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ABSTRACT

PROCESSOR MANAGEMENT IN 2-D MESH

WORMHOLE—ROUTED MULTICOMPUTERS

By

Dugki Min

Processor management is one of the important services provided by the operat-

ing systems of multicomputers that serve multiple jobs simultaneously. This thesis

investigates several fundamental issues that are important when designing processor

management schemes for 2-D mesh wormhole-routed multicomputers. This research

investigates the effects of job interactions and addresses the performance degrada-

tion due to network contentions when jobs interact. Network contentions may be

crucial to the design of processor allocation strategies that allocates processors to a

job from geometrically dispersed regions. A general contention model is proposed

to study the effects of competing paths on network contention due to the nature of

wormhole routing networks when several paths are overlapped that have different

communication rates. Based on the proposed contention model, we derive analytic

expressions that predict the performance detrimental effects of job interactions in

terms of contention delay. The analytic study of network performance leads us to

investigate the principles that may be applied when developing a scattered alloca-

tion strategy for a 2-D mesh multicomputers. Efficient methods of partitioning and



placing jobs are provided with regard to several communication parameters. We also

investigate the performance effects of irregularity of job shape and size by examining

a dynamic scheduling system that schedules jobs of various shapes from regular shape

to irregular shape. This research outlines an approach for restricting incoming job

request to use partitions from a multicomputer so that the performance advantage of

regular-shaped partition can be utilized. In addition, we propose a new job scheduling

discipline that can achieve low job turnaround time and high system utilization while

not inappropriately favoring small jobs to the detriment of large jobs. The discipline

adapts its scheduling policy to the changes of workload so that it behaves in a FCFS

manner under low loaded conditions, but exploits performance enhancing features of

multiple queue schemes under highly loaded conditions.
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CHAPTER 1

INTRODUCTION

Parallel computing systems in the form of massively parallel computers (MPC) have

become popular for researchers in many scientific fields. Researchers map scientific

computations to parallel programs in an attempt to utilize all the processors of an

MPC effectively. Some computing problems may be able to efficiently utilize all the

processors and memory of an MPG and nearly achieve linear speedups in execu-

tion times. Many other computing problems, however, can only efficiently execute

on a smaller subset of the processors. Due to synchronization and communication

overhead, the computing problems will not improve in performance as the number

of processors allocated to the problems increases. Therefore, in order to utilize the

processors in an MPC efficiently, multiple jobs must be allocated to the MPC simulta-

neously. The multi-user environment greatly complicates the processor management

task of the operating system.

The portion of the operating system for processor management, called the proces-

sor manager, plays the role of allocating the incoming jobs generated by concurrent

users to a limited number of processors. The processor manager is composed of three

components. When incoming jobs arrive at the system, the first component, called

the task assigner, characterizes the request of the jobs by determining the sizes and

shapes of the subpartitions that can accommodate the incoming jobs. The jobs are



passed to the second component. The second component, called job scheduler, has

one or more queues that are dedicated for job scheduling. When the job scheduler

receives a job request from the task assigner, it places the job in one of the schedul-

ing queues. The job scheduler schedules the jobs in the queues according to its job

scheduling discipline and the characteristics of the jobs, until the scheduling is blocked

by a job that cannot be allocated immediately. When a job is scheduled by the job

scheduler, the third component, called the processor allocator, checks the status of the

current system and the possibility that the job request can be allocated. If possible,

the processor allocator allocates the job to the processors that are determined by its

processor allocation strategy.

We concentrate on the aspects of the processor management problem in an MPC in

which the processors are interconnected in a 2-D mesh topology and communicate by

message passing that is based upon wormhole routing. The regular and simple struc-

ture of the 2-D mesh multicomputer can be implemented at a low cost, while many

algorithms implemented for the structure exhibit good performance. In addition, the

performance of the system in terms of the average network latency, throughput, sat-

uration throughput, and hot-spot throughput is better than the other k-ary n-cube

networks that have higher dimensions when the bisection width of each network is

held as a constant [1].

