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ABSTRACT

Improved Generalized Method of Moments Estimators

By

Hailong Qian

This thesis introduces a new method to improve Generalized Method of Moments
estimators, given extra observable information. Monte Carlo simulation for a simple
model with intercept only confirms the accuracy of the asymptotic results obtained in this
thesis even when the sample size is quite small. The three-stage least squares estimator of
a system of equations is shown to be asymptotically equivalent to an iterative two-stage
least squares estimator applied to each equation, augmented with the residuals from the

other equations.
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CHAPTER 1

INTRODUCTION

Suppose that we have a set of moment conditions E[¢, (y:,8,)] =0 which
identify the unknown parameter 0, so that the generalized method of moments (GMM)
estimation of 0, is feasible. However, suppose that we also have available a set of
additional moment conditions E[d),(y: )]1=0, where ¢, is observable because it depends
only on the observed data y;. Then the question is how to utilize these additional moment
conditions in a simple way to improve the estimation of 0. This is possible when ¢, is
correlated with ¢,.

Problems of this type have been considered previously by Imbens (1992, 1993) and
Imbens and Lancaster (1994). Imbens (1992, footnote 3) considered estimation of
Ko = E(y,). The sample mean, based on the moment condition E(y, —p,) =0, is less
efficient than the GMM estimate based on the moment conditions E[(y, —p,),u,]'=0, if
u, is observable, with E(u,) =0 and cov{(y, —H,), u,]# 0. Imbens (1992) and Imbens
and Lancaster (1994) analyze some other specific problems that lead to GMM estimation
with additional moment conditions that do not depend on the parameters of interest.

In this dissertation, we prove that the usual GMM estimator of 0, say ) , using
the moment conditions E[¢, (y: ,00)] = 0 and weighting matrix
Cii = {timy,, E[T ™ 2,0, (y,,0,)UT ™" =19, (y,,0,)]'} ", can be improved by
using the observed extra moment conditions E[¢,(y, )]=0. Specifically, we prove that
the usual GMM estimator 6 is no more efficient than the augmented GMM (AGMM)

estimator, say 0, defined as the GMM estimator of 0, using the moment conditions

E[¢(y:,00)]1= E[$,(y;,0,)',$,(y,)'T= 0 and weighting matrix



2

C CnJ . .
c'= [C” C”] = {timr_,, E[T™ Z10(y7,00 )T ZL10(y700)} .
21 22

We further show that the AGMM estimator § is numerically the same as the improved
GMM (IGMM) estimator, say 0 , defined as the GMM estimator using the moment
conditions E[$,(y;,8,) - C1C:; (¥!)] = 0 and weighting matrix

c''= (C, - CIZC;;CZI )

The structure of the dissertation is as follows. In chapter 2, we first provide a brief
general treatment of GMM estimation with additional moment conditions not containing
unknown parameters. We then give some more detailed results for the linear regression
model. In the case of the linear regression model with conditional homoskedasticity and
uncorrelatedness, we show that the IGMM estimate is an improved 2SLS (IV) estimate
using as a new set of instruments the part of the original instruments that is orthogonal to
the observed extra variables, whereas the usual GMM estimate is just an ordinary 2SLS
(IV) estimate using the original set of instruments. We also provide some other estimators
that can be written in closed form and that are asymptotically equivalent to the IGMM
estimator. For the special case of a simple regression model with intercept only, we
provide some Monte Carlo evidence on the finite sample performance of some specific
improved estimators. For this simple model, the efficiency gains predicted by asymptotic
theory are realized even for quite small sample sizes.

In chapter 3, we extend the general results on improved GMM to the case of a
system of linear equations. Under the assumptions of conditional homoskedasticity and
uncorrelatedness, we obtain explicit expressions for several asymptotically equally efficient
improved GMM estimators. While the usual GMM estimator is just an ordinary 3SLS
estimator, we prove that the IGMM is an improved 3SLS estimator. The improved 3SLS
estimator differs from the usual 3SLS estimator in two ways. First, the covariance matrix

of the residuals of the projection of the original model disturbances onto the observed
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extra variables is used as the relevant error covariance matrix. Second, it uses as its
instruments the part of original instruments orthogonal to the observed extra variables.

In chapter 4, we extend the IGMM results from chapter 3 to the case of a system
of nonlinear equations. Under suitable regularity conditions and some "high-level"
assumptions, we show that essentially the same results as those in chapter 3 still hold for
this case.

In chapter 5, we further extend the improved GMM idea of previous chapters to
the case where the extra variables are not observed but consistently estimated. We
investigate this problem in the context of a system of linear equations. We show that
3SLS applied to the entire equation system is asymptotically equivalent to iterated 2SLS
applied to each equation, augmented by the residuals from the other equations. This result
generalizes a result of Telser (1964) for the case of seemingly unrelated regressions. It
also provides an interesting example of a setting in which the improved GMM estimator
arises natually as an efficient estimator.

The final chapter concludes the dissertation with some brief comments on further

possible work in this line of research.



CHAPTER 2

IMPROVED GMM ESTIMATORS
FOR THE LINEAR REGRESSION MODEL

2.1. Introduction

In this chapter, we provide (in section 2.2) a brief general treatment of GMM
estimation with additional moment conditions not containing unknown parameters. We
also give (in section 2.3) some more detailed results for the linear regression model.

Specifically, we consider the standard regression model

(2.1) y.=x%x/'B+eg, t=1,2,...... , T,

with instruments z, satisfying E(z¢€,) = 0. These moment conditions are the basis of
GMM estimation of {3 ; under a conditional homoscedasticity assumption for €,, the GMM
estimator is the usual instrumental variables (IV) estimator. If we also have available a
vector of observable variables u, that are uncorrelated with z, but correlated with €, the
additional moment conditions E(u, ® z, ) = 0 will improve the efficiency of estimation of
B. This principle applies in linear or nonlinear models, but in the linear case we obtain
very simple explicit results for the improved estimators.

We believe that these results are empirically relevant, notably in the estimation of
rational expectations models. In many empirical rational expectations models, the
orthogonality conditions used in estimation assert that a forecast error, written as a

function of data and parameters, is uncorrelated with variables in the information set at the
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time the forecast was made. Thus ¢, is the error made in forecasting some variable at
time t, based on information available at time t-1, and z, consists of information available
at time t-1, so that it is uncorrelated with €,. In this setting, u, can be the observable (ex
post) error in the forecast of a set of variables at time t based on information available at
time t-1.
As a specific example, suppose that s, is a spot exchange rate at time t and f, is the

one period forward rate. Many papers have tested the unbiasedness hypothesis that
f,_, = E(s,| Q.;), where Q,_, is the information set at time t-1. Thus we should have

o =0 and B = 1 in the regression model

(2.2) s, =a+Bf_, +¢,.

