 Process: supports the management of the software product development.

0 Team: enables a team of developers to develop and maintain a family of soft-

ware products.

However, these requirements are fine-grained, where continued focus on individual

requirements will not lead to significant advances in the area of software configuration

management. By grouping the requirements into the following categories we are

better positioned to identify the problems and propose solutions for configuration

management.

0 Version Control: Version control is the most important area of software con-

figuration management. A repository is a fundamental notion of a configuration

management system. The repository is the centralized library of files that pro-

vides version control for the system [16]. Furthermore, version control encom-

passes all other areas of software configuration management. The configuration

management system requires a repository to store and retrieve all configuration

management information, including source code, object code, diagrams, doc-

umentation, executables, and test cases and procedures. Therefore, advances

in version control will have significant benefit to all configuration management

systems.

15

0 Component and Item Identification: Proper identification of all compo-

nents and items of a software product, along with easy access to the items in

the repository is an essential property for a software configuration management

system.

0 Software System Structure: Architectural representation of the complete

software system architecture and the mechanisms for construction of the system

and other artifacts, such as documents, is necessary for a software configuration

management system.

0 General Management: The general management of software development,

including auditing, accounting, and controlling along with the team and process

management is important to software configuration management. However,

these areas of configuration management are less influenced by technological

advances.

From these categories, technological advances would produce the greatest benefit in

component identification, software system structure, and version control. Specifically,

current configuration management system difficulties arise from three major problems:

file localization, lack of system structure, and broad effects of change inherent in

version control systems. As such, the focus of configuration management research

needs to be placed on these concepts.

3.1 Localization

Configuration management systems must concentrate on three key phases (design,

implementation, maintenance) of the software life cycle. One of the key factors that

contributes to the difficulty of configuration management is the specialized focus of

each of the three phases. That is, the system requirements deal with functionality,

16

system design and implementation deal with the system architecture, and system

version control deal with files. More concisely, each step in the software life cycle is

localized around a diflerent concept, where localization refers to the process of gath-

ering and placing items in close physical proximity to one another [11]. Software

systems are developed with software components that are often organized into mod-

ules, abstract data types, or object classes according to their logical relation [17].

If we extend the concept of localization to include the placement of components in

close logical proximity of each other, it seems only natural that a software configura-

tion management system should localize its information around the different abstract

software concepts.

Experience has shown that this lack of locality presents difficult problems, how-

ever, current systems are still developed using this approach. Specifically, version

control systems localize around files [5, 6], leaving the software engineer with enor-

mous configuration and maintenance problems at the system level. Commonly asked

questions with current configuration management systems include [10]:

o What version of the file is this?

0 How many files were affected by fixing this one bug?

o Are all the correct versions of files used in the current release?

In addition, by localizing configuration management information on the specific

components of a system, the relationship between the components and their arti-

facts, such as requirements, test cases, or status accounting information, is preserved.

Product representation is another area to be considered for configuration manage-

ment investigations, of which this type of relationship information is included. For

example, consider an object-oriented system in which a specific object class has been

modified. By localizing on object classes, the key component of object-oriented de-

velopment, it is straightforward to modify the design and/or test cases for that object

17

class while modifying its implementation code. In contrast, localizing on files would

mean modifying multiple files, one or more for the implementation code, one or more

for the design, and one or more for the test cases, which potentially leads to enormous

file management problems. Therefore, given the size and complexity of current sys-

tems, this focus on files must be minimized or eliminated and replaced with a focus

on a. more localized concept if advancements in configuration management are to be

made.

3.2 System Structure

Another problem with existing configuration management systems is that a complete

version of the system may be composed of many different versions of the files. Addi-

tionally, a diflerent version of the system may be composed of the same or different

versions of the files that make up another version of the system. This approach im—

poses upon the developers the cumbersome task of remembering which file versions

make up a given system version.

Likewise, current configuration management systems put little emphasis on the

structure of the system components. Most methods are only concerned with the in-

dividual components that make up a system, and not with how these components

interact with each other [3]. Clearly, the interaction between the components in a

software system is essential to the understanding of the system as a whole. Further-

more, the complexity of most configuration management problems could be signifi-

cantly reduced with a means to describe the software architecture that facilitates the

implementation and propagation of changes [10].

Localization around the components of a software system provides the ability

to represent important architectural information, such as data flow or control flow

connections among the components The two most popular software development

18

methodologies, object-oriented analysis and design, and structured analysis and de-

sign provide graphical notations to depict the relationships among the components

of a system. Specifically, object models and structure charts, respectively depict the

system architecture and interaction among the components of the software system.

Incorporating these types of concepts into a configuration management system would

address many difficulties of current systems.

3.3 Fine-Grained Version Control

Version control combines procedures and tools to manage different versions of con-

figuration objects that are created during the software engineering process [1]. A

version is essentially a snapshot of a configuration object at a moment in time. A

configuration object can be any item created during the software development pro-

cess, such as source code, documentation, maintenance reports, or test data. The

storage, creation, and retrieval of versions of a configuration object are the major

tasks associated with version control. Specifically, version control addresses questions

critical to software development and maintenance [4].

o How should the system be structured so that different systems can be built to

meet the requirements of different users?

0 How should an old version of the system be preserved, for example, to investigate

a fault?

o How can a version of the system be built so that it contains certain fixes but

not others?

0 How can many versions of an item be stored efficiently?

Investigation of these questions lead to the discovery of some important issues that

help to identify requirements for version control. Specifically the issues, the structure

19

of the system, a version of the system, and versions of an item suggest that version

control must be able to handle the individual items that make up the system, the

system as a whole, and the structure of the system. As will be shown, much work

is being done in the area of system version control, however, no method specifically

addresses all of these requirements in a single framework. In addition, the emphasis

of the version control remains on the individual files that make up the system. A

consequence of this focus on files is that a small change to a part of the file results

in the whole file being considered as changed. As such, the effects of a small change

affects a large portion of the system. The effects of these changes need to be reduced

to a minimum.

Many problems arise in version control due to the emphasis on files and the lack

of emphasis on system structure. Subsequently, any understanding of the system and

the abstraction obtained during the design of the system is completely lost during

configuration management activities. Since a system can be composed of many files,

an individual component may be implemented in one or more files, and many compo-

nents may be contained in a single file, it becomes impossible to determine the system

structure and how changes, updates, and fixes will affect the system as a whole. A

simple change or modification to a file results in the entire contents of the file being

considered modified. As such, components in that file may be unnecessarily marked

as changed. The effects of the change can be enormous and unidentifiable. A version

control system must alleviate these problems by allowing the structure of the system

to be specified and the effects of change to be traced and limited.

Based on these difficulties, requirements for version control within a configuration

management system can be stated succinctly with three high-level objectives. First,

system level version control with the ability to describe and manage the structure of

the system. Second, fined-grained version control to limit the affects of change and

track the consequences of change on the system as a whole. Finally, localized version

20

control around the logical components being used. Chapter 5 develops a version

control mechanism for object-oriented systems that meets these requirements.

CHAPTER 4

General Configuration

Management Framework

Emphasis on three main concepts defines the basis for a new approach to a config-

uration management system: concept locality, limited effects of change, and system

structure. Based on these concepts, requirements for a configuration management

system can be stated as follows.

0 Localization around the logical components being used,

0 System level mechanisms with the ability to describe and manage the structure

of the system, and

o Fined-grained version control to limit the affects of change and track the con-

sequences of change on the system as a whole.

Analyzing the requirements leads to an OMT object model that is used to define

the central structure of the configuration management framework. Figure 4.1 shows

that a software system is made up of one or more localized components and one system

structure. Additionally, the system structure defines the relationships between the

one or more localized components.

21

22

System

Localized System

DefComponent Relatidiigfiip Structure

Figure 4.1. Analysis Model of General Framework Requirements

The relationship between configuration management and version control is tightly

coupled. Configuration management is based and built upon a version control layer

(repository). As such, the general framework depicted in Figure 4.1 is built upon

the fine-grained version control mechanism needed to satisfy the third requirement.

