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ABSTRACT

Improved Generalized Method of Moments Estimators

By

Hailong Qian

This thesis introduces a new method to improve Generalized Method ofMoments

estimators, given extra observable information. Monte Carlo simulation for a simple

model with intercept only confirms the accuracy ofthe asymptotic results obtained in this

thesis even when the sample size is quite small The three-stage least squares estimator of

a system ofequations is shown to be asymptotically equivalent to an iterative two-stage

least squares estimator applied to each equation, augmented with the residuals fiom the

other equations.
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CHAPTER]

INTRODUCTION

Suppose that we have a set ofmoment conditions EN)l (y: ,60 )] = 0 which

identify the unknown parameter 90, so that the generalized method ofmoments (GMM)

estimation of 60 is feasible. However, suppose that we also have available a set of

additional moment conditions E[¢2(y: )] = 0, where 62 is observable because it depends

only on the observed data y: . Then the question is how to utilize these additional moment

conditions in a simple way to improve the estimation of 60. This is possible when (I), is

correlated with m.

Problems ofthis type have been considered previously by Imbens (1992, 1993) and

Imbens and Lancaster ( 1994). Imbens (1992, footnote 3) considered estimation of

no = E(yt ). The sample mean, based on the moment condition E(yt — po) = O, is less

efficient than the GM estimate based on the moment conditions E[(yt — 110 ), ut ]' = 0, if

ut is observable, with E(ut ) = 0 and cov[(yt — Ho ), 11,] ¢ 0. Imbens (1992) and Imbens

and Lancaster (1994) analyze some other specific problems that lead to GMM estimation

with additional moment conditions that do not depend on the parameters ofinterest.

In this dissertation, we prove that the usual GMM estimator of 90, say 6 , using

the moment conditions E[¢1(y: ,60 )] = 0 and weighting matrix

0:: = aim... EIT'W 2.1.4». o: emu-“2 2.1m (yI.eo)1'}“. can be improved by

using the observed extra moment conditions E[¢2(y: )] = 0. Specifically, we prove that

the usual GMM estimator 6 is no more efficient than the augmented GMM (AGMM)

estimator, say 6 , defined as the GM estimator of 90 using the moment conditions

E[¢(Y:,Oo)] = E[¢l(Y:a90)'s¢2(Y:)'I= O and weighting matrix
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C c ‘1 . ..

c“ = L” C12] ={1im-r_... EIT'W 2.1m. ,eomi‘”21m. ,eon'r‘.
21 22

We further show that the AGMM estimator 6 is numerically the same as the improved

GMM (IGMM) estimator, say 6 , defined as the GMM estimator using the moment

conditions E[¢.(y:.eo)— Cncii‘l’z (y: )1 = o and weighting matrix

C“ =(C11— C12C2;C21)-1-

The structure ofthe dissertation is as follows. In chapter 2, we first provide a brief

general treatment ofGMM estimation with additional moment conditions not containing

unknown parameters. We then give some more detailed results for the linear regression

model In the case ofthe linear regression model with conditional homoskedasticity and

uncorrelatedness, we show that the IGMM estimate is an improved ZSLS (IV) estimate

using as a new set ofinstruments the part ofthe original instruments that is orthogonal to

the observed extra variables, whereas the usual GMM estimate is just an ordinary ZSLS

(IV) estimate using the original set ofinstruments. We also provide some other estimators

that can be written in closed form and that are asymptotically equivalent to the IGMM

estimator. For the special case of a simple regression model with intercept only, we

provide some Monte Carlo evidence on the finite sample performance of some specific

improved estimators. For this simple model, the eficiency gains predicted by asymptotic

theory are realized even for quite small sample sizes.

In chapter 3, we extend the general results on improved GM to the case of a

system oflinear equations. Under the assumptions of conditional homoskedasticity and

uncorrelatedness, we obtain explicit expressions for several asymptotically equally efficient

improved GMM estimators. While the usual GMM estimator is just an ordinary 3SLS

estimator, we prove that the IGMM is an improved 3SLS estimator. The improved 3SLS

estimator differs from the usual 3SLS estimator in two ways. First, the covariance matrix

ofthe residuals ofthe projection ofthe original model disturbances onto the observed
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extra variables is used as the relevant error covariance matrix. Second, it uses as its

instruments the part oforiginal instruments orthogonal to the observed extra variables.

In chapter 4, we extend the IGMM results from chapter 3 to the case of a system

ofnonlinear equations. Under suitable regularity conditions and some "high-level"

assumptions, we show that essentially the same results as those in chapter 3 still hold for

this case.

In chapter 5, we further extend the improved GMM idea ofprevious chapters to

the case where the extra variables are not observed but consistently estimated. We

investigate this problem in the context ofa system oflinear equations. We show that

3SLS applied to the entire equation system is asymptotically equivalent to iterated ZSLS

applied to each equation, augmented by the residuals from the other equations. This result

generalizes a result ofTelser (1964) for the case of seemingly unrelated regressions. It

also provides an interesting example of a setting in which the improved GMM estimator

arises natually as an efficient estimator.

The final chapter concludes the dissertation with some brief comments on firrther

possible work in this line ofresearch.



CHAPTER2

INIPROVED GMM ESTIMATORS

FOR THE LINEAR REGRESSION MODEL

2.1. Introduction

In this chapter, we provide (in section 2.2) a briefgeneral treatment ofGMM

estimation with additional moment conditions not containing unknown parameters. We

also give (in section 2.3) some more detailed results for the linear regression model.

Specifically, we consider the standard regression model

(2.1) yt=xt'B+8t, t=1,2, ...... , T,

with instruments zt satisfying E(z,et ) = 0. These moment conditions are the basis of

GM estimation of B ; under a conditional homoscedasticity assumption for at , the GM

estimator is the usual instrumental variables (IV) estimator. Ifwe also have available a

vector of observable variables 111 that are uncorrelated with 2.1 but correlated with a, , the

additional moment conditions E(ut 69 2t ) = 0 will improve the efficiency ofestimation of

[3. This principle applies in linear or nonlinear models, but in the linear case we obtain

very simple explicit results for the improved estimators.

We believe that these results are empirically relevant, notably in the estimation of

rational expectations models. In many empirical rational expectations models, the

orthogonath conditions used in estimation assert that a forecast error, written as a

fimction ofdata and parameters, is uncorrelated with variables in the information set at the
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time the forecast was made. Thus a, is the error made in forecasting some variable at

time t, based on information available at time t- l, and zt consists ofinformation available

at time t-l, so that it is uncorrelated with at. In this setting, ut can be the observable (ex

post) error in the forecast ofa set ofvariables at time t based on information available at

time t- 1.

As a specific example, suppose that s is a spot exchange rate at time t and ft is the

one period forward rate. Many papers have tested the unbiasedness hypothesis that

f,_1 = E( st | OH ), where OH is the information set at time t-l. Thus we should have

a = 0 and B = l in the regression model

(2.2) st =or+13fH +st.

When SI and f,_] contain unit roots but are cointegrated, the above regression is often

replaced by a regression in stationary variables:

(23) (St - St—1)= ‘1 +B(ft—l _ St—1)+8t

where again or = O and B = 1 under the unbiasedness hypothesis. Because the forecast

error at is uncorrelated with variables in QM, (2.2) or (2.3) can be estimated by GM or

IV, where the instruments zt are variables in OH. This is a standard applied econometric

excercise. However, the esthate can be improved by using other observable variables 0.,

that are correlated with the forecast error a, but uncorrelated with 2,. Such variables will

typically be forecast errors in other related variables. An obvious example would be the

change in a security price from time t-l to t. We might reasonably expect a, and ut to be

correlated if spot exchange rates and security prices respond to the same unforecastable

economic shocks.

For Imbens's model ofthe estimation ofthe sample mean, we provide (in section
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2.4) some Monte Carlo evidence on the finite sample performance ofsome specific

improved estimators. For this simple model, the eficiency gains predicted by asymptotic

theory are realized even for quite small sample sizes. The final section concludes the

chapter with some comments.

2.2. GMM With Moment Conditions Not Containing Unknown Parameters

Let 90 be a K x1 vector ofparameters to be estimated, and y:, t = 1, 2, T, be

observed data. Suppose that the following moment conditions hold:

(2.4) E¢(y:,90) = E[¢‘(Y:’?°)] = o, t = 1, T,

¢2(Yt)

where (bl is N X], with N 2 K, and 62 is Hx 1. We want to compare GMM based on 4)]

only with GMM based on d) =(¢1',¢2')'. Note that 4), does not depend on 60.

Define the following notation:

9 ..

(25A) Me) = [M )] = 1 Emma)
¢T2 Tt=1

(2 SB) C= C“ C" = limlT-Etb (9 )o (e r]
. C21 C22 T"°° T O T O

(2.50) D=[D‘]= limM.
0 T—roo 60'

(The block "zero" in D arises because ¢T2 does not depend on 9 .) For identification of 90
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we require D1 to be offill] column rank. In the case that the y: are iid, C = V[¢(y: ,60)]

and D = E[a¢(y:,90)/ae'].

Let 6 denote the GM estimator of 90 based on the moment conditions (1)1 only,

using weighting matrix C;11; and let 6 denote the augmented GMM (AGMM) estimator of

90 based on the moment conditions ¢ = (¢1',¢2')', using weighting matrix C"1. Under

suitable regularity conditions, standard GMM results indicate that these estimators are

consistent, with .AV[JT(é —eo)] = (ole-:1)l )-1 and Avwia‘) — 90)] = (lye-11))-l

=(D1'C11Dl)"1, where C11 = (CH - CHCZCZIYl is the block of C"1 corresponding to 4)]

(i e., the upper left block). For discussions ofregularity conditions, see, e.g., Hansen

(1982) or Gallant and White (1988). The AGMM estimator is efficient relative to the

GMM estimator, since (Dl'C,"1‘D1)’l —(D1'C“D1)'1 is positive semidefinite. In fact, a

little algebra reveals that we‘ll)1 - lapel-1‘1), = (0,1031), )'(c22 - encgcu)‘l -

(C21C{11D1), so that the condition for no gain ill efficiency is Clel'I'D1 = 0. There is no

efficiency gain when C2] = 0 (t1)l and 92 are uncorrelated); when C21 at O, the AGMM

estimator is generally (but not necessarily) strictly better than the GM estimator.

We can also write the augmented GMM estimator as follows. Consider the

moment conditions

(2.6) Baronet)—Cocaoztytn=o,

which essentially deal with the residuals fiom a regression of ti), on (1)2. If

V[¢(yi,90)] = C. then Vim:.90) - Cacaottyt )1 = Cl. — 0.20302. = (6‘)“. With

this motivation, we define the improved GMM (IGMM) estimator, say 6, as the GM

estimator using the moment conditions (2.6) and weighting matrix

C11 = (C11 — c,,c;;c,,)“. It is then not difficult to show that the IGMM estimator 6 and

the AGMM estimator 6 are the same. This can be seen by noting that 6 satisfies the first

order condition



(2-7A) DTl(é).Cll[¢Tl (é) “ Clzcii‘i’rzl = 0

where DT1(6) = 64)“ (9) / 69'; 6 satisfies the first order condition

(2713) Datéwlon(é)+Drr(é)'c”om = 0.

But (2.7A) and (2.7B) are seen to be the same with the substitution C12 = —C”C12C;21 in

(2.7B).

The above discussion treats the weighting matrix C as known. Assuming suitable

regularity conditions, the superiority ofthe AGMM or IGMM estimator to the GMM

estimator will still hold asymptotically ifC is replaced by a consistent estimate C. The

numerical equivalence ofthe AGMM and IGMM estimators would require that the same

estimate C be used for both estimators.

2.3. The Linear Regression Model

In this section we will apply the general results ofthe previous section to the case

ofthe linear regression model For this case we can give an explicit formula for the

IGMM estimator. When the errors are conditionally homoskedastic, further simplications

are possible and the IGMM estimator is related to some previous results.

The model considered in this section is as given in equation (2.1) above, which we

rewrite slightly as

(2.8) yt = xt'00+8,, t= l, 2, ...... , T,



where yt is the dependent variable , xt is a K x1 vector of explanatory variables, at is the

disturbance term, and 60 is the parameter vector to be estimated. Suppose that we have

available an M x1 vector ofinstruments zt satisfying M .2 K and E(z,et ) = 0, so that the

GM estimation of 90 based on the moment conditions E(z,e,) = 0 is feasible. However,

suppose that we also have available an L x] observable vector ut satisfying

E(ut ®z,)= 0 and E(utet) at 0. The observable data vector is y: = (yt,x,',zt',u,')', and

in our previous notation we have moment conditions E¢(y: ,90) = 0, with

(29A) ¢1(Y:’90)= no. — x390)

(2.913) My?) = u. ®z. = (It emut.

Asamatter ofnotation, let Z=(zl,---,zr)'; X=(x,,---,xT)'; a =(81,--°,8T)';

U=(u1,---,uT)'; y=(Y1’”'SYT)'; u(j) =(llJ-1,"',llij-)'f01‘j= 1’ m, L; and

n" =(u(1)',~--,u(L)')'= vec(U). Then straightforward calculation yields

(2.10A) on = T"z'(y - x9)

(2.1013) on = T“(IL ®Z')n‘ = T“veo(z' U)

(2.100) DT,(0) = —T“Z'x

Using the first order condition (2.7A) above, with these substitutions we arrive at the

IGMM estimator

(2.11) 6 = (X'ZCHZ'X)’1X'ZC”[Z'y — c,,c;;vee(z U)].

To proceed further, we need to put more structure on C. This is possible under

the assumption ofno conditional heteroskedasticity or autocorrelation: suppose that,



10

conditional on Q, = {zt ;s,_1,u,_1,z,_,;...}, the (s,,u,')' are mutually uncorrelated, zt is

stationary, and that

(2.12) V([8‘]|z,)sz=[6: 2w].
u, 2

£118 uu

Then

(2.13) c = Holy:.eo)o(yt.eo)'= 2®E(ztzt')

for which a consistent estimate is

(2.14) f: = i cor-lz'z,

where E is any consistent estimate on. Then C11 = 65"‘(T’1Z'Z)’1 with

as = (63 — 2 12-12,, )-1, cl, = $3,, oar-122,6” = $3,, er'z'z,

C120}; = (Emil-1 )®IM. With these substitutions in (2.11), and noting that 6“ cancels,

we obtain

(2.15) 6 = (x' szy‘ X'Z(Z'Z)" {Z'y - [(233)® IM]vec(Z' U)},

where PZ = Z(Z'Z)’1 Z'. More generally, ifA is any matrix, we will define PA as the

projection onto A, so that PA = A(A'A)'1A' ifA has firll cohrmn rank. Similarly, we

define MA = 1— PA. Obviously the first term in this expression is just (X' PZX)‘l X'sz,

the IV (ZSLS) estimator, which is GMM based on 411, given the assumption ofno

conditional heteroskedasticity.

Using the matrix fact vec(BC) = (C'®I)vec(B), (2.15) can be rewritten as

(2.16) 6 = (x' PZX)’1 x' 2(z'Z)"[z'y — z' U232“, ].
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It is reasonable to consider Em, = T'IU' U, in, = T“1U‘(y — X6), where 6 is any

consistent estimate of 9. Then (2.16) becomes

(2.17) 6 = (X'PZX)'1X' Pz[y — PU(y - xé)].

Finally, while (2.17) is defined for any consistent estimate 6, we may as well

consider 6 = 6. Then (2.17) implies (X' PZX)6 = x' sz — x' PZPUy + x' PZPUxé; solving

for 6 , we obtain

(2.18) 6 = (x'PZMnyl x' PZMUy.

The IGMM estimator 6 is very similar to an estimator considered by Schmidt

(1986, 1988):

(2-19) 6 = (X'P[MUZ]X)-1X'P[Mul]y'

This is IV ofthe regression equation (2.8), using as instruments MUZ, the part ofZ

orthogonal to U. Schmidt also notes that '6. can be derived as IV ofthe augmented

equation

(2.20) yt = xt'Oo +ut'g +vt

using (Z, U) as instruments. Equation (2.20) is instructive because, speaking loosely, the

effect ofadding the variable n1 is to reduce the relevant variance fiom o: to 03 = 0'2 -
elu —

2‘1 2‘. This result is closely related to the result ofWooldridge (1993), who2-

as 2w an 118'

essentially considers the case xt = zt (in our notation).
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To be more precise about the sense in which 6 and of). dominate the simple IV

estimator, and to exhibit some other asymptotically efficient estimators, we make some

more explicit assumptions. To make the asymptotic theory as simple as possible, we will

make the following "high level" assumptions.