When s, and f_; contain unit roots but are cointegrated, the above regression is often

replaced by a regression in stationary variables:

(2.3) (s, —s,)=a+B(f_, —s_,)+¢g,

where again a = 0 and 3 = 1 under the unbiasedness hypothesis. Because the forecast
error €, is uncorrelated with variables in Q,_,, (2.2) or (2.3) can be estimated by GMM or
IV, where the instruments z, are variables in €, _,. This is a standard applied econometric
excercise. However, the estimate can be improved by using other observable variables u,
that are correlated with the forecast error €, but uncorrelated with z,. Such variables will
typically be forecast errors in other related variables. An obvious example would be the
change in a security price from time t-1 to t. We might reasonably expect €, and u, to be
correlated if spot exchange rates and security prices respond to the same unforecastable
economic shocks.

For Imbens's model of the estimation of the sample mean, we provide (in section
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2.4) some Monte Carlo evidence on the finite sample performance of some specific
improved estimators. For this simple model, the efficiency gains predicted by asymptotic
theory are realized even for quite small sample sizes. The final section concludes the

chapter with some comments.

2.2. GMM VWith Moment Conditions Not Containing Unknown Parameters

Let 6, be a K x 1 vector of parameters to be estimated, and y:, t=1,2,..., T, be

observed data. Suppose that the following moment conditions hold:

¢1(Y:,90)

2.4 Ed(y,,0,)=E .
(2.4) d(y.,60) [%(yt)

]=0, t=1,...,T,

where ¢, is N x 1, with N 2 X, and ¢, is Hx1. We want to compare GMM based on ¢,
only with GMM based on ¢ = (¢,',4,')". Note that ¢, does not depend on 6,,.

Define the following notation:
@58)  $:(0)= ["’;‘f’] = T Z40.0)
es  c=|Cn C"] — Hm[T-Ebr (9,)6:(8,)']
€y Cpp | Tom
(2.5C) D{?)‘]:&-a-%f"’—).

(The block "zero" in D arises because ¢, does not depend on 0.) For identification of 6,



7

we require D, to be of full column rank. In the case that the y; are iid, C = V[¢(y;,0,)]
and D = E[dd(y,,0,)/30'].

Let 6 denote the GMM estimator of 0, based on the moment conditions ¢, only,
using weighting matrix C;}; and let 0 denote the augmented GMM (AGMM) estimator of
0, based on the moment conditions ¢ = (¢,',9,')', using weighting matrix C™'. Under
suitable regularity conditions, standard GMM results indicate that these estimators are
consistent, with AV[VT(6 -6,)]=(D,'C;iD,)™" and AV[VT(6-6,)]=(D'C'D)
=(D,'C"D,)™, where C"' =(C,, - C,,C5;C,,)" is the block of C™' corresponding to ¢,
(i.e., the upper left block). For discussions of regularity conditions, see, e.g., Hansen
(1982) or Gallant and White (1988). The AGMM estimator is efficient relative to the
GMM estimator, since (D,'C;;D,)™ —(D,'C''D,)™ is positive semidefinite. In fact, a
little algebra reveals that D,'C''D, - D,'C;!D, = (C,,C;/D, ) (C;; —=C,,C;/C1n) -
(C,,C;/D,), so that the condition for no gain in efficiency is C,,C;;D, = 0. There is no
efficiency gain when C,, =0 (¢, and ¢, are uncorrelated); when C,, # 0, the AGMM
estimator is generally (but not necessarily) strictly better than the GMM estimator.

We can also write the augmented GMM estimator as follows. Consider the

moment conditions

(2.6) E[0,(y,,080) ~ C1,C720,(y))]=0,

which essentially deal with the residuals from a regression of ¢, on ¢,. If
VI¥(y:,80)1=C, then V[$1(¥;,80) = C12C29,(y)1 = €1, —C13C3,Cyy = (C') ™. With
this motivation, we define the improved GMM (IGMM) estimator, say 0 , as the GMM

estimator using the moment conditions (2.6) and weighting matrix
C'" =(C,, - C;,C;5iC,,)”". It is then not difficult to show that the IGMM estimator 8 and

the AGMM estimator 0 are the same. This can be seen by noting that 0 satisfies the first

order condition



(2.7A) Dy, (8)'C"'[¢1,(8)-C,,C2d7,1=0

where D, (0) = 8, (0)/0'; O satisfies the first order condition

(2.7B) D1, (8)'C"¢y,(8) + Dy, (8)' C?1, = 0.

But (2.7A) and (2.7B) are seen to be the same with the substitution C'? = -C''C,,C;; in
(2.7B).

The above discussion treats the weighting matrix C as known. Assuming suitable
regularity conditions, the superiority of the AGMM or IGMM estimator to the GMM
estimator will still hold asymptotically if C is replaced by a consistent estimate C. The
numerical equivalence of the AGMM and IGMM estimators would require that the same

estimate C be used for both estimators.

2.3. The Linear Regression Model

In this section we will apply the general results of the previous section to the case
of the linear regression model. For this case we can give an explicit formula for the
IGMM estimator. When the errors are conditionally homoskedastic, further simplications
are possible and the IGMM estimator is related to some previous results.

The model considered in this section is as given in equation (2.1) above, which we
rewrite slightly as

(2.8) Y. =%'0,+g, t=12,....,T,



where y, is the dependent variable , x, is a K x 1 vector of explanatory variables, €, is the
disturbance term, and 0, is the parameter vector to be estimated. Suppose that we have
available an M x 1 vector of instruments z, satisfying M > K and E(zg,) = 0, so that the
GMM estimation of 6, based on the moment conditions E(z,g, ) = 0 is feasible. However,
suppose that we also have available an L x 1 observable vector u, satisfying

E(u, ®2)=0 and E(u,g,) #0. The observable data vectoris y; = (y,,x,',z",u,')’, and

in our previous notation we have moment conditions E¢( y: ,00) =0, with

(2.9A) ¢](Yt"90)=2‘t(yl -%,'0p)
(2.9B) 0:(y)=1u,®z = (I, ®z)u,.

As a matter of notation, let Z=(z,,---,z;)"; X=(x;,--, Xg)'; €=(g;,--,€1)’;
U=(uy, -, up)5y=(y1, 5 ¥1)'s g = (w5, u5p) forj=1, ..., L; and

u = (ugy', -, u,') = vec(U). Then straightforward calculation yields

(2.10A) op =T 'Z'(y-X0)
(2.10B) b, =T (I, ®Z')u” = T 'vec(Z'U)
(2.10C) D,(0)=-T"'Z'X

Using the first order condition (2.7A) above, with these substitutions we arrive at the

IGMM estimator

(2.11) 0=(X'Z2C"Z'X)'X'ZC"[Z'y - C,,Coivec(Z' U)].

