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ABSTRACT

SOME AMALGAMS IN CHARACTERISTIC 3 RELATED
TO CO]

By

Panagiotis Papadopoulos

Co, has parabolic subgroups of the shape 362M;; and 3'+4Sp,(3).2
Lyons’ simple group Ly has parabolics of the form 3°(M;; x 2) and 32+*AsDg. We
will characterize these parabolics and similarly the ones found in subgroups of Co,

using the amalgam method introduced by Goldschmidt.
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1 Introduction

Let G be a finite group, p a prime, S a Sylow p-subgroup of G and B = Ng(S5). A
parabolic subgroup of G is a proper subgroup of G which contains a conjugate of B.
Consider the set J of parabolic subgroups of G ordered by inclusion; then J becomes
a partially ordered set called the parabolic geometry of G. In the case where G is a
finite simple group of Lie type in characteristic p, J is the usual building given by Lie
theory. The parabolic geometry may be viewed as a generalization of the concept of a
building to an arbitrary group. In recent years the parabolic geometry (in particular
for p=2) has been used to study, construct, characterize and prove uniqueness of
many of the sporadic finite simple groups. The parabolic geometries (again for p=2)
also play an important role in the ongoing revision of the classification of the finite
simple groups, in particular in the so called quasi-thin and uniqueness cases.

While parabolic subgroups have most intensively been studied for p=2, many
interesting examples exist (besides the groups of Lie type) for arbitrary primes. In
[RS], Ronan and Stroth determined all the minimal parabolic geometries for all the
26 sporadic groups and all primes. One of the most interesting series of examples
arises for the prime p=3 and G being the first Conway group Co;.

Co, has parabolic subgroups of the shape 362M;, and 3!+4Sp,(3).2 (we will explain
this notation later).

Lyons’ simple group Ly has parabolics of the form 3°(M;; x 2) and 32+*A;Ds.
These parabolics have been used by M. Aschbacher and Y. Segev to prove the unique-
ness of the Ly. It is the goal of this paper to characterize these parabolics and similarly
the ones found in subgroups of Co;.

Let Bg be the largest normal subgroup of G contained in B; then Bg is contained
in all the parabolic subgroups of G and thus acts trivially on the parabolic geometries
and so the parabolic geometry carries out information only about G/Bg. Also when

B is contained in a unique maximal parabolic subgroup of G, the parabolic geometry



becomes disconnected.
So let us assume that B = 1 and that P, and P, are parabolic subgroups of
G containing B, with G = <P, ,>, for example two different maximal parabolic

subgroups of G. Then we see that G, P; and P, fulfill the following statement:

(A1) P, and P; are finite subgroups of G.

(A2) G = <P, P>.

(As) Let SeSyl,(Pr N P;) and B = Np,np,(S); then B = Np(S), i=1, 2. In
particular S€Syl,(F;), i=1, 2.

(A4) No non-trivial normal subgroup of G is contained in B.

If (G, P, P;) fulfill (A4,) — (A4), we say that G is an amalgamated product of
P, and P;.

We remark that we allow G to be infinite in this definition in order to cover the
case where G = P, *p P, the free amalgamated product of P, and P; over B (see [S]
for a precise definition). Notice that if (G, P, P;) is an amalgamated product then
also (P, *g P2, P, P,) is an amalgamated product in our sense.

To any amalgamated product (G, P, P;) we can associate a graph I' whose vertices
are the cosets of P, and P, in G and two cosets are adjacent if they are distinct and
have non-empty intersection. We remark that if B = Ng(.S) then the graph I can be
embedded into the parabolic geometry of G.

The amalgamated method introduced by Goldschmidt [G] and refined by Stell-
macher [St], Delgado [DS] and Timmesfeld [T] uses I as a tool to define important
subgroups of B and as a book-keeping device to determine relations between the
subgroups. This method has proven very succesful in determining the structure of
P, and P, assuming the action of P, and P, on their neighbours A(P;) and A(P,)

respectively in the graph I' is given.



Let us assume for simplicity that P, N P, = B (which will always be true for
G = P *g Py). Let Q; = 0,(P,), L; = O” (P.)=<S%> and P"/Q; = Cg,/q.(Li/Q:)-
Then it is easy to see that P,-(l) is precisely the kernel of the action of P; on A(F;) and
L; acts transitively on A(P;). Hence the group L;/Q; carries most of the information
about the action of P; on A(P;) and we then refer to the pair (L;/Q1, L2/Q2) as the
type of the amalgamated product (G, P, P2).

The main task of the amalgam method can now be described as determining
(P, P2) from the type (L1/Q1, L2/Q2). For example, the main part of Goldschmidt’s
paper [G] determines the structure of (P, P2) of type (Sym(3),Sym(3)) for p=2.

For the remainder of this paper we will work under the following hypothesis:

(P) (G, P,, P,) is an amalgamated product of type (O, ¥) for p=3 so that:

(Po) © = PSLy(9), M1y, My, or 2-My,,

(P,) ¥ = PSL,y(3), SLa2(3), As, 2-As, 2% A5, 214 A5, PSL,(9), SL2(9), Sps(3) or
PSp4(3),

(P2) Cp,(03(F;)) < O3(P) for i=1, 2.

Before we state the main theorem recall the following standard definitions:
For a finite group X and a prime number p,

Op(X) is the largest normal p-subgroup of X;

OP(X) is the smallest normal subgroup of X such that G/O?(X) is a p-group, or,
equivalently, the group generated by all p’ elements;

OP'(X) is the smallest normal subgroup of X such that its index in X is not
divisible by p, or, equivalently, the group generated by all Sylow p-subgroups of X.

Now introduce the following notation:

G ~ 3%++dn [l means that there exists a normal series
l=Hy<H <---<H, <G,

so that for i=1, 2, --- , n, H;/H;_, are elementary abelian minimal normal subgroups



of G/H;_, with |H;/H;_,| = 3% and G/H, = H.

Also, by G ~ 2-H we mean that G/Z(G) 2 H, |Z(G)|=2 and Z(H) < H'.

We are now able to state our main result.
THEOREM P: Under hypothesis P the possible pairs (L;, L;) are as follows:

(1) (3*PSL,(9),3'+42- As),

(i) (3*PSL,(9), 31421+ 4;),

(i) (362-Myq, 31H141424241 51 ,(3)),

(iv) (3%2-Mh3,3'%4Sp4a(3)),

(v) (35My,, 314142425 [,(3)),

(vi) (3°M11, 31145 Ly (9)),

(vii) (3*PSL,(9),31*2¥25Ly(3)),

(viil) (35Myy, 3141442 A;),

(ix) (38PSL2(9),31+1+45L,(9)).

Note that the examples for (i)-(ix) can be found in G = McL, Co,, Coy, Coy,
Suz, Cos, Ug(3), Ly and PSps(9) respectively. We will see later that all the cases
occur when b=1 and [Z,,Z,] = 1 where the notation in this remark will become

apparent momentarily.

2 Properties of ®, ¥ and their modules

In this section we will list some of the properties of the groups © and ¥ and their
modules.

A non-abelian p-group P (p a prime) is called extra-special if
|®(P)| = |Z(P)| =p.

There are two extra-special groups of order 2°; one, denoted by 2}*4, contains an

elementary abelian subgroup of order 8 and the other one, denoted by 2!1+4, does not.



It is a well-known fact (see for example [Go; 5.5.2]) that
20 = Qg + Ds,

where * denotes the central product.

A Steiner system S(l, m, n) is a pair (2, B), where Q is a set of size n, B is a
set of subsets of size m called blocks and such that every subset of size | in Q2 lies in
a unique member of B.

By [W], there exists a unique, up to isomorphism, Steiner system of type S(5, 6,
12). Let §=S(5, 6, 12). Define then the Mathieu group on 12 points to be the

group
M,, = Aut(S) = {r€Sym(12)|B” is a block for all blocks B}.

Define M;; to be the stabilizer of a point in M;;. Then M, is 4-transitive on

eleven points and its corresponding Steiner system is S(4, 5, 11).

Lemma 2.1 (a) M,; is sharply 5-transitive on 12 points, i.e., My, is 5-transitive on
12 points and the stabilizer of any five points in M, is the identity group.
(b) | M| = 12-11-10-9-8 = 26-33.5-11.
(c) The normalizer of a Sylow 3-subgroup of My, has orbits of lengths 3 and 9 and
therefore if an involution acts on these it has a fized point.
(d) My, has two classes of involutions, say D, and D,. Moreover
z€D, if and only if z fizes a point
if and only if z fizes four points
if and only if z belongs to a normalizer of a Sylow 3-subgroup of M,

if and only if z lifts to an involution in 2-M,,.
Proof: [A] and [Gr].

Notation 2.2 To avoid repetitions we will use the following notation throughout:



X 2 (2)H means that either X = 2-H or X = H. Similarly, X = 204144 will
denote a group X such that X/02(X) = As, O2(X)/02(X)' is the even permutation

module on five letters for As and |O2(X)’|=1 or 2 respectively.

Definition 2.3 Let X be a finite group. Slightly abusing the standard definition we
will say that X is 3-stable provided that the following condition holds: If V is an
irreducible GF(3)X-module and A < X is such that [V, A, A] = 1 then [V, A] = 1.

Lemma 2.4 Let Y be a finite group. Then:

(a) The following statement is equivalent to Y being 3-stable: let V be any GF(3)-
module and A <Y with [V,A,A] =1. Then ACy(V)/Cy(V) < O5(Y/Cy(V)).

(b) Y is 8-stable if and only if Y/O3(Y') is 3-stable.

(c) If every element of order 3 in Y lies in a perfect simple 3-stable subgroup of Y
then Y is 3-stable.

Proof: (a) Suppose first that Y is 3-stable and let V and A as in the statement. Let
W be any compposition factor for Y and V. Then [W, A, A] = 1 and so by definition
of 3-stable, [W, A] = 1. Hence ACy(V)/Cy(V) < O3(Y/Cy(V)).

Suppose next that the statement holds and let V' be any irreducible GF(3)Y-
module. Then O5(Y/Cy(V)) = 1 and so by the statement A < Cy(V) and Y is
3-stable.

(b) It is clear, since O3(Y’) acts trivially on every irreducible GF(3)Y-module.

(c) Suppose that V is a GF(3)Y-module and a€V with [V,a,a] = 1. Then a® =1
and we may assume that |a| = 3. Then a€X <Y, where X is perfect and 3-stable.
Then [W, a,a] = 1 for any composition factor W for X on V and so [W,a] = 1 and
since X = <a*>, X is simple and [W, X] = 1 we have [V, X,...,X] = 1 for some n

(n—times)

and since X is perfect, [V, X] =1 and [V,d] = 1.

Remark 2.5 It follows directly from [Go; p.111] that PSLy(3), As and PSL,(9) are

all 3-stable. It is also easy to see that any element of order 3 in M;; or (2)M;; lies in



a subgroup As of these groups and since As is 3-stable, 2.4 implies that so are M,
and (2)M,,. Finally, 2A; is 3-stable as it contains As which in turn it contains a

Sylow 3-subgroup of 24As;.

Definition 2.6 A GF(3)X-module V is called an FF-module for X if Cx(V) =1 and
if there exists a non-identity 3-subgroup A of X such that |V|/|Cv(A)| < |A].

Lemma 2.7 If X has an irreducible FF-module then X is not 3-stable.