Furthermore, the actual nature of the fine-grained version control is dependent upon

the localized concept. For example, in an object-oriented system an object class

could be the localized concept and the version control mechanism must have specific

functionality to support management of object classes. In contrast, in a structured

system, a module or function may be the localized concept and the version control

mechanism must have specific support for modules or functions. Therefore, it is

difficult to develop a general model for the version control mechanism. However,

for completeness, Chapter 5 will develop the fine-grained version control mechanism

specific to an object-oriented system and show how the configuration management

system makes use of it. As such, the remainder of this chapter will concentrate on all

other aspects of configuration management.

23

Specific configuration management operations and concepts can now be added to

the general framework of Figure 4.1. Continuing with an object—oriented analysis

shows that the attributes and operations of each object class in Figure 4.1 provide

the desired configuration management operations. Figure 4.2 shows a subset of the

possible attributes and operations that can be added to the framework to construct

a complete configuration management system. For example, each class may have a

description or design details that may be collected and formatted into a design doc-

ument and printed with a print design document method. In addition, bug reports

and status reports could be attributes of the system as a whole, or attributes of the

individual localized components. Finally, a method of the system may be to build the

executable. The exact attributes and methods of the object classes in Figure 4.2 are

organization and project dependent, based on the needs of the particular software

system. The general framework allows the flexibility of each organization or project

to tailor the configuration management to its particular configuration plan by intro-

ducing new attributes and methods for the system, system structure, and localized

component.

Based on this configuration management framework, the following sections present

specific applications of the general framework for object-oriented systems and struc-

tured systems, respectively.

4.1 Framework for Object-Oriented Systems

With the flourish of object-oriented analysis and design methods [7, 18, 19, 20, 21],

the central abstract concept for localization is easily defined as an object class. An ob-

ject class comprises its data (attributes), operations (methods), and interconnections

(associations) to other object classes in the system. Figure 4.3 depicts the specific

model based on the general framework. Notice the additions of two object classes,

24

System

Description

Design Details

Build Parameters

Bug Reports

Build Executable

Print Design Doc

Request Change

Localized System

Component Defines Structure

Description “mum‘s”? Description

Test Cases Design Details

Source Code Graphical Diagram

Bug Reports

Edit Code Edit Structure

Change Test Cases Print Diagram

Implement Tests Request Change

Figure 4.2. Addition of Configuration Management Operations

attributes and methods, since an object class is made up of many attributes and many

methods. The model shows that a software system is composed of one or more object

classes and an object model that defines the relationships between the object classes.

Additionally, an object class is composed of zero or more attributes and methods.

There is no generic structure for an object-oriented system, since each object-

oriented development methodology has its own slightly different representation of the

system architecture. Therefore, for completeness purposes, a specific example, the

OMT object model, that describes the structure of the object classes in OMT is

used, as shown in Figure 4.3.

25

System

 J.
Object P OMT

Def 'Class Relariiifisefiip Object Model

?
l j.

Attribute Method

Figure 4.3. General Framework for Object-Oriented Systems

Specific configuration management operations and concepts can now be added

to the object-oriented system framework of Figure 4.3. The system as a whole may

have a description, requirements, bug reports, and status reports as attributes, with

methods including, build executable, request change, and print design document.

The object class, attribute, and method classes may all have similar attributes to the

system class. In addition, the attribute class may have attributes for data type and

description of the data type if it is a complex structure. The method class may have

attributes for source code, arguments, and return type, and a method to compile the

source code into object code. The object model may have attributes for the diagram,

design decisions, or descriptions of the diagram, along with methods for producing

a postscript diagram or editing the diagram. Again, as with the general framework,

the exact attributes and methods of each class in the model must be defined by the

26

organization or project.

Based on this configuration management framework for object-oriented systems,

Chapter 5 develops the fine-grained version control mechanism. Chapter 6 describes

the implementation of a prototype proof of concept system that integrates the con-

figuration management framework upon the version control mechanism.

4.2 Framework for Structured Systems

The widely and successfully used structured design method [22] is based on functional

components (modules). The foundation on components easily defines the central

localized concept to be a module. Figure 4.4 depicts the specific model based on

the general framework. Unlike the object-oriented development methodologies, the

generic structure of a structured system is a structure chart. A structure chart is

a graphical means of showing the component structure of a software system [13].

Therefore, Figure 4.4 shows that a software system is composed of one or more modules

and a structure chart which defines the relationships between the modules.

System

Structure

Module F Defines Chart

Relationship

Figure 4.4. General Framework for Structured Systems

27

Specific configuration management operations and concepts can now be added to

the structured system framework of Figure 4.4. The system as a whole may have a

description, requirements, bug reports, and status reports as attributes, with methods

including, build executable, request change, and print design document. The module

class may have attributes for description, source code, arguments, and return type

and a method to compile the source code into object code. The structure chart may

have attributes for the diagram, design decisions, or description of the diagram, along

with methods for producing a postscript diagram or editing the diagram. As with

the general and object-oriented framework, the exact attributes and methods of each

class in the model must be defined by the organization or project.

CHAPTER 5

Object-Oriented Version Control

One of the primary requirements needed by a configuration management system is a

fine-grained version control mechanism. Based on our object-oriented configuration

management framework defined in the previous chapter, a user concentrates only

on the system and object classes. The concept of version control should only be

visible at the abstract level of the system. In order to provide the fine-grained version

control needed to limit the effects of change, a three-tiered version control model

for object-oriented systems has been developed. Additionally, this model satisfies

the requirements for object localization and system structure. Specifically, object

class locality, a three—tiered fine-grained version control mechanism, and a system

revision history based on the system structure, respectively are used to address each

requirement.

5.1 Object Localization

An object-oriented system is already localized around one key concept, an object class.

Accordingly, the version control model is based on the concept of an object class and

uses the property that a software system is composed of many object classes with

some specified inter-object structure. An object class is typically defined as an entity

28

29

that has data (attributes) and operations (methods). By performing object-oriented

analysis on the definition of an object class and the definition of an object-oriented

system, we have the basis for the model for object—oriented version control. Figure 5.1

shows an analysis model of an object-oriented software system in OMT notation [7].

This model states that an object-oriented system is composed of one or more object

classes, where each object class is composed of zero or more attributes and zero or

more methods.

System

Object

l l
Attribute Method

Figure 5.1. Analysis Model for an Object-Oriented Software System

Based on this model, it is a simple transformation to an analysis model to capture

the notion of version control of an object-oriented system. The addition of “ver-

sion of’ to each object in the model yields the analysis model for a version of an

object-oriented software system. That is, a version of an object-oriented system is

30

composed of one or more versions of objects, each object being composed of zero or

more versions of attributes and zero or more versions of methods. Figure 5.2 depicts

the transformation to the analysis model of a version of an object-oriented software

system. Therefore, based on this strategy, all version control is centered around an

object, where a system is composed of objects and their versions.

Version of

System

. Version of

t t
l L l i.
. Version of Version of

Attflbutc MethOd Attribute MCIhOd

System

Figure 5.2. Transformation from an Analysis Model for an Object-Oriented Software

System to an Analysis Model for a Version of an Object-Oriented Software System

5.2 Three-tiered System Revision History

The next step is to incorporate into the model the concept of a system revision

history. The tree representation of version control seems to allow the most flexibility.

Not only does it have proven success with systems such as RCS [23], other systems

31

have used the tree approach to model such hierarchies [8]. Additionally, a version of

the system revision history must have the ability to define a system structure. The

prototype described in Chapter 6 uses the OMT object model, as did the example

in the previous chapter, for the system structure. However, a generic use of system

structure for object-oriented systems is now explicitly maintained in order to facilitate

the applicability to other object-oriented modeling approaches. Therefore, a system

version has a structure for the objects of which it is composed.