To proceed further, we need to put more structure on C. This is possible under

the assumption of no conditional heteroskedasticity or autocorrelation: suppose that,
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conditional on Q, = {z,;€,_,,u,_,,Z_,;...}, the (g,,u,')" are mutually uncorrelated, z, is

stationary, and that

g, _s_| ot Z,
2.12) V([ut]|zt)_)2—{ z]'

Zue uu
Then
(2.13) C=Ed(y,,00)0(y,,0,)'= Z®E(zz")

for which a consistent estimate is

(2.14) C=:0T'2'Z,

where £ is any consistent estimate of £. Then C'' = 6= (T™'Z'Z)™" with
CuC;; = (imi;’,)®IM. With these substitutions in (2.11), and noting that 6* cancels,

we obtain
(2.15) 0=(X'P,X)'X'ZZZ) (Zy-[(£,2;)®1,Ivec(Z U)},

where P, = Z(Z'Z)™'Z'. More generally, if A is any matrix, we will define P, as the
projection onto A, so that P, = A(A'A)'A' if A has full column rank. Similarly, we
define M, =I-P,. Obviously the first term in this expression is just (X'P,X)' X'P,y,
the IV (2SLS) estimator, which is GMM based on ¢,, given the assumption of no
conditional heteroskedasticity.

Using the matrix fact vec(BC) = (C'®I)vec(B), (2.15) can be rewritten as

(2.16) 6=(X'P,X)"'X'ZZZ)'[Zy-ZUSIE 1.
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It is reasonable to consider £, = T'U'U, £, = T"'U'(y — X6), where  is any

consistent estimate of 0. Then (2.16) becomes
(2.17) 6 = (X'P,X) ' X'P,[y - P,(y - X8)].

Finally, while (2.17) is defined for any consistent estimate é, we may as well
consider 6 =6. Then (2.17) implies (X'P,X)0 = X'P,y - X'P,P,y + X'P,P,X0; solving

for 6, we obtain
(2.18) 0 =(X'P,M,X)'X'P,My.

The IGMM estimator 6 is very similar to an estimator considered by Schmidt
(1986, 1988):

(2.19) 0= (X'B, 2 X) ™ X' By -

This is IV of the regression equation (2.8), using as instruments M;Z, the part of Z
orthogonal to U. Schmidt also notes that § can be derived as IV of the augmented

equation
(2.20) Y. =%X'0p+u,'E+v,

using (Z, U) as instruments. Equation (2.20) is instructive because, speaking loosely, the
effect of adding the variable u, is to reduce the relevant variance from 62 to 62 = c:|u =

62 -Z 2 1% .. This result is closely related to the result of Wooldridge (1993), who

essentially considers the case x, = z, (in our notation).
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To be more precise about the sense in which 6 and 6 dominate the simple IV
estimator, and to exhibit some other asymptotically efficient estimators, we make some
more explicit assumptions. To make the asymptotic theory as simple as possible, we will
make the following "high level” assumptions.

A)O( AXZ AXE Axu
R | A, A, 0 0 .
(A2.1) plim ?[X,Z,S,U]'[X,Z,S,U]= AL 0 o I exists.
A, 0 2. Z.
(A2.2) A,., A, and Z  are nonsingular; A, is of full column rank.
(A2.3a) TV2vec[Z'(g,U)] > N[0, ¥].
(A2.3b) ¥Y=2Q®A,,.

These high-level assumptions are derivable from various sets of more basic
assumptions. For example, in the rational expectations context, define e, = (¢,,u,')' and
let QQ, be the information (sub)set Q, = {z,;z,_,,€,_,;2,_5,€,_3;-.....}. Then (A2.1)-(A2.3)
follow from the assumptions that E(e,|©,) =0, V(e, |Qt )=Z, and x, and z, are
covariance stationary.

Let 6 be the usual IV estimator using Z as instruments: 6 = (X'P,X) ' X'P,y.
Under (A2.1)-(A2.3) we have the standard result:

(2.21) JT(6-6,) > N[0,62(A A A, )]
this is consistent with the general GMM result AV(8) = (D,'C;'D, )™ presented earlier.
We now turn to the IGMM estimator 6 , Schmidt's estimator 0 , and the following

additional estimators

(2.22A) 8 = (X'MyP,M_X) ' X'M,P,M_y
utz*"u utz
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(2.22B) 0 =(X'P,X)'X'P,(y-UA)

where A = ;!X _. In practice, (2.22B) will require a consistent estimate of A.
We wish to show that the estimators 6, 0, 6 and 6 are asymptotically equivalent,

with asymptotic variance matrix oﬁru(szA;lAu)", where as above

0%, =63 = £ 2 Z,,. This is consistent with the result of Schmidt (1988, Appendix C.4)

for 6. Comparing to the asymptotic variance matrix of 6 in (2.21) above, the inequality

ofiu < o establishes the asymptotic efficiency of 6, 0, 6 and 6 relative to 6.

LEMMA 2.1: plim T'X'M,Z=plim T'X'Z=A,
plim T'Z’M,Z=plim T7'Z’Z=A ,
Proof: plim T"'X'MZ = plim [T'X'Z-T'X'U(T™'U'U)'T'U'Z]
=A,-A_Zl-0=A_,

and similarly for plim T™'Z'MZ.

LEMMA 2.2: plimT'X'By ,,X = plim T"'X'M P,M X
= plim T"'X'P,M X
= plim T'X'P,X
=A_A A,
Proof plimT™'X'Py, , X = plim T"'X'MZ(plim T"'Z'MZ) ' plim T~'Z'M,X
=A_,A_ A, using Lemma 2.1.
The proofs for plim T™'X'M;P,M;X and plim T™'X'P,MX are similar.

LEMMA 2.3: pimT'X'By, , & = plim T™'X'M_P,Me

=plimT'X'P,M&
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= plim T™'X'P,(y - UA)

= plimT'X'P,e

=0
Proof: plimT'X'By ;€ = A, A, -plim T 'Z'Me using Lemma 2.1.
But plim T'Z'My e = pim T'Z'e - plim T'Z' U(plim T'U'U) 'plim T'U'e

=0-0Xx,_ =0

since plim T™'Z'e¢ = 0 and plim T™'Z'U = 0. The proofs for the other cases are similar.

Lemmas 2.2 and 2.3 imply that the estimators 6, 6, 0 and 6 are consistent. For

example,

(2.23) plim6 =0,+[A_AA_]"'0=0,

using Lemmas 2.2 and 2.3; similar simple arguments apply to the other estimators. It is
interesting in Lemma 2.3 that the orthogonality of € with (M;Z) occurs because € is

orthogonal to Z and Z is orthogonal to U.

LEMMA 2.4: TX'By, /&, T""?X'MyP,Mye, T"*X'P,Me and
T2X' P,(y—UA) each converge in distribution to N[O,cirquzA;]Au].

Proof. We will give the proof for T"2X Pum,zi€ - The other proofs are quite similar.

(2.29) T2X' Py 7€ = T X'MYZ(ZMyZ)"' Z’Mse
= (T'X'MyZ)(T'Z’M,Z) ' T2 Z'M ¢
= ALAL(T?ZMye) +o,(1).