Two types of processor management scheme have been studied for 2-D mesh

wormhole-routed MPC in commercial and research fields, depending on the type

of the employed processor allocation strategy. One management scheme, which has

been employed in the Intel Paragon [2], allows processors from geometrically dispersed

regions of the MP0 to be allocated to a user’s job. Although a user’s job may be

represented logically as a particular geometrical shape, such as a rectangular mesh,

each processor of the logical mesh can be scattered across the 2-D mesh parallel pro-

cessor when the job is allocated to the MPC. One benefit of a scattered processor
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allocation strategy is that it enables a system to maximize the utilization of the MPC.

Since a job can be allocated processors from any region of the MPC, processors will

not remain unused simply because there is not a large enough contiguous region of

processors to allocate to a job. Nevertheless, when jobs from independent users are

scattered across an MPC, the communication generated by one job may negatively

affect the communication delay suffered by a second job. This is because wormhole

routing [3] is the communication technique used by many MPCs. The communication

delay overhead is due to the sharing of network resources such as routers and wires

between interleaved and independent jobs.

An alternative approach for allocating processors to independent jobs would be to

require contiguous allocations. This means that a user’s job is mapped to an MPC in

a manner such that the processors allocated to one job will not have communication

paths overlapped with the communication paths of other jobs. This may be feasible

in an MPC with respect to the processors allocated to the jobs, but two problems

occur. First, contiguous allocation can lead to a significant amount of fragmentation

of processing capacity of the MPC [4, 5, 6]. Fragmentation is the unused processors

of the MPC that do not form contiguous regions that are large enough to serve

users’ job requests. Second, communication contention between independent jobs are

likely to occur even if processors are allocated in contiguous regions. This is because

jobs generate I/O requests to shared disks and other devices that are attached to

servers located at specific locations in the MPC. For example, the servers in the

Intel Paragon are located at the edges of the 2-D mesh. Therefore, communication

contention between jobs will occur when the jobs generate message traffic to the I/O

servers. The contention for I/O servers means that one job can affect the performance

of a second job.



1.1 Network Contention Issues

We study network contention issues that may be critical to the performance of scat-

tered management schemes. Because the network contention causes the degradation

effect on the network performance, the locations of the processors for jobs should be

carefully determined in order to minimize the negative effect.

Under the current release of the Paragon operating system, the performance degra-

dation due to interference between the competing paths has measurable effects only

for messages of large size according to the results in [7]. This is because the speed of

message delivery supported by the operating system is much slower than the network

capacity. However, the performance impact due to network contention is expected

to become more significant under future operating systems. If an operating system

could deliver messages as fast as the network capacity, the negative effects of network

contention increase significantly as the number of competing paths increases. We

believe that future MPCs will have operating systems that can deliver messages at

the bandwidth of the network.

We analyze the performance degradation due to network contention. We propose

a general contention model that is suitable for analyzing the performance degrada-

tion in wormhole—routed multicomputer systems [8]. This model is a representation

of arbitrarily overlapped communication paths of jobs. It has been developed by con—

sidering the network contention problem occurring while multiple jobs are allocated

to the system. Based on the general contention model, we predict the contention

delay due to job interactions in a 2-D mesh wormhole-routed MPC [8, 9]. If a job is

allocated several processors, the internal communication of a job may use paths that

overlap with the communication paths occurring within other jobs. The detrimental

effect of contention caused by interference between jobs has led us to study whether

it is necessary to eliminate inter-job contentions by requiring processor allocations in



contiguous regions of the multicomputer.

Based on this analysis of network performance, we investigate the principles that

may be applied when developing a scattered allocation strategy for a 2-D mesh multi-

computers. By isolating each communication parameter, such as the communication

rate, we study whether the method of partitioning and placing jobs can change the

negative effects of job interactions [10]. For the study, we draw conclusions of how to

place and partition jobs in a 2-D mesh system.

1.2 System Fragmentation Issues

As jobs are allocated, the system may become fragmented. External fragmentation

occurs if a contiguous partition of processors is not available to serve a job even if

the needed number of processors are available. Internal fragmentation occurs if more

processors are allocated to a job than is required for the job’s execution.