Figure 5.3 adds both the structure and tree representation to the evolving model of

object-oriented version control. The model now shows the integration of localization,

system version control, and structure into a single version control framework. Each

version of the system is a node of a system version tree that contains zero or more

nodes. Each version of the system is then composed of one or more versions of objects

and a structure that defines the relationship of those objects to produce the specific

version of the system. Finally, each version of an object is composed of zero or more

versions of attributes and versions of methods.

Based on this model, there is the need to determine and limit the effects of change.

We build on concepts developed by Magnusson et a1 [17] to develop a fine-grained

approach to the system level version control model. In order to accomplish this task,

the granularity and the hierarchical levels for the model need to be determined.

The system revision history is the lop level (tier) of the version control model

and is represented by a tree. Further application of the localized concept leads us to

consider an object class, where a given system version can have many versions of an

object class, thus making object class versions the second level (tier) of the revision

hierarchy. Attributes, considered in isolation, are not typically interesting. Attributes

are usually simple data types and undergo very little configuration management.

However, if attributes are changed, the change should be considered as part of an

object class change, which would be captured by the object class version tier.

32

System

Version

Tree

Node

Version of

System

9

l
Version of

Object Defines Structure

Relationship

Version of Version of

Attribute Method

Figure 5.3. Analysis Model for System Level Version Control of an Object-Oriented

Software System

In contrast, methods for an object class may undergo many changes. There may

be new methods, errors to fix in existing methods, modifications to existing methods,

etc. In fact, methods have been the target of many “file” version control approaches

[6, 23]. Accordingly, the individual methods become the final and most fine-grained

version control level (tier) in our revision hierarchy. In order to proceed to a finer level

of granularity, individual statements or tokens of a particular programming language

need to be considered, which would violate the objective to keep this model generic

with respect to implementation.

33

By combining the three levels of granularity with the decision to use tree-based

representation of versions, integration of the fine-grained based version control into

the model is accomplished. Also, observing that each individual object and each

individual method have version trees and that the system has one version tree, the

complete model for object-oriented version control is defined. Specifically, object-

oriented version control consists of a tree of system versions, one or more trees of

object versions, and zero or more trees of method versions. Figure 5.4 depicts the

complete analysis model.

S stem -

ersion <> OOVC

Tree

Node

Version of

System

<>
1 IRelationship

Version of 1 Structure

Object Object

Node Versron

? Tree

Version of ; Version of + Method

Attribute i Method Node Version

Tree

Figure 5.4. Analysis Model for Version Control of an Object-Oriented Software Sys-

tem

34

5.3 Formal Model of Object-Oriented Version

Control

At first glance, the analysis model depicted in Figure 5.4 may not appear to be

intuitive. This problem is an inherent weakness in many informal and graphical

modeling techniques such as OMT. Therefore, in order to supplement the graphical

notation, concise, formal definitions are presented in order to eliminate ambiguity

and confusion.

Formal Model

1. We define object-oriented version control as a three-tuple 00VC(T, 0, M),

where T is a tree, 0 is a non-empty set of trees, and M is a set of trees.

2. We define T to be a tree of system versions. Each vertex of tree T is a three-

tuple VT(NT, S, C), where NT is the vertex identifier, S is the system structure,

and C is a non-empty set of two-tuples. Each vertex represents an individual

system version.

(a) Each member of the set C is identified by C,- where 1 S i S cardinality(C).

(b) We define each C, to be a two-tuple Cg(0,-, No), where 0,- is an identifier

to the object tree in set 0 and N0 is an identifier to the vertex No of

object tree 0,, where 1 S j S cardinality(0).

3. We define 0 to be a non-empty set of trees where each tree represents an

individual object class. Each member of set 0 is a tree identified by 0,- where

l S j S cardinality(0). Each vertex of tree O,- is a three-tuple V0(N0,A, F),

where N0 is the vertex identifier, A is a set of attributes, and F is a set of

two-tuples. Each vertex of tree 0,- represents an individual object version.

(a) Each member of the set F is identified by Fk where 0 S k S

cardinality(F).

(b) We define each Fk, k 2 1, to be a two-tuple Fk(M1,NM), where M; is an

identifier to the method tree in set M and NM is an identifier to the vertex

NM of method tree M;, where 0 S l S cardinality(M).

4. We define M to be a set of trees where each tree represents an individual

method of some object class. Each member of the set M is identified by M1

35

where 0 S l S cardinality(M). Each vertex of tree MI, I Z 1, is a two-tuple

VM(NM, B), where NM is the vertex identifier and B is the body of the method.

Each vertex of tree M; represents an individual object version.

The above definition is depicted pictorially in Figure 5.5, where a few links have

been omitted and other links labeled for clarity. The dashed boxes depict the object-

oriented version control three-tuple. The trees represent either a system version tree,

object version tree, or method version tree based on its corresponding level (T,O,M).

The dotted lines represent the connections between the levels and correspond to the

C and F tuples depending on the level.

36

Elm.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

.I

link to M

\

.———————-——-“-——-—

O

D

O

N“.

Oma"
n
u

\ \

l ‘ .

—---—‘——‘——-—-d---——----

I ‘ Q

I

.
.-

I
I
I
I
I
I
.
.
.
.
l
l
l
l
l
l
l
l

.
.
.
o

_
..

_
.
.
.
V

.
_

..
.
x

u
_

......
.
0
.

u...
"ave

_
S

..
.
.
.
n

.
.
.
-
.
-
-
-
.
-
.
.
.
-
-
-
.

.
r
n

..
_

.
.

.
m

...
...“

.
.
.
r
w
.

_

.
V

..
.
.
.
.

.
.
.

_
_
W
A

.
.
s
o
s
h
t
o
o
c
o
o
.
.
.
.
.
.
.
.
.
.
.
.

_

.
.

_
_

.

.
.
v
v

_
.

"
h

n
u.

"
r
m

_
....

.
.
.

"
T

.
.
.
.
.
.
.
.
.
.
.
.
.
.
"
2

_

Figure 5.5. Graphical Depiction of Formal Model

37

5.4 Operations on the Version Control Model

The two most essential operations for a version control model are storage and retrieval,

more commonly known as checkin and checkout [23], of the configuration items. These

two operations need to be defined for the object-oriented version control model previ-

ously developed. For clarity, the notation and graphical representation of the formal

model defined above will be used. Since describing the retrieval of configuration items

from the version control model is largely based on the understanding of the contents

of the version control model, the storage, or checkin, of items is first described.

Figure 5.6 depicts the version control model of an initial creation of a software

system. As can be seen, the system has one system version V1 with two object classes

01 and 02, each being version V1. Object class 01 has one method, version V1 of

method M1. Object class 02 has three methods, versions V1 of methods M2, M3,

and M4.

Suppose that an error is discovered in method M1. In order to correct the error,

a new version of the method is created and then stored in the version control model.

Figure 5.7 shows the resulting version control model after this operation. Method

M1 now has a new version V2. Notice that object class 01 also has a new version

V2. This upward propagation of version creation is due to the logical implications

of modifying the method. Version V2 and version V1 of object class 01 are slightly

different in that a method of the object class has changed. Likewise, the system

also has a new version V2 for similar reasons. Version V1 of the system has an

error, whereas version V2 does not have the error. This propagation is reasonable in

practice, since a change or revision of part of a system actually results in a new version

of the system as a whole. Notice, however, that the object class 02 and its methods

have not changed, limiting the propagation of change and storage space needed to

store multiple versions of the system. The version propagation can be stated as:

38

A version at any level of the version control model is changed and a new

version is created if its contents or the contents of any of its parts are

changed.

In order to fully understand the storage mechanism, consider a more complex

example. Suppose that a major enhancement of the system is created which requires

the introduction of a new object class and the modification of other object classes.

Figure 5.8 shows one such example where a new system version V3 is created. Object

class 01 undergoes no change, a new object class 03 is introduced with one method

M5, and object class 02 undergoes changes to two of its methods M2 and M3.

39

65.-----

.....

_
n

.
4

_

u
M

_
_

_

_
l
l
l
l
l

r
I
I
I
I
I
I
I
I
I
I
I
I
I

l
—

.
u

_
.