So we consider

TZMye = TZ[1-U(U'U) ' U'Je
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=TV Ze—(T?ZUXT'U'U) (T 'U')
=T"?Z(e-UZ,Z,.)+0,(1).

Combining expressions, we have

(2.25) T X' Py 2 = A ALT ?Z'(e-UZ 2, ) +0,(1).
But
(2.26) TZ'(e-UZlZ,)

=T "?vec[Z'(e-UZ 2 ,)]
= T 2vec{Z'(¢,U) ! }
-

={[1,-2 2 1®1,,} T V?vec[Z' (¢, U)].

& uu

But according to assumption (A2.3) above, T "*vec[Z'(¢,U)] > N[0,Z®A ].

Therefore

(2.27) T2Z'(e- Uz 2, ) > N(0,B)

where

(2.28) B={[l,-Z, a1 (T®A, NL-2,Za]1®1y}

={[,-Z 2 1Z[,-Z 2 11®A
= (0 ~ZaZulu)A, =00 A,

gauTuu

Using (2.27)-(2.28) in (2.25), we conclude

(2.29) T X'By z€ = N[0,A AZ02 A, AZA 1= N[0,6] A AZA,]

THEOREM 2.1: JT(8-6,), VT(6-6,), VT(6-6,) and VT(6-6,) each converge in
distribution to N[O, ce|u(szA A )"
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Proof: VT(8-0,)=(T"X'By 2X)" T X'By z¢.
Then using Lemmas 2.2 and 2.4, VT(6 -0,) - N[0, A], with
A=(AcAZAL) " 0L (ALAZAL) (A ARA )™
=05 (AcAZAL)

The proofs for the other estimators are essentially identical. [ ]

Thus the asymptotic variance matrix of each of the above estimators is
62, (plim T'X'P,X)™'. As noted above, this is less than the corresponding asymptotic
variance matrix for the ordinary IV estimator, ¢>(plim T'X'P,X)’, so long as =, # 0.
To achieve an efficiency gain, the additional variables u must be uncorrelated with the
instruments z and correlated with the errors €.

The estimator § in (2.22B) is infeasible because it depends on A = £7!T . We

uuTue*

can define a feasible version of it, say

(2.30) 6 = (X'P,X)"'X'P,(y- UL),

where A is a consistent estimate of A. Specifically, A = (U'U)"' U'¢ with & =y - X6,
where 6 is any consistent estimate of 0,,. It is easy to show that 0 is consistent and has

the same asymptotic distribution as 6 (and, therefore, the same asymptotic distribution as
0,0 and 0).

2.4. Monte Carlo Results

In the previous section we have considered four improved IV (IIV) or improved
GMM estimators. Each is consistent and asymptotically more efficient than the usual
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IV/GMM estimator 6 = (X'P,X)"'X'P,y. The asymptotic efficiency gain for each of the
IV estimators over the usual IV estimator is =2 .2 . -(plim T"'X'P,X)", which
obviously depends on the strength of the correlation between € and u.

A natural question to ask is whether our IIV/IGMM estimators are still more
efficient than the usual IV or ordinary GMM estimator in finite samples. In order to
answer this question, we performed a Monte Carlo simulation on a very simple model. In
the simulation we considered our IIV estimators and also some estimators of Imbens
(1993) that are similar to GMM estimators. Our simulation plan is as follows. The

assumed regression model is:

(2.31) y, =0,+€, t=1,2, ..., T,

where 0, is a scalar parameter and €, is iid N(0,1). Thus we are estimating 6, = E(y, ).
Further we assume that we observe a random variable u,, which is also iid N(0,1). Let p
denote the correlation between €, and u,. This simple model has also been considered by

Imbens (1993). An efficiency gain is possible here because the mean of u, is known to be
zero. Our DGP is therefore as follows:

(2.32A) y, =1+¢€,,
(2.32B) u, =pg, + 1-p? MNe»

where ¢, is iid N(0,1), n, is also iid N(0,1) and €, is independent of n,. Thus 6, =1.
Our results do not depend on this choice of 6, nor do they depend on the choice of the
variance of €, and u, equal to one.

The following six estimators of 0, are considered in our simulation:

(1) Sample mean (8,): 6, =y. This is the GMM estimator based on E(y, —6,) = 0.
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(2) Infeasible GMM (8,): 6, = argmin , {¢(0)'C'¢,(0)} =y - pu, where

¢r(0)=(y-6, ﬁ)',andC=[1 p]=v([s‘]).
p 1 u

(3) Feasible GMM (8,): 6, = argmin o {¢(0)'C'¢,(0)} = y - pu, where

~ T C C -0
$:0)=(7-0, W C=1388'=| T T2 |withg =|Y "% | and
T Cn Cpn U

p= ézl / ézz-
(4) TV estimator (8,): 6, = (I'M,i)'i'M,y, where i=(1, ---, 1)p,.
(5) Imbens's first estimator (65): [} s is the pseudo maximum likelihood (PML) estimator

defined by Imbens (1993) as the first part of the solution to

g(9,5) = Z;r=l p(yt ’ut’e’s) = 0,

y-0 u
1+8u’ 1+8u

(6) Imbens's third estimator (6,): 6, is defined by Imbens (1993) as the first part of the

where p(y,u,0,8) =(

)' and d is an artificial parameter.

solution to

g(e’s’u) = Z;r=15(ytaut,9,8,U) = 0:

where 5()’,“’9,8,“) = ((Y'e)exP(ll_5“),u'exP(l1‘8u), l‘e’q’(u'au))'-

Notice that in our special case of a regression model with only intercept, some

estimators that are different in general become identical. The infeasible GMM estimator
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(8,) is the same as the infeasible ITV/IGMM estimator 6 = (x'P,x)"'x'P,(y—uA) = y - pu
defined in (2.22B) above. The feasible GMM estimator (63) is the same as the feasible
IIV/IGMM estimator § = (x'P,x)"' x'P,(y —ul) defined in (2.30) above, where
A=218 = (UU)'[U'(y-6,)1=C, /C,,, provided that the initial consistent
estimator for 0 is 61 in both cases. The three ITV/IGMM estimators
8 = (x'P,Myx)"'x'P,Myy defined in (2.18), § = (x'Py_,;X) ' x'Py_,y defined in (2.19)
and 0 = (X' MyP,Myx) ' x'MyP,M,y defined in (2.22A) are the same and equal to
0, =(i'Myi)'i'Myy, when x=z=i=(1, ---, 1)';,;. The second estimator of Imbens
(1993), defined as the first part of the solution to g(0,8) = ¥~ p(y,,u,,0,5) = 0 with
A(y,u,0,8) =((y—0)(1-08u), u(l1-25u))', is also the same as the first three IV/IGMM
estimators (equal to 6 +)- This leaves us with the six distinct estimators listed above.