  

F-A)O( X7 AXE Axu-

. 1 A2" A22 0 0 .

(A2.1) phm :r—[X,Z,8,U]‘[X,Z,8,U] = A“ 0 of: Zen exrsts.

_A,,x 0 2m Emu

(A2.2) Axx , Au and 2‘.“ are nonsingular; AZ, is offull column rank.

(A2.3a) T‘1’2vec[Z'(s,U)]—> N[O,‘I’].

(A2.3b) ‘11 = zeAu.

These high-level assumptions are derivable from various sets ofmore basic

assumptions. For example, in the rational expectations context, define et = (a, ,u,‘)' and

let Q, be the information (sub)set Q, = {z,;z,_l,e,_,;z,_2,et_2; ...... }. Then (A2.1)-(A2.3)

follow from the assumptions that E(et |Q,) = 0, V(et IQ, ) = Z, and xt and z, are

covariance stationary.

Let 6 be the usual IV estimator using Z as instruments: 6 =(X'PZX)’1X'PZy.

Under (A2. l)-(A2.3) we have the standard result:

(2.21) mil—90)»N10.oZ(A..zA;z‘A.,.)“l;

this is consistent with the general GMM result AV(6) = (Dl'Cl’llD1 )’I presented earlier.

We now turn to the IGMM estimator 6 , Schmidt's estimator '6', and the following

additional estimators

(2.22A) 6 = (X'MUPZMUX)" X'MUPZMUy



13

(2.22B) 6 = (X' PZX)” X'My — Uh)

where A = £32m. In practice, (2.22B) will require a consistent estimate of A.

We wish to show that the estimators 6 , '6', 6 and 6 are asymptotically equivalent,

with asymptotic variance matrix oilu(szA;zlAzx)‘l, where as above

oiln = 0': — 28,12,121”. This is consistent with the result of Schmidt (1988, Appendix C.4)

for .9". Comparing to the asymptotic variance matrix of 6 in (2.21) above, the inequality

0;“ S 0‘: establishes the asymptotic efficiency of 6 , '6', 6 and 6 relative to 6.

LEMMA 2.1: plim T’1X'MUZ = plim T'1x'z = An

plim T‘lz'MUz = plim T‘1Z'Z = A,z

Proof: plim T‘1x' MUZ = plim [T‘1X'Z — T“x' U(T"1U'U)“T"U'Z]

= A,z —A,,,2;;-o = An,

and similarly for plim T'IZ'MUZ.

LEMMA 2.2: plim T'IX'PIMUZIX = plim T‘IX'MUPZMUX

= plim T'IX' PZMUX

= plim r‘x' P2X

= A,,A;,‘A,x

Proof. plim T’1X'PIMUZ,X = plim Tlx'MUzqtlim T"z'MUZ)“plim T‘IZ'MUX

= szAgl‘A,x using Lemma 2.1.

The proofs for plim T’1X'MUPZMUX and plim T'IX'PZMUX are similar.

LEMMA 2.3: plim T‘IX' lemme = plim T’IX'MUPZMUe

= plimT‘IX'PZMUa
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= plimT“x'PZ(y—- Uh)

= plimT'lX'PZs

= 0

Proof: plimT’IX'PlMUZIS = szAgzl-plimT'T MUS using Lemma 2.1.

But plim T‘IZ'MUs = plimr“z'e — plimT’IZ‘ U(plimT’1U'U)'lplim T'IU's

= 0—0-1232“, = 0

since plim T'IZ'a = O and plim T’IZ' U = O. The proofs for the other cases are similar.

Lemmas 2.2 and 2.3 imply that the estimators 6 , '6', B and 6 are consistent. For

example,

(2.23) plimBO=90+[AXZA;AZX]’1»O =90

using Lemmas 2.2 and 2.3; similar simple arguments apply to the other estimators. It is

interesting in Lemma 2.3 that the orthogonality of 8 with (MUZ) occurs because a is

orthogonal to Z Ed Z is orthogonal to U.

LEMMA 2.4: T'I’ZX'PIMUZIS,T‘1/2X'MUPZMU8,TWX'PZMUS and

T"“2X'Pz(y — U7») each converge in distribution to N[0,o:rquzA;zlAzx ].

Proof: We will give the prooffor T‘“2X' PlMoZIS . The other proofs are quite similar.

(2.24) T‘l/ZX'PIMUZIe = T’1/2X'MUZ(Z'MUZ)"Z'MU8

= (T’lx'MUZ)(T-‘z'MUZ)"T'mz'MUe

= AXZA2(T‘”2Z'MU8)+OP(1).

So we consider

T"’z' MUe = T‘1’2Z'[I—U(U'U)'l U']e
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= T‘mZ‘e—(T‘ml‘ U)(T“U' U)"(T‘1U'e)

———r'1’1z'(e 112,3,2,,)+o (l)

Combining expressions, we have

(2.25) T‘1’1x'PIMZIn: AA‘1'r'1’1z'(e— U2;u2ue)+o (1)

But

(2.26) T‘1’1z'(s - U232“)

= T‘mvec[Z'(e — U232“, )]

= T’mvec{Z'(s,U)|:_2__12 :|}

0.11118

={[1,——2 Z"]®IM}T"/2vec[Z'(s,U)].
w 1.111

But according to assumption (A2.3) above, T"mvec[Z‘ (e, U)] —) N[O,2 ®An].

Therefore

(2.27) T-1’1z'(e- 112,112us)—al~l(o,13)

where

(2.28) B={[l,—2,u2‘1]®IM}(£®AZZ ){[1,—2,,2;,1,]®1M)'

={[1 -2su2,1,,1]2[1, -22;,12Z,I}®A

= (as _ 2"'tarzt—rllrzur: )‘Azz= AzzO.slu

Using (2.27)-(2.28) in (2.25), we conclude

(2.29) T’WX'PlM218 —+ N[0,AHA; zz.A;,1ltt,,]—— N[0,oi‘quzA‘zzlAzx].
OeluA

THEOREM 2.1: JT(6 -90)a s/T(6.—90), JT(6 -60) and «Edi-90) each converge in

distribution to N[0,(r:hl (AXZAEAZXYl ].
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Proof. Ji(°t'1°— 90) = (T'IX'PIMUZIXYI T‘1’1x'PlMUZIe.

Then using Lemmas 2.2 and 2.4, fi(.9"-90) —) N[O, A], with

A = (A...A;.'A...)“1 -oit(A..A;;Aa)-(A..A;Aar1

= 0:111 (sz‘AE‘qzx).l -

The proofs for the other estimators are essentially identical. I

Thus the asymptotic variance matrix ofeach ofthe above estimators is

cit“ (p lim T'IX' P2X)'l. As noted above, this is less than the corresponding asymptotic

variance matrix for the ordinary IV estimator, 02(plim T'1X'PZX)'1, so long as 28“ at 0.

To achieve an efficiency gain, the additional variables 11 must be uncorrelated with the

instruments z an_d correlated with the errors a.

The estimator 6 in (2.22B) is infeasible because it depends on A = 2'12 We
“11 118'

can define a feasible version ofit, say

(2.30) (i = (X'PZX)‘1X'PZ(y - Ui),

where it is a consistent estimate of A. Specifically, it = (U'U)'1U'§ with é = y - X6,

where 6 is any consistent estimate of 60. It is easy to show that 6 is consistent and has

the same asymptotic distribution as 6 (and, therefore, the same asymptotic distribution as

6, '6 and 6 ).

2.4. Monte Carlo Results

In the previous section we have considered four improved IV (UV) or improved

GMM estimators. Each is consistent and asymptotically more efficient than the usual
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IV/GMM estimator 6 = (X'PZX)"1X' sz. The asymptotic efficiency gain for each ofthe

HV estimators over the usual IV estimator is ZNEQEW -(plim T"IX'PZXY‘, which

obviously depends on the strength ofthe correlation between 8 and u.

A natural question to ask is whether our IIV/IGMM estimators are still more

efficient than the usual IV or ordinary GMM estimator in finite samples. In order to

answer this question, we performed a Monte Carlo simulation on a very simple model. In

the simulation we considered our IIV estimators and also some estimators ofImbens

(1993) that are similar to GMM estimators. Our simulation plan is as follows. The

assumed regression model is:

(2.31) y, =90+e,, t= 1,2, ...... , T,

where 60 is a scalar parameter and a, is iid N(O,1). Thus we are estimating 60 = E(y, ).

Further we assume that we observe a random variable u,, which is also iid N(O,1). Let p

denote the correlation between a, and 11,. This simple model has also been considered by

Imbens (1993). An efficiency gain is possible here because the mean of u, is known to be

zero. Our DGP is therefore as follows:

(2.32A) y, = 1+8,,

(2323) “t = pet + l-p’nr,

where a, is iid N(O,l), n, is also iid N(O,1) and a, is independent of 11,. Thus 60 = 1.

Our results do not depend on this choice of 60, nor do they depend on the choice ofthe

variance of a, and 11, equal to one.

The following six estimators of 60 are considered ill our simulation:

(1) Sample mean (61): 61 = y. This is the GMM estimator based on E(y, —60) = 0.
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(2) Infeasible GMM (6,): 62 = argmin,{¢T(e)'C'1¢T(e)} = y — pii, where

_ _ l p e,

¢r(9)=(y-9, u)',andC=[ ]=V([ ]).

p 1 at

(3) Feasible GM (6,): 63 = argnnine {¢T(9)'6‘1¢T(9)) = y — on, where

-—- — A 1 T A A. e 6 . A _é

¢T(9)=(y-9, u)';C=¥Ze,e, =[.” .12]wrthe,=[yt 1]; and

1:1 C21 C22 11,

6: 6:21 / 6:22-

(4) 11v estimator (6,): 64 = (i'Mui)“i'Muy, where i a (1, l)'.,,,.

(5) Imbens's first estimator (65): 65 is the pseudo maximum likelihood (PML) estimator

defined by Imbens (1993) as the first part ofthe solution to

g(926) = 2?:1 p(Yt ,u,,6,5) = 0’

 where p(y,u,6,8) =(1y+—s:’ 1:511) and 5 is an artificial parameter.

(6) Imbens's third estimator (66): 66 is defined by Imbens (1993) as the first part ofthe

sohrtion to

g(e,6.tt) = 2.1.16(y.,u..e,6,n) = o.

where "156.11.935.10 = ((y-9)eXP(u -5u),u-eXP(11-8u),1- eXP(11-5u))'-

Notice that in our special case of a regression model with only intercept, some

estimators that are different in general become identical. The infeasible GMM estimator
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(6,) is the same as the infeasible IIV/IGMM estimator 6 = (x' sz)“l x' P,(y — uh) = y — pfi

defined in (2.22B) above. The feasible GMM estimator (63) is the same as the feasrhle

IIV/IGMM estimator 6 =(x'P,x)-1x'P,(y — ui.) defined in (2.30) above, where

71: 2,32,, = (U'U)’1[U'(y - 61)] = 6,, /6,,, provided that the initial consistent

estimator for e, is 6, in both cases. The three IIV/IGMM estimators

6 =(x'P,MUx)‘1x'P,MUy defined in (2.18), '6' = (x'nMU,,x)'1x'P,MU,,y defined in (2.19)

and 6 =(x'MUPzMUx)“1x'MUPzMUy defined in (2.22A) are the same and equal to

6, = (i'MUi)"i'MUy, when x = z = i = (l, m, l)'Tx,. The second estimator ofImbens

(1993), defined as the first part ofthe solution to g(6,8) = Z,=,p(y,,u,,6,6) = 0 with

p(y,u,6,8) = ((y -6)(1-5u), u(1— 8u))', is also the same as the first three HV/IGMM

estimators (equal to 6,). This leaves us with the six distinct estimators listed above.

6, = y is unbiased and var(6,) = UT. 6, = 7— on is unbiased and var(6,) =

(1 — p2 ) / T. For the remaining four estimators, finite sample properties are unknown, but

the estimators are consistent and their asymptotic variance is (l - p2 ) / T.

Our simulation results are based on 20,000 replications. The simulations were

performed in GAUSS 2.0 and used its random number generator.

Table 1 gives the means ofthe six distinct estimators, while Table 2 gives their

mean squared errors (MSE). In each case the estimators are nearly unbiased and MSE is

nearly the same as variance. For convenience we actually present MSE multiplied by

sample size (T), and the asymptotic variance of «E(6 —6) is given as the value for T = 00.

For the sample mean 6,, T-MSEl should equal 1.0 apart fiom sampling error for all

values ofT and p , and deviations from unity in the first cohrmrl labelled T-MSE1 give an

indication ofthe sample variability in the experiment. Similarly, for the infeasible GMM

estimator 6,, T-MSE2 should equal (1- p2) apart from sampling error for all T and p.

For the other estimators T-MSE should converge to (l — p2) for large T.

The result in Table 2 are in close agreement with the asymptotic theory, and the

agreement is very close for T .>_ 50. T-MSE is nearly equal to its asymptotic value
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(1— p2) for all estimators, all values of p, and all sample sizes except T = 25 and

occasionally T = 50. The IIV/IGMM estimators are better than the sample mean in all

cases except p =.l and T = 25 or T = 50; as expected, the size ofthe efliciency gain

depends on p.

For this simple model, at least, the difl‘erences among the various IIV/IGMM

estimators are quite small. As might be expected, the infeasible GMM estimator (6,) is

usually the best. The IIV estimator 64 (also equal to Imbens's second estimator) is

somewhat better than Imbens's first and third estimators (65 and 66). The feasible GMM

estimator (63) seems to be slightly better than the IIV estimator when p is small, and

slightly worse when p is larger. However, we repeat that the finite sample differences

among the asymptotically equivalent estimators are quite small The main message ofthe

simulations is that we can indeed improve on the usual IV estimator in finite samples, and

asymptotic theory is a reliable guide to the variability ofthese improved estimators. At

least this is so in the simple model we have considered.

2.5. Concluding Remarks

In this chapter we have shown how to improve on ordinary GMM (IV or ZSLS)

estimators, given observable extra variables which are uncorrelated with the instruments

but correlated with the error in the equation being estimated. The difference between the

improved ZSLS (IV) estimators and the ordinary ZSLS (IV) estimators is that the

projection matrix PZ in ordinary ZSLS (IV) is replaced by PIMUZI’ MUPZMU, or PZMU, so

that the 2SLS "fitted values" are constructed differently. For example, 6. uses MUZ, the

part ofZ orthogonal to U, as the regressors in the "first stage" regression, whereas the

ordinary 2SLS estimator 6 just uses Z.
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TABLE 1

Means ofAlternative Estimators

.1

i o. o. o. o. o. o.