Proof: It follows from Thompson’s Replacement Theorem, see [Go; 8.2.4].

Lemma 2.8 Let X = ©, PSL,(3), (2)As, 29As, 21*4* A5 or PSp4(3). Then X does

not have an FF-module.

Proof: The proof for ©, PSLy(3), As and 2*As follows from 2.5 and 2.7 and the
proof for PSp4(3) can be found in [M]. So we only worry about the cases 2-As and
21+4 A5, namely the cases where X/0,(X) & As.

Let V be a faithful irreducible GF(3)X-module. Let A be a non-trivial 3-subgroup
of X and suppose that |V/Cy(A)| < |A|. We want a contradiction. First, |A| = 3
since |X|3 = 3 where |X|3 denotes the 3-part of X. Second, since there exists an
element of order 5 in X and since 5 does not divide

We can choose d;,d2€ Ls (where X = L;/Qs) of order 3 such that D := <d,,d,>
has a quotient As. Since Cy(D) = Cy(d1) N Cy(dz) has codimension less than or
equal to two in V and since GLy(3) is solvable, D acts trivially on V, a contradiction

since [V, d;] # 0. Hence X does not have an FF-module.

Definition 2.9 (a) Let X = Spy(3). A faithful GF(3)X-module W is called a natural
Sp4(3)-module for X, if W carries the structure of a 4-dimensional symplectic space
over GF(3) which is invariant under the action of X.

(b) Let X = SLy(3*) and W a faithful GF(3)X-module. Then W is called a natural
SLy(3F)-module for X if W carries the structure of a 2-dimensional vector space over

GF(3F) invariant under the action of X.



It is worth mentioning at this point that
Ay = PSL,(3) and 2-A4 = SL,(3),

A5 & PSL2(5) and 2A5 = SLQ(S),
As = PSLz(g) and 2A6 = SLQ(Q),

and

Remark 2.10 (i) SL;(3) has a unique faithful irreducible GF(3)-module; moreover,
this module is an FF-module and its order is 3.

(i1) PSL,(9) has four irreducible GF(3)-modules; their dimensions are: 1, 4, 6
and 9.

(iii) Let X = SL,(3), SL2(9) or Sp4(3) and let V be an FF-module. Then

V=[V,Z(X)]® Cv(X)

and [V,Z(X)] is a natural SLy(3), SL2(9) or Sps(3)-module respectively. [M; p.469
and 470]

(iv) M1 has two irreducible modules of dimension less than or equal to 8; more-
over, both have dimension five and they are dual to each other. [J]

(v) 2-M;2 has a unique non-trivial irreducible GF(3)-module of dimension less
than 10; moreover this module has dimension six and is faithful; in particular, M;,

does not have any non-trivial module of dimension less than 10. [J]

Lemma 2.11 Let G = (P)SLy(3), (P)SLy(9), My or (2)My;. Then G has no

automorphism of order 2 centralizing a Sylow 3-subgroup.

Proof: Well-known, see for example [A].



Lemma 2.12 Let X be any of our groups © or ¥, 5,€Syl3(X) and B, = Nx(S5,).

Then B, is irreducible on Z(S;); in particular B, is irreducible on S; for X =
(P)SLy(3), (2)As, 2*As, 2044 A5, (P)SLa(9) or My;.

Proof: If | X|3 = 3 then |S;| = 3 and the lemma holds trivially.
If X = (2)M;; or (P)Spa(3) then |Z(51)| =3
and
if X = PSLy(9)(= Ag) then S; = <(123),(456)> and B, = 5,<(1425)(36)>

and the lemma holds for PSL;(9) and so also for SLy(9). Since PSL,(9) < M;; and
|Mi1|3 = |PSL2(9)|5 it also holds for M;;.

Lemma 2.13 Let HeO, TeSyls(H), t€ Aut(H) with |t| = 2, [Nu(T),t] < T and

Tt =T. Then t is an inner automorphism.

Proof: Suppose first that Z(H)=1. View H as a subgroup of Aut(H).

Suppose H = PSL,(9). By 2.12, Ny(T) is irreducible on H and so t either inverts
T or centralizes T. Now the same is true for any involution z in Nyg(T'). Hence by 2.11,
both t and z invert T and so, again by 2.11, tT=zT and teH. If H = M;,, Aut(H)=H
and we are done. If H = My, Ny(T)/T = C; x C; and Nau1)(T)/T = Dg (see
[A]); hence no element in Nau7)(T') \ Inn(H) centralizes Ny(T)/T.

If Z(H) # 1 then by the previous case, t induces an inner automorphism s* on
H/Z(H). Pick s in H with sZ(H) = s*. Then [s7't,H] < Z(H) so [s™'t,H,H] = 1.

Since H' = H, the 3-subgroup lemma now implies [s™'t, H] = 1.

Lemma 2.14 Let H = PSL,(9), My; or (2)My2 and T < ReSylz(H) with |T| = 9.
Then:

(a) H=<R,R> for some geH.

(b) If H = (2)M2 then H = <T,R"9> = <T,T9> = <R, R""> for some g€H.
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Proof: Note first that
(¥) PSL2(9) = As = <(123),(125)(346)>
and in particular (a) holds for H = PSL,(9).

Clearly the statement for M;, implies the statement for 2- M;; and we may assume
now that H = M;; or M,.

Let (2,B) be a Steiner system of type S(4, 5, 11) and S(5, 6, 12) respectively
with H = Aut(Q,B). Let D < T with |[D| =3 if H = My; and D = R' if H = M.
Then, in any case, D < T and D normalizes a block BEB. Hence Ny(B) =Sym(5)
or Sym(6) respectively. In the M;; case, Ny({B,Q \ B})(= Aut(As)) interchanges

the two conjugacy classes of elements of order 3 in Ny(B). Hence, using
As = <(123),(345)> and (*) respectively,

Ny(B) = <D,D?> for some geH.

It is easy to see that Ny({B,f\ B}) is the unique maximal subgroup of H con-
taining Ny(B)' (see for example [A]). Since R £ Ny ({B,Q \ B}) (by Lagrange’s
Theorem), (a) is proved.

Also, (b) holds unless T' < Ny(B). So assume H = M;; and T < Ny(B). Then
T has four orbits of length 3 on 2. Let X be a set of size two in  normalized by D.
Then T £ Np(X), Nu(X) = Aut(As) and Ny(X)' = <D, D9> for some g€ Ny(X)
by (*¥). H = <T,D?> and the lemma is proved.

Lemma 2.15 The normalizer of a Sylow 3-subgroup is mazimal in SL,(3) and in
SLy(9); for Spa(3) the mazimal overgroups of a normalizer of a Sylow 3-subgroup are
N(E,) and N(E;) where E;, i=1 or 2 is the i-dimensional singular subspace of W
normalized by the Sylow 3-subgroups (W any natural GF(3)-module for Sp4(3)).

Proof: [C; 8.3.2 and 11.3.2].
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3 Properties of the graph I

In this section we will define a graph I' and we will list some of its properties.

Definition 3.1 Let ' = {P,z|z€G,: = 1,2}. From now on, small Greek letters will

always denote elements of I'. Make T into a graph by defining o to be adjacent to 3

if and only if a # B and a N B # 0. Then G operates on I' by right multiplication.
For 8€T let G5 = Stabg(6), GS™ = largest normal subgroup of Gs fizing all vertices

of distance at most n from § and A(6) the set of all vertices adjacent to 6.

Lemma 3.2 Let i=1, 2. Then:

(a) Gpz = FY,

(b) The edge-stabilizers in G are conjugate to B,

(c) Let 6; = P;. Then A(6;) = P;/B as a Gs,-set; in particular, Gs, is transitive
on A(6),

(d) Let (6,)) be an edge; then G = <Gs,Gr>,

(e) G acts faithfully on T,

(f) T is connected.

Proof: (a), (b) and (d) follow directly from the definitions; we will now prove the
rest of the claims.

(c) [DS; 2.1(c)].

(e) Let g€G be such that 49 = v for all y€I'. Then P,g = P; and therefore g€ P..
Also, if R€G then 49" = 4 for all y€I'. Hence <g6> < B and claim is proved by
(Aq).

(f) Let T'o be the connected component of I' containing P,. Then also P,€l,. By
(a), <P, P> < Ng(To) and (A;) implies T = Ty.

Notation 3.3 Let d( , ) denote the usual distance on the graph T'.
For €T and i > 1,
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AW(8) = {XeT'/d(é,A) < i},

Qs = 03(Gs),

Zs = <M Z(T)/TeSyls(Gs)> ,
Vs = <Zy/AEA(6)>,

bs = minger{d(6,6)/2Zs £ GV},
b = mingier{bs },

Gsx =GsN Gy and Qsy = Qs N Qxif (SGA(/\)

A pair of vertices (6,6’) such that Zs £ Gg}) and d(6,8’) = b is called a critical pair.
The bounding of the parameter b which we just introduced, will allow us to deduce

a considerable amount of information about P, and P;.

Lemma 3.4 (a) G acts edge- but not vertez-transitively on T,
(b) Gs is finite,

(c) Cas(Qs) € Qs,
(d) If a is adjacent to B then Syl3(Go N Gg) C Syls(Ga) N Syls(Gp).

Proof: [DS; p.73].

Remark 3.5 Notice that as G acts edge-transitively, b = min{b,, bs} for any pair
of adjacent vertices a, 3. Thus, we are allowed to choose a, 8 such that b, = b < bg
and {G,.,Gs} = { P, P2}. In particular, G, N Gg = B and S€Syl3(G4) N Syl3(Gp)-

Let o’€T such that d(a,a’) = b and Z, £ G). Let p be a path of length b from

a to o’. We label the vertices of p by
p=(a,a+l,...,a+b)=(a~-b,---,a' - 1,a),

i.e. a+i (respectively a’—1i) is the unique vertex in p with d(a,a+i)=i (respectively

d(o’ -i)=i). Furthermore, from 3.2 (c) we may assume that

B=a+1if b>1.
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Note also that if Qs = Q) for some §€A(A) then Qs Q <Gs,Gr> = G, a contradic-

tion. Hence

Qs # Qx Y6EA(N).

Lemma 3.6 Let (6,)) be an edge and N a subgroup of Gsx such that Ng,(N) acts
transitively on A(p) for p€{é,A}. Then N=1.

Proof: See [DS; (3.2)].

Lemma 3.7 For 6€T,

(a) Qs < G,

(b) Zs < Z(Qs) N Vs, in particular, b > 1,

(¢) Zar < G nd (Zay Zar] < Za O\ Zan,

(d) Zo # hZ(T), TeSyls(Ga),

(¢) If SESyls(B) and ,(Z(S)) is centralized by a subgroup R of G which acts
transitively on A(B) then Z(L,) =1,

(f) G/Qs is a p-group.

Proof: (a) Let A€A(8) and To€Syls(Gsy). Then
Qs = 03(Gs) < To < G

Hence Qs€Gx VA€A(6) and therefore Qs < GY.

(b) Zs < V; is immediate from the definitions. Now show that Z; < Z(Qjs). Since
Cs,(Qs) < Qs it is enough to show Zs; < Cg,(Qs). Let To be a Sylow 3-subgroup
of Gs containing Qs. Then Qs = QF < T§ for every g€Gs. Hence Qs < T for every
TeSyl3(Gs). As T centralizes Z(T) so does Q5 for every T€Syl3(Gs). Thus, by the
definition of Zs, [Z5,Qs] =1 and Z5 < Cg,(Qs). In particular, by (a) Z, < G{) and
soa#a and b> 1.