_
u

_

_
.
.
.

_
.

u

.
..

_
_

_
.

_
_

.
.
.
.
i
m
m
v

.............................
n.

n
m

u
o
.
.
.

......n..@
_

n
n

.
3

u

_
_

u
M

_

_
.

_
_

.
.

.
_

_
_

.
_

.
.

_
_

_
_

_
u

.
_

.
.

i
i
i
i
i
i
x
l
i
l
i
i
i
i
i

.
.
.
.
.
.
.
.
-
.
.
.
-
.
.
.
.

.

u
.

u
u

u
"
@
2

u
u

..
_

.
_

.
M

u

.
..

_
u

u
_

.

_
..

_
_

_
_

.
-

..
_

_
_

_
_

_
..

_
.

_

_
...

n
u

n
n

.
_

.

.
.
.
@

u
u

u
u

.
_

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

_
.
.
.
.
.

_

_
n
.
@

..
w
®

"

n
_
a

m
u

_
m

n
"
T

.
.
.
.
.
.
.
.
.
.
.
.
.
"
.
.
.
_
O

.
"
M

"

Figure 5.6. Initial Version of System

40

I

I

I

I

l

I

p.

I

I

l

I

.1

I

l

I

——————-.—————--—

"
I
-
I
'
I
I
I
I
I
I
I
'
I
I
I
I
"

‘-

o

02$.
~

0 ..

1' I “‘

o I .

o . a

o . .

0‘ g '

I. .

l I

I

I

I

U

I

I

I

I

I

O

O

I

I

I

O

I

I

I

I

I

I

O

I

I

.4 - _ — _ _ —

.....

I
I
I
-
I_..

.

a
_

....
.

_
.

_
_

_
.

.
_

_
.
.
.
.
.
.
.
.
.
.

_

_
.

_
_

.
.

_
_

.
.

.
_

.
.

_
_

_
_

_
_

_
_

.
_
.

_

_
.
.

..

.
.

.
.

_
.

.
.
.

.

a
_

.
.
.
.

_

.
_

P
L

aaac
s

“
M
M

"

Figure 5.7. First Revision of System

41

I
I
I

I
I

I

I

I

-J‘------

I ...

I

I : “

I

I

..-

. O

I

l

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

l

O

I

I

_

.
_

O
._
.
.
.
.
.
.
.

....
_

_

.
_

_
.

.
.
.
u
_
a
u

_

_
o
.
.
d
a
a
a
a
a
a
a

_
_

.
.
.
.
.

.
_

.
.
.
.
.
.
.
.
.
.
.
.
.
.
_

_
.

I

I

I

I

I

I

j.

I

I

I

I

4

I

I

I

I . .

I ‘ Q.

--.}‘_.t.___-_-__g..

cab '-

P--——-—

I
Q

I . ‘

---—_—-—_I_--‘:_h_

' I

I O

. I

------------------------------—----------—-------

————¢——¢L————

I

I

I

I

I

-q—-—-

I

I

I

I

I

I

I

~ I

Figure 5.8. Second Revision of System

42

Based on the understanding of the storage model, the retrieval of configuration

items can now be described in more detail. Due to the version propagation stated

above, any change to a system or part of a system will result in a new version of the

system. Therefore, it seems illogical to retrieve an individual object class or method

since any change to that item will result in the need for higher levels (tiers) of the

model to be retrieved and there is no backward referencing mechanism. That is, an

individual method does not know to which object classes it belongs, and likewise, an

object class does not know to which versions of the system it belongs. Therefore,

the only retrieval operation visible to the user of the version control model is at the

system level. That is, the user only retrieves versions of a system. All other retrieval

is handled internally by the version control model. Specifically, a particular version

of a system retrieves its object classes, and object classes retrieve their methods.

Additionally, a version of a system retrieves all other information contained in its node

such as the system structure, and object classes and methods retrieve all information

contained in their nodes such as attributes and source code, respectively.

CHAPTER 6

Implementation Example

We have developed a prototype Software Configuration Management (SCM) system

to aid in the proof of concept. The SCM prototype was developed such that the pro-

totype system provided the configuration management for itself. This bootstrapping

approach has enabled us to use the SCM system to further develop and maintain itself

and also to assess the usefulness and scalability of the system to a larger example. In

order to describe the overall framework and use of the system we provide a simple

scenario.

6.1 User Interface

Upon invocation of the SCM system and the loading of a project, the software engineer

(herein referred to as the user) is presented with the system revision history, as shown

in Figure 6.1. It is important to note that the versions do not represent file versions as

we typically expect in systems such as RCS [5] and SCCS [6]. The versions represent

system versions. For example, in Figure 6.1, version 1.1 may represent the Solaris

Operating System version, version 1.2 the SunOS 4.1.x version, and version 1.3 the

HP-UX version of the system. Thus, the branches (such as 1.1.2.2) may represent the

latest release of the Solaris version of the system.

43

44

The system version tree is modeled after the RC3 versioning mechanism [23], in

which a particular version can have one main trunk of revisions and many parallel

branches (variants). Each version of the system has attributes and methods associated

with it. For this particular implementation, a system version has the attributes name

and description and methods create revision, create variant, change version name,

edit/read description, and build version, as shown in the menu of choices in Figure 6.1.

File ProJect

3.1.1

Create Revision

Create Variant

Change Version None

Edit/Read Description

Build Version

Figure 6.1. System Revision History Tree

The user selects the operation to perform by selecting the choice from the menu.

By selecting create revision or create variant the user selects which version of the

system to modify. Once the user selects a system version for modification, the OMT

object model for the version is displayed. For example, suppose the user selects

45

a version (from Figure 6.1) of the current project. Then the object model for that

system version will be displayed as shown in Figure 6.2. Now the user can proceed with

any stage of the life cycle (design, implementation, maintenance) by concentrating

on the object classes of the system. Each object could have a variety of relevant

information, including a description, processing narrative, data dictionary, methods,

attributes, preconditions, postconditions, etc. that correspond to the relevant sections

of documentation or source code for the system. This particular implementation

has only an object name, description, header information, attributes, and operations

(methods) associated with each object class, as seen in the menu in Figure 6.2. The

user can then change or modify any of these items including changing the object model

itself. The list of editing operations on the left side of the window of Figure 6.2

show the options available in this particular implementation. The most common

modification will be to change the methods of the object. The methods of an object

typically refer to the actual source code. Modifications at this level allow the user

to concentrate on a very focused task, a single method for an object, and provides

the fine-grained version control of the system since only the method is changed. In

addition, this approach allows multiple users to modify different methods of the same

object class without file locking conflicts.

After completing the modifications, the user can then submit the changes into a

new system revision in the revision hierarchy and rebuild the system. In the actual

implementation of the build, the system will eventually have to be based on the

concept of files. The SCM system automatically generates the corresponding C++

files and Makefile needed to build the system. The user specifies which system version

to build by selecting the version on the system revision history graph (Figure 6.1).

Throughout the modification and build processes, there is no representation of the

actual files presented to the user. The user concentrates only on system level versions

and object classes providing abstract concept localization.

 Figure 6.2. Object Model in Current SCM Prototype

F
i
l
e

0
E
d
i
t

I
I
e
i
n

0
E
d
i
t

I
'
I
d
t
e
F
I
l
e

0
C
r
e
a
t
e
M
e
e
t

0
C
r
e
a
t
e
a
s
s
o
c
i
a
t
i
o
n

0
C
r
e
a
t
e
M
o
t
i
o
n

0
C
r
e
a
t
e
G
e
n
e
r
a
l
i
z
a
t
i
o
n

m
p
l
i
c
a
t
i
o
n

S
C
H
H
i
n
d
o
u

C
h
a
n
g
e
M
e
e
t
N
a
e

E
d
i
t
/
R
e
a
d

l
I
e
e
u
i
p
t
i
o
n

E
d
i
t
/
R
e
a
d
H
e
a
d
e
r

I
n
f
o
r
m
a
t
i
o
n

a
t
t
r
i
b
u
t
e
s

I
b
e
r
e
t
i
o
n
e

]
S
u
e
t
e
n
V
e
r
e
i

H
r
n
l
l
i
e
l
o
a

P
r
o
w
t
l
l
i
a
l
o
g

W
i
n
d
o
w

0
1
1
t
h

fl
t
t
r
n
i
a
l
o
s

,
.
.
.
.