0, =y is unbiased and var(d,) = I/T. 6, =y—pu is unbiased and var(8,) =
(1-p*)/T. For the remaining four estimators, finite sample properties are unknown, but
the estimators are consistent and their asymptotic variance is (1-p?)/T.

Our simulation results are based on 20,000 replications. The simulations were
performed in GAUSS 2.0 and used its random number generator.

Table 1 gives the means of the six distinct estimators, while Table 2 gives their
mean squared errors (MSE). In each case the estimators are nearly unbiased and MSE is
nearly the same as variance. For convenience we actually present MSE multiplied by
sample size (T), and the asymptotic variance of JT (é —0) is given as the value for T = .
For the sample mean él, T-MSE, should equal 1.0 apart from sampling error for all
values of T and p, and deviations from unity in the first column labelled T-MSE, give an
indication of the sample variability in the experiment. Similarly, for the infeasible GMM
estimator 62, T-MSE, should equal (1-p?) apart from sampling error for all T and p .
For the other estimators T-MSE should converge to (1-p?) for large T.

The result in Table 2 are in close agreement with the asymptotic theory, and the
agreement is very close for T>50. T-MSE is nearly equal to its asymptotic value
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(1-p?) for all estimators, all values of p, and all sample sizes except T = 25 and
occasionally T = 50. The ITV/IGMM estimators are better than the sample mean in all
cases except p=.1and T =25 or T = 50; as expected, the size of the efficiency gain
depends on p.

For this simple model, at least, the differences among the various TV/IGMM
estimators are quite small. As might be expected, the infeasible GMM estimator (62) is
usually the best. The IIV estimator 6 4 (also equal to Imbens's second estimator) is
somewhat better than Imbens's first and third estimators (5 and ). The feasible GMM
estimator (63) seems to be slightly better than the ITV estimator when p is small, and
slightly worse when p is larger. However, we repeat that the finite sample differences
among the asymptotically equivalent estimators are quite small. The main message of the
simulations is that we can indeed improve on the usual IV estimator in finite samples, and
asymptotic theory is a reliable guide to the variability of these improved estimators. At

least this is so in the simple model we have considered.

2.5. Concluding Remarks

In this chapter we have shown how to improve on ordinary GMM (IV or 2SLS)
estimators, given observable extra variables which are uncorrelated with the instruments
but correlated with the error in the equation being estimated. The difference between the
improved 2SLS (IV) estimators and the ordinary 2SLS (IV) estimators is that the
projection matrix P, in ordinary 2SLS (IV) is replaced by P zp» MyP,My, or P,My, so
that the 2SLS "fitted values" are constructed differently. For example, 6 uses M Z, the
part of Z orthogonal to U, as the regressors in the "first stage" regression, whereas the

ordinary 2SLS estimator ) just uses Z.
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.9999
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TABLE 1

Means of Alternative Estimators

.9998
.9996
1.0000
.9997
.9999
1.0000

.9998
.9996
1.0002
.9998
.9999
1.0000

.9998
.9996
1.0003
1.0000
1.0000
1.0000

.9998
.9997
1.0004
1.0001
1.0000
1.0000

.9999
.9999
1.0003
1.0001
1.0000
1.0000

.9992
.9994
1.0001
.9997
.9999
1.0000

.9993
.9995
1.0002
.9998
.9999
1.0000

.9995
.9997
1.0003
.9999
1.0000
1.0000

.9997
.9998
1.0004
1.0000
1.0000
1.0000

.9997
.9999
1.0003
1.0001
1.0000
1.0000

.9992
.9994
1.0001
.9997
.9999
1.0000

.9993
.9995
1.0002
.9998
.9999
1.0000

.9996
.9997
1.0004
.9999
1.0000
1.0000

.9999
.9999
1.0004
1.0000
1.0000
1.0000

1.0000
1.0000
1.0003
1.0001
1.0000
1.0000

.9992
.9995
1.0001
.9997
.9999
1.0000

.9942
.9996
1.0003
.9998
.9999
1.0000

9975
.9998
1.0004
.9999
1.0000
1.0000

.9993
.9998
1.0004
1.0000
1.0000
1.0000

1.0001

.9995
1.0003
1.0001
1.0000
1.0000

.9992
.9994
1.0000
.9997
.9999
1.0000

.9993
.9995
1.0003
.9998
.9999
1.0000

.9996
.9997
1.0004
.9999
1.0000
1.0000

.9999
.9998
1.0004
1.0000
1.0000
1.0000

1.0000
1.0000
1.0003
1.0001
1.0000
1.0000
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TABLE 2

Mean Square Errors of Alternative Estimators

T-MSE, T-MSE,

.9965
.9985
1.0073
1.0008
1.0120
1.0000

.9965
.9985
1.0073
1.0008
1.0120
1.0000

.9965
.9985
1.0073
1.0008
1.0120
1.0000

.9965
.9985
1.0073
1.0008
1.0120
1.0000

.9965
.9985
1.0073
1.0008
1.0120
1.0000

.9970
.9945
.9953
.9888
1.0003
.9900

.9350
.9249
9111
.9051
9163
.9100

.7831
.7699
.7478
.7433
7524
.7500

.5370
.5266
.5068
.5043
.5099
.5100

.1983
.1955
.1887
.1881
.1896
.1900

T-MSE,

1.0345
1.0123
1.0047
.9937
1.0027
.9900

.9684
.9406
.9196
9094
.9180
9100

8113
.7829
.7556
.7468
7535
.7500

.5615
5372
.5130
.5068
.5109
.5100

2199
.2035
.1918
.1893
.1902
.1900

T-MSE, T-MSE,

1.0447
1.0147
1.0052
.9938
1.0027
.9900

9775
9432
9198
.9094
9180
.9100

.8156
.7846
7556
.7468
7535
.7500

.5580
.5365
5130
.5068
.5108
.5100

.2066
.1995
1911
.1891
.1901
.1900

1.0586
1.0181
1.0063
.9940
1.0025
.9900

.9963
.9469
.9207
.9096
.9180
9100

.8188
7873
.7564
.7468
7535
.7500

.5600
.5377
5136
.5068
5110
.5100

2192
.2003
.1913
.1892
.1900
.1900

T-MSE,

1.0470
1.0157
1.0055
.9938
1.0025
.9900

9781
.9439
.9200
.9098
9180
.9100

8159
.7849
7558
.7468
7535
.7500

.5592
.5367
5132
.5068
5110
.5100

.2069
.1998
1912
.1890
.1900
.1900



CHAPTER 3

IMPROVED GMM AND 3SLS ESTIMATORS
FOR SYSTEM OF EQUATIONS

3.1. Introduction

In section 2.2 of Chapter 2 we defined the improved GMM (IGMM) estimator as
the GMM estimator using moment conditions E[¢,(y;,0,)— C,,C71¢,(y;)]=0 and
weighting matrix C'' = (C,, - C,,C;iC,,)”". In the definition, we intentionally did not
specify the functional forms of ¢, and ¢,, nor did we require the observations
{0(y;,0) = (¢,(y:,0),0,(y;:)')', t=1,2,--} to be conditionally homoskedastic or serially
uncorrelated so long as they satisfy suitable regularity conditions. In section 2.3 of
Chapter 2 we applied the general results of IGMM estimator to the case of the linear
regression model. Assuming conditional homoskedasticity and serial uncorrelation, and
imposing the regularity conditions (A.2.1)-(A.2.3), we obtained an explicit formula for the
IGMM estimator and related it to other previously known estimators, such as the
estimator of Schmidt (1988).

In this chapter we will provide a similar analysis for a system of linear equations.
We will first set up the model and make "high-level" assumptions of regularity conditions.
Under these assumptions we derive an explicit formula for the IGMM estimator and
several other asymptotically equivalent estimators, and demonstrate the efficiency of these

estimators relative to the usual three-stage least sqares (3SLS) estimator.

23
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3.2. Model and Notation

The model considered in this chaper is

(3.1)

where y,, is the dependent variable of equation g at observation t, x,, is the K x 1 vector

of explanatory variables of equation g at observation t, 0, is the K; x 1 unknown

parameter vector of equation g, and €, is the model disturbance of equation g at

observation t. We assume that in general cov(

We define the following notation:

Xy,E)#0forg=1,2, .., G

Yu Xu 9, €u
(3.24) ve=| : |, X, = , 0= : , € = D, t=1,2,
Y X' 0¢ €
YIg xlg' elg
(32B) y(g) = : ’ X(g) - : ’ s(g) = : > 87 1, 23 2] G,
yTg ng' sTg
Yo X €
(32C) Y= : ’ X. = , €= : ,
Y©) X(G) €@
g,
(3.2D) e=| :
er'

Then (3.1) can be rewritten as
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(3.3A) Y. =X0,+€, t=1,2 ...T,
or as
(3.3B) ye = X0, +e.

3.3. Improved GMM Estimators

Suppose that we have available an M x 1 vector of instruments z, satisfying the
moment conditions E(g, ® z, ) = 0, with E[(I; ® z,)X, ] having full column rank.
Suppose that we also have available an L x 1 vector of observable variables u, satisfying
E(u,®z)=0 and E(u,g,') =X, #0. Then the additional moment conditions

E(u, ® z,) = 0 will help us to improve the efficiency of estimation of 6,,. Using the

notation of Chapter 2, we have

(3.4) ¢(y:,e)=[""(y"°’]

|:(IG ®z)(y - xte):]
o, (Y: )

(I. ®z)u,

where the observed data vector is y; = (y,';Xy "5, X,c ;% "52,")". Then

1T e T'(I; ® Z')(y. — X.0)
¢T2 - 2¢(yt ,e) - [ T_I(IL ®Z')u. :l

(4]
(3.5) ¢T(e)=["’“( )] 1
t=1

where Z =(z,,...,z7)" and u. = vec(U) = (ug,’',...,u, ') with U=(u,,...,u;)". Then

_ Cll C12 1 . (
(3.6A) c.[c21 cn]'%'—'ﬂo” Ed1(00)91(60)']
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T—oo

— lm E T'(I; ®Z')e.e.'(I;®Z) T'(I; ®Z')en.'(I, ®Z)
T, ®Z)ue.' (1, ®Z) T'(I . @Z)u.u'(l; ®Z)

(3.6B) Dy, = % = —%(1G ®Z')X. .

Substituting (3.5) and (3.6) into the first order condition (2.7A) in Chapter 2 for
the IGMM estimator 6, and replacing C', C,, and C;. by consistent estimates C'!, C,,

and C;} respectively, we arrive at:

(3.7 [X.'(Ig ®Z)]C"[(1 ®Z')(y. - X.0) - C,,C51 (1, ®Z")u,]=0.
Solving for 6, we obtain
(3.8) 6=[X.'(Is ®Z)C" (I, ®Z")X.]"' X.'(I; ®Z)C"

{(Is ®Z')y. - C,,C5 (1, ®Z')u.].

In order to simplify the above expression further, we need to put more structure on
C. This is possible under the assumption of conditional homoskedasticity and
uncorrelatedness. Suppose that conditional on Q, = {z, ;€,_,,u,_,,2,_;;...}, the (¢.',u")
are mutually uncorrelated and that:

z.

39 Vv & _ I, Za
(39) (utlzt)-[Z 5

ue uu
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Then C =X ®E(zz,') and C = Z®T'Z'Z is a consistent estimate of C, where 5 is any

consistent estimate of Z. For the moment we will treat = as known, for simplicity.

Therefore we have

(3.10A) C"'=2=@®(T'2'Z) " with 2= =(2_ -2 _Z]lz.)"
(3.10B) C,=2.8T'Z2Z

(3.10C) Ch=zler'zz)’!

(3.10D) C,Ch =z 2 ®I,.

Substituting (3.10A) and (3.10D) into (3.8), we get

(3.11) 0=[X.'"(C=QP,)X.]"' X, [Z=®Z(Z2'Z)"]
(I ®Z')y. — (242, ®Iy)(IL ®Z')u,].

Noticing that

(3.12) CoZa®Iy)(I. ®Z')u. = (2,2, ®Z')vec(U)
=vec(Z'UZZ,..)
=(I; ®Z'U)vec(Z 12 ,.)

=(Is ®Z')(I; ® U)vec(E,Z,,),

and substituting into (3.11), we obtain an explicit formula for the IGMM estimator 0:

(3.13) 0 =[X."(Z= ®P,)X.] ' X."(Z= @ P,)[y. - (I ®U)A]

where A = vec(ZZ . )=(A,",A;',Ag'). Thus, fori=1,2,..,G, A; = T, times the
i® column of T ,; equivalently, A; = (plim T™'U'U) 'plim T'U's;,.
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We can compare the IGMM estimator in (3.13) with the usual GMM (3SLS)

estimator
(3.14) 6=[X.'(Z] ®P,)X.]'X.'(Z ®P,)y.

based on moment conditions E[¢l(y: ,00)]1=0. We see that the only difference between
the 3SLS estimator and the IGMM estimator is that Z_! and y. in (3.14) are replaced by
X% and [y. — (I ® U)A] respectively. It is interesting to notice that

[ye-(Ie ®U)A]=[(yu) — UA)', (¥ — UA)'T is just a vector of residuals from the
linear projection of y ,, onto U. Thus the IGMM estimator 0 in (3.13) can also be
regarded as a purged GMM (PGMM) estimator.