(c) Minimality of b gives Z,» < Gf,lll < G4. In particular, Z, normalizes Z,.
Hence [Z,, Zo/) < Z,. Similarly, [Z,, Zy] < Zoe.
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(d) Assume that Z, = ©,Z(T) for some T€Syl3(G,). Hence S = T9 for some

g€G, and therefore
M (Z(S)) = M(Z(T?)) = (U(Z(T)))° = Za

where the last equality holds because Z, 9 G,. Thus Z, < Zg. Since Z, £ GS,) we
get that Zg £ G and since d(a’,@) = b — 1, we get a contradiction to minimality
of b.

(e) Let R be a subgroup of Gg that acts transitively on A(8) and such that
©:1(Z(S)) is centralized by R. Then

MN(Z(La)) £ C6,(Qa) S Qa < S.

Hence Q,(Z(La)) £ ©(Z(S)).and therefore Q,(Z(L,)) is also centralized by R. Thus,
by 3.6, W(Z(La)) = 1 = Z(La).
(f) Without loss of generality, 6€{a, §}. Since B = Ng,(S) we get

Os(B)€Syls(B);

hence B/Os(B) is a 3'-group. Let Q = O3(G{")). Then, as G{*) < B, G{)/Q is a
3'-group. Now Q is a normal characteristic subgroup of Ggl) which is normal in G;
and so @ 9 Gs. But Q is a 3-group. Thus Q@ < 03(Gs) Q Ggl) and we conclude
Q = 03(Gs). Thus G§"/03(Gs) is a 3'-group.

Remark 3.8 (i) By 3.7(b), Z, £ Qu-
(ii) Zs < G, VyeAMN(8), B=Gop, Zo < B, Z3 < B.
(iii) Also Syls(B) C Syls(P1) N Syls(Pz).

(iv) Frattini argument gives L;S = Ls and for p€A(6), Gs = LsGs,..

Lemma 3.9 (1) [Zy, 2oty Zor] = 1,
(2) Vs Q Gs VéeT,
(8) Z, normalizes V.
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Proof: (1) [Za, Lo, Zaf] < [Z,, N Zyr, Zal] < [Za/, Zc,:] =1.
(2) For e€A(8) and g€Gs,Z8 = Z.o < V5 as d(e9,6) = d(e9,69) = d(¢,6) = 1.
(3) It follows from V,» Q G and Z, < Gor.

Lemma 3.10 If b>2 then Vp is abelian.
Proof: Let \,ecA(B) U {B}; then d(A,e) < 2<bso Zy < Q. and
(25, 2] < [Qe, Z] = 1.
Hence [V, V3] = 1.
Lemma 3.11 If Zs < Z(Ls) then Z5 < Zy VAEA(6).
Proof: Let T€Syl3(Gsy), A\€A(S). By Frattini argument we now have that
W Z(T)Q LsNg,(T) = Gs.

Hence,

Zs = <M Z(T)%> = W Z(T) < Zy.

Corollary 3.12 (a) Z, £ Z(L,),
(b) If Zo» < Z(Ly) then a is not conjugate to o'.

Proof: (a) follows from 3.11 as Z, £ Zs. For (b) notice that if @ were conjugate to
o' then, since by (a) Z, £ Z(L,), we get Z,» £ Z(Lo) and we are done.

Corollary 3.13 Z, N Qo # Cz,(Za) if and only if Z,» < Z(Ly).-

Proof: Assume first that Z,NQu # Cz,(Zar). By 3.15(¢c), Zar < Qa, 50 [Za, Zar] = 1
and Z, < Z(Ly).
Conversely, let Z,» < Z(Ly). Then, since Z, < L, and since Z, £ Q.r,

Zo N Qa’ ?é CZa(Za')~
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Lemma 3.14 Let §€{a, B}.
(a) Let A be a 3-subgroup of Gs with A £ Qs. Then

03(L5) < <AL6> and Ls = <AL6>Q,5.
(b) Let N Q G5 with 3 dividing |[NQs/Qs|; then NGop = Gs.

Proof: Let Ls = Ls/Qs. Since Ls = © or ¥, Ls/O,(Ls) is simple in all possible cases.
Since A £ Q5 and A is a 3-group, A £ O2(Ls). We conclude that <ZL_°>02(L_5) = Ls.
Thus Ls/ <A¥>isa 3'-group. Since L; is generated by 3-elements, L5 = <A%> and
)

<Ab>Qs = Ls.
In particular, Ls/<A%é> is a 3-group and (a) is proven.

(b) By (a) applied to a Sylow 3-subgroup of N, Ls < NQs, so
Gs = LsGap = (NQ5)Gop = NGop.

Remark 3.15 (a) By 3.12(a), Z, £ Z(L,) and so by 3.14(a) Cs,(Z,)/Q« is a 3'-

group.
(b) If Z,» < Q4 then [Z,,Z,] =1 and so

Zo =Cz,(Za).

Hence Zo N Qo # Zo and Z, N Qo # Cz,(Zar).
(c) If Zoo £ Qo then by (a) Cz,(Za) = Zo N Qo and since we have a complete

symmetry between a and o' in this case, we get that Cz_,(Z.) = Zo N Q..

Definition 3.16 (a) Ls = Ls/03(Ls).
(b) Let K be a complement for S in B and

Ko =KNL, and Kg = KN Lg.
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(c) Let 6€{a,B}. Let ts be an element of order 2 in Ks with tsQs/Qs€Z(Ls/Qs)
if Ls/Qs is isomorphic to one of the groups SLy(3), 2-As, 21*4As, SLy(9), 2-M,.

Spa(3); otherwise let ts = 1.

Corollary 3.17 Let §€A(X) and ts # 1. If Ly/Qx = (P)SL2(3), (P)SL2(9), M
or (2) M, then ts does not centralize S/Q».

Proof: Suppose ts centralizes S/Q,. Then 2.11 implies that ;5 centralizes Ly/Q..
By Frattini argument Ly = Cp, (¢5)@x. Similarly Ls = CL,(t5)Qs and by 3.6 we get

ts = 1, a contradiction.
Lemma 3.18 Qs ts not contained in Q) for any pair of adjacent vertices 6 and .

Proof: Without loss of generality assume {§,A\} = {a,3}. Assume that Qs is con-
tained in Q. By 3.5 Qs is properly contained in Q. Hence Q1/Qs is normal in B and
as Q) # S weget that B is not irreducibleon S/Qs. Hence by 2.12, Ls/Qs % PSL,(3),
SLy(3), 24As, 2114 A5, As, 2-As, PSLy(9), 2PSL2(9) or My, and therefore

Ls/Qs = (P)Spa(3) or (2)Ms,.

For v€T let M(Q,) be the set of all maximal with respect to order abelian sub-
groups of @, and J(Q,) = <A/A€ M(Q,)>, namely . J(Q.,) is the Thompson
subgroup of Q..

If J(@») < Qs then clearly M(Qs)=M(Q)) and so

1 # J(Q»x) = J(Qs) D <G\, Gs>,

a contradiction to (A4). Hence,
J(@r) £ Qs

and there exists A€ M(Q)) with A £ Qs.
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Now notice that <€, Z(Q1)%> Q G5 and therefore <€, Z(Q)%> can not be
normal in Gy. Let Z; = <,Z(Q,)%>. Since Qs is contained in Q) we get that

MZ(Q») < Cq,(Qs) £ Qs and therefore Z; < Z(Qs). Hence
Z:NA=Z;NANQs.

Let X = Cg,(Z;5).

Suppose C4(Z;) £ @s. Then 3.14 gives XGs» = Gs. Since 2, Z(Q)) is normalized
by G and therefore by Gs) as well and since it is also normalized by X, we get that
01Z(Q») is normalized by G5 and G\, a contradiction. Hence AN Qs = Ca(Z;).

Also, since

Z;NA=Z;NANQs

we now get

Z;NA=2Z;nCaZ))

Z; (AN Qs) is abelian. Hence |Z;C4(Z;)| < |A|. Then we have
|Al 2125 Ca(Z5)| = | Z511Ca(Z5)1]125 0 Ca(Z5)] =

1Z511Ca(25)/125 0 Al

Hence |Z3|/|Z; N A| < |A]/|Ca(Z5)] and so
|Z5/Cz; (A)| <125/ Z5 0 A| < |A]/ICa(Z5)] = |AQs|/1Qs]-
Thus Z;§ is an FF-module for Ls/CL,(Z;) and 2.8 gives
Ls/Qs = Spa(3).

Now t5 centralizes S/Qs and as Qs<Q» we get that t; centralizes S/Q» a contra-

diction by 3.17 since L)/Q,€0.
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Remark 3.19 If S# Q,Qp then B is irreducible neither on S/Q, nor on S/Q3. Thus
by 2.12
{La/Qa, Ls/Qs} = {(P)Spa(3), (2)Mi2}.

Hence either

S = QaQﬁ
or

S # QaQp and {La /QasLs/Qp} = {(P)Spa(3), (2)M12)}).

Lemma 3.20 Any Vs has a non-central chief factor for Ls.

Proof: Let AeA(6). If V5 has no non-central chief factor then O3(Ls) centralizes Z)

and therefore Z), 9 <Lgs, Ly>, a contradiction to 3.6.

4 The case Z, £ Q.

In this section we work under the hypothesis Z,» £ @Q,. Notice that under this

hypothesis, we have a complete symmetry between a and o', so Zo € Z(L4).
yp

Lemma 4.1 (a) Z, N Qo = Cz,(Za); in particular b is even,
(b) Zo' N Qo = Cz,,(Za),

(c) 0%(Cga(Za)) = Qa,

(d) 0¥(Cg,_, o(Za-1)) = Qa-1 and

(¢) 0%(Cg.(Za-1Za)) = Qa N Qa-1-

Proof: (a) follows from Zy £ Z(L.) and 3.13; (b) follows from (a) and symmetry
between o and o’; (c) follows from 3.15; (d) is an immediate consequence of (c) and

3.7(a); (c) and (d) imply (e).
Definition 4.2 e =1 if Zg # M Z(S) and e =2 if Zy = 0, Z(S).

The main result in this section will be the following
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Proposition 4.3 b =2 and ¢ = 2.

Lemma 4.4 (a) Lo/Qa = Lo /Qor €{SL2(3), SL2(9), Spa(3)}.
(b) Zo is an FF-module for Lo[Qa, Zo = [ZayLa] ® ©Z(Ls) and [Zs, Ls] is the
unique natural SLy(3), SL2(9) or Spa(3) module for L,/Qa respectively.

Proof: (a) Since [Z,, Zaty Zor) = 1 and [Zs,Zor] # 1 and as Z, £ Qo we get that
Lo'/Qor cannot be 3-stable. Similarly L,/Q, is not 3-stable. Hence

L /Qa = L /Qa’ = SLQ( ) 2'A5, 5L2(9), 21_+4A5 or (P)Sp4(3)

I want to exclude the possibility of 2-As, 2!+*A5 and PSp4(3). Without loss of

generality we may assume that
1ZaQor/Qur| £ |ZeQa/Qal-
Let V=2, and A = Z,/Qs/Qs- Then
IVICv(A) = 12a/Cz.(Zor)| = |Za/ 26 N Qui| =

IZaQa'/Qa'I < |Za'Qa/Qa| = IAl
Therefore Z, is an FF-module for L,/Q,. Since 2-As, PSp4(3) and 2!*t*A;5 do not

have an FF-module we conclude that

L /Qa = Lo /QO’G{SL2 SL2( )’ Sp4(3)}.

(b) follows from 2.10. O

By 4.4, L, fixes some symplectic form on Z, with €, Z(L,) in its radical. In what

follows “L” and “singular” is meant with respect to that form on Z, (or also on Z,/).
Lemma 4.5 Let X < Gor. Then Cz_(X)* = [Zo, X] + 1 Z(Lo).

Proof: [As; 22.1].
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Definition 4.6 For L,/Qs = SL2(3) or SLy(9) let
Ala, @) = A = Aa) \ {8}

and for Lo/Qo = Spa(3) let E,p be the 2-dimensional singular subspace of Z, nor-
malized by S and define A(a,a’) = A by

A = {a —1€A(a)/Za1 £ [Zay Zos) and Ea_14 0 [Zay Zar] = 1}
4.7 A#0.

Proof: For L,/Qa = SL2(3) or SL(9), this is clear. So suppose L,/Q. = Sp4(3)
and pick a singular 2-space in Z, whose intersection with [Z,,Z4/] is 1 and is not
perpendicular to [Z,,Z,]. Call this space E and pick any 1-space in E which is
not perpendicular to [Z,, Zo], say W. Then Ng,(W) N Ng,(E) is the normalizer
of a Sylow 3-subgroup of G, and so there exists @ — 1€A(a) with Z,_; = W and
Eo-1,o = E. Then a — 1€A.

Lemma 4.8 If L,/Q, = SLy(3) or SLy(9) then
Zp = Cz,(Zo) = [Zay Za') + 1 Z(Lo) = [Za, Q) + 1 Z(La) = C2,(Qp) = Cz,(S).

Proof: By 4.10, [Z,, L,] is 2-dimensional over GF(q), where q=3 or 9 respectively.
Hence (Za, La), Cz,(Za), [Zay Zor)s [Za, Qp] and Ciz,,1.)(Qp) are all 1-dimensional
over GF(q). Moreover, [Z5,Qp] = 1 = [Zs, Zo] and the lemma follows.

Lemma 4.9 Let a — 1€A. Then <Guo1,0y Za> = Go.
Proof: If L,/Qa = SL,(3) or SL,(9), Lemma 4.8 implies
[Za—lv Za’] # 1

and 50 Zy» £ Ga-1,a- By 2.15, G4-1,, is maximal in G, and s0 <Go_1,4, Zar> = Ga.
So suppose Lo/Qs = Spa(3) and <Ga-1,0,Za> # Ga. By 2.15, <Ga—1.0y Zar>

normalizes Z,_; or E := E,_; 4.
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If Z, normalizes Z,_; then [Z,_1,Z,] =1 and

Za—l < CZQ(Za—l) = [Zaa Zo']ls

a contradiction. Thus Z, does not normalize Z,_;. Hence Z,. normalizes E and

(Za-1,20) S [E,Za)) K EN|[Z0,Z200) =1

Therefore [Z,-1, Za] = 1, a contradiction since Z,+ does not normalize Z,_;.

Lemma 4.10 ¢ = 2. In particular Z, is a natural SLy(3), SLy(9) or Sps(3)-module

and Zg S Za.

Proof: Suppose ¢ = 1. Let a — 1€A.

If Zo—1 £ Qar—1 then (a—1,0' — 1) has the same properties as (a, a’), which can’t

happen as the vertices alternate in terms of 3-stability. Hence
Zor—l S Qa’—-l S GS:)_I S Ga’
and
[Za—l’ Zor’ n Qm Zoy N Qa] < [Ga'a Za’, Zo’] =1

Now, 3-stability of G,—1 implies [Zo—-1, Zar N Q4] = 1 which gives
CZQ,(Za) = Za’ n Qa < CZQ,(ZQ—I)-

Hence

CZ (Za—])—L S CZGI(ZQ)-L

a'!

and by 4.5,
[Za’a Za-l] S [Za', Za]-

Hence Z,_,Z, is normalized by Z,s and by G,-; N G, we get by choice of a — 1 that

Zo-1Z4 QA G4 and therefore

Ccu(Za-12Z4) Q G,.
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By 4.1(e) now 0% (Cg,(Za-1Za)) = Qa N Qq-1 and so we conclude that
Qa-—l N Qa 9 Ga and Qﬁ N Qa S Ga-

Let L = <Qg°>. As [Q5,Qal £ QsNQa A Ga, [L, Q] £ QaN@p < Qp. Recall the
definition of ¢, (see 3.16) now. Since Qs £ Q., 3.14(a) implies that t,€03(L,) < L.

Hence
[taa Qa] S Qa N Qﬁ S <ta>(Qa N Qﬁ) S <ta>Qa
and
02(<ta>(Qa N Qﬁ)) < <ta>(Qa n Qﬂ)
Thus

[t3] < <taS>NQa < 0} (<ta>Qa) N Qu <

(<ta>(Qa n Qﬂ)) N Qa < Qa n QB < Qﬁ-

Hence t, centralizes S/Qg, a contradiction by 3.17. Thus € = 2. So
and by 3.7(e), Y Z(Ls) = 1. So the last statement of the lemma follows from 4.4(b).

Notation 4.11 X, = 0, Z(Q.),
b =min{d(a, 8)/ X, £ Qs}.

Lemma 4.12 b=b.

Proof: Z, £ Qo and Z, < X, give Xoa £ Q.. Hence b < b. Suppose b<b and
choose d(a, §) = b so that X, £ Qs. Since b<b we get Vs < G, which implies

[Vs, Xay Xa] = 1.

If 6 is not conjugate to a then Gy is not 3-stable and 3.20 gives X, < Qs, a contra-
diction. Hence 6 is conjugate to a and so b < b implies Z5s < Q, and [Z5, X.] =1, a

contradiction to 4.1. Therefore the claim is proved.
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4.13 X, = Z,.
Proof: d(a,a’ —1)<b= b gives Xy < Qu_1 < G} | < G4 which gives
(Xoy Za NQu) = 1.
Hence by 4.1(a), [X4,Cz,(Za)] =1 and by 4.5, [Xa, Zo] < Z,. By 3.14(a),
L, = <ZEk>Q,

and therefore [Xo, Lo] < Zy = [Za, o]
Now: X, = Cx,(ta) @ [Xa,ta); but the first summand is normalized by L, and
the second is [ X4, L.] = Z,. Hence

Cx.(ta) S Cx.(Lo) <M Z(Ly) =1
which implies X, = Z,.

Remark 4.14 The following are equivalent:
() Za-1 £ [Za) Za];
(ii) Czo_,(Zar) = 1;
Define now Y and Yj by

Y;/Zs = <Cz,z,(Qp)/$€A(8)>

and

Ys = Cz,(0%(Lp)).

Note that [Y},Qg] < Z;.
4.15 Ifb>2 then Y; < Z,.

Proof: Let o — 1€A. Since Y7, < V,_; < Gu—_2 by minimality of b we have

Yr 1, Zai2] € Zy_3. Now Z,_, is centralized by Z, since 6>2 and therefore
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[Ya._l,Za’—‘Z] S [Y;_an—l] S Za—l a.nd [Y;_I,ZOI_Q] S CZO_I(ZQI) = 1. But then
Y ; € Qa-2 £ G-y and since b>2 implies that V,,_; is abelian (see 3.10), we get

Yy 1, Varc1, Varc] € [Garety Varer, V1] £ (Varmy)' =1 and
[Yo_1) Zar N Qar Zor N Qa) = 1.
Look at <Vav_°{"> now. For 6€A(a — 1) and g€V,i—1 < G, we have
d(8% a) =d(é%,a°) = d(6,a) < 2.
Hence d(69,a — 1) < 3 and since b > 4 we get that Zs < Qo N Qa-1 and

Vi
VY15 < 00 Quir.

Therefore

Yy, <Va2i7>] < [Yioy, Qant] € Zoor.
Hence

[Varet, Y] € [Varo, Vo] € <V >
Thus

[Va’-l, Y;_l, Y;_l] S Zoa NV, < CZa_l(Za‘) =1

and 3-stability of Lyi-1/Qor—1 gives [Va—1,Yr ;] =1 whence
Y;_l S Qa'-—l S. Ga’-

Now, if Z, N Qo £ Qur—1 then since Z, N Q, is quadratic on Y |, < Qui-q, we

get [Yr_,,03(Lo-1)] =1 by 3-stability. Hence

a-=19
CZQ(QG-I/ZQ_I) d Oa(La-—l)Ga,a—l = Ga-l

SO

Y;—l = CZQ(QO_I/ZQ_I) S Za
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and claim is proved. Hence, assume now that
Za’ n Qa S Qa’—l-

Then [Y2_,,Z0 N Qo] £ Zoye1 N Varoy £ Cz,_,(Zor) = 1 which by 4.5 implies
[Yr_ 1, Zw] £ Zs. Hence, Y] 1 Z, Q <Goa-1, Zar> = G,. Therefore [Y7_;,Q.] 2 G,.
If [Yr_,,Qs] # 1 then Ciy:_ .)(Qa) # 1 and since Z, = 0 Z(Q.) and Z, is

irreducible, Z, < [Y2_1,Qa). So Y, =Yr ,Z, Q G, and Y, Q <Gyo-1,Go>, a
contradiction. Hence [Y:_,,@Q.] =1 and Y, < Z, by 4.13.

Corollary 4.16 If b>2 then L,/Qs = Spa(3).
Proof: Suppose L,/Qa = SL2(3) or SLy(9). Then, by 4.8,
Cza125(Qs/Zp) = Za.

Therefore,

Zo Y5 < Zs

whence

Ly = Yﬁ' A <G,,Gp>,
a contradiction.
Remark 4.17 Suppose b>2.

(1) Since Y3 < Z,, [V}, <Qacﬁ>] =1 and so Y5 < Yj by 3.14. In particular, Y # Zg

and since G, g normalizes Y, E,3 < Y;. Hence
1
Yﬁ S E&ﬁ S Yﬁv

where Yj" is the perp of Yj in Z,. So G = O%(Ls)Gap normalizes Y;* and Y3 does
only depend on 3 and not on a. Moreover, Y3t = Zs if |[Y3| =33 and Y3 = Y; = Eop
if |Yp| = 32
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Let o — 1€A. Note that if Y-, = Z,_; then |Cy _ (Zw)|=1and if Y1, =Y,
then |C¢._ (Z)| < 3.
(2) By 4.5, (2, Co,(Ys)] < Y3+ VAEA(B) and hence

[Vﬁ’CQp(Yﬁ)] < Yﬁl and [Vg, Qs N Qa] < Yﬁl-
4.18 Suppose b>2. Then Zg = Cz,(Qp)-

Proof: We have Cz,(Qp) < Y5 < Y3 s0 Cz,(Qp) is centralized by O(Lg) and by
Qp- By 3.14(a) and Q. £ Qp, Ls = Q30%(Ls)Qq and hence Lg centralizes Cz,(Qp).
So Z5 < Cz,(Qp) £ ™Z(S) £ Zs and the claim is proved.

4.19 If b>2 then for alla — 1€A, Vo1 £ Qur—2-
Proof: Suppose we can pick a@ — 1€A such that
Va—l S Qa’—2-

Then V,_; < Qor-2 < G4 and since b>2 we get that V,,_; is abelian and therefore
[Va—h Va’—la Va’—l] < (VOI’-'I)’ =L
In particular, V,_; N Qo < Qq-1 by 3-stability and 3.20. Hence by 4.17(2),

[Va—la Va'—l N Qa] S Ya-L—l‘

Since b>2 and b is even, b > 4. Let 6€A(a — 1) and geV,_; < G,. Then
d(6%,a) = d(8,a) = 2 and so d(6%,a — 1) < 3. Hence, by minimality of b,

Zg S Qa—l N Qa-
Thus <V0V3{"> < Qo N Qqs-1 and therefore we get using 4.17(2) that
R := [Varo1, Vact, Vact] € Ve N[V >, Vo] <

Varea N Y3y < Cya (Za):
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Hence by 4.17(1) we get |R| =1 or 3.
Suppose V,_; < Qur—1- By 4.9,

<Ga—l,a, Za’> = Ga

and by (A4), Va-1 is not normal in G,. So Z, does not normalize V,_; and since

(Zay Zo)[Va=1, Zar N Qo) < Viooy we get that
[V -1 Za'] ﬁ [Zaa Za'][va—la Za' n Qa]-

Let W = [Za, Zar|[Vacry Zor N Q-
Since W = [Z4, Zo|[Va-1, Zor N Qo] £ Va1 N Zar £ Cz_,(Vao1) we get

w S [Za’, Va—l] = C'Za/(‘/o:—l)l S W-L-
If |W| > 3% then |W+| < 3% and s0 [Va-1,Zsr] < W, a contradiction. Hence
|[Za, Za'][va—ly Zo N Qa“ =3.

If [Vaz1,Za N Qa] = 1 then by 4.5 [Voo1,Zy) < [Za, Zar] a contradiction and
therefore [V,—1, Zo N Qo] # 1; since [Z4, Zor] # 1 we get [Zy, Zot] = [Vaz1, Zar N Qal-
But [Vo-1,Za N Qa) < Y1, gives [Za,Z4] < YL, < Z1 | a contradiction to the
choice of a — 1€A as [Z,,Z.] £ Z+,.

Hence V,_; £ Qar-1-

Suppose |R| = 1. Then 3-stability gives V,_; < Qq—1, a contradiction. Therefore
|R| = 3 and so |Y:,| = 3? and |Y,-,| = 32.

If Voi—1/Z,—1 has more than one non-central chief factor for Lai—1, say X3/X,
and X,/X3 with

X1<X2<X3< X,

then, since we can not have a quadratic action on noncentral chief factors and since

Va1 € Qar-1, we get [X3, Vo1, Vooi] € X; (3-stability applied to X;/X;). So

[XZa Va—l) Va—]] # L.
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Therefore

R = [X2a Va-—la Va—l]

and hence

(X4, Va1, Va1 S R< X2 £ X5

contradicting 3-stability on the chief factor X4/X3. So, Var—1/Za-1 has only one
noncentral chief factor.

Suppose now [V3,Qp,0%(Lg)] < Zs. Then [Za,Qp]Zs I Gg. Now by 4.18 we
have Z3 = Cz,(Qp)* = [Za,Qp]. Also [Z,,Qp]Zp is centralized by <Q%> and as
03(Ls) < <Q%°> by 3.14(a) we get that [Z,, Q] is centralized by 03(Ly). Thus
Zf = [24,Qp) < Y. But |Zz| = 3° and, as seen above, |Y3| = 3% a contradiction.

Therefore
[V, Qs,0%(Lp)] £ Zs.

So there is a noncentral chief factor in [V, @g]. Thus

[Vs,0%(Lg)] < [V3,QplZs

(otherwise we get another noncentral chief factor, but we should only have one).

Hence Z,[V3, @] Q G and therefore Vs = Z,[Vj, @] which implies
Vs/Za = [Vs,QpZa/ Za = [V3/Za, Qp)-
So we have a 3-group (Qp) acting on a 3-group (V3/Z,) such that
Vs/Zo = [V5/Za, Q5]
Hence V3/Z, =1 and V3 = Z, 9 <G,,Gp>, a contradiction.
Lemma 4.20 b=2.
Proof: Assume that 6>2. Suppose

'Yﬁl = 33 or HZa, Za’” = 32;
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then
Zg = Yﬂ'l' or Yg = Eaﬁ and [Za,Zal] = Czo(Zar).

Let a — 1€A. Then, by the definition of A in both cases,
Yal_l N CZq(ZO') e 1.

By 4.17(2),
[Va—la Za’-2] < Yal...l N CZG(ZQI) = 1’

contradicting 4.19.

So we can assume that
|Ypl = 32 and |[ZO,,ZO,/“ =3.

Note that [Yp, Z,] = 1 and so Y < [Z,, Zo/]*.
LOOk at Czo(Zo,/) \ Yg = Za N Qa’ \ Yg = [Za, Za,]'L \ Y;g. Ple l-spaces

El') E2’ E3 S [Zon Zcr']-L

so that they generate everything, (note that [Z4, Zos]* is a 3-dimensional vector space)
i.e. |Ei| =3, E; <[Za,2Zx)*, =1, 2, 3 and E,-Ey-E3 = [Z,4, Zor]t. Moreover, pick
the above E;’s so that E; £ Y3. Choose §;€A in such a way that Zg, is perpendicular
to E; but not to [Z,, Z,]. Also, choose the 8!s in such a way that Zs E; = Y},
(which implies that Cy, (Z,r) = E;). Then, by 4.17(2) applied to §; in place of S,
(Vaiy Zar-2) < Y5+ = Yp, and since b>2, [Vp,, Zai—a] < Cyﬁ'(Zar) = E;. By 4.17(2)

applied to o’ — 3 in place of B, [Vj,, Zar—2) < Yar—3. So,
Z, N Qa’ = <E,/l€]> C Yal_a.

But |Z, N Qu| = 3° and |Y4—3| = 3%, a contradiction.

Proof of the Proposition: It follows from 4.10 and 4.20.
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5 The case b=2

In this section we assume that Z,» £ Q.. Recall from the previous section that
Lo/Qa = SLa(3), SL2(9) or Spa(3),

Z, is a natural SLy(3), SLy(9) or Sps(3) — module,
Lﬁ/Qﬂ = PSLy(9), Mu or (2)M12,
e=b=2,d-1=p4, Zs=MZ(S)

and a is conjugate to o'
Proposition 5.1 The hypothesis in this section leads to a contradiction.

Proof of the Proposition: Since [to, K] < Qo N K = 1 we have [t,, A3] = 1 and
the order of t, is 2. By 2.13, t, induces an inner automorphism on Lg/Qg.

By 3.17 t, does not centralize Lg/Qp. Also, as t, is an inner automorphism we
can pick t€ K which acts on the same way on Lg/Qp i.e. pick t€Kj so that x5 = t,t
and zg centralizes Lg/Qg.

I now claim that the order of t is 2 as well. By choice of t,

|t = |tQa/Qal

and the image of t in Lg/<ts>Qq = Lg<zp>/<tp,z3>Q4 is to which has order two.
Hence the claim holds if {3 = 1 and so we are done for the cases PSLy(9), My, or
M;,. The only problem could appear in 2-M;; since when we lift M;; to 2-M;, the
order of t could become 4. But this does not happen by 2.1(d). Moreover in any case
zp centralizes Lg/Qp and the order of zs is also one or two.

Now ¢, acts non-trivially on Z, which is irreducible for L, so t, inverts Z,. K,
acts on Yp faithfully and Kz centralizes Yj so [K,, K5] = 1. We will distinguish two

cases.
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Case 1: |Z,| < |Y3/|%
K, acts on Y} faithfully and Kj centralizes Ys so [K4, K5) = 1. Since K, centralizes

t and K, centralizes t, we get that K, centralizes z5. Thus [z4, K,] = 1.

Now define Y3 = Cz,(0%(Lg)). Let
A=2Z5if La/Qu = SLy(3) or SLy(9)

and
A=Eupif La/Qa = Spa(3).

Since t centralizes Ys and t, inverts Y, 23 inverts Y3 and so zg inverts A. This
means that if £ is the image of 25 in Aut(A) then z3€Z(Aut(A)) and so [Ng, (A), z3]
centralizes A.

Let L = Np,(A)and Q = Cr,(A). Since Z, is a natural SL;(3), SL(9) or Sps(3)-
module, L/CL(A) = GLr(A) where F = GF(3), GF(9) or GF(3) respectively and
L acts irreducibly on A. Since A = A4, [Z,,Q] < A' = A. Hence [Z,,Q,Q] = 1
and Q is a 3-group. So @ = O3(L). Now [L,z5] < @ and so by Frattini argument
L = CL(z4)Q. Hence C(zp) acts irreducibly on A and on Z,/A (which is isomorphic

to the dual of A). In particular z; inverts or centralizes Z,/A. Since

c )
Vs = <Z59> = <2,

we conclude that z inverts or centralizes Vj/A.

Note that x5 inverts A so if x5 inverts V3/A, z5 inverts V3 and Vj is abelian, a
contradiction to 1 # [Z,, Zn] < Vj.

If z5 centralizes V3 /A then Vs = Cv,(Z3)A = Cv,(Z)x A. Hence V; < (Cv,(Z3))
(a5 A < Nyeg, 28 < Z(Vy)) and so

ViN Z5 < (Cvy(Zs)) NA = 1.

Hence CVA(S) =1 and Vj = 1, again a contradiction.

Case 2: |Z,|>|Ys]2
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As Zg < Yp and |Z}| = |Z,| for La/Qa = SL2(3) or SLy(9), this implies that
La/Qa = SP4(3)

Then |Z,| = 3%, Z, is a natural Sps(3)-module for L,/Q. and |Ys| = 3. Thus
Cz.(03(Lg)) = Zs. Recall the definition of E,p in 4.6. Since |Yj| = 3 we have that

[Eaﬁv OB(Lﬁ)] 76 1.

Subcase 1: E,3 £ Z(Vp).

Choose o’€A(B) such that [E,p, Zor] # 1 (hence (a,a’) is a critical pair). On the
other hand we have [Z,, Zy1, 2] = 1.

Suppose |[Z4, Zo])| = 3. Then [Za, Zor] = [Eap, Zar] < Eup and so

CZa(Za’) = [Za’Za']l 2 E&Lﬁ = Lap,

a contradiction to [E,s, Zo] = 1. Hence |[Z4, Zo]| # 3. If |ZoQa/Qa| = 3 then
|Zat/Zat N Qa| = |Za/Cz,,(Zs)| < 3 and s0 [Za, Zor] = |C2,,(Za)t| = 3, a contradic-
tion. Thus,

lZa’Qa/Qal 2 32-

Since [Z4, Zat, Zor) = 1 we have by the choice of o’ that
|[Za7Za/” = 32 = CZQ(ZQI) # Eaﬁ-

Now @ normalizes Z,s and hence it also normalizes Cz,(Z4). Hence QsQ, normal-
izes Cz,(Z,). But the only S-invariant subgroup of order 3% in Z, is E,3. Hence
Q.Qp # S which means (recall that from 3.19, Q,Qp # S implies {Lo/Qu, Ls/Qs} =
{(P)Sp4(3),(2)M12)}) |QaQs/Qs1<|S/Qs| = 3°. Thus |QaQs/Qs| < 32.

Now look at Qo N Qp; it centralizes [Z,, Zo'] = Cz_,(Z) and the latter has order
32. Hence by 4.5 [Qa N Qp, Zor) < [Zoy Zo|* = [Z0y Zuv).

Let Qn = Qa/Za. Then |[Q. N Qp, Zor)| = 1 and so

|@/Cm(za')| S |QOQ3/Qﬁl < 32 < IZa'Qa/Qal
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. So there exists a unique non-central composition factor and it is an FF-module
isomorphic to Z, (uniqueness of the FF-module).

Now Cm(Za:) = Qo N Qs Q G, but on the other hand Cz, (Z.s) is not normal
in G,5. So we found one FF-module in which the centralizer of Z,: is normal in G,z
and another FF-module in which the centralizer of Z,, was not normal in G,g, a
contradiction to the uniqueness of FF-modules.
Subcase 2: E,3 < Z(Vp).
Define Wy = <Ef£> < Z(Vp). In particular, Wy < @, and Wj is abelian. Also
Wj has a non-central Ly chief factor since E,g is not centralized by O3(L;). Hence
[Wp,03(Lg)] # 1. Choose again a — 1€A.

Let’s also note that
(W5, Qs] = <[Eap, Qs> < Zp.
If Wo_1 £ Qp then, as Wy < Q, < Go-1, we get
(Wp, War1, Wari] < [Waer, Wai] =1

contradicting the 3-stability of 3.
Hence W,_1 < Qs < Gu. So W,_; normalizes Z,» N Q, and therefore Z, N Q,
is quadratic on W,_,. Then 3-stability of L,_; gives Zo N Qo < Qu,-1. Since

(Wa-1,Qa-1] < Z,-1 we now get [Wy_1,Z0 N Qu] < Z,o—y. In particular,
(War, Eag) < Zaey N Z5 = 1.
Hence by 4.5 [Za/, W,_1] < Ef5 = Eoip. Thus
Wa-1,Za N Qa) £ Zoci N Eap < Cz,_(Zar) = 1
as Eqp < Z(Vp) and |Z,-1| = 3. Hence [W,_1, Zor N Q,) = 1 which implies that

[Za’, Wa—l] S (Za’ N Qor)l = [Za» Za’] S Za-



35
This means that
Wa—lZa Q <Ga,a—l» Za'> = Ga

and therefore

[W -1 Qa] S] Ga-

But [W,-1,Qa] # 1 (since if W,_; centralizes Q,, Qo £ Qo-1 and 3.14 imply
[Wa-1,03(Ls-1)] = 1, a contradiction).
Now since |Z,_,| = 3 we get Z,_1 < [Wa-1,Q.]). On the other hand,

[Wa—l’ Qa] g Ga

and therefore Z, < W,_;.

Hence W,_1Z, = W,_1 9 <G4, G4-1>, a contradiction.

6 The case Z,, < Q,

In this section we will deal with the case Z,, < Q,. We will show that b=1 and start
the analysis of the case b=1.

It follows from the hypothesis that there is no symmetry between a and o' any

more. Also [Z4, Zy) < [Za, Qa) = 1 gives
Cz.(Za) = Za.

Now notice that Z, N Q. # Z, (otherwise get Z, < @4, a contradiction). Hence,
Cz.(Zat) # Zoa NQq and by 3.13, Z,» < Z(Ly), a and o' are not conjugate and b is

odd. Therefore we have
Zﬁ = 91Z(Lg) and Zo,l = Q]Z(Lal).
Lemma 6.1 [Qg, Z,,Z,] = 1.

Proof: 3.7(b) gives Qs < G};) < G,. Hence, <Z3*> < <Z8e> = Z, which gives

[Qﬁvzcn Za] S [Za, Za] = 1
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Lemma 6.2 La’/Qa’ = Lﬁ/Qg = (P)Sp4(3), SL2(3), SLz(g), 21_+4A5 or 2A5

Proof: If b>1 then [V, Z4,Za] < [Var, V5, Vs) < [V3, V5] = 1 by 3.10, so, since
Zy £ Qur, we conclude that Lg/Qg is not 3-stable and the claim follows by 2.5.

If b=1, 6.1 and Z, £ Qs again imply that Lg/Qps is not 3-stable and the claim
follows by 2.5.

Notation 6.3 For v€l let D, = Cq,(0O3(L,)).
Lemma 6.4 Z(L,) =D, =1.

Proof: Since 0(Cq,.(La)) < Zsg < 0(Cq,.(S)) £ Z(S) < Z(Lg) we get that
©(Co.(Ls)) is centralized by L, and Lg and therefore Cg,(L,) = 1. Hence

Cqu(0°(La)) = Do = 1.
Also, 2,Z(Ls) < D,=1 and therefore Z(L,) = 1.
Lemma 6.5 Qg is not abelian.

Proof: By 3.18, Qs £ Q.. So 3- stability of L, gives [Z,,Q53,Q@s] # 1. Hence
1 ?é [[Za’ Qﬁ]a Qﬁ] < Q,B

Proposition 6.6 b=1.
Proof of the Proposition: Assume that b>1. Since b is odd, b > 3.
6.6.1 [Vﬁ N Qal, Val] = ]..

Proof: Since b> 3, 3.10 implies [V, V3] = 1. Clearly V3 N Q4 centralizes Z,.. Let
6€A(a’). Since d(6,8) < b we get Zs < G and since V3 Q G5 we now have that Z;

normalizes V3. Then
[Z5,Vs N Qary Vs N Qur] < [Z5, V5, V5] < [V, Vo] = 1.

But Ls is 3-stable as 6 is conjugate to a and Zs 9 Gs and V3 N Q. < Gs (since

do/,6) =150 VsNQu < Qu < Gf,l,) < Gs). Therefore, [Zs, V3N Qa] = 1.
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6.6.2 L3/Qp = Sps(3), SL2(3) or SLy(9) and Vs has a unique non-central Ls-

composition factor; moreover, this composition factor is the natural module for Lg/Q 3.

Proof: 6.6.1 gives V3N Qo < Cv,(Var) and by a similar argument we also have that

Vo N Qp < Cy,,(V3). Without loss of generality, assume

[V6Qar/Qur| < |VarQs/Qsl-
Now let X=Y/Z be a non-central chief factor in Vj. As
Cy(Va)Z2/Z < Cyyz(Va)
we get that
|X/Cx(Var)| = |Y/Z]Cyz(Var)| <
Y/Z|Cy(Va)Z/Z| = |Y/Cy (Vo) Z] <
[Y/Cy (Vo) = |Y/Y N Cy,(Var)| =
1Y -Cv,(Var) [ Cvp (Var)| < [V5/Cry(Var)| <
VeQa/Qar| < |VarQp/Qpl

so X is an FF-module; similarly, the direct sum of the Ls chief factors on Vj is still

an FF-module for Lg/Qs and lemma follows by 2.8.
6.6.3 [V3,Q5] < Dg.

Proof: Assume that [V3,Qp] € Dg. Then by 6.6.2, Z,[Vs, Q5] is normalized by
GapO?(Lg) = G and we get that Z,[Vs,Qp] = Vs. Hence Vi/Z, = [V3/Z,,Q5)-
Since Qg is a 3-group acting on the 3-group Vj/Z, in the above manner, we conclude

that V3/Z, = 1. Therefore V3 = Z,, a contradiction. Hence [V3, Q] < Dg.

Notation 6.6.4 Let Q3 = [Q,0°(Lg)].

6.6.5 Q5 < Q..
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Proof: By 6.6.3, [Vs,Q3] < [Vs,Qs] < Ds. Note that Q5 < O%(Lg) and therefore
[V, @5, Q5] < [Ds, Q5] < [Ds, 0*(Lp)] = 1.
Hence [Z,, @3, @5) = 1 and 3-stability of L, gives that [Z,, Q3] = 1 whence Q} < Q..
6.6.6 The hypothesis that b>1 gives a contradiction.

Proof: By 6.6.5, Qj centralizes Z, and so it centralizes <Z5%> = Vs as well. Since

[ts,Qs] < @5, ts is the unique involution in ¢5Qs/Q} and so t5Q3€Z(Ls/Qp). In

particular, Lg normalizes [V3,15]. By 6.6.2, [V3,15] # 1 and so Cy,.,)(S) # 1. Hence
ZsN [V, tp] # 1.
On the other hand, since by 3.10 Vj is abelian,
Vs = Cy,(ts) % [Va, tg]
and [Zg,ts] < [Zs, Lg] = 1, a contradiction.

Notation 6.7 For 7€l let F, be a normal 3-subgroup of L, minimal with respect

to the property F., £ D.,.

Remark 6.8 As F., is a 3-group we get F,, < @, and F # F,. Also, the definition
implies F, # 1. Since @, is a 3-group acting on the 3-group F,, F, # [F,,Q,]
and by minimality of F.,, [F,,Q,] < D,. Also it is clear from the definitions that

Fg = [F5,03%(Lg)] < 0O3(Lg) and therefore [Dg, F5] < [Dg, 03(Lg)] = 1.
Lemma 6.9 F3 £ Q, and Dg < Q,.

Proof: If Fg < Qa, [Fp,Z,] =1 and by 3.14 [F,03(Ls)] = 1, a contradiction.
By 6.8 we have [Dg, F5] = 1 and since [Z,, Dg] < Dp,

(Zo,Dg, Fg) =1
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and

[Za, Dg, <FP>] = 1.

Suppose now that Dg £ Q,. By 2.12, B is irreducible on Z(S/Q,) and so
Z(S/Qa) £ DpQa/Qa < LyQu/Qa-
Similarly, Z(5/Qa.) < <F$>Q,. Hence
(24, 2(5/Qa), Z2(S/Qa)] = 1,
a contradiction to the 3-stability of L,. Thus Ds < Q..

Lemma 6.10 Q, is elementary abelian, [Qa,0%(Ly)] is an irreducible L,-module

and F, = Z, = [Qa, 03(L,)].

Proof: Step 1: F,N F £ D;.
Proof of step 1: <Fa’> < <FZ*> < <Fle> < F,. Similarly, <Ffo> < F,
Hence

[Fa, Fg] < F, N Fp.

Assume now that F, N F3 < Dg. Then, since
Fp = [Fp,0%(Lg)] < O%(Lp)

we get [Fu, Fp, Fg] < [Dg, Fy] < [Dg,0%(Lg)] = 1. But F3 < Qs < G, and by 6.9
Fg £ Qa. Hence [F,, Fp, Fg] = 1 and 3-stability of L, gives [Fo, O3(L,)]) =1, a
contradiction to the definition of F,.

Step 2: [F, N Fp, F3] Q Ly and F} < F,.

Proof of step 2: F, N F3 £ Dy implies <(F, N Fg)le> £ Dp. And since

<(FanFp)les> a1,

minimality of Fj gives F < <(F,NFp)ls>. Clearly the other inclusion is also true so

Fp = <(FaN Fp)te>. Now Fj < Lg and Fj # Fj so minimality of Fp gives F}; < Dg.
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This now means that F}; = [Fp, Fp] = <[FuNFp, Fg]ts> < Dy = Cq,(0%(Lg)). Hence
[FaN Fs, Fp) is centralized by O%(Lg). Since [F, N Fp, F3] <9 S and 03(L3)S = Lj we
get [Fa n Fp,Fg] < Lg. Thus F[; = [Fa n Fg,Fg] < F,.
Step 3: Q. is elementary abelian and [Q., 03(L,)] = F..
Proof of step 3: Since <F§°> < <Fé”> = Fj we get

[Qa,FﬁvFﬁ] S Fé S Fa°
Then 3-stability of a gives [Qa/Fa, 0*(La)] = 1 i.e. O*(La) centralizes Q,/F,. So,
@« has a unique non-central chief factor. By the properties of the Frattini group (for
example see [Go; p.173]) we get that

®(Q.)C D, = 1.

Hence @, is elementary abelian.
Step 4: [Qa, 03(Ls)] is irreducible L,-module and F, = Z,.
Proof of step 4: Since D, = 1, Z, is the unique non-central chief factor for L, on

Q.; moreover, by Gaschiitz’ Theorem,
Zo =2F, =WZ(La)F, = F,.
Corollary 6.11 Note that from 6.9, Dg < Q, and so ®(Dg) = 1.

Corollary 6.12 Cg, (Qa) = Qa-
In particular, if X < G, then X N Q, = Cx(Q4).

Proof: By (P,), C;.(Qa) < Qo But as @, is abelian we get

Qa < Cs,(Qa)

and therefore the claim follows.
Lemma 6.13 If Lg/Qp = (P)Spa(3) then L,/Qa = (2)M,.

Proof: Q, is abelian implies Q,Qs/Qp is abelian.
If Lg/Qs = (P)Spa(3) then the group S/Qp is not abelian and we conclude
S # QaQp. But then 3.19 gives L,/Q, = (2) M.
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7 The case b=1 and O=(2)M,,
Proposition 7.1 If § = QoQp then (La, Lg) ~ (352- My, 31+1+1+2+2+15 [ (3)).

Proof: Suppose that Q,Qs = S.
Then by 6.10 S/Qp is abelian and therefore

Ls/Qp ¥ (P)Spa(3).

Hence by 6.2
Ls/Qp = SLa(3),2-As, 2 A5, SLy(9).

Also from Q.Qp = S we get
[F5Qa/Qa:r S| = [F5Qa/Qa» Q]
and as [F3,Qp) < Ds < Q. (see 6.8 and 6.9) we conclude that
[F5Qa/Qa.Qs] = 1.

Hence FQa/Qa < Z(5/Qa).
Since |S/Q.| = 3% and S/Q, is not abelian we get that

1Z2(5/Qa)| =3
and therefore F3Q,/Qo = Z(S/Qa)- But Fg < G, and therefore 6.12 gives
|F/CF,(Qa)l = 3.
In particular Fg/Dg is an FF-module for Ls/Qs so 2.8 implies that
Lp/Qp % 2-As, 21 As.

If Lg/Qp = SLy(9), then by 2.10, Fg/ Dy is a natural SL,(9)-module, a contradiction
to IFﬁ/CFp(Qa)I = 3. So,
Ls/Qs = SLa(3).
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Now [@p,Qa, @) = 1 and PSL,(3) is 3-stable imply that ¢35 acts non-trivially on
each non-central chief factor of Lg in Qs and therefore it inverts every non-central
chief factor of Ls in Qp. Also tg inverts FpQo/Qo = Z(S/Qa); in particular tg
acts non-trivially on S = 5/Q,. Then by [Go; p.173], ts has to act non-trivially on
S/®(5). If tg completely inverts S/®(S) then, since t5 also inverts ®(S5) = Z(5), it
completely inverts S. Since a fixed point free automorphism of order 2 of a group
implies that the group is abelian we get that S is abelian, a contradiction. Therefore
|[S,15]Qa/Qal = 3. Recall that by 6.6.4, Q3 = [@s, O3(Lg)]. Then, as t5 inverts each

of the non-central chief factors we get that

|QBQO/Q0, =3’

and so |Q3/Cq;(Qa)| = 3°. Hence Ly has exactly two non-central chief factors in Q.
Moreover, ®(Q3) < Qo and so [®(Q}), Z.] = 1 and ®(Q3) < Ds by 3.14(a) applied
to <Z&*>. Put Qp = Qu/Dj. Since Qj acts trivially on Q5 and (see proof of 6.6.6)
t6Q5/Q5€Z(Ls/Q3) we have Q5 = Cg:(ts) [@%,t5] and L normalizes Cgx(to)-

Now since tg inverts all the non-central chief factors in @,
Cgs(te) < Cg,(0%(Lg)) = 1.

Thus Q3 = [Q5,ts] has order 3.

Let E = Cq,(Q3).
7.1.1 Ck(ts) < Ds.
Proof: First notice that Cq,(ts) normalizes Cg(tg). Now if the claim is not true,
pick F < Cg(tp) with [F,Cq,(tg)] < Dg and F £ Dg. Since by Frattini argument
Ls = QCL,(ts), a composition series for Ls in Qg is also a composition series for

CL,(tp) in Qp and we conclude that [Cq,(t5),03(CL,(tg)] = 1. Hence FDs/Dy is
centralized by Cq,(ts) (by choice of F), @g (by choice of E) and O3(Cy,(tg)).



43
As Qp = Q3Cq,(ts) and Ls = QsCL,(ts), we conclude
03(Lg) £ Q3Cq,(ts)0%(C,(ts))-

Hence

[F,0°(Lg)] < Ds

and

[F,0%(Lg), 0°(Lp)] < [Dg,0%(Lg)] = 1.

Now we have a group generated by 3’ elements (O3(Lg)) acting quadratically on
a 3-group (F); thus
[F, 03([/3)] =1

which implies F' < Dy, a contradiction. Hence Cg(t3) < Dp.
712 Q. NQs < E.
Proof: Recall that by 6.10 @, is abelian and therefore
[QaNQp, QaN@p] =1
which gives [(Qa N Q5)Q%, Q5] = 1 (where Q%5 = Qo N Q3). But
(QaNQp)Q%5 QA GopO®(Lg) = G;

thus [(Q. N Qg)Q§,<C§ZpGﬂ> = 1. Since @E = [@E,OS(L;;)] = <[@,Q,,]Gﬁ> and
(@3, Qa] < Qs We get <Q:':[,Gﬁ> = @g and therefore we get [(Q4 N Qg)@,@é] =1.
Then [Qa N Qg,a:ﬂ] =1 and the claim follows. O

Now E = Cq,(Q3) = Cr(t5)Q3 = DsQ3 by 7.1.1 and so by 7.1.2,

Qa N Qs < DpQp.
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Since [Qp, Qu, Qa] = 1, [Qs,Qs) < Ca;(Qa)- As @7'; has two non-central chief factors.
I’QE/C"";(QO)I > 3% and I[@vb’ Qa] > 3%

From |Q3| = 3* and (@3, Qa) < Qpa < C@(Qa) we conclude (@3, Qa)Ds = Qo N Q5
and |Q. N Qp/Dp| = 3% Since [Qo/Qo N Qs = 3 we finally get that |Q./Dg| = 3.
Hence |Q4./Cq.(Q@3)| < 3°. Now since by 2.14 L, = <Qj, Q" >Q, for some geG,, we
get |Qa/Cqa(La)| < 35. By 2.10, only 2-Mi; has an irreducible module of dimension
less than or equal to six. Moreover, this module is unique and its dimension is actually
six. Hence, Lo/Qq4 = 2-M;, and |Q,| = 3° and therefore we also get that |Dg| = 33,
|S| = 3° and |Qg| = 35.

It is clear now that since @, is an irreducible elementary abelian normal subgroup
of L, of order 3%, L, ~ 362-M,,.

Reviewing, |Dg| = 3% and Dg is central for O3(Lg). Also @fﬂ = 3* and Q3 has
two composition factors each of dimension 2. Finally, |Qs| = 3% and so |Qs/Q3| = 3.

Thus, Lg ~ 31#1+1424241 G (3),

Proposition 7.2 If S # Q,Qp then (La, Lg) ~ (3%2-M;,,3'14Sp4(3)).

Proof: Suppose that S # Q.Qs.

Then by 3.19 and 6.13, Lo/Qu = (2)Miz and Ly/Qs = (P)Spa(3).
Therefore |S/Qq| = 3% and |S/Qs| = 3*.

Hence,
1Qal/1Qs] = 3.
Then
1Q5/Cqs(Qa)l = 1Q5/Qa N Qpl = |QaQp/Qal <

IQaQﬁ/QﬁI'

Hence all composition factors for Lg in Qg are FF-modules for Ls/Qp. Thus by 2.8,

L/Qp ~ Spa(3) and Lg has a unique non-central composition factor in @ 5; moreover,
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this composition factor is a natural module. In particular, ®(Qs3) < Dz and so by
2.10 [@s/Dg, tg) is a natural Sps(3)-module for Ls/Qps and Cq,/p,(ts) = Cq,/p,(Ls)-

Hence

[Cau(ts), Lg, Lg] =1, Cq,(ts) = Ds and |Qg/Dps| = 3*.

Thus, as tz€03(Lg),
Qs = [Qp,0°(Lp)]Dyg

and since Lg = O3(Lg)Qp and [Qp,0%(Lg)] < O3(Lg) we get that
Lg = 0°(Lp)[Qs, 0°(Lg)]Ds = O°(Lg) Dy
By 6.11, Dg is elementary abelian and so
[Dg, Ls] = [Dg, 0°(L) Dg] = 1.

Hence Dg = 0 Z(Lg) = Zg.

Now |Qa/Zs| = 3-|Qs/Zs| = 3-|Qs/Ds| = 3-3* = 3°.
PiCk ZB<X S Qa With [X, S] S Zﬁ. Then [X,S’S]:l and SO [‘X, Sl] — 1' Hence

|Qa/Cqa(S")| < 3%
By 2.14, L, = <5, 59> for some g€G and so

|Qa/Cqa(La)| < 3%3% =3°.

Since Cq,(L.) = 1, |Qa| < 3°.
By 6.10, Z, is the unique non-central chief factor for L, in Q..

From 2.10 now we get that
LQ/QC, = 2'M12 and IZO,I = 36.

Furthermore, Q. = Cq,(ts) X [@a,ta). But Cq,(ts) < Dy = 1. Since Z, is the

unique non-central chief factor for L, in Q,,

(Qa/Za, O%(La)] = 1
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and

1 # [Qayta) < Zs.

Irreducibility of Z, yields now that

[Qasta] < Za-

As Q. is an irreducible elementary abelian normal subgroup of L, of order 3¢ we
now get that L, ~ 352-M;,. Also, |Qs| = |Q4|/3 = 3° and as |Qs/Dg| = 3%, |Ds| = 3

and so we get Ls ~ 3'*4Spy(3).

8 The case b=1 and O=PSL,(9) or My,

In this section, © = PSL,(9), My, and b=1. Notice that by 6.13 ¥ 2 (P)Sp4(3) and
therefore by 6.2,
U = SLy(3), 2-As, 2114 A5, SLy(9).

Recall also from 3.19 that S = Q.Qp. Moreover [Z,, Zy] = 1.

Remark 8.1 Since a Sylow 3-subgroup of O is elementary abelian we have
®(Qp) < Qo

Similarly ®(Qa) < Q.

Lemma 8.2 IfN < S,N Q B,6€{a,} then N < Qs or NQs = S.

Proof: It follows from irreducibility of B on S/Qs (see 2.12).

Corollary 8.3 S =27,Q;.

Proof: It is an immediate consequence of 8.2.
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Lemma 8.4 Let X3 = Nsea(s) @s- Then:
(a) Qp/Xp is an irreducible Gg-module,
(5) [Qs/Dgsstsl = Qs/Ds and Cq,/p,(ts) =1,
(c) Cqu(ts) < Dp and
(d) X = Dy.

Proof: Let X3<A < Qp with A9 Gg. Then A £ Q. (since if A < Q, and v = 9

with g€Gp then since A 9 Gy we get
A= A< Q5=0Qu =0,

which gives A < Xp, a contradiction). Hence by 8.2, AQ, = S and therefore

[Za,Qp) < [Za, A] < A. By 8.1 Q4 < Xj and so

[Ls,Qs) = [<Z52>Q5,Qs) < A.

Let Qs = Qp/Xs. Then Qp is abelian. Now Qp = Cévﬂ(tg) x [Qg,t5] and both
parts are normalized by Lg.

If C@Ts(tﬂ) # 1, we may assume A = Cqg,(t3)Xp (since then A < @3, A Q G and
as Ca;;(tg) # 1 we also have X3 # A). Hence

A= Cg(ts)

and get [[Qp t5],t5] < [[Ls,Qs)sts] < [A,ts,t5) = 1. Hence (element of order 2
acting on a 3-group) [Qs,t3] = 1 a contradiction to [Qg,Qa,@Qa] = 1 and the 3-
stability of Ls/<t5Qp>. Therefore C5-(t5) = 1 and Qs = [Qp,15] = [Qp, Ls). Thus
Qs < [Ls,Qp) < A which implies A = Q5 and Qp/Xj is an irreducible G-module.

Now by 6.9, Dg < Q. and as Dg Q G we get Dg < X3. But
[Xﬁa Za] S [Qay Za] =1

and Z, £ Qp give X3 < Dg. Hence X3 = Dg.
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Lemma 8.5 There is geGp such that tge<Z,,29>Q3.
Proof: If ¥ = SL,(3) or 2-As it is clear since in these cases
Ly =<2,,25>Q3

for some g€Gp and tg€Lg by definition. Since inside SL;(9) we can generate a 2-As
this case is also clear. The case 21*4A; is left. Let a, b be two elements in Ls/Qs of
order three and H = <a, b> be such that 2!'**H = 21*4A;. The possibilities for H
then are 2!1*4 A5, 2-As or As. In the first two cases t3Qs€ H and we are done and the

last case can not happen as Ajs is 3-stable and Z, acts quadratically on Q5.
Notation 8.6 Q, = Q. /D,.
Lemma 8.7 |Q;| = 34.
Proof: By 8.5, pick g €Gp such that
t6€E<Za, 22>Qp.
Since |Qp/Cq,(Za)l = |QsQa/Qal = 1S/Qal = 32, we get
@5/ Caato)| < 3

By 8.4(b), Cg;(tp) = 1 and therefore |@s| < 3. Suppose |Qs|<3*. Since 5 does not
divide |GL3(3)| we conclude that

Lg/Qp = SLy(3).

From 8.4(a) and 2.10, |Q4| = 3% and so |Q/[Qs, Qa) Ds| < 3. Since [Qp, Qa)Ds < Qa,
|Q6Qa/Qal <3 and S # QuQp since |S/Q.| = 32, a contradiction. Hence Q| = 3*.

Lemma 8.8 |[Z,,Qs]| = |Qusl = |Qs N Za| = 9.
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Proof: If |[Z,,Qp]| = 3, then, with same argument as before, we get

Qs = 1[@s ta]l < 3,

a contradiction. Hence

9< I[ZaaQ—ﬁ“ < IQﬂn Zal < 'Qaﬁl <9

and lemma is proved.
Lemma 8.9 D = Zg.

Proof: First, show Dy < Zs. Let L = <Z5°>. Then by 3.14(a), 0%(Ls) < L and
Ls = LQp. Since Qg is irreducible for G5 we get [Q5,L] = 1 or Q. If [Qs,L] = 1
then [Qp,L] < Dp so [Qs,0%(Lg)] = 1, a contradiction. Therefore [05,L] = Op
which gives [@g, L] Ds = Qp.

Also, as L 9 Gg, we have Qp < Ng,(L). Hence [Qp,L] € L, Qs < DgL and
Ls = LDg. But from 6.11 now, [Dg, Dg) < ®(Dg) = 1. As Dg < Qo, [L,Dg] =1 so
Dg and L both centralize Dg. But then, we also get [Dg, Lg] = [Dg, LDg] = 1. Thus
Dg < Z(Lg) < Zg. Therefore Dg < Zg.

Since Zg = M Z(Lg) < Cq,(0%(Lg) = Dy the lemma follows.

Lemma 8.10 Q, N Qs = Z, N Qp.

Proof: It is enough to show that Q. N Qs < Z, N Qp. Let z€Q, N Qs. Then
tDg€QaNQp/Ds = Qup = Za N Qs = Zo N Qp/Ds. Therefore, Dy = yDy, where

Y€Zy N Qp. Then z = yd, de Dy. 3.11 gives
Zg < Z,.
By 8.9, Dg = Zg < Z,. Therefore z€Z, and hence z€Z, N Q5.

Corollary 8.11 @, = Z,.
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Proof: Since Qo € S = Z,Qp we get Qo C ZoQsN Qo = Zo(Qo N Q) and hence
Qa = Za(Qa N Qﬁ) = Za-

Lemma 8.12 (1) Qo = Z, is irreducible,
(2) If © = PSLy(9) and ¥ = SLy(3), 2-As or 214 A; then |Z,| = 3%, |Z5] = 3
and |Qg| = 3°,
(8) If ® = PSL,(9) and ¥ = SL,(9) then |Z,| = 3%, |Zs| = 3% and |Q;s| = 3°,
(4) If © = My; and ¥ = SLy(3), 2-As or 21+ A5 then |Z,| = 3%, |Qp| = 3° and
1Zs| = 32,
(5) If © = My, and W = SL,(9) then then |Z,| = 3%, |Qg| = 3° and |Z5] = 3.

Proof: 3.11 and 8.9 give D = Z3 < Z,. Hence

1Za/Zp, = 12aQ5/Qsl|Za N Qp/Za N Dp| = 1ZaQp/Qpl|Za N Qs/ Zg].
Recall now 8.8 to get |Z, N Qs/Zs| = 3? and hence
1Za/Z5| = 3%1Z.Q5/ Qs = 3%|S/Qsl-
Since S/Qp€Syls(¥) we get that

15/Qsl =3 2f ¥ % SLy(9)

and

1S/Qpl = 3% if ¥ = SLy(9).

Hence if ¥ % SLy(9) then |Z,/Zs| = 33 and if ¥ = SLy(9) then |Z,/Z5] = 3%; in
particular, |Z,/Zs| < 3*. Since by 2.14 we can generate L, by two Sylow 3-subgroups
we get |Z,| < 38.

By 6.10, Z, is irreducible as L,-module.
Case © = PSL,(9): Then by 2.10 |Z,] = 3% or 3%. Moreover, if |Z,| = 3* then
|Zg| = 3 and therefore |Z,/Zg| = 3% and ¥ % SL,(9) and if |Z,/Z3| = 3% then
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|Zs| = 3? and therefore |Z,/Zs| = 3* and ¥ = SLy(9).
Case © = M;;: 2.10 gives that |Z,| = 3° and |Zs| = 3 or 3%2. If |Z5| = 3 then
|Zo/Zs| = 3* and ¥ = SL,(9) and if |Zs| = 3% then |Z,/Zs| = 3° and ¥ ¥ SLy(9).

Corollary 8.13 (1) If© = PSLy(9) and ¥ = SLy(3) then
(Lay Lg) ~ (34PSLy(9), 3142425 L,(3)).
(2) If © = PSLy(9) and U = 2-As then (La, L) ~ (3*PSLy(9),31+42-A5).
(3) If © = PSLy(9) and ¥ = 21+4 A, then (Lo, Lg) ~ (3*PSLy(9), 3421+ 4;).
(4) If© = PSLy(9) and ¥ = SLy(9) then (Lo, Lg) ~ (33PSLy(9), 31445 L,(9)).
(5) If© = My, and ¥ = SLy(3) then (La, Lg) ~ (35 Myy, 314142425 [,(3)).
(6) If © = My, and W = 2-A; then (La, L) ~ (35 My, 3141442 4;).
(7) If © = My, and ¥ = SLy(9) then (Lo, Lp) ~ (35 My, 31+4PSLy(9)).

Proof: By 8.12, Q, = Z, is an irreducible elementary abelian normal subgroup of

L,. Moreover,

1Qul = 3% if © = PSLy(9) and ¥ % SLy(9),
1Qa] = 3% if © = PSLy(9) and ¥ = SLy(9)

and

|Qa| =3 if 0= M.

Thus, the structure of L, is as given in the corollary.

Notice now that in all the above cases, Dg is central as by 8.9 we have Dg = Z3.
Moreover in cases (1), (2), (3) and (7), |Dg| = 3 and for the rest of the cases we have
|Dg| = 32.

Finally, in all the cases, |Qs/Zs| = 3* and hence Qg/Zs is an irreducible Lg-
module whenever ¥ % SL(3) which proves (2), (3), (4), (6) and (7). By 8.4 though,
tpinverts Q3/Zs. Since by 2.10 SL,(3) has a unique faithful irreducible GF(3)-module
which is of order 32, (1) and (5) follow.
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Lemma 8.14 The case (L., Lg) ~ (3°M;,,2 % As) is impossible.

Proof: Let Ly = Lp/Qp. Since Ox(Lg)/<tz> is the even permutation module, S
centralizes a group D of order 8 in Oz(Lj). It is easy to see that D = Dg. Let D*
be the inverse image of D in Lg. Then [D*,5] < Qs < S and so D < Ng,(S) = B.
Now recall the definition of K from 3.16 and let D = K N D* and pick t€D \ <tz>
with |t| = 2. Since g inverts Qo N Qp/Zs and <tg> = [t, D], t neither centralizes
nor inverts Q, N Qp/Zs. Since |Qa N Qp/Zs| = 32, |[Qa N Qps/Zs,t]| = 3. Now
(Z5,1] < [Zs, Ls] = 1 and [Qurt] < [Q» BIN[S, D] < QuNQy and we get [[Qu 1] = 3.
Similarly,
[Qas t6]l = [Qa N Qs/Zs, 1] = 3°.

Since M;; has no outer automorphism and only one class of involutions, there exists
g€L, so that [t95,L,] < Q.. Since Q, is an irreducible L,-module, t9t5 centralizes

or inverts Q.. In the first case

[Qm tg] = [Qm tﬁ]

and in the second case

[Qa #°] = Cou(ts)-
But [[Qa, ]| = |[Qa, ]| = 3, |[Qas t]] = 3 and

1Cau(ts)| = 1Qal/I[Qas ts]l = 3°/3% = 3.

So, in both cases we obtain a contradiction.

Proof of Theorem P: It follows from 7.1, 7.2, 8.13 and 8.14.0
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