Most research for hypercube multicomputers has focused on developing innova-

tive processor allocation strategies that have better ability to recognize subparti-

tions [11, 12, 13, 14]. Due to the special high-dimensional structure of the hypercube,

a hypercube system has a structural advantage that can embed many other structures

into it, but this characteristic of high dimensionality makes it difficult to detect an

available subcube. Compared with the hypercube, the 2-D mesh topology is simple

and straightforward to detect an available submesh. A processor allocation strat-

egy that has complete recognition ability can be developed easily. In general 2-D

mesh systems, however, system fragmentation can be significantly large even though

the employed processor allocation strategy has the ability of complete recognition.

Incoming jobs on a general mesh system could request computing nodes that form

irregular-shaped submeshes, making the unallocated parts of the system to be irreg-

ular. Therefore, in developing a processor management strategies for a general 2—D



mesh multicomputers, the inherent property of irregularity in the size of job request

and the irregularity in the shape of processor allocation should be dealt with in order

to reduce system fragmentation.

We study the performance effects of irregularity of job shape and size on the

performance of processor management strategies. We examine the performance effect

of irregularity by examining a dynamic scheduling system that schedules jobs with

requests that range from regular-shaped partitions to irregular-shaped partition. The

research outlines an approach for restricting incoming job request to use partitions

from a multicomputer so that the performance advantage of regular-shaped partition

is utilized.

In addition, we develop a job scheduling scheme that can achieve significant per-

formance gains by reducing system fragmentation. Since most processor management

schemes have concentrated on approaches for processor allocation, the schemes have

used First-Come-First-Serve (FCFS) as the job scheduling discipline. However, it

has been previously established that job scheduling algorithms for parallel computing

systems can have a large impact on the system utilization and job response time [15].

Schemes that use multiple queues, which reorder the sequence of jobs allocated to the

parallel system, can be very effective in improving the system performance. However,

such non—FCFS schemes have been criticized because they provide improved average

performance by favoring small jobs at the expense of large jobs. In order to achieve

improved performance by means of multiple queue job scheduling schemes without

sacrificing the fairness of FCFS, we propose a new job scheduling discipline that

behaves in a FCFS manner under low loaded conditions, but exploits performance

enhancing features of multiple queue schemes under highly loaded conditions. The

scheme does not inappropriately discriminate against large jobs.



1 .3 Thesis Outline

The thesis is organized as follows. The next chapter presents a brief overview of

research issues and related work on the processor management problem for different

architectural platforms.

Our research related to the network contention issue is given in Chapter 3—

Chapter 5. Chapter 3 describes our model of a 2-D mesh wormhole-routed multi-

computer system and proposes the general contention model, called the heterogeneous

multipath contention model, for analysis. In Chapter 4 we develop expressions for pre-

dicting the contention delay of a job. The detrimental effect of contention caused by

interference within a job has led us to analyze two different kinds of communication

contention. Chapter 5 we analyze the degradation of communication performance

due to multiple interacting jobs in the heterogeneous multipath contention model. A

divide-and-conquer strategy divides the problem into several manageable problems of

computing the contention delay for the heterogeneous 2—path contention model.

The system fragmentation issue is studied in Chapter 7 and Chapter 8. The ef-

fect of job size irregularity is studied in Chapter 7 with regard to the jobs whose

requests vary from regular-shaped partitions to irregular-shaped partitions. In order

to evaluate the effect of irregularity, we examine a group-based job scheduling algo-

rithm, called BWQ-search algorithm, which uses multiple queues for ordering jobs

to be placed on a 2—D mesh multicomputer. In Chapter 8 we propose a new job

scheduling scheme, called the HELM discipline, that adapts its scheduling policy to

the changes of workload. The HELM discipline achieves improved performance by

means of multiple queue job scheduling schemes without sacrificing the fairness of

FCFS.

Future work and concluding remarks are given in Chapter 9.