25 .9998 .9998 .9992 .9992 .9992 .9992

50 .9996 .9996 .9994 .9994 .9995 .9994

100 .9999 1.0000 1.0001 1.0001 1.0001 1.0000

200 .9996 .9997 .9997 .9997 .9997 .9997

500 .9999 .9999 .9999 .9999 .9999 .9999

00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

25 .9998 .9998 .9993 .9993 .9942 .9993

50 .9996 .9996 .9995 .9995 .9996 .9995

100 .9999 1.0002 1.0002 1.0002 1.0003 1.0003

200 .9996 .9998 .9998 .9998 .9998 .9998

500 .9999 .9999 .9999 .9999 .9999 .9999

“3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

25 .9998 .9998 .9995 .9996 .9975 .9996

50 .9996 .9996 .9997 .9997 .9998 .9997

100 .9999 1.0003 1.0003 1.0004 1.0004 1.0004

200 .9996 1.0000 .9999 .9999 .9999 .9999

500 .9999 1.0000 1 .0000 1.0000 1 .0000 l .0000

00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

25 .9998 .9998 .9997 .9999 .9993 .9999

50 .9996 .9997 .9998 .9999 .9998 .9998

100 .9999 1.0004 1.0004 1.0004 1.0004 1.0004

200 .9996 1.0001 1.0000 1.0000 1.0000 1.0000

500 .9999 1.0000 1.0000 1.0000 1.0000 1.0000

00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

25 .9998 .9999 .9997 1.0000 1.0001 1.0000

50 .9996 .9999 .9999 1.0000 .9995 1.0000

100 .9999 1.0003 1.0003 1.0003 1.0003 1.0003

200 .9996 1.0001 1.0001 1.0001 1.0001 1.0001

500 .9999 1.0000 1.0000 1.0000 1.0000 1.0000

00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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TYUBLIEZ

Mean Square Errors ofAlternative Estimators

.9965

.9985

1.0073

‘L0008

L0120

L0000

.9965

.9985

1.0073

1.0008

L0120

1.0000

.9965

.9985

1.0073

1.0008

L0120

LOOOO

.9965

.9985

L0073

L0008
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L0000

.9965

.9985

1.0073

L0008

L0120

L0000

T-MSE, T-MSE,

.9970

.9945

.9953

.9888

L0003

.9900

.9350

.9249

.9111

.9051

.9163

.9100

.7831

.7699
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.7433

.7524

.7500

.5370

.5266

.5068

.5043

.5099
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.1983
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.1887

.1881

.1896

.1900

L0345

1.0123

L0047

.9937

L0027
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.9684

.9406

.9196
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.1900

L0447

L0147

1.0052
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.9775

.9432

.9198
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.8156

.7846

.7556
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.5580

.5365

.5130

.5068

.5108
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.2066
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.1911

.1891

.1901
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T-MSE, TMSE,

L0586

L0181

1,0063

.9940

1.0025

.9900

.9963

.9469

.9207

.9096

.9180

.9100

.8188

.7873

.7564

.7468

.7535

.7500

.5600

.5377

.5136

.5068

.5110

.5100

.2192

.2003

.1913

.1892

.1900

.1900

T-MSE6

L0470

L0157

L0055

.9938

1.0025

.9900

.9781

.9439

.9200

.9098

.9180

.9100

.8159

.7849

.7558

.7468

.7535

.7500

.5592

.5367

.5132

.5068
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.2069

.1998

.1912

.1890

.1900

.1900



CHAPTER3

IMPROVED GMM AND 3SLS ESTMATORS

FOR SYSTEM OF EQUATIONS

3.1. Introduction

In section 2.2 ofChapter 2 we defined the improved GMM (IGMM) estimator as

the GM estimator using moment conditions E[¢l(y: ,60) — €1,034), (y: )] = 0 and

weighting matrix C11 = (Cll — CHCQC21 )"1. In the definition, we intentionally did not

specify the functional forms of d), and (112 , nor did we require the observations

{o(y,‘,e) = (o,(y:,e)',o,(y;')' )', t = 1,2,...) to be conditionally homoskedastic or serially

uncorrelated so long as they satisfy suitable regularity conditions. In section 2.3 of

Chapter 2 we applied the general results ofIGMM estimator to the case ofthe linear

regression model. Assuming conditional homoskedasticity and serial uncorrelation, and

imposing the regularity conditions (A.2.1)-(A.2.3), we obtained an explicit formula for the

IGMM estimator and related it to other previously known estimators, such as the

estimator of Schmidt (1988).

In this chapter we will provide a similar analysis for a system oflinear equations.

We will first set up the model and make ' 'gh-level" assumptions ofregularity conditions.

Under these assumptions we derive an explicit formula for the IGMM estimator and

several other asymptotically equivalent estimators, and demonstrate the efficiency ofthese

estimators relative to the usual three-stage least sqares (3SLS) estimator.

23
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3.2. Model and Notation

The model considered in this chaper is

(3.1) ytg = x,,,'60g +8,8, g =1, 2, ...... , G; t =1, 2, ...... , T,

where yt8 is the dependent variable ofequation g at observation t, x,g is the R, X] vector

ofexplanatory variables ofequation g at observation t, 90,, is the K8 x1 unknown

parameter vector ofequation g, and at, is the model disturbance ofequation g at

observation t. We assume that in general cov(x,g,s,g) at O for g = 1, 2, ..., G.

We define the following notation:

ytl x11. 91 811

(3.2A) y,= 5 ,X,= ,6: 3 ,8,= 3 ,t=1,2,...,T;

 

YIg xlg

(3.2B) ya) = : , X“) =

YTg ng.

Y(l) X0) 8(1)

(3.2C) ytt- = E , Xe = .'. , as = E ,

y(G) X(G) 8(G)

a,‘

(3.2D) 8 = ‘

sT'

Then (3.1) can be rewritten as
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(3.3A) y, = x,9, +e,, t = 1, 2, ...... , T,

01' as

(3.3B) y. = x.e, +e.

3.3. Improved GMM Estimators

Suppose that we have available an M x 1 vector ofinstruments z, satisfying the

moment conditions E(e, 8) z,) = O, with E[(IG ® 2, )X,] having full column rank.

Suppose that we also have available an L x 1 vector of observable variables 11, satisfying

E(u, ® z,) = 0 and E(u,e,') = 2“, ¢ 0. Then the additional moment conditions

E(u, ® 2,) = 0 will help us to improve the efficiency ofestimation of 60. Using the

notation ofChapter 2, we have

(My: 13)] _ [(16 8’ Zr )(yt - X60]
3.4 La: , _

( ) "y ) [tum (heme.

where the observed data vectoris y:=(yr';Xr,',...,x,G';u,';z,1)'. Then

111(9)]=12o(yt,9)=[
on

r106 e Z'Xy. — Xe)

T t=l(3'5) ¢r(9) =[ T‘1(IL ®Z')u.

where Z=(z,,...,zr)' and u. =vec(U)E(u(,)',...,u(L)‘)' with U=(u,,...,uT)'. Then

_ C11 C12 _ . . ,

(36A) C‘lca €22}ng Baronet-(9.11
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T—>oo

= m E r10, ®Z')8.8.'(IG ®Z) T"(IG ®Z')8..ua'(1L ®Z)

T"(IL o'oz')n.e..'(1G 8 Z) T“(IL ® Z)u..u.'(1L ® Z)

(3.68) 1),, = 544$? = —%(1G ®Z')X. .

Substituting (3.5) and (3.6) into the first order condition (2.7A) in Chapter 2 for

the IGMM estimator 6 , and replacing C“, C12 and 0;,1 by consistent estimates C", C,,

and C; respectively, we arrive at:

(3.7) [x.'(1G ®Z)]C“[(IG ®Z')(y. — x.6)- 6,,6;,1(lL ®Z')u...] = 0.

Solving for 6 , we obtain

(3.8) 6 = [X.'(IG o3>Z)611(IG ®Z')X.]" x.'(lG ®Z)C”

{(1. e2'1y. - 6.26310. ®Z')u.1.

In order to simplify the above expression further, we need to put more structure on

C. This is possible under the assumption ofconditional homoskedasticity and

lmcorrelatedness. Suppose that conditional on Q, = {z, ;e,_, ,u,_1 ,z,_, ;...} , the (s,',u,')'

are mutually uncorrelated and that:

2.
39 V 81 _ 2&8 2w

(. ) {JIM—[2 2 ]
“8 uu
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Then C = £®E(z,z,') and C = E®T‘1Z'Z is a consistent estimate ofC, where E is any

consistent estimate of E. For the moment we will treat 2 as known, for simplicity.

Therefore we have

(3.10A) 611 = 2.. ®(T"Z'Z)'l with 288 = (2,, — 2,,2;,1,2,,,)-1

(3.1013) 6,, = 2,,,, ®T"Z‘Z

(310(3) 6;; = 2,1,1, ®(T"‘Z'Z)"

(3.10D) 6,,63 = 2,2,3, 81 1M.

Substituting (3.10A) and (3. 10D) into (3.8), we get

(3.11) 6 = [x.'(2“ ®Pz)X.]" x.'[2“ ®Z(Z'Z)"1]

{(IG @2')Y* ..(Zsuzl-Rll ® IM )(IL @Z')u.j.

Noticing that

(3.12) (2,,2;,1, ® 1,, )(1L ®Z')u. =(2,,2;,1, ®Z')vec(U)

= vec(z'U2,‘,,1,2,,)

= (1G 8z'U)vec(2;,1,2,, )

= (IG 82')(IG ®U)ve0(2{;l£aa)a

and substituting into (3.11), we obtain an explicit formula for the IGMM estimator 6:

(3.13) 6 = [x.'(2'i ®PZ)X.]‘1X.'(E“ 8P,)[y. -(lG sum

where A = vec(Eme) a (A,',A,',-~-,AG')'. Thus, for i = 1, 2, ..., G, A, = 2,1,1, times the

ith column of 2“,; equivalently, A, = (p1imT’1U'U)‘1plimT'lU's(,).
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We can compare the IGMM estimator in (3.13) with the usual GM (3SLS)

estimator

(3.14) 6 = [x.'(2;,1 8P,)x.]‘1x.'(2;,1 8P,)y.

based on moment conditions E[¢t,(y: ,60)] = 0. We see that the only difference between

the 3SLS estimator and the IGMM estimator is that 2;: and y. in (3.14) are replaced by

2" and [ya - (1G 18 U))t] respectively. It is interesting to notice that

[Ye — (16 ® U)},] = [(y(,) — UA)’ ,:--,(y(G) - UA)‘ ]' is just a vector of residuals from the

linear projection of ya) onto U. Thus the IGMM estimator 6 in (3.13) can also be

regarded as a purged GMM (PGMM) estimator.

We will now consider a specific form for a consistent estimate of 1.. Define

A

(3.15) 5. (h,',~--,5.G')'

with it, =(T'1U'U)‘1T"U'(y(g) — X(g)6g), where 6g is any consistent estimate of 68, for

g =1,..., G. Then

(U'U)_1U'(Y(l) - x(1)é(l) )

(3.16) (1G 8 0))". = (1G 8 U) .

(U.U)_1U.(Y(G) ’ X((i)9(o))

= (I. e was ®(U'U)"U')(ya — x6)

:08 ®PUXY--Xté)

where 6 = (6,',...,6G')'. Substituting the above expression into (3.13), we get

(3.17) 6 =lx.'(2°‘ elem-8:12“ eerie—(Is ePa)(y.-x.é)l.
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This expression still depends on 2“, and we will discuss its consistent estimation later.

While (3.17) is defined for any consistent estimate 6, we may as well consider the

special case that 6 = 6. Then (3.17) implies

(3.18) [8'02“ mantle = xstzs many. -(I. ePUXy. - x611.

Solving for 6 , we obtain

(3.19) 6 =[x.'(2*=1 ®PZMU)X.]" x.'(2°i ®PZMU )y..

This is an obvious generalization ofthe single-equation IGMM estimator 6 ofChapter 2.

In order to be more precise about the sense in which the IGMM estimator 6

dominates the usual GMM (3SLS) estimator 6, and to introduce some other equally

asymptotically eflicient estimators, we make some more explicit assumptions. To make

the asymptotics as simple as possible, we will make the following "high level"

assumptions:

X0).

. 1X '

(A3.l) phm-T— (2‘31 [x,,, xm, z e U]

8|

_ U. A  



  

PAll A16 A12 A18 Alu 1

= AG] ' A66 A62 A68 AGu -
Azl . A26 Au 0 0 exrsts.

A81 ° A86 0 288 281.1

_Au1 ° AuG 0 2118 2‘ou

288 2w 0

(A32) All, 2,“, and 2 = [Z 2 :l are nonsmgular; Azg hasfull column rank

for g =1, 2, ..., G.

(A3 3) 1 (1 ®Z‘) 8‘ —>N(0 28A )
' fl G+L ll. 9 22 '

As was the case in Chapter 2, these high-level assumptions are derivable from

various sets ofmore basic assumptions. For example, let e, = (8,',u, ' )' and

Q, = {z,;z,_1 ,e,_,;z,_2 ,e,_,; ...... } ; then (A3.1)-(A3.3) follow from the assumptions that

E(e,|Q, ) = O, V(e,|Q,) = )2, and X, and z, are covariance stationary.

It is well known that under (A3. 1)-(A3.3), the usual GMM (3SLS) estimator 6

defined in (3.14) has the following asymptotic variance:

" - 1 . -1 1—1 . —1 -l —1
(3.20) AV[Ji(e-0,)]=[phm¥x. (2,, ®PZ)X., = [A (2,, 8A,, )A]

A

where A = plim%(1G ®Z')X. =

21

Anti

We now wish to show that several estimators are asymptotically equally efficient,

and that they are efficient relative to the 3SLS estimator. One such estimator is the

IGMM estimator 6 defined in (3.19). The other such estimator is the PGMM estimator
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defined in (3.13) with A known. In order to distinguish the PGMM estimator from the

IGMM estimator, we now denote the PGMM estimator by 6. We will also consider the

following two additional estimators

(3-21A) .9. = [Xa'Ole‘ ® PIMpzl)an_1 Xe'aw ® PlMuzl )Yt

(3.2113) 6=[x.'(2°18M P M )X.]'1X.'(2“®M P M )y..
U Z U U Z U

We will show that 6 , 6 , '6' and 6 are asymptotically equivalent, with asymptotic variance

matrix equal to

(3.22) [plim%X.'(£as ®PZ)X.]“ =[A'(2'1a ®A;,‘)A]‘1 a B“ .

Comparing to the asymptotic variance matrix of 6 in (3.20) above, the fact that the matrix

{[A'(2;,1 ®A;z‘ )A]" — [A'(2“ 8A,,1 )A]'1) is positive semidefinite (shown later in

Theorem 3.3) establishes the asymptotic efficiency of 6 , 6 , .6. and 6 relative to 6. We

now turn to a rigorous proof ofthese results.

 LEMMA 3.1: plim T‘1z'MUx,,, = phm'r‘1z'x,,, = A,,, for g = 1, 2, G.

plimT'IZ'MUZ = plimT“1z'z = A,z

Proof: The proofis similar to the proof ofLemma 2.1 ofChapter 2. For example,

plim T"1z'M,,x,,, = plim[r-1z'x,,, -(r‘1z'U)(r"1U'U)'1(T‘1U'x,,,)1

= A, -O-2"A =A,,,
uuug

using (A3. 1) and (A32).

LEMMA 3.2: plim T'1x,,,,' PZMUX“, = plimT’IXm' P[Mnle(8)
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- -l l

__ - -1 r

_ phmT xm sz

= A,,A;,1A,,

(a)

forh, g =1, 2, ..., G.

Proof. The proofis essentially the same as the proofofLemma 2.2 ofChapter 2. For

example,

plim T‘1x,,,, 'PZMUX,,, = plim[r‘1x(,,,'z](r“1z'2)‘1[T‘1z'MUx,,,]

=A,,,A;1A,g

using (A31), (A32) and Lemma 3.1.

LEMMA 3.3: plim[T'1X.'(Z“ 8 P,MU )x.] = plim[r’1x.'(2i*= 8 Pmuz, )x.]

= plim[T‘1X.'(Z“ 8M,P,MU)X.]

= plim[r-1x.'(2“ 8P,)x.]

= A12“ 8A;)A a B,

and B isnonsingular.

Proof: Let 288 =(611')G,G. Then

phm[T'1x.'(2i‘ 8 PIMUZ, )X,]

I 11 16

x0) 0 PIMUZI G PIMUZJ X0)
0 —-1 O C O

=phmT

Gl GG

X(G). ‘3 PIMUZI ‘7 PIMUZJ X(G)

x '611P x x '61GP x
(1) 1Mu21 <1) (i) [Moll (G)

O -1 O O C

=phmT ' °

G1 I GG

xtG)'° PlMuZlXU) X(G)O PlMule(G)
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OllAlen-zlAzl GIGAlegAnG

= E E 5 (usingLemma3.2)

OGIAGzAgAzl CGGAGzAgAnG

A,, 611A;,1 61%;,1 A,,

AGz (rGlAg,1 060A; A,G

=A’(Z“®A;)A

using the definition ofA in (3.20). The probability limits for the other cases involve

essentially the same arguments. Finally, B = AXE“ ®A;z1)A is nonsingular bacause 2‘. ,

Em, and A2, are nonsingular, which implies 2“ ®A;,l nonsingular, and because A has fill]

column rank (see (A3.2)).

LEMMA 3.4: plim T'1x(,,,'P,MUe,,) = plimT"1X(h) 'P,MUZ,e,,,

= plimT‘1x,,,,'MUP,M,,e,,)

= phmT'Xm'P,(e,,, - Uh)

= plimT‘1x,,,,'Pze,,,

= 0

where h, g =1, 2, ..., G.

Proof. The proofis similar to the proofofLemma 2.3 ofChapter 2. For example,

plim T“X(,,) 'MUPZMUe,,, = plim[T’1X(h)'MUZ](T"'Z'Z)" [T'1z'MUe,,,]

= A,, ;,1-plimT‘1z'MUe,,,

using Lemma 3.1. But

plim T‘1z'MUe(,, = plim'r'1z'e,,) - plim('r‘1z'U)(T"1U'U)‘1[T‘1U'e,,, ]

= 0—0-2,;,1,2,,,,, = 0

using (A3. 1) and (A32), where 2“,, is the g-th column of 2“,. Therefore
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p lim T‘1x,,,,' MUPZMUe,,, = A,,,A;,1 -0 = 0.

The proofs for the other cases are similar.

LEMMA 3.5: plim[T’1X.'(X“ 8P,MU )e.)

= plim[T-1x.'(>:“ ® P[M,,Z])891

= phm[r‘1x.'(2“ 8 MUPZMU)8.]

= plim{T"1x.'(2“ 8 PZ )[e. -(1G 8U)7.]}

= plim[r'1x.'(2;,1 8P,)e.]

= 0

Proof. Let 2"" = (oi’l)GxG as above. Then

plim[r'1x.'(2** 811%,, )e.]

11 16

xtn' 0 PIMUZI 0 PIMUZI 8(1)
. -1 . . . .

=phmT

GI GG ‘

xtel' 5 PIMUZ1 0 PIMUZI 8(9)

G 1 lg

Zs=lx(1) 0' PiMUZ18(8)

o -1 e

=phmT -

G I Gs

Zs=lx(G) 1’ Filament)

G 1 ° 1 r

EPIC gth'r x0) PIMUZIEm)

G G3 ' -1

28=10 PMT X(9)'P1Mo213(s)

23:1618 '0

= 5 (using Lemma 3.4)

26 10,63 .0

g:
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= 0.

The proofs for the other cases are similar.

THEOREM 3.1: The improved GMM estimators 6 , 6 , '6. and 6 are consistent.

Proof: We will give the prooffor 6. The other proofs are quite similar.

plim6 = plim[x.'(2'as 8 P,M,,)X.]'1 x.'(2“ 8P,M,,)y.

= plim[x.'(2“ 8P,M,,)X.]'1x.'(21° 8P,M,,)(x..6O +e.)

= e, +[plimx.'(2' ®PZMU)X.]'1[PlimX.'(2“ 8P,M,,)e.]

= 0, + B" -0 (using Lemmas 3.3 and 3.5)

= 0,.

LEMMA 3.6: T190, ®Z'MU)8. -> N[O, (2...)-1 8A,]

where 2“ = (2,, - 2,2;2mr1.

Proof: T‘1’1z'MUe,,, = T“1’1z'e,,, - (T-1’1z'U)(T‘1U' U)“ (T-1U'e,,, )

= T-1’1Ze,,, - (T'1’1z'U)h, +o,(1)

= T""2Z'(8(g) — UA8)+op(l)

for g =1, 2, ..., G, where A, = 2,1,1, -E(u,e,g). Then

T—1’2z' MUS“)

T‘1’1(IG ®Z'MU)8. = I

r'1’1z'MUe,G,

T'mZ'(8(,) — U711)

= 5 +0p (1)



36

= "1‘1”(1, 8z')[e. —(1G ®UE,‘,,1,)vec(2,,8)]+op(l)

(using the definition of A8 = 2,1,1, -E(u,8,,,))

= T'1’1 (1G 8 Z')[vec(8) -vec(U2;,§2,,, )] + op (l)

= T"1’2(1, 8 Z')vec[8 - U2;,1,2,,,]+ op (1)

= T'mvec[Z'(8 — U2;,1,2,, )] +op (1)

= T"”2vec{Z'(8,U)[_21_?z ]} + 0p (1)

11111.18

= T1” (11.. ,—2..£;.1.lein )veo12'(e.U)l +o, (1)

=T‘1”([Ie.—£...2‘11®IM)(IG..el)veo(e.U)

+o,,(1)

= (11. ,—2..2;.11®IM ){T‘1’1tiou e Z')[:‘ ]}
#

+op(1).

8e

But according to assumption (A33) above, T‘”2 (IG+L 81 Z')[ ]-> N(O, 2 ®A,z ).

6

Therefore

T‘1’2(IG ® Z'M,J )8. —> N(O, W)

w=(11..,—2..2;.11®Iu)(2®A..)([_2{?2 191M)

=03... -E.a2.12a.)®Azz

= (2"1'1)‘l 8A,,

LEMMA 3.7: T‘1’1x.'(2“ 8 P,M,,)e., T‘1’2X.'(2“ 8 11mm»...

T’mX.'(Z“ <8MUPZMU )8. and T'mX.'(£“ ® PZ )[8. —(IG ® U)A] each converge in

distribution to l~l[o,A'(2as 8A;,1)A] with A = diag(A,,, ...... , A,,,) as defined in (3.20).
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Proof. We give the prooffor T‘WX.'(E“ ®MUPZMU )8.. The proofs for the other

cases are quite similar.

T'1’1x.'(21‘ 8 MUPZMU )e.

X(,)' 611MUPZMU 61‘1MUPZMU em

=T'"2 ' E I E E

X(G)' OGIMUpzMU “° OGGMUpzMU 8(G)

G 1

___ T—1/2 E

G r G

Zs=1X(G) 5 BMUPZM06®

1g -l/2

3:10" T x,,)'MUP,Mue,,,

G -1/2

86-,6 8T x,G,'MUP,MUe,,,

11-,6 68,,(T‘1xm,'MZ)(T"Z'Z)"[T"’ZZ'MUS(8)]

lg —1 -1/2

+o,,(1) (using Lemma 3.1)

[:z§-,618(T*1x,,,'MUZ)(T‘1z'Z)‘1[T‘1’12'Mue,,,]

L:21-,11-,6GBAG,A;,1T'1’1z'MUe,,)

‘Alz’qul

(2“ 81M )[T‘1’1(lG 8z'MU)e.]+op (1)

AGzA-z-zi

= A'(1G 8A,,1 (2“ ®IM)[T“’2(IG 8z'MU)e.]+o,(1)

= A'(2°‘ ®A;,‘)[T‘"2(IG ®Z'MU)8..]+0,,(1).
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But according to Lemma 3.6: T‘1/2(IG ®Z'MU)8. —> N[O, (2111)”1 8A,,]. Then

T‘1’2x.'(2“ ®MUPZMU)8. -) N[O, V]

where

v = A12“ 8A; )[(2* )-1 8A,,1[A'(2i‘ 8A; )]'= A'(2“ @AZ )A

which is the same as the matrix B defined ill (3.22) above.

THEOREM 3.2: JT(6 —60), JT(6 —60), «fl—"(6660) and JT(6 —60) each converge in

distribution to N(O, 13-1) with B = A12“ 8A;)A = plimT’IX.'(2“ ®PZ)X..

Proof: We will give the prooffor JT(6 — 60). The proofs for the other cases are

essentially identical.

JT(6 -e,)=[T‘1x.'(2°‘ 8 PZMU )x.]‘l T‘1’1x.'(2* 8 PZMU )e.

= B‘1-T‘1’2X.'(2“ 8 P,M,,)e. +op (1)

using Lemma 3.3. But according to Lemma 3.7:

T‘1’2X.'(2“ 8 PZMU )e. —> N(O, 13).

Therefore

JT(6—00)-)N(O, A)

A = B“B(B’1)'=(B")'= B“.

THEOREM 3.3: The improved GMM estimators: 6 , 6 , .6. and 6 are asymptotically 

efficient relative to the 3SLS estimator 6. They are strictly more efficient than the 3SLS

estimator if 2,, at 0.

Proof: From Theorem 3.2, the asymptotic variance matrix ofeach ofthe IGMM

estimators is B“1 = [A'(2“ ®A;zl )A]'1. The asymptotic variance matrix ofthe 3SLS

estimator is Q’1 = [A'(§.‘.,;,,1 (8 A; )A]'l. We wish to show that (Q'1 — B") is positive
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semidefinite (psd), and positive definite (pd) when 2,, at O. This is equivalent to showing

that (B - Q) ispsd, and pd when 2,, at 0. But

B—Q=A'[(E“ — 2;,1 )8A;,1]A.

When 2,, = 0, 25‘ = 2;: and B - Q = 0; there is no efficiency gain for IGMM relative to

3SLS. But when 2,, at 0, 2“ - 2;: ispd;A;z1 ispd; this implies that (22';8 — 23;,,‘)®A”ul

is pd; and B - Q is pd because (2“ - 2;)8A; is pd and A has full cohlmn rank.

Theorem 3.3 is best understood by the intuitive explanation ofthe following

theorem

THEOREM 3.4: Consider the augmented system

(3.23) y,g = x,g'60g +u,'Ag +v,g, g =1, 2, ..., G; t = l, 2, ..., T,

where A, = [E(u,u,')]’l E(u,8,g) is the linear projection coefficient of 8,1, onto u,, and

v,g = 8,8 - u, ' A3 is the error in the linear projection. Define 6m as the estimator of

60 = (001',...,6,,G')' when the system (3.23) is estimated by 3SLS, using (z,',u,')' as

instruments. Then 6m is numerically the same as the IGMM estimator 6. defined in

(3.21A) above.

Proof: Let v, = (v,,,...,v,G )'. Then

811 "ut'll ;‘l' E(Stlut ')[E(ut.ut )1"

v,= 5 =8,- 5 u,=8,- :. u,

816 ’ut.7‘G AG. E(StGut')[E(ut 'ut ”—1
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= e, — 2,,2;,,1,u,.

Therefore

V(v,)=2,,-2 2‘12 =(2i‘)-1.
“W118

As before, equation (3.23) can be rewritten as

9
(3.24) y. = x.e, +(lG 8 U)A+v. = [x.,(IG 8U)][ flaw. ,

where A = (A,',...,AG')' and V(v.) = (2%)-1 ®IT.

Applying 3SLS formula to (3.24) using (Z, U) as instruments, we obtain:

é3SLS _ x‘. as —l

(3.25) [13.314106 My}: eiiz,u,)lx.,as 9U»)

x.' ,,
. (IG®U)' (2 @Plzmblc.

Because P1211] = PU +PIMUZ] and PIZJJIU = U, (3.25) becomes

(2“®U')X. X“®U'UAasrs

(3.25) [6m ] = [x4281 8(PU +P,,,UZ, )]x. x.'(2“ 8U)]‘

.1 X512“ ®(PU +P[M,,z] )1)"

(2“ 8U')y. '

Using the partitioned inverse rule, we get

(3.26) 6,8,, = E"~X..'[21"®(PU +P,MUZ, )]y. — E‘1BD‘1-(2i‘ 8U')y.



41

where B = x.'(2as 80), D = 2‘11 ®U'U, and E = A—BD’IC with

A = x42“ 8(PU +P,MU,,)]X. and c = (2“ 8U')x..

But

(3.27) E = A — BD'IC

= x.'[2“ 8(PU +PIMUZ] )]x.

-x.'(2as ®U)(£“ 8U'U)‘1(2i‘ 8U')x.

= X362“ ®(Pn +P[M,,Z] )1-(2“ ®PU)}X*

= x.'(2“ ®1’[MUZ,)X. ,

and

(3.28) BD"1 = X.'(2“ 8U)(2i‘ ®U'U)“ = x..'[IG ®U(U'U)“].

Substituting (3.27) and (3.28) into (3.26), we obtain:

(3.30) 6,8,, = [x.'(2“ 811W, )x.1’1

-{x.'[2“ ®(Pn +P[MUZ] )lya - Xe'llo ®U(U'U)'l 1(2"8 69 U')ya}

= [x.'(2“ ®P[M,,z] )x.]‘1x.'{[2‘*‘ ®(Pn +P[M,,z] )1-(2“ ® PU)}Y*

= [x.'(2'i's 811W, )x.]“1 x.'(2“ 811mg)»

=6.

Equation (3.23) is instructive because, speaking loosely, the effect ofadding the

variable 11, is to reduce the relevant variance of 8, from V(a,) = 2,, to

V(8, lu, ) = 28,, - 2 2“2 Obviously, this result is a direct extension ofthe similar
8111111118.

result of Schmidt (1986), and is also closely related to the result ofWooldridge (1993).
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2 2

Our discussion so far has assumed that the covariance matrix 2 = [2m 8"] is

118

known. Since we generally do not know 2 , the estimators 6 , 6 , .6. and 6 are infeasible.

However we can define feasible versions ofthem, say

(3.31A) 6,. = [x.‘(2'as 8 P,M,,)x..]‘1x.'(2as ®PZMU)y.

(3.318) 6,. = [x.'(2“ 8P,)x.]‘1x.'(2as 8P,)[y. —(1G 8 U)A]

(3.31C) '6'F =[x.'(21*= 811MHz, )x.]'1 x.'(2"=a 811mm)»

(3.31D) 6, = [)(.'(2118 8MUPZMU)X.]‘1X.'(2“ 8MUPZMU)y.

where E“ and A are consistent estimates of 2‘.“ and A respectively. Specifically,

2“ = (E - 28,232,, )‘1 and A = vec(EEEm) with 2,, = T‘lé'é, 2,,'= 28,, = T'E'U

and 2,, = T-1U'U, where 6 = (€,,---,€,)'= (y, — x,6, yT —x,6)' with 6 being any

consistent estimate of 60; for example, the usual ZSLS estimator. Then it is not difficult to

show that 61., 61., 6F and 6F have the same asymptotic distribution as 6 , 6, '6' and 6.

3.4. Concluding Remarks

This chapter provided some improved versions of3SLS, and extended the results

in Chapter 2 on improved versions ofIV (ZSLS). The improved 3SLS estimators differ

fiom the usual 3SLS estimator in two ways. The first difl‘erence is that the projection

matrix PZ in 3SLS is replaced by PZMU, MUPZMU, or PIMUZI’ so that the 3SLS "fitted

values" are constructed differently. For example, '6' uses MUZ, the part ofZ orthogonal

to U, as the regressors in the "first stage" regressions, whereas the 3SLS estimator 6 just

uses Z. This is exactly the same as the difference between the improved and ordinary
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2SLS estimators in Chapter 2. However, there is a second difference between the usual

and improved 3SLS estimators that did not arise in the case of2SLS. Where 3SLS

estimator uses 2;, the improved 3SLS estimator uses 2“ = (2,, - 28,232,, )’1. Thus

3SLS estimator uses the inverse of V(8, ), while the improved 3SLS estimtors use the

inverse of V(8, lu, ), in the final "stage" of estimation.



CHAPTER4

INIPROVED GMM ESTIMATORS

FOR SYSTEM OF NONLINEAR EQUATIONS

4.1. Introduction

In this chapter we will extend the results ofChapter 3 to the case of a system of

nonlinear equations. The structure ofthe chapter is as follows. In the next section, we

will first define several improved GMM (IGMM) estimators, and then show that these

IGMM estimators are asymptotically equally eflicient and eflicient relative to the usual

GMM estimator. The final section gives some concluding remarks.

4.2. Improved GMM Estimators

The model considered in this chaper is

(4.1) f(y:8,60g) = 8,8, g =1, 2, ..., G; t =1, 2, ..., T,

with y; = (y,g,Y,g',x,8' )', where yt8 is the dependent variable ofequation g at

observation t, Ytg is the t"1 observation on the Mg x 1 vector ofother endogenous

variables included in equation g, xt8 is the N8 x 1 vector ofexogenous variables of

equation g at observation t, 608 is the K8 x1 unknown parameter vector ofequation g,

and at, is the model disturbance of equation g at observation t.

44
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Suppose that we have available an M x 1 vector ofinstruments z, satisfying the

moment conditions E[(lG 8 z, )(e,,,...,etG )'1 = 0, and E[z,af(y:,,6,,)/60,'] has full

column rank, g = 1, 2, ..., G. Then the usual GMM estimation of(60,',...,606')' ill (4.1)

is feasible. However, suppose that we also have available an L x1 vector of observable

variables 11, satisfying E[(IL ® 2, )u,] = O and E(u,8,') = 2us at 0. Then the additional

moment conditions E[(IL ® z, )u,] = 0 will help us to improve the efficiency ofthe

estimation of(60,',...,606')'.

We define the following notation:

91

(42A) 6: 5 ;

0G

Yil “3’11 :91) 311

(4.28) y,‘= E , f(y,‘,e)= E , e, = 5 , t= l, ...,T;

311.6 “Yio 966 1' 8to

YIg f(YIgaeg) 813

(4.2C) y(8) = E , f(8)(y(g),68)= 5 , 8(8): 5 , g= 1, ..., G;

YTg f(YTgreg) 8T3 '

8: , U: : , Z: 3

ST' uT' zT'

f‘(1)(Y(ml)o91) 8(1)

(4.2D) f.(6)= E , u..=vec(U), 86=V60(8)= E ;

f(G) ()’(o) :96) 8(o)



 

8f ‘ ,0

(4.2E) l),(8,) = “11%” 11), l, ., G;

608'

D1(91)

(4.2F) D(6) = ,

06(96)

(4.2G) P,( = X(X'X)“ x', M,( = I— Px for any matrix x with full column rank.

Then (4.1) can be rewritten as

(43A) f(y.’,90) = 8., t = l, 2, T,

01‘

(4.38) f,,,(y;,,,8,,) = 8(8), g = 1, 2, G.

Using the notation ofChapter 2, we have

. ¢1(Y:’e) (IG®zt)f(Y:’e)
4.4 ,,e = , = ,

( ) My ) [4.0.11 [ (1.92mi. 1

Then

_ 96(9) ___1_T . _ T"(IG®Z')f.(6)

(4-5) ¢r(9)-[ 4m :I-Tt>=21¢(yt,9)-[ T_,(IL®Z,)u‘ ]

Therefore

(46A) c= C“ C” =1im1T-Bo (9)1» (9 )'1
. C21 C22 T"°° T 0 T O



47

T—eoo

- Hm E T“(Io ®Z‘)etet'(lo <8 Z) T‘1(IG 82')e..u..'(1L 82)

T_1(IL ®Z')u.8.'(lG ® Z) T‘1(IL ® Z')u,,u,,'(1L ® 2)

_ acute) = 1 6MB) _ 1
(4.68) 1),, _ 69, $0,, 82')—-—(367 - TOG ®Z')D(6).

According to the general results ofChapter 2, we know that the augmented GMM

(AGMM) estimator (6 ) using moment conditions E{(IG+L <8 2, )[f(y: ,60)' ,u,']'} = 0 and

weighting matrix C“ is numerically equivalent to the IGMM estimator (6 ) using the

moment conditions E[(IG ® 2, )f(y,' ,60 ) - CuC; (IL ® 2, )u,] = 0 and weighting

matrix 611 = (6,, — 6,,6;;6,, )'1, since both 6 and 6 satisfy the same first order

condition (2.7A) ill Chapter 2.

Under suitable regularity conditions, standard GMM results also tell us that both 6

and 6 are consistent. For discussions ofregularity conditions, see, e.g., Hansen (1982),

Gallant and White (1988) or Amemiya (1985).

Substituting (4.5) and (4.6) into the first order condition (2.7A) in Chapter 2 for

the IGMM estimator 6 , and replacing C“, C12 and C3; by consistent estimates C”, 612

and 6;,1 respectively, we arrive at:

(4.7) 8(6)'(1G 8 2)611[(lG 8 Z')f.(6) — 6,,6;,1(1L 8 z')u.] = 0.

In order to simplify (4.7) further, we need to put more structure on C (or C). To

do so, and to allow us to investigate the asymptotic properties ofour estimators, we make

the following "high-level" assumptions:



(A4. 1)

(A42)

(A43)

(4.8A)
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PD1(901)'

l D 6 '

phm; 6‘21“) [Drteah Date...) 2 e U]

8|

_ U. .1

PAH A16 A12 A18 Aluw

= AG] A66 A62 A68 AGu '

All . A29 Au 0 0 670818.

A81 ' A86 0 2% 2w

__Aul AuG 0 2us: zuuj 

Z 2

A2,, 2,,“ and 2 = [2“ 2“] are nonsingular; AZ, has full column rank

118 1111

for g =1, 2, ..., G.

1 .
‘/—T-(lG+L ®Z‘)[:] —> N(O, 28A,,).

C= 2®E(z,z,')= 2®AE

Note that (A43), and hence (4.8A), implicitly reflect an assumption ofno conditional

heteroskedasticity. Furthermore,

(4.88) 6
6,, 6,, 2,,8T'1z'z 2,,8T‘12'2
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is a consistent estimate ofC, where i is any consistent estimate of 2. For the moment

we will treat 2‘. as known, for simplicity. Therefore we have

(4.9A) (“3“ = (Cl, —é,,é;§é,, )“ = z68 ®(T"‘Z'Z)“

with )3“ = (2,, - 28,23,sz

(4.9B) 6126;; = 2&2; 09111-

Substituting (4.9A) and (4.9B) into (4.7), we get

(4.10) D(é)'(1G ®Z)[E“ ®(T“Z'Z)“]~

{(16 @2')f.(é)—(2w2;3, «81,, )(IL ®Z')u.] = o.

Noticing that

(4.11) (2&2; 49 1M )(IL @2011. = (2&2; ®Z')vec(U)

= vec(Z' US$21“)

=(1G <8 z'U)vec(>:;3,2u,)

= (IG ®Z‘)(IG ®U)vec(2;},2,,),

and substituting this expression into (4.10), we get

(4.12) D(é)'(1G azure <2a>(z'2)"1 1(1G @Z')[f.(é) —(1G 49 um = 0

or

(4.13) D(5)'(2“ ®PZ)[f.(é)—(IG ®U)A]=O

where A = vec(BfiZm) a (Al',kz',---,AG')'. Thus, fori= l, 2, ..., G, Xi = 2;; times the

i‘h column of 2“,; equivalently, x, = (plimT’lU' U)’1p1imT'1U'em.
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It is well known that the first order condition for the usual GMM estimator ((3)

using moment conditions E[¢1(y: .90 )] = 13((1G a 2, my: ,eo)] = o and weighting

matrix 2;: is

(4.14) 1)(é)'(2:;,1 a Pz)f.(é) = 0.

Comparing (4.14) with (4.13), we see that the only difi‘erence between the first order

condition ofthe usual GMM estimator and the first order condition ofthe IGMM

estimator is that E: and f.(9) in (4.14) are replaced by E“ and [f.(9)- (IG ®U))t]

respectively. It is interesting to notice that [f. (90) - (IG ® UM] =

[(r(1,(y;,, ,eo, ) - mt),- - -,(f(G) (yzg, .90G ) - van is just a vector of residuals from the

linear projection of fm)(y:g) ,Oog) onto U. Thus the IGMM estimator é implicitly

determined by (4. 13) can also be regarded as a purged GMM (PGMM) estimator, as in

Chapter 3.

Under assumptions (A4.1)-(A4.3), it is not difficult to show that the usual GMM

estimator é implicitly determined by (4. 14) has the following asymptotic variance:

(4.15) Av1fi(é-eo)1 =1pM%D(eo)'(2: ®Pzmm. )1"

= 14112;: ®A2>A1“

where

AZ]

(4.16) A = phm—;(IG ez')1)(90) =

Ad}

has full column rank because ofassumption (A4.2).

We now wish to consider the IGMM estimator 6 and the following three more

estimators
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(4.17A) ’6' = atgmin, {f.(0)'(2“ a qMUZ,)f.(e)}

(4.1713) 6 = argmine{f.(9)'(2“ @MUPZMU)f.(9)}

(417(3) 6' = otgmine {f.(9)'(2“ ®PZMU)f.(O)}.

We will show that these estimators are asymptotically equally eficient, with asymptotic

variance matrix equal to

(4.13) [plim%D(90)'(Z“ tsp, )D(90)]“ = [A'()3"' 69A; )A]" e B".

We will presume that the estimators are consistent, because each can be written as

a GM estimator that exploits valid moment conditions.

Comparing (4.18) with the asymptotic variance matrix of 6 in (4.15) above, the

fact that the matrix {[A'(z;,1 em;l )A]" — [A'(2“ eAg )A]“} is positive semidefinite

(shown later in Theorem 4.2) establishes the asymptotic eficiency of 6 , '9', 5 and 6

relative to 5. We now turn to a proofofthese results.

LEMMA 4.1: plimT’IZ'MUZ= phmT“Z'Z=A,,;

plimr‘12'MU1),(90i ) = plimr’12'D,(90i ) = A,, for i = 1, 2, G.

Proof. The proofis similar to the proofofLemma 3.1 ofChapter 3. For example,

plimT’IZ'MUDi (90,)

= pfim[T-IZ'D1(90i )-(T"Z'U)(T"'U'U)"(T"1U'Di(9ot ))1

= A, - 0.2;},Au,

= A”,

where the second equality is implied by (A4.]).
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LEMMA 4.2: plim T’lDi (90i )'I’IMUmDJ- (90].) = plim T“D,(9Oi )'MUPZMUDJ-(Ooj )

= pMT—lDi(901 )'PZMUDj(90j)

= pMT—lDi(90i)'PZDj(90j)

: AizA—ulAq'

for i,j=1, 2, ..., G.

Proof: We will give the prooffor plimT'lDi(90i )'MUPZMUDjwoj) = AizA ;Azj. The

proofs for the other cases are quite similar

P lim T-lDi(9m )' MUPZMUDj(901')

= pfimlT—1D1(901)'MUZ](T—1Z.Z)-l[T—IZ.MUDj(90j )1

= AgAgA,

using (A4.1), (A42) and Lemma 4.1.

LEMMA 4.3: plim[T”lD(90)'(Z‘8 ® EMUZ,)D(60)]

= pIimIT"D(Go)'(E“ ® MonMo)D(Oo)]

= pIimIT"D(Go)'(2“ ® PzMU)D(90)]

= plimlT“D(90)'(Z“ 8’ Pz)D(Bo)1

= A12“ ®A;z‘)A a B,

and B is nonsingular.

Proof: Let 2” = (oii)G,(,. Then

P limITIDwo)'(Zw ® P[MUZ] )D(90 )]

D1 (901 )' GIIP[MUZ] ' ‘ ' GIGP[MUZ]

= plimT-l '. : :

Do (906 )' O'Glpmuzl ' ° ’ OGGP[MUZ]
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Dt(9m)

Do(9oo)

D1(901)'0“P|MUZJD1(901) D1(901).61GP[MUZ]DG(BOG)

=phmT-1 s s s

Dowoo )'OmleUlei (901) Do (900 )'GGGPlMUZJDG (906)

011A12A2A21 GIGAlegAi}

= 5 E E (usingLemma4.2)

OGlAGzAgAzl GGGAGzAZAzG

Alz oI‘A; o‘GA; AZ,

AGZ 061A; "' 066A; ’ Ad}

A12“ ®A;)A a B.

using the definition ofA in (4.16). The probability limits for the other cases involve

essentially the same arguments. Finally, 13 = AXE“ (SA; )A is nonsingular bacause Z ,

Em, and Azz are nonsingular, which implies 2‘.“ ®A;z1 nonsingular, and because A has full

cohrmn rank (see (A4.2)).

LEMMA 4.4: plimr"(1G ®Z'MU)D(90) = plimT“ (1G @Z')D(00) = A.

Proof: plimT‘1(IG ®Z'MU )D(90)
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Z'MU D1(901)

= plimT’1 .

Z'Mu Do (900)

plimT—IZ'MUD1(901)

plim T—IZ'MUDG (90G)

plimT"Z'Dt(9ot)

= (using Lemma 4.1)

plimT'IZ'DG (GOG)

21

= (using (A4.1))

A26

using the definition ofA in (4.16).

LEMMA 4.5: T'1/2(IG ®Z')[e. —(1G eum and T‘1’2(IG ® z'MU )e. each converge

in distribution to N[O, (2“ )-1 ®Au] with 2“ = (2,, — zwzggzue)".

Proof. See the proofofLemma 3.6 in Chapter 3.

THEOREM 3.1: JT(§—90)r flay—90), «E(é—Bo) and JT(é—90) each convergein

distribution to N(O,B‘1), where B = A'(2‘.“ am; )A with A = ding(A,, ,...,A,G) as

defined in (4.16).
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Proof: We will give the prooffor $11.6. - 90 ). The proofs for the other cases are

essentially identical. Using the definition in (4. 17A), we know that '9' satisfies the

following first order condition:

(4.19) 1)('é')'(2“ e qMUZ,)f.('é') = 0.

Using the first order Taylor expansion formula, we have

(4.20) r('é') = f(90 ) +D(e‘ )(‘é’ -90) = e. +D(e‘ )(‘é’-90)

where 9' is between 60 and ‘9‘. Substituting (4.20) into (4.19), we get

(4.21) D('é')(z“ e PIMUZ] )D(9‘)(é‘-90)+D(é')'(2“ a PM,] )e. = o.

(4.21) is equivalent to

(4.22) T1/2('é'- 90)

= —1T-ID(6')'(2“ ® IiM.n>D(e')1-‘ -T-“D('é')'(2“ ®P1Mo21)8'-

Because .9. is consistent, (4.22) can be rewritten as

(4-23) T"2 (ii—Go) = -[p1imT"D(eo)'(>:“ e PIMUZ1)D(90)]—l -

.T-1/2D(9o “2% ® PIMUZ] )e, +0p (1)

= —B—1 .'1“—1/21)(9o “Zea <8 PIMUZI )3, +0p (1)

using Lemma 4.3. But

(4.24) T‘V’me0 )'(>:88 a PIMUZ, )e.
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= r“‘”D(eo)'[2“ ®MUZ(Z'MUZ)‘1Z'MU]8.

= T"”D(90)'(IG ca MUZ)[Z“ <22>(Z'MUZ)“](IG ®z'MU)c.

=[T‘1D(90)'(IG ®MUZ)][2“ ®(T"Z'MUZ)“]-

~T‘1’2(IG ® z'MU )e.

= A12“ 49A; )-T'“2(IG ®Z'MU)8. +op(1)

using Lemmas 4.4 and 4.1.

Substituting (4.24) into (4.23), we arrive at

(4.25) T"2('é'-eo) = —B“A'(E“ ®A;ZI)-T‘”2(IG ®Z'MU)8. +01, (1)

—+ N(0,W)

using Lemma 4.5, where

(4.26) w = B“A'(Z§“ ®A;Z')-[(2“ )"1 ®An]-[B"A'(2“ @A; )]'

= 13“A'(2m ®A;)-[(£“)“ ®Au]-(£“ @A; )AB"

= 13‘1 -A'(Z“ ®A;z‘)A-B"‘

= B’1 ~B-B'1 (using the definition ofB in (4.18))

= B“.

THEOREM 4.2: The improved GMM estimators: é , '9', 5 and 6 are asymptotically

emcient relative to the usual GMM estimator 6. They are strictly more efiicient than the

usual GMM estimator (3 if 2“,, at 0.

Proof: See the proofofTheorem 3.3 in Chapter 3.
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2 2

Our discussion so far has assumed that the covariance matrix 2 = [£68 8"] is

‘18 Zuu

known. Since we generally do not know 2‘. , the estimators é , '6', 5 and ii are infeasible.

However we can define feasible versions ofthem, say

(4.27A) 6,. = argmin, {[f.(9)— (1G a U)X]'(i“ <8 1),)[f..(9)-(1G e Um}

(4.2713) '6', = argmin, {f..(e)'(2as a PlMUZ] mm»

(4.270) 6, = urgmine {f.(9)'(i“ ® MUPZMU )f.(e)}

(4.27D) 6,. = urgmine {f.(9)'(2“ ® PZMU )f.(e)}

where if.“ and it are consistent estimates of 25‘ and A respectively. Specifically,

2“ = (2,, — 2,52,,12,)-l and i: vec(2;3,2,,) with 2,, = r—‘e'e, 2,: 2,, = r—‘é'u

and 2,, = T‘lU'U, where E = (a, ,---,éT )'= [f(y;,é), my; ,é)]' withé being any

consistent estimate of 60; for example, the usual GMM estimator. Then it is not difficult

to show that 61;, 6}, 6r and 6,, have the same asymptotic distribution as (3 , '6', 5 and 5.

4.3. Concluding Remarks

In this chapter, we have generalized the results ofthe previous chapter for 3SLS-

type estimators to the case of a nonlinear model We have simplified the analysis by

making high-level assumptions, and by not giving a rigorous proofofconsistency. Given

these simplifications, the extension from linear to nonlinear BSLS is fairly straightforward.

As in the linear case, the improved estimators use a difiermt projection matrix than the

usual nonlinear 3SLS (e.g. the projection onto MUZ instead ofonto Z), and they use the

inverse of V(st |u,) instead of V(e,) in weighting equations.



CHAPTER 5

THE ASYMPTOTIC EQUIVALENCE BETWEEN THE ITERATED

INIPROVED ZSLS ESTMATOR AND THE 3SLS ESTINIATOR

5.1. Introduction

In Chapters 2, 3 and 4, we showed that we can improve on the usual IV (ZSLS)

and 3SLS estimators provided that we have available an extra vector of observable

variables 111 which is uncorrelated with the instruments and correlated with the

disturbances ofthe model being estimated. In this chapter, we will extend the improved

IV (ZSLS) idea to the case when the extra information ut is consistenthi estimated instead

ofobserved. Because the asymptotic distribution ofthe estimated 111 depends on the the

model structure from which it is estimated, we choose to consider our extension in the

context ofa system oflinear equations.

It is well known that the only diflerence between equation-by-equation ZSLS and

BSLS is that the 3SLS estimator utilizes information about the relationships among the

disturbances of difi‘erent equations, but 2SLS does not. Then a natural question one wants

to ask is whether it is possible for us, on one hand, to still keep the simplicity ofthe

equation-by—equation 2SLS estimator; on the other hand, to also utilize the information

contained in the covariance structure ofthe model disturbances, such that the new

equation-by-equation estimator has the same asymptotic efficiency as the BSLS estimator

applied to the entire equation system

Telser (1964) has addressed essentially the same question in the context of a

seemingly uncorrelated equation (SURE) system:

58
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(5.1) ytg = x,,'eo, +e,,, g = 1, 2, G; t = 1, 2, T,

where ytg is the dependent variable ofequation g at observation t, xtg is the K8 x1 vector

ofexplanatory variables ofequation g at observation t, at, is the model disturbance of

equation g at observation t, 6,8 is the K8 x1 unknown parameter vector ofequation g,

and xt8 is strictly exogenous. Telser proved that the iterated LS estimators ofthe

augmented equations

(5.2) y, = xtg'eo, +e,(,)'7.o, +v,,, g = 1, 2, G; t = 1, 2, T,

where at“) = (8,1,...,a,,8_1,a,_g,l,...,etG)', log = [E(e,(g)s,(g)')]’1E(s,(g)atg) and

vtg = at8 - “9'20? are asymptotically as efficient as the SURE estimator ofthe system

(5.1). It turns out that the analogous result is also true for a simultaneous equation

system

The rest ofthe chapter is organized as follows. Section 5.2 defines the improved

ZSLS (IZSLS) estimator. Section 5.3 describes the iterated IZSLS estimators. Section

5.4 proves that the iterated IZSLS estimators converge to a limit, and that their limit is

asymptotically as eflicient as the 3SLS estimator.

5.2. Improved ZSIS Estimator

The model considered in this chapter is

(5.3) ytg = x,'e,, +stg, g = l, 2, ..., G; t = l, 2, ..., T,
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where ytg is the dependent variable ofequation g at observation t, xtg is the K8 x1 vector

ofexplanatory variables ofequation g at observation t, 8,8 is the model disturbance of

equation g at observation t, and 903 is the Kg x1 unknown parameter vector of equation

g. We assume that in general cov(x,g,etg) at O for all g. Suppose that we have available

an M x1 vector ofinstruments zt satisfying E(ztstg) = 0, with E(ztxtg') having fiJll

column rank for g = l, 2, ..., G.

We define the following notation:

YIg xlg 813 zl

(5.4A) y,= : ,Xg= : ,88= : ,Z= : ;

YTg ng' 8T3 ZT.

91

(5.4B) 9 = E , a = [81,...,EG], a. = vec(e);

9o

(5.4C) 8“,) = (8,1,...,et’g_1,e,,g+1,...,e,G)';

31(3).

(5.4D) 8(8) = : =(81,...,88_] 388+1’”"SG);

8m).

(5.4E) PZ = Z(Z'Z)“Z‘ provided that 22 is nonsingular;

(SAP) )2, = sz8 for g = 1, 2, G;

(5.4G) L(h|W) = W20 = the linear projection ofh onto W, with

20 = [E(W'W)]'1E(W'h) defined for any s x 1 vector h and any sx m

matrix W as long as E(W‘W) is nonsingular.
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It is important to note the distinction between a, (T observations for the error ofequation

g) and 8(8) (T observations for the errors of all the equations except equation g).

With this notation, (5.3) can be rewritten as

(5.5) yg = x8908 +88, g :1, 2, ..., G.

We make the following "high level" assumptions.

(A5.1)

(As.3)

plim—

 

 

Xl'

 

[X1,...,XG ,Z,81,...,SG]

A16 A12 Axe.“ AXEJG

AGG AGz Axe,Gl Axa,GG

A2G A22 0 0 exists.

AflJG 0 511 0' lG

Asx,GG 0 CG] GGG j 

T'”2 (1G ez')e. —+ N(o,2eA,,).
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(ASA) T‘1/28(i)'vi —) N(O,Qi)

With Vi = 8i - L(8i

 
8(3)) for i = 1, 2, ..., G.

0'“ Ola—1 51,1“ 016

q._ 0-._ ._ o’._. c._ .

Define 2,, = ‘ I" ' I" l ‘ 1"“ ‘ LG 1= 1, 2, ..., G.

01+” ' ” o'i+1.i—1 °i+1,i +1 "' 0i+1,G

_ CG] oGJ—l oG,i+1 6G6 _  

Assumption (A5.2) implies that 2n is nonsingular for all i

These high-level assumptions are derivable from various sets ofmore basic

assumptions. For example, in a time series context, define et = (8,1,...,e,G)' and

‘I’t = {z,;z,_1,e,_l;z,_2 ,e,_2 ;...}. Then (A5.1)-(A5.4) follow from the assumptions that

E(e,|‘l’,) = 0, V(e,|‘l’,) = E, (xu',...,x,G',z,')' is covariance stationary, and the fourth

moments of et exist.

We now define our IZSLS estimator as the IV estimator ofthe augmented

equation

(5.6) yg = X890g +s(g)kog +vg, g = l, 2, ..., G,

using (Eyew) as instruments, where

(5.7A) 103 =[E(8(8)18(8))]‘1E(8(8)'88)_=_(kogl,n,,)\,og’g_l,xog,g+1,o.., 1086 )1

(5.7B) v8 = a, — L(ag|e(g)) = as -—s(g))tog.
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Ifwe knew 8(8), then as pointed out in Chapter 3, adding 8(8) to (5.6) reduces the

variance ofthe model disturbance in (5.6) from V(sg) to V(88|8(8) ), and IV applied to

(5.6) would be more eficient than IV applied to (5.3). However, the IV estimation of

(5.6) is infeasible because we do not observe 8“,). In the next section we will define the

iterated feasible IZSLS estimator.

5.3. Iterated IZSLS Estimator

Our iterated feasrble IZSLS estimator of 90 = (601',...,OOG’)' in (5.3) is defined as

follows.

TKO—mill): Apply the usual IV (ZSLS) estimation method to (5.3) equation by equation,

using Z as instruments, to get the initial consistent estimate 6(0) = [6A)1(0)',...,éG (0)']' of

90. Then we estimate the model disturbance a, by

(5.8) e,(0) = y, -x,é,(0)

for g =1, 2, ..., G.

Round 1: For equation 1, apply the usual IV estimation method to

(5-9) Y1 = X1901+8(1)(1)}~01+V1(1)

using pt, ,8(,) (1)] as instruments, where 2.0, is defined in (5.7A), and

(5-10A) 3(1)“) = [32(0)a---a50(0)]

(5-103) V10) = Y1 ‘ X1901— 3(1)(1)7~01 = 81" 8(1)(l))~01~
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Denote the IV estimate of(5.9) by [61(1)',il(1)']'. We then update the estimate of a, by

(5.11) e,(1)=y,—x,é,(1).

For myation 2: Apply the usual IV estimation method to

(5-12) Y2 = X2902 +3(2)(1)}~02 +V2(1)

using [222 ,e(2)(1)] as instruments, where Am is defined in (5.7A), and

(5-13A) 8(2)“) = [81(l)a33(0)a---aeo(0)]

(5.13B) v2(1)= 82 —8(2)(1))toz.

Denote the resulting IV estimate of(5. 12) by [62(1) , 22(1)]2 We then update the

estimate of 82 by

(5.14) 32(1)=Y2 4962(1).

Generally, in Round 1 for equa_tiqn_g: We apply the usual IV estimation method to

(5.15) y8 = X8908 +8(g)(1)7cog +vg(l)

using [x,,e(,)(1)] as instruments, where 2.0, is defined in (5.7A), and

(5.16A) 8(g)(l) = [81(1),...,88_l(1),8g+1(0),...,80(0)]

(5.16B) vg(1) = 3:; -e(g)(l)7tog.
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Denote the resulting IV estimate of(5.15) by [68(1), 28(1)}. We then update the

estimate of as by

(5.17) e,(1) = y8 — x8680).

Round 2: For equation 1, apply the usual IV estimation method to

(5-18) Y1 = x1901+3(1)(2)7~01+"1(2)

using [22, ,8“) (2)] as instruments, where 9.0, is defined in (5.7A), and

(5-19) 8(1)(2)=[82(1)a---a80(1)]

(5-20) V1(2) = Y1 — X1901 " 5(1)(2))~01 = 81 ‘ 8(1) (2)101-

Denote the IV estimate of(5. 18) by [61(2)',il(2)']'. We then update the estimate of 81

 

by

(5.21) 81(2) = y1 — x,é,(2).

For equation 2: Apply the usual IV estimation method to

(5-22) Y2 = X2902 +8(2)(:’3)7~02 +"2(2)

using [39 ,s(2)(2)] as instruments, where 202 is defined in (5.7A), and

(523) 8(2)(2)=[81(2)’83(1)r°"80(1)]
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(5.24) v2(2) = 82 — 8(2)(2)7\.02.

Denote the resulting IV estimate of(5.22) by [02(2), 712(2)}. We then update the

estimate of a, by

(5.25) 82(2) = y, — x,é,(2).

Generally, in Round 2 for equation g: We apply the usual IV estimation method to

(5.26) yg = Xg90g +i»:(g)(2)?to8 +vg(2)

using [233(c)(2)] as instruments, where 208 is defined in (5.7A), and

(5-27) 8(9(2) = [81(2)a---rag—1(2)a8g+1(1)a-~-936(1)]

(5.28) vg(2) = a, - 8(g)(2))tog.

Denote the resulting IV estimate of(5.26) by [08(2) , 28(2)']'. We then update the

estimate of 88 by

(5.29) e,(2) = y, —x,é,(2).

Further rounds continue in the same fashion. Generally, in Rormd n for equgtion g,

we apply the usual IV estimation method to

(5.30) y8 = X3903 +e(g)(n)}t0g +vg(n)

using [5(8,s(g)(n)] as instruments, where 208 is defined in (5.7A), and
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(5.3 1A) 8(g)(n) = [81(n),...,eg_1(n),ag+1(n — l),...,sG(n — 1)]

(5.31B) vg(n) = as — 8(g)(n)}tog.

Denote the resulting IV estimate by [03(n)',ig(n)']'. We then update the estimate of a,

by

(5.32) e,(n) = y8 — xgé,(n).

Thus, we have finished describing the iterative procedure ofthe feasible IZSLS

estimator. This process is essentially the same as defined by Telser (1964) for the SURE

model, except that IV is used here where OLS was used in the SURE model We may

note that other similar iterative processes are also possible. For example, for equation g in

rormd n, we could augmented the equation and instruments set by

8Z8)(n) = [81(11 — 1),...,88_1(n —1),8g+1(n — 1),...,8G(n - 1)]

instead of 8(8) (11) as in (5.31A); this amounts to using the estimates of a from round n-l

to estimate all equations in rormd n. This would change our algebra but not any ofour

conclusions since, ifthe interative processes based on 8(g)(n) and 8:901) both converge,

they obviously converge to the same limit.

We now show that the iterated IZSLS estimators defined above are consistent and

asymptotically normal in every rormd ofiteration.

LEMMA 5.1: T"2[é,(n) - 90,1» N[o,n,(n)], where Q,(n) is a finite positive definite 

(pd) matrix, forn = 0,1, 2, ..., and g =1, 2, ..., G.
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Proof: We will only prove the case ofG = 2. The prooffor general G is essentially the

same.

When n = o, é,(0) is just the usual 2SLS estimate ciao, in (5.3). Then it is well

known that

(5.33) T1/2[é,(0)—90,] —> N[o,o,,(A,,A-,}A,,)-l]

using (A5.1)-(A5.3), for every g.

When n = 1, using the definition that [08(l)',5tg(l)']' is the usual IV estimate of

(5.9) using [3(1,a(,)( 1)] as instruments, we have

(5 34) T1/2[él(1)-601] _ T‘lil'xl T'lil'8(1)(l) 4 T‘mil'vlfl)

. T1/2[i1(1)_}\'01] — T_]8(1)(1)'X1 T_18(1)(1)'8(l)(1) T-1/28(1)(1)'v1(1) '

But

(5.35) Tfig'xl = (T-‘x,'Z)(T"'z' Z)"(T”‘Z'X, )

: Aleir:z1Azl +0p(l)

(5.36) T"x,'e(l,(1) = T“x,'e,(0) (using the definition of 8(1)(1) in (5.10A))

= T92. 'iya - 2962(0)]

= T-lx, '[(y, — x,90, ) + x, (9,, - é,(0))]

= Tame, — x,(é‘),(0)-eo2 )]

= T‘1il'ez -(T-1x,'x,)[é,(0)-e,,]

= (T'IXI'ZXT'll' Z)'1(T"Z' e,)

—(T-lx,'Z)(T-1z' Z)-1(T-1z' x2 )[é,(0)—90,]

:Al' ;.0p(1)—AIZA; 22‘0p(1)+0p(1)
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(using (A5. 1) and the consistency of 02 (0))

= 0p( 1)

(5.37) T'1em(l)'x1 = T“‘e,(0)'xl

= T“[ya — Xaéamn'X.

= T“[82 — Xa(éz(9)-eo)1'xr

= T-le,'x1 -(é,(0)-902 )'(T-lx2'x1)

= A8X,21—0p(1).A21+0p(1)

(using (A5. 1) and the consistency of 02(0))

= Aam +op(1)

(5-38) T_]8(1)(1)"3(1)(1) = T_1[32 " X2 (62(0)‘902 )“52 " X2(éz(0)"902 )]

= 022 +op(1)

using (A5. 1) and the consistency of 02(0). Combining (5.35)-(5.38), we have

T-lx 'x T-lx' 1 A A-IA o ,
(539) —1 1' l -1 l 8(l)'( ) =I: lz zz zl +0p(1)-

T 8(0(1) X1 T 8(1)(1)3(1)(1) Aex,21 022

Because

(5-40) V1“) = Y1 _X1901 _8(1)(1)x01

3 Y1 ‘ X1901 " 82(0))”01 (using (5'10A»

= 81 — [Y2 " Xzézmnxm

= 31_[82 — X2(éz(0) _902)])\v019
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(5.41) T‘mit'v. (1) = T_1/2X1'{31"32}V01 autism—902110.}

= Twigs1 —T"’2x,'e,xm

+T“’25‘<.'Xzié. ((1)—9.211..

= A A“ .T'mz'e, —A A" ~(T‘1/2Z'82 )lm
lzzz lzzz

+A12A221Az2 “Tm [62(0) “9021' 7V01"' 0p (1)

using (A5.1)-(A5.2). Combining (A53), (5.33) and (5.41), we see that T‘1’2x,'v1 (1) is

asymptotically normal with mean zero.

Similarly

(5.42) T‘1/28(D(1)'v,(1)

= T‘1’282(0)' {e., 4.22.0, +x,[é,(0)-e,,]lm}

= T-1/2{g2 _x2[(),(o)—902 ]}'{e1 —t:2)tm +X2 [92(0)_902]7L01}

= T-me,t(a, —82101)-{Tm[éz(0)-9os]}'[T-1X2'(81 - an...”

+(T-‘e,'x,)-T"’[€1,(0)—e,,]7t01

— {Tm 162(0)-9a1}'(T“X.'X. )ié.(9)-9a1>~u

= T'mez'e. mi»...)—{T"2162(0)—9..1}'(A..,.. "'Axeazxm)

+A,,,22 -T‘”[é,(0)-90,]i.01 +o,(1).

Then combining (A5.4), (5.33) and (5.42), we see that T_1/28(1)(1)'V1(1) is

asymptotically normal with mean zero.

Substituting (5.39), (5.41) and (5.42) into (5.34), we have proved that

T1’2[01(1)- 001] is asymptotically normal with zero mean. Thus

T”2 [01(1) — 001] —) N[0,Q1 (1)], where 91(1) is the corresponding asymptotic

covariance matrix. (For our present purposes we do not need to evaluate 01(1).)
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The proofthat T"2 [02 (1) — 002 ] —> N[0,Q2 (1)] is essentially the same as the

proofgiven above. Then, using the inductive method, we can prove that

T"2 [6,(n) - 90,1» N[o,o,(n)] for all g and n.

5.4. The Convergence and Asymptotic Efficiency of the Iterated IZSLS Estimators

In this section, we give a convergence result for the iterated IZSLS estimator, and

show that it has the same asymptotic efficiency as 3SLS.

Since [08(n)',5tg(n)']' is the usual IV estimate of(5.30) using [5(8,e(g)(n)] as

instruments, we have

(5.43) X8.X8 x8'8(8)(n) 9801) = XS'YS .

3<g)(n)'xu 3(s>(n)'8(s)(n) 7‘s“) 8(e)(n)'ys

Because

(5.44) y8 = X390g +88

2 X8908 +8(3)A'08 +Vg (USing (5.7B))

= [Xg,8(g)](903'3x0g.).+vgs

then

)2 'y )2 ' 903]

5.45 8 3 = 8 x,( > [WW8] [,(g)(n).]{t ,e,,1[,08 e.,}
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= Xs'xa xs'em) [9%]4. xs'vs .

8(8)(n)'x8 8(11.)(11)'8(11) A'08 8(3)(n)'vs

Substituting (5.45) into (5.43), we get

(5.46) [ x,'x, x,'e(,,(n) [64m]

8(s)(n)'xg 8(a)(n)'8(s)(n) 9:801)

: xs'xs xa'em) [9%]+ xs'va .

8(a)(n)'xg 8(a)(n)'8(s) )‘Os 8(g>(n)"’s

In order to examine the convergence of[08(n)',ig(n)']' as n —> 00, we define the

following notation:

x 'x x '
(5.47A) 130 =[ 8. 8 8.803)]

8(11) X2. 8(8) 8(a)

(5.4713) B = XB'XS X8.8(8)(n)

8(s)(n)'xs 8(8)(n).8(8)(n)

(5470 C =[ XS'XB x,'a(,) ]

s(g)(n)'X, 8(s)(n)'8<s)

(5.47D) d,(n) = é,(n)—9,,, for g = 1,2, G and n = 1, 2,

(5.47E) Dg(n) = [X1d1(n),...,X8_1dg_,(n),Xg,,dg,1(n “1),...,XGd6(n —1)]f01‘

allnandg
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(5.47F) AB, = 0 48.138“)
—Dg(n)"Xg —8(8)'D8(n)— D8(n)'e(g) +Dg(n)'Dg(n)

0 0a...) A..-[_,gm,xg _,8,),,®].

Then (5.46) can be rewritten as

(5.48) B, [93m] = c,[e°“]+[ x,'v', ].

A11.01) 2'08 8(8)“) V8

Because

(5.49) e,(n) = y, —x,é,(n)

= (y, - X,90,)-1X,é,(n)- X,9.,1

= e, — x,[é,(n)—9,,]

= 8s - ngg(n)

using (5.47D), then substituting (5.49) into the definition of 8(8) (11) in (5.31A), we get

(5.50) 8(g)(n)=[81(n),...,88_1(n),88+1(n —1),...,eG(n — 1)]

= [81,...,88_1,88+1,...,SG]

-[X1d1(n),...,Xg_,d8_1(n),X8+]dg+l (n — 1),...,XGdG (n — 1)]

= 8(8) _ D801)

using the definition of D8(n) in (5.47E). Substituting (5.50) into (5.47B), we get

(5.51) B, =B0+ABn



74

using the definitions of B0 ill (5.47A) and ABn in (5.47F). Substituting (5.50) into

(5.47C), we also get

(5.52) C, = B, +AC,

using the definitions of B0 in (5.47A) and ACn in (5.47G). Substituting (5.51) and (5.52)

into (5.48), we obtain

(5.53) (B,+AB,)[98(n)]=(B,+AC,)[9°8]+[ XS'VB ].

is“) )‘08 8(8)“qu

This can also be rewritten as

(5.54) (B0+ABn)[eg(n)_9°3]=(AC,-AB,)[9°B:I+[ x,'v, ],

i,(n) ‘ ;‘08 7‘08 3(g)(n)'vg

01'

1/2 “ _

1 1 AB,)[T 19,01) 9.,1]
(555) (;B0 +_vf T1/2[ig(n)—)\rog]

e -l/2 A o

= T-m (ACn ' ABu )[ 08 ] + :1172 xg v.8 '

)‘08 T iany“) Vs

Premultiplying (5.55) by (31,-B0 +%AB,)'1, we arrive at
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Tm[0,(n)-00,]

T1/2[7~g(11)- log]

9 -l/2 A 1

= (113, +-1—AB, )-1 {T‘1’2(AC, - AB, )[ ”]+ 3,, x, v', }.

T T log T 8(,)(n) v,

Now we wish to show that plimT_,,, T‘1AB, = 0, and that

T‘“2 (AC, - AB, )(008',}tog')', T'mig'v, and T‘1/28(,)(n)'v, each are asymptotically

multivariate normal with mean zero.

LEMMA 5.2: For any i,j = l, 2, ..., G, and n, m = 0, l, 2, ..., 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(3)

(9)

plim T’lii'em =0;

plim

plim

plim

plimT_,,, T’ld,(n)'Xi'XJ-dj(n) = 0;

plim

plim

plim

plim

T—)ao

-l I _ .

T Xi dej(n)—0,
T—boo

-1A 1 _ .

T xixjdj(u)_o,
T—Mo

T—)ao

-l l _ .

T a, dej(n)—0,

-l i _ .

T xi Dj(n)—0,
T—No

—lAr _ .

T x,Dj(n)_o,
T—)oo

T“D,(n)'Dj(m) = o;
T—)oc

T—)oo
T'lam'DJ-(n) = 0.

Proof. (1) Because

plimT‘1iri'ej = plim(T“‘x,'Z)(T"z'Z)‘l (T“z'ej)

=A,A;,‘.o

=0

using (A5.1)-(A5.2), then

plimT'lii'em = plim[T’15(,'al,...,T"1$(i'aj_1,T‘lii'ew,...,T"'5(i'eG]

=0.
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(2) plimT‘IXi'XJ-dj(n) = plim(T"Xi'Xj )dj(n) = A,- -0 = 0 where the second

equality is gotten from the definition of dj(n) = éj(n) —00j in (5.47D) and Lemma 5.1.

(3) plimT‘lii'deJ-(n) = p1im(T“xi 'Z)(z'Z)-‘(T-‘z'xj )dj(n)

= A,A;,‘A, .0 (using (A5.1) and Lemma 5.1)

= 0.

(4) plimT—lei'deJ-(n) = plim(T"18i'Xj )dj(n) = A9,,- -0 = 0, where the second

equahty is gotten fi'om (A5. 1) and Lemma 5.1.

(5) plimT"‘di (n)'x,'xjdj(n) = plimdi(n)'(T'1Xi'XJ-)dj(n) = o-Aij -o = o,

where the second equality is gotten from (A51) and Lemma 5.1.

(6) PlimT'IXr'an)

= plimT'IX,'[X1d1(n),...,Xj_1dj_1(n),Xj,1dj+l (n — l),...,XGdG(n — 1)]

(using the definition of Dj (11) in (5.47E))

= 0

using part (2) ofthis lemma.

(7) plimT"f<.'D,-(n)

= plimT‘1xi '[x,d,(n),...,xj_,dj_l (n),xj,,dj,1 (n —1),...,XGdG(n - 1)]

(using the definition of DJ- (n) in (5.47E))

= 0

using part (3) ofthis lemma.

(8) Plim T_1Di(n)'Dj(m)

F dl(n)'xl'

di—l (n)' Xi-l'= limT’l . .

P di+1 (n — 1)'Xi+1

  _ dG(n—l)'XG' _
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-[X1d1(m),...,Xj_1dj_1(m),Xj+ldJ-+1(m-1),...,XGdG(m- 1)]

(using the definition of Di (n) and Dj(m) in (5.47E))

= (plimT'ld8(n. ).Xg.xhdh (m' ))(G-l)x(G-l)

= 0

using part (5) ofthis lemma, where n’ = n or n—1, and m' = m or m-l.

(9) PlimT—18(t)'DJ-(n)

=p1imT'l 8H [x1d,(n),...,xj_,dj_,(n),xj,1dj,,(n—1),...,deG(n—1)]

  

Z (plim'r-leg'xhdh(n.))(G-l)x(G—l)

= 0

using part (4) ofthis lemma, where 11‘ = n or n-l.

A E

A “A o
LEMMA 5.3: (1) plimT_,,,T"Bo=[ “A.” ’3 JEB,where

8x88 88

A8888 =[A ' ,A“’18 ,ooc “(84),',A,x,(,+1),',...,A,X,G,']', and B is nonsingular;

(2) plimT—bco T_1ABn = 0'

Proof: (1) We must evaluate the four elements of T“‘B0. First,

—1A I _ —l I -l —1 -l I

(5.57) T xgxg—(T xgsz Z‘Z) (T zx,)

= AyagA, +o,(1)
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using (A5. l)-(A5.2). Second,

-1A 1 _

(5.58) T X, 8“,) — o,(l)

using part (1) ofLemma 5.2. Third,

P -

T'lel'X, F ARI, -

T“e 'x A
5.59 T‘1e 'x = 8“ 8 = “(8“)“ +0 1=A’ +0 1

( ) (g) g T-183+1.x8 A8X.(g+l)g p( ) sx,gg p( )

L T"‘eG'x, - _ Ashe, _    

where the second equality is gotten from (A5. 1). Fourth,

(5.60) T“e(,)'e(,) = T"1 3", ,[81,...,8,_,,8,,1,...,SG]= 2,, +o,(1)

  

using (A5. 1) and the definition of 2,, on page 62. So, substituting (5.57)-(5.60) into

T‘1BO with B0 defined in (5.47A), we obtain

)2 'x x ' A A‘IA 0
(5.61) plimT‘1B0=plimT"[ 8' 8 3.8(8):|=[ 82 .u 2% :|=B'

8(ta) X81.) 8(8) 8(a) Asxes 2,,

But, according to (A52), A2, has firll column rank, and 2,, is nonsingular. Thus B is

nonsingular.
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(2) Using the definition of AB, in (5.47F), we have

(5.62) plim T‘1AB,

= plim[ o -T"x,'D,(n)

—T’1D,(n)'X, -T—18(,) 'D,(n) — T"1D,(n)'a(,J + T"1D,(n)'D,(n)

using Lemma 5.2, parts (6)-(9).

LEMMA 5.4: Foranyi,j=l, 2, ,G, andn= 1,2, ...,asthe samplesize T—)oo,

(1) T'IIZX-'XJ--dJ(n)—)N[0,A,QJ.(n)A,];

(2) T'mX 'xJ.dJ,(n)—)N[0A,Agz‘A,0JJ.(n)AzA‘,,‘A,];

(n)A

Proof: (1) mei'deJ.(u) =(T'1xi XJ-)[deJ-(n)]

(3) T’mei'XJ-dJ-(n)—>N[0,AmpJ. ,,,1.

— A,[T“2dJ-(n)]+o, (1) (using (A5.1))

—>N[0,A-J.er.(n)A,]

using Lemma 5.1.

(2) T-“zx,'xJ.dJ.(n) = (T‘lx,'2)(T-‘z' Z)’1(T"Z‘XJ.)[T1/2dJ-(n)]

= A,A;,‘A,.T“’dJ.(n)+oJ, (1) (using (A5.1))

—> N[O, A,A;,1A,J.QJ(n)AJ.,A;,‘A,.]

using Lemma 5.1.

(3) T‘mai'XJ-dJ-(n) = (T-‘e.'xJ.)[T”2d.(n)]

=A,,,de.J(n)+o, (1) (using (A5.1))

—+ N[O,A,,J.QJ(n)A,,,]
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usingLemma 5.1.

LEMMA 5.5: Each element of T‘1/2(AC, - AB,) converges in distribution to a normal

distribution with mean zero as the sample size T—) co.

Proof. Using the expressions for AB, in (5.47F) and AC, ill (5.47G), we get

--l/2A l

(5.63) T—U2(AC,-AB,)= 0 -1/2 . T Xg 2,201) . J

0 T 8(,)D,(n)—T D,(n) D,(n)

But

-l/2A I
(5.64) T X, D,(n)

= T'l’zi,'[xld1(n),...,X,_1d,_,(n),X,,1d,,l(n —1),...,deG(n —1)].

Then using Lemma 5.4, part (2), we see that each column of T’mi,'D,(n) converges ill

distribution to a multivariate normal distribution with mean zero as T —> 90. Similarly,

(5.65) T'1/28(,J'D,(n)

= T'“2 8-1 [X1d1(n),...,X,_1d,_1(n),X,+ld,+l(n—1),...,XGdG(n-1)]

  

= (Pr—“2%'dej(n.))(G—l)x(G-l)
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where i,j=1,...,(g-1),(g+l),..., G, and 11‘ = n ifj < g otherwise n' = n - 1. Then, using

Lemma 5.4, part (3), we see that each element of T'1/28(,J 'D,(n) is asymptotically

normal with mean zero. Finally,

(5.66) T'mD,(n)'D,(n) = (T'mdtfllt )'Xt'delea ))(G-1)x(G—l)

using the definition of D,(n) in (5.47B), where n], ll2 = n or n - 1. But, as T—> 60,

(5-67) dethlt )'Xt 'dejflla ) = di(n1)'(T—lxi 'Xj)[de,-(n2 )1

= 0p(1)

using Lemma 5.1 and (A5. 1). Substituting (5.67) into (5.66), we obtain

(5.68) T'mD,(n)'D,(n) = o,(l)

as T —) 00. Therefore, substituting (5.64), (5.65) and (5.68) into (5.63), we prove that

each element of T’m(AC, — AB,) converges in distribution to a normal distribution with

mean zero asthe sample size T—)oo.

LEMMA 5.6: Both Twig“, and T“1/28(,J(n)'v, converge ill distribution to

multivariate normal distributions with mean zero as the sample size T —> 00.

Proof: Using the definition of v, in (5.7B), we have

(5.69) T“’2x,'v8 = T‘1’2x,'[e, - 2,80,]

= (T"X,'Z)(T"Z' Z)"‘ ~T’U2Z'[a, — 8(,))to,]

= —A,,A;,l -T“’2Z'e)to, +o,(1),
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where we define

(5,70) 71,, = (8,1,...,l,,,_,,—1,>.,,,,,,...,>.,,G )'

with 7.0, for j = 1, g - 1, g + 1, Gdefined in (5.7A). (Note that 5.0, is not an

estimate.) But

—l/2 " __ —l/2 . "
(5.71) T 282,, — vec(T Z 820,)

= r“2 (51,691,, )vec(Z'i-:)

= T“2 ('22,, '81,, )(1G 8 Z')vec(8)

= (i,,'<8IM)-T‘“2(IG ®Z')vec(8)

-> N(O,Q.)

using (A53), where a. = (i0,'®1M)(2®A,,)(ioJJ ®IM) = (i,,'2i,,)-A,,.

Combining (5.69) and (5.71), we see that

-l/2A I

(5.72) T x, v,J —>N(0,Q)

° -1 --1 ~ I ~ -1

WIth Q = A,,An ll. -A,,A,, = (1.0, 220,)-(A,,A,,A,, ).

Similarly, using the expresion for 8“,) (n) in (5.50), we have

(5.73) T'ms(,J(n)'v, = T‘"2 [e(,) —D,(n)]‘v,

_ 1/2 -l/2 I

But

(5.74) T‘1’2a(,'v, —> N(0,Q,)
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using (A5.4).

T-Uzd] (11)le 1v8

T-l/2dg_1 (nyxg—l ng

(5.75) T'mD (n)'v = _ J J

8 g T ll2dg+1(n_l) xg+l V 8

  _ T'de(n —1)'XG'V, J

using the definition of D,(n) in (5.47E). The expression ill (5.75) converges to a

multivariate normal distribution with mean zero because, for any i and 11‘ = n or n- 1,

T'1’2d,(n")'x,'v,J = [T"2d,(n‘)]'-T“x,'[e, — 2,30,]

(using the definition of v, in (5.7B))

= - 1T"2d. (n‘ )1'-T"X: '81.,

(using the definition of X0, in (5.70))

= 1T‘”d.(n‘>1'iA....WA1%, +0, (1)

using (A5.l). Then, according to Lemma 5.1, T‘mdi (n')'X, 'v, converges to a normal

distribution with mean zero.

Substituting (5.74) and (5.75) into (5.73), we prove that T“ma(,)(n)'v, converges

ill distribution to a multivariate normal distribution with mean zero.

THEOREM 5.1: (i) For any g = l, 2, G, both Tm[0,(n)—00,] and

T”2 [i,(n) — 20,] converge ill distribution to multivariate normal distributions with mean

zero.

(ii) T“’[é,(n)-e,,]=(A,,A;,‘A,,)-‘[T*“2x,'1),(n).i.,, +T—“2x,'v,]+o,(1).
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Proof: (i) Applying Lemmas 5.3, 5.5 and 5.6 to (5.56), the result follows immediately.

(ii) Substituting Lemma 5.3 and (5.63) into (5.56), we obtain

1/2 " _

(5.76) Tmfligm 908]

T [xg(n)—A'Og]

_A,,A“Az, 0 "{o T“”i,'D,(n) [90,]

AM, 2 o T’1/28(,J'D,(n)-T'mD,(n)'D,(n) 2.0,

+[ T-1/2X',v, 8]}+°p(1)-

T-1/28(8)(n)lv

Then, using the partitioned inverse rule, we obtain

(5.77) T1’2[0,(n)—00,]=(A,,A;21A,,)‘1[T‘1/2i,'D,(n)-Ao, +T-1’2i,'v,]+o, (1).

We will rewrite (5.77) slightly, as

(5.78) T1/2[é,(n)-90,]

= (T-lx,'x,)-1[T-V2x,'D,(n)20, +T-1’2)“(,'v,]+op (l).

Prermlltiplying (5.78) by (vigor, ), we obtain

(5.79) (T-li,'x,)-TW[é,(n)—eo,]

= T-1/2x,'D,(n)-l,, +T-1’2x8'v, +oJ,(1)
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01'

(5.80) (T-lxg'x,).T1/2d,(n) = T-1/2x,'D,(n).7.0, +T‘1’25(,'v, +oJ, (1)

using the definition of d,(n) in (5.47D). Substituting (5.47E) into (5.80), we obtain

(5.81) (T-lx,'x,)-T1/2d,(n)

= T-lnig'lxldl(n):---axg—ldg—l(n):xg+1dg+l(n _ 1))-":XGdG (ll —1)]A‘Og

+T'1’25(,'v, +o,(l)

. 8-1 G a

= T-1/2X,'{J§1x,d,(n)x,, + JZJXJ-dJ-(n—1)}uo,J-}+T‘1’2X,'v, +o,(l)

J=8+

using the definition of 20, in (5.7A). This can also be rewritten as

(5.82) (T-lx,')"(,)-T1I2d,(n)

g—l A G A

= 2(T‘1X,'XJ-)T"2dJ-(n))t0,- + z (T-lx,'xJ.)T1/2dJ.(n—1)>.O,
j=1

j=g+l

+T—l/2xgovg+op(l)

,_1 A A G a ..
= E(T-txgtxjfltndjwno, +j=§+J(T—IXB'XJ )Tl/sz.(n— 1))to,

+T-l/2Xg'v8 +01) (1)

using the fact that )2ng = (sz,)'xJ. = (PZX,)'(PZXJ.) = 52352,.

Define

' 0 0 0 0

7,02,52,66, 0 0 0

(5.83A) L=T-l 2.03,)? '22, 7.0,,x3'x, 0 0

 y .8. x
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(5.83B)

0 Aolle'xz 7*0132‘1'7‘3 A01,ci—1Z(1'Xo-l )‘01le 9ft;

0 0 2.023X2 'X3 A02,6-1X2'Xc—1 Amoxz 'XG

U = '1‘.1 E . i '

0 0 0 0 )‘0,G—I,GXG—l '26

_0 0 0 0 0 -

Pi] -

a )2, _J ..J ..

(5.83C)X= ,D=T XX

- XG .1

(1101) v1

(5.83D) d(n) = E , V: ‘

dG(n) VG

With this notation, (5.82) for g = 1, ..., G can be expressed in matrix form as

(5.84) D - T1’2d(n) = L - T1’2d(n) + U-T1’2d(n — 1)+ T'l’zi'v + 0p (1).

Solving for T1’2d(n), we obtain

(5.85) T1’2d(n) = (D — L)‘1U-T1’2d(n — 1) +(D — L)‘1 ~T‘1/2X'v + o, (1)

forn =1, 2,

The iteration procedure defined in (5.85), apart from the 0p (1) term, is just the

Gauss-Seidel iteration method (see Varga, 1962). We now wish to show that this iterative

process converges to a limit, say d', and that AV(de') equals the asymptotic variance
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of the usual BSLS estimator of 00 in (5.3). In order to prove these results, we first need

to establish Lemmas 5.7 and 5.8. Define

(5.86A) V = (v1,...,vG) with v,, i = 1, 2, ..., G defined in (5.7B)

(5.86B) c = E(T’18' V) a (c, )G)“,

(5.86C) A = (i,,,...,i,,) with 720,, i = 1, 2, G defined in (5.70).

LEMMA 5.7: (l) —V=8A;

011

(2) C = ispd;

cGG

(3) —C = 2A;

(4) L— D+U = T-lx'm'el, )2.

Proof: (1) Using (5.70) and the definitions of a and 8(,) in (5.4B) and (5.4D), equation

(5.7B) can be rewritten as

(5.87) —v = 810,.

Because (5.87) holds for all g, we can stack the equations together as

(5.88) —V = 8A.

(2) and (3): Because v, = a, — L(8,
 
a“) ), then E(sm 'v, ) = 0 for any i. Therefore

c,- = T‘1E(8,'vJ-) = 0 for i ¢ j. Premultiplying (5.88) by T'le', we get
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(5.89) —T“e'v = T‘le'eA.

Taking expectations ofboth sides of(5.89), we obtain

(5.90) -c = 2A

using (5.86B) and (A5. 1). Equation (5.90) can be rewritten as

(5.91) —2“C = A.

Denoting 2‘1 = (oij )GxG, then oii > 0 for allibecause 2"1 = (oij )6,6 is pd. Comparing

the diagonal elements on both sides of(5.91), we get

(5.92) --o“cii = —1

using (5.70), (5.86C) and the diagonality ofC. Then cii = 1/ oii > 0 for all i.

(4) Using the definitions ofL, D, U, and )2 in (5.83) and A in (5.86C), we can easily

verify that L— D+U = T-lx'(A'eIT)x.

LEMMA 5.8: All the eigenvalues of(D — L)"1 U equal zero.

Proof.

A

x1. cllIT

(5.93) X'(C®I,) =
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CIIIK, x1.

cGGIKO XG.

II
I

0
1

)
5
)

where Ki is the number ofcolumns in X, for i = l, 2, ..., G. According to Lemma 5.7,

part (2), c, > 0 for all i. So we can define

cillzlx,

(5.94) C. =

cgélxo

Then

(5.95) C = C3 .

Using Lemma 5.7, part (4),

(5.96) L - D + U = T-lx'm'el, )i

= T-lx'((—2-IC)'8>IT))‘( (using Lemma 5.7, part (3))

= 44221081, )(2-1 81,)22

= 446212-181”)? (using (5.93))

= -T-lcz)"('(2-l elm?
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using (5.95). Then

(5.97) C:‘(D — L— U)C. = C.[T")('(2'1®IT)5(]C. a M

using (9.96). Because both C. and T“)“('(2‘l ® IT))( are pd, then the matrix M defined

ill (5.97) is also pd. Therefore there exists a nonsingular matrix, say P, such that

(5.98) P‘IMP = lK

where K = 20:, K,.

Suppose x is any eigenvalue ofthe matrix (D — L)”1 U, then it satisfies

(5.99) [xiK —(D—- L)“ U| = 0

where |A| = det(A). Using the facts that |A ~B| = |A| |B| and (D - L) is nonsingular, (5.99)

is equivalent to

(5.100) |x(D—L)- U| = 0,

which is also equivalent to

(5.101) :‘[x(D—L)—U]C. =0
  

C.
  

because ¢ 0. Substituting (5.97) into (5. 101), we get

(5.102) ‘xM+(x-1)C:1UC.. = 0.
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Because |P| =1: 0, (5. 102) is also equivalent to

(5.103) |P“[xM +(x—1)CI1UC.]PI = 0.

Substituting (5.98) into (103), we obtain

(5.104) IxIK +(x— 1)(c.1>)‘l U(C.P)| = 0.

Using the fact that all the eigenvalues ofa strict upper triangular matrix are zero, we

conlude that all the eigenvalues ofU are zero, since U is a strict upper triangular matrx.

Because (C.P)‘1U(C.P) conjugates with U, then all the eigenvahles of (C..P)’1 U(C.P)

are zero. Next we use the facts that ifan H x H matrix Q has eigenvalues p1, ..., on, then

(1) for any scalar a, the eigenvalues ofmatrix orQ are up], ..., con; and (2) for any scalar

or, the eigenvalues ofmatrix (011H +Q) are (or +p1), ..., (a +pH). From this we can

conclude that all the eigenvalues ofthe matrix [xIK +(x —1)(C.P)'1U(C.P)] are equal to

x. Then (5.104) is equivalent to

(5.105) xK = 0

because the determinant ofa matrix equals the product ofits eigenvalues. Solving for x,

we get x = 0 with multiplicity K. Therefore we have proved that all the eigenvalues ofthe

matrix (D— L)‘1U are equal to zero.

Define d’ to be the limit ofthe iterative process

(5.106) Tl/2d(n) = (D— L)-1 U-T1/2d(u — 1)+(1)- L)-1.T-1/2x'v,
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which is the same as (5.85) except for an 0p (1) term Because all ofthe eigenvalues of

(D — L)‘1 U equal zero, d' exists and the iterative process (5. 106) reaches (1" in no more

than K iterations. Furthermore, since (5.85) and (5.106) difi‘er only by an o,(1) term, the

probability that the process (5.85) has a limit (in n) approaches one as T —> co; and the

limit ofthis iterated 12SLS estimator has the same asymptotic distribution as d’. We now

proceed to show that d‘ (and hence the iterated IZSLS estimator) has the same asymptotic

distribution as the 3SLS estimator.

THEOREM 5.2: de‘ —> N(0,W), with w = [A'(2"' 8A; )A]", where

A: diag(A,1,...,A,fi).

Proof. Since (1' is the limit ofthe process (5.106), it satisfies

(5.107) TWd‘ = (D— L)‘1U-T"2d‘ +(D— L)--1 .T-Wx'v.

Solving for de‘, we get

(5.108) TWd' = —(L+U— D)-1-T-1/2x'v

= —[T-15('(A'<8>I,))“(]-1-T-1/25('v,

using Lemma 5.7, part (4). But

(5.109) T-‘x'(A'®1,)5‘( = T1 (A'®IT)
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= [A'®(T"Z'Z)“]-

T"‘xG'z

T"z'xl

T"z'xG

=A'(A'®A;,1)A+o,(1) (using (A5.1))

= —A'(C2“ 8A;)A+o,(1)

(using Lemma 5.7, part (3) and the diagonality ofC)

= —A'(C®IM)(2" 8A;)A +oJ,(l).

Similarly

(5.110) T‘mx'v = T"“2

T'mil'vl 1

-l/2A r

T XG vG

(T—lxl rZ)(T-lZlZ)-l . T—l/2 Z'V]

(T-IXG IZ)(T—lZlZ)—l . T—l/ZZIVG
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A —1 ‘T-1/2Z.V1

1 22

= 5 + 0p ( 1) (using (A5.1))

AGZA'Z',‘ -T‘“’z'vG

= A'(IG ®A;Z‘)-T‘“2 (IG ®Z‘)vec(V)+o,(l)

(using the definition ofv in (5.83D) and V in (5.86A))

= —A'(1G 8A;_,1).T-1/2(1G eZ')vec(sA)+op(l)

(using Lemma 5.7, part (1))

= —A'(IG <8Ag.l )-T“”(Io ®Z')(A'®Ir )vec(8)+°r(1)

= —A'(IG ®A221 )(A'®IM ) 'T-W (16 ® Z')Ve°(8) + 013(1)

—> N(0,Wt)

using (A5.3), where

(5.111) w1 = A'(IG <8A;,§)(A'erM)-(28»A,,).[A'(1G ®A;z‘ )(A'®IM)]'

= A'(A'2A®A;,‘)A

= A'[(—2"C)'2(—2“C)<8>A',1 ]A (using Lemma 5.7, part (3))

= A'(C2-IC®A;,1)A

= A'(C®IM)(2" ®A;,1)(C®IM)A.

Combining (5.108)-(5.111), we obtain

(5.112) de‘ = —[T")“<'(A'®l,)ik)‘l me'v

= [A'((:<81M)(2'1 8>A;,‘)A]‘l .T‘1’2x'v+o,(1)

—> N(0,w‘)

(5.113) w’ =[A'(C®IM)(2‘1<8A‘,‘z‘)A]’l -wl .
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°{[A'(C ®IM)(E_1 ®AZ )1‘11—I }'

= [A'(C®Iu)(2" 94;).«1‘1 -

-A'(C®IM)(2“ 8A;)(ceIM)A.

-{[A'(C GNMXY1 @142 )A1'1}'

= [A'(C®IM)(2_1®A;)A]—l -

~A'(C®IM)(2“ 8A;)(C®IM)A.

-[A'(2" 8A; )(C ®IM )Ar‘.

But

cllIM A21

(5.114) (C®IM )A = '

cGGIM

cllAzl

CGGAZG

A21 c111K

A26

5 A .("3

where Ki = the number ofcolumns ill X,, i = l, 2, ..., G. Substituting (5.114) into

(5.113), we get

(5.115) w‘ =[(AC)'(2'1®A;Z')A]’l ~(AC)'(2“ ®A;)AC-[A'(2“®A;)AC]"1

=[A'(2"@AQMT‘C"-CA'(2“(29A;)AC-C"1[A'(2'1®A;,')A]’1
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=[A'(2“<8>A;21)A]‘1

=w.

Because W = [A'(2‘l (8 A; )A]‘1 is just the asymptotic variance ofthe the usual

3SLS estimator of 00 ill (5.3), theorem 5.2 tells us that the iterated 12SLS estimator

defined in section 5.3 ofthis chapter does indeed have the same asymptotic eficiency as

the usual 3SLS estimator.



CHAPTER 6

CONCLUSION

In this dissertation we have shown how to improve on standard GMM estimators,

given observable extra information. For linear models, and for certain kinds ofnonlinear

models, the additional information consists ofvariables that are uncorrelated with the

instruments but correlated with the error(s) ofthe equation(s) being estimated. We

believe that these results are empirically relevant, notably in the estimation ofrational

expectations models. An obvious further research question is the size ofthe efficiency

gain that can be obtained in actual empirical work. Here the relevant issue is the strength

ofthe correlation between the forecast errors in related series.

We have also considered the case that the extra moment conditions involve

parameters that need to be estimated, and we discussed the 3SLS problem in detail More

generally, we could consider GMM based on the moment conditions

',0 ,0

(6.1) 9=E10(y:,9.)1=E[¢‘(y: °‘ ”)1,
(1’2 (Yt £01,902)

and using the weighting matrix C‘l, where

C11 C12]

(6.2) C = “HIT—>00 Eli'l"°d’T(9017902)(1>T(901’902 )'1 E [C C
21 22

T .. .. ...

= T—l Z¢(Y:ael :92 ) Let 9 = (01.99;). be the

t=l

and where (1).,(91’92) = [¢Tl(91r92 )]

¢r2(91.92 )

corresponding GMM estimates. An alternative to this (standard) GMM treatment is to

consider an iterative procedure, and this is feasible if 4), identifies 001 with 002 given, and

97
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6, identifies 9,, with 0,1 given. Then, iii), and 0, are any initial estimates, we can

consider the GM problems

(6.3A)

(6.3B)

where

(6.4A)

(6.4B)

(6.4C)

(6.4D)

6l = ”Emilie, {¢112(91262 )'C11¢1|2(91562 )}

62 = argmine,{¢2|1(ét.92)'C22¢2|1(9t.92)}

¢1|2(91’éz ) = 1911(91 aéz)" C12C2i¢T2 (61 ’62 )1

¢2|1(éla92)=1¢T2(éla92)"C21C1i¢rl(élaéz)1

C“ =(C11_C12C221C21)—1

C22 = (C22 - C21C1‘11C12 )'1.

This yields new estimates 0,, 0,, and the iterative process can be continued ill an obvious

fashion. We conjecture that the limit ofthis iterative process is asymptotically equivalent

to the GM estimate 0. This result, iftrue, is a considerable generalization ofour results

ofChapter 5 on 3SLS and iterated improved ZSLS.
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