.
.
,
.
,
.
.
.
.

.-
:-

.x
-z

.~
.‘

.{
..

-.
».

.:
~,

..
-.

W
/

~
.
.

.
.
.
.
.
n

.
u

.
.
.
.
.
.

.
.
u
n
fi
t
.
.
.

3
.
2
"
.

v
.

,
5
1
"
‘
F
‘
i
t
-
f
f
i
f
-
b
f
é
f
v
fi
l
v
f
-
‘
V

.I
.

.
.

,
.

.
.
.

,
.

.
.

.
.

.
.

.
._

.
a
.
:
.
.
,
\

I
H
u
n
“

’
.
.
‘
A
‘
A
‘
z
‘

‘
.
A

h
e
“
.

-
.
I
‘
I
.
t
‘
v
‘
-

5
.
»

i
‘
7
‘

2
'
V

W
t

a
c
n
v
(
w
!

.
.

m
m
x

«
(
a
n
a
w
h
v
s
w
a
-
«
0
.
x
n
u

-

I
'
‘
1
‘
.

a
v

-
:
.

.
'

i
‘
1
’
,
“

L
.

\

.
'
.
'
\
;
.
\
_
.
'
.
~
.

-
\
’
I

\
‘
4

»

.
.
'
.
~
.
'
.
\
v
.
\
,
'
.
:
.
‘
.
;
.
'
.
;
.
«
p
a
w
.

.
.
.
.
.
.

.-
.

w
.

.
.
.
.

.
a
.
u
.

.
~
.
5

3
”
.

a
.

’
'
«
‘
~
‘
.
"
u
‘
f
~
‘
.
"
"
.
'
,

.
i
.

.
.

I
4

.
.

~
.

.
.

.v
.
a
.

.
.

.
,

.
.

.
.

.
.
-
1
.
o
'
h
2
2
'
:
.

r
.

:
.

4
.

.
.

.
'
V
'
.

.
'
:
.
'
-
'
.
a
s
.
"

'
2
'

v
W
‘

‘
'

'
'

.-
M
9

M
u
s
s
-
s
a
t
w
v
s
e
n
s
-
t
r
/
.

a
v
a
w
‘
a
fi
A
~
A
v
a
A
v
a
<
€
u
¢
c
Z
u
a
L
u
t
v
a
u
w
u

.-
.-

.\
:a

:<
:«

t~
<'

.-

 46

47

It can be seen from the prototype SCM and scenario that the fine-grained version

control, system structure, and concept localization concepts of the configuration man-

agement framework are provided and produce a usable development and maintenance

environment based on a strong configuration management foundation.

6.2 Code Construction

One primary function of the SCM system has not been discussed thus far. This

function is the construction of source code files for compilation. In order to do so, the

system not only must extract each fine-grained piece of code from the version control

mechanism, it must also construct the files in a manner that preserves the system

structure. Our current prototype constructs C++ code based on the OMT object

model. In order to generate the code structure, specific semantics must be explicitly

defined for the three types of associations that are allowed in an OMT object model.

These semantics are specific to a C++ implementation of an OMT object model and

are not general rules for all implementation languages or system structures.

Review of the OMT methodology shows that there are three distinct association

types between object classes. Therefore, we give our interpretations of what each

type means in a C++ implementation.

0 Association: Associations are inherently bidirectional [7], but they do not have

to be implemented as such. That is, a pointer may be used in a unidirectional

fashion. The difficulty is that it is not straightforward or possible to determine

the direction of the association without background knowledge and experience.

Therefore as a convention, we implement all associations as bidirectional.

e Aggregation: We treat aggregation as a tightly coupled form of association

with some added semantics [7]. These added semantics include transitim'ty, an-

tisymmetry, and that characteristics (associations, attributes, operations) may

48

propagate to the component class. From this definition, we give the following

rules for code construction:

1. All associations of the assembly class are propagated to the component

class(es), and recursively to all sub-component classes.

2. The reverse of item 1 is not true.

0 Generalization: In C++, the standard inheritance constructs provide our

implementation semantics. That is, if an object class is associated to a sub-

class object, then by default it is associated to the superclass indirectly through

the subclass. Additionally this relationship is also recursive in nature as with

aggregation. However, the reverse is not true. That is, an object class associ-

ated to a superclass is not considered to be associated to its subclasses. This

interpretation suggests that a generalization is only unidirectional.

Based on these rules, the system structure of the OMT object model can be

preserved by correct construction of the C++ header files. Figures 6.3 and 6.4 give

the object model and source code, respectively, for an example that makes use of

aggregation and association. As seen in Figure 6.3, class A is associated to class B

and has component class C. Class C is part of class A and is associated to class D.

Based on the above rules the following structure needs to be preserved.

0 Class A is associated to classes B and C.

0 Class B is associated to class A.

0 Class C is associated to classes A, B, and D.

0 Class D is associated to class C.

Figure 6.4 gives skeletons of the C++ headers that preserve this structure. Associ-

ations are implemented as pointers to the associated objects, for example class A is

49

associated to class B and C. Therefore, class B and class C are declared, then class

A is defined with pointers to class B and class C. The definitions of the associated

classes are included at the end to avoid circular includes in the preprocessor due to the

bidirectionality of the association. In order to implement the propagated association

of class B to C from the aggregate class A, the same implementation is used except

class C does not contain a pointer to class B. The declaration and definition of class

B is propagated to class C due to the propagation, however, the pointer to B is not

since this would imply a direct association to class B. The definitions of classes B and

D are straightforward.

A B

C D

Figure 6.3. Example of Aggregation and Association

50

#ifndef A H

#define __A_H--

class B;

class C;

class A

{

B *theBobject;

C *theCobject;

};

#include"B.h"

#include"C.h"

#endif

#ifndef __C_H__

#define -_C_H-_

class A;

class B;

class D;

class C

{

D *theDobject;

A *therbject;

};

#include"A.h"

#include"B.h"

#include"D.h"

#endif

#ifndef _-B-H-_

#define B_H__

class A;

class B;

{

A *theADbject

};

#include"A.h"

#endif

#ifndef __D_H-_

#define _D_H__

class C;

class D;

{

C *theCobject

};

#include"C.h"

#endif

Figure 6.4. C++ Header File Example of Aggregation and Association

51

Similarly, Figures 6.5 and 6.6 give the object model and source code, respectively,

for an example that makes use of generalization and association. As seen in Figure 6.5,

class A is associated to class B and has subclass C. Class C is refinement of class A

and is associated to class D. Based on the above rules the following structure needs

to be preserved.

0 Class A is associated to class B.

0 Class B is associated to class A.

0 Class C is associated to class D and a subclass of class A.

0 Class D is associated to class C.

Figure 6.4 gives skeletons of the C++ headers that preserve this structure. The

definitions of classes A, B, and D are straightforward. In order to implement the

subclass C, the complete definition of class A need to be included before the definition

of class C. The remainder of the definition is straightforward.

A B

C D

Figure 6.5. Example of Generalization and Association

52

#ifndef A H

#define A H

class B;

class A

{

B *theBobject;

};

#include"B.h"

#endif

#ifndef C H-

tdefine C H

#include"A.h"

class D;

class C : public A

{

D *theDobject;

};

#include"D.h"

#endif

#ifndef B H

#define B H

class A;

class B;

{

A *theAObject

};

#include"A.h"

#endif

#ifndef __D_H__

#define D H

class C;

class D;

{

C *theCobject

};

#include"C.h"

#endif

Figure 6.6. C++ Header File Example of Generalization and Association

CHAPTER 7

Related Work

Many configuration management systems have been developed with a breadth of

functionality features. A commonality of these systems is the use of a repository, or

version control system to manage the various configuration items. Therefore, we give

an overview of the approaches used to provide version control as well as an overview

of various configuration management systems.