CHAPTER 2

RESEARCH ISSUES

The rapid progress in the evolution of multicomputer systems focuses the attention

of many researchers on defining and solving new problems. Many innovative strate-

gies for job scheduling and processor allocation have been proposed and compared

for several different architectures, applications, and performance requirements. An

interesting fact is that the foci of the studies have changed depending on the type of

system architecture. ‘

MPC systems have been classified as shared memory systems and distributed

memory systems depending on how processors and memory modules are connected.

Shared memory systems have a global memory shared by all processors. The global

memory reduces the difficulty of programming. Small or medium scale products

are implemented commercially and in research environment [16, 17, 18, 19, 20, 21].

which include Sequent’s Balance 8000, Encore’s Multimax, CRAY-X/MP, BBN’s

Butterfly, Stanford Dash and KSRl. In distributed memory systems, called mul-

ticomputers, each processor has its own memory and can only access its own

private memory. Communications between processors are done by passing mes-

sages through an direct interconnection network. Medium and large scale dis-

tributed memory systems have been developed commercially and in research envi-

ronment [22, 23, 24, 25, 26, 27, 28, 29, 30, 31], which include NCUBE family, Intel
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Paragon, Connection Machine CM-5, IBM’s SP2, MIT J-Machine, Tera Computer

System, Cray T3D, and NEC Cenju-3.

This chapter presents a overview of research issues and related work on the pro-

cessor management problem on the shared memory and distributed memory system

architectures.

2.1 Processor Sharing vs. Processor Partitioning

Processors in the shared memory systems have been treated in the literature, as if

they are elements in a processor pool [32, 33, 34, 35]. In a processor pool processors

can be shared by several ready users (called processor sharing) or can be exclusively

dedicated to an assigned user (called processor partitioning). A research issue is the

design tradeoffs between processor sharing, which may increase processor utilization

at the cost of context switching, and processor partitioning, in which job turnaround

time may be lower than in processor sharing.

Processor sharing scheme can be employed in the situation that the number of

processors is insufficient. In that situation the processor manager should utilize pro-

cessors efficiently by sharing a processor among several processes. Two approaches

of processor sharing have been studied. Dynamic allocation is one approach in which

processors are dynamically allocated to jobs on demand [32, 35]. It assumes that the

number of processors available to each job may vary during the execution in a way

that reflects the dynamic parallelism of the job. If some of the allocated processors

are not needed temporarily, then the processors are allowed to be reallocated to other

waiting jobs at the cost of context switching. Another possible processor’sharing

approach is a static allocation strategy that allocates the processors by ‘time slicing’.

Round—robin is an example. Even though the allocated processors are shared by other

jobs, the number of processors allocated to each job is fixed during its entire execu-
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tion. A dynamic allocation strategy has been compared with several static allocation

strategies in [32].

Processor partitioning scheme is appropriate for the systems that have a sufficient

number of processors. In the systems, processors can be partitioned according to the

requests of each job and dedicated to the job during the entire execution time. ‘Run-

to—completion’ static allocation is a good processor partitioning strategy. This kind

of processor partitioning is called processor clustering, since a number of processors,

called clusters, are partitioned from the processor pool and dedicated to the job during

the entire execution time. The BBN’s Butterfly multiprocessor is an example using

processor clustering [16].

2.2 Basic Principles For Job Scheduling

In a processor pool model, a job can be allocated in any subpartition of the system

without any difference in communication performance. Therefore, the processor allo-

cation strategy for this model is simple; if there are a sufficient number of processors

for the currently scheduled job, then an available subpartition is allocated to the job.

Otherwise, the job should wait until the required number of processors are available.

In contrast, the system performance is mainly restricted by the performance of job

scheduling. Thus, it is worthwhile to know what are the basic principles that affect

the performance of a job scheduling strategy.

One of factors that affect the performance of job scheduling strategies is the sys-

tem workload. Based on whether a priori knowledge of the workload is given while

scheduling, job scheduling strategies have been classified into static scheduling and

dynamic scheduling. A static scheduling assumes that there is a given job list and that

the characteristics of all jobs are known in advance. In contrast, a dynamic schedul-

ing assumes jobs arrive according to a stochastic process and there is no a priori
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knowledge of the characteristics of all jobs to be scheduled. Many researchers have

proposed solutions to static and dynamic scheduling problems for general purpose

multicomputer systems [36, 5, 37, 38, 39, 40] and for hard real-time systems [41, 42].

An interesting study by Majumdar, et al. [33] investigated the fundamental issues

that are important for static and dynamic scheduling on shared memory multipro-

cessors. They addressed several fundamental issues that have important roles in

uniprocessor systems, such as how significant the effect of the characteristics of the

workload is on the performance of job scheduling strategies on multiprocessor systems

and what kind of knowledge about the characteristics of workload is important for

the design of scheduling strategies for a given system. Based on their abstract model

of multiprocessor systems and job scheduling strategies, the research provided basic

principles underlying the performance of job scheduling strategies.

Leutenegger and Vernon [34] examined various job scheduling strategies in deter-

mining which properties of a scheduling strategy are the most significant. According

to their results, strategies that allocate an equal fraction of the processing power

to each job perform better than strategies that allocate processing power unequally.

They also claimed that for lock access synchronization, dividing processing power

equally among all jobs is a more effective property of a scheduling strategy than

the property of minimizing synchronization spin—waiting, unless the demand for syn-

chronization is extremely high. Some heuristic job scheduling algorithms and their

performance analysis can be found in [43, 44, 45, 46, 47].

2.3 Graph Embedding

In distributed memory systems, the graph embedding problem should be considered

in determining the sizes and shapes of the subpartitions that can accommodate the

incoming jobs. The graph embedding problem arises when the dependency structure



9X

Wat

Pap

‘zi

My



12

of a parallel algorithm differs from the processor interconnection of the system or

when the number of processes generated by the algorithm exceeds the number of

processors available. The graph embedding problem is to find a one-to-one mapping

of a graph onto another graph which minimizes a cost function. This problem has

been applied to not only the task assignment problem in a distributed and parallel

processing system [48, 49, 50, 51, 52], but also many fields in computer science, such

as VLSI circuit layout [53, 54, 55], simulating one data structure by another [56, 57],

and simulating one parallel processing architecture by another [58, 59].

The graph embedding problem is significant because the performance of a parallel

system for a job can be affected by the efficiency of the embedding. Several qual-

ity factors have been considered which measure the communication distance between

two communicating processors (the dilation factor), the communication congestion

in the interconnection network (the congestion factor), and the number of extra pro-

cessors used in support of communication between processes (the expansion factor).

A careless embedding may increase the dilation factor, the congestion factor, or the

expansion factor.

2.4 Partition Recognition Ability

The hypercube network topology for distributed memory systems raises a new issue.

A simple regular partitioning scheme is likely to partition the system in a particular

way, such that it is difficult to recognize available partitions. Most of the research

papers on the processor management problem of hypercube systems have proposed

allocation strategies concerning this issue [11, 12, 13, 14].

The system partitioning scheme of hypercube systems typically is regular in order

to utilize the processors efficiently since the hypercube topology itself is regular. The

number of processing nodes is assumed to be 2", where k 2 0 and the shape of
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partitions are assumed to be hypercube. Thus, one research issue is how to partition

the system such that a available subcube of the required size can be recognized quickly

and completely. Complete recognition means that if there are unused subcubes large

enough to cover the job request, the scheme should be able to recognize them.

Many researchers proposed processor allocation strategies for dynamic scheduling

in hypercube multicomputers [15, 11]. The buddy strategy for memory allocation [60]

is a simple approach that is implemented in the NCUBE/six multiprocessor [24]. The

Buddy strategy is optimal for static scheduling, but shows poor recognition ability

for dynamic scheduling [11, 12, 13]. A strategy using a simple gray code, called

SGC strategy, is another simple and statically optimal strategy whose recognition

ability is twice that of the buddy strategy for the dynamic scheduling problem [11].

This strategy does not have complete recognition ability. However, the recognition

ability can be complete by using multiple gray codes. A strategy that has complete

recognition ability by means of multiple gray codes is presented in [11].

Several other processor allocation strategies having complete recognition ability

have been proposed in the literature. The MSS strategy [14] is one. The strategy

employs the concept of a maximal set of subcubes (M88) in order to minimize frag-

mentation. The Tree-Collapsing strategy [13] is also a processor allocation strategy

that has complete recognition ability. The strategy collapses the typical binary tree

representation of a hypercube successively so that the nodes, which form a subcube

that are distant, are logically nearby each other for recognition. Non-cube allocation

strategies have been proposed [12, 61, 62] that can allocate to a job a number of

processors that is not a power of 2.
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2.5 Other Techniques For Cube Allocation

Even if the subcube recognition ability is complete, the performance of processor al-

location strategies can be restricted in hypercube multicomputers due to system frag-

mentation. Several techniques have been investigated in order to alleviate the system

fragmentation in the hypercube multicomputer systems. The scan algorithm [15] and

the lazy scheduling algorithm [63] tried to improve the performance by changing the

order of execution. In [15], Krueger, et al. have compared the roles of processor

allocation and job scheduling for achieving good performance on hypercube comput-

ers. They showed that the choice of the job scheduling algorithm is more important

for the overall performance of the system than the choice of the processor allocation

strategy in hypercube systems.

Chen and Shin [64] have examined the performance improvement to be achieved

by relocating the allocated jobs to compact the system for a large free space. They

proposed a task migration strategy for the gray code allocation strategy [11]. Yu and

Das [65] have proposed another approach called limit allocation that scale down the

request size of an incoming job so that it fits into a fragmented hypercube.

2.6 External Fragmentation

Processor allocation strategies for mesh multicomputers that avoid inter-job con-

tentions have followed a generalization of the traditional binary buddy strategy for

memory management [5, 66]. Using these strategies, partitions allocated to jobs have

a square submesh geometry, with the lengths of the sides of the submesh equal to

2", k 2 0. This restriction of the geometry of the shapes of jobs is not appropriate

when we consider a general mesh system. For a general system, jobs may request

irregular-shaped partitions as well as square-shaped partitions, such that the lengths

of the sides of a partition might not equal 2". Another drawback of a traditional
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binary buddy strategy is that large internal fragmentation occurs if it is used for jobs

with irregular sizes and shapes. Internal fragmentation is the ratio of the number of

the processors that are allocated, but not used to the number of allocated processors.

A general recognition strategy is needed to identify available submeshes of ar-

bitrary sizes at any location in a mesh. One strategy proposed is based on frame

sliding [6]. In this strategy, a submesh is allocated that matches the shape and

size requested by an incoming job. Therefore, internal fragmentation is completely

avoided. As a result of its matching capability, this scheme can be used for general

sizes and shapes. Ding and Bhuyan [67] improved the performance of the FS strategy

by allowing the change of the orientation of incoming jobs. However, due to the irreg-

ular sizes of jobs, it is still difficult to avoid large external fragmentation, which is the

ratio of the number of available processors to the number of processors in the system

when an allocation miss occurs. Addressing the problem of the first-fit allocation

nature of the FS strategy, Zhu [68] has compared a best-fit (BF) strategy based on

certain heuristic with the first-fit (FF) strategy. Their results showed that neither of

FF nor BF can achieve superior performance than the other at all times in a dynamic

workload, and both strategies suffer external fragmentation.

By controlling the location where a submesh is allocated by the processor alloca-

tion strategy, Sharma and Pradhan [69, 70] tried to reduce the external fragmentation.

Their strategy searches free submeshes on the corners of allocated submeshes along

with the corners of the mesh system so as to aggregate allocated processors. This

aggregative allocation clusters the allocated processors, increasing the probability of

having big free partitions and of finding a sufficient submesh to accommodate an

incoming job. Bhattacharya and Tsai [71] attempted to enhance the system per-

formance by an heuristic approach that looks into the queue of waiting jobs. They

argued that the heuristic performance is heavily dependent on the nature of jobs in

the waiting queue, and for a dynamic workload none of the heuristics that do not use
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lookahead knowledge performs superior to the others.

Recently, Liu et al. [7] proposed a non-contiguous processor allocation strategy,

called the multiple buddy strategy. This strategy may allocate processors that are

scattered across the parallel computing system to a job. The authors showed that

the approach worked well, especially on an Intel Paragon because the communication

overhead to send a message on the system was relatively large in comparison to the

bandwidth of the network. Therefore, communication network contention between

messages was not a problem.

2.7 Rectangular Packing Problem

The processor allocation problem in a 2-D mesh can be interpreted as a theoretical

problem, called the rectangular packing problem. The rectangular packing problem

is known to be NP-complete [72]. Researchers have provided several approximation

algorithms for the problem and analyzed them theoretically.

The static processor allocation problem on mesh systems has been considered a

variant of the bin packing problem [73, 74, 75]. Coffman, et al. [73, 74] interpreted the

processor allocation problem on a l-D mesh, i.e.,array, system as a two-dimensional

optimal rectangle packing problem. Li and Cheng [76] applied the same analogy to the

2-D mesh allocation problem, interpreting it as a three-dimensional optimal rectangle

packing problem. The packing problem has been shown to be NP-hard even for 1-D

mesh, i.e.,array, systems that have only two processors [72]. Therefore, researchers

have concentrated on providing near-optimal approximation algorithms that have

polynomial execution time and a reasonably absolute and asymptotic performance

bound [73, 74, 77].

A decision version of the two dimensional optimal rectangle packing problem has

been studied extensively [78, 79, 76]. The decision problem is considered a formal
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model of the system partitioning problem of mesh systems. NP-completeness of this

decision problem has been proved with different constraints; e.g., rectangle packing

concerning orientation [78] and square packing problem in which all rectangles are

squares [79]. Some heuristic polynomial algorithms for the decision version of the

rectangle packing problem have been proposed and analyzed [76].

2.8 Performance Studies of Wormhole Networks

Our analysis of job interactions in the following chapters is associated with the per-

formance studies of a wormhole-routed interconnection network under contention.

Many researchers have investigated the performance of wormhole-routed networks

from different perspectives. Among the many important studies we limit our discus-

sion mainly to the work that we have found to be the most related to the development

of our expressions for evaluating contention.

Dally [1] analyzed latency due to contention and hot-spot throughput of k-ary

n-cube communication networks for various dimensions under the assumption of con-

stant wire bisection. He developed an estimate for contention delay that is similar to

our work. By assuming e-cube routing in a k-ary n-cube network, the latency due to

contention is calculated by multiplying the probability of a collision with the expected

latency due to a collision along the dimensions that a message travels. At each dimen-

sion of the network, the probability that a message skips a dimension is considered

since there are n dimensions the message can travel. To compute the expected waiting

time of a message by collisions he developed a quadratic equation for the expected

waiting time for a collision. He compared measurements from a network simulator to

the latency predicted by his expression. He claimed that his simulation agrees with

the prediction within a few percent until the network approaches saturation.

Another important investigation related to our study was performed by Chittor
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and Enbody [80, 81, 82]. They showed that 2-D/3—D mesh networks provide much

higher performance than popular hypercube networks when the effect of contention is

negligible. However, in the case of large multicomputers that use mesh networks, con-

tention for network channels can be significant. They studied the effect of contention

for a given mapping of parallel tasks on a set of multicomputer nodes. A metric called

the path contention level was introduced as a measure of contention and the quality of

the mapping. They showed that the effect of contention requires an upper bOund on

the rate at which messages can be injected into the network by a node. For a given

communication pattern and mapping they showed how to compute the saturation

point. They analyzed the case of random mapping and showed that random mapping

may not be advisable for large systems having hundreds or thousands of nodes that

use mesh networks.

A performance study of wormhole-routed mesh networks under no contention has

been studied by Adve and Vernon [83]. The authors proposed a closed queuing

network that includes message pipelining and blocking and the asymmetric virtual

channel. By using that model, they examined the performance and the scalability

of 2-D networks in which nodes can make multiple requests before blocking for re-

sponses, as well as for traffic patterns that exhibit nearest-neighbor communication

locality. Seth [84] stochastically evaluated the performance of multicomputers with

several mesh network topologies and switching techniques when the channel width is

constrained.

In order to improve the performance of the wormhole networks under contention

situation, several techniques has been proposed. First, the packetization technique

has been investigated [85]. Packetization breaks long messages into a set of smaller

messages, each of which is transmitted separately. This techniques has advantages of

increasing throughput and a better distribution of message latencies, but the over-

heads of message fragmentation and reassembly are large. Next, to increase the
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network throughput and to avoid the deadlock a technique has been employed that

divides the buffer storage associated with a network channel into several virtual chan-

nels [86, 87]. Virtual channels decouple allocation of buffers from allocation of chan-

nels by providing multiple buffers for each channel in the network. The performance

of wormhole networks using virtual channels has analyzed in [88]. Finally, adaptive

routing can adapt to dynamic changes of network conditions, such as congestion or

the fault of a node [89]. Therefore, a system using an adaptive routing has advantages

of taking another path the following conditions. While message traffic is heavy on

one path, message latency can be reduced by sending messages along the alternate

paths. While a faulty node exists on one path, communication is possible by sending

messages along the alternate paths. Several adaptive routing strategies have been

proposed in [90, 91, 92]. Kim and Chien [93] investigated the effect of all the above

techniques on the performance of wormhole-routed networks under a workload of a

mix of short and long messages. They used an M/G/ 1 queuing model to explore the

performance effect of message size in wormhole routing networks.





CHAPTER 3

A PERFORMANCE STUDY OF

WORMHOLE NETWORK

The communication performance of an interconnection network depends on the

switching technology of the network. In the switching technique called wormhole

routing, which is employed in most currently implemented MPCs, a message’s trans-

mission time is relatively independent of the distance that the message travels under

contention-free conditions [1]. This means that assigning computing nodes to a job

that are scattered across an MPC does not increase the transmission time. However,

contention for the communication bandwidth may significantly increase the delay of

sending messages.

An important research issue of allocating processors in wormhole-routed 2-D mesh

multicomputer systems is to characterize the contentions caused by interactions be-

tween jobs. A performance study of the interactions between jobs can be reduced to

a performance study of the interactions between the communication paths of com-

municating processes that share channels. This is an analysis of the effect of the

communication of one path upon the performance of another path due to wormhole

routing. If communication paths pass through the same channel, then the communi-

cation time experienced by a message on a path can increase due to contention. The

20
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amount of contention depends on the communication traffic rates and the amount of

overlap in the communication paths.

This chapter describes the system and analytic models for a performance study

to analyze the contention delays that occur in contiguous and scattered processor

allocations. The goal of the performance study and our approaches to achieve the

goal are presented as well. The actual analysis of contention delays is presented in

the following two chapters.

3.1 System Model

A job considered in this chapter is composed of several parallel processes which com-

municate with other processes in a logical communication pattern. Each process is

allocated to a processor of the 2-D mesh multicomputer. The 2-D mesh system has a

large number of processing nodes, each node containing a processor, a memory, and

a router. The nodes are interconnected by bidirectional channels in the form of a

2-D mesh or a 2-D torus. The processors communicate by passing messages over the

interconnection network. We assume that a message is a packet, and the terms are

used interchangeably.

In the interconnection network, wormhole routing transmits messages between

processors assigned to each job. A survey of routing techniques for wormhole networks

has been presented by Ni and McKinley [89]. Each message in a wormhole network

is composed of a number of flow control digits called fiits. The header flit controls

the route of the message and the remaining flits follow the header flit in a pipelined

fashion. Once a channel has been acquired by a message, it is reserved for the message.

The channel is released when the last flit of the message is transmitted on the channel.

If the header flit encounters a channel in use by some other message, the header flit is

blocked until the channel is released. When a message is blocked, the remaining flits
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in the pipeline stay in flit buffers along the route. Messages between processors in our

model use a deterministic routing scheme known as XY routing [25, 22]. The XY

routing algorithm sends packets on the X-dimension first and then the Y-dimension.

There are no virtual channels implemented in the model.

The time required to send a message from one node to another through the inter-

connection network is composed of transmission delay and routing delay. