

5K,

\

~11 nv‘

'

.
r

I
!

:
3
1
.
.
.

i
s
"
.

. mo“...
.,
1.‘

‘h

.
.
2
J
u
d

,

2
.
.
.
.

1
.
(
3
.
1
.
)
.

t
.
A
I
4
1

.

)
1

c
.-

’
W
b
fl
t

.
Q
C
.
.
.
h
t
x
h
‘
x
t
n
:

i
n

.
3
1
:
x
i
v
:

‘
3
9
.
»
?

1
.
5
.
.
.

\
.
:

..
.

n
4
1
.
31
3
.
3
.

.
:

r
3
?
?

A
r
i
s
i
i
z
z

t
a
.
.
.
»

;
i
.
.
.

u
3
,
)
.
.
.
»
‘
3

1
3
.
.
.
}
.
.
.
x
a

.
J
.
.
.
1
.
.
.
}
:

.
2

.. .
4
r

THESIS

MICHIGAN STA

III IIIIIIZIII

IIIIIIIIIIIIIIIIIIIIIIIIIIII
0417 2534

This is to certify that the

dissertation entitled

MULTICASTING IN MULTISTAGE

INTERCONNECTION NETWORKS

presented by

Chi-Ming Chiang

has been accepted towards fulfillment

of the requirements for

PhD degree in Commter Sc ience

\AoMSl \‘1.\\I{
Major professor

1995

MSU is an Affirmative Action/Equal Opportunity Institution 0- 12771

LlfiafitRY

Michigan fitate

University

PLACE III RETURN BOX to removeWe cheekwt from your record.

TO AVOID FINES Mum on or More det- due.

DATE DUE DATE DUE DATE DUE

MSU le An Affirmetive Action/Equal Opportunity lnetltulon

Wm1

MULTICASTING IN MULTISTAGE

INTERCONNECTION NETWORKS

By

Chi-Ming Chiang

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

1995

ABSTRACT

MULTICASTING IN MULTISTAGE INTERCONNECTION

NETWORKS

By

Chi-Ming Chiang

Multicast communication, also known as multi—point communication, refers to the

delivery of a message from a single source node to a number of destination nodes. It is

a frequently used communication pattern in distributed-memory parallel computers

and computer networks. M'ult'istage interconnection networks (MINs) have resurged

as another popular class of interconnection architecture for constructing scalable par-

allel computers and high speed network switches. While efficient implementation

of multicast communication is critical to the performance of message-based scalable

parallel computers and switch-based high speed networks, little research has been

devoted to supporting multicast in MINS.

Unlike unicast communication, the size of a header in a multicast message depends

on the number of destinations, the distribution of destinations, and the multi-address

encoding/decoding schemes. This research suggests and compares six different multi-

address encoding/decoding schemes to shorten the header which is an overhead to

the system. Each of them has its own advantages and disadvantages. An appropriate

choice of the multi-address encoding scheme depends on the destination pattern and

is detailed in this research.

Several efficient multicast algorithms, both hardware and software implen‘lenta-

tions, for unidirectional wormhole-switched MINS are proposed in this research. The

hardware implementation offers better performance than the software approach. Tree-

based hardware approaches for wormhole-switched MINS, namely multi-head worms,

require special mechanisms to avoid potential deadlocks when there are multiple mul-

ticasts. As shown in this research, the hardware approaches to support multicast

should be considered in the design of high performance networks. In systems which

do not support hardware multicast, multicast must be implemented atop existing

unicast communications. This research proposes an efficient unicast—based multicast

(or software multicast) algorithm for such systems.

While Banyan Mle are limited to a unique routing path between any source and

destination pair, an extra stage l\’IlN can provide extra routing paths. Extra routing

paths can reduce the message transmission blocking probability and allow additional

flexibility in selecting a routing path. An algorithm to find a traffic-optimal multicast

tree in such networks within polynomial time is proposed.

Many new ideas and new algorithms are proposed to support. efficient multicast

communication in wormhole-switched MIN5. Performance evaluation and comparison

of different approaches are conducted through extensive simulation experiments. Re-

search results obtained from this work will be extremely useful to parallel computer

and network switch designers who wish to support multicast in their designs.

© Copyright 1995 by Chi-Ming Chiang

All Rights Reserved

To my parents

ACKNOWLEDGMENTS

I would like to take this opportunity to express my appreciation to several persons,

without whom this dissertation could not have been completed. My achievements,

great or little, were possible through their participation. I will always be indebted to

my advisor, Lionel M. Ni. He has been my mentor, my colleague, and my friend. His

very positive influence on my personal and technical development will carry forward

into my future endeavors.

I am very grateful to the other members of my dissertation committee: Herman

D. Hughes, Abdol Esfahanian, and Raoul D. LePage, for their valuable comments,

help, encouragement, and friendship. I would also like to thank all my colleagues and

friends who made my stay at Michigan State University enjoyable.

A person cannot accomplish anything without the help and understanding of

family members. I thank my parents, brother, and sisters for their contiguous en-

couragement, support, patience, and love. I appreciate my host family, Ows, for their

help, love, and friendship throughout the course of my master and doctorate work. I

proudly share this accomplishment with them all.

Last, but not least, my very special thanks go to my wife Ya—Ping and her family

for sustaining me with their everlasting love and understanding.

vi

TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xi

1 Introduction 1

1.1 Wormhole Switching 4

1.2 Multistage Interconnection Networks 5

1.3 Motivation and Problem Definition 5

1.4 Performance Metrics 13

1.5 Objectives and Thesis Outline 14

2 Multi-Address Encoding 18

2.1 Header Encoding Design Considerations 19

2.2 Multi-Address Encoding Schemes 21

2.2.1 All-Destination Encoding 21

2.2.2 Bit String Encoding 22

2.2.3 Multiple Region Broadcast..................... 23

2.2.4 Multiple Region Stride 25

2.2.5 Multiple Region Mask 27

2.2.6 Multiple Region Bit String 28

2.3 Multi—Address Decoding 29

2.3.1 All Destination Decoding 31

2.3.2 Bit String Decoding 33

2.3.3 Multiple Region Broadcast Decoding 34

2.3.4 Multiple Region Stride Decoding 35

2.3.5 Multiple Region Mask Decoding 37

2.3.6 Multiple Region Bit String Decoding 37

2.4 Summary 39

3 Multistage Interconnection Networks 40

3.1 Switches 41

3.2 Network Topology 42

3.3 Node Architecture 45

3.4 Decoding in Multistage Interconnection Networks 45

3.4.1 All Destination Decoding 49

vii

3.4.2 Bit String Decoding 51

3.4.3 Multiple Region Broadcast Decoding 53

3.4.4 Multiple Region Stride Decoding 54

3.4.5 Multiple Region Mask Decoding 56

3.4.6 Multiple Region Bit String Decoding 57

3.5 Performance of Multi-Address Encoding and Decoding on Multistage

Interconnection Networks 59

3.6 Summary 64

Hardware Multicast Wormhole-Switched 66

4.1 Implementation of Multi-head Worms 67

4.2 The Synchronous Multi-head Worm 73

4.3 Multi-address Encoding 78

4.4 Performance and Comparison 82

4.5 Summary 88

Network Partitionability and Traffic Localization 89

5.1 Influence of Traffic Localization 90

5.2 Definition of Different Cubes 94

5.3 Contention Free and Channel Balanced Partition 96

5.4 Non Contention-Free Partition 102

5.5 Modification of Baseline and Butterfly Networks 105

5.5.1 Modification of a Baseline Network 106

5.5.2 Modification of a Butterfly Network 108

5.6 Performance Evaluation 111

5.7 Summary 115

Extra Stage Multistage Interconnection Networks 117

6.1 MINs with Extra Stages 119

6.1.1 Interstage Connection Patterns 119

6.2 Structural Equivalence of different Delta Networks 121

6.2.1 Design of Extra-Stage MINs 121

6.2.2 Design Choices 124

6.3 Multicast in Extra-Stage MIN 126

6.3.1 Alternate Routing Styles in Extra-Stage MINs 127

6.3.2 Distributed Routing and Multicast Implementation 128

6.3.3 Number of Multicast Trees: Upper Bound 130

6.3.4 Multicast Tree Selection Criteria 131

6.3.5 Traffic Optimal Multicast Trees 132

6.4 Multicast Algorithm 134

6.4.1 Latest Branch Multicast Algorithm 135

6.4.2 Optimality Proof and Complexity 137

6.4.3 Other Sub-Optimal Multicast Heuristics 138

6.5 Performance 142

6.5.1 Simulation Description 142

viii

6.5.2 Dimension Patterns and Output Parameters 143

6.5.3 Plots and Observations 144

6.6 Summary 147

7 Software-based Multicast 149

7.1 Issues in Multicast Communication 149

7.2 Multicast Algorithm 1.53

7.3 Non-Optimal Multicast in Baseline and Butterfly Networks 157

7.4 The C-min Algorithm 159

7.5 Performance Evaluation 163

7.6 Summary 167

8 Related Work 169

8.1 MIN-based ATM Switches 171

8.2 Hardware Multicast 177

8.2.1 Path-based Multicast........................ 177

8.2 .2 Trip-Based Multicast 179

8. 2.3 A Multidestination Worm Conforming to Base Routing Schemes 180

8. 2.4 Synchronous Recener Initiated Multicast 181

8.3 Software Multicast 182

8.4 Summary 185

9 Conclusions and Future Work 187

9.1 Research Contributions 187

9.2 Directions for Future Research 190

BIBLIOGRAPHY 192

ix

3.1

6.1

LIST or TABLES

Number of flits in a header based on various multi-address encoding

schemes. A header consists of a counter and addresses.

Patterns of this study

1.1

1.2

1.3

1.4

1.5

1.6

2.1

9 9

2.3

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

LIST or FIGURES

Broadcast 100 integers from process 0 to every process in the group. . . .

The framework

Path—based hardware multicast.........................

Tree-based hardware multicast.

An asynchronous multicast tree........................

A synchronous multicast tree.

The message header format of six address encoding schemes........

Single region broadcast and single region stride, where the source node is

0 and the destination sets are {4, 5, 6} and {1, 3, 5}, respectively. . .

Multicast to the same row and column in (a) 2D mesh and (b) linear array

architectures.

(a) A generic switch/router with four input/output ports, and the message

is forwarded via both output ports 1 and 3. (b) The receiving of

a duplicated message when the header is not handled properly and

alternate routing paths are allowed....................

All destination decoding algorithm......................

An example of all-destination decoding....................

Buffered bit string decoding algorithm....................

An example of buffered bit string decoding.

An example of hierarchical bit string decoding.

Multiple region broadcast decoding algorithm................

An example of multiple region broadcast decoding.

An example of multiple region stride decoding................

An example of multiple region mask decoding................

Multiple region bit string decoding algorithm.

An example of multiple region bit string decoding.

A generic MIN structure with N = k" input/output ports and n stages.

Four 16—node MINs built with 2 x 2 switches.

A 16 x 16 cube network built with 2 x 2 switches..............

A duplicated receiving when there are alternative paths, in an extra stage

MIN, between source and destination nodes...............

All address decoding algorithm.

An example of all-destination decoding....................

The algorithm of bit string decoding schemes for MIN.

An example of buffered bit string decoding.

xi

{
D
O
O
O
O
‘
J
W
I
Q

[
\
9

.
—
o

26

29

32

32

33

34

34

35

36

36

37

38

41

46

48

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

5.1

5.4

5.5

5.6

xii

An example of hierarchical bit string decoding.

Multiple region broadcast decoding algorithm................

An example of multiple region broadcast decoding.

An example of multiple region stride decoding................

Define a subcube in a MIN.

An example of multiple region mask decoding................

Multiple region bit string decoding algorithm for MIN.

An example of multiple region bit string decoding.

The length of header and reduction rate on different destination patterns

vs different multi-address encoding/decoding schemes..........

An example of deadlock for a. path-based multicast on a 16—1‘10de multistage

cube network................................

An example to establish a wormhole—switched multicast tree, where the

shadow box represents the header flit and white box stands for data flits.

Establishment of an asynchronous multi-head worm with network con-

tention.

An example of a deadlock situation with two multi-head worms, where the

bold line represents the multi-head worm To and the dotted line stands

for T6.

Establishment of a synchronous multi-head worm with network contention.

Two multi-head worms requesting common channels to achieve destination

sets may cause deadlock or starvation.

A deadlock example with all-destination encoding/decoding scheme with

3 synchronous multi-head worms, where the destination information

carried by a flit is numbered within the box.

Comparison among hardware and software implementations.

Latency comparison of different switch sizes and different number of des-

tinations on a cube network........................

Comparison on a butterfly network with different sized switches and a

different number of destinations......................

Latency comparison of the different number of nodes in each cluster.

Comparison between the region broadcast and pseudo all-destination en-

coding schemes...............................

Average latency and associated system utilization of a blocking multicast

message on a 64-node cube network.

Three different processor clusters, 0:172:17, 10.121: or 2X, and 113:1.

A 16-node cube network based on 4 x 4 switches is partitioned into four

contention-free and channel-balanced binary cube clusters, 170.1317, 0111?,

11x0 and llrl.

An 8—node cube network and an 8-node omega network are partitioned

into three contention-free and channel-balanced binary cube clusters.

A 16—node baseline network is partitioned into different binary clusters. .

A 16—node butterfly network is partitioned into different binary clusters.

G
I
U
I
O
I
U
I
O
T

0
3
0
1
0
1
4
3
1
9
.
?

81

84

85

86

86

101

103

104

xiii

5.7 An example to partition a 16—node modified baseline network into

contention-free and channel-balanced disjoint k-ary cubes.

5.8 An example to partition modified butterfly network into contention—free

and channel-balanced disjoint k-ary cubes.

5.9 Average latency of a blocking multicast message with various intertask

contention..................................

5.10 Average throughput in cube network with average 64—flit messages.

5.11 Average latency in cube network of non-blocking message with average

64—flit length.

5.12 Average latency in cube network of non—blocking message with multiple

sources.

6.1 A generic MIN structure with N : 2" input/output ports and h stages,

where each 2 x 2 switch has four connectivity choices..........

6.2 Structural equivalence between (a) PS-MIN(16) and CU-MIN(16) and (b)

PS-ESMIN(16:5) and CU-ESMIN(16:1,3,2,1,0)

6.3 An example of the inadequacy of the traditional routing approach (source

EB destination): A source node 1 to destination node 2 route does not

lead to the right destination........................

6.4 The four optimal multicast trees in an ESMIN(8:1,2,1,2,0)

6.5 The eight optimal multicast trees in an ESMIN(8:1,1,2,2,0)

6.6 Latest-Branch multicast algorithm illustration: a) C l-

ESMIN(16:1,2,3,3,1,1,0), b) Construction of the CU-ESMIN1 by

seeking the rightmost occurrence of each dimension and marking

the remaining stages as ‘horizontal.’ Horizontal stages merely

carry-forward the data. c) Example multicast in the CU-ESMIN‘. . .

112

113

114

115

128

134

134

136

6.7 An example of blocking in multicast tree construction by the RB algorithm.141

6.8 The number of channels used in the first branch algorithm.........

6.9 The number of channels used in the latest branch algorithm........

6.10 The number of channels used in the random mapping algorithm......

6.11 The probability of blocking in random branch algorithm.

6.12 The number of channels used in three non-blocking algorithms.

7.1 An example of deadlock in single region broadcast.

7.2 Unicast-based software multicast trees

7.3 The C-min algorithm

7.4 An example of software multicast tree implemented by C-min algorithm.

7.5 The latency in blocking multicasts.

7.6 The latency of C-min algorithm on various networks and various sized

switches...................................

7.7 The latency of various algorithms on a cube network constructed by 4 X 4

switches...................................

144

145

145

147

160

161

164

166

167

7.8 The throughput of various algorithms on cube networks with 4 X 4 switches.168

8.1 Switch fabric. 172

9
0
9
0
9
0
9
0

O
O
~
J
O
E
C
J
1

xiv

A 16 X 16 copy network............................ 173

An example of synchronous region broadcast. 176

An example of a path-based multicast in a 2-D mesh. The lower pair of

numbers is the absolute address of a node and the upper number is the

relative address of the same node based on a Hamiltonian path. . . . 178

An example of a trip-based multicast..................... 180

Examples of a multidestination worm conforming to base routing schemes. 181

An example of a U-min multicast....................... 183

An example of two multicasts based on U—min and C-min algorithms. . . 185

CHAPTER 1

Introduction

Efficient data communication among processor nodes is critical to the performance

of message-based scalable parallel computers (SPCS). Generally data communication

can be classified into point-to—point communication and collective communication [1]

While point-to—point communication deals with the basic send and receive operations

between two nodes, collective communication deals with communication that involves

a group of processes which form a process group. Multiple applications may space-

share an SPC in a way that processor nodes in the system can be partitioned into

several disjoint subsets, namely processor clusters or clusters, each of which is dedi—

cated to a distinct application. Multiple processes may time-share a processor node

and multiple process groups may exist in a cluster. Each process group includes a

subset of all processes in the cluster. As a result, a system—level multicast service, in

which the same message is delivered from a source node to an arbitrary number of

destination nodes, is fundamental in supporting collective communication primitives

including the application—level broadcast, reduction, and barrier synchronization [2].

.2

Multicast communication is also demanded in high speed networks, such as ATM

switches, for various network applications [3, 4] including multimedia applications

(as, [5])

For example, the format of the group broadcast in MP1 is specified as follows:

MPI.Bcast(bufi'er, count, datatype, root, comm)

The parameters buffer, count, datatype, root, and comm represent the data buffer,

number of data, data type, source process, and communicator, respectively. The com—

municator is used to distinguish different process groups since a process can join more

than one process group. The message is delivered to every process which owns the

specified communicator. Figure 1.1 gives an example that source process 0 forwards

an array of 100 integers to all processes in the process group specified by comm. Note

that this example only shows partial codes. Some of the variables, such as comm,

must have been assigned appropriate values before these codes.

MP I-Comm comm;

int array[100];

int root = 0;

MPLBcast (array, 100, MPLINT, root, comm);

Figure 1.1: Broadcast 100 integers from process 0 to every process in the group.

As indicated in [6], lots of applications require multicast communication. As the

scale of application increases, communication becomes a bottleneck and degrades the

overall performance [7].

The relationship between different applications, high level parallel languages, com-

munication packages, ATM adaptor layer and networks is shown in Figure 1.2. The

3

message passing interface (MP1) explicitly supports application-level broadcast as

well as multicast [1] while High Performance Fortran (HPF) supports these functions

implicitly [8]. Both of them rely on the system to provide efficient multicast commu-

nication. The interconnection network for these applications can be either a special

purpose network or an asynchronous transfer mode (ATM) network.

Teleconferencing, multimedia, and interactive television are some newly emerging

and natural applications for multicast. communication. As long as there are more than

two parties communicating in a teleconference, multicast communication is required.

Although the source may send multiple copies of the message individually (one for

each party), the scalability of such an approach is limited by the bandwidth, and the

latency among different parties may become intolerable. Efficient multicast support

becomes a critical issue for the success of these applications.

Parallel Processing Multimedia Application

Teleconferencing domain

I

’

a

High Performance FORTRAN _ Application

‘ ‘ ‘ ‘ ‘ “ ' ‘ - j """""" ATM Adapnon Layer ,

Message Passmg Interface interface

Software

Multicast

[Hardware Unicast Hardware Multicast J

 Network

Figure 1.2: The framework

4

AS shown in Figure 1.2, teleconferencing, multimedia and interactive TV are ba-

sically based on the ATM network. The current knowledge of multicast support of

ATM switches is still limited. For example, both the Fore Systems ATM switch and

the SynOptics ATMX switch support multicast via high speed buses [9, 10].

The objective for this work is to support efficient multicast communication for all

applications on top of a MIN. It is certainly network topology dependent. In this

thesis, we will concentrate our effort in wormhole—switched unidirectional MINs.

1 .1 Wormhole Switching

Switching methods greatly affect network latency. Wormhole switching [11], which

has been adopted in almost all existing direct networks, is also being used in mul—

tistage networks. In wormhole switching, a message consists of a sequence of flow

control digits, or flits. The header flit(s) of the message governs the route, and the

remaining flits follow in a pipeline fashion. If the header flit(s) encounters a busy

channel, other flits will hold and wait. This property makes wormhole switching sus-

ceptible to deadlock. As a result, deadlock avoidance is a critical issue in wormhole-

switched networks. Because of its low network latency and the small amount of ded-

icated buffer space required at each node, wormhole switching has become the most

promising switching technology and will be the only switching method considered in

this thesis.

A message is divided into small packets, called cell, in the ATM network. The

propagation of a cell within a switch is similar to wormhole switching [12]. Thus, the

5

proposed model could be applied to ATM switching with minor modifications.

1.2 Multistage Interconnection Networks

Multistage interconnection networks (MINS) are a popular class of interconnection

architecture for constructing SPCS, such as the BBN (JP-1000 [13] and TC—2000 [14],

IBM SP-1[15] and SP-2, TMC CM—5 [16], Meiko CS-2 [17], and NEC Cenju-3 [18], as

well as high speed networks, such as the SynOptics ATMX [19] and DEC GIGAswitch

[20]. In such systems, processor nodes are interconnected though a MIN, a class

of indirect networks. Each processor node has its own processor(s), local memory,

and other supporting devices. As the number of nodes in the system increases, the

total communication bandwidth, memory bandwidth, and processing capability of the

system scales up as well. MINS can be further classified as unidirectional MINS and

bidirectional MINS [21]. As indicated in [21], bidirectional MINS are essentially a fat

tree, such as the TMC CM—5, IBM SP—l, and Meiko CS-2. This thesis concentrates

on those unidirectional MINS, such as the NEC Cenju—3 [18] and the BBN TC-2000

[14].

1.3 Motivation and Problem Definition

Since the multicast communication service is the primitive basis for increasing per-

formance of parallel processing applications and newly emerged applications, several

research efforts and works have been done on direct networks, such as 2-D mesh

6

and hypercube, but very little in unidirectional wormhole-switched MINS. Basically,

there are two different approaches for providing multicast services: the hardware

implementation and the software implementation. No matter what topology a net-

work employs, a multicast message header must carry all destination addresses so

that routers can make appropriate routing decisions. The header information is an

overhead to the system and should be minimized in order to reduce communication

latency and to increase effective network bandwidth.

Multi—Address Encoding and Decoding

The multiple address (multi-address) encoding and decoding is overlooked or ignored

by most researchers. The all—destination encoding scheme, which puts all destination

addresses in the header, is the most intuitive approach and the one used by most

researchers when they mention this issue [22 . Basically, such a scheme is fine when

the number of destinations is small; however, when the number of destinations in-

creases, the overhead of the header increases. Few other works have used the single

region broadcast or single region mask which forces their multicast communication

to be limited in a single contiguous region, e.g.,the NEC Cenju—3, or in a single sub—

cube, e.g., the nCUBE-2, respectively. To reduce the overhead of multi-address and

eliminate such restrictions becomes the first challenge to us. A good multi-address

encoding scheme should consider how to minimize the message header length over-

head, how to reduce the header processing time (or routing decision making time),

and how to support cut—through switching.

\
]

Hardware Approach

There are two different hardware approaches to support multicast: the path—based

and the tree-based. As Shown in Figure 1.3 and 1.4, a path-based multicast is basi—

cally a copy—and-forward technology, while the tree—based multicast is a replicate-and-

forward technology. In a path-based approach, the router will replicate an incoming

[destl] [destZ]

17 16 15 14 13 12 11 10

M

.e—4 5 6 7 8 9

3 [dest3]

1 1

——-1 I-—-+ 1<--I] 2

1 I

[destS]

Figure 1.3: Path-based hardware multicast.

flit and forward one copy to the processor if the process is one of the destination while

sending the other copy to the outgoing channel as shown in Figure 1.3. As shown in

this figure, a path is established from the source node to all destinations in a certain

order. Every destination is visited once and only once. The path-based approach

is more suitable for a direct network since the router is connected to the processor

directly. In a unidirectional MIN, the distance between any source and destination

pair is constant. The most serious problem is that deadlocks become possible due to

a self-blocking property.

3 network X’ s‘ g

:

I

source ‘ 4

Figure 1.4: Tree—based hardware multicast.

The router in a tree-based network may replicate the incoming flits and then

forwards them to multiple outgoing ports as shown in Figure 1.4. Intuitively, such

an approach may cause deadlock if there are multiple multicast trees. Some restric-

tions must be applied to avoid deadlock when multiple multicast trees are allowed

simultaneously. Such restrictions depend on the underlying network topology.

..

network

B

i 2 B

I ~ - -

3

B 2

stage 5 I s 2 s 3

Figure 1.5: An asynchronous multicast tree.

Because multiple branches exist in a tree-based multicast, two different approaches

9

may be used when some branches are blocked. A switch in the asynchronous method

forwards its flits independently as shown in Figure 1.5. As long as all associated

switches in the next stage are ready to receive the next flit, the switch forwards the

flit residing in its buffer. For example, flit 1 on the top switch at stage 33 is forwarded

to stage 34 since those two associated switches in stage 34 are ready. Flit 2 in the

top switch at stage 32 is blocked since not all three associated switches are ready.

A buffer is left empty in a switch if the next flit is blocked and the previous flit is

forwarded. Such an empty buffer is named a wormhole bubble and marked by B in

Figure 1.5.

1 network

I” I 7 ‘ ‘ i
; ’ L-.-
e \ :

...

Figure 1.6: A synchronous multicast tree.

On the contrary, the synchronous multicast requires headers of all branches to be

forwarded simultaneously. While any branch is blocked, all branches stay in current

status as shown in Figure 1.6. In this figure, the fourth switch at stage 34 is used

by some other communication. The third switch at stage 33 is unable to forward

flit 1. Thus, it sends the condition back to the source node and the source node

10

forces every branch to stop forwarding. A wire-AND or wire—OR connection may be

used to implement the control circuit to avoid long latency caused by the condition

checking. Obviously, such a switch would be more complicated than the switch used

in an asynchronous multi—head worm. It offers a potential solution for deadlock—free

multicasts and is adapted by the nCUBE—2 [23].

Both a synchronous multi-head worm and an asynchronous multi-head worm have

their own problems. To avoid deadlock in an asynchronous multi-head worm is very

difficult, if not impossible. To restrict one multicast at a time is a possible solution

but a high Speed bus may offer the same performance. To enlarge the buffer within

each switch is another solution if the buffer is large enough. Such a solution makes

the network become a virtual cut-through network instead of a wormhole-switched

network. Avoiding deadlock for multiple synchronous multi—head worms seems to be

easier than for the asynchronous one, but it is not as easy as we think. For exam—

ple, the nCUBE—2 has a synchronous multi-head worm but is forced to disable the

hardware multicast due to potential deadlock. The NEC Cenju-3 is another system

which supports the hardware multicast. Nonetheless, deadlock is still possible when

multiple multicasts are allowed due to its asynchronous multi-head worm. Conse-

quently, to provide hardware multicast capability without potential deadlock and/or

starvation is one of the objectives of this work.

11

Software Approach

In systems which do not support hardware multicast, we have to resort to software

approaches to support efficient multicast, referred to as software multicast or unicast-

based multicast. Traditional approaches use separate addressing in which the source

node sends the message to one destination at a time. As the number of destinations

increases, separate addressing may require excessive time because many systems allow

a local processor to send only one or a few messages at a time. An alternative

approach is a multicast tree1 in which the source sends the message to a subset of

the destinations. Each recipient of the message forwards it to some subset of the

destination that has not yet received it. Which type of multicast trees to use depends

on the switching strategy and the unicast routing algorithm. An efficient multicast

tree involves no local processors other than the source and destination processors,

exploits the distance—insensitivity of wormhole switching, and is of minimum height,

specifically, height [log2(m+ 1)] for m destination nodes. Another key requirement is

that there be no channel contention among the constituent messages of the multicast.

That is, the unicast messages involved should not simultaneously require the same

channeL

1The software multicast tree is different from hardware multicast trees which are based on cut-

through switching. In a software multicast tree, each intermediate node has to receive the complete

message before forwarding to other nodes.

12

Multicast Communication in MINS

Multicast communication has been extensively studied for distributed—memory multi—

computers based in direct network architectures, but little research has been done in

indirect networks, especially MIN—class topologies. There are several characteristics

which distinguish a MIN from other network architecture such as unique length be—

tween any (source, destination) pair, and 0(N log N) hardware complexity, etc.Since

those multicast approaches proposed for direct networks are not suitable for MINS,

this thesis concentrates on multicast communication in MIN-based networks.

A regular MIN with N inputs and logkN stages, where k is the number of in—

put/output of a switch, is a unique—path network. With such property, deadlock

becomes possible if multicast trees share more than two channels. The multicast ca-

pability in current systems is provided by either the unicast-based (software—based)

approach or the hardware approach with excessive hardware and some limitations in

order to avoid deadlock. Both approaches suffer long latency, inefficiency, or cost.

Even worse, some of them are not deadlock-free. A general multicast algorithm to

avoid these drawbacks and guarantee deadlock—free system is the major focus of this

thesis.

A regular MIN is a unique—path network; hence, the multicast tree is also unique

unless some variants of the MIN topology are considered. One such design extension,

among a few others, is to consider a MIN with extra stages. The idea is to attach a few

extra stages to the regular n-stage MIN. The extra stages bring forth the flexibilities

in multicast paths and the difficulties. To find all traffic-optimal multicast trees in

13

an ESMIN becomes an NP problem.

1 .4 Performance Metrics

An important metric used to evaluate a network is its communication latency, which

is the sum of three component values: start-up latency, network latency, and block-

ing time [24]. The start-up latency refers to the time required for message fram-

ing/unframing, memory/buffer copying, validation, and so on, at both source and

destination nodes. The startup latency is mainly dependent on the design of system

software within the nodes and the interface between nodes and routers. Start—up

latency can be further classified into sending latency, the software latency at source

node, and receiving latency, the software latency at destination node. The network

latency equals the elapsed time after the head of a message has entered the network

at the source until the tail of the packet emerges from the network at the destination.

Given a source and destination node, the startup and network latencies are static

values, frequently used to characterize contention-free networks. The blocking time

includes all possible delays encountered during the lifetime of a message. These delays

are mainly due to conflicts over the use of shared resources, such as busy channels

and filled buffers. Blocking time reflects the dynamic behavior of the network due to

the passing of multiple messages and may be high if the network traffic is heavy or

unevenly distributed. In this dissertation, multicast latency is used to measure mul-

ticast performance. The multicast latency refers to the time interval from when the

source processor begins to send the first copy of the message until the last destination

14

processor has received the message.

1.5 Objectives and Thesis Outline

The main objective of this research is to establish efficient multicast communications

in unidirectional wormhole-Switched MINS. To support efficient multicast communi-

cation, the header overhead of the multicast message should be minimized and ex-

ternal network contention among different applications should be eliminated. These

objectives and the thesis outline are discussed in the following.

In Chapter 2, we discuss the issue to shorten the header overhead by investigating

different multi-address encoding and decoding schemes. Unlike a unicast message, the

header of a multicast message must carry multiple destination information. Because of

that, the length of a header varies with the number of destinations, the distribution of

destinations, and the multi—address encoding/decoding schemes. The consideration

of such a header as well as six multi-address encoding and decoding schemes are

addressed in this chapter for general network topology. As the scale of networks

increases and the demand of multicast communication increases, the overhead of

message header becomes critical, which implies that multi-address encoding becomes

critical. Although the proposed multi-address encoding and decoding schemes can

be applied to networks with different switching techniques, such as circuit switching,

store-and-forward switching, and cell relay, the emphasis of this thesis will be in the

wormhole-switched technique. Depending on characteristics of a network topology,

these multi-address encoding and decoding schemes may be further optimized.

10

In Chapter 3, we brief review the different interconnection patterns as well as

associated network topologies of MINS. Furthermore, the optimization of the multi-

address encoding schemes and the associated decoding algorithm in a switch for each

encoding scheme in Mle are also addressed in this chapter. Performance evaluation

of different multi-address encoding and decoding schemes is given based on simula-

tions.

In Chapter 4, two different tree-based hardware multi-head worm implementa-

tions are studied — the asynchronous and synchronous. The asynchronous multi-head

worm allows that each branch forwards independently while the synchronous multi-

head worm insists that all branches forward synchronously. Unfortunately, both im-

plementations are not deadlock-free unless certain rules are applied. Hence, current

hardware implementations exhibit either undesirable properties or are restricted in

their use. A deadlock-free and starvation—free hardware implementation of multiple

synchronous multi-head worms is presented. The difficulty to the implementation of

deadlock—free multiple asynchronous multi-head worms is also shown in this chapter.

Unlike the unicast message whose header has a fixed size, the size of a multicast

message header depends on the number of destinations, the distribution of destina-

tions and the encoding scheme. Since a single flit may not be able to carry all destina-

tion information, a multi-head worm may have different distances of branches toward

different destinations. Such latency may cause deadlock of synchronous multi—head

worms. We address this issue and propose a pseudo multi-address encoding scheme

to eliminate the potential deadlock.

In Chapter 5, the network partitionability of different delta class networks is ex—

16

amined and performance results of various allocation schemes is given. By exploiting

the locality of processor allocation, we show that the known topologically equivalent

delta-class MINS have different capabilities in supporting hardware and software mul—

ticasts. Since the internal contention is unavoidable unless doing one multicast at a

time, we concentrate on eliminating the external contention. A binary cube network

partitioning scheme is studied and shown to be external contention—free in both cube

and omega MINS. On the contrary, we also show that the baseline and butterfly

MINS may not be partitioned into contention-free and channel—balanced subcubes.

Two connection patterns are studied to modify baseline and butterfly MINS. Both

modified baseline and butterfly MINS have the same partitionability as cube and

omega MINS.

In Chapter 6, we consider the multicast problem for various MIN classes of topolo-

gies. Since the multicast problem for a regular MIN has a unique solution and does not

offer any flexibility, we consider a design extension, namely extra—stage .MIN(ESMIN),

as our focus. The ESMIN multicast problem is formulated and an optimality criterion

is defined. A lower bound on the number of multicast trees is estimated, and we show

that the total number of traffic—optimal multicast trees may itself be exponential.

However, a traffic—optimal multicast tree can be generated in polynomial time. We

propose an algorithm towards this. The performance of this algorithm, with respect

to three other proposed heuristics, is shown using simulation.

In Chapter 7, an efficient software—based multicast algorithm is presented and an-

alyzed for those existing message-based SPCs which do not have hardware multicast

support. One way to implement multicast in such systems is separate addressing. An

17

alternative approach is multicast tree. The focus here is on such multicast tree imple-

mentation, also known as unicast-based multicast implementation. By exploiting the

locality of processor allocation, a minimum—time unicast—based multicast algorithm is

proposed for some classes of MINS which support one—port communication.

In Chapter 8, we give an overview of related work. Since lots of research has de-

voted to multicast on different network topologies and different switching techniques,

we concentrate on the work related to the multicast in MIN-based ATM switches

as well as the hardware multicast and the software multicast in wormhole—switched

networks. The concluding remarks as well as some possible future research directions

are discussed in Chapter 9.

CHAPTER 2

Multi-Address Encoding

No matter what kind of topology a network is, a message header for multicast com-

munication must carry the destination set information needed for routers/switches

to make appropriate routing decisions. In some networks, such a header is needed in

a sender-initiated control message in order to establish a multicast circuit; while in

some other networks, such a header is used in all data messages. Nevertheless, the

header information is an overhead to the system and should be minimized in order

to reduce communication latency and to increase effective network bandwidth.

Basically, a multicast message header carries multiple destination addresses

(multi-address) information. A destination address can be either a physical address

or a relative address. A relative address is usually used to represent the relative loca-

tion to the source address. Each address may be further represented by a number of

dimensions. For example, in a 2D mesh network, each address may have two dimen-

sions —- one for each dimension. In this work, we don’t further distinguish different

types of addresses. Unless otherwise specified, an address refers to all details of the

18

19

address in our work.

2.1 Header Encoding Design Considerations

Each multicast message header must have a number of flits to carry the necessary

routing information, where each ’flit is a flow control unit. It could be an address or a

region (to be discussed later) depending on the encoding scheme. The total number

of flits or header length is usually not only dependent on the number of destinations

but also on the selected multi-address encoding scheme. The function of switches is

taking a message from an input channel, making a routing decision, and forwarding

(with possibly replicating) the message to one or more output channels. A good

multi—address encoding scheme should not only shorten the message header length,

but minimize communication latency and ease routing decisions. The following header

design issues are considered.

The length of a message header can be either fixed or variable in terms of the

number of destinations. The length of a variable length header is dynamically adjusted

by switches as the message header is processed. For the fixed one, the length may be

a function of the location of switches in the network.

In cut through switching, should each switch buffer the whole message header

before making the routing decision? For a large message header, it implies a large

buffer to hold the whole message header and a longer communication latency. In

wormhole routing, a message is divided into a number of flits, and the minimum

capacity of each buffer is one flit. Since a message header may be composed of many

20

flits, it is desirable that the routing decision in each router can be made as soon

as possible to minimize the buffer requirement. Ideally, a message header can be

processed on the fly on the flit basis.

For a variable length header, the number of destination addresses (or regions to

be discussed later) is another design parameter. It may be impractical and inefficient

to use a counter to indicate the number of destinations (or regions) because the

counter flit is usually placed at the beginning of a message header. Since the value

of counters may be changed by switches if the destination address set is split into

different subsets, it will prohibit the processing of message headers on the fly by

switches. An alternative approach is to have an end-of-header (EOH) flit to indicate

the end of an address header. Some known hardware and software techniques, such

as code violation and address stuffing, may be used to implement the EOH flit.

Both tree-based multicast, in which a router is able to replicate an input message

through multiple output channels, and path-based multicast, in which a message

traverses along a certain path picked by the destination nodes along the path, may be

considered to implement multicast communication [25]. Usually, path—based multicast

is used in direct networks, such as multi—dimensional meshes, and tree-based multicast

is used in indirect (switch-based) networks, such as MINS. In both approaches, the

message header may have to be modified by those intermediate routers/switches.

21

2.2 Multi-Address Encoding Schemes

Six multi-address encoding schemes are described in this section. The message header

format of these schemes is shown in Figure 2.1.

(a) All Destination Encoding

addrl addr-z ------ addrm EOH

(b) Bit String Encoding

b e

(c) Multiple Region Broadcast Encoding

01261 02:62 """ bkiek EOH

((1) Multiple Region Stride Encoding

blzelzsl bgzegzsg ------ bk2ek:sk EOH

(e) Multiple Region Mask Encoding

1.

blzelzml [b2:e«z:'m.2 ------ bkzekmik EOH

(f) Multiple Region Bit String Encoding

I'— "—‘T __ T _

(712613.771 [9226221727 """ [blekiTk EOH .]

Figure 2.1: The message header format of six address encoding schemes.

2.2.1 All-Destination Encoding

This is an intuitive method used in [26], in which all destination addresses are carried

by the header as shown in Figure 2.1(a). Assuming that all addresses are sorted in

ascending order, the EOH flit can be all 0’s. If the only destination address is all

0’s, the second all 0’s indicates the EOH. If the routing requires that the addresses

22

be arranged in a certain order, such as path-based multicast [25], the EOH flit may

be represented by replicating the last address. However, for tree—based multicast, it

is easier to generate the same EOH flit for all replicated outgoing messages. In this

case, the EOH flit could be an unused address or use other methods. Note that if

an EOH flit takes many addresses, the flit buffer must be large enough to hold the

EOH flit. Clearly, all-destination encoding is good for a small number of irregular

addresses as its header length is proportional to the number of addresses.

2.2.2 Bit String Encoding

The major drawback of the all-destination encoding scheme is its significant header

overhead when the number of destinations is large. One way to limit the size of a

header is to have a bit string to indicate destinations, where each bit corresponds to

a destination ranged between node I) and node e as shown in Figure 2.1(b). Since

the number of nodes in a system is predefined, there is no need of an EOH field. In

some network topologies, such as MINS, the bit string length can be a function of

the number of reachable nodes from a given switch, which is still independent of the

number of destinations. Apparently, the bit string encoding scheme is inefficient when

the system is large and the number of destinations is small. However, it is flexible in

handling a large number of irregular destination addresses.

Usually, it is extremely difficult for a switch to make the routing decision on

the fly based on the incoming bit string information and to prOduce the bit string

information for each output port. Thus, a switch usually has to buffer the entire bit

23

string in order to make the routing decision and to generate output bit strings. This

is named buffered bit string. Although the buffered bit string encoding scheme allows

distributed routing, each switch requires a large flit bufler and the communication

latency is also increased.

To eliminate a large flit buffer, a hierarchical bit string may be used. This is

a source routing method in which the source node has to determine the complete

multicast tree information. In this scheme, the input message header has 1 + k flits

for a switch with k output ports. The first flit has 1: bits corresponding to k output

“1”

ports. A in a bit position indicates that the corresponding output port should

forward a copy of the message. The remaining 1: even sized flits carry bit string

information for each output port. The bit string information is recursively defined

because each bit string becomes an input to the next switch. Note that if these bit

string flits are not even sized or have less than k flits, it will be very difficult to

determine the delimiter between two adjacent flits. Obviously, the hierarchical bit

string encoding scheme can perform routing on the fly and requires a small flit buffer

in each switch. However, the header length is much longer than the buffered bit string

method.

2.2.3 Multiple Region Broadcast

In order to enforce communication locality and minimize communication interference

among processors from different process groups, processors belonging to the same

process group are usually allocated in a contiguous region, if possible. Thus the

24

multicast addresses can be confined within a region, and each region is specified by

two fields: (b:e), the beginning and ending addresses of the region, respectively. This

is referred to as region broadcast and is used in some ATM switches and the NEC

Cenju-3 [18].

(a) Single region broadcast (b) Single region stride

Eig11_f_nifi [begin[end stride

(c) Anexample of single ((1) An example of single

region b1 oadc ast region stride

“
1
0
3

0
1
-
3
)
-

Q
Q
I
Q

V
—
‘
O

~
1
0
:

w
a
s
.

c
o
m

r
—
o

“
“
1
0
3

O
b
i
-
x

“
[
0

"
‘
0

Figure 2.2: Single region broadcast and single region stride, where the source node is

0 and the destination sets are {4, 5, 6} and {1, 3, 5}, respectively.

Figure 2.2(a) shows the specification of a single region broadcast, where the be-

ginning address must be no greater than the ending address. An example is given in

Figure 2.2(b). When a message enters a switch, it buffers the complete region flit and

then directs the message to corresponding output port(s). The header is revised at

every switch where the message is replicated. For example, the incoming header at

the shadow switch is (4:6), and the outgoing headers for upper and lower ports are

(4:5) and (6:6), respectively.

However, depending on the processor allocation scheme and application program

characteristics, not all process groups can have all their nodes in a contiguous region.

25

The Single region broadcast thus cannot achieve the multicast in a single multicast

communication. Two approaches may be used. One method is to send multiple single

region broadcast messages in sequence to different disjoint regions. Another method

is to add extra hardware (e.g., the copy network used in [27, 28]) and to introduce

the concept of dummy addresses. Here, we generalize this scheme to multiple regions

by allowing multiple region specification in the header.

The multiple region broadcast, see Figure 2.1(c) for its header format, forwards

the message to every node covered by each region. The EOH flit can be specified as

a region containing an address with all 1’s followed by an address with all 0’s (i.e.,

address violation). In fact. any pair of addresses can be an EOH as long as the second

address is smaller than the first address.

Figure 2.3(a) illustrates an example of multiple region broadcast. Consider 64

nodes organized as a 2D array. For some 2D matrix applications, it may require the

source node (3,2) to send a message to all nodes in the same column and in the same

row. If the source node can also be a destination, the header for node (3,2) is (3:3,0z7;

0:7,2:2). Otherwise, the header will be (3:3,0:1; 3:3,327; 022,222; 4:7,2:2).

2.2.4 Multiple Region Stride

In some applications, a source node may wish to send a message to all odd-numbered

destinations or to all even—numbered destinations. In other words, the destination

addresses have a constant distance between two adjacent addresses. Thus, the ad-

dresses (or flit) can be specified by three parameters: (bzezs), the beginning address,

00 10 203-30] 40 50 60 70 0 8 165-24] 32 40 48 56

01 11 21, 31: 41 51 61 71 1 9 17: 25: 33 41 49 57

[62' 12’ 22132? 212' '52' -62. 72] 210' "18136334" 112' ‘56 "58]

b3l-i3 -23i'33. 43 53 63 73 .3- 11 192 27. 35 43 51 59

04 14 24E 34] 44 54 64 74 4 12 20] 28] 36 44 52 60

05 15 25: 35: 45 55 65 75 5 13 21: 29: 37 45 53 61

06 16 26: 36! 46 56 66 76 6 14 22: 30: 38 46 54 62

07 17 271 37] 47 57 67 77 7 15 231 31: 39 47 55 63
Figure 2.3: Multicast to the same row and column in (a) 2D mesh and (b) linear

array architectures.

the ending address, and the stride value. Note that for a multi—dimensional address,

each dimension may have its own stride value. This encoding scheme is referred to

as region stride multicast.

Figure 2.2(c) shows the specification of a single stride—region. Consider a stride—

region, (bzezs), where (b S e) and s is the stride value. The message is forwarded

to node {dld = b+i X s,i = 0,1,..., [(6 —- b)/s]}. Figure 2.2(d) shows an example

in which destinations are {1,3,5} and the source node is 0. The header can be

either (1:5:2) or (1:6:2). The header is also revised when the message is replicated.

For example, the incoming header is revised to (1:312) and (5:5:2) for the outgoing

messages to upper and lower ports of the shadow switch, respectively.

Similarly, this encoding scheme can be generalized to multiple region stride. The

header format is shown in Figure 2.1(d). To be consistent with the stride-region flit

specification, the EOH flit may contain three fields. Like multiple region broadcast,

an address with all 1’s followed by an address with all 0’s may be used to indicate

27

the EOH, where the third stride field is irrelevant.

Consider the same multicast example illustrated in Figure 2.3(b). If the processors

are organized in a linear order, such as the NEC Cenju-3 and the IBM SP-l, all

nodes in the same row are not in a contiguous region. The multiple region stride

encodes these destinations as (2:58z8; 24:31:1) if the source node is also a destination;

otherwise, the header is (2:18:8; 34:58:8; 24:25:1; 27:31:1).

2.2.5 Multiple Region Mask

Another regular pattern of destination addresses that typically occurs in k—ary n-

cube networks is subcube. Let (l,,_1...dldo represent a node in a k-ary n-cube,

where 0 S d,- S k. — 1 (note that this definition can be easily extended to a more

general cube network in which the radix of each dimension may be different). Any

subcube can be described by a binary mask, m, with an address, 6. The binary mask

m defines the size and dimensions of the subcube, i.e., the number of ones in m and

the location of each dimension with m,- = 1. The address 6 defines which subcube

among those subcubes, i.e., bfs where m,- = 0. This approach is used in the nCUBE-2

[23]. In a more general case, we define a subset of a subcube with three fields: (bzezm),

where b,- = 6,- when m.- = 0 and for those i’s with m,- = 1, b,- and 6,- specify the lower

and upper bounds of the subcube, respectively. The multiple region mask shown in

Fig. 2.1(c) extends this approach to allow that a message be destined for multiple

subsets of subcubes.

Consider a binary 4—cube with eight destinations {0100, 0101, 0110, 0111, 1100,

28

1101, 1110, 1111}. The multiple region mask encodes the header to (0100: 1111:1011),

which is a complete 3—cube. When the destinations are {0110, 0111, 1100, 1101, 1110},

a subset of the 3-cube is specified as (01101111021011).

2.2.6 Multiple Region Bit String

Both multiple region broadcast and multiple region stride are suitable for destinations

that can be divided into a number of clusters and with a regular address pattern

within each cluster. If the destinations are not in any regular shape, the header

encoded by previous encoding schemes may be too large (e.g., many disjoint regions).

The multiple region bit string encoding scheme shown in Figure 2.1(f) is proposed

to reduce the header overhead under such a situation. In general, a region bit-string

flit is specified as (b, e,T), where b and e (b S 6) indicate the beginning and ending

addresses, and T is a binary bit string. Each bit in T corresponds to a node within

b and e. A node is a destination if the corresponding bit is 1. Both 6 and e are

destinations and T has (e — b + 1) bits].

Consider a system with 16 nodes and the destinations are {0,1,3,4,6,12,13,15}.

With multiple region broadcast, it requires five regions. With multiple region bit

string, one possible specification is (0:6:1101101:12zl5:1101). Apparently, in multiple

region bit string, the length of each region is not fixed and is determined by the

values of b and 6. Depending on the flit buffer capacity, the system has to limit the

maximum value of e — b. The EOH flit can contain two fields — a field with all 1’s

1Since the first and last bits are always 1 in T, these two bits may be removed from T.

29

followed by one with all 0’s. Although the multiple region bit string is more flexible

and can handle addresses with irregular patterns, it may be difficult to determine the

most efficient number of regions, and the switch design may be more complicated.

2.3 Multi-Address Decoding

Consider a generic network switch/router with 1: input ports and k output ports as

shown in Figure 2.4(a) with k = 4. The interconnection of routers defines the network

topology. Each router may or may not have a local processor depending on the system

architecture. When a multicast message arrives at a router via an input port, the

router examines the header and may enable a. number of output ports depending on

the routing strategy. The message is replicated and forwarded to all enabled output

ports. A critical issue is how to define new header information for each enabled output

port. If not handled properly, the same message may be received repeatedly by the

same processor as shown in Fig. 2.4(b).

Da H I? D Da: Data

H: Header

::> nib Da H1 D ' Di) D D: Destination

{T Sr: Source

j? :4? Sp D Sp: Split

DD: Destination with

- -fi Da H2 Sr duplicated messages

Figure 2.4: (a) A generic switch/router with four input/output ports, and the message

is forwarded via both output ports 1 and 3. (b) The receiving of a duplicated message

when the header is not handled properly and alternate routing paths are allowed.

In distributed routing, if a router is able to process the input message header

30

on the fly, it will buffer one header flit, make the routing decision, and deposit new

message header flit information to a selected output port. When an address or a

region is forwarded to its associated output port, the other enabled ports will be idle

since there is no address or region to be forwarded to these output ports. Such an

idle on timing is referred to as wormhole bubble. Note that a wormhole bubble does

not necessarily imply an empty or a null flit. With self—timed design, a wormhole

bubble implies a timing delay to the next flit. However, for ease of explanation, the

wormhole bubble is represented as an individual flit in the following figures as B.

When a router replicates a message, the message header will be revised and an

output message header is generated for each enabled output port (or each replicated

message). Figure 2.4(a) shows an example replicating a message into two messages

in which the headers H1 and H2 are different. Usually, the destination address set

is divided into a number of disjoint address subsets, one for each replicated message.

This approach can avoid multiple receptions of the same message, which is especially

important if there are many alternate paths to a destination. The drawback of having

disjoint subsets is its decreased flexibility in forming the header format. However, if

the routing path is unique, those destination subsets may overlap. Since a router

usually makes its routing decision based on the first field of a region flit, it may

ignore any destination which is not reachable from its output port. This approach is

more flexible in forming the header format.

For a single region which contains a number of addresses, the region may be split

into several regions by a router. Each region is directed to an enabled output port.

It is possible that two or more disjoint regions are directed to the same output port.

31

Thus, the number of regions in the new header may be larger than the incoming one.

ere ore, acin 1e num er 0 re ions in 1e Ieat er mav no e easi) e.Th f ,pl tl h f ti l l . tbf ll

For each of the six multi-address encoding schemes, this section will describe

some generic address decoding algorithms that. may be performed by a router. Given

a header flit, say F, the routing function Route(F) will determine the output port

number to be selected to forward the message. Furthermore, we assume that if the

processor, if any, associated with a router is one of the destinations, a copy of the

message will be sent to the processor. An output port is enabled if a copy of the

message is to be forwarded through the port. At the end of message transmission, all

output ports will be disabled. These behaviors will not be further described in the

following algorithms.

2.3.1 All Destination Decoding

For each incoming flit, (1, Figure 2.5 shows the corresponding decoding algorithm.

When sending information through an enabled port, it implies that the corresponding

output channel is available; otherwise, the message transmission will be pending until

the port is available. Avoiding deadlock is another critical design issue. The solution

is dependent on the network topology and routing strategy, which is beyond the scope

of this chapter.

For example, the addresses of a message into a router are {2, 3, 5, 7, 15, B, B}

as shown in Figure 2.6, where B indicates wormhole bubble and E represents EOH.

Let the reachable nodes from port i be node i X 4 to node i X 4 + 3, where 0 S i S 3.

32

Algorithm: all-destination decoding

Input: An address d.

Output: append d to the header of the selected output port.

Procedure:

begin

if d 2' EOH then send EOH to all enabled ports; exit;

j:==R0ute(d);

send (1 to port j;

end

Figure 2.5: All destination decoding algorithm.

We further assume that there are 16 nodes in the system. The router enables port 0

and forwards address 2 when address 2 is decoded. Address 3 is forwarded to port

0. While address 5 is decoded, port 1 is enabled and address 5 is forwarded to port

1. There is a wormhole bubble on port 0. The process is repeated until the header

is split completely as shown in the figure. Port 2 is not enabled Since there is no

destination via this port.

0
0

\
l

0
‘

{
I
t

.
5

U
)

N

E B B 15 7 5 3 2

Input header I:> E B B B 7 5

2:>

3:>E s B 15

Output header

Figure 2.6: An example of all-destination decoding.

33

2.3.2 Bit String Decoding

Buffered Bit String.

A router stores the entire bit string and then detects each bit which has a 1 to enable

the corresponding output port. If there is more than one output port that can reach

the destination, the router selects exactly one port. The length of each bit string is

dependent on the corresponding port and the number of nodes reachable from that

port. The router also knows the reachable node for a given bit position. The buffered

bit string decoding algorithm is given in Figure 2.7 while an example based on the

previous example is shown in Figure 2.8.

Algorithm: buffered bit string decoding

Input: Binary bit string, T.

Output: Bit string, DJ, for each enabled output port j.

Procedure:

begin

for every bit, t,, in bit string T do

(j, k):=R0ute(i);

(7 route through port j~ bit POSit'ion k *l

dec 2: ti;

endfor

enable port j with DJ- 75 0 for all j;

end
Figure 2.7: Buffered bit string decoding algorithm.

Hierarchical Bit String Decoding.

In hierarchical bit string, the first field (1: bits) of an incoming bit string indicates

the enabling or disabling of the 18 output ports of a k-port router. The following bits

are divided into I: fields, one for each output port. The 1”" field is forwarded to the

34

15 0 0:>llOO

l000000010101100:>

Input header 1 1 0 l 0

2EI>

3 1000

Output header

Figure 2.8: An example of buffered bit string decoding.

associated router in the next stage if port i is enabled, for 0 S i S [8. Otherwise, it is

eliminated at the router. The decoding algorithm is too simple to be described here,

and the corresponding example is shown in Figure 2.9.

:> B B B l100

15 0

lOOOOOOOlOlOllOOlOll

O

 Input header
:>

2::>

3 l 0 0 0

Output header

Figure 2.9: An example of hierarchical bit string decoding.

2.3.3 Multiple Region Broadcast Decoding

As shown in Figure 2.1(c), the header in multiple region broadcast contains several

regions. All nodes covered by all regions should receive a copy of the message. Thus,

the router may have to divide a region into several sub-regions, and each sub-region is

directed through an appropriate output port. The algorithm for decoding each region

is given in Figure 2.10.

Algorithm: multiple region broadcast

Input: A region (6, 6).

Output: Send each sub—region to an output port.

Procedure:

begin

if (b, e)=EOH, send EOH to all enabled ports; exit;

while (b S e) do

(j, e'):=R0ute(b, 6);

send region (b, e') to port j;

b = e’ + 1;

end while;

end;
Figure 2.10: Multiple region broadcast decoding algorithm.

In this decoding algorithm, the router checks the beginning address of a region

and searches for the first address, 6", which cannot be reached by the same output

port. A sub-region is then identified for that output port. The process repeats until

all sub-regions have been identified. For example, consider an incoming header of

(2:5; 7:8) shown in Figure 2.11. The router splits the first region to (2:3) and (4:5) for

7 7ports 0 and 1, and the second region to (‘:) and (8:8) for ports 1 and 2, respectively.

2.3.4 Multiple Region Stride Decoding

The method to handle multiple region stride is similar to that of multiple region

broadcast. A router divides the region into several sub-regions, where each sub—

region is directed to a single output port. As indicated in Figure 2.1(d), there is an

additional field, stride, in each region to indicate the distance between two adjacent

nodes. The decoding algorithm is similar to Fig. 2.10, except replacing (b, e) and (b, e’)

36

Timing

4 3 2 1

0 E I B 32

E 8:7 I B I 5:2 2:)

Input header 1:> E 7 7 B 5 4

2 E 88

.15
Output header

Figure 2.11: An example of multiple region broadcast decoding.

by (b, e,s) and (b, e’,s), respectively. Note that the stride value is never changed.

Consider the example in Figure 2.12. The incoming header is {(1:5:2), (6:10:1)},

which indicates that nodes 1, 3, 5, 6, 7, 8, 9, and 10 are destinations. The router

:2) for ports 0 and port 1 and the secondsplits the first region to (1:322) and (5:5

region to (627:1) and (8:10zl) for ports 1 and 2, respectively.

Timing

4 3 2 1

O:> B B 223:1

l:10:6 2:511

l:> E B 1:7:6 225:5

Input header

2:> E B 1:10:6

3 E> Output header
Figure 2.12: An example of multiple region Stride decoding.

37

2.3.5 Multiple Region Mask Decoding

The method to handle multiple region mask is similar to that of multiple region

broadcast and multiple region stride. A region is divided by the router into several

sub-regions, where each sub-region is directed to an associated output port. Not only

the beginning and ending address but also the mask will be changed by the router to

avoid duplicated receiving.

An example of a binary 4-cube is given in Figure 2.13. The input header specifies

six destinations {0000, 0001, 0010, 0011, 0100, 0101}. The router forwards a copy

of the message to port 0, which defines a 2-cube with header (00002001120011), and

another copy to port 1, which defines a l-cube with header (01002010120001).

0:) E 0011:0011:0000

E 01112010120000 :>

1 E I 0001:0101:0100

25

3 [:> Output header

 Input header

Figure 2.13: An example of multiple region mask decoding.

2.3.6 Multiple Region Bit String Decoding

As shown in Figure 2.1(f), there are three fields in a region. The decoding algorithm

is also similar to that of multiple region broadcast except for the representation of

regions. The tricky part is in the partitioning of a region into sub-regions. When

a single output port can reach several non-contiguous regions, the router can mark

1111

38

those bits that correspond to unreachable nodes to 0 instead of splitting the region.

The corresponding algorithm is shown in Figure 2.14.

Algorithm: multiple region bit string

Input: A region (6, e, T).

Output: Send each sub-region to an output port.

Procedure:

begin

if (b, e, T)=EOH, send EOH to all enabled ports; exit;

while (b S e) or (T = 0) do

(j, e’, T’):=Route(b, e, T);

send region (b, e’, T’) to port j;

t, z: 0 if t,- is covered by T’;

b 2: corresponding node of the first non—zero ti;

end while;

end;
Figure 2.14: Multiple region bit string decoding algorithm.

Let an incoming header be (2:7:110101) which indicates that nodes 2, 3, 5, and 7

are destinations, as shown in Figure 2.15. The router enables port 0 since bits 0 and

1 in the input bit string are 1’s; it enables port 1 since bits 3 and 5 are 1’s.

0:> E B 11:3:2

:u E B 1012725

2Ei>

3 E> Output header

E B 1010112722

 ~

Input header

Figure 2.15: An example of multiple region bit string decoding.

39

2.4 Summary

As the scale of networks gets larger and the demand of multicast conununication gets

higher, the overhead of message header is becoming critical, which implies that multi—

address encoding is becoming critical. Several multi-address encoding and decoding

schemes have been investigated and explored in this chapter. Although the emphasis

is on wormhole routing networks, the proposed schemes can be applied to networks

with different switching techniques. Some other network topology dependent encoding

schemes are possible.

As indicated earlier, different encoding schemes have their own advantages and

disadvantages. The choice of an appropriate encoding scheme is dependent 011 many

factors, such as network topology, network size. routing strategy, processor alloca-

tion strategy, switching technique, and frequent multicast communication patterns.

A complicated system may be able to simultaneously support different encoding

schemes. In this case, another indication flit is needed to indicate which encoding

scheme is used in the associated multicast message.

In this chapter, we only address the basic concept of various multi—address encod—

ing and decoding schemes. When a scheme is implemented in a network, additional

level of header optimization is possible, depending on the corresponding network

characteristics. In the next chapter, we illustrate how to implement each encod-

ing/decoding scheme in a MIN and how to further optimize the header overhead.

CHAPTER 3

Multistage Interconnection

Networks

Multistage interconnection networks (MINS) are a popular class of interconnection

architecture for constructing scalable parallel computers (SPCs), such as the BBN

TC-2000, IBM SP—l, TMC (:7M-5, Meiko (IS-2, and NEC Cenju—3 as well as high

speed networks, such as SynOptics ATMX and DEC GIGAswitch. In such systems,

processor nodes are interconnected though a MIN, a class of indirect networks. Each

processor node has its own processor(s), local memory, and other supporting devices.

As the number of nodes in the system increases, the total communication bandwidth,

memory bandwidth, and processing capability of the system scale up as well. MINS

can be further classified as unidirectional MINS and bidirectional MINS [21]. As

indicated in [21], bidirectional MINS are essentially a fat tree, such as the TMC CM-

5, IBM SP—l, and Meiko CS-2. We concentrate our work on those unidirectional

MINS, such as the NEC Cenju-3 [18] and BBN TC-2000 [14].

40

41

The general topological structure of a MIN can be employed in a number of

varying configurations. For the sake of consistency and clarification, Figure 3.1 shows

a generic MIN structure that is of interest to us. The N—node MIN with N = k” input

ports and N output ports has n stages of k X to switches. The n stages are placed

horizontallv a art, while within each sta e there are A switches verticallv stacked.
. A .

k x k switch inter-stage connections

0 —F r-— 0

I _“ ‘——’ I

2 —I '—— 21 1

3 ——1 f—‘ 3

4 ‘_‘ '—— 4

55—: r—g
7 ' I— 7

. I I 1 I I I I l .

I I I l . I I I 1

N=kn . 1 1 O 1 1 . . 1 1 . 1 1 . N:k"

, : : - . : - m. - : : - : : ,
input : : ' : j ’ . . ' : : ' : : output

. I 1 e 1 1 e sw1tches e 1 1 e 1 1 .

ports . 1 1 O i i O . O i 1 O i i . ports

' I l . I I . . I I . l l '

l I I I ' l I I l

N-4 —" '—‘ N-4

N'3 —J| ' o o I I e . .L—— N‘3

N-Z —_1 I: : I : I_—N'2

MI '—1-- __ II __r'—N-I

Cn Gn-l Cn-l Git-2 01 C0

Figure 3.1: A generic MIN structure with N = k" input/output ports and n stages.

3.1 Switches

Switches are the basic building blocks of MINS. A k X to switch is a crossbar network

with 1: inputs and k outputs. If each input port is allowed to connect to more than one

output port, the switch is able to support a more complicated function called one-to-

many or multicast communication. Unfortunately, such design faces a critical problem

42

—— the deadlock. As long as two multicast trees share two common channels, deadlock

is possible. Limitation or extra hardware is needed to avoid potential deadlock. The

software approach provides an alternative for deadlock-free multicast. To achieve

efficient unicast—based multicast on unidirectional MINS is the target of this study.

Several network topologies are studied and specified in the following sections.

3.2 Network Topology

An N—port MIN built with k X l: switches can be represented as

cam/'10“, (.~'/t)(.',,_,(1v1 . . . (1',(Iv)c;,,(117/meow)

where G,- refers to the 1"" stage, (',- refers to the 1"“ connection, and N = 1;". There are

n stages. Each stage (1', consists of ;’\"/It' identical 1: X A? switches and thus is denoted

as CAN/k). Each connection C",- connects N right—hand side ports at stage C,- to N

left-hand side ports at stage CF, and thus is denoted as C(IIV). A connection pattern

C,- defines the topology of the one—to—one correspondence between G,_1 ports and G.-

ports, also known as permutation.

There are many ways to interconnect adjacent stages. Banyan networks are a class

of Mle with the property that there is a unique path between any pair of source

and destination [29]. An N—node (N = 1:") Delta network is a subclass of banyan

networks, which is constructed from identical 1: X k switches in n stages, where each

stage contains (N/lc) switches. A unique property of the Delta network is its self-

43

routing property [30]. Many of the known MINS, such as Omega, flip, cube, butterfly,

and baseline, belong to the class of Delta Networks [30] and have been shown to be

topologically and functionally equivalent [31]. A good survey of those MINS can be

found in [32].

This work considers three major interconnection patterns between adjacent stages:

baseline, butterfly. and perfect shuffle, which are formally defined below.

Definition 1 The ith k-arg baseline permutation (If, for 0 S i S n -— 1, is defined by

5f(;rn_1' - - ari+lr,'.r,_1 "'1‘11’0) = 22”-, - - '3',+1.r0.r,-.r,-_j - - ~11 where 0 S 1:,- S k — 1.

Definition 2 The i‘h h-a-ry butterfly per-mutation if for 0 S i S n — 1, is defined

by

,z3f(.rn_1' . - 13,111,134 - - - .r1.r0) 2 .r,,_1 -~.r,+1.r0.r,-_1 -~.r1.r, where 0 S 21',- S k — 1.

Definition 3 The per/(ct lv-shujfle connection 0 is defined by

k . . _ . . 2. . . 2, ,. .
a, (.z.,,_1.1,,_2 o--.r1.r0) _ .1,,_-2.1,,_3 ---.11.10.1,,_1 uheie 0 S .r, S L --1.

Four topologically equivalent MINS are considered in this thesis: baseline, butter—

fly, cube, and omega. Since all of them are a class of Delta network, the self-routing

property allows the routing decision to be determined by the destination address. For

a k. X k switch, there are 1: output ports. If the value of the corresponding routing

tag is i (0 S i S k — l), the corresponding packet will be forwarded via port i. For

44

an n—stage MIN, the routing tag is T = tn_1t,,_2 -- ~t1t0, where t,- controls the switch

at stage 0;.

Baseline MINS. In a baseline MIN [31], connection pattern C; is described

by the i” baseline permutation (If which is defined in Definition 1. The i” baseline

permutation puts the 0th digit to i” position and shifts every digit after and including

the 2"" digit one digit right. The perfect shuffle connection, a, is selected to be

connection pattern Cn. For a given destination (l,,_1d.,,_2 . —-do, the routing tag is

formed by having t,- = d,- for 0 S i S n — 1.

Butterfly MINS. In a butterfly MIN. connection pattern CM, is described by

the 2"" butterfly permutation 13f, for 0 S i S n — 1. As indicated in Definition 2, the

2"" butterfly permutation interchanges the 0” digit and the i’h digit of the index. 133

is selected to be connection pattern ('0. For a given destination (ln_1d,,_2 - - ~ dldo, the

routing tag is formed by having I,- : (l,,_,- for 1 S i S n — l and t0 : do.

Cube MINS. 111 a. cube MIN (or multistage cube network [32]), connection

pattern C.- is described by the 1"" butterfly permutation {if for 0 S i S n — 1. C, is

selected to be a. For a given destination (l,,_1d,,_2 - ~ - do, the routing tag is formed by

having t,- = d; for 0 S i S n — 1.

Omega Network. An omega network [33] is defined by C,- = 0‘, for l S i S n,

and C0 is identity connection. For a given destination (ln_1d,,_2 - - - do, the routing tag

is formed by having t,- = d,- for 0 S i S n — 1.

Figure 3.2 shows the connection patterns of these MINS, which have been exten-

sively studied in the past and have been adopted in many research prototype parallel

computers, such as the Illinois Cedar [34], the Purdue PASM [35], the IBM RP3 [36],

45

and the NYU Ultracomputer [37]. Some commercial parallel computers have also

adopted such networks, such as the BBN GP-IOOO (k = 4), TC-‘ZOOO (I; = 8) [l4],

Monarch (k = 8) [38], and the NEC Cenju-3 (k = 4) [18]. Both the GP-lOOO and

TC-‘ZOOO use circuit switching‘. The NEC Cenju-3 adopts wormhole switching.

3.3 Node Architecture

All nodes in the system are interconnected via a unidirectional MIN. In this paper,

it is assumed that there is exactly one pair of input channel and output channel

connecting a node to the network, resulting in so—called “one-port communication

architecture”. This assumption, which is consistent with many existing multistage

network systems, implies that the local processor must transmit (receive) messages in

sequence. For ease of explanation, all output channels of the nodes are connected to

the left—hand side of the network. and all input channels of the nodes are connected

to the right-hand side of the network (i.e., there is a wraparound connection on the

network).

3.4 Decoding in Multistage Interconnection Net-

works

This section considers multi—address decoding on multistage cube networks of which

the interconnection pattern is the butterfly permutation. An example of a 16 x 16

1With circuit switching, reply messages, such as acknowledgment, can be sent back via the same

path.

(In

III:

'11 1

Eli:

lei

f'11:

[Ill

Hit;

II): j

101*:

IEIII

11‘};

”’31

HUI

HH

46

c, o, c, 02 c2 0, c, (30 c0 c4 0,, c, 02 c, G, c, 00 Co

0000

0001 H 0001

23:? Ellf"! 1:?

2:1: 1-Il11'i'fl 3:1:
1.1-1.1114

211,11”),- 3::?
1000] 1 — 1000

:21; 115510- ~>dj: :31:
1W1!” 3:10..

1:33 “-1151,“ 3:12?
1110 H 3:1110

(a) multistage Baseline network (b) multistage butterfly network

1

1 1 1

x3311: 311,111- "III11 01:1:2111
n 111M111 11111

i... m 3:133? 1:31’11- Itggytthlrth :s
101 1010 1010 l l l l —* 1010

1011 it]: 1011 1011 l“ l‘:$l‘ l ~—> 1011

c, G, c, (32 c2 0, C, Co c0 c, o, c, (32 c, G, C, Co Co

0000 I—" I‘— 0000 0000 f“ ’—“ 3: 0000

0001 0001 0001 0001

0010 . 0010 0010 I“ 0010

0011 0011 0011 F F \ 0011

0100 ~— :[: 0100 0100 ’ ’fi ' :I: 0100

0101 r._ M 0101 0101 'F F W W 0101

0'10 m T/

0111 __1 1
1
1

1100 1100 1100 ‘IJ‘ ‘ ——> 1100

1101 . 1101 1101 ## __t->1101

1110 1110 I: 1110

. 1111
 1 1 l I 1 l 1 l

(c) multistage cube network (d) omega network

Figure 3.2: Four 16-node MINS built with ‘2 x ‘2 switches.

[11

as

171

47

(k = 2) cube network is shown in Fig. 3.3, where G,- represents the 1"“ stage and

C,- stands the ith interconnection pattern. In order to avoid drawing wrap-around

connections, nodes are shown on both sides of the network. However, the dotted circle

on the right side represents a shadow node of the associated node on the left side. The

cube MIN has been demonstrated to perform reasonably well in practice and is the

basis of the k-ary n-cube network architecture. Examples of such commercial parallel

computers include the BBN GP-IOOO (k = 4) [13] and the BBN TC-2000 (k = 8)

[14], among many other research prototypes. However, if a link becomes congested or

fails, the unique path property can easily disrupt the communication between some

input and output pairs. The reachable nodes from a switch are dependent on the

stage and the number of output ports. In general, a switch, 50‘, can reach kt“ nodes,

where k is the switch size. For example, switches 5'10 and 5'20 in Figure 3.3 can reach

4 and 8 nodes. respectively. Because of space limitation for figures, I: is assumed to

be 2 in the following study unless otherwise specified.

When there are alternative paths between the source and destination nodes, such

as extra stage MINS, the switch must handle the header carefully to avoid duplicated

receiving. Figure 3.4 gives an example of such a situation where source node 0 en-

codes its destination by multiple region stride (221022; 12133), which indicates the

destinations are nodes 1, 2, 4, 6, 7, 8, 10, and 13. The shadow switch routes the first

stride to upper port and the second stride to lower port. The following switches route

each stride to its associated destinations. Hence, nodes 4 and 10 receive two copies

of the message. Note that this situation only happens when alternative paths exist.

In Delta networks, the switch may forward the same address to all enabled output

[19.11

.111)

C4 G3 C3 C7 C2 GI C1 Co Co

000000 01 :0: 530 520 510 500 :3?

S31 521 511 501
0011 l— —.3

3:3? 532 L\\ X If 522 512x 502 :2

0110 533 523 f] \—l 513 503 —_i.'.'§5."
01 l l —*._'I.‘

:83? S34 524 514 504 :Igrf:

we \ f X 41-...
535 525 515 505

101 1 _/ —‘l.lv‘

“3? S36 A 526 516 506 :1:

“10 537 J \— 527 J 517 507 #2114."
n1163>—————~ __{p§

Figure 3.3: A 16 X 16 cube network built with 2 x 2 switches.

0 \« ——19
I ‘- x 1" “1.1 _~.‘

2 ‘- £2}

3 ——-3

4 --<35

5 ——-5

6
1236.

7 -£i>

8 2282‘»

9 9

10 in?

11 ——-n

12 -——12

13 --fl§>

14 ~——14

15 -——15

iii-.3 destination ‘11-...3' destination received duplicated message

Figure 3.4: A duplicated receiving when there are alternative paths, in an extra stage

MIN, between source and destination nodes.

49

ports since this address is only reachable by one of these output ports. An unreachable

address is used to indicate a wormhole bubble and is represented as a shadow square

in the following figures. The destination subsets may be overlapped because the

routing path is unique. Such an approach provides more flexibility in forming the

header. The reachable nodes of a switch are in ascending order according to its

output ports. In other words, a single region will not be split to multiple regions for

any single output port. Hence, a counter, counter, is used to specify the number of

regions in a multicast message rather than EOH to reduce the length of header for

such a network.

For each of the six multi—address encoding schemes. this section will describe some

address decoding algorithms that may be performed at a switch in a MIN. Given a

header flit, say F, the routing function [3011111 I“) will determine the output port

number to be selected to forward the message. If F is not reachable by the current

switch, this function returns -1. Furthermore, we assume that if the processor, if any,

associated with a. switch is one of the destinations, a copy of the message will be

sent to the processor. An output port is enabled if a copy of the message is to be

forwarded through the port. At the end of message transmission, all output ports will

be disabled. These behaviors will not. be further described in the following algorithms.

3.4.1 All Destination Decoding

Figure 3.5 gives the decoding algorithm for each incoming flit, d, which is an

address. The associated output channel must be available when sending information

50

Algorithm all—destination decoding

Input: An address d

Output: Append d to the header of all enabled output port.

Procedure:

begin

if d = EOH then send EOH to all enabled ports; exit;

/* EOH is used since counter will not decrease the length of header

in this algorithm.*/

j :2 Route(d);

if (j _>_ 0) then enable port j;

send d to all enabled port; /* d is a useful address to the message

directed to port j and is a useless address to other enabled port. */

end

Figure 3.5: All address decoding algorithm.

through an enabled port; otherwise, the message transmission will be pending until

the port is available. Avoiding deadlock is another critical design issue. The solution

is dependent on the routing strategy, and is beyond the scope of this paper.

For example. let the source node be 0 and destinations be {2, 3, 5} in an 8 X 8 MIN.

The modification of header in each switch is shown in Figure 3.6, where E indicates

EOH. Switch 520 receives the header (2,3,5,E). It enables upper output port when

it detects address 2, and it enables the lower output port when it detects address 5.

The new headers for upper port and lower port are (2,3,5,E) and (5,13), respectively.

Address 5 in the first header is a wormhole bubble and is marked as a shadow square

in the figure to indicate that it is not reachable by the first message.

Elslsjz , $155131sz :>, :>

2" Eli>mi>1£131312t :>°":>

, :> , :> :>, 3151512121
21 :> H $01 E.-

22:> :> 12 g :> 02

23 21> 13b :> 03

Figure 3.6: An example of all—destination decoding.

 {
H
fl
k

{
H
R
}

3.4.2 Bit String Decoding

Buffered Bit String Decoding

In this scheme, a switch stores the entire bit string and then detects each bit which has

a 1 to enable the corresponding output port. The length of each bit string is dependent

on the location of the switch. A switch at stage C, can reach only 10‘“ destinations.

Therefore, the bit string length is 101+] , where the first k“ bits correspond to the nodes

reachable from the first output port, the second 11'" bits indicate the second output

port, and so on. Let T = totl . . . t(k1+1_1), where t, is a single bit to indicate the jth

reachable node of the switch, be the input bit string. The buffered bit string decoding

algorithm is given in Figure 3.7. Figure 3.8 gives an example where the source node

is 0 and destinations are {2, 3, 5} in an 8 x 8 MIN.

Hierarchical Bit String Decoding

The first field (1: bits) of an incoming bit string indicates the enabling or disabling of

the k output ports of a k-port switch in the hierarchical bit string encoding/decoding

Algorithm buttered bit string decoding for a switch in stage G,-

Input: Binary bit string, T.

Output: Bit string, 0,, for each enabled output port j.

Procedure:

begin

for t’ = 0 to k — 1 do (Eg, D3) = Route(ne:rt k1 bits);

/* Here Route returns 1 to E: if the OR operation of these ki bits is 1;

otherwise E: = 0. D is a string contains these ki bits only. */

forallEg=1,where0St’Sk—1,do

enable port 3;

send D; to port (I;

endfor;

end

Figure 3.7: The algorithm of bit string decoding schemes for MIN.

20

2] 01::>3

02

22

D
i
x
/
3
0
6
0
0

{
F
$
G
U
<
R
R
3

23 03

W
/
y

0
0
,
0
1
}

0
0
0
0
0
0
6
0

 $13

Figure 3.8: An example of buffered bit string decoding.

53

scheme. The following bits are divided into 10 fields, one for each output port. A

field is forwarded to the next switch if the associated port is enabled. The decoding

algorithm is too simple to be described here, and an example where the source node

is 0 and destinations are {2, 3, 5} is shown in Figure 3.9.

001001 1001011 5 :>|[]][[]1]1[0k)]1[(fl:[}—:3 is

m WNW

:> 14>
SI]

ulna

,fi
:>l3

Figure 3.9: An example of hierarchical bit string decoding.

0]

0
0
0
0

D
J

02

:>

:>

i)

:>

3

3
03

0
0
0
0
0
0
0
3

0
0
0
0
0
0

 GG
G
G
D

 0
0

3.4.3 Multiple Region Broadcast Decoding

The header in multiple region broadcast contains several regions as given in Figure

2.1(c). Any nodes covered by all regions should receive a copy of the message. Thus,

the switch may have to divide a region into several sub-regions, and each sub-region is

directed through an appropriate output port. A region counter, counter, to indicate

the number of regions in the header is used in this scheme to reduce the length

of header. A switch saves the counter when it is enabled by the incoming header.

It decreases the counter by one when it processes one region, puts the counter in

an outgoing header when the corresponding port is newly enabled, and disables the

decoding procedure when the counter becomes 0. The algorithm to decode a region in

multiple region broadcast header is given in Figure 3.10, where the process of counter

is omitted.

Algorithm multiple region broadcast

Input: A region with the beginning address, b, and the ending address, 6

Output: Enable associated output ports and revised header

Procedure:

begin

while (0 S e) do

(j, e’) :2 Route(b,e)

send region (b, e') to port j;

b = e' + 1;

end while;

end

Figure 3.10: Multiple region broadcast decoding algorithm.

As given in the algorithm, the switch checks the beginning address of a region

and searches for the first address, 6’, which cannot be reached by the same output

port. A sub—region is then identified for that output port. The process repeats until

all sub-regions have been identified. For example, consider that source node 0 sends

a message to nodes 1, 3, 4, 5, and 6 as shown in Figure 3.11. Switch 520 directs the

first region to port 0 and splits the second regions (3:6) to (3:3) and (4:6) for ports

0 and 1, respectively. The region counter to port 1 is updated to 1. This process is

repeated in each switch, and the message is directed to all destinations as shown in

this figure.

3.4.4 Multiple Region Stride Decoding

The decoding scheme to handle multiple region stride is similar to that of multiple

region broadcast. A switch divides the region into several sub-regions, where each

111. 1

6:3 1:1 2

20

21

22

 00
0
0
0

0

S
23 0

0
0

0
0
0

S 13

$

55

3:3 1:1 2 S :>3’3 1:] 2

6:4 :> m 3:3 1

351%?
$5 5:4 1‘

:> 12 6:6 1

:>

:5 0
0
0
0
0
0
0

01

02

 S03
Figure 3.11: An example of multiple region broadcast decoding.

sub—region is directed to a single output port. As indicated in Figure 2.1(d), there is

an additional field, stride, in each region to indicate the distance between two adjacent

nodes. The decoding algorithm is similar to Fig. 3.10, except that it replaces (0,8)

and (b, e’) by (0,6,8) and (b, e’,s), respectively. Note that the stride value is never

changed.

2:72] 1

20

2:3:1 _

2:7:5 —

2]

22

S23 0
0
0
0
0
0
0

 00
0
0
0
0

0

10

ll

l2

0]

2:11] 1

2:323 1

2:5:5 l‘

2:7:7 l

0
0
0
0
0
0
0
0

 SI3 00
0
0
0

0

02

 01
/
0
0
0
0
0
l

S03
Figure 3.12: An example of multiple region stride decoding.

Consider the example in Figure 3.12 where source node 0 sends a message to all

odd nodes. Switch 520 splits the region (1:7:2) to (1:3:2) and (527:2) for ports 0 and

1, respectively. This process is repeated until the message reaches all destinations as

shown in the figure.

56

3.4.5 Multiple Region Mask Decoding

Since the cube MIN is a cube network, the multiple region mask may be applied

to it, where each stage represents a dimension. A region mask (b,m) can define a

complete subcube and a region mask (b,e,m) can specify a subset of a subcube in

such a network. Figure 3.13 shows an example of defining a subcube in a MIN. The

subcube contains nodes {4, 5, 12, 13} (or {0100, 0101, 1100, 1101]), which can be

specified by either (x10x:101) or (0100:110121001). If node 1101 is not a destination,

the first scheme requires two regions, but the second one can specify the destinations

by (0100:110021001).

C4 03 C3

OOOO—fi

 0001

02

0010

0011

G] C1

COCO

—0000

—00011

0100

0101

 x

*1 r

x\/r

0010

—'—0011

0110

0111

—0100

—0101

1000

1001

——0110

—0111

1010

1011

—1000

—— 1001

1100

1101

/\L

—— 1010

— 1011

1110 1111

a
s
:

“
$
3

..

JH
Figure 3.13: Define a subcube in a MIN.

The method to handle region mask is similar to that of multiple region broadcast

—1100

—1101
 ——1110

——1111

L
I
I

S23 03

101:5:1 IZ>S 1:> 10:3:1 1‘——* S :> 11:1 1 S

20:) 10:5:4 l :[> 10 :> 00 1

:>, :> a, :> :2.
:> 21$:> I] :> $ 01

:>, :> 501:»,
:> 22 :> 12 :> 02

:> :> :>
:> :> :> :> 00

0
0
0
0

l3:>

Figure 3.14: An example of multiple region mask decoding.

and multiple region stride. A region is divided by the switch into several sub-regions,

where each sub—region is directed to an associated output port. Not only the begin-

ning and ending address but also the mask will be changed by the switch to avoid

duplicated receiving. An example to handle region mask (001:101:101) is given in

Figure 3.14.

3.4.6 Multiple Region Bit String Decoding

There are three fields in a region as shown in Figure 2.1(f). The decoding algorithm

is also similar to that of multiple region broadcast except for the representation of

regions. Unlike the multiple region bit string specified in the previous chapter, it is

not necessary to mark off an unreachable bit to avoid duplicated receiving since each

destination is reachable by a unique path. The corresponding algorithm to decode

one region bit string, which is repeated to decode the whole header, is shown in Figure

3.15.

Figure 3.16 gives an example of multiple bit string. Source node 0 sends message

58

Algorithm multiple region bit string

Input: A region (0, e, T)

Output: Send each sub—region to an output port

Procedure:

begin

if (counter S 0) then exit;

while (I) S e) and (T # 0) do

(j, e’, T’):=Route(b, e, T);

send region (0, e’, T’) to port j;

b := corresponding node of the first non-zero t,- after node 6’;

end while;

decrease counter by one;

end
Figure 3.15: Multiple region bit string decoding algorithm for MIN.

1011:5z21 s $11321 :>s $5 E>

2:) 2031551] 2:) m “3:219 00

a, :> :>, :> 0,
:> Zl:> :> II:> :> 0] [>133

0,2,0 atom—a
:> 1 :j 02 155

0,30 0, :> a, :>
i> ID :> 3f> f> ”31>

Figure 3.16: An example of multiple region bit string decoding.

59

to nodes ‘2, 3 and 5. The header incoming to switch 5'20 is (2,5,11012). 520 splits

this region into two regions (2 3, 112) and (5, 5, 12) for port 0 and port 1, respectively.

Both regions are forwarded by switches 510 and 5'12. The first region is further split

by 501 to direct the message to nodes ‘2 and 3. The second region is forwarded to

node 5 by switch 5'02.

3.5 Performance of Multi-Address Encoding and

Decoding on Multistage Interconnection Net-

works

In this section, we evaluate the performance of the proposed schemes on different

address patterns. Such performance is dependent 011 both the number of destinations

and the distribution of destinations. Here, a 1256 x 256 cube MIN is considered. Since

an address requires 8 bits, a Hit is assumed to contain 8 bits. A region may require ‘2

or 3 flits. The destination sets of these patterns are specified as follows:

Pattern l: {1:1‘2zl, 32:50:22, 60:7521, 90:117:3}

Pattern 2: {1, 3, 6, 10, 15, ‘21, ‘28, 36, 45, 55, 64, 722, 79, 85, 90, 94, 97, 99}.

Pattern 3: node 1 to node 48.

Pattern 1 contains 48 nodes. The all—destination scheme requires 48 flits to carry

all addresses. The buffered bit string and hierarchical bit string schemes require 256

and 510 bits or 32 and 64 Hits, respectively. Twenty-eight nodes of these destinations

60

are located in two contiguous regions and others are located separately; therefore,

the multiple region broadcast requires ‘22 regions. The multiple region stride outper-

forms others since it can encode these destinations by 4 regions. The multiple region

mask encodes the first 38 destinations into 3 regions (00000001:00001100:00001111),

(00100000z00110010z00111110), and (001111100z01001011:01111111). The Hamming

distance of the last 10 destinations is no longer 1. Therefore, the multiple region

mask is unable to group them into a single region mask and encodes them into 10

regions. Hence, it has 13 regions. Since only the distance between nodes 122 and 3‘2

is larger than 16 (the length of two addresses), the multiple region bit string encodes

these destinations into ‘.2 regions, where the first region contains nodes 1 to 1‘2 and

the second region consists of all other destinations.

There are 18 destinations in the second pattern. Therefore, the all destination

scheme needs 18 flits to carry the addresses. Since there is no contiguous region

or regular stride, the multiple region broadcast takes 18 regions, where each region

has one destination; and the multiple region stride requires 9 regions, where each

region contains two destinations. These destinations form 4 ‘2-cubes, (1,3), (64,72),

(90,94) and (97,99); therefore, the multiple region mask has 14 regions. The region

bit string encodes all destinations into a single region since the distance between any

two neighboring nodes is less than the length of two addresses. It takes 15 flits, one

for the beginning address, one for the ending address and the other thirteen for the

bit string.

Pattern 3 is easily encoded and is omitted here. The length of headers of these

schemes for these three patterns is summarized in Table 3.1.

f‘. 1f

61

Table 3.1: Number of flits in a header based on various multi-address encoding

schemes. A header consists of a counter and addresses.

Encoding schemes Pattern 1 Pattern 12 Pattern 3

all-destination 49 19 49

buffered bit string 3‘2 3‘2 3'2

hierarchical bit string 64 64 64

multiple region broadcast 45 37 3

multiple region stride 13 ‘28 4

multiple region mask 40 43 4

multiple region bit string 19 14 8

A naive way to implement multicast is to send multiple unicast messages, one for

each destination. This approach has been implemented in a lot of communication

software and is named as separate addressing [39]. This approach has a fixed length

of header, one for each destination. No counter flit is needed. However, the separate

addressing requires the source node to send 1): x (1." + 1) flits, where I? is the length of

a multicast message and m is the number of destinations. The number of flits sent

by the source node for patterns 1. 22. and 3 is based on different sized messages. The

different encoding schemes are. given in Figure 3.17(a.), (c) and (e), respectively. To

compare the proposed schemes with separate addressing, the reduction rate, Bred, is

defined as one minus the ratio of the number of Hits sent in a. proposed scheme to the

number of flits sent using the separate addressing.

R 1 number of flits sent in a multi-address encoding scheme

red = _

number of flits sent in the separate addressing

Hence, a larger reduction rate, Bred, indicates a better scheme. The reduction rate

for patterns 1, 2 and 3 is shown in Figure 317(1)), (d) and (f), respectively.

3111

1 LU

Fig

360

1339
f

is

0 g .._. 3 " ~ 1

Size of message (flits) Size of message (flits)

(a) Flits sent by source node (pattern 1) (b) Reduction rate (pattern 1).

 l

Size of message (flits) ' Size of message (flits)

(c) Flits sent by source node (pattern ‘2). ((1) Reduction rate (pattern ‘2).

360 T I

70 ’ L l

. 4 16 64 2256

Size of message (flits) Size of message (flits)

(e) Flits sent by source node (pattern 3). (f) Reduction rate (pattern 3).

separate addressing @— multiple region broadcast +—

all destination 8— multip e region stride —e—-

buffered bit string —><— multiple re ion mask ~9—

hierarchical bit string 23— multiple region it string 6‘

Figure 3.17: The length of header and reduction rate on different destination patterns

vs different multi-address encoding/decoding schemes.

63

The performance of the separate addressing scheme is dependent on both the

number of destinations and the length of messages. In order to complete a multicast,

it needs to transmit the message m times where m is the number of destinations.

However, unless the message is short and the number of destinations is small, its

performance is worse than any proposed multi-address encoding/decoding scheme.

The performance gap between the separate addressing and the proposed schemes

increases as the size message increases and /or the number of destinations increases.

The performances on various multi-address encoding schemes become closer to each

other when the message size increases, which implies that the data portion of the

message comes to dominate.

It is easy to observe that there is no single multi—address encoding/decoding

scheme that can outperform all others in all destination patterns. For example, the

multiple region stride has much shorter header than others if all destinations have

a constant stride. And in this latter case, the worst multi-address scheme is the

hierarchical bit string. However, the hierarchical bit string will become better than

all-destination when, for example, there are more than 64 destinations; and multiple

region broadcast when there are more than 32 regions.

It is also easy to observe that the length of header in most multi-address encod-

ing/decoding schemes is dependent not only on the number of destinations but also

on the distribution of destinations. The all-destination encoding scheme is dependent

on the number of destinations only. However, its performance becomes worse as the

number of destinations increases. On the other hand, the buffered bit string and

hierarchical bit string are dependent on the number of nodes in a network but not

64

the number of destinations.

The multiple region stride is a superset of multiple region broadcast. Hence, the

number of regions in the multiple region stride is always less than or equal to the

number of regions in the multiple region broadcast. When the number of regions

in the multiple region stride is less than g of that in the multiple region broadcast,

the multiple region stride has a shorter header. The multiple region mask is also a

superset of multiple region broadcast since a single contiguous region in a cube MIN

can always form a subset of a subcube. However, it is not a superset of the subset of

the multiple region stride encoding scheme.

3.6 Summary

In this chapter. we give a brief review of delta class MINS followed by optimized multi-

address encoding and decoding schemes on a multistage cube network. Since the

baseline, butterfly, cube and omega MINS are topology equivalent [31], the optimized

multi-address encoding and decoding schemes may apply to baseline, butterfly, and

omega MINS directly.

The hardware multicast tree injects fewer flits into the network which implies

decreasing the load of the network as well as comnmnication latency. The reduction

rate of the network traffic becomes larger as the size of the message increases. A

multi-address encoding and decoding scheme may outperform the other schemes for

some traffic patterns. However, the performance gap decreases as the size of the

message increases. Hence, a system may choose a single multi-address encoding and

65

decoding scheme if supporting all multi-address schemes is expensive.

Since a message destined to multiple destinations will reduce the network traffic

and communication latency, the implementation of a hardware multicast tree becomes

the target of our study and is discussed in the next chapter.

[111

ml.

110

(1‘0

hast

31f?

'16”

{0121.1

unit‘s

CHAPTER 4

Hardware Multicast

Wormhole-Switched

The hardware multicast implementation offers a significant better performance than

the software approach; however, it also suffers potential deadlock due to multiple

multicasts. Two hardware multicasts have been introduced: the path-based and the

tree—based. However, we will show that tree—based hardware multicast, multi-head

worm, is more suitable for a MIN than the path-based hardware multicast, which is

more suitable for direct network in avoiding deadlock.

In order to provide efficient deadlock—free hardware multicast, two different tree-

based hardware multi-head worm implementations, asynchronous and synchronous,

are studied. The asynchronous multi-head worm allows each branch to forward in-

dependently, while the synchronous multi-head worm insists on having all branches

forward synchronously. Unfortunately, both implementations are not deadlock-free

unless certain rules are applied. Hence, current hardware implementations of mul-

66

67

ticast either exhibit some undesirable properties or are restricted in their use. To

implement deadlock-free multiple asynchronous multi-head worms is very difficult, if

not impossible. A deadlock-free and starvation—free hardware implementation sup-

porting multiple synchronous multi-head worms is presented in this chapter.

Unlike a unicast message whose header has a fixed size, the size of a multicast

message header is dependent on the number of destinations, the distribution of des-

tinations, and the encoding scheme [40, 41]. Since a single flit may not be able to

carry all destination information, a multi-head worm may have different distances

of branches toward different destinations. The difference in latency among multiple

branches may cause deadlock in synchronous multi-head worms. We address this

issue and propose a pseudo multi-address encoding scheme to eliminate the potential

deadlock.

4.1 Implementation of Multi-head Worms

The path-based hardware multicast, which was shown to easily avoid deadlock in

direct networks [225], can easily cause deadlock in banyan networks due to self blocking.

Figure 4.1 gives an example of such a situation where the source is node 0 and the

destinations are nodes 4, 8 and 9 on a 16-node multistage cube network. We further

assume that there is one buffer for each outgoing link as shown by a blank square.

A router replicates an incoming flit and then forwards one copy to the processor and

the other copy to the network. Three paths are required to complete the path-based

multicast: from node 0 to node 4, from node 4 to node 8, and from node 8 to node

68

9. However, the latter two paths will share channels between switches 324 and 314

as well as between switches 314 and 304, marked as a shadowed area. As indicated

in the figure, the first two paths, shown as bold lines in the figure, are established

completely. When the first flit heads from switch 330 to switch 524, it is blocked since

the upper buffer in switch 330 is used to store Hit 5 unless the message is very short.

Thus, the path forms a cycle due to self blocking and results in a deadlock. Due

to the unique-path routing property in banyan networks, it is impossible to avoid

deadlock unless extra stages are added or there are multiple virtual channels per

physical channel.

3°33 3'. r

3: 1/
o. ' ‘1 [—

OI '

a. if

I it

on “it. 1

0- t‘

3: \

.. J/v
‘9' J _ _/ x
m-

r‘i-‘DD —1

established path - - - blocked path shared channel

Figure 4.1: An example of deadlock for a path-based multicast on a 16-node multi-

stage cube network.

69

Without considering the potential deadlock, the hardware multicast provides sev-

eral advantages over the software implementation, such as sharing the common re—

sources, higher throughput, lower latency, less network traffic, etc. Hence, some sys-

tems restrict one multicast at a time (e.g., the control network in the TMC CM-5),

which results in low network utilization and longer delay. An implementation to elim-

inate such restriction and to guarantee a deadlock-free network is the objective of this

chapter. We concentrate our work on tree-based hardware multicast.

Establishing a multicast tree on the banyan Mle is straightforward due to the

unique path property. The multicast tree is also unique. In addition to unicast, a

switch must be capable of replicating the incoming fiit(s) and forwarding them to the

associated output port(s). Since every outgoing port can be either used (enabled) or

unused (disabled), there are (12" — 1) possible output port combinations on a k x k

switch for a multi—head worm, When a header is received, the switch enables the asso-

ciated outgoing port(s) and forwards the header to all enabled port(s). All following

fiits are forwarded to all enabled outgoing ports directly. The buffers and channels

are released after the tail fiit passes through the switch. An example to establish

a multicast tree which is initiated by node ‘2 and heading for nodes {3, 4, 5, 6, 7}

on an 8—node cube network with ‘2 x ‘2 switches is given, and the snapshots at the

first and third cycles are shown in Figure 4.2. When switch 3221 receives the header

from its upper incoming port, it replicates and forwards the header to both buffers

since destination 3 requires the upper channel and other destinations need the lower

1In the following context, ng and 15,-J- indicate the switch at stage G,- and row j. sid- is used when

there is potential confusion on i and j.

70

channel (see Figure 4.2(a)). Such a process is repeated on switches 310 and $12 in the

next cycle and then on switches 30,, 302 and 303 at the third cycle (see Fig 4.2(b)).

C3 G; C; G, C, G0 C0 C3 G; C2 G, C, G; C0 C; G; C; G, C, G, Co

0 O '—1 0 0 o

l 1 1 l 1

2 2 :1: 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 _' 3:6 6 6

7 7 __J 7 7 7

(a) The first cycle (b) The second cycle (c) The third cycle

Figure 4.2: An example to establish a wormhole-switched multicast tree, where the

shadow box represents the header flit and white box stands for data flits.

Deadlock is possible if the network allows simultaneous transmission of multiple

multicasts. Depending on the coordination mechanism of multiple branches in a tree

(or multiple heads in a multi-head worm), two different multi—head worm implemen-

tations are described below, which provide different degrees of difficulty in handling

deadlock—free multiple multicasts.

The headers of different branches in an asynchronous multi—head worm are for-

warded independently. When any branch is blocked, other branches may still be

forwarded if the required outgoing channel is available. However, every flit on the

blocked path will remain in the current switch. The buffers of the forwarding branches

may become empty if the subsequent flits are blocked.

The same example as the previous one is given in Figure 4.3 except that there

exists a unicast from node 7 to node 5. The first cycle is similar to Figure 4.2(a),

and the second cycle of multicast tree establishment is shown in Figure 4.3(a). The

branch toward nodes 4 and 5 is blocked at switch 312 since the buffer to node 5 is used

71

by the unicast. All following flits on the branch are stopped. The first data flit toward

node 3 is forwarding since it is not on the blocked path, but the one toward nodes 6

and 7 is stopped since it shares the same channel used by the blocked branch. In the

first cycle after the blocking, the header flit is forwarded to switches 30, and 303. The

data flit located at the upper buffer in switch 322 forwards to switch 310 while the

one at the lower buffer remains in the current switch. All subsequent flits are kept at

the source node since one buffer in 322 is unavailable as shown in Figure 4.3(b). The

next cycle is shown in Figure 4.3(c). The paths to nodes 3, 6 and 7 are established

but not the paths to nodes 4 and 5. Nodes 3, 6, and 7 receive the header flit; in the

subsequent cycle, node 3 will receive the first data flit but nodes 6 and 7 will not.

After that, node of these nodes will receive any flit until the unicast is done and the

paths to nodes 4 and 5 are established.

(a) The second cycle (b) The third cycle (c) The fourth cycle

C3 G2 C, G, C, G, C0 C, G; C; G, C, G, C0 C3 G2 C, G, C, G, CO

l—'l l—l

O
‘
U
I
-
b
b
J
N
—
‘
O

 \lChU
I
-
B
U
J
N
-
‘
O

\
I
O
‘
L
I
I
J
i
L
fi
N
—
‘
C

\
l
O
‘
M
b
W
N
—
‘
O

\
l
O
‘
U
l
b
b
J
N
—
‘
O

7

flit used by unicast E wormhole bubble El header flit 13 first data flit

Figure 4.3: Establishment of an asynchronous multi-head worm with network con~

tention.

The empty buffers in a multicast tree are referred to as wormhole bubbles since

they contain no data and are unusable to other transmission. Wormhole bubbles may

cause deadlock. Figure 4.4 gives an example of such a situation. Node 0 initiates

72

a multi-head worm, To, which is destined for nodes {‘2, 4, 6, 8, 10, 1‘2, 14} when a

unicast from node 4 to node 1 is on the network. Hence, the branches to nodes {‘2,

4, 6, 8} are blocked at switch 530, and the other branches are completely connected

to the associated destinations. While To is waiting for the completion of the unicast,

node 6 starts a new multi-head worm, T6, which is destined for nodes {5, 7, 13, 15}.

The branches heading to nodes 5 and 7 are established, while the branches to nodes

13 and 15 are stopped at switch 326 by To. This situation is shown in the same figure.

When the unicast is done, To will grab additional channels to reach node 2 but will

wait for T6 to release switch 812. Hence, a deadlock is formed.

C4 G3 C3 62 C2 G] Cl Go C0

_ ._ [_— O

l— l— [‘9 1

L IT L—\ [— Lr—Z
l—

L

F

r

L .
r— :0

. 1 .

L

€513 I"

E wormhole bubble buffer by unicast

header flit 1:] first data flit second data flit

Figure 4.4: An example of a deadlock situation with two multi-head worms, where

the bold line represents the multi—head worm To and the dotted line stands for T6.

It is easy to observe that establishing a deadlock-free asynchronous multi—head

worm is very difficult, if not impossible, without any restriction and extra hardware.

This is due to the fact that each branch forwards independently, and a switch can

73

not forward the next flit until all the previous flits are forwarded.

4.2 The Synchronous Multi-head Worm

Unlike the asynchronous multi-head worm, the synchronous worm has a strong coor-

dination of different branches. All headers must be forwarded synchronously. When-

ever one branch is blocked, every branch is blocked. Since there is no path on which

headers of different branches can exchange status, the information is sent backward

to the source node. The source node will then push the whole multicast tree one

flit forward if all requested buffers are free. Such coordination must be efficiently

implemented in hardware to minimize the latency. A dedicated wire is established to

the source node from a switch as soon as the switch is obtained by the multi-head

worm. Wires from different branches are connected together like a reduction tree.

The connection from different branches can be based on wired—OR (or wired—AND)

logic. Thus, the signal can be immediately sent to the source, and the signal from

the source can be immediately sent to all branches. A similar design was used in the

nCUBE—‘Z to support hardware broadcast within a subcube [123] and in the Cray T3D

in their synchronization network design [42].

Figure 4.5 gives the same example as shown in Figure 4.3 but for a synchronous

multi-head worm. Since all request buffers are available, the header flit is forwarded

to switch 322 and then switches 3,0 and 813, as illustrated in Figure 4.5(a) and (b),

respectively, However, the lower buffer in switch .512 is used by another transmission.

Switch 312 gets a negative signal which is passed backward to the source. The source

74

informs every branch to stay in the current state, as shown in Figure 4.5(b).

(a) The first cycle (b) The second and following cycles

C3 G2 C, G, C, G, C0 C, G, C; G, C, G, CO

O
‘
U
t
h
U
J
N
—
‘
C

 \
J
O
N
M
h
U
J
N
—
‘
O

\
l
G
U
I
-
fi
U
J
N
—
‘
O

\
l

flit used by unicast El header flit [:1 first data flit

Figure 4.5: Establishment of a synchronous multi—head worm with network con-

tention.

Due to a strong coordination of headers, it may mislead us into concluding that

the multiple synchronous multi-head worms are deadlock-free. Let us consider an

instance as shown in Figure 4.6 where the source nodes ‘2 and 8 initiate multi-head

worms, T2 and T3, to all odd nodes and all even nodes, respectively.

C4 G3 C3 Gz C2 G] C, Co Co

®D——W-—--cW---s lF—O

—‘ 1" x” ‘—l

on ' L ‘e [— L ‘,/— 1. 1_——2
o- I I— \/ r‘ F I“ 3

o. I L\\ l— \ _ .7 L_4

g: 1' JYZH H/L 5::
0. F F F—7

(DU- lttf Kip- - - l_,——8

3: 1: LJ L "f ,_><i {:30
r __

2:: FJ/_ . - T Li;
ml 1‘ F—Is

(DI J \— LJ\—1 L [41—14

W* F l— E F—ls

Figure 4.6: Two multi-head worms requesting common channels to achieve destination

sets may cause deadlock or starvation.

75

As shown in the figure, both multi-head worms compete for the buffers of shadow

switches in stage G1. When the negotiation between stages G2 and G, starts, all

buffers are free and such information is sent to both sources. Hence, both sources

inform each branch to forward. If, unfortunately, each multi-head worm grabs part

of those free buffers, a deadlock is formed. If a switch grants free status to only

one of the multi-head worms, starvation becomes critical since each multi-head worm

may gain permission from some switches but not others at each cycle. Several priority

schemes are studied to insure that permissions at different switches are granted to the

same message when multiple multicasts are competing for the same buffers. In order

to have the priority work properly, priority is given to each message either based on

the message or determined by the switch. Here, a proper priority scheme shall assign

the same priority to all branches of a multi—head worm at the same stage but may be

varied in different stages. All multi-head worms must have a distinct priority at the

same stage. Such a scheme guarantees deadlock-freeness and is formally specified in

Lemma 1.

Lemma 1 The proper priority scheme provides a. deadlock-free hardware multicast

on fill/Vs.

Proof:

First of all, we will show that no two multi-head worms will block each other in

the same stage under the proper priority scheme. Assume that there are two multi—

head worms, To and T], which block each other at stage (17,-, 0 S i g n. Since the

higher priority message will be forwarded, such a block means different priority in

76

these branches which contradicts to the proper priority.

Next, we need to prove that there is no cyclic wait. Let there be m multi-head

worms, T,,T;,,---,Tm, which form a cyclic wait on an N-node MIN, N 2 m.

Furthermore, assume that T, blocks T,“ at stage g, for 1 S i S m — 1 and Tm

blocks T, at stage gm. In the first half of the proof, we have shown that a blocked

multi—head worm must be at least one stage behind the blocking one. Therefore, we

have 9, < 92 < < gm as well as gm < 91, which is a contradiction. B

When multiple messages reach the same switch at the same time and request the

same output channel, some arbitration mechanism must be used. First come first

served (FCFS) is the most intuitive approach. Unfortunately, the FCFS scheme is

not proper priority since two multicasts may have the same priority if they arrive at

a stage in the same time. The upper channel first, which prefers the message coming

from the upper channel. is a distributed scheme. Each switch makes the decision

independently. Such a scheme is highly network dependent. If the positions of the

incoming channels at all switches used by a multi—head worm are identical in the same

stage, the priority given to a message is identical for all branches. For the baseline,

butterfly, cube, and omega networks, the algorithm is a proper priority scheme which

implies a deadlock-free result. A formal specification is given in Lemma ‘.2 for the

cube network. The formal specification of other networks and the associated proofs

are omitted due to the similarity to Lemma 2.

Lemma 2 The upper channel first priority scheme guarantee a deadlock-free on mul-

‘
1

*
J

tistage cube networks.

Proof: To prove this lemma, we need to show that priority given to all branches

is identical at the same stage or that the same position of incoming ports in any

switches at the same stage are used by a multicast tree.

Consider a source and destination pair: s,,_1 H-so and (l,,_1 ~-do. The channel

before entering stage Gn_, (C',,.,) is sn_2 . - - sUs,,_, and stage i (G,,0 S i S n —— 12)

is dn_, - --d,-+,s,-_, ~ - - slsos, based on the construction of baseline network and

destination routin . The switch dn_,---d,- 1s,_,~-slso and the 15‘."
+ z

incoming

channel are used for the message. Since the position of the incoming channel is

dependent on the source node only. all branches of a message are given the same

priority, 3,, at stage Ch. From Lemma 1, such a scheme is deadlock-free. D

The predefined priority based on the location of the source node is another proper

priority scheme. The priority is given to a. message based on the location of the source

node, such as ascending order. descending order. or any predefined order. Since the

priority is constant for a message, it does guarantee deadlock-freeness.

Although the above proper priority schemes offer a solution to the deadlock prob-

lem, they face another critical problem — potential starvation. The lower priority

multicast trees may be blocked by the high priority multicast trees forever. The clock

rotating scheme is proposed to avoid starvation and deadlock. The priority is given to

a message based on the location of the source node and the initiated time, the time

when the message is initiated by the source node. Deadlock-freeness is guaranteed

78

by the priority based on the location and initiated time, while starvation-freeness

is secured by the priority based 011 initiated time. To have a consistently initiated

time among different nodes, the system requires a global clock, which offers many

advantages and is adopted by many SPCs, such as the TMC CM-5, Cray T3D, and

BBN TC-2000.

4.3 Multi-address Encoding

Unlike a unicast message, the size of a header may be varied depending on the number

of destinations, the encoding schemes, and the distribution of destinations [40]. Six

multi-address encoding/decoding schemes were proposed, including all-destination, bit

string, multiple region broadcast, multiple region mask, multiple region stride, and

multiple region bit string. All destination addresses are carried in the header in the

all-destination scheme, which is the. most intuitive approach and the one used by many

researchers. The multiple region broadcast and mask allow a message to deliver to

several contiguous regions and several sub-cubes or partial sub-cubes, respectively.

The header of the multiple region stride is capable of indicating multiple regions

of destinations with the same strides. The stride among distinct regions may be

different. The bit string fixes the size of the header, and the multiple region bit string

tries to minimize the header size. Here, we will concentrate on two extreme cases:

the all-destination and region broadcast. The former one allows destinations in any

locations, while the latter one requires all destinations located in a contiguous region.

Assume that a single flit can carry single destination information in the all-

79

destination scheme in order to conform with unicast. Hence, the branch to the next

destination will be exactly one stage behind the current branch. A switch splits the

header whenever it detects a destination heading for different outgoing ports. In—

tuitively, this scheme will lead to deadlock unless destinations are encoded in some

order, such as ascending or descending order. Unfortunately, this scheme is not dead-

lock free even though the destinations are sorted. This property is formally specified

in Lemma 4. Although the lemma concentrates on the all-destination scheme, it

may be easily applied to other schemes since branches to every region are one stage

behind branches to their previous region.

Lemma 3 The all-destination scheme is deadlock-free if there are at most two syn-

chronous multi-head worms on the network.

Proof: Since deadlock-freeness is obvious when there is one multi—head worm,

we will show the condition when there are two multi—head worms. Assume that

there is a deadlock when two multi—head worms, T, and T2, block each other at

switches 15in), and sud-2, respectively. For a multistage network, we have that T, and

T2 meet in the same stage, say 0,. Hence, i1 = i and i2 = i, or they block each

other at stage 0,. Since a branch is at least one stage behind its previous one, the

branch of a multi-head worm won’t reach stage G,- if its previous one is blocked at

stage 0,. In other words, if j, < j2 then the branch of T2 to reach 3,,” does not ex—

ist. Likewise, the branch of T, to reach 3,3]: does not exist, which is a contradiction. D
1

Lemma 4 The all-destination scheme is not deadlock-free when there are more than

80

two synchronous multi-head worms on the network.

Instead of a trivial proof by different distances among multiple branches, we give an

example of such a situation in Figure 4.7. There are three multi-head worms, T6, T12

and T30, on the network. Here, T6,T,2 and T3,) are initiated by nodes 6, 1'2, and

30 and destined for {12, 5, ‘21}, {4, 6, 8, ‘24, ‘25}, and {9, 10, ll, 16}, respectively.

Furthermore, assume that T12 starts first, at time t, follow by T30 and T6, at time t+1.

For the first few cycles, the multi-head worms successfully forward their branches. At

time t + 5, the first branch of T12 reaches stage GO and the second branch reaches 0,,

etc. At the same time, the second branch heading to node 5 from T6 reaches stage

G, and the third branch reaches stage G). The second branch will be blocked in the

next cycle by T12, which forces T6 to be blocked. The first branch of T30 reaches stage

G0 at the same time, which blocks the third branch of T12. However, its last branch

heading to node 16 is blocked by T6 in stage G3 at switch 33,14. Hence, a cyclic wait

is formed.

To eliminate such potential deadlock, a constant distance among different branches

is needed. To enforce this constant latency, pseudo addresses are added. After sorting

the destination in lexicographic order, to,- pseudo addresses are added to two adjacent

destinations, d,- and d,+,, where w, = d,“ — d, and 1 S i S m — 1 when there are m

destinations. The value of the pseudo addresses is equal to d,. This scheme is named

as pseudo all destination encoding/decoding scheme. This scheme is guaranteed to

be deadlock-free and is formally described in Lemma 5. This property may apply to

multiple region broadcast, mask, and stride, where a dummy region may be added to

81

£5 AIME—IV
g: '\\'II"\‘1VI'!§"’IE- - g

g: 1111/11-"11' fig

3. Fla-“1111XIII?:‘iiiiiiiiii II:

11zlui-:H1,1{1:1(1"AtIa—I- :3

3: ,1,::1-1|-:-1111l1-|-

3: filth-111{Illi-I-I-I--I- :3

3' ‘1l1llall1lllII-I\vfI-9§II-I-I- 1:

g: tleg'llblkFlvflll-b.P—I- i?

“:'1 @113"
2: 1111-1 1-11I-

a: 1hr ' l .vl-‘I— ..

-'._ME.—152§

3:1' l":-'1\11'Ille

I
I
I
I
I

N D
J

I
I

N 0

O
N

Figure 4.7: A deadlock example with all-destination encoding/decoding scheme with

3 synchronous multi-head worms, where the destination information carried by a flit

is numbered within the box.

(
I
)

[
\
D

enforce a uniform distance.

Lemma 5 The synchronous multi-head worm with. pseudo all-destination scheme is

deadlock-free.

4.4 Performance and Comparison

Simulations of various 64-node MINS, the. baseline, butterfly, cube and omega2 net—

works with different sized switches, including 12 X 22, 4 X 4, and 8 x 8 switches, are

conducted. The processors are allocated to different jobs, where each job (or appli—

cation) usually has an exclusive subset of processors, called a processor cluster or

simply cluster. To enforce the locality of processor allocation, the processors are al—

located based on a complete base cube instead of randomly ['21, 43]. The length of a

message is assumed to be uniform distribution between 32 and 96 with a mean of 64

flits. Each destination address is assun’ied to take one flit. The pseudo all-destination

encoding scheme requires either 171 — 1 or m flits as a header when there are m nodes

in a cluster. A different header scheme is to force all branches to be forwarded simul-

taneously. Several encoding/decoding schemes may be used, such as bit string and

multiple region bit string. Here, the destinations are located within a cube; therefore,

the region broadcast is used. The header of the region broadcast takes a single flit.

All performance reports are based on a 95% confidence interval. The system load is

defined as the average number of flits entering the network from a node times the

') . .

“The performance of omega network 15 the same as cube network; therefore, only performance

on cube network is reported.

83

number of destinations; that is, the average number of flits expected in an output

port. Since a network can consume up to one flit per output port per time unit, the

simulation is run in the range of 0.1 to 0.9 of load.

An alternative approach to provide multicast is software implementations, includ—

ing the separate addressing (SA) and the C—min algorithm [43]. The source sends

an individual copy of a message to every destination in the separate addressing. The

C-min algorithm is a software-based multicast tree. The source forwards the message

to only a subset of the destinations. Each recipient of the message forwards it to

some subset of the destinations that have not yet received it. Unlike the path-based

multicast tree, the software-based multicast tree is basically a store-and—forward al—

gorithm.

As specified earlier, the hardware implementation should offer better performance.

Figure 4.8 gives the latency for 16 nodes per cluster on a cube network with software

implementations, including separate addressing. C—min algorithms, and the hardware

implementation. The result verifies the intuitive assumption. The difference between

region broadcast (RB) and pseudo all-destination (AD) encoding schemes is due to

the routing process and blocking rate. Although the switch to support hardware

multicast is more complicated, the performance improvement is well worth it. In the

light load situation, the latency of hardware multicast is about a quarter of the most

efficient software multicast. In the medium load and heavy load environments, the

hardware multicast provides much better performance. If the time unit to forward

a flit is doubled in the switch supporting hardware multicast, the performance is

still about twice faster than the software approaches. In our simulation, the software

84

latency introduced by each node in the software multicast tree is ignored. In practice,

the software latency can be two or three orders of magnitude higher, which further

justifies the need for hardware multicast.

 3000

2000

SA (Cube) «—

>4

8 C-minéBaseline) 43-“-

§ SA Baseline) ---x--

-' C-min (Butterfly --u--

SA (Butterfly

 v V V v v

I L I l l l

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Load

Figure 4.8: Comparison among hardware and software implementations.

A common channel to reach different destinations can be shared in a multicast tree;

therefore, we expect that the performances on different networks will be similar to

each other. Figure 4.9 gives the latency of different sized switches on various networks

when there are 8 nodes in each cluster. It not only confirms our expectation but also

shows that the performance is independent of switch sized. The latter one becomes

false when the number of nodes in a clusters is smaller than the size of switches on the

butterfly network. External interference among different clusters occurs. Figure 4.10

confirms this observation. Every two multicasts, 4 nodes in each cluster, share one

channel in the connection C, on butterfly network with 8 x 8 switches which forces

85

the latency increasing rapidly. Such situation will occur to the baseline network when

the size of network become larger [43].

 600 fl : 1 fi f i

Baseline —

Butterfly -------

Cube

_ 2x2 switch 0 .

400 4x4 switch +

8x8 switch a

>

0

C

CD

‘6
_J

200 - -

0 l 1 J i L 4

0.1 0.2 0.3 0 4 0 5 0.6 0.7 0.8

’ Load '

Figure 4.9: Latency comparison of different switch sizes and different number of

destinations on a cube network.

In the following evaluation, 4 x 4 switches are used as the basic network unit unless

otherwise specified. In hardware implementation, we expect that the latency should

be independent. of the number of destinations when the network load is light. This is

confirmed in Figure 4.11 which gives the latency on various networks with a different

number of nodes in each cluster when the region broadcast is used to encode the

header. Surprisingly, the latency decreases as the number of nodes increases. This

is due to the utilization of outgoing channels used by a multi-head worm. There are

(m — 1) channels used while a cluster contains 772 nodes. As the number of nodes

decreases, the utilization decreases which implies that the latency increases.

While the pseudo all—destination is more flexible than the region broadcast, the

600 i r I .

4 nodes —

8 nodes -------

2x2 switch 0

4x4 switchL

400 8x8 switch a

L
a
t
e
n
c
y

200

r

’3’

1"

I”

0'

a.
'

a
a

o‘
'

 l l 1 l

o 1 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Load

Figure 4.10: Comparison on a l.)utterfly network with different sized switches and a

different number of destinations.

350 T I T I T I If T

4 nodes —

8nodes -------

300 - 16 nodes ----- -

Baseline o _.- _:

Butterfly + .5

250 _ Cube 0 J

52 200 ~
<0 "
_l j'

150 ‘

100 -

50 1 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.11: Latency comparison of the different number of nodes in each cluster.

87

latency increases faster than the region broadcast as shown in Figure 4.12. The region

broadcast has smaller latency as the load becomes higher and the number of nodes

becomes greater. There are several reasons for such phenomena. First, the routing

cycle of the pseudo all~destination is linear in the number of destinations plus the

number of stages, while the region broadcast is linear in the number of stages but not

the number of destinations. Second, the region broadcast has a lower blocking rate

since it occupies each stage in an all or none fashion. The pseudo all-destination may

block more channels while waiting for the blocked channels to be released.

600 . , 1 t .

500 " Region Broadcast ~—— ‘

All Destination -------

4 nodes o 5

400 "

8 nOdGS
+

If". g > J

16 nodes 0 5;: 5

E 300 -
, ,

(U

:
.

_1

.,~
.

200 "

2”,: _ I

_‘

100 -’f',..——i---";;;;;
_.__.—-r-W =

_

0 . i L . l i 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09

Load

Figure 4.12: Comparison between the region broadcast and pseudo all-destination

encoding schemes.

m (
I
)

4.5 Summary

In this chapter, a deadlock-free and starvation-free hardware multicast implementa-

tion is proposed for a. unidirectional wormhole-switched network. A pseudo address

scheme is presented to prevent deadlock while multi-address encoding/decoding is

considered. Based on the performance, the hardware multicast is highly recommended

and worth the investment even if the switch to support synchronous multi-head worm

would be more complicated. Although the pseudo all-destination has higher flexibil-

ity, a single region header is highly suggested. Hence, all branches can be forwarded

in the same stage and the latency is shorter than other approaches. In other words,

processors should be allocated based on certain relations, such as cube, stride, and

contiguous region, if possible. The multistage cube and omega networks are intertask

contention-free as long as the processors are allocated in a cube (as shown in Chapter

5), which implies that cube and omega networks are a better choice for constructing

unidirectional MINS among others.

CHAPTER 5

Network Partitionability and

Traffic Localization

Since the distance between any two nodes on a delta class MIN is fixed, different

processor allocations will not affect. the communication overhead in terms of path

length. Instead, such overhead depends on the degree of channel contention and

partitionability. Channel contention occurs whenever two or more transmissions are

directed to the same output port or are competing for the same channel in a switch at

any stage. If these transmissions are from different applications, it is called intertask

contention (external contention); otherwise, it is called intratask contention (internal

contention)

To avoid intertask contention caused by common destinations or channels, an SPC

usually allocates an exclusive subset of processors, called a processor cluster or cluster,

to each individual application or task. Intratask contention for a unicast communica-

tion can be minimized by flexible resource allocation that takes into account mapping

89

90

and reconfiguration [44]. For multicast or broadcast communication in a cluster, the

intratask contention is unavoidable unless at most one multicast con‘lmunication is

allowed at a time. Hence, we concentrate on the network partitionability to eliminate

the intertask contention in this chapter. Before discussing the methodology in parti-

tioning delta class MINS, we would like to show the influence of intertask contention

first.

5.1 Influence of Traffic Localization

In addition to computation of a parallel task, communication is required to achieve

certain functions, such as exchanging information, barrier synchronization, etc. An

application changes between those communication and computation phases alterna—

tively. Let Team” stand for the total comnmnication time and Tcomp represent the

total computation time. The total execution time, T, of an application is equal to

Tcomp + Tcomm-

For the sake of simplicity, let the average network contention rate be c. Since the

network is not available to a communication during contention, the actual communi-

cation time T.’ can be estimated by
comm

TI TCOrn 7n

comm :m

where Tcomm is the communication time without network contention. Hence, the

total execution time of an application can be estimated by the following equation.

91

TCO 771, I'll

“Twirl:
(5.2)

Since the processing power and communication capacity are fixed after a machine

is built, the Temp and Twmm are close to constant values for an application with the

same computing and communication requirements. The network contention rate is

the only variable affecting the total execution time based on simple estimations in

Equations 5.2. Hence, decreasing the intertask contention and /or intratask contention

will reduce the network contention rate as well as the execution time. In other words,

to force traffic localization will definitely improve the performance of a system.

To examine the influence of traffic localization, we eliminate the intratask con-

tention by limiting the number of multicast communications to be at most one in each

task at any time. Let each task require 8 nodes and let there be 8 tasks on a 64—node

cube network. Three different processor allocation approaches are applied. The first

approach is to allocate processors randomly. The influence of the intertask contention

is not predictable. The second approach allocates all but one of the processor nodes

into a cube. This out-of-cube node will introduce some intertask contention but not

as much as the previous approach. The last approach enforces the traffic localiza-

tion by allocating a complete binary cube to each application. Note that the binary

cube will be formally defined and proved to be external contention-free for the cube

network in the following sections.

Unlike previous simulations which considered the load of a network, we concentrate

on the ratio of communication time to execution time which is formally defined below.

92

TC(1mm __ TCO771 771

T Tcomm + Tcomp

 R:

Like the simulation in Chapter 4, the length of a message is uniformly distributed

between 32 and 96 flits, with an average of 64 flits. The time unit is a single cycle

to forward a single flit one step toward the destination. Such a cycle is dependent on

the clock of a network and can be just tens or hundreds of nanoseconds. For example,

the cycle is 40 nanoseconds on a ‘25 MHz network. A communication phase maybe

overlapped with a. computation phase to reduce the communication overhead. The

source node may issue the second communication command before the previous one

is completed. Such multicast communication is named as non-blocking multicast. To

avoid intratask caused by non—blocking multicast, we concentrate on single blocking

multicast at a cluster. In blocking nnilticast. the source node will not continue to

the computation phase until the communication phase is completed. The latency of

a message in different processor allocation approaches is given in Figure 5.1(a).

(a) Blocking multicast (b) System utilization and Speedup Speedup

5m 1* I’ Y Y Y I T Y I T fir Y fl

6 L' Optimal case 4—

80 /° . ~. Complete cube ‘64

< “in One out-oi-cube ----

A node is out of cube —9— ‘ Random allocatlon "" “"

Random allocation —~— < c

Complete cube +— 5.3 50% ’ .\ ‘ 14.8

4 S '. Q a

>~ .._ a

s = ~ .
2 W S \‘x‘. ' ,a “~.\

3 l E 40% - ., ‘ ‘32

g. "a _ ‘

My (0 x1. ._'

20% ~ .. ° <1.6

50 t: a a e = 2 3 "r ‘ ‘I \ ' 'n. ,_ l

I I. if" " >1-.. 1
O 1 A 4 .L A A A 00/0 1 A x A L 1 1 " '0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Communication Ratio Communication Ratio

Figure 5.1: Average latency and associated system utilization of a blocking multicast

message on a 64-node cube network.

93

Intuitively, increasing the communication ratio It would increase the contention

rate c since there is more traffic on the network. Hence, the latency gets longer as

the communication ratio gets higher. The latency of both the first and the second

allocation approaches given in Figure 5.1(a) verifies such observation. However, the

latency of cube allocation is not affected by the communication ratio as shown in the

same figure. This is not contrary to our observation or estimation in Equation 5.1.

As specified earlier, this approach enforces the traffic localization and eliminates the

intertask contention. Since the intratask contention is avoided by single blocking

multicast, this result confirms the estimation and the assumption that cube allocation

is indeed an intertask contention-free allocation approach.

To further clarify the influence of traffic localization, the corresponding system

utilization and speedup are shown in Figure 5.1(b). The system utilization p and

speedup 5,, are defined as following.

p : Tcumpf 1)

’I‘com 171(71’) + fll‘ompfn)

q : 71comp(1)

i P iTcommfn) + Tcomp(n)

where Tcomp(n) and Twmnfn) are the total computation time and the total commu-

nication time of a node when n nodes are used for a task, respectively. As shown

in this figure, the intertask contention degrade the performance rapidly. For exam-

ple, the system utilization degrades to 28% in random allocation and to 55% in one

out-of-cube allocation approach, while the utilization is about 69% in cube allocation

94

when the communication ratio is 0.3. Note that the optimal utilization is 70% when

R is 0.3.

Since multiple multicast communications may share the same destination in the

same cluster, the intratask contention is unavoidable. \Ne concentrate on providing an

intertask contention-free network partitionability of delta class MINS in this chapter.

All contention in the following context refers to intertask contention unless other-

wise specified. Further evaluation of the influence of traffic localization, or network

partitionability, will be given in Section 3.6

5.2 Definition of Different Cubes

A cube, which provides an intertask contention-free partitionability on some delta

class MINS, is formally defined as follows:

Definition 4 In a ill/N with N = k” nodes, (1. lc-arg m-cube (cube) consists of km

nodes which have the same n — in radix-l: digits (fired variables) in their node ad-

dresses, where these same digits can be in any n — in locations of the n possible

locations. Two cubes are. disjoint if they have different fired variables and one is not

a subset of the other.

Definition 5 A h-ary m-cube is referred to as a base k-ary m—cube (base cube) if

these 12 — m digits are in the most significant 72 — in locations (or the remaining m

digits are in the least significant m locations) of their node addresses.

95

A base cube is a special case of a cube. Consider a system with N = 44 nodes.

The cluster (12XX) has 16 nodes ranging from (1200) to (1233) and is a base 4-ary

2-cube. The cluster (2X1X) has 16 nodes ranging from (2010) to (2313) and is a

4-ary 2-cube but not a base cube. Note that an X represents a digit based on k, or

0 S X < k, in the following context of this chapter.

Most research is based on 2 x 2 switches, while larger switches provide better

performance in the real world. Allocating a complete k-ary m-cube to an application

which requires only part of the cube may reduce the overall utilization of a system.

For example, an 8-ary 2-cube will be allocated to a 16—node application on a network

with 8 x 8 switches. To reduce such penalty, we also consider allocation of binary

cubes on a network with k x l: switches. The formal definitions of both binary m—cube

and base binary m-cube on a MIN with k X It switches are given below.

Definition 6 In a. ill/N with N = h" nodes, where k z: 2”, a binary m-cube consists

of 2’" nodes which have the same (p x n — m) bits (fired variables) in their node

addresses (based on 2), where these same bits can be in any (p x n — 772) locations

of the (p x n) possible locations. Two binary cubes are. disjoint if they have diflerent

fired variables and one is not a. subset of the other.

Definition 7 A binary m-cube is referred to as a base binary m-cube if these (n x

p— 772) bits are in the most significant (n x p— m) locations (or the remaining m bits

are in the least significant m locations) of their node addresses (based on 2).

Based on these definitions, a k-ary m-cube, where l: = 2”, is a binary (p X m)-cube.

An example of different cubes is given in Figure 5.2. There are three cubes: 0:1:1'1‘,

96

1023.2: and llxl. The second cluster 10.1:1‘, or 2X, is a base 4-ary 1—cube, or a base

binary 2-cube. The first one is a base binary 3-cube and the third one is a binary

1-cube but not a base binary 1-cube. The latter two are not 4-ary cubes. Note that in

the following context of this chapter, an .r stands for a digit based on 2, or 0 g .1: < 2.

01 (0001) 01

02‘ (0010) 02 '3 9

03 (001]) 03

10 (01 ' 10‘

H (0101) 11

- 12 (0110) 12

20(1000) 20

21(1001) 21

22 (1010) 22

l 30

32 1110 32

O Oxxx (3 2X (lex)

Figure 5.2: Three different processor clusters, 0.r.r.r, 101.1. or 2X, and 11131.

llxl

5.3 Contention Free and Channel Balanced Parti-

tion

In addition to guaranteeing contention-free network partitioning, it is important that

the number of communication channels between two adjacent stages is the same as

the number of nodes in the corresponding cluster. Thus, if a cluster has c nodes, the

number of channels (or channel pairs) allocated to the cluster should be c between any

97

two adjacent stages, and this is referred as channel-balanced allocation. If the number

of channels allocated is less than c, it implies the possibility of channel congestion

within that cluster. If the number of channels allocated is greater than c, it implies

that other clusters may be allocated with fewer channels or that the channels have

to be shared with other clusters. Before showing this property on different delta net—

works, two basic lemmas will be proven. The first one is related to channel—balanced

allocation and the second one concerns the external contention-free allocation. Both

lemmas are given below.

Lemma 6 A lc-ary cube is channel-balanced ifs,- is replaced by d,- for all 0 S i S n—l

while the address pattern is changed from s.,,_1 -~slso to d,,_1 ---cl1d0.

Proof: We shall prove that the number of channels used by an m-cube cluster

is always 19’" between any two adjacent stages. For a. k-ary m-cube, there are

n —— m fixed variables and in free variables in the definition of the cluster. For

communication within each cluster and that s, is replaced by d,- for all 0 S i S n — 1,

all those it — m fixed variables and the number of free variables in are unchanged

for a given k-ary m—cube cluster. Thus, the number of channels between any two

adjacent stages of an m-cube cluster remains hm. Cl

Lemma 7 Disjoint cubes are contention-free ifs, is replaced by d,- for all 0 S i S n—1

while the address pattern is changed from sn_1 - ~ - slso to dn_1 . - -d1d0.

Proof: We will show that the channels from disjoint k-ary cubes (clusters) are

always distinct. Suppose that a channel is shared by two different clusters. The

98

channel address is thus the same from both clusters. This implies that two different

clusters have the same fixed variables, a contradiction. C]

With these two lemmas, we would show that a cube network can be partitioned

into contention—free and channel-balanced disjoint h—ary cubes in the following lemma.

Lemma 8 A cube network with N : k" nodes can be partitioned into contention-free

and channel-balanced disjoint ls-ary cubes.

Proof: Based on Lemmas 6 and 7, we shall prove that s, is always replaced by d,-

when the address pattern is changed from sn_ls,,_2 - - . 3130 to dn_1dn-2 - - -d1d0.

Consider a source and destination pair: sn_1-~-so and dn_1~-d0. The chan-

nels before entering and after exiting stage n — 1 (631-1) are s,,_2 - --sosn_1 and

sn_2-~-sodn_1, respectively. The former is due to perfect k-shuffle connection

and the later is due to destination tag routing with tn_1 = dn_1. For stage i

(0:, 0 S i S n — 2), the channels entering and exiting G,- are dn_1 ---d,-+ls,-_1---slsos,-

and dn_1 ~~d,~+1s,-_1---slsod,-, respectively. The former is due to butterfly connec-

tion 13,-,“ and the latter is due to destination tag routing with t,- = d,-. As the address

pattern is changed from sn-1 - --so to d,,_1 ---do, 3, is always replaced by d,- for all

OSiSn—l.