7.1 Version Control Systems

Advances in software engineering methods, such as techniques for structuring sys-

tems, higher level programming languages, and object-oriented analysis and design

methods have enabled programmers to better structure their applications by parti-

tioning them into manageable pieces [10]. These pieces are the main configuration

items for a version control mechanism. We first present an overview of methods for

version control of these individual items that we will call components. These meth-

ods range from the simple text-based editor management [24] to the more complex

file delta methods [5, 6, 23] and extensive database management systems [25]. The

primary weakness of these, what we will call component-based approaches, is the ab-

sence of system abstraction and comprehension. Numerous system-based approaches

53

54

have been developed to eliminate this weakness [8, 9, 17, 25, 26]. We point out the

major inadequacies for object-oriented systems, based on the requirements for object-

oriented version control, while presenting an overview of these approaches. Finally,

we give an overview of related work in alternative methods to version control that

are not based on the concept of a version.

7.1.1 Component Version Control

We first consider the component-based approaches to version control. These ap-

proaches divide the software system into components. Each component could range

from a single function of source code to an entire design document, the granularity

and structure of the components is determined by the development team. The most

common decomposition and implementation of these methods is based on files. Each

component is stored in its own file, and the version control mechanism manages the

individual files. Database management systems have also been used, however, at the

component level the techniques are essentially modeling versions in the database with

records or tuples extended with timestamps or a unique version number [25]. Config-

uring a system then consists of selecting a version for each component of the system.

This approach to constructing a system becomes a major problem for these methods.

Text Representation

Narayanaswamy [24] proposes a text-based approach to version control based on con-

texts that the developer describes as a hypertext-like structure. A context specification

is used to describe a particular variant or version of the file. In order to create a ver-

sion, a special notation is used to describe the version where there is accompanying

text to assist the tracking of the version. The major disadvantage to this approach is

the highly complex and potentially confusing structure of the text file. The approach

is similar to using #ifdef and #ifndef in C, and in our experience has led to great

55

confusion. In addition, this approach does not address or satisfy the requirements for

an object-oriented version control method.

Set Representation

Rochkind [6] proposes what can conceptually be viewed as a set-based approach to

version control. The approach treats each component as a set of related sequences,

with each member of the set representing a version of the component. Every time a

component is changed, a new version is created and inserted into the set. Each version

is identified by an identification tag in the form releaselevel, where release represents

the release number and level represents the level number of the version. The set is

stored in a repository file using a delta storage technique, where a delta represents

“the changes”. This approach saves substantial space since only the changes are

stored. The main drawback of this approach is the need to select the correct versions

of each component for the system. Since this approach is based on components, it

could satisfy the locality requirement of our model. However, current practice shows

that a file is still the most common component.

Tree Representation

Tichy [5, 23] proposes what can conceptually be viewed as a tree-based approach to

version control. The approach is similar to the set-based approach described previ-

ously, but adds functionality based on the tree structure and improves the efficiency

of retrieval. The revision tree has a main branch, called the trunk, along which revi-

sions are numbered similarly to the set approach (e.g. 1.1, 1.2). However, a revision

may have one or more branches.

The tree is stored in a repository file using a delta storage technique. The delta

technique used here is different from the one used in the set approach. This approach

uses a backward delta for revisions along the trunk, whereas the set approach used a

56

forward delta. That is, the latest version of the component is kept current and intact,

and to generate an old version the deltas are applied in a reverse order to arrive at an

older version. The justification here is that the latest version is more often desired,

thus it should be retrieved the quickest. However, this approach does not work for

branches. To generate a version on a branch, the backward deltas are followed to the

branch, then the branch is followed in a forward direction. Thus, branches are stored

as forward deltas as with the set approach. It has been found that this approach

to implementing the deltas does improve the performance of extracting versions of a

component. Again, the main drawback of this approach is the requirement placed on

the developer to select the correct versions of each component for the system. Since

this approach is based on components, it could satisfy the locality requirement of

our model. As with the set approach, current practice shows that a file is the most

common component.

7.1.2 System Version Control

Even though they do not meet any of our criteria for an object-oriented version control

model, the major disadvantage of all approaches presented in the previous section is

that they lack adequate support for system structure. This deficiency is due to the

lack of correspondence between versions of different components for a given instance

of a system. As such, it is difficult to perform the builds of complete system versions.

Next, we describe different approaches that address the issue of system versions in a

version control system.

Partial Order

Plaice and Wadge [26] define a partial order on the versions so that the most relevant

version of a component can be used when the specified version is unavailable. They

point out an important fact, and disadvantage, to the component-based approaches.

57

That is, building a system version is not simply combining all components with the

same version. Their approach solves this problem by applying two concepts. First,

version labels for components are defined to have a global, uniform significance. Sec-

ondly, the authors define a partially ordered algebra for the versions. The partial

order is the refinement relation: V I; W, read as “V is refined by W”. This partial

order allows the use of the most relevant version of a component if that component

does not have the specified version available. This approach appears to be a step in

the direction of formalizing version control. However, issues such as how to structure

the components and limiting the effects of change are not addressed. In addition, the

locality of the components is not specified.

Unified E‘amework

Katz [25] proposes a version model whose aim is to provide a unified framework for

version control of engineering databases, that can be tailored for the needs of a given

environment} The framework is based on four key concepts: component hierarchies,

version histories, configurations, and equivalences.

The component hierarchy is the standard is-a—part-of or aggregation tree-like

relationship. Figure 7.1 shows a simple example. The version history is the typical

version tree of revisions and variants, called alternatives in this approach. Figure 7.2

shows the version history model. Each node is represented by name[version#].type.

The main line of descent in the tree is a derivate, and siblings are alternatives. A

configuration is the result of a version history combined with a component hierarchy,

as depicted in Figure 7.3. System components often contain a variety of represen-

tations, all of which are needed to fully describe the component. For example, an

object might have a source code, a documentation, and a test data representation.

1The term database does not necessarily mean a database management system. The current

implementation of this approach is file based. However, the author does give a sketch as to how this

approach can be implemented in a relational database system with the addition of foreign keys.

58

This relationship is modeled as an equivalence as shown in Figure 7.4.

Object.code

Attributacode Associations.code

Operationscode

Figure 7.1. Unified Framework Component Hierarchy

This method is similar in concept to what this thesis is proposing, however the

Katz method does not currently support different interconnections between object

classes, or any other object-oriented concepts. The system structure is incorporated

into the framework. Therefore, it would require significant changes to incorporate an

object-oriented structure into this framework.

59

Attributecode

. Attribu

\”Attribute :1 ..e\

O

Attri I ute[i

Attribute[4].<ide

O

Attr

O

Attribute[5].code

Derivative

te[O].code

l].code

ibute[3].code

Alternative

Figure 7.2. Unified Framework Version History

60

Object[3].code

Association[2].code

Operation[5].code

Figure 7.3. Unified Framework Configuration

Object

Object.code Objecttest

Objectdocs

Figure 7.4. Unified Framework Equivalence

61

Inverted Approach

Miller et a1. [8] attempt to solve system building problems with an inverted three

level approach built up from a system variant base. The first level is the Variant

Level which contains a composition of system variants. A variant is an instance of a

complete system and is a structured collection of components. Figure 7.5 depicts a

system version with two variants, the X10/X11 variant containing components 1,2,3,4

and the NeWS variant containing components 1,2,3,5. In general, any component in

the system can have zero or more attribute terms which will define the variants. For

example in Figure 7.5, if the attribute Hin is set to News when building a version of

the system, then the 1,2,3,5 variant of that system will be built.

A

AA

Win=<X10,X1 1>M ‘\ Win=<NeWS>

AA

Figure 7.5. Inverted Approach Variant Level

The second level is the Revision Level which serves as the system version control

level. It provides a revision tree of the development paths of system versions. Each

version contains all system variants for that version. Figure 7.6 gives a graphical view

of the Revision Level.

The third level is the Transaction Level. This level manages the development

62

1.1 1.2 1.3 1.4

2.1 2.2

Figure 7.6. Inverted Approach Revision Level

of the revisions of the software system. This approach gives the software developer

an intuitive understanding of the system versions, and is only lacking an adequate

system structure for object-oriented systems and mechanisms to limit the effects of

change. In addition, it is not clear as to what type of localization is inherent in the

variant level.

Orthogonal Approach

Reichenberger [9] proposes a three-dimensional model of system version control called

an “orthogonal organization” of variants and revisions which represents an object pool.

Accordingly, the approach is localized around the concept of an object. Figure 7.7

conveys the most important concepts of this approach. The three dimensions are

variant, revision, and component. All variants, components, and revision coexist in

the same structure each having a unique identifier. To define the system structure, a

hierarchical project structure tree depicts the component structure for each revision

of the system. Again, it seems that this approach is only lacking an adequate system

structure for object-oriented systems and mechanisms to limit the effects of change.

However, the storage required to store the three dimensional structure could become

quite extensive.

63

Project

- /§§°‘“’e

variant-id « . 4 5 :

[2 3 i 6 7 kcomponent-id

a \ \ \ \

\ \ \ \ \ \

b\ \ \ \ \ \ \\
\ \ \ \ \ \ \ \ \

c\ \

\ \
d\\\\

Variants \ \

e

\\
f\

V \
g\ \

\ \

v h\ \

\ \

1V \

2\\

3 \
Revisions 45

f >

. . . Components

reVI81on-1d

Figure 7.7. Orthogonal Version Management Concepts

64

Hierarchical Revision Graph

Magnusson et a1. [17] propose a fine-grained approach to system version control that

will limit the effects of change. All aforementioned approaches for system version

control create some structure of system components. However, none specify how

this structure is defined or the granularity of the structure. The basis for the fine-

grained version control is what Magnusson et a1. call a Revision Tree server which is

an engineering database for storing hierarchical information.2The fine-grained nature

of the tree is accomplished by allowing each node of the tree to be as fine-grained

as the developer wishes. Thus, theoretically, a node could contain as little as one

line, or one token of source code. Therefore, if that node is changed, then the effects

of the change are limited by the chosen granularity. In addition, storage of changes

is kept to a minimum, due in part to the fine granularity, but most importantly to

the sharing of nodes between the revisions of the graph. This approach satisfies the

fine-grained nature and limits the effects of change, however, this approach has no

object-oriented system structure or concept of localization.

7.1.3 Alternatives to Version Control

Up to this point all methods mentioned have one property in common. They are all

based on the primary concept of a version. Even though, this approach appears to -

be the most common focus, based on the amount of work in this area, methods based

on other concepts need to be investigated for their adequacy to the object-oriented

paradigm. Lie et a1. [27] present a change-oriented method where functional change is

the primary concept. Clemm [28] presents a job-oriented method where the software

process itself is the primary concept. These approaches, all of which are not based on

versions, do not lend themselves to the basic principles and requirements identified

2This is not necessarily a database management system. The authors do not describe the database

storage mechanism in detail.

65

for object-oriented version control

7.2 Configuration Management Systems

The first generation of configuration management systems were generally version con-

trol systems with extensions or operating system support for the other configuration

management activities. We have seen that this limited approach to configuration

management is not acceptable for effective control and management of change in

software development. Furthermore, these approaches do not adhere to the five neces-

sary principles [4] nor meet the functionality requirements for effective configuration

management [16]. Although advancements are still being made in version control,

the current trend in configuration management systems is focused on systems that

largely satisfy the functionality requirements for configuration management. The ma-

jor advancements in this area are predominantly in research and commercial products

such as Aide-De-Camp (ADC), Change and Configuration Control (CCC), and Do-

main Software Engineering Environment (DSEE). Below we discuss the strengths

and weaknesses of these systems, contrasting them to our configuration management

framework.

ADC

ADC is a commercial configuration management system based on a database repos-

itory of configuration management information. It satisfies the main functionality

requirements of a configuration management system. However, its localized concept

is a source code file. System structure information is defined in attributes and rela—

tionships between the files and in the notion of a change set between system versions.

A change set is a set of logical changes that can apply to one or multiple files in a

system version to create a new system version. In addition, limited system struc-

66

ture information, such as file dependencies, is derived by scanning the source code to

produce Makefiles and to perform dependency analysis. Although, ADC provides the

functionality to meet the major configuration management tasks, it does not alleviate

the problems inherent with file localization and lack of system structure.

CCC

CCC is a commercial configuration management system that satisfies the main func-

tionality requirements of a configuration management system. However, its localized

concept is a source code file with version control of the individual files based on the

tree-based approach. The notion of a project binds files together to form complete sys-

tems. The system structure is based on the project along with some file dependency

analysis. Again, CCC provides the functionality to meet the major configuration

management tasks, however, it does not alleviate the problems inherent with file

localization and lack of system structure.

DSEE

DSEE is a configuration management environment composed of four components.

The History Manager acts as a repository and stores versions of the source files and

allows increased capabilities for selecting versions of the files. The Configuration Man-

ager is concerned with the system definition and construction. The system model used

is a description describing the relationships between the files and dependencies be-

tween tools and derived objects, such as object files. The Task Manager and Monitor

Manager components provide the functionality of other configuration management

activities. Although these four components satisfy configuration management system

requirements, DSEE does not address the problems inherent with file localization and

lack of system structure.

Investigation of the above configuration management systems reveals that the

67

common focus for system structure is the dependencies, tools, and procedures needed

to derive an executable system from multiple files containing source code. The vast

number of approaches to defining this system structure make it difficult to evaluate

and compare the different approaches. Render and Campbell [29] propose a object-

oriented semantic model to configuration management as one approach to alleviate

this difficulty. Their model is based on two object classes: a configuration item and

a derivation relation. An item defines the configuration item and all attributes of

the item. Items can be specialized into subclasses, such as, an aggregate item (items

composed of other items), a derived item (items derived by other items), versioned

item (items that have alternate implementations), or a version (a concrete implemen-

tation of a versioned item). A derivation relation defines the relationship between

items. A derivation relation can be specialized into subclasses, such as, a derivation

procedure (a relation between kinds of items), or a derivation execution (a relation

between specific instances of items).

This model does focus around a localized concept, the configuration item, defines

the structure of those items, and enables easy integration of other software engineer-

ing procedures, such as project management [30]. However, the localized concept and

system structure do not supply the important design and implementation informa-

tion, such as component interaction, data flow, or control flow, needed to effectively

maintain the software product, since there is no knowledge of a software component

or architectural relationship.

CHAPTER 8

Conclusions and Future Work

A new approach to software configuration management has been developed based on

three key concepts: concept locality, system structure, and fine-grained version con-

trol. Concept locality is based on the property that a software system is being com-

posed of many abstract components, such as object classes, abstract data types, and

modules, that are the focus of the entire software development and maintenance life-

cycle. These components interact with each other in a specified manner that is defined

by a system structure. Therefore, the basis for the general configuration management

framework is that a software system is composed of many software components and

a system structure that defines the relationships between the components.

Specific frameworks for object-oriented analysis and design and structured analysis

and design are developed based on the general framework. In an object-oriented

system the software components are object classes and system structure is commonly

defined by diagrams, such as an OMT object model. Therefore, an object-oriented

system is composed of many object classes and an object model that defines the

associations between the object classes. In contrast, a structured system is composed

of modules with relationships between each module defined by diagrams such as a

structure chart.

Based on the object-oriented framework, a fine-grained version control model has

68

69

been developed. This model used a three-tiered approach to limit the effects of change

to the software system. The top tier is the software system as a whole. The software

system is composed of many object classes that make up the second tier. Finally,

the third tier is the methods of each object class. This fine-grained approach enables

a specific method of an object class to be modified and viewed as changed without

affecting any other methods or object classes in the system.

As a means to investigate the feasibility and practicality of the framework, a proto-

type software configuration management (SCM) system has been developed [2]. Scal-

ability to large-scale software systems has been investigated by using the SCM system

to provide configuration management for itself. Preliminary observations have shown

that the SCM system provides effective configuration management of object-oriented

systems. The system tightly couples design, implementation, and maintenance of

software systems, where the user can only access and change implementation infor-

mation based on the design structure, which enables traceability between the design

and implementation of a software system. In addition, the system allows the soft-

ware engineer to concentrate on abstract concepts such as a system version, an object

model, object classes, and operations without the burden of dealing with configura-

tion management issues and file management. Also, the SCM framework supports

the ability to limit the effect of changes in the system by providing a fine-grained

version control mechanism.

Further work based on the framework could lead to the construction of a complete

software development environment and could easily be extended to provide mech-

anisms for reverse and re-engineering by generating an object model from source

code [31]. By adding requirements analysis or the definition phase of the software

life-cycle, traceability throughout the entire life-cycle could be attained. Possible can-

didates for a requirements model could be an analysis object model. In addition, a

diagram based on formal specifications [32, 33, 34] that could derive or be transformed

70

into a design object model could be used.

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[61

[7]

[8]

BIBLIOGRAPHY

R. S. Pressman, Software Engineering - A Practitioner’s Approach. McGraw—

Hill, Inc., 1992. ISBN 0-07-050814-3.

S. R. Schafer and B. H. C. Cheng, “Configuration Management: Design, Imple-

mentation and Maintenance through the OMT Object Model,” Technical Report

MSU-CPS-95-8, Department of Computer Science, Michigan State University,

A714 Wells Hall, East Lansing, 48824, March 1995. Submitted for publication.

André van der Hoek, Dennis Heimbigner, and Alexander L. Wolf, “Does configu-

ration mangement research have a future?,” April 1995. To appear in Proceedings

of the 5th International Software Configuration Management Workshop, Seattle,

USA.

D. Whitgift, Methods and Tools for Software Configuration Management. Baffins

Lane, Chichester, West Sussex P019 1UD, England: John Wiley and Sons Ltd.,

1991. ISBN 0-471-92940-9.

W. F. Tichy, “Design, implementation, and evaluation of a revision control sys-

tem,” in Proceedings of the 6th International Conference on Software Engineer-

ing, pp. 58—67, September 1982.

M. J. Roekind, “The source code control system,” IEEE Transactions on Soft-

ware Engineering, pp. 364—370, December 1975.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-

Oriented Modeling and Design. Englewood Cliffs, New Jersey: Prentice Hall,

Inc., 1991. ISBN 0-13-629841-9.

D. B. Miller, R. G. Stockton, and C. W. Krueger, “An inverted approach to

configuration management,” in Proceedings of the 2nd International Workshop

on Software Configuration Management, pp. 1-4, October 1989. Published in

Software Engineering Notes, Volume 17, Number 7, 1989.

71

72

[9] C. Reichenberger, “Orthogonal version management,” in Proceedings of the 2nd

International Workshop on Software Configuration Management, pp. 137—140,

October 1989. Published in Software Engineering Notes, Volume 17, Number 7,

1989.

[10] S. A. Dart, “The past, present, and future of configuration management,” tech.

rep., Software Engineering Institute, Carnegie Mellon University, July 1992.

CMU/SEI-92-TR-8, ESC-TR—92—8.

[11] E. V. Berard, Essays on Object-Oriented Software Engineering. Englewood Cliffs,

New Jersey: Prentice Hall, Inc., 1993. ISBN 0-13-288895-5, Volume 1.

[12] N. M. Bounds and S. A. Dart, “Configuration Management (CM) Plans: The

Beginning to Your CM Solution,” tech. rep., Software Engineering Institute,

Carnegie Mellon University, July 1993.

[13] I. Sommerville, Software Engineering. Addison-Wesley, 1992. ISBN 0-201-56529-

3.

[14] H. Ronald Berlack, Software Configuration Management. John Wiley and Sons,

1992. ISBN 0-471-53049-2.

[15] S. Dart, “Spectrum of Functionality in Configuration Management Systems,”

tech. rep., Software Engineering Institute, Carnegie Mellon University, December

1990. CMU/SEI-QO-TR-ll, ESD-90-TR—212.

[16] S. Dart, “Concepts in configuration management systems,” in Proceedings of the

Third International Workshop on Software Configuration Management, pp. 1-18,

1991.

[17] B. Magnusson, U. Asklund, and S. Min6r, “Fine-grained revision control for

collaborative software development,” in Proceedings of the First ACM SIGSOFT

Symposium on the Foundations of Software Engineering, pp. 33—41, December

1993. Published in Software Engineering Notes, Volume 18, Number 5.

[18] G. Booch, Object-Oriented Design. Benjamin-Cummings, 1990.

[19] P. Coad and E. Yourdon, Object-Oriented Analysis. Prentice-Hall, 1990.

[20] B. Meyer, Object-Oriented Software Construction. Prentice-Hall, 1988.

[21] S. Shlaer and S. J. Mellor, Object-Oriented Systems Analysis. Yourdon Press,

1988.

73

[22] L. L. Constantine and E. Yourdon, Structured Design. Prentice Hall, Inc., 1979.

[23] W. F. Tichy, “RCS - a system for version control,” Software - Practice and

Experience, vol. 15, pp. 637—654, July 1985.

[24] K. Narayanaswamy, “A text-based representation for program variants,” in Pro-

ceedings of the 2nd International Workshop on Software Configuration Manage-

ment, pp. 30—33, October 1989. Published in Software Engineering Notes, Volume

17, Number 7, 1989.

[25] R. H. Katz, “Toward a unified framework for version modeling in engineering

databases,” ACM Computing Surveys, pp. 375—408, December 1990.

[26] J. Plaice and W. W. Wadge, “A new approach to version control,” IEEE Trans-

actions on Software Engineering, pp. 268—276, March 1993.

[27] A. Lie, R. Conradi, T. M. Didriksen, E.-A. Karlsson, S. O. Hallsteinsen, and

P. Holager, “Change oriented versioning in a software engineering database,”

in Proceedings of the 2nd International Workshop on Software Configuration

Management, pp. 56—65, October 1989. Published in Software Engineering Notes,

Volume 17, Number 7, 1989.

[28] G. M. Clemm, “Replacing version-control with job-control,” in Proceedings of the

2nd International Workshop on Software Configuration Management, pp. 162—

169, October 1989. Published in Software Engineering Notes, Volume 17, Number

7,1989.

[29] H. Render and R. Campbell, “An object-oriented model of software configuration

management,” in Proceedings of the 3rd International Workshop on Software

Configuration Management (P. H. Feiler, Ed.), (Trondheim, Norway), pp. 127—

139, June 1991.

[30] H. S. Render, R. N. Sum Jr., and R. H. Campbell, “Integrating configuration and

project management in an object-oriented software development environment,”

in Proceedings of FedCASE ’89, (Gaithersburg, Maryland), Oct. 1989.

[31] G. C. Gannod and B. H. C. Cheng, “A Two Phase Approach to Reverse En-

gineering Using Formal Methods,” Lecture Notes in Computer Science: Formal

Methods in Programming and Their Applications, vol. 735, pp. 335—348, July

1993.

74

[32] B. H. C. Cheng, E. Y. Wang, and R. H. Bourdeau, “A graphical environment for

[33]

[34]

formally developing object-oriented software,” in Proc. ofIEEE 6th International

Conference on Tools with Artificial Intelligence, November 1994.

R. H. Bourdeau, E. Y. Wang, and B. H. C. Cheng, “An integrated approach

to developing diagrams as formal specifications,” Technical Report MSU-CPS-

94-26, Department of Computer Science, Michigan State University, A714 Wells

Hall, East Lansing, 48824, September 1994.

N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese, “Requirements

specification for process-control systems,” IEEE Transactions on Software Engi-

neering, vol. 20, pp. 684—707, September 1994.