We will now consider a specific form for a consistent estimate of A. Define

~

(3.15) A=Ay g

with ig =(T'UU)'T U (y ) - X(g)és), where ég is any consistent estimate of 6, for
g=1, .., G Then
(v u)' Uy - x(l)é(l))

(3.16) (I ®U)A = (I, ®U) :
(U'U)_l U'(ye) — X(G)e(G) )

= (I ® U1, ®(U'U)'U')(y. - X.0)
=(Is ®Py Ny« - X.é)

where § = (é ',...,éG ')". Substituting the above expression into (3.13), we get

(3.17) 0 =[X.'(Z™ ®P,)X.] ' X.'(Z= ® P, )[y. - (I ® P, )(y. - X.6)].
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This expression still depends on =, and we will discuss its consistent estimation later.
While (3.17) is defined for any consistent estimate 6, we may as well consider the

special case that 6=0. Then (3.17) implies

(3.18) [X.'(Z% ®P,)X.]0 = X.' (2% ® P, )[y. - (I ® P, X(y. - X.0)].
Solving for 6, we obtain
(3.19) 0 =[X.'(Z® ® P,M;)X.]"' X.'(Z% ® P,My,)y..

This is an obvious generalization of the single-equation IGMM estimator 6 of Chapter 2.
In order to be more precise about the sense in which the IGMM estimator 6

dominates the usual GMM (3SLS) estimator 6 , and to introduce some other equally

asymptotically efficient estimators, we make some more explicit assumptions. To make

the asymptotics as simple as possible, we will make the following "high level"

assumptions:
[ X' ]
. 1 X6
(A3.1) plim |~ [Xoy - X@ Z & U]
8'
- U' -




FAII AlG Alz Ale Alu ]
= AGl ’ AGG A, Ase Ac ;
A Ag A. 0 o | exsts.
Asl AsG 0 Zas Zw
_Aul AuG 0 Zu:-: 2uu B
Zss zﬂl .
(A3.2) A_,Z,and X= 5 3 are nonsingular; A, has full column rank
forg=1,2,..G
(A3.3) L. @29 % [5N©,z04A.)
. J’f G+L u. ’ zz )

As was the case in Chapter 2, these high-level assumptions are derivable from
various sets of more basic assumptions. For example, let e, =(¢,',u,')' and
Q, ={z;2_,,€,_;2,_2,€_32;----.. } ; then (A3.1)-(A3.3) follow from the assumptions that
E(e,[©) =0, V(e,|Q,)=Z, and X, and z, are covariance stationary.

It is well known that under (A3.1)-(A3.3), the usual GMM (3SLS) estimator )

defined in (3.14) has the following asymptotic variance:
A .1 -l a-1 -l -1 -1
(3.20) AV[VT(6-6,)]= [plim—X.'(22 ®P,)X. " =[A'(Z; ®A)A]

A

zl
where A = plim%(lG ®Z')X, =
Ag

We now wish to show that several estimators are asymptotically equally efficient,
and that they are efficient relative to the 3SLS estimator. One such estimator is the

IGMM estimator 6 defined in (3.19). The other such estimator is the PGMM estimator
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defined in (3.13) with A known. In order to distinguish the PGMM estimator from the

IGMM estimator, we now denote the PGMM estimator by 6. We will also consider the

following two additional estimators

(3.21A) 0 =[X."(Z% @By 7)) X1 X' (2% @ By 1))y

(3.21B) 0 =[X.'(Z* @M,P,M,)X.]"' X."(Z= ® M P,M,,)y. .
u*tz*"*u utz*"u

We will show that 6,6, 6 and 6 are asymptotically equivalent, with asymptotic variance

matrix equal to

(3.22) [plim%X.'(E“ ®P,)X.]"' =[A'(Z=®A)A] ' =B .

Comparing to the asymptotic variance matrix of 0 in (3.20) above, the fact that the matrix
{[A"(Z) ®A AT —[A'(Z= ® A}, )A] '} is positive semidefinite (shown later in
Theorem 3.3) establishes the asymptotic efficiency of 0,0, 0 and 6 relative to 6. We
now turn to a rigorous proof of these results.

LEMMA 3.1: plmT'ZMyX, =plimT'ZX, =A,,, forg=1,2, ..., G.

® ~
pimT'Z’MyZ=plimT'ZZ=A
Proof: The proofis similar to the proof of Lemma 2.1 of Chapter 2. For example,
pim T'Z'MyX ) = pim[T'Z'X ) - (T”'Z’UXT'U'U) (T7'U'X )]
=A,-0-Z A, =A,,

uu‘ “ug

using (A3.1) and (A3.2).

LEMMA 3.2: plim T™'X,)'P,MyX ) = pim T X ) By 2 X )
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_ . -1 [

=phim T™'X ) MyP,MyX,,,
=plm T 'X,,'P,X

=AMA;A4

(8)

forh,g=1,2,..,G
Proof: The proof is essentially the same as the proof of Lemma 2.2 of Chapter 2. For

example,

pim T'X , 'P,MyX ) = pim[T'X,,'Z(T"'Z'Z) [T Z’M X, ]

=A,ALA,

77.

using (A3.1), (A3.2) and Lemma 3.1.

LEMMA 3.3: plim[T'X.'(£%® ® P,My)X.]=plm[T'X."(Z% ® P, ;) X.]
=plm[T"'X.'(Z= @M _P,M,)X.]
=plm[T'X,' (2= ®P,)X.]
=A'(Z*®A)A =B,

and B is nonsingular.

Proof Let % =(0ij)GxG. Then

plim[T'X," (2= @ Py, ;) X.]

11 1G
X' 6 Pmz - 0 Bmgy [ Xo
=plim T’ ’ : : :
Gl GG
X6 [0 Bmz 0 0 Bz X )

i 1 11 ' 1G
Xy'o BmzXay - Xu'o PmzXe
. -1 . . .
=plimT : : :

1 Gl 1 .. GG
| X'0 Pz Xa - X600 BmzXo
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-cllAle-ulAzl GIGAle;l.AzG
= : : : (using Lemma 3.2)
GGlAGzA_ulAzl GGGAGZA_EIAZG

(A, oA} - oA} A,
=A'(Z¥ QA A

using the definition of A in (3.20). The probability limits for the other cases involve
essentially the same arguments. Finally, B= A'(Z® ® A;)A is nonsingular bacause X,
T, and A, are nonsingular, which implies == ® A} nonsingular, and because A has full
column rank (see (A3.2)).

LEMMA 3.4: pimT™'X,'P,Myg,, = pEimT'X ) 'Py 7€)
= plim T™'X 4, ' MyP, Mg,
=plim T 'X,'P, (g, - UML)
=phmT™'X ) 'P,E g,
=0
whereh,g=1,2, .., G
Proof. The proof is similar to the proof of Lemma 2.3 of Chapter 2. For example,
pim T7'X ) 'MyP,Mye , = pim[T'X,,'MyZ(T'Z'Z) ' [T'Z'Myg ]
=A,A, -pimT'Z Mg,
using Lemma 3.1. But
plim T'Z'My¢ ) = pimT™'Z'e ) - plim(T™'Z'U)(T'U'U) [T 'U'g )]
=0-0-Z}z =0

uwu“ueg

using (A3.1) and (A3.2), where Z,, , is the g-th column of X .. Therefore
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pim T7'X )" MyP,Myg,, =A,AL -0=0.