In a more general case, when k is a power of 2, the restriction of k-ary cubes can

be relaxed to binary cubes. From the proof of Lemma 8, we can immediately obtain

the following result:

7

Theorem 1 A cube network with A’ = ls" nodes, where k = 2” for some p, can be

partitioned into contention-free and channel-balanced disjoint “binary” cubes.

Proof: We shall prove that the number of channels used by a binary m-cube

cluster is always 2’" between any two adjacent stages and that the channels from

different clusters (binary cubes) are always distinct.

Let ls be 2” where p Z 2. Consider a source and destination pair:

sn_1 ---so and d,,_1 -~dU, or 3n—1,p—1Sn—1.p—2 . . -3n,0 - . - s1.0.so,p_lso,p_2 . . . 80,0 and

dn_1,p_1d,,_1,p_2 . . . dn_1,0 - - -(l1,0(10,p_1do,p_2 . . . (10.0, respectively. The channels before

entering and after exiting stage n — 1 (Gn_1) are s,,_2 - - - sosn_1 and sn_2 - ' - sodn_1,

respectively. The former is due to perfect lc—shuffle connection and the later is due

to destination tag routing with t,,_1,J- = (l,,_1,J-, where 0 S j S p — 1. For stage i

(0,, 0 S i S n — 2), the channels entering and exiting G,- are dn_1 ---d,-+1s,-_1 ---slsos,

and dn_1 - - - d,+ls,--1 - - - s1s0d,, respectively. The former is due to butterfly connection

[3,,“ and the latter is due to destination tag routing with tid- = diJ- As the address

pattern is changed from sn_1 ---so to (l,,_1 ---do, 8:31 is always replaced by did- for

all 0 S i S n — l and 0 S j S p — 1. Note that for a binary m-cube, there are

(n x p — m) fixed variables and m free variables in the definition of the cluster. For

communication within each cluster, it implies that 3:11“ 2 did for all those i and j of

fixed variables and the number of free variables m is unchanged for a given binary

m-cube cluster. Thus, the number of channels between any two adjacent stages of an

m-cube cluster remains 2’".

100

Lemma 7 implies that the channels from different clusters are always distinct.

Hence, different clusters are contention—free.

An example to partition a 16-node cube network with 4 x 4 switches, k = 4, into

four contention-free and channel-balanced binary cube clusters is shown in Figure 5.3.

The clusters :1‘0111', 01.1w, 11x0 and 1111 consist of8, 4, 2 and 2 nodes, respectively. As

shown in the figure, all these four clusters are channel—balanced and contention—free.

p
”
!

|

(
‘

'

b
5

a
a

m
‘
q

.
v

I
Q
T
’

/ i

4‘

\
V
I

\
a
»

y
,
‘y
,

\‘
I

a
.

Q x0xx (D 01xx 11x0 [3 llxl

Figure 5.3: A 16-node cube network based on 4 x 4 switches is partitioned into four

contention—free and channel-balanced binary cube clusters, $0.1m, 012:2, 11:50 and

111‘1.

The Lemma 8 and Theorem 1 may apply to the omega network directly. Hence,

we have Lemma 9 and Theorem 2 as following.

101

Lemma 9 An ome a network with N = k" nodes can be artitioned into contention-
9 P

free and channel-balanced disjoint k-ary cubes.

Theorem 2 An omega network with N : k" nodes, where k 2 ‘2’” for some P, can

be partitioned into contention-free and channel-balanced disjoint “binary" cubes.

The proof is similar to that of Lemma 8.

Figure 5.4(a) shows the partitioning of an S—node cube network into contention-free

and channel—balanced binary cube clusters: XXO, 0X1, and 1X1, while Figure 5.4(b)

shows the same partitioning on an 8—node omega network.

(a) multistage cube network (b) multistage omega network

{:1000 000C; {:1000

r '.\
'..'“'""%101 101" ”"'°.101

_. {3110 110 “- ‘ ' Ell“)
...t 9......[111 Ill/"'4'”.------'25.""""""'/ Ill

[:1 xxo 0x1 74 1x1

Figure 5.4: An 8-node cube network and an S-node omega network are partitioned

into three contention-free and channel~balanced binary cube clusters.

Unlike the cube network or omega network, not all delta networks can be par-

titioned into contention-free and channel—balanced clusters. The following section

shows that neither the baseline network nor the butterfly network possess these latter

properties.

102

5.4 ‘Non Contention-Free Partition

Although baseline and butterfly networks are topology equivalent. to omega and cube

networks, the intertask contention exists on both of them. This section gives the

description and formal proof of this property.

Lemma 10 A baseline network with N : 71" nodes may not be partitioned into

contention-free and channel-balanced disjoint k-ary cubes.

Proof: Consider a source and destination pair: sn-1~-so and dn_1---d0.

The channels before entering and after exiting stage n — 1 (62,4, the leftmost

stage) are s,,_2---susn-1 and s,,_-2---s0d,,_1, respectively. The former is due to

perfect k-shuflle connection and the later is due to destination tag routing with

tn_1 2: (1,,_1. For stage i (CL-,0 S i S n — ‘2). the channels entering and exiting

G.- are d,,_1 --- d,+ls,,_2s,,_3 - - - sn_,-_2 and (l,,_-2 . - - (l,+1s,,_2 - - - sn_,-_1d,-, respectively.

The former is due to baseline connection Bf, and the later is due to destination

tag routing with t, : d,. As the address pattern is changed from the s,,_1---so to

dn_1 ---d0, sn_,-_2 is always replaced by d,- for 0 S i S n — ‘2 and s,,_1 is replaced by

dn_1. Thus, a free variable may be replaced by a fixed variable, implying the number

of channels is reduced at that stage. If a fixed variable is replaced by a free variable,

this implies that more channels are used by that cluster and the channels may be

shared with other clusters. E]

Two examples of partitioning a 16-node baseline network into different binary

cube clusters are given in Figure 5.5. There are three contention-free clusters: 10.1117,

103

0101:, and 11mm. In all three clusters, the number of channels is reduced to half at

connections C2 and C1 as shown in Figure 5.5(a). All 16 channels at connection C2

and C1 are shared by two clusters, :rer and gar-1:1, in Figure 5.5(b).

l
l

 0101 _

101

1011 I

I

I

I \

‘ E Pl001 " 3‘

[it .
\

\

C] x0xx CD 010x Q llxx C) xxxO C) xxx]

(3) reduced channels (b) shared channels

Figure 5.5: A 16-node baseline network is partitioned into different binary clusters.

Similarly, we have the following lemma for a butterfly network.

Lemma 11 A butterfly network with N = 72’“ nodes may not be partitioned into

contention—free and channel-balanced disjoint k-ary cubes.

Proof: Consider a source and destination pair: sn_1 ~-so and dn_1 ---do. As the

address pattern is changed from sn_1~-so to dn_1---d0, Si is always replaced by

dj+1 for 0 S j S n — ‘2 and sn_1 is replaced by do. Thus, a free variable may be

replaced by a fixed variable, implying that the number of channels is reduced at

that stage. If a fixed variable is replaced by a free variable, this implies that more

channels are used by that cluster and that the channels may be shared with other

104

channels. 13

Figure 5.6 demonstrates the partitioning of a 16—node butterfly network into dif-

ferent binary cube clusters. There are three contention—free clusters: x0201, 0101:, and

111'1'. In all three clusters, the number of channels is reduced to half between stages

02 and GI as shown in Figure 5.6(a). In Figure 5.6(b), there are two 8—node clusters:

xxxO and xxzrl. Both clusters share those 16 channels in connections C3, Cz and C1.

:-_

I'M‘.M\",

rm;”'1
 I“fill-[m

m '— ’4 “i

gauntm
fiII=Lz4b“JAE:

I‘W‘Wlm

D x0xx C) OIOx O llxx Q xxxO C) xxx]

(3) reduced channels (b) shared channels

 “01"" ’< ' '

‘.(\

1111” -- -- - --

Figure 5.6: A 16-node butterfly network is partitioned into different binary clusters.

105

5.5 Modification of Baseline and Butterfly Net-

works

As discussed in previous sections, the cube and omega networks provide contention-

free and cl‘iannel—balanced network partitionability but not the baseline or butterfly

networks. Due to the advantage of network partitionability, the cube and omega

networks are highly recommend in constructing new networks. For a current system,

such as NEC Cenju-3, it may not be cost effective to update the network. Hence,

to provide contention-free and channel-balanced network partitionability for both

baseline and butterfly networks with minimum modification becomes the goal of this

section.

Since the interconnection patterns between adjacent stages are fixed after a MIN

is built, we will concentrate 011 modifying those connections between the source node

and network, (7,, and CO. To be consistent with most delta networks, we choose to

modify the leftmost. interconnection, (1,1,, and keep the rightmost interconnection, Co,

as an identity connection, which is a straight connection. Two modified interconnec-

tion patterns will be used, the reversed perfect k-shuflie and the digit-reversed. The

former one is for the butterfly network and the later one is for the baseline network.

Furthermore, we will show that both modified baseline and butterfly networks can be

partitioned into contention—free and channel—balanced k—ary cubes.

Before giving the definition of these interconnection patterns, let us carefully ex-

amine the address transition on both baseline and butterfly networks in the following

subsections.

106

5.5.1 Modification of a Baseline Network

Consider a source and destination pair: sn_lsn_2 - - - s0 and dn_1dn_2 - - - do. As shown

in the proof of Lemma 10, sJ- is always replaced by dn_J-_2 for 0 S j S n — ‘2 and

sn_1 is replaced by dn_1 as the address pattern is changed from s,,_1sn_2--~so to

dn_1d,,_2 ~ - - do. The replacement of s,,_1 by d,,_1 is caused by the perfect k—shuffle

in the leftmost interconnection. If an identity connection is used in C", sj will be

replaced by (t,,_j_1 for 0 S j S n — 1. In order to have sJ- be replaced by d], we shall

reverse the order of source address in the leftmost interconnection. Hence, the digit

reversing pattern, 0,", is introduced to achieve such purpose and is formally defined

below.

Definition 8 The digit-'I'eversing connection 7" is defined by

”Villa—Myra ' - - :1’2I11‘0) : 41’0-17141‘2"'l’n—‘zIn—l where 0 S 1'1 S k _ 1'

When a baseline network connects to the source nodes based on digit-reversing

connection, it can be partitioned into contention—free and channel-balanced disjoint

k—ary cubes. The formal description and proof are given in Lemma 12.

Lemma 12 A baseline with digit reversing pattern as C, can. be partitioned into

contention-free and channel-balanced disjoint k-ary cubes.

Proof: Consider a source and destination pair: sn_1sn_2---slso and

dn_1dn_2 - - ~d1d0. The channels before entering and after exiting stage n — 1 (Gn_1)

107

are sosl -o-s,,_gs,,_1 and sosl s,,-2d,,_1, respectively. The former is due to digit

reversing connection and the later is due to destination tag routing with tn_1 = dn_1.

For stage i (Gg, 0 S i S n — 1), the channel entering G,- is dn_, ~-d,~+1sosl ~~s,‘_ls,-

due to baseline connection (if and the channel exiting G,- is d,,_1 ~~d,~+1s0sl ---s,-_1d,~

because of destination tag routing with t, = (1,.

As the address pattern is changed from sn_1 - - - slso to dn_1 -- - (lldo, s,- is always

replaced by d,- for all 0 S i S n — 1. Hence, such network can be partitioned into

channel—balanced and contention-free k—ary cubes based on 6 and 7.

Figure 5.7 demonstrates the partitionability of a modified baseline network. For

comparison purposes. the partitions in Figure 5.7 are identical to those in Figure

5.5 in the previous section. Those three clusters, .1'0.r.r, 0101', and ll.r.r, which are

contention-free but. in which the number of channels are reduced to half in connections

C2 and C] of a baseline network as shown in Figure 5.5(a), become channel—balanced

in a modified baseline network as shown in Figure 5.7(a). The channel sharing of

clusters .r.r.r0 and .r.r.rl on a. baseline network as given in Figure 5.5(b) is eliminated

in a modified baseline network as shown in Figure 5.7(b).

Like the cube network, when k is a power of ‘2, the restriction of k-ary cubes can

be relaxed to binary cubes. From the proof of Lemma 12, we can immediately obtain

the following result:

108

 ‘ _ »L.-.l are
\ _ , I

011 “ , ~E 011

0111 “ . -- -- - on?

101 1 1 '1 _ I ’ 101

1 '1

101“ \ t (1‘ __ I ' ' ' “.1011

ll (1 'A \ '— r—fi ll

nus n1101 1: It ‘ i _ » - 1101

111 E: ~ ~ 111

11111 -- -- -- -- - 111,111

C) .0... Q 010x 1... C) ...o C)

(a) Three contention-free and channel-balanced clusters (b) Two contention-free and channel-balanced clusters

Figure 5.7: An example to partition a 16—node modified baseline network into

contention-free and channel-balanced disjoint k-ary cubes.

Theorem 3 A modified baseline network with N = k" nodes, where k = 2” for

some p, can be partitioned into contention-free and channel-balanced disjoint “binary”

cubes.

5.5.2 Modification of a Butterfly Network

To examine the address transition, we consider a source and destination pair:

sn_lsn_2---so and dn_1dn_2---d0. While the address pattern is changed from

sn_1 ”-3130 to dn_1---d1d0, s,- is always replaced by dj+1 for 0 S j S n — 2 and

sn_1 is replaced by do as shown in the proof of Lemma 11. Based on Lemmas 6 and

7, the Si shall be replaced by d,- for 0 S j S n — 1. Therefore, the address pattern

entering stage Gn_1 shall be sosn_1 - --31 instead of sn_1---slso. To achieve this,

a reversed perfect k—shuffle is used for connection Cn. With such modification, the

109

address pattern entering the stage Gn_1 becomes sosn_1 - - - s1. When the last digit is

replaced in stage j, sJ- is always replaced by d], for all 0 S j S n — 1. The definition

of reversed perfect k—shuffle and the formal description as well as the proof of such

property are given below.

Definition 9 The reversed perfect k-sh'ujfle connection (3' is defined by

-k .. . _ .. , .
o,- (.r,,_1.r,,_2 ---.12.11.r0) — .10.r,,_1.r,,_2 ”mt-21‘»; where 0 S .r; S k — 1.

Lemma 13 A butterfly network with reverse perfect k-shujfle as the leftmost connec-

k

tion, Cn = a . can be partitioned into contention-free and ctmnnet-balanced disjoint

k-ary cubes.

Proof: Consider a source and destination pair: sn_1sn_2 - - - 51.30 and

dn_1dn_2 - - -d1d(). The channels before entering and after exiting stage n—l (Gn_,) are

sosn_1 . - '3281 and sosn_1 - - -s2d1, respectively. The former is due to reversed perfect

k—shuffie connection and the later is due to destination tag routing with tn_1 2 (11. For

stage n —i (62,4, 1 S i S n — 1). the channel entering G,- is sosn_1 ---s,-+1d,-_1~-dls,-

due to butterfly connection 55 and the channel exiting G.- is sosn_1 ~--s,~+1d,~_1 ~~d1d,-

because of destination tag routing with t,- = dn_,-. Similarly, the channels entering

and exiting the rightmost stage G0 are dn_1(l,,_2 - - «1,30 and dn_1d,,_2 - - - (lldo, respec-

tively. The later is due to the destination routing tag to 2 do.

110

As the address pattern is changed from s,,_1 ---.‘1so to dn_1 ---d1d0, s, is always

replaced by d,- for all 0 S i S n — 1. Hence, the number of channels between any

adjacent stages of a. k-ary m—cube remains km and different clusters are contention-free

based on Lemmas 6 and 7.

Those examples which partition a 16-node butterfly network into a different num-

ber of clusters in Figure 5.6 are revisited on a. modified butterfly network. As shown

in Figure 5.8(a), those three contention-free cube clusters, r0.r.r, 010:1: and ‘ll.r;r.,

in which the number of channels is reduced to half in connection C; on a lfi—node

butterfly network, become contention—free and channel-balanced clusters on a 16-node

modified butterfly network. Those two clusters, .r.r.r0 and .r.r.r1 , which share channels

in Figure 5.6(b) become contentimr-free as shown in Figure 5.8(b).

Like the modified baseline network, the restriction of k-ary cubes can be relaxed

to binary cubes when k is a. power of 2. We can immediately obtain the following

result from the proof of Lemma 13.

Theorem 4 A modified butterfly network with N = k" nodes, where k = 2” for

some p, can be partitioned into contention-free and channel-balanced disjoint “binary”

cubes.

l
I

1011 1011

“:3

El:

7 iii? 113? 5:43.

13’:

Q

-11110 1110

.. 1111 till -

Q 1101:): D 01011 O llxx xxxO Q xxxl

(a) Three contention-free and channel-balanced clusters (b) Two contention-free and channel-balanced clusters

Figure 5.8: An example to partition modified butterfly network into contention—free

and channel-balanced disjoint k-ary cubes.

5.6 Performance Evaluation

As discussed earlier, enforcing traffic localization will reduce the intertask contention

and decrease the communication latency. In this section, we examine the influence

of traffic localization in detail. The performance evaluation is based on a simulator

which emulates a 64-node cube network with 4 x 4 switches. The length of a message

is uniformly distributed between 32 and 96 flits. Note that based on Lemmas 8, 9, 1‘2,

and 13 as well as Theorems 1, ‘2, 3, and 4, this result also applies to omega, modified

baseline and modified butterfly networks.

The latency among different intertask contention introduced by different allocation

approaches is given in Figure 5.9. The latency of a complete cube confirms that binary

cube partitioning is intertask contention-free. Such latency depends on the length of

a message and the number of stages but not on the number of destinations or the

communication ratio.

500 I I l I T T T

s

450 - ~

400 + .

4 nodes in a cluster

8 nodes in a cluster

350 - 16 nodes in a cluster

Random allocation —

A node is out of cube -----

Complete cube ------

0
+
0

M

300 e

250

L
a
t
e
n
c
y

200

150

100

50
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Communication Ratio

Figure 5.9: Average latency of a. blocking multicast message with various intertask

contention.

Intuitively, where the number of clusters increases, the potential intertask con-

tention increases. The worst case occurs when each cluster blocks every other cluster

and is itself blocked by another cluster. Hence, the average latency becomes close to

(m x Teamm) when the communication ratio R gets larger. This observation is con-

firmed by the random allocation of 8-node and 16-node tasks in Figure 5.9. However,

when the number of nodes in one cluster is less than the number of clusters in the

network, a cluster will not be able to block all other clusters. Hence, the latency

decreases. This estimation is confirmed by the 4-node clusters in Figure 5.9.

The network throughput is given in Figure 5.10 for reference. Here, the throughput

is defined as the average number of flits passing an outgoing channel per time unit.

2m—l

2171

 For a binary m-cube, the throughput. is equal to R x since there are (2m —

113

1) destinations. For example, when the communication ratio is 0.8, the expected

throughput of a binary ‘2-cube is 0.6 (0.8 x 3/4). As expected, the throughput of

binary cube allocation is close to the expected throughput. The difference is due to

the header overhead. The throughput of the other two approaches becomes worse as

either the communication ratio increases or the latency increases.

0.8 1 l r I l I l _.-:i

0.75 L 7..

.'D. 3".-

0.7 ~ 4 nodes in a cluster 0 -

8 nodes in a cluster + yr

0.65 - 16 nodes in a cluster 0 B" A

Random allocation —— ”,0

0-6 ’ Anode is out of cube ----- _,.r' .

Com late 0 be ------ . -‘

0.55 - p U “,0 ° 1

a 0.5 ’-

“Null-3"}.
"“0””.

q

2 0.45 - a .
U! ‘10 _.0

8 ' " ea

5 0 4 '-
E} __________ 43— ..

.C ---------

1- .-° 8'

0.35 '2,------------4.

------VF,

. 4’____________4>0 3 4,”:___________9 __________o

0.25 5f:""""'4 .. _ 2.

0.2
-

0.15
-

0.1 .5 ¥ 1.? if

005 1 1 1 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Communicaiton Ratio

Figure 5.10: Average throughput in cube network with average 64—flit messages.

In non-blocking multicast, the source node continues to the computation phase as

soon as the multicast communication request is issued to the router. The computation

time and communication time are overlapped to reduce the communication overhead.

Hence, intratask contention becomes possible since a communication request may be

issued before the previous one is done. The influence of such intratask contention can

be observed from the cube allocation in Figure 5.11, which gives the average latency

of a non-blocking multicast communication based on various allocation approaches.

114

As the communication ratio becomes larger, the latency increases. A system becomes

unstable when R closes to 0.5.

500 I T I: .1 I "

4nodes/cluster o 5 5 ’1

8nodes/cluster + : 5 :'

450 - 16 nodes/cluster D 5 : ,' ~

Random allocation — 5 5 ,

One is out of cube ----- : 5 1'

400 - Complete cube 5 ; j _

i f i
4' .'I 1'

350 1- ': : i -1

1 ci

a 300 '- '1' 'I’ ’I’ ‘1

c 'I '1 ’I

2 a, II ’I

m 1’ I, ’I

_J 250 r- "! "t l,’ -1

In’

200 - ,x’ f f5 -

I, ,”a’

150 '- ’ I 6” Ila’a’ .4

.I' if -a’ . -43”

,- :1- 18:13-""&

100 :222341,.—3- ._........gum=

.............’--."C'"""."°"".""".

0.1 0.15 0.2 0.25 0.3

Communication Ratio

 Figure 5.11: Average latency in cube network of non-blocking message with average

64-flit length.

The latency gets worse when intertask contention exists. As shown in this figure,

the system becomes unstable when [t is close to 0.1 if 4—node or 8—node tasks are

randomly allocated. The performance of randomly allocated 16-node tasks is better

than the previous two since it has lower intertask contention.

Figure 5.12 gives the average latency of non-blocking multiple multicast commu-

nications. Here, 8—node tasks are allocated into a 64—node cube network. Every node

may initiate its own non-blocking multicast communication. To avoid network sat—

uration, the network load is used as the X-coordinator. The load is defined as the

average number of flits injected into the network times the number of destinations.

In other words, the load is the average number of flits expected to pass through an

115

outgoing port per time unit. The relation of load and communication ratio R for a

binary m—cube is given below.

toad

: 2m _1

R

Hence, R = load/7 in Figure 5.12. As expected, the complete cube still has the

best performance. However, the system reaches saturation when the communication

ratio becomes 0.1.

450 r 1 1 j 1 I:

400 - 5' «

350 ~ 5' 5 .

:' F’

300 ~ 5 ' -

5‘ 250 r -

E .1 ..

‘6 " x

_, 200 _n -

150 ,x _a" J

..(3“

100 ‘

Randoniaflocafion 4»—

Anode is out of cube -+--

50 " Complete cube -G--- .

0 l l 1 l 1 l

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Load

Figure 5.12: Average latency in cube network of non—blocking message with multiple

SOLII'CCS.

5.7 Summary

Increasing the network contention increases the communication latency. Such net-

work contention includes both the intertask contention (internal contention) and the

116

intratask contention (external contention). However, the intratask contention is un-

avoidable when multiple multicast communications are allowed. Hence, we proposed

an allocation scheme. binary cube scheme, to eliminate the intertask contention in

this chapter.

The binary cube partition algorithm provides an intertask contention—free environ-

ment on both the cube and omega. networks but not on the baseline nor the butterfly

networks. Two interconnection patterns are i1’1troduced to reconfigure the baseline

and butterfly networks. With such modification. both baseline and butterfly networks

can be partitioned into contention—free and channel-balanced binary clusters.

Due to the unique path property of delta class MINS, the path of a multicast

communication is also unique. Network partitionability and traffic localization reduce

the contention to increase the performance. In the next chapter, we will discuss

establishing a multicast tree on an extension of MIN.

CHAPTER 6

Extra Stage Multistage

Interconnection Networks

In this chapter, we show that. unlike in the delta class MINS, the extra—stage MIN

(ESMIN) structure opens up alternate routing strategies with varying tradeoffs. We

assume one such routing approach in our work. Then, we estimate the number of

multicast trees that can be generated for a given multicast problem (i.e., source and

destination list) and an extra-stage design. \Ne discuss the design implications of

the “extra stages” with regard to the multicast attributes, and develop an optimality

criterion for multicast trees in an ESMIN. Thus, enumeration of all the instances

of optimum-traffic tree requires exponential complexity. However, a single instance

of the optimum-traffic tree can be generated in polynomial time. A multicast tree

generation algorithm is proposed towards this.

Figure 6.1(a) gives an extra stage MIN structure constructed by ‘2 X ‘2 switches.

It has N = 2" input ports and N output ports. Unlike n stages in a delta class MIN,

117

118

there are It stages, where h 2 12. Similar to delta MINS, the h stages are placed

horizontally apart, while within each stage there are % switches vertically stacked.

Each 2 X 2 switch can connect in one of the four possible ways (Figure 6.1(b)): straight,

crossed, upper broadcast, and lower broadcast.

h stages, where h = n. + m.

(‘2 x ‘2) switch inter-stage connection

.—4...p—

(1): Straight

2—3 5 . i : ' i : 3 i

3"“; 2 .- 2 2 - —J i s 3‘3 m»:
4 —: : H: :H , H: : * ‘ H: :H 4 _S

5_3 3 ._§ 3_ H H511 Hg :— 5 Crossed

N29257:“? 'éé'éé‘N=‘2"
input switches output :15:

' - ' ' ' ' ports pper

Ports. : 3 . g g : . g g . g g . Broadcast

N H - HH: :-— «‘— : :H . H—fl .; : ’7 7—1 I— N — 4

N — 3— -l_l: 5“ mi El 3— N “ 3

N _ 2_3 L. i a; ; ‘—‘ .i m N _ 2 j *—

N—1HflH - v L»~—a....~l-- lagH N—l Lower
(.'h (7h—l Ch—I G1 =11 ("0 in Broadcast

(a) (b)

Figure 6.1: A generic MIN structure with N = ‘2" input/output ports and h. stages,

where each ‘2 x '2 switch has four connectivity choices.

We consider a multicast communication from a. source node 5 to k. destination

nodes, D,,1 S i S k for k S N. Such a problem is usually characterized using two

metrics: time and traffic [2‘2 . Trafl‘ic is a measure of the local number of messages

generated and passed from one node to another in the system. Time measures the

maximum number of hops taken by the message to reach any destination. Since

several inter—node message communications may take place simultaneously, time does

not measure the total number of messages. Our objective is to develop a multicast

119

routing approach for the general class of ESMINs as shown in Figure 6.1. The actual

connection patterns between the intermediate stages may vary, and the proposed

multicast approach is expected to be generic to the connection patterns given in

Chapter 3, e.g., the perfect—shuffle or the butterfly connection patterns.

6.1 MINS with Extra Stages

Figure 6.1 shows a generic MIN with N input ports and N output ports, where

N = ‘2". It has It stages, Gh_1 to G0. As shown in Figure 6.1, each stage, say 0,,

has % 2 X ’2 switches. The connection between two adjacent stages, G.- and (12-1,

denoted as Ci, defines the connection pattern for N links. Thus, an h-stage MIN can

be represented as

(.'}1(.1'h_1('h_1(jih_~2 . . . (I'0("().

In this chapter, L\"IIN(N) refers to a multistage interconnection network with

N = ‘2" input/output ports and h = n stages. An extra—stage MIN with N = '2"

input/output ports and h. = n + m stages (i.e., m extra stages) is represented as

ESMIN(N:h).

6.1.1 Interstage Connection Patterns

A connection pattern C, defines how those N links should be connected between the N

outputs from stage C,- and the N inputs to stage 63-1. Different connection patterns

120

give different characteristics and topological properties. Note that the connection

pattern between a consecutive pair of stages, including Ch and C0, can vary, and our

study is not restricted to any specific connection pattern. However, the connection

pattern must be a variant of the hypercube derived network, such as binary cube,

perfect shuffle, and butterfly. The links are labeled from 0 to N — 1 at C,. With

N = ‘2" ports, let X = .'r,,_1;r,,_2ro be an arbitrary port number, 0 g X g N — 1.

As specified earlier, the butterfly connection, JP interchanges the zero—th and pth

bits of the index. The value of p is referred to as butterfly dimension or dimension

for short if there is no confusion in the context. Note that 13(0) defines a straight

one—to—one connection and is also called identity connection, I. The perfect shuffle

connection, 71', is defined by

71"(.l'n_1.l‘,,_2 ' ' °‘.l'1.l'0) '2 .l'n_2 ' ' ' .Tltl‘0.l'n_1

71

when N = ‘2 .

An N—port cube MIN (denoted as CU-MIN(N)) is defined as Ch :2 7r and C, = ,3“)

for h —- 1 = n -— 1 Z i Z 0. An Omega network is a MIN(N) with C, = 7r for

h = n > i Z 1 and C0 = I [33]. Such a network is denoted as PS-MIN(N).

121

6.2 Structural Equivalence of different Delta Net-

works

The upper part of Figure 6.2(a) shows a PS-MIN(16). The corresponding lower

part shows a CU-MIN(16). Note that if we have C}, = 71' in CU-MIN, the CU—

MIN is equivalent to the multistage cube network ['32]. With destination-tag routing,

the leftmost stage, Ch, makes no difference between CU-MINs and multistage cube

networks. Thus, we assume C}, = I for both MIN and ESMIN in this chapter.

The PS-MIN and CU-MIN are structural equivalence as shown in Fig. 6.2(a) with

N = 16. The PS—MIN involves perfect shuffle (which is left shifting the bit-id) and

exchange (introducing a 0 or 1 bit at. the least significant bit) operations. A bare

exchange operation corresponds to a dimension-0 toggle (E ‘31) of the CU-MIN. An

exchange followed by a number of perfect shuflles essentially emulates the role of an

intermediate stage dimension toggle of the CU-MIN. A formal proof in this regard

can be carried out, but this property is either well known or can be derived easily

from existing results [31]. Thus, PS—MIN and CU-MIN can be labeled as of equivalent

capability. However, we will show that they differ in their flexibility in extra stage

attachments (see Section 6.2.2).

6.2.1 Design of Extra-Stage MINS

The regular MIN structure can be augmented in a number of ways. First, the destina-

tion nodes can be connected back to the source nodes using cyclical wrap around links.

This class of networks has become popular for high-speed networks [45]. Another de-

_1 Pefgt‘Shuft'Jlflle r__ _I:thra 8.2516 Perfeit1Shufflre_1\:IINr

a O O a O ‘—

E VEVIE‘N' :- Amie; E
W .Viml, l? : A; 4%l, l, l, _—

: a,;(ggy;(r,;(r H :1 VII»)! ((0')), C

:3 Vlitwllt‘ltl' : :ijlllwlllF it”)? :

= mt ._.. :15law 2:1 C :I 6 C:

“we. at .L _ ‘_ 7 L_, Ln. .3 _:

C4 03 C3 02 C2 GI C1 00 C0 C5 04 C4 G3 C3 02 C2 G] C] Go C0

“ H? ‘1 Hrmfl "2
:. VIEW 4 :2” ‘1 \VIIEW“‘ E
: 'ws:H1 — H: duvet-I- ..
: lim- 2 L54 _ —i lll' g .3. a:

:: im- ? r; _2 m. 7 fl:

:1 Jill fly. 6 [_f— 6 Willm‘va‘ ‘:

: Ill-ll“.- : _3‘ A Z All. :

. a. .1, .fi‘ — 7 .. E a. ._Z
c,, G3 C3 02 C2 0, C, Co c0 c5 G4 c4 G3 C3 C2 c2 G, C, Go C0

Structual-Equivalent Cube MIN StructuaI-Equivalent Extra Stage Cube MIN

Figure 6.2: Structural equivalence between (a) PS-MIN(16) and CU-MIN(16) and (b)

PS—ESMIN(16:5) and CU-ESMIN(16:1,3,2,1,0)

1'23

sign extension, in the context of optical passive star based firmware connections, is to

allow dynamic on-line dimension selection in the CU-MIN networks. The multicast

problem in such designs equates to an optimum ordering of the CU-MIN dimensions.

In this chapter we consider a third type of design extension to the MIN structure,

where a few extra stages are added beyond the n stages of the regular MIN. The

extra stages bring forth various advantages and flexibilities, one of which namely the

multicast traffic reduction opportunity, is the focus of this chapter. Figure 6.2(b)

shows two ESMIN designs, the upper part using perfect shuffle connectivity (PS-

ESMIN) and the lower part using butterfly connectivity (CU-ESMIN).

We note that the ESMINs can offer significant advantages at the expense of limited

design overheads. First, we discuss the overheads and then list. out some of the

advantages.

The only design overhead in an ESMIN is the hardware cost of the extra stages.

Packing density of VLSI technology allows a large number of switch components to

be put in a. single chip. Thus, a. number of extra stage switches and their intercon-

nections may be expected to be packed in a single chip. Note that the number of pin

connections (i.e., input and output nodes) to the chip remains identical regardless of

the number of stages.

The number of hops between a source node and a destination node increases in the

ESMIN design. A regular MIN with n stages involves n hops, while an ESMIN with

h. = n + m. stages would require m extra hops. This additional hops delay may indeed

be an overhead with store-and-forward routing. However, with recent cut through

switching or similar approaches (e.g., wormhole routing, ATM cell flow), this delay

1124

becomes insignificant. Note that in cut through switching, the overall delay becomes

largely insensitive to the number of hops [‘24], and therefore, no significant routing

overhead is expected with ESMINS.

ESMINs can offer a wide range of advantages which basically stem from the num—

ber of alternate paths that. are generated due to the extra stages. These alternate

paths have been explored in the context. of hot—spot reductions, fault—tolerant MINS,

and congestion controlled traffic flow. Detailed discussion along this line is beyond the

scope of this chapter. In this chapter, we exploit a similar advantage of the “alternate

paths” in the context of generating multicast. trees.

6.2.2 Design Choices

In principle, an ESMIN can be designed with any connection pattern between its

stages. An (h. = n + m)-stage ESMIN can have the first n stages of the butterfly

patterns and the remaining in stages of the shuffle pattern, or vice versa. For the

sake of simplicity, we assume that one single connection pattern (e.g., either shuffle

or butterfly) is followed over the (n + 7n) stages. Thus, among the butterfly and PS

patterns, we could either have a PS-ESMIN(.’V:n + m) or a CU-ESMIN(N:n + 7n).

Two sample (4+1)-stage ESMINS are shown in Figure 6.2(b).

Between a PS-ESMIN and a CU-ESMIN, we show that the latter has an added

flexibility. Specifically, a CU-ESMIN can have any dimension at any of the ‘extra’

stages. However, the PS-ESMIN must retain a periodicity among its effective dimen-

sions. Figure 6.2(a) shows a PS—MIN(I6) and its equivalent CU—l\r‘IIN(16). The cor~

1‘25

respondence between the shuffle-exchange stages and butterfly dimensions are shown

using double arrowed lines. Now, an extra stage is added to the 4-stage shuffle in Fig-

ure 62(1)). The effect of the last stage is shown using an equivalent CU—ESMIN(16:5).

Normally, if an extra stage is added to a CIT-MIN, the extra stage can be assigned

to anyone of the n —1 dimensions except dimension 0 (i.e, 5(0) : 1). However, ifextra

stages are added to a PS—MIN, the effective repeat dimension occurs cyclically, i.e.,

a fixed dimension. In other words, for a CU-ESIV’IIN(8:3+‘2), suppose its first three

dimensions are 2,1,0. The other two dimensions can be any one of the two nonzero

dimensions. For example, the 3+2-stage CU-ESMIN dimensions can be (2,2,2,1,0),

(1,2,,2,1,0), (1.1.2.1,0). etc.

Thus, for an N-port and h—stage CU-ESMIN, it is represented as CU-

ESMIN(N:C;,_1, (3,4, . . . , CU) in order to show the butterfly dimension at each stage.

Note that Co must be "3(0); otherwise, not all (.lestinations can be reached. On the con-

trary, a 3+2—stage PS-FSMIN would always be equivalent to CI_I—ESI\'IIN(8:‘2,12,1,0).

The periodic sequence (2,1) and fragments thereof would always be the ordering.

Hence, we observe that for ESMINs, the CU-ESMINS offer an added degree of

flexibility over PS-ESMINS, because the extra stages in PS—MIN are apparently re-

stricted in their dimensional roles. However, if similar extra stages are added to a

CU-MIN, the extra stages can assume any dimension - which is an added degree of

flexibility.

From Figure 6.2 and the discussion above, we observe that a PS-ESMIN must

include a periodicity in its effective dimensions. Thus, a PS-ESMIN(16:1‘2) can be

considered equivalent to the CU-ESMIN(16:2,1,3,‘2,1,3,‘2,1,3,‘2,1,0). However, the 122-

1‘26

stage CU—ESMIN(16:12) could have had other dimension choices. In other words,

the 1‘2—stage PS-ESMINUfizl‘Z) is necessarily an instance of the 112-stage CU-ESMIN.

While the latter could have any dimension pattern, a particular pattern of the latter

equates that of the former.

In this chapter we consider the generic CU—ESMIN for most illustrations and proof

techniques. Since the PS—ESMIN is a particular instance of CU—ESMIN, the PS—

ESMIN shares an identical set of properties. Similarly, in the performance section we

report the simulation results for various dimension patterns of the CU—ESMIN. One of

these dimension patterns. ”we have so chosen, that it fits the periodicity requirement of

the PS-ES'A’IIN. In this way. we also report the simulation results for the PS-ESMIN

(refer to “Pattern l” in Section 6.5).

6.3 Multicast in Extra-Stage MIN

Unlike regular MIN, routing in ESMIN is no longer a trivial issue. A number of

alternate routing styles may be adopted with varying tradeoffs. In this chapter we

adopt one of these alternatives. For an ESMIN, the number of alternate multicast

trees grows exponentially with the number of extra stages. Among these exponential

numbers of multicast tree alternatives, an equally large (in order notation) number of

multicast trees can be considered as traffic-optimal. A traffic-optimal multicast tree

is a multicast tree with a minimum number of channels used. Therefore, enumeration

of all traffic-optimum multicast trees requires an exponential complexity.

However, though there are exponential number of traffic optimal multicast trees,

127

a single traffic-optimum multicast tree can be derived in polynomial time. The next

section develops an algorithm which can yield a traffic-optimum multicast tree in

polynomial time.

6.3.1 Alternate Routing Styles in Extra-Stage MINS

Routing in a regular MIN is a trivial issue (since path unique) and requires little

attention. However, routing in ESMIN no longer remains so simplistic. An example

of conventional routing (source ‘2‘ destination) is given in Figure 6.3. In this figure,

part (a) shows the XOR routing on MIN(8) and part (b) shows the XOR on CU-

ESMIN(8:PS’,2,1,‘2,1,0). in which a source node 1 to destination node '2 routing is

required. The XOR routing tag is .r.r011, where .r can be either 0 or 1, since the

first two stages are extra, but the conventional routing (source LE destination based)

leads the message to destination 4, 5, 6, or 7 instead of ‘2 as shown in part (b).

This is clearly a malfunctioning of the traditional routing (source Ha destination), and

requires further modifications.

We have identified a fair number of alternatives, among which two routing

styles (namely, the “destination routing” (DR), and exclusive—OR with LSB fixing

(XOR—HEB) can provide successful routings in ESMIN. In the remainder of this

chapter, the DR approach (pseudo—code given in Section 6.3.2 below) is used.

1The XOR works on MIN only if the rightmost connection is a perfect shuffle pattern and the

destination routing has no such constraint.

Figure 6.3: An example of the inadequacy of the traditional routing approach (source

613 destination): A source node 1 to destination node 2 route does not lead to the

right destination.

6.3.2 Distributed Routing and Multicast Implementation

A message multicast (which includes routing, as a special case) in an ESMIN is

initiated by the source node. The message sent by a source node contains a routing

tag set and data . Let a be the number of routing tags for a message. It is k in

the source node and will gradually decrease as the message progresses through the

stages, i.e., in every split, towards the destination. Let t,,,- be the routing tag for the

destination 0,, 0 S i S k-l and 0 S J S h—l and t, be the vector {tm-IO S J S h—l}.

Note that ti'j bears the following interpretation to the intermediate stage switches:

0 go up (port. 0)

1 go down (port 1)

I go either up or down at random

s go straight to the next switch in the same row

The source node generates the t,,, tag values using the following destination-

address based multicast algorithm (set h = 1 in this to obtain the DR algorithm).

Procedure Destination-address-based Multicast

I. Lettg’jZCB,OSjSh—I,OSiSk—I

2 Let {6,=g|C9_1:;’3, andC,7é[3jfor0Si<g—l },OSan—1

3. Lettiéjr—did‘,OSjSN—I,OStSk—I

Once the tia’ tags are generated by the source node, these tags are used by the

switches at the intermediate stages to derive the multicast (or routing) path. The

routing algorithm for a switch on stage C), h — 1 2 j Z 0 is specified in the following.

A final comment applies to the distributed nature of the above DR approach.

Strictly speaking, the above approach is not completely distributed, since the source

node pre—calculates the entire multicast (or routing) path. The very mechanism of

calculating all the tags at the source node itself is an instance of non-local decision

making (hence centralized). However, the intermediate stage switches operate in

a distributed fashion, which makes the overall algorithm a mix of distributed and

centralized fashions.

This apparently centralized decision making at the source node has other advan-

130

Input: A message contains a set of routing tags, T = {t,|0 S i S a — 1 },

and data.

Output: Data and two disjoint routing tag sets, L and U, for output

port 0 and 1, respectively.

Procedure switch

Let a = IT], U = fl) and L = fl)

If'lo'j '2 S then /* all lg,j,0 S I S 0’ — 1, Will be S */

if (port 0 connects to the next switch in the same row) U = T

else L = T

else if t0,j = :1: then /* all t,‘J-,0 S i S o — 1, will be .r */

for each t,,0 S i So—l

Append t, into either U or L at random

else /* ti‘j,0 S i S o — 1 will be either 0 or 1 */

for each t,,j,0 S i S o —1

if t,,j = 0 then U = U U {t,}

else L = L U {ti}.

endif

if U 75 (ll then send U and data to output port. 0.

if L 7f 0 then send L and data to output port 1.
tages, e.g., eliminating complex processing (and/or possibly table lookup operations)

at the intermediate stage switches. This issue, reflecting the traditional tradeoff

between truly distributed algorithms vs the run—time processing complexity at inter-

mediate nodes, is left for future studies.

6.3.3 Number of Multicast Trees: Upper Bound

Let CU-ESMIN(N : h) have n-dimension, where n = loggN and h 2 n, and dimension

i repeat c,, c, 2 l and 0 S i S n — 1, times. For h = n, it is a CU—MIN and all c,s

equal 1. When h. > n on a PS—ESMIN, c, = [g] + .r, where .r = 1 for i Z n — (h mod

n) or a? = 0 otherwise. Note that such closed form expressions cannot be derived for

CU-ESMINS, due to the “dimension assignment flexibilities at the extra stages.”

131

Let us consider a particular destination Dj, among the k. destinations (0 S j S

k — 1). Based on the destination 0,, a particular dimension i may be a 1 or a 0. We

list these two cases in the following:

1: At the latest stage that corresponds to dimension i, the route must go up. At

all other ifh dimensional stages. the route may go either way, i.e., up or down.

This leads to 2‘“—1 ossible)aths.
P I

0: At the latest stage that corresponds to dimension i, the route must go down. At

all other dimension i stages, the route may go either way. This also leads to

‘2“‘1 possible paths.

Therefore, for dimension i, the route has 2“"1 flexibility. Hence, for all the n

dimensions (regardless of whether they are ‘1’ or ‘0’), a maximum of 112:0] 12C"l (2

2"”) routes can be formed. For ls destinations. an upper bound on the multicast.

trees is

(Zh—n)k

6.3.4 Multicast Tree Selection Criteria

An optimality criterion is proposed, in multicast tree selection, with primary focus

on the ‘traffic' and ‘time’ metrics. The ‘time’ metric, for an ESMINUz), would always

equal h. Thus, there is no opportunity for "time' reduction (besides the fact that with

cut-through switching the ‘time’ metric or hops-count largely loses its significance).

132

Therefore, we equate traffic minimization to the optimality criterion of multicast tree

selection. This is stated as follows:

Given an ESMIN of n + m stages, a source node 5' and k destinations

(01,0 S J S k — I) generate a multicast tree that minimizes the total

number of tree edges.

6.3.5 'IYaffic Optimal Multicast Trees

The number of possible multicast trees grows exponentially with extra stages, and

so do the number of traffic-optimal multicast trees. To verify that there are an

exponential number of traffic-optimal multicast trees, Lemma 14 and Theorem 5 are

given as follows:

Lemma 14 There are ‘2’" alternative paths for every (source. destination) pair of

nodes in an ESE/WIN with. 772 extra stages.

Proof: This property has also been proven in [46] and a brief description is

given as follows. Let the routing code, with destination routing, be .r0r1:r2....rh_1,

where .r, is 0 or 1 in a ‘2 x ‘2 switch. To achieve a certain destination, we know all

those later dimensions (I, must be either 0 or 1, which match to the corresponding

destination bit i, 0 S i S loggN — 1. Hence, logz N bits are decided by the destination

node but not the other m bits. Hence, there are '2’" possible routing codes to

achieve a destination. In other words, there are ‘2’" alternative paths for any (source,

destination) pair. D

133

Theorem5 There are at least 2’" optimal multicast trees (OMTs) for any

source destination set ' air on ESilrI/N with 772. ertra sta es.
9

Proof: From the Lemma 14, there are ‘2’" alternative paths to achieve the first

destination node from the source. By the latest branch algorithm (step 2 to 4), we

can construct one OMT from every one of these paths. Hence, there are at least ‘2’"

OMTs for any source/destination set pair on ESMIN with 172 extra stages. C1

The exact number of OMTs is dependent on the destination set and the location

of the latest stages with different dimensions. For example, let the second stage be

the latest stage for dimension j, 1 S J S n — 1, and there be two destinations .r and y.

Furthermore, let .r and y be distinguished in the f" bit. To achieve both .r and y, the

path must branch at. the second stage. After stage ‘2, there are m — 1 extra stages or

‘2'"‘1 alternative paths to achieve both destinations. However, these two alternative

path sets are inch-*pendent of each other. Hence, there are 22(m‘1l combinations after

the second stage. The first stage also has two alternative paths to achieve the second

stage. Hence, there are ‘2 x 22(m’”, or 22”“1, OMTs.

An example of CU—ESMIN(8:5) is given in Figure 6.4 and 6.5. The source is 0 and

destination set is {1, 3}. Figure 6.4 gives a CU-ESMIN(8:1,2,1,‘2,0). The number of

OMTs is ‘2’" which is 4 as shown in the figure. In Figure 6.5, the dimension pattern

is (1122). The destination 1 and 3 are distinguished at bit 1. The multicast tree

splits at the second stage. After this stage, there is one extra stage which implies two

alternative paths for every path. Hence, there are 4 combinations. Since there are

134

two alternative paths at the first stage, there are 8 (:22x2—1) OMTs.

7

1| Iv IVs-AV.

= b. 'It.

-I-

wit-

Figure 6.5: The eight optimal multicast trees in an ESMIN(8:1,1,‘2,2,0)

6.4 Multicast Algorithm

This section describes a multicast tree generation algorithm and shows that it can

generate a traffic-optimum multicast tree in polynomial time. This algorithm applies

generically to PS-ESMINS as well as to CU-ESMINS, and in our discussion we inter-

changeably use illustrations from both types of ESMINS. Note that the PS-ESMIN is

merely a specific instance of the CU-ESMIN, and assertions for the latter imply the

same for the former.

135

We also propose three other multicast heuristics that are non-optimal. These

heuristics are compared with respect to the optimal algorithm in the simulation per—

formance section.

6.4.1 Latest Branch Multicast Algorithm

The key point of this algorithm is to branch the message as late as possible. In a

formal way, let. us consider a CU—ESMIN(:’V : h). The algorithm is specified as follows:

when the destination id has a 0 (1) at dimension J implement going up (down) at

the latest (rightmost) dimensional j stage, where 0 S j S n — 1. At all other stages,

go straight to the next switch in the same raw.

The latest branch multicast algorithm (LB) can be implemented in the following

way:

Step 1: For each c, > 1 (0 S i S n — 1) mark the non—latest stages concerning

dimension i as ‘null‘ stages. For every stage marked ‘null,’ eliminate the cross

links and only keep the links that connect within a switch row.

Step ‘2: For every ‘null’ stage (also called horizontal") the message is simply for-

warded by the straight link to the switch within the same row at the next stage.

For every non—null stage, i.e., the latest stages (one per dimension), implement

a going up if the corresponding destination bit is 0; otherwise, implement a

going down.

Let the ESMIN be represented by enumerating its dimensions, and let a

stage marked ‘null’ be labeled as (b. An example LB multicast in a CU-

136

Dimenosion—9

Iv‘I'I'I.2ng ”1"... v D“

I‘IH'I“Illlilll - _IiII. D

IvI“IIf!III-Ill::Iv'l . WI, [l

I. _j
I‘94-» U Iv’ililll m a

H 't It :4
I‘m/ll] 2% IMIIi' I u u g

mll4 3.e-:71 Ufl‘ilillm u ..

(36 (2) "a" (b) (c)

Figure 6.6: Latest-Branch multicast algorithm illustration: a) CU-

ESMIN(16:1,2,3,3,1,1,0), b) Construction of the CU-ESMIN1 by seeking the

rightmost occurrence of each dimension and marking the remaining stages as

‘horizontal.’ Horizontal stages merely carry—forward the data. c) Example multicast

in the CU-ESMINI.

ESMIN(16:1,‘2,3,3,1,1,0) is shown in Figure 6.6. The LB algorithm marks the

non—latest positions for each dimension as ‘null’. i.e., converts the CU-ESMIN as

(null,2,null,3.null, 1,0), as shown in Figure 6.6b. Then, the CU-ESMIN is merely

a regular MIN (with a few extra ‘straight’ stages) in which multicast can be done

trivially, e.g., Figure 6.6c.

Pseudo Code

A general LB algorithm to generate any one of those exponential optimal multicast

trees is expressed as follows:

A restricted LB algorithm, to generate a unique multicast tree as discussed in the

previous part of this section and to be referred to as LB in the following text, can be

obtained by revising the first step to

137

Procedure latest branch multicast

1. Let toy 2 be 0 or 1 at random, 0 Sj S h — 1

/* This gives one of those 2’" possible paths for the source node to

the first destination */

Let l,"j:l0,j, lSlSk—I aHCIOSJSh—l

Let {Q- :g|Cg_1 =I'3, and C,;ét3j forOSi<g—1}, OSan—l

Let.t,,g]=d,,J-, OSiSh—landOSan—lA
W
N
?

Lett0,J-=s,0SjSh—l.

6.4.2 Optimality Proof and Complexity

Theorem 6 The latest branch algorithm generates the optimal traffic multicast tree.

Proof: Let h be the number of total stages, h = n +m. The stages are numbers

1, ‘2, ,h from left to right (source node to destination nodes), respectively. we

prove the above theorem using induction.

Base case: |D| : 1 or ‘2: The MT constructed by the latest branch algorithm is

optimal.

Inductive Hypothesis: Assume that |D| = k — 1 is true and the optimal tree is

GOIWT(Sia D") (”vb

Induction: |D| = k:

Let swl be the latest branch switch that GOMflS, D’, C') can achieve the destination

dk and construct a MT GMT(S, D, C‘). Let .3102 be any other branch switch by

138

which GMT(S, D', C’) can reach dk and use fewer channels. Name this multicast tree

CMT(S, D, C”). Let swl be at stage stl and 8102 be at stage st-z. Based on the latest

branch algorithm, we have st, 2 Stg.

It is trivial that the path from st; to stn has n — stg channels and the path

from st, to st, has n — stl. Since stl 2 st), it is impossible that n — st, > n — Stg.

This contradicts the assumption that GMT(S, D, C”) has fewer channels than

CMT(S, D, C"). Therefore, the CMT(S', D, C‘) is an optimal multicast tree. D

Complexity: The first, second and last steps in the LB algorithm are repeated

h, h X (h —— l) and h X k times, respectively. In other words, the complexity is 0(h X k)

for these three steps. To find the rightmost ith dimensional stage, 0 S i S n — 1, it

takes at most h steps. Therefore, the complexity of the 3rd step is also 0(h X 1:).

Hence, the complexity of the LB algorithm is 0(h X k), which is, indeed, a polynomial

algorithm.

6.4.3 Other Sub-Optimal Multicast Heuristics

The LB multicast algorithm is traffic—optimal and its performance would be identical

to the exhaustively generated optimum solutions. Hence, a question arises as to the

basis of comparison for the proposed LB algorithm. Towards this, our idea is to

compare the LB algorithm with what the current practices might be.

In the absence of our optimal multicast algorithm, and since there is no prior work

on ESMIN multicast, current applications would use either a. random dimension (RD)

139

selection approach or a first-available (i.e., greedy) approach to dimension selection.

These lead to three heuristics, First-Branch (FB), Random Branch (RB) and Random

Mapping (RM), which may not always generate traffic-optimal multicast trees. Their

performance is compared the LB algorithm in the next section.

First-Branch

Instead of selecting the latest stage for each dimension, the FB approach selects

the earliest stage for effecting each dimension. All non-earliest dimension stages are

masked off and messages are simply forwarded to the next stage within the respective

I'OVVS .

In other words, for each dimension i that has a 1 in the destination id, the FB

approach would go up at the leftmost stage occurrence of dimension i. In all other

non—leftmost occurrences of dimension i, the message would be forwarded straight.

Alternately, if the destination node had a 0 bit at dimension i, then the FB approach

would go down at the leftmost stage occurrences of dimension i. At all other non-

leftmost occurrence of dimension i, the message would be forwarded straight. The

tag generation mechanism for the FB approach is described below.

Procedure first branch multicast

I. Lettm-zs,OSiSk—landOSjSh—l

/* ‘3’ indicates “go straight to next switch in the same row” */

2. Let {f,=g|C9-1=BjandC,-;£flj forg<iSh—1 },0San—1

3. Lett,,f,:d,,j,OSiSk—landOSan—l

140

Random Branch

This heuristic is a generalization of the LB algorithm. The LB algorithm enforces

the latest stage, for each dimension, to account for going up (down) depending on

whether the destination node had a 0 (1) bit. In addition, the LB algorithm also

mandates going on the same path as the previous one, if any, at all the non-latest

dimensional stages.

The RB approach generalizes the above second component of the LB approach.

Thus, while it requires the latest stage to emulate the LB approach, the RB ap-

proach does not restrict the non—latest dimensional stages to ‘straight’ configurations.

Each one of the non—latest switches can be in an up or down configuration and this

configuration can be chosen randomly.

It can be shown that. due to this random non-latest stage configuration, the RB

approach can lead to blocking. i.e., unsuccessful multicast efforts. Figure 6.7 gives an

example of a blocking situation. It is a CU-ESMIN(8:2,1,2,2,0) with source node 0

and destination {6, T}. The path splits at G4 and tries to compete with the others

for the lower output port at (:'1. Since a switch has no ability to merge two messages,

this multicast tree is blocked at the shadow switch.

Random Mapping

The random mapping (RM) approach can be viewed as a generalization of the FB and

LB approaches. Each one of the FB or LB approaches implemented effects dimen-

sional transfer at one and only one stage per dimension; so does the RM approach.

"\F

tic \
/\ J

Figure 6.7: An example of blocking in multicast tree construction by the RB algo-

rithm.

\
1

~——6

—7

Procedure random-branch multicast

I. Lett,,j=$,OSjSh—I,OStSk—I

/* ‘1'” indicates “go either up or down at random” */

2. Let {cijzgng_1=BjandC,7‘-fljfor0Si<g—1 },0San—1

3. Lett,,,5]=d,,,,0San-l,0SiSlc—l

All redundant stages for each dimension merely carry the message ‘straight’ within

a switch row for FB, LB, as well as RIV'I. The FB approach selects the dimensional-

transfer stage at the first or leftmost stage for every dimension, while the LB approach

selects the same at the last or rightmost stage for every dimension.

The RM approach does not make a deterministic selection decision either at the

first stage or at the last stage. Instead it randomly selects any single stage per

dimension. Thus, suppose that in a CU-ESMIN dimension 2 is involved at stages C9,

G6, G3 and C1. The LB approach would select the stage G1; FB would select stage

Cg; while RM can select any one of the four stages. The pseudo—code for the RM

approach is given below. Note that two specific instances of the RM approach equate

to the FB and LB approaches respectively.

142

Procedure random mapping multicast

I. Letlg.j=8,0SlSh—I

/" ‘s indicates “go straight to next switch in the same row” */

2. Let C,- = {g (79-1: [3,,0 S g S h — 1 and 0 SJ S n — 1}

3. for each C,,0San——1,do

3.1. Let r,- be the randomly chosen element in C,

4. Lett,.,.)=d,,,,OSiSk—landOSan—l

6.5 Performance

This section presents the simulation performance of the proposed LB multicast algo—

rithm. It is compared with the other three heuristic algorithms proposed in Section

6.4.3.

6.5.1 Simulation Description

This simulation considers a CU-ICSMIN(64:10). The dimension assignment of each

stage is varied following a number of patterns; in fact, one of these patterns

“(5,4,3,2,1.5.4,3,2.1)” makes the CU-ESMIN equivalent to a IFS—ESMIN - thereby

also allowing us to effectively report performance of all algorithms over PS—ESMIN.

The source node. is node 0, without loss of generality. The number of destinations is

varied between 2 and 64 in steps of l to capture the entire range of destination set

size. Traffic is equated to the number of channels that carries a copy of the message.

Both the LB algorithm and FB, RB, RM heuristics are operated with 500 randomly

produced destination nodes within each destination set. size.

143

6.5.2 Dimension Patterns and Output Parameters

Each one of the ten stages can be assigned to any one of the 5 butterfly dimensions

(1 through 5), with the constraint that each dimension must be assigned at least

once across the ten stages. Thus, the total number of different dimension patterns

that can be generated is very large (somewhat less than 510) and cannot be exhaus-

tively attempted. Instead, we selected six commonly occurring patterns, as listed

in Table 6.1. Note that the first pattern configures the CU-ESMIN in a way that

it is structurally-equivalent to a PS-ESMIN. Thus, the result generated for the CU—

ESMIN with pattern I would also be applicable as the performance with respect to

the PS-ESMIN.

Table 6.1: Patterns of this study

pattern Butterfly pattern of each stage

1 5 4 3 2 1 5 4 3 2 1

2 1 1 2 2 3 3 4 4 5 5

3 5 5 4 4 3 3 2 2 1 1

4 1 2 3 4 5 5 4 3 2 1

5 1 2 3 4 5 5 5 5 5 5

6 1 2 3 4 5 1 1 1 l 1

Output Parameters: we report the ‘traffic’ parameter (T) as the average num~

ber of channels used. T is used to report comparative performances between the

optimum LB algorithm and two other heuristics: FB and RM. However, the third

heuristic (RB) can block, i.e., lead to unsuccessful multicasts. Hence, we report the

blocking rate of the RB approach only. Blocking rate, B, is defined as the probability

that RB will be blocked while constructing a multicast tree or

144

number of trials with success MT construction

8:1—

total number of trials

6.5.3 Plots and Observations

Plots for the T and B metrics are shown in the following. As mentioned before, the

Pattern 1 also includes the case for the IDS-ESMIN and thus the curves in the plots

corresponding to “pattern 1" should be viewed separately to sense the performance

for the PS-ESMIN.

300 r l I

N 270 -

till 240 -

L2 210 +—

r 3

(f, 160 _ .

C 150 _ pattern 1 4)—

jh 120 _ pattern 2 +— a

a pattern 3 B—

3 90 r pattern 4 —><—— "

e 60 _ pattern 5 A— _

fl pattern 6 +—

s 30 —.. _

l 1 l l J l l l l l l l l l

0

l

0 4 81216202428323640444852566064

Number of destinations

Figure 6.8: The number of channels used in the first branch algorithm.

Figures 6.8, 6.9 and 6.10 show the T values for the FB heuristic, the LB algorithm

and the RM heuristic, respectively. For pictorial clarity, not all the x-axis points have

been highlighted on the respective curves using pattern identifiers, though the data

values from those points have been followed in the curves.

m
—
w
s
s
w
r
a

~
1
0
e
m
u
-
5
:
2

145

I l I I I I I I T I I I I n r ‘3

3

— -I

i?

— a

— pattern 1 <>— -

pattern 2 +—

_ pattern 3 B— _

pattern 4 —><—

pattern 5 A—

“ pattern 6 4— ‘

l l l l 1 l l l l l l l l l l

0 4 8 12 162024 28 3236404448 52 5660 64

Number of destinations

Figure 6.9: The number of channels used in the latest branch algorithm.

3
:
2

(
I
i
—
0
5
2
3
9
3
7
0

H
-
a
O

"
N
'
D
U
"

—
‘

T l I l l l l l l l l I I l 1

._ A _.

A

A s5 3:.—

- A /§i/. _

_ :r/a pattern % 9— —

A ‘3 pattern +—

— ' / pattern 3 B— -

’3- pattern 4 —><—

- pattern 5 A— “

pattern 6 +—

i l l l L l J 1 l l J l i L l l

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Number of destinations

64

Figure 6.10: The number of channels used in the random mapping algorithm.

146

As shown in Figure 6.8, patterns 2 and 3 have similar performance. Patterns 1, 4,

5 and 6 also have closed performance on the FB heuristic. Patterns 2 and 3 have fewer

channels used since the other patterns split the message in the first. 5 stages. For the

LB, patterns 1 and 4 as well as patterns 2 and 3 have the same performance because

of the similarity of these patterns. For patterns 1 and 4, the LB only uses 6 channels

in the first 5 stages — 5 to connect the stages and the other one to connect the source

node to the first stage. At the rightmost. 5 stages, pattern 1 is the same as pattern 4.

Therefore, they have the same T metrics. The even distribution of destinations made

patterns 2 and 3 have similar performance. However, this result does not consider

the locality of processing nodes. Depending on the locality, pattern 3 and pattern 4

may have entirely different performances. In the RM, the performance of patterns

(1,4) is like that of patterns (2,3). Pattern 5 and pattern 6 are slightly different due

to the location of extra. stages. In general, the later the message splits, the fewer the

number of channels used.

Figure 6.11 shows the B metric for the RB heuristic. The blocking rate is over

20% when there are more than 10 destinations and 40% when there are 20 or more

destinations for every pattern. This result. suggests that. the RB algorithm shall not

be used even though the number of destinations is small. Otherwise, an intelligence

switch, which is able to merge two messages with different routing tags but identical

data, is needed to improve the blocking rate. The T metric for the RB heuristic is

not reported since the RB heuristic does not always lead to successful multicast.

T and also B increase with an increasing number of destinations in all the cases,

and this can be trivially expected. However, due to the channel saturation effect, the

147

rate of increase gradually decreases with an increasing number of destinations.

The blocking rate of random branch algorithm

1 I I I I " 4‘3"” I .'1—,3.

0.8 - d

P

e

r _
C 006 .-

3 pattern 1 e—

t pattern 2 +—

a 0‘4 5 pattern 3 B— ‘

g , pattern 4 —><—

6 pattern 5 A—

0.2 - / pattern 6 +— ‘

"'/ 1 4 1 1 1 1 1 1 1 1 1 l I 1

0 ,

0 4 8 12 162024 28323640444852566064

Number of destinations

Figure 6.11: The probability of blocking in random branch algorithm.

Figure 6.12 compares the T metric for the optimal LB algorithm and FB, RM

heuristics. It is easy to observe that the LB leads to the least traffic; RM leads to the

next least; and FB gives the highest traffic. which is due to the fact that LB is optimum

and RM is an intermediate generalization between LB and FB. Not all patterns have

been reported in Figure 6.12, since some ofthe patterns lead to overlapping results. At

this moment we are not reporting inter-pattern traffic variation analysis; however, we

believe that the traffic generated has strong correlation with the dimension pattern.

6.6 Summary

In this chapter, we discussed the establishment of a multicast tree in the ESMIN,

which is an extension design of regular MINS. The ESMIN provides several advan-

tages, such as a flexible routing path, fault tolerance, etc. The ESMIN multicast

300

N 270

$3 240

*3. 210
T

0 180

f 150
C

h 120
a

n 90
I]

<13 60

S 30

0

Figure 6.12: The number of channels used in three non—blocking algorithms.

problem is formulated and an optimality criterion is defined. An upper bound on the

number of multicast trees is estimated, and we have shown that the total number of

traffic-optimal multicast trees may itself be exponential. However, a. traffic—optimal

multicast tree can be generated in polynomial time. The proposed latest branch

FB _-

' Rh — -

pattern 1 *

pattern 3 0

pattern 5 o
.-

”

’—

'

 1 ,

0 4 81216202428323640444852566064

 I I 1 l I I l L I l I I I I

Number of destinations

multicast algorithm can achieve this.

When multiple multicast communications occur simultaneously, deadlock becomes

possible as shown in Chapter 4. Hence, some systems rely on unicast—based multicast,

or software-based multicast. How to support an efficient software—based multicast on

such systems will be discussed in the next chapter.

CHAPTER 7

Software-based Multicast

Most existing message—based SPCs support. only unicast communication, that is,

single-destination message passing. in hardware. In this envirom‘nent, multicast must

be implemented in software by sending unicast messages. One way to implement mul-

ticast in such systems is separate addressing in which a separate copy of the message

is sent from the source to every destination. As the number of destinations increases,

this separate addressing may require excessive time. An alternative approach is to

use multicast tree in which the source sends the message to only a subset of the desti—

nations. Each recipient of the message forwards it to some subset of the destinations

that have not yet. received it. The focus of this chapter is on such multicast tree

implementation, also known as unicast-based multicast implementation.

7.1 Issues in Multicast Communication

Although hardware implementations of multicast communication would intuitively

offer better performance than software implementations, many such implementations

149

150

exhibit either undesirable properties or are restricted in their use. The NEC Cenju-3

claims to provide restricted multicast in hardware with the limitation that all desti—

nation addresses must be consecutive. This restricted multicast is called single region

broadcast. Unfortunately, single region broadcast is not deadlock free unless only one

does multicast at a time. A deadlock example is illustrated in Figure 7.1, where a

shadow switch indicates that a message is blocked by the other in that switch. In the

initial instance, given in Figure 7.1(a), nodes 0 and 5 initiate multicasts while two

unicasts, node 1 to node 5 and node 4 to node 2, are transmitted in the network.

Hence, both source nodes grab partial destinations. After both unicasts are com-

pleted, as shown in Figure 7.1(b), each source node grabs half the number of nodes

and waits for the other half to become available, deadlock occurs.

0 0 O 0

I-..... —_ 1 1 _1 -I‘ _

2 '..-' “a. I""" 2 2— ’-<:- 2

~ ‘~ 3 —— t - - 4r- 3
4 —‘, - ‘ "‘ - 4

5 " - "' " -" " 5

6 next, -.
\

7 —. — — u‘ —I— — 7

(21) Initial instance (b) Final instance

Figure 7.1: An example of deadlock in single region broadcast.

Although some deadlock-free multicast algorithms were proposed [25, 47, 48, 49],

most existing wormhole—switched SPCs support only unicast communication in hard-

ware. In these environments, all communication operations must be implemented in

software by sending one or more unicast messages. One main issue is to develop

an efficient multicast tree. Which type of multicast trees to use depends on the un—

derlying switching strategy and unicast routing algorithm. An efficient multicast tree

151

should involve no local processors other than the source and destination processors,

should exploit the distance—insensitivity of wormhole switching, and should maintain

a minimum height, specifically, height I: = [log2(m)l for m. — 1 destination nodes.

Another desirable property is that there be no channel contention among the con-

stituent. messages of the multicast. That is, the unicast messages involved should not

simultaneously require the same channel.

How to achieve these goals depends on the network topology, switching strategy,

and unicast. routing algorithm of the SPC. The issues and difficulties involved in

implementing efficient multicast communication in unidirectional MINS is illustrated

in the following (small-scale) example. Let’s consider an 8-node multistage cube

network built. with 2 x 2 switches. Suppose a multicast message is sent from source

100 to all other nodes, {000, 001, 010, 011, 101, 110, 111}. Figure 7.2(a) shows a

binary multicast. tree. At. step 1, the source sends the message to node 000. At step 2,

nodes 100 and 000 inform nodes 110 and 010, respectively. Continuing in this fashion,

this implementation requires 4 steps to reach all destinations. Taking advantage of

the distance insensitivity of wormhole routing, the duration of each step must be

approximately equal to the duration of a single unicast transmission of the message.

In other words, it should be correct to assume that each step requires unit time as

long as there exists no channel contention among the messages transmitted during

each step. For this reason, the multicast latency in Figure 7.2(a) is 4 time steps. In

Figure 7.2(b), the shape of the tree is rearranged in such a way that the number of

steps to complete the tree can be reduced to 3. However, closer inspection reveals

that the message sent from node 100 to node 001 and the message sent from node 000

152

.100 ..1 x4111- \g A” $21,331

[We as“ W1 We
0)0 001 101

“1 0)O 101 111

M31
011

000 """ 000

001 - 001

010~ 3— 010

011 - 011

100-‘ '— 100

101‘ :l- a 101

110 I] ‘ - - 110

m m ‘ - 111

(a) A binary multicast tree (b) Potential channel conntension in step 2

2t t

3t ,3“ <6 [11"1V~&]

my 4t k A [2]

:31on 001‘ 110 [W421] 1&3] 101

)01 010 011 910 00 111

(c) Potentional depth contention (d) Contention-free multicast tree

""" Transmission in step 1 —‘ Transmission in step 4, if any

—— Transmission in step 2

_ - _ Transmission in step 3 Potential contention channel

Figure 7.2: Unicast—based software multicast trees

1 53

to node 010 in step 2 use two common channels. The contention for those channels

would force one message to block the other from using the channel. Consequently,

these two unicasts cannot take place during a single time step. As a result, the

multicast latency in Figure 7.2(b) is actually larger than 3 time steps.

This situation is rectified in Figure 7.2(c), where the messages sent within a par-

ticular time step do not contend for common channels. Contention among messages

sent in different steps may still arise, however, if the message length is small and the

sending latency is large. For ease of explanation, we model the sending latency 2t and

the receiving latency t. The length of the multicast message is chosen in a way that

its network latency is t. As shown in Figure 7.2(a), the message transmission from

node 100 to node 110 and the message transmission from node 000 to node 010 take

place concurrently during the time period between 6t and 7t, and contention occurs

for the shadowed areas. The multicast tree in Figure 7.2(d), which is based on the

methods presented in next section, is contention-free regardless of message length or

startup latency. In the next section, we will show that. such contention-free multicast

may not always exist.

7.2 Multicast Algorithm

This section defines an optimal multicast as well as an algorithm to implement it in

certain network topologies. We also give a proof of some other network topologies

whose optimal multicast tree may not exist even if the source and destination nodes

form a cube.

154

The theoretical model for unicast-based multicast communication has been ad-

dressed in [50]. The underlying topology of the network is represented by a directed

graph, C(V, E) with the vertex set V(G) and the are set E(G). A vertex u in V(G)

represents a switch box or a processor node. An are (u, v) in E(G) represents the uni—

directional channel from switch box 21 to switch box v, processor node a to switch box

v, or switch box a to processor node 17. An alternating sequence uelvleg . . . vk_lekv

of distinct vertices and distinct arcs, starting with vertex u and ending with vertex v

is called a directed path, or path for short.

A unicast operation can be defined as an ordered quadruple (u, "v, P(u, v), t), where

u and v are the source and destination vertices respectively, P(a, v) is a given path in

C over which the message will traverse, and t is the step at which the unicast is to take

place. Each unicast is assumed to take a unit of time whose duration is independent of

the path length. As a result, a. unicast. that begins with time step t should terminate

at time step t+ 1, provided that no encountering channel is blocked by other messages.

This assumption is consistent with the wormhole switching strategy which diminishes

the effect of the path length in communication latency.

In a one—port architecture, in which a processor node may send (receive) only

one message at a. time, two unicasts (u,v, P(u,v),t) and (:r,y, P(.L‘,y),7'), with t =

T, are called feasible if vertices u, v, .r, and y are all distinct processors. A set

of unicasts U, 2 {(ul, vl, P('u1, m), t), (U2, v2, P(u2, '02), t), - - - , ('ak, vk, P(uk, vi), t)},

whose members are pairwise feasible, is called a feasible unicast set. A multicast group

can be represented by a set M = {(lo,d1,d2, . . . ,dm_1}, where vertex do represents

the source and vertices (11, d2, . . . , dm_1 represent the destinations. An implementation

155

[(M) of a unicast-based multicast request M is a sequence of feasible unicast sets

U1, U2, . . . , Ur. satisfying the following conditions:

1. For each j, 1 Sj S k, if (u, v, P(u,v),j) E U]- then both u and v belong to 1W.

[
\
9

. The set U1 2 {(clo,'u, P(do,u), 1)}, where u = d,- for some i, 1 S i S m — 1.

3. For every unicast (u, v, P(u, v),t) E Ut, 1 < t S At, there must be a set U, with

1' < t which has (10,11, P(w,u), T) as a member.

4. For every destination (1,, 1 S i S m — 1, there exists one and only one integer t

such that 1 S t S k and (w, (l,, P(w,d,-), t) appears in U, for some vertex w.

The first condition guarantees that only the destination processors of the given

message are involved in the i1111.)lementation. The second condition states that the

first step of the implementation involves a single unicast from the source to one of the

destinations. The third condition ensures that a destination processor has received the

message before it may forward it to another destination processor. Finally, the forth

condition guarantees that every destination processor receives the message exactly

once.

Condition 3 above also implies that the total number of destinations receiving the

message can at most double during each step. Therefore, flog? m] is the greatest lower

bound of the number of steps required by an implementation. An implementation

requiring exactly I'log2 ml steps is referred to as a minimarm-step implementation.

Definition 10 Two feasible unicast operations (u,v,P(-u,v),t) and (:r,y, P(.zr,y),t)

are called stepwise contention-free if P(u, v) and P(.r,y) are arc-disjoint. An imple-

156

mentation is called stepwise contention-free if the elements in each unicast set U, are

pairwise stepwise contention-free.

Stepwise contention—freeness guarantees that the minimum multicast latency can

be achieved by a minimum—step implementation when the message size is large and

startup latency is neglected.

Definition 11 A vertex v is in the reachable set Ru ofa vertex u if and only if there

exists a t, l S t S k, such that either {(u,v, P(u,~v),t)} E U, or {(w,v, P(w,v),t)} E

U, for some node 10 E Ru.

The reachable set of a vertex it contains those vertices in .M to which the message

is sent after having been handled by vertex u. Ifthe implementation [(ll/I) is viewed as

a tree of unicast messages, then the reachable set of a vertex u is the set of vertices in

the subtree rooted at a. For example, in Figure 72(1)), 3.000 = {010, 101,110}. Using

this definition, the characteristics of an implementation necessary to avoid contention

between messages sent in different steps, called depth contention, can be formally

defined as follows.

Definition 12 An implementation 1(M) is depth contention-free if and only if

P(u,'v) and P(.r.y) are arc-disjoint for any two unicasts (u,v,P(u,v),t) and

(.r,y, P(.1‘,y),T) in 1(M) such that u 7E :r, u g By, and .1? Q” RU.

Depth contention includes all possible types of channel contention among concur-

rently transmitted messages without consideration of message size or startup latency.

Since each processor is characterized by one-port communication architecture, node

157

a has to send messages to any two nodes, '0 and y, sequentially. Thus, the message

transmitted from u to v and the message transmitted from u to y will never contend

for a common channel. In addition, no node in Ru can begin to send or receive a copy

of the message before u completes receiving its copy of the message. This implies

that the message transmitted from u to v and the message transmitted from 1' to y

will never contend for a common channel if .1: E RU or u 6 By. An implementation

must be stepwise contention-free if it is depth contention-free.

Depth contention-freeness guarantees that the minimum multicast latency can be

achieved by a minimum-step implementation when the message size is small and the

unicast communication latency is dominated by startup latency. An implementation

that attains the minimum multicast latency is said to execute in minimum—time. Such

an implementation is also called the optimal multicast in what follows.

7.3 Non-Optimal Multicast in Baseline and But-

terfly Networks

This section shows that an optimal multicast may not exist for either baseline nor

butterfly networks. The following lemmas prove this.

Lemma 15 In an N-node baseline network, where N = k" and n 2 3 ifk‘ 2 4 or

n 2 5 ifk = 2, an optimal unicast—based multicast may not exist when source and

destination nodes form a cube.

158

Proof: We shall disprove that there exists a stepwise contention—free

multicast. As shown in Lemma 10, the channel used in connection C,- is

dn_2 "'di+13"-2 ~~s,,_,-_1d,-. Therefore, this channel is used by those source nodes,

a‘n_1s,,_2 - ~ - sn_,-_1.rn_,-_2 - - - .130, and those destination nodes, dn_1 - - ~d,y,-_1 - - - yo,

where 41'.- and y,- are variables within the range from 0 to k — 1. Since there are at

least four nodes in a cube to have two node—disjoint unicast operations, n — i — 1 Z ‘2

and i 2 2 for k = ‘2 or n — i — 1 > 0 and i > 0 for k 2 4. By solving these inequality,

we get n 2 5 when k = ‘2 or n 2 3 while k‘ 2 4.

Let (I, : s,- for l S j S n — 1, where t is the minimum value of {i, n —i— 1}. These

nodes form a cube, C, with addressing code (1,,_1 - - - d[.Fg_1 - - - .ro. This implies that

P(sl,dl) and P(s-2,d2) are not arc-disjoint for {sl,dl,s-2,d2} E C. Thus, the unicast

operations (.sl,(ll,P(sl.dl),t) and (82,(12,P(82,(12),t) are not feasible. Therefore,

the minimum—time unicast-based multicast may not exist in the baseline network. D

For example, let the cube be 000XX in a 3‘2-node baseline network constructed by

‘2 X ‘2 switches. As shown in Lemma 10, channels 00XXO are used in C4, OOOXO are

used in C3, 00000 is used in C2, 0000K are used in C1, and OOOXX are used in Co.

In the connection C2, all nodes share the same channel to reach any other one. This

implies that any two node-disjoint unicast operations are not feasible, i.e., stepwise

contention-free, in this cube.

Lemma 16 In an N-node butterfly network, the optimal unicast-based multicast may

not exist when source and destination nodes form a cube.

159

The proof of this lemma is similar to that of Lemma 15. Since there is no op-

timal multicast in both baseline and butterfly networks, we concentrate our efforts

in cube and omega networks. However, the algorithm proposed below may apply to

modified baseline and butterfly networks directly since they have the same network

partitionability as cube and omega. networks.

7.4 The C-min Algorithm

The C-min, (Corresponding MIN), algorithm is proposed not only to achieve the op-

timal unicast-based multicast but also to reduce the probability of contention among

different unicast/Imilticast communications. The basic idea of the C—min algorithm

is to divide the lexicograi[_)hy-ordered chain [51] into two even chains, the upper chain

and the lower chain. Then, the source node delivers the message to the corresponding

position of the other half. Such a process is recursively executed until every node

receives a copy of the message. The C—min algorithm is formally specified in Figure

7.3.

In Figure 7.3, the C-min algorithm first sorts source and destination addresses in

lexicographic order, known as le.ricography-ordered chain and is denoted by (I). The

source successively divides (I) in half. If a source node is in the lower or upper half,

then it sends a copy of the message to the corresponding node in the upper or lower

half, respectively. A corresponding node is the node which has same position as

source node when (I) is divided into two halves. That destination will serve as source

for the upper (lower) half if it is located in the upper (lower) half, using the C-ming

160

Algorithm: C-min Algorithm

Inputs: (1): lexicography-ordered chain {(l(,(l(+1, . . . ,d,} for source and

destination addresses

(is: the address of source nodes

Procedure:

while l < r do

_Lflfl.
c— .2,

if s < c then /* send to upper cube */

D = {(lc,dc+1, . . . , {If};

r = c — 1;

else /* send to lower cube */

D = {(163 (1H! -°°’ dc‘l};

t= S - +3“
5 = c;

endif

Send a message to node (I, with the address field D;

endwhile

Figure 7.3: The C—min algorithm

algorithm. A source node continues this procedure until (1) contains only its own

address. Such a divi(.le-and-conquer property makes the C—min algorithm successful

in attaining the minimum-step multicast implementation.

Figure 7.4 shows how to obtain the optimal multicast implementation (Figure 7.2)

by using the C-min algorithm. Source, node 100, begins with a lexicography-ordered

chain (P = {000,001,010,011,100,101,110,111}. As shown in Figure 7.4, the source

node first sends a copy of the message to node 000, the node with the corresponding

position in the lower half of (I). The lower half of (I) is deleted, and therefore the

nodes remaining in (I) are {100, 101, 110, 111}. Since source node 100 is the first

node in the new (I), it sends a copy to the first node, node 110, in the new upper half.

Eventually, source 100 sends a copy of message to node 101. Each of the receiving

161

nodes is likewise responsible for delivering the message to the nodes in its subtree

using the same algorithm. As shown in this figure, this multicast implementation

requires 3 steps. Note that the associated diagram of such an implementation on a

multistage cube network is shown in Figure T.‘2(d).

.mM

Lexicography-ordered chain

0 source S destination ——> transmission at step 1'

Figure 7.4: An example of software multicast tree implemented by C—min algorithm.

To show that the (.Y—min algorithm can achieve the minimum-time multicast as

well as minimum contention possibility, we will show that all transmissions are located

in disjoint s-cube’s. which is formally defined as follows:

Definition 13 An s-cube is the smallest k-ary cube in a k-ary m-cube.

An s-cube, which is a k-ary l-cube, contains only I: nodes, in which addresses

are varied in the same single position. From Lemmas 8 and 9, which imply that.

two disjoint s-cube won't have any communication interference, we can obtain the

162

following Lemma.

Lemma 17 Commmzications in disjoint s-cubes are contention-free in cube and

omega net works.

Another important property of an s-cube is that the comimmications within an

s-cube are contention-free as long as those communications are node—disjoint. W’hen

k = ‘2, an s-cube contains only '2 nodes which implies that there is at most one

communication. Hence, the communication is stepwise and depth contention-free. In

the following, we will consider the case where A: 2 4 and k is power of ‘2.

Lemma 18 .-‘\'ode-disjoint communications within an s-cube are contention-free in

cube and omega networks.

Proof:

Let’s assume that there is a contention between two node-disjoint unicast

operations, (s1, ([1, P(s1, d,),t) and (s2. ([2, P(s-2, (12ft), where {sl , s-2, ([1, (1)} belongs

to an s—cube with address code a,,-1 ~--a,+1.raJ-_1 - - ~ (10. Based on destination

routing, the channels (I,,__1 - - - (1,. - - - a,+1a,~_1 - - - (10m, (z,,_1-~ a,+1a,_1---1'---a0a., and

an_1 -- - a,+1a,-_1---au.r are used by the unicast operation (3, (l, P(s,d), t) whilej > i,

j < i and j = i, respectively. Since the .1? exists during the address change, sharing

a common channel between two unicast. operations implies that either .rs, = 1’32 or

'14, = 1d,, a contradiction. E]

The proof for omega. networks is similar and is omitted. Note that as long as the

source nodes are distinct and destination nodes are distinct, the unicast transmissions

.163

within an s—cube are stepwise contention—free. To show that the C—min algorithm can

achieve optimal multicast, we need to show that multicast in an s-cube is depth

contention—free.

Lemma 19 The multicast tree generated by C-min algorithm in an s-cube is depth

contention-free.

Proof: Let (s1,d1) and (sbd-z) be two source destination pairs in different

steps and s1 # 82. Let’s assume that there are common channels used in these

two source destination pairs. From the C-min algorithm, we have (ll # d2. From

Lemma 18, sl must equal to .92 in order to share a common channel, a contradiction. Cl

Since the C-min algorithm divides the k-ary m-cube into it disjoint k—ary (m. — 1)-

cube in every toggle steps, we have the following theorem from Lemmas 17, 18, and

19.

Theorem 7 The implementation constituting a C-min tree is stepwise contention—

free, depth contention-free, and a minimum-time implementation.

7.5 Performance Evaluation

Our performance evaluation is based on a simulator which simulates different unidirec-

tional MINS, including cube, baseline (which is used in the NEC Cenju—3), butterfly,

and omega networks. The message length is uniformly distributed between 32 and

96 Hits. The number of nodes is 64, and different size of switches constituting the

164

network is considered in the simulation. Latency is reported in the 95% confidence

interval. Multiple multicasts, where each multicast is in a separate cube, are allowed

simultaneously since the unicast-based multicast is deadlock-free. Based on previ-

ous discussions, it is easy to observe that. the cube and omega networks should have

identical performance. Our simulation results did confirm this observation; therefore,

only cube networks are considered in the following context.

4000 I I I T r j t T I T r I I I” ,IHJ

”4",?” ,

"*" ’3’ I’m

3", I, ’ , I
I I, H

”-4” ' 2r" »

Baseline —— ,.....W ,0

Butterfly ----- .I'I'B , ’
CUbe """ ’X ’92:” v,

Cmm o * 4 $332.3 ,

SA + [,1 ’2,” I. 5 ’

Umm 0 .’1 213’ _ . j:

c)" 1’ ,fi 5

c

.9"

g 2000 '-
"a"

.J ,8"

.43"

..o...... e ----- + ----- 4»

..o--

4

o L 1 l l l l L L J l 1 l l l

12 3 4 5 6 7 8 910111213141516

Number of Multicasts

Figure 7.5: The latency in blocking multicasts.

Figure 7.5 gives the latency when multiple-blocking multicast communications are

initiated simultaneously. Every cluster contains 16 nodes but only a limited number of

nodes can initiate multicast communications. By carefully examining the networks,

the number of channels is reduced to 4 from 16 in connection C1 of the butterfly

network. This implies that latency on the butterfly will be the worse than the other

two networks. Such phenomena is confirmed by Figure 7.5. Although the number of

165

channels is 16 between any two stages on the baseline network, there are potential

channel contentions when node-disjoint comnmnications are conducted within an 3-

cube. For example, sources 0 and ‘2 compete channel Co at connection C1 when they

are forwarding messages to destinations 1 and 3, respectively. Since such unicast

patterns are the base for C-min algorithms. the performance of C~min on a baseline

network should be degraded.

For a cube network, the C-min can fully utilize the network. Hence, it has the

shortest latency in a cube network as shown in Figure 7.5. Unlike cube network, the

U-min has a smaller latency than the C-min algorithm on the baseline and butterfly

networks due to batch—like message forwarding in those middle nodes. The perfor-

mance of separate addressing on the cube and baseline networks are similar since the

separate addressing can fully use all 16 channels.

Figure 7.6 shows the latency on various networks for non-blocking multicast com-

munications with 16 nodes in each cluster. The system load is defined as the average

number of flits expected on an output. port. per time unit. Such a definition is identical

to the definition of load in Chapters 4 and 5.

Unlike network independent of hardware multicast, it’s easy to observe from Fig-

ure 7.6 that the network topology is a very important factor. The cube network

always has the lowest latency in all traffic loads comparing with the two other net-

work topologies because of network partitionability and traffic localization. The size

of switches is another important factor. Larger switches provide lower latency in cube

and baseline networks but not in butterfly networks. This contrary result in butterfly

is due to the identity connection in the leftmost stage. Note that 64-node cube and

166

4000 n

3000
_

>

I" .

8 I" "i

g 2000 .' -

3 ' ,n

1’ .'n'.'

1000 a -

2x2 switch —

4x4 switch -----

8x8 switch ------

Baseline 0

Butterfly +

Cube 0

l L l l l

0.2 0.3 0.4 0.5

Load

Figure 7.6: The latency of C-min algorithm on various networks and various sized

switches.

baseline networks with 8 x 8 switches are identical.

The comparison among three different unicast-based multicast algorithms: C-min,

U—min, and separate addressing (SA), is given in Figure 7 7. Three different processor

clusters are considered: 16 clusters with 4 nodes per cluster, 4 clusters with 16 nodes

per cluster, and a 64-node cluster. Note that. the U-min algorithm was designed for

bidirectional MINS [51.], not for unidirectional MINS. The performances given here

are only for comparison purpose. In a light load environment, both C-min and U-

min algorithms provide a lower latency. Since the U-min always sends messages to

middle nodes first, the queue in these nodes become saturated quickly. The latency

shows such an effect even when the number of nodes in a cluster is small. The separate

addressing is similar to a batch process. Therefore, it should have a higher throughput

in a heavily loaded environment which also implies a lower latency. Such phenomena

167

is confirmed in Figure 7.7.

6000 T r t, I I ,

Cmin —— xi

L3 SA -----

r.” Umin ------ q

5000 4nodes o

16 nodes +

64nodes 0

4000

>

8
g 3000
(U

.1

2000

1000 ’ """

Figure 7.7: The latency of various algorithms on a cube network constructed by 4 X 4

switches.

Figure 7.8 gives the throughput of different networks with different multicast algo—

rithms. The results also verify previously mentioned phenomena. Due to saturation

in the U-min algorithm, its throughput. decreases rapidly as the number of nodes

in a cluster increases. The peak throughput of the C—min is better than separate

addressing during certain ranges since the C—min evenly distributes its traffic.

7.6 Summary

In this chapter, our original intention was to propose an optimal unicast-based mul-

ticast algorithm for unidirectional MINS. The first finding in this work is that known

topologically equivalent delta-class networks have quite different capabilities in sup-

T
h
r
u
p
u
t

Figure 7.8:

switches.

0.8 l I I I T l ’f‘

’," ’--9"“"4

’.’ ’V' ‘.

.I' ,1 >

0.7 - Cmin — ,r’ , . ,, .

SA ’1" °_-- -§I

Umin ------ ,r , ,. 0

06 ~ 4“°d°5 ° x" . x , ""° ----- 1»

' 16 nodes + , ,.-;'9;_,;;-¢----+—----+,_

64 nodes 0

Ideal ~-- ,/

0.5 ~
-

— ‘-“—B"““G_________ q

0 4
,1” “mam-en-

’l’ T -_‘-B-'-"€a

. -;J"a~ =
.'J ' -‘+‘. r

0.3 " " + = _‘

"+.. =

.k =

.+__ ‘

.-EJ.
-

0.2 ~ ~ ., * + 3

Bi. -. "+._

3., +' """ «l-

"B.““G

0.11 a ..

1:} a-

"""Bu-..

G""""B {3.

"""9*----cl

1 l l l l l L

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The throughput of various algorithms on cube networks with 4 x 4

porting multicast. We have shown that cube and omega networks can always support

optimal software multicast, while baseline and butterfly networks may not. This sug-

gests that either the cube or the omega network is a better choice for constructing

unidirectional MINS for SPCs among other MINS. The proposed C—min algorithm

provides a minimum unicast-based multicast for such networks even when there are

multiple multicasts. Although the modified baseline and butterfly networks are not

discussed in this chapter, the C-min algorithm may apply to both networks directly.

CHAPTER 8

Related Work

As discussed earlier, multicast communication is a frequently used communication

pattern. Some low-level languages based on message-passing interfaces or libraries,

such as MPI and PVM, explicitly define a number of collective communications in

which the performance of many of them can benefit from efficient multicast commu-

nication [1, 52]. In those high-level languages, such as HPF, the multicast commu-

nication pattern is in‘iplicitly specified, such as aligning a low-dimensional array to

a high-dimensional array [8]. Multicast comn’lunication is also demanded in high-

speed networks, such as various ATM switches and the DEC GIGAswitch, for various

applications [3, 4, 5]. Multicasting has been studied for distributed systems, such

as reliable multicast (e.g., [53]) and ordered multicast (e.g., [54]), and for wide area

networks, such as MBONE [55] and Internet multicast [56, 57].

Multicast communication has been extensively studied for distributed—memory

multicomputers based on direct network architectures, such as mesh and hypercube

topologies. Hardware multicast support for hypercube machines based on virtual cut-

169

170

through switching was proposed in [58, ‘22], while a. prototype VLSI multicast. router

was designed in [26]. Performance evaluation of various wormhole multicast routing

algorithms was reported in [59]. Since then, many researchers have contributed to

this important area (e.g., [47, 60, 48, 61, 49, 62]). A theoretical study of multicast

communication for 2D mesh and hypercube topologies can be found in [63]. Some

parallel computer vendors have also tried to directly support multicast communica—

tion in their machines. The nCUBE—2 was the first hypercube machine supporting a

restricted multicast, in which each multicast is actually a broadcast with a subcube.

However, as pointed out in [59], deadlock is possible in the nCUBE-‘Z when there

are two or more simultaneously multicasts within a. subcube. Consequently, nCUBE

decided to disable their hardware multicast support and replaced it with software mul—

ticast. The Cray T3D has dedicated hardware to support a special case of multicast,

namely barrier synchronization [42]. As pointed out in [64], barrier synchronization

can be efficiently implemented by utilizing the underlying multicast support.

Multicast communication for MIN-based parallel architecture was studied in [32].

However, their multicast support is restricted to a multistage cube network and to

destination nodes forming a subcube. The TMC CM-5 has a dedicated control net-

work to support multicast communication [65]. The multicast is restricted to one

message at a time and must form a subtree. The NEC Cenju—3 also supports multi-

cast [18]. The multicast destination must be in consecutive addresses (not necessary

a power of 2). However, deadlock is still possible if there are two or more simulta-

neously multicast communications as shown in this thesis. Subsequently, NEC was

decided to disable their hardware multicast support. Note that both the CM-5 and

171

Cenju-3 support wormhole switching.

lV’Iulticasting has been studied in MIN—based ATM switch design, Liew proposed

a multicast algorithm for ATM switches using the Clos network in [66, 67] and gave

performance evaluation in [68]. Multicast support in [27] involved three segments:

a copy network, a distributed network and a. routing network. In both cases, an

excessive number of MIN stages are needed.

In this chapter, we concentrate on those works related to multicast communica—

tion in wormhole-switched networks, including ATM-based, hardware, and software

approaches.

8.1 MIN-based ATM Switches

ATM (Asynchronous Transfer Mode) switches which were originally designed for

broadband ISDNs have emerged as a promising platform to support high-performance

computing, multimedia, and teleconferencing in local area network. Supporting mul—

ticast communication within an ATM switch has been studied by many researchers.

Many ATM switch designs are based on MINS [67, 69, 12]. A notable design is by

J. Turner [27] which has three MINS concatenated together in an ATM switch: the

copy network replicates the multicast message, the distribution network randomizes

the traffic, and the routing network delivers individual messages to corresponding

destinations as shown in Figure 8.1. Each network is a 64 x 64 multistage baseline

network constructed with 2 X 2 switches].

1In such network, switch Sij can reach ‘2"+1 outgoing ports or reach ‘2" outgoing ports through a

single link, where 0 S 2' < 6 and 0 g j < 32.

PP63

copy

network

 BGTO

172

 Bong

CP: control processor

distribution

network

PP: port processor

Figure 8.1: Switch fabric.

routing

network

PP63

BGT: broadcast and group translator

When a multicast cell2 enters the copy network, the number of copies required,

m, and the broadcast channel identity, c, are carried in the header. Depending on

the number of reachable nodes of a switch, the switch forwards the broadcast cell

to a single outgoing link or both outgoing links. If the number of reachable nodes

via a single outgoing link is larger than or equal to the number of copies required,

m, the cell is forwarded to either the upper outgoing link or the lower outgoing link

arbitrarily. Otherwise, the cell is replicated and forwarded to both outgoing links.

The number of copies required are revised to mu and mg for the upper outgoing link

and the lower outgoing link, respectively. The value of mu and mg are obtained based

on the following rules:

1. Ifc is even, mu 2 [(m +1)/2] and me = [771/2].

2. If c is odd, mu 2 [772/2] and "lg = [(m + 1)/2].

A small version of a 16 x 16 copy network is shown in Figure 8.2. Considering an

2111 ATM, a message is divided into small segments called cells. Each cell consists of 53 bytes.

173

C4 G3 C3 Gz C2 G] C] Go C0

[2 —

__ 530 520 SW _

‘1 1

__] S31 2 2 511 ,__

‘ 3 I l

.. _.S32 522 m 1 2 _

2 1

Data B, 5, 37 —

——S33 5 523 513 3 +—

_J 534 524 514 504__

_.S35 525 515 505__

__ S36 S26 516 506__

S37 527 517 507..—

Figure 8.2: A 16 X 16 copy network.

incoming cell with a header (B, 5, 37) which indicates that it is a broadcast message,

the number of copies required 771 is 5, and the broadcast channel identity c is 37.

When switch 333 receives this cell, it. forwards the cell to only the upper outgoing link

since the number of reachable ports via. each outgoing link is 8, which is greater than

the number of copies required, 5. Note that the upper outgoing link is arbitrarily

chosen by the switch for this cell. For the next broadcast cell, this switch may choose

the lower outgoing link. Such an arbitrary scheme is used to randomize the traffic for

the routing network.

Since switch 321 has fewer reachable ports from either outgoing link, it replicates

the cell and forwards them to both the upper and lower outgoing links, while the

number of copies required is modified to 2 and 3, respectively. The modification of m

is based on the second rule specified earlier since c is an odd number. Such process

174

is repeated in each switch which receives the cell. The value 772 associated with each

forwarding and replicating switch is indicated beside the outgoing link in the figure.

Eventually, an exactly number of 772. copies will reach m distinct outgoing ports.

After the copy network, the real addresses of destinations are taped to packets

by table lookup, which is handled by the BGT (broadcast and group translator). A

switch in the distributed network ignores the destination address of an incoming cell

and forwards the incoming cell to one of its two outgoing links alternately. In other

words, a switch forwards an incoming cell to the upper (lower) outgoing link if it

delivers the previous incoming cell to the lower (upper) outgoing link no matter what

the destination of the incoming cell is. When an outgoing link or both outgoing links

are blocked, the switch sends the cell to the first available outgoing link. The purpose

of such a process is to randomize the traffic since most researches have shown that

uniform traffic has a better performance than other traffic model. The actual routing

is performed in the routing network. In general, such network requires 3n stages and

can handle one multicast message at a time for N = 2" nodes.

The work by Lee [28] demonstrates that it is possible to deliver multiple multicasts

in a synchronous manner which involves a concentrator, a multistage cube network,

and a point-to—point network. The concentrator synchronizes the distinct multicast

messages and arranges them in consecutive locations. The latter one is achieved by an

adder which counts the total number of copies required by all multicast messages in

front of each node which initiates a multicast message at this time slot. The routing

address of the 2” multicast message after the adder becomes (6,, 1),-+771, — 1) where b, is

the value from the counter and m,- is the number of copies required by the ith multicast

175

message. Note that when the b,- + m,- — 1 is greater than the number of outgoing ports

in the copy network, all multicast message after and including the i“ one are blocked

and will be re—initiated in the next time slot. The middle MIN replicates each of

the multicast message and forwards them to associated outgoing ports ~— all ports

between port 6, and port (6,- + m,- —- 1) for the i” multicast message. The last point-

to—point network delivers the individual messages to associated destinations.

An example is given in Figure 8.3. The source nodes are 4, 7, and 10 and the

associated destination sets are {5, 8}, {0, 2, 3, 6}, and {1, 11, 13, 14}, respectively.

Since there is no multicast message in front of node 4, the header after the adder

is (0, l). The counter is 2 for the second multicast message initiated by node 7.

Hence, the header of the second multicast message becomes (2, 5'). Similarly, the

header for the third multicast message (initiated by node 10) becomes (6, 9). The

concentrator puts these three multicast messages into the first three input ports of

the copy network. The copy network replicates and forwards the first, the second,

and the third messages to output ports 0 to 1, 2 to 5, and 6 to 10, respectively. After

the copy network, the real destination is tagged to each message. The point-to—point

switch then delivers these messages to the actual destinations.

This design requires an excessive number of stages, and all multicasts must be

synchronized. When the second field of a header for a multicast message is larger

than the number of outgoing ports in the copy network, all subsequent multicast

messages as well as itself are blocked. Thus, the priority is implicitly given to upper

nodes or lower nodes and starvation becomes possible.

In order to avoid the implicit priority, Chen et (11. extended Lee’s work by propos—

176

point-to—point

concentrator Copy network

switch

9: ”E i -- ::. :ss

.7; I I a ."\ ‘_—_‘
5 .

_ .

.: Ems:
8:.“ .. I I """ i221, :‘9

<33: «tiara-iii»... ,. -- 7g,
11 t F

s: l-llflnin‘mrl 7s

13‘:_ L_. ._. ._. —<?

Figure 8.3: An example of synchronous region broadcast.

ing two different approaches: the cyclic priority input access method and the neural

network method [70]. The cyclic priority input access method is derived from the ring

reservation method. Rather than giving tokens to nodes in ascending or descending

order, the tokens are given to the first node which is blocked in a previous time slot

due to a lack of enough tokens. The extras tokens are assigned to subsequent nodes

until it reaches a node which requires more than the number of tokens left. This

approach is similar to round—robin scheduling where there are N sources which can

be used in each time slot. The neural network is introduced to increase the network

utilization and to decrease the network contention. Instead of forwarding the first

cell at each incoming port, this approach allows the network to choose a cell from k

cells, 0 S k S t, at each incoming port to maximize the network utilization, where k

is the number of available cells and t is a predefined threshold. Increasing the thresh-

old would increase the network utilization but also the communication latency. As

177

expected, the neural network method has slightly better utilization than the cyclic

ring token. However, there are two major drawbacks to Chen’s approach. First, the

neural network is much harder to implement in hardware. Second, starvation is possi—

ble under the neural network model since the system always chooses the combination

which has the highest utilization.

The current knowledge of multicast support. for ATM switches is still limited. For

example, a major disadvantage of Turner’s work [27] is its long latency due to random

message transmission and the need for re—sequencing. Thus, the proposed multicast

ability has not been implemented. Although the SynOptics ATMX switch is based

on Turner’s work, the multicast capability is implemented by a high—speed bus [19].

8.2 Hardware Multicast

8.2.1 Path-based Multicast

The path-based hardware multicast was proposed to provide efficient multicast while

avoiding the potential deadlock for direct networks [25, 71]. In this approach, each

processor node is labeled with a relative address based on a Hamiltonian path. A

source node divides the destination set into several disjoint subsets to avoid deadlock.

Then, the source node sends an individual copy of the message to each subset based on

the Hamiltonian order. To reduce the length of a path, the shortest path confirming

to the Hamiltonian path is proposed. It skips those non-destination nodes in the

Hamiltonian path if the skip will not cause deadlock. The router must be capable of

178

replicating an incoming flit and forwarding one copy to the associated processor and

the other to the outgoing channel immediately.

63 ---> 62 i -> 61 60 59 58 57 -—> 56
0,7 <3” 1,7 2,7 <-- 3,7 <-~ 4,7 La 57 <--- 6.7 7,7

211:6 w WEISS/:‘1 7
V: ' ’ ' ' ' '

48 ..
0,6

\‘I i

675 - '4 upper

__ _:_A_ shortest path

v .

32 ‘

0’4 upperregion

g: """""""r—"

31 '- lower region

0.3

: ’z‘
V :

33 . —§ lower

y f) shortest path

15‘ -
0,1 -
i A source

v .

0% O destination

Figure 8.4: An example of a path—based multicast in a 2-D mesh. The lower pair

of numbers is the absolute address of a node and the upper number is the relative

address of the same node based on a Hamiltonian path.

Figure 8.4 gives an example of path—based multicast in a 2-D 8 x 8 mesh. The

source node is node (3.4), or 35 in relative address, and the destinations are nodes

(5.0), (1,1), (3,1), (6.2), (2,3), (5,5), (2,6) and (6,7), or 5, 14, 12, 22, 29, 47, 50, and

57 in relative addresses, respectively. The source node divides the destination set

into two disjoint subsets: one subset contains all destination nodes whose relative

addresses are smaller than the source node and the other consists of all destination

nodes of which relative addresses are larger than the source node. These two subsets

are sorted into descending and ascending orders, respectively. As shown in the figure,

source node 35 sends one copy of the message followed the upper shortest path to

179

reach nodes {47, 50, 57} and the other copy followed the lower shortest. path to reach

nodes {29, 22, l4, l2, 5}, sequentially. Nodes 38 to 41, 46 to 49, and 55 to 56 are

skipped by the upper shortest path and nodes 30 to 33, 23 to 24, 15 to 16, and 6 to

9 are skipped by the lower path since such skips will not cause deadlock.

It was shown in [25] that in the intuitive tree-based multicast it is difficult to avoid

deadlock in direct networks when there are multiple multicasts. In this thesis we have

shown that the pal/z-busrd multicast suffers a potential deadlock in Mle due to self

blocking, which is difficult to avoid. The tree—based multicast becomes the natural

choice for MINS.

8.2.2 Trip-Based Multicast

Tseng and Panda extended the study in path-based multicast and proposed a. skirt-

band trip multicasting in wormhole-switched networks [72]. A trip in any graph

is defined to be a path which visits each node of the graph at least once. The

Hamiltonian path, which visits each node once and only once, is a special case of a

trip. The deadlock is avoided by using virtual channels, high-channel and low—channel,

and by imposing certain restrictions.

After constructing a spanning tree of a multicast, let the tree root be at 7‘. A

skirt—based trip is defined as the path that starts from r’s leftmost descendant, ends

with r’s rightmost descendant, and wraps around the boundary of T by visiting each

node one by one. Figure 8.5 gives an example of a skirt—based trip multicast. There

are 10 nodes in the network and their connections are shown in part (a). Part (b)

180

gives the corresponding spanning tree with skirt. Hence, the trip is {p4, p1, p5, p1,

P0, P2, 1965 P9, P6» P2. P0. P3, 79 P135198}-

ipg

\ l

C p9

(a) An example system graph (b) a spanning tree with skirt

Figure 8.5: An example of a trip-based multicast.

The all-destination encoding/decoding scheme is used in their work implicitly.

Like the path-based approach, this work concentrates in direct networks such as

hypercube or meshes but not in MINS. A trip-based multicast faces the same difficulty

as the path-based multicast in MIN.

8.2.3 A Multidestination Worm Conforming to Base Routing

Schemes

To co—exist with unicast routing algorithms such as e—cube, planar adaptive and fully

adaptive routing schemes, a multicast approach conforming to base routing schemes,

named as multidestination worm, was proposed in [73]. A multicast message is divided

into several multidestination worms. Each multidestination worm consists of one or

more destinations. All destinations in a multidestination worm must be located in

a base routing path. Two examples are given in Figure 8.6 where e-cube routing is

181

used. The first one, shown in Figure 8.6(a), is the same as the example given in

(7,7) (7,7)

QT 1

 as

r‘i'ét
v 2

8 $5 57— 14 . source

¥ 5 4 ‘1’ X 3 O destination

(0,0) (0.0)

(a) (b)

Figure 8.6: Examples of a multidestination worm conforming to base routing schemes.

Figure 8.4. Since every destination is located in a different base routing path, eight

multidestination worms are needed to finished the multicast. This is the worst case

which is the same as separate addressing. Part (b) of this figure shows a different

example, where source is node (3,4) and destinations are nodes (1,5), (1,6), (2,1),

(32,3), (5,0), (5,4), (6,2) and (6,7). There are five destination worms. The first two

consist of a single destination. The third, fourth, and fifth multidestination worms

carry the multicast message for destinations {(5,0), (5,4)}, {(2,1), (2, 3)} and {(1,5),

(1,6)}, respectively.

8.2.4 Synchronous Receiver Initiated Multicast

Instead of sender—initiated multicast, Al-Hajery and Batcher proposed a synchronous

receiver initiated multicast [74, 75]. In this approach, all nodes intended to receive

messages must inform their associated senders. Those nodes without communication

requests have to ask themselves to send a dummy message. Otherwise, the underlying

182

sorted network will fail to deliver messages to correct destinations. Because of the

synchronization requirement, it is only suitable for short messages. Other than that,

there are two major disadvantages of such a design. First, the setup time in every

time slot may cause longer latency. Second, the sorted network requires more switches

than a Banyan network.

8.3 Software Multicast

Optimal software multicast for worn'lhole-switched meshes and hypercubes were first

proposed in [39]. The first optimal software multicast for switch-based networks,

bidirectional MINS, was given in [51]. The proposed U—min algorithm guarantees

contention-free multicast communication for different message sizes and for different

start-up latencies. The U-min algorithm was implemented in a 64—node IBM SP-l

and its performance is superior to Chameleon broadcast [76] and MPI-F broadcast

[77] operations and is consistently about 30% better than Chameleon application—level

broadcast. The U-min algorithm can be easily adapted to the Meiko CS-2 [17].

As shown in [51], the first step of the U-min algorithm is to sort the destinations

in lexicographic order. Then it divides the destination nodes into equal halves, in

which the first half is one node less than the second half. The source node forwards

the message to the closest node in the other half. The last two steps are repeated

until all destinations receive the message. An example of source node 2 sending a

message to all other nodes in an 8-node MIN is given in Figure 8.7. Source node 2

first sends the message to node 4, then to node 1, and finally node 3 as shown in the

183

figure. After receiving the message, node 4 forwards a copy to node 6 and then node

5.

@MQD
step I

MQD
step 2

@IJUW
step 3

Figure 8.7: An example of a U—min multicast.

The U-min provides an efficient software—based multicast. However, it suffers in a

longer queue at the middle nodes when multiple multicasts are allowed simultaneously.

Since U-min forwards the message to the center nodes from all source nodes, those

center nodes have a much longer queue than the other nodes. Hence, the performance

degrades rapidly as the load of multicasts increases.

The C—min avoids such centralized traffic by evenly distributing the senders and

the receivers. For example, let there be two multicasts initiated simultaneously in a

binary m-cube3. These two multicasts will block each other in some steps unless one

is initiated from the leftmost node and the other is started from the rightmost node

based on the U—min algorithm. Hence, the blocking probability p, is

1 _ (m — 2)(m +1)

C(m,2) _ 777(m — 1) i

3Since a k-ary p—cube may be interpreted as a binary (k x p)-cube, the following property is also

suitable for all k-ary p—cubes

184

Based on the C-min algorithm, there is no destination contention when these two

multicasts are initiated by an odd node and an even node. Therefore, the blocking

probability 1),, is

C(m/2, l) x (C(m/2, 1) _ m — 2

C(m,2) _ 2(m — 1)-

p621—

Let us use a binary 3—cube as an example. The blocking probabilities pa and pC are

0.9643 and 0.4286, respectively. Furthermore, let the source nodes be 0 and 5. The

steps of both the U-min and the C-min algorithms are given in Figure 8.8. As shown

in part (a), source node 4, which is the destination of source node 0 in the first step,

and source node 5 send their messages to node 6 in the second step. In the third

step, node 6 needs to send both messages to node. 7. Such node contention degrades

the performance of the U—min when multiple multicast communications are allowed

simultaneously. The corresponding multicast steps of the C-min algorithm are given

in Figure 8.8(b). All three steps are contention—free.

Unlike hypercubes, meshes or bidirectional MINS, a contention-free multicast is

very complicated and is not always possible for a non-restricted source and destination

list in a unidirectional MIN, such as the NEC Cenju-3. In this work, we present a

minimum step software multicast in such an environment. It has been proven to be

intratask contention-free and to offer better performance than other approaches when

the system is not heavily loaded.

185

cm @331

@332

(a) U-min multicast

@331

m...

(b) C-min multicast

Figure 8.8: An example of two multicasts based on U—min and C-min algorithms.

8.4 Summary

In this chapter, we reviewed several related works and presented the difference be-

tween our work and theirs. Since cell size is fixed to 53 bytes and cells are forwarded

synchronously in ATM, to support efficient multicast in ATM network is easier than

the model we have.

Several hardware approaches were proposed for different network topologies. Al-

though some restrictions are required, none of them serve properly for unidirectional

MINS. For example, Turner’s design allows one multicast at a time, which is relatively

expensive. The nCUBE—2 and NEC Cenju-3 are both forced to disable the hardware

support due to the deadlock issue.

For those systems without hardware multicast capability, the efficient software-

186

based multicast becomes important to applications. The U-min and U—mesh provide

an efficient solution for turn—around MIN and mesh, respectively. They fall behind in

unidirectional MIN when multiple multicasts are allowed simultaneously.

we have proposed both hardware implementation and a software approach to

reduce the latency of multicast communication in unidirectional MINS. Basically,

considering the practical intertask contention, allowing multiple multicasts and asyn—

chronous message initiating distinguish our work from others. The contribution of

our work as well as some possible future research directions are given in the next

chapter.

CHAPTER 9

Conclusions and Future Work

The increasing requirement of multicast commtmications in various applications ne-

cessitates the development of efficient multicast support. This thesis proposes a set

of efficient multicast communications, including multi-address header optimization,

hardware implementation, and software approaches for unidirectional MINS. In this

chapter, we summarize the salient contributions made by this research and present.

interesting avenues for possible future research.

9.1 Research Contributions

The run-time overhead of communication on variant applications can significantly

limit the amount of system parallelism that can be exploited. As more nodes are

joined, the communication cost of systems increases. To support efficient and scalable

multicast communication becomes critical to the success of various applications, such

as parallel programs, teleconferencing, etc.

Unlike a unicast message, a multicast message needs to carry all destination in—

187

188

formation. However, such header encoding and decoding is overlooked by most re-

searchers. As shown in this thesis, all-destination is the most intuitive approach and

is adapted by most works. Few other works refer to single region broadcast or single

region mask. Such approaches restrict the destinations of a multicast communica-

tion to a contiguous region or to a complete cube, respectively. We have proposed

and studied several multi-address encoding and decoding schemes to eliminate such

restriction, to give flexibility of destination distribution, and to minimize the header

overhead.

Although supporting deadlock—free hardware multicast is difficult, we have shown

that hardware multicast implementation has much better performance than the soft-

ware approach. To avoid deadlock, we have developed a synchronous multi-head

worm. we also have shown that it is better than other approaches in different as—

pects. The NEC Cenju-3 uses an asynchronous multi-head worm whose switches are

less complicated than in the synchronous multi-head worm. However, the restriction

of single region broadcast is not enough to avoid deadlock. The nCUBE-2 has a simi-

lar approach to the synchronous multi—head worm and requires that destinations must

form a subcube. It still fails to prevent deadlock. Both restrictions are caused by the

multi-address encoding and decoding schemes. We have eliminated these restrictions

by proposing flexible multi-address encoding and decoding schemes.

Starvation is another potential problem in the synchronous multi-head worm.

We have studied several priority schemes and show that one of them can provide

starvation-free multicast communications. When multi-address encoding and decod-

ing is considered with the synchronous multi-head worm, deadlock becomes possible

189

due to the distance between different headers. A pseudo multi—address encoding

scheme is proposed to guarantee a deadlock-free network.

Although processor allocation has been studied extensively, none of that research

has studied the corresponding issue when multicast communication is involved. How-

ever, in our work. a network partitioning to enforce traffic localization and eliminate

intertask contention has been developed. As expected, a system with a systematic

network partition outperforms those without such partitionability. Although delta

class MINS are topology equivalent, not every one of them has such partitionabil-

ity. We have shown that. both the multistage cube and omega networks have such

property and offer better performance. In addition to show that the baseline and but-

terfly networks have no such property, we have given minimum modification schemes

to reconfigure both networks. An existing system with either network topology can

offer the same network partitionability as the cube and omega networks after such

modification.

There are lots of variant Mle to provide different features. For example, the extra

stage MIN provides routing flexibility and fault tolerance. The multiple butterfly

network gives multiple paths for any pair of source and destination nodes. The turn-

around MIN gives fewer hops for local traffic. Among these variants, we have chosen

the extra stage MIN to extend our work. we have shown that to find all traffic-

optimal multicast trees on ESMIN is an NP problem, but to find one of them is

not. We have developed a polynomial time algorithm to find such a traffic-optimal

multicast tree.

Many existing systems only support unicast communication. we have developed

190

an algorithm to implement efficient software—based multicast for those systems built

with unidirectional MINS. The proposed C-min algorithm outperforms the separate

addressing as expected. However, when the system is heavily loaded, separate ad-

dressing has better performance due to its batch-like multicast.

9.2 Directions for Future Research

In this thesis, we have concentrated our effort on wormhole—switched unidirectional

MINS. The performance models and experimental results presented in this work

establish the foundation for future study but need to be extended in several ways.

The multi-address encoding and decoding schemes can be easily extended and

optimized to networks with different switching techniques or network topologies. We

have shown such optimization on unidirectional MINS. More research can be done

on other network topologies to evaluate the performance and cost tradeoffs among

different encoding schemes and to design efficient and deadlock—free multicast routing

algorithms.

The synchronous multi-head worm may be extended to different network topolo-

gies, especially to bidirectional MINS, dilated MINS, and virtual-channel MINS. The

bidirectional MINS have been adopted in IBM SP1/SP2 and Meiko CS2. Although the

optimal software multicast has been studied for the bidirectional MINS, the hardware

implementation has not been addressed. As shown in this thesis, the performance

of hardware multicast implementation is superior to that of the optimal software

approaches in a unidirectional MIN. Hence, the hardware multicast implementation

191

on these networks will provide better performance. How to establish a multi—head

worm on a l.)idirect.i0nal MIN is not obvious since the number of hops among dif-

ferent source and destination pairs may be different. Without careful multi-address

encoding and routing, such distance difference may cause deadlock. The dilated MINs

provide extra physical links between adjacent stages and the virtual-channel MINs

offer channel sharing among different communications. Since both are unidirectional

MINS, the multicast algorithms proposed in this research may be applied to them

directly. However, how to fully utilize both MINs and how to minimize the communi-

cation latency become challenge issues. Furthermore, how to find the optimal number

of dilated links and the optimal number of virtual channels on different traffic models

are another challenges.

Finally, a particularly challenging direction is to extend the multi-head worm to

ATM switches. The cell size in ATM is fixed to 53 bytes, of which five are header

and 48 are data. Although there is no deadlock issue, there are some other potential

problems, such as out—of-order cell handling, lost data, etc. There are several chal-

lenges. The first one is to establish efficiently the virtual channel and virtual path for

a multicast. The second one is to replicate cells and deliver cells to output port syn-

chronously. Currently, the virtual channel and virtual path establishment is receiver

initiated. This approach is the natural way for some applications, such as teleconfer-

encing, but not for parallel programs. To embed the active message becomes another

challenging issue.

BIBLIOGRAPHY

Bibliography

[1] Message Passing Interface Forum, “MPI: A Message-Passing Interface Stan-

dard,” tech. rep., University of Tennessee, Mar. 1994.

[2] H. Xu, E. T. Kalns, P. K. McKinley, and L. M. Ni, “ComPaSS: A communica-

tion package for scalable software design,” Journal of Parallel and Distributed

Computing, vol. 22, pp. 449461, Sept. 1994.

[3] H. T. Kung, “Gigabit local area networks: A systems perspective,” IEEE Com-

munications Magazine, pp. 79—89, Apr. 1992.

[4] J. Hui, “Switching integrated broadband services by Sort-Banyan networks,”

Proceedings of the IEEE, pp. 145—154, Feb. 1991.

[5] V. Kompella, J. Pasquale, and G. Polyzos, “Multicasting for multimedia appli-

cations,” in Proceeding of the IEEE INFOCOM’QQ, Mar. 1992.

[6] High Performance Fortran Forum, “HPF-2 Scope of Activities and Motivating

Applications,” Nov. 1994.

[7] C.-M. Chiang, Q. Du, M. W. Mutka, and R. Sass, “An empirical study of scalable

domain decomposition methods for a 2-d parabolic equation solver,” in Proceed-

ing of the 6th SIAM Conference on Parallel Processing for Scientific Computing,

(Norfolk, Viginia), pp. 687—690, SIAM, Mar. 1993.

[8] Northeast Parallel Architectures Center at Syracuse University, “HPF/Fortran-

D Benchmarking Suite (release 2.01),” 1992. (Available at Public Domain at

Syracuse University).

[9] Fore Systems, Inc., ForeRunnerTM ASX-IOO ATM Switch Architecture Manual,

1992.

[10] Adaptive Corporation, Network Equipment Technologies, I NC., ATMX Broad-

band Switch, Release 1.2?, 1993.

[11] W. J. Dally and C. L. Seitz, “The torus routing chip,” Journal of Distributed

Computing, vol. 1, no. 3, pp. 187—196, 1986.

[12] J. S. Turner, “Design of local ATM networks.” Tutorial Notes at INFOCOM’92,

1992.

192

[13]

[14]

[151

[161

[171

[118]

[191

[‘30]

[‘21]

[261

[‘27]

193

BBN Advanced Computers Inc., Cambridge, Massachusetts, Inside the GP1000,

1989.

BBN Advanced Computers Inc., Cambridge, Massachusetts, Inside the TCBOUO

Computer, 1990.

W. Gropp, E. Lusk, and S. Pieper, “Users Guide for the ANL IBM SP-l

DRAFT,” Tech. Rep. ANL/MCS-TM~00, Argonne National Laboratory, Feb.

1994.

Thinking Machines Corporation, Cambridge, MA, The Connection Machine CM-

5 Technical Summary, October 1991.

Meiko Limited, Waltham, MA., Computing Surface: CS-z’? Communications Net-

works, 1993.

N. Koike, “NEC Cenju—3: A microprocessor-based parallel computer,” in Proc.

of the 8th International Parallel Processing Symposium, pp. 396—401, Apr. 1994.

J. C. Jerome R., M. R. Gaddis, and J. S. Turner, “Project Zeus,” IEEE Network,

vol. 7, pp. 20—30, Mar. 1993.

R. J. Souza, P. G. Krishnakumar, C. M. Ozveren, R. J. Simcoe, B. A. Spinney,

R. E. Thomas, and R. J. Walsh, “The GIGAswitch system: A high-performance

packet switching platform,” Digital Technical Journal, v01. 6, Jan. 1994.

L. M. Ni, Y. Gui, and S. Moore, “Performance evaluation of switch-based worm-

hole networks,” in Proc. of the 1995 International Conference on Parallel Pro-

cessing, vol. 1, Aug. 1995. (accepted to appear, also available as Technical Report

MSU-CPS-ACS-96, Dept. of Computer Science, Michigan State University, July

1994).

Y. Lan, A. H. Esfahanian, and L. M. Ni, “Multicast in hypercube multiproces-

sors,” Journal of Parallel and Distributed Computing, pp. 30—41, Jan. 1990.

NCUBE Company, NCUBE 6400 Processor Il/Ianual, 1990.

L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques in direct

networks,” IEEE Computer, vol. 26, pp. 62 — 76, Feb. 1993.

X. Lin and L. M. Ni, “Deadlock-free multicast wormhole routing in multicom-

puter networks,” in Proceedings of the 18th Annual International Symposium on

Computer Architecture, pp. 116—125, May 1991.

Y. Lan, L. M. Ni, and A. H. Esfahanian, “A VLSI router design for hypercube

multiprocessors,” Integration: The VLSI Journal, vol. 7, pp. 103-125, 1989.

J. S. Turner, “Design of a broadcast packet switching network,” IEEE Transac-

tions on Communications, vol. 36, pp. 734—743, June 1988.

[:28]

['29]

[30]

[31]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

194

T. T. Lee, “Nonblocking copy networks for multicast packet switching,” IEEE

Journal on Selected Areas in Communications, vol. 6, Dec. 1988.

L. R. Coke and G. J. Lipovski, “Banyan networks for partitioning multipro—

cessing systems,” in Proc. of the First International Symposium on Computer

Architecture, pp. 21—28, 1973.

J. H. Patel, “Performance of processor-memory interconnections for multipro-

cessors,” IEEE Transactions on Computers, vol. C-30, pp. 771—780, Oct. 1981.

C. L. Wu and T.-Y. Feng, “On a class of multistage interconnection networks,”

IEEE Transactions on Computers, vol. C-29, pp. 694—702, Aug. 1980.

H. J. Siegel, W. G. Nation, C. P. Kruskal, and L. M. Napolitano Jr., “Using

the multistage cube network topology in parallel supercomputers,” Proceedings

of the IEEE, vol. 77, pp. 1932—1953, Dec. 1989.

D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE Trans-

actions on Computers, vol. C-24, pp. 1145—1155, Dec. 1975.

D. J. Kuck, E. S. Davidson, D. H. Lawrie, and A. H. Sameh, “Parallel super-

computing today and the Cedar approach,” Science, vol. 231, pp. 967—974, Feb.

1986.

H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, Jr., H. E. Samlley,

Jr., and S. D. Smith, “PASM: A partitionable SIMD/MIMD system for image

processing and pattern recognition,” IEEE Transactions on Computers, vol. C-

30, pp. 934—947, Dec. 1981.

G. F. Pfister et al., “An introduction to the IBM research parallel processor

prototype (RP3),” in Experimental Parallel Computing Architectures (J. J. Don-

garra, Ed.), pp. 123 — 140, Elsevier Science Publishers B.V., Amsterdam, 1987.

A. Gottlieb, “An overview of the NYU ultracomputer project,” in Experimental

Parallel Computing Architectures (J. Dongarra, Ed.), pp. 25 — 95, North Holland,

1987.

R. D. Rettberg, W. R. Crowther, P. P. Carvey, and R. S. Tomlinson, “The

Monarch parallel processor hardware design,” IEEE Computer, vol. 23, pp. 18

30, Apr. 1990.

P. K. McKinley, H. Xu, A. H. Esfahanian, and L. M. Ni, “Unicast-based mul-

ticast communication in wormhole-routed networks,” in Proceedings of the 1992

International Conference on Parallel Processing, vol. II, pp. 10—19, Aug. 1992.

C.-M. Chiang and L. M. Ni, “Multi-address encoding for multicast,” in Proc. of

the First International Workshop on Parallel Computer Routing and Communi-

cation (PCRCW’QI) (K. Bolding and L. Snyder, Eds), pp. 146—160, Springer-

Verlag, May 1994.

[41]

[4‘31

[43]

[44]

[46]

[471

195

C.-M. Chiang and L. M. Ni, “Encoding and decoding of address information in

multicast messages,” in Proceeding of the 1994 International Computer Sympo-

sium, (HsinChu, Taiwan), pp. 1092—1097, Dec. 1994.

Cray Research, Inc., Chippewa Falls, Wisconsin. CRAY T3D System Architec~

ture Overview, 1993.

C.—M. Chiang and L. M. Ni, “Network partitioning and unicast-based multicast

on multistage networks,” Tech. Rep. MSU-CPS—ACS-102, Dept. of Computer

Science, Michigan State University, East Lansing, Michigan, Mar. 1995.

W. Lin and C. L. Wu, “A distributed resource management mechanism for a

partitionable multiprocessor system,” IEEE Transactions on Computers, vol. 37,

pp. 201—210, Feb. 1988.

M. G. Hluchyj and M. J. Karol, “ShuffleNet: An application of generalized perfect

shuffles to multihop lightwave networks,” Journal of Lightwave Technology, vol. 9,

1991.

C. Y. Chin and K. Hwang, “Packet. switching networks for multiprocessors and

data flow computers,” IEEE Transactions on Computers, vol. C-33, pp. 991—

1003, Nov. 1984.

D. K. Panda, S. Singal, and P. Prabhakaran, “Multidestination message pass-

ing mechanism conforming to base wormhole routing scheme,” in Proc. of the

First International Workshop on Parallel Computer Routing and Communication

{PCRCW’QI} (K. Bolding and L. Snyder, Eds), pp. 131—145, Springer-Verlag,

May 1994.

R. V. Boppana and S. Chalasani, “On multicast wormhole routing in multi-

computer networks,” in Proc. of the Sixth IEEE Symposium. on Parallel and

Distributed Processing, pp. 722—729, Oct. 1994.

Y. Lan, “Adaptive fault-tolerant multicast in hypercube multicomputers,” Jour-

nal of Parallel and Distributed Computing, vol. 23, Oct. 1994.

P. K. McKinley, H. Xu, A. H. Esfahanian, and L. M. Ni, “Unicast-based multicast

communication in wormhole-routed networks,” IEEE Transactions on Parallel

and Distributed Systems, vol. 5, pp. 1252—1265, Dec. 1994.

H. Xu, Y. Gui, and L. M. Ni, “Optimal software multicast in wormhole-routed

multistage networks,” in Proceedings of Supercomputing ’94, pp. 703—712, Nov.

1994.

V. S. Sunderam, “PVM: A framework for parallel distributed computing,” Con-

currency: Practice and Experience, vol. 2(4), pp. 315—339, Dec. 1990.

B. Rajagopalan, “Reliability and scaling issues in multicast communication,” in

Proceeding of the ACM SIGCOMM, pp. 188—198, Aug. 1992.

[541

[581

[591

[601

[61]

[621

[63]

[641

[65]

196

H. Garcia-Molina and A. M. Spauster, “Message ordering in a multicast en-

vironment,” in Proceedings of the 9th International Conference on Distributed

Computing Systems, pp. 354—361, June 1989.

H. Eriksson, “MBONE: The multicast backbone,” Com mu-m'cations of the A CM,

vol. 37, pp. 54—60, Aug. 1994.

D. R. Cheriton and S. E. Deering, “Host groups: A multicast extension to the

Internet protocol,” Tech. Rep. RFC-966, SRI Network Information Center, Dec.

1985.

S. E. Deering and D. R. Cheriton, “Multicast. routing in datagram internetworks

and extended LANS,” ACIlI Transactions on Computer Systems, vol. 8, pp. 85—

110, May 1990.

Y. Lan, A. H. Esfahanian, and L. M. Ni, “Distributed multi-destination rout—

ing in hypercube multiprocessors,” in Proceedings of the Third Conference on

Hypercube Computers and Concurrent Applications, pp. 631—639, Jan. 1988.

X. Lin, P. McKinley, and L. M. Ni, “Performance evaluation of multicast worm-

hole routing in 2D-mesh multicomputers,” in Proc. of the 1991 International

Conference on Parallel Processing, vol. I, pp. 435—442, Aug. 1991.

D. K. Panda, “Fast synchronization in wormhole k—ary n—cube networks with

multidestination worms,” in Proc. of the First High Performance Computer Ar-

chitecture Symposiu m, Jan. 1995. (accepted to appear).

S. Bhattacharya, G. Elsesser, VV.-T. Tsai, and D.-Z. Du, “Multicasting in gener-

alized multistage interconnection networks,” Journal of Parallel and Distributed

Computing, vol. 22, July 1994.

J. Wu and Z. Li, “A multidestination routing scheme for hypercube multipro—

cessors,” in Proc. of the 1991 International Conference on Parallel Processing,

vol. III, pp. 290—291, Aug. 1991.

X. Lin and L. M. Ni, “Multicast communication in multicomputers networks,”

IEEE Transactions on Parallel and Distributed Systems, pp. 1105—1117, Oct.

1993.

H. Xu, P. K. McKinley, and L. M. Ni, “Efficient implementation of barrier syn-

chronization in wormhole-routed hypercube multicomputers,” Journal of Parallel

and Distributed Computing, vol. 16, pp. 172 — 184, October 1992.

C. E. Leiserson et al., “The network architecture of the Connection Machine

CM-5,” in Proceedings of the ACM Symposium on Parallel Algorithms and Archi-

tectures, (San Diego, CA.), pp. 272—285, Association for Computing Machinery,

1992.

197

[66] S. C. Liew, “Multicast routing algorithms for 3—stage CLOS ATM switching

networks,” in Proceedings of the 1991 Globecom, pp. 1619—1625, 1991.

[67] S. C. Liew, “Multicast routing in 3-stage Clos ATM switching networks,”

IEEE Transactions on Com-munications, vol. 42, pp. 1380—1390, Febru—

ary/March/April 1994.

S. C. Liew, “Performance of various input-buffered and output-buffered atm

switch design principles under bursty traffic: Simulation study,” IEEE Transac-

tions on Communications, vol. 42, pp. 1371—1379, February/March/April 1994.

J. Y. Hui, Switching and Traffic Theory for Integrated Broadband Networks. Nor-

well, Mass: Kluwer Academic Pub., 1990.

X. Chen, J. F. Hayes, and M. K. Megnet-Ali, “Performance comparison of two

input access methods for a multicast switch,” IEEE Transactions on Communi-

cations, pp. 2174—2178, May 1994.

X. Lin, P. K. McKinley, and L. M. Ni, “Deadlock-free multicast wormhole routing

in 2-D mesh multicomputers,” IEEE Transactions on Parallel and Distributed

Systems, pp. 793—804, Aug. 1994.

Y.-C. Tseng and D. K. Panda, “Trip—based multicasting in wormhole-routed

networks,” Tech. Rep. OSU-CISRC-l/93—TR3, Department of Computer and

Information Science, The Ohio State University, 1993.

D. K. Panda and P. Prabhakaran, “Multicasting using multidestination-worms

conforming to base routing schemes,” Tech. Rep. Technique Report 37, Depart-

ment of Computer and Information Science, Ohio State University, Sept. 1993.

M. Z. Al-Hajery and K. E. Batcher, “Multicast bitonic network,” in Proceedings

of the Fifth IEEE Symposium on Parallel and Distributed Processing, (Dallas,

Taxes), pp. 320—326, Dec. 1993.

M. Z. Al-Hajery and K. E. Batcher, “Low cost complexity of a general multicast

network,” in Proceedings of the 1994 International Parallel Processing Sympo-

sium, pp. 23—29, Apr. 1994.

[76] W. Gropp and B. Smith, “Users manual for the Chameleon parallel programming

tools,” Tech. Rep. ANL-93/23, Argonne National Laboratory, June 1993.

[77] H. Franke, “MPI-F: An MPI implementation for IBM SP-l,” Feb. 1994. Available

on anonymous ftp from info.mcs.anl.gov.

HICHIGRN STRT

I lllllllll mi]
312930 4

NV.LI

ll
1

ii llllllllfl
2