The proofs for the other cases are similar.

LEMMA 3.5: pim[T'X.'(Z= @ P,My,)s. ]
= phim[T™'X.' (2% ® Py 7 )¢.]
= plim[T'X.'(Z= ® M ,P,M))e.]
=plm{T'X." (2= ® P, )[e. - (I; ®U)A]}
=plm[T'X.'(Z! ®P,)e.]
=0

Proof: Let 2= = (oY), asabove. Then

plim[T™'X.' (2= ® By, )e.]

' 11 1G
X 6 Pyngz 0 0 Bmgz | Eo)
. _l . . . -
=plimT :
Gl GG i
X6 |9 Pmz 0 0 Bmyz) | B
G 118
Zg1 X0y 0 " Pm 7€ (g)
. _l .
=plimT :

G 1,.G8
Zg-1X6)'0 " hm ziE @)

Yoo plim T'X ' Py 7€)

Te10 7 pim T 'X )" Pim, 2 )

0.0 8.0
= : (using Lemma 3.4)

g=] ch ¢ 0
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=0.
The proofs for the other cases are similar.

THEOREM 3.1: The improved GMM estimators 0,0, 6 and O are consistent.
Proof: We will give the proof for 6. The other proofs are quite similar.
plim @ = plim[X.'(Z= @ P,M;)X.]"' X.' (2= ®P,M,)y.
= pm[X.'(Z= ® P,M;)X.]"' X." (2= @ P,M_, )(X.0, +¢.)
=0, +[plim X."(Z= @ P,M;)X.] ' [plim X.'(Z= ® P,M)e. ]
=0,+B'-0 (using Lemmas 3.3 and 3.5)
=0,.

LEMMA 3.6: T*(I; ® Z’My)e. - N[0, (Z=)"' ®A ]

where == = (Z_-Z_Z]z )

Proof T™?Z'Myg, =T ?Z'ey, — (T Z'U)NT'U'U) (T 'U's )
=T "*Zgg, - (TZ'U)A, +0,(1)
=T"Z'(g g - Ury) +0,(1)

forg=1,2,.., G, where A, = ! -E(u.g,;). Then

T2 ZMyg,
T (1 ®Z'My)es = :
T Z My g,

T?Z'(g4 - UN))
= : +0,(1)
T?Z' (g - Uhg)
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=T (I ®Z')e. - (I ®UZ ) )vec(Z,, )] +0,(1)
(using the definition of A, = ., -E(u;g,,))
=T (I ® Z')[vec(e) - vec(UZ 12, )] +0, (1)
=T (I; ® Z')vec[e - UZ 1 Z,,1+0,(1)
= T?vec[Z'(e - UZ 12, )] +0, (1)

= T-”’vec{z'(s,U)[_ZI_?z ]} +0,(1)

=T ([lg,~ 2o 25 1® Iy vec[Z' (e, U)] +0, (1)
=T ([I4,-Z,Z2 191 Mg, ®Z')vec(s,U)
+o,(1)

= (s, ZaZnl®Iy HT " (I, ® Z')[Z‘ ]}

*

+0,(1).

€
But according to assumption (A3.3) above, T (I;,, ® Z')l: jl —-N(0,Z®A,).
U

Therefore
T-2 (I, ® Z'My, )e. — N(0, W)
with
W=([ls,~ 220181y )(mAa)([_;_jEJ@IM)
=(Z.-Z.ZuI,.)®A,,
=(Z*)"'®A,,.

LEMMA 3.7: T™X.'(Z% ® P,My)e., T X.' (2% ® By ;) )€e,
T*X.'(Z= @ M,P,M )e. and T"*X,'(Z% ® P, )[e. — (I ® U)A] each converge in
distribution to N[0, A'(Z= ® A} )A] with A = diag(A ,,...... ,A ) as defined in (3.20).
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Proof. We give the proof for T""*X,'(2® ® MyP,My,)c.. The proofs for the other

cases are quite similar.
T2X.' (2= @M, P,My )e.

=TV ' : : : :
X(G)' GGIMUpzMU i GGGMUpzMU E(G)

[ <G !
Zg1 Xy '0 P MyPMye
= T-]/2 :

G 1. G
| Zg-1X(6)'0 "MyP Myt

G lgp-12
2g-10 2T X, "MyP,Mye o,

G Ggp-12

[ 30,68 (T"X ;) MyZ)(T'Z'Z) [T Z' My ) ]

| 2010 (T X () MyZN(T ' Z'Z) [T Z' Myt )]

[ 3¢ 6"A AL -T2 Z' Mye,,
= : +0,(1) (using Lemma 3.1)
_Zg___]O'GBAGZA;zl 'T_llzz'MUS(g)

’-AIZA_HI
= (E= L IT (I ®Z'My)e.]+0, (1)
AGZA—Hl

A'(Ig ®AL)E= LT (I ® ZMy)e.]+0, (1)
=A'(Z=®A)T (1 ®ZMy)e.]+0,(1).
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But according to Lemma 3.6: T™(I; ® Z'M,)e. = N[0,(Z=) ' ®A_]. Then
T?X.'(Z= @M P,My ). = N[0, V]
where
V=A'C=®A(Z=)"'®A_JA'C=QAHI=A'(Z=QAHA

which is the same as the matrix B defined in (3.22) above.

THEOREM 3.2: ﬁ(é—(')o), ﬁ(é—eo), JT(6-6,) and VT(6-6,) each converge in
distribution to N(0, B™') with B=A'(Z* ® A;))A = plim T'X.' (2= ® P, )X. .
Proof. We will give the proof for JT(6 —-0,). The proofs for the other cases are

essentially identical.
JT(0-6,)=[T'X.'(2= ®P,M,)X.]"' T2X,' (2= ® P,M, )e.
=B -T?X.'(2® ® P,M))e. +0, (1)
using Lemma 3.3. But according to Lemma 3.7:
T?X.'(Z*= @ P,M, )e. - N(0, B).
Therefore

JT(6-6,)—> N(0, A)

A=B'B(B)=(B')y=B".

THEOREM 3.3: The improved GMM estimators: 6, 6, § and 6 are asymptotically

efficient relative to the 3SLS estimator 6. They are strictly more efficient than the 3SLS
estimatorif Z , # 0.

Proof: From Theorem 3.2, the asymptotic variance matrix of each of the IGMM
estimatorsis B =[A'(Z™ ® A;})A]™". The asymptotic variance matrix of the 3SLS
estimator is Q' =[A'(Z_! ® A;})A]™'. We wish to show that (Q' —B™") is positive
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semidefinite (psd), and positive definite (pd) when X , # 0. This is equivalent to showing
that (B - Q) is psd,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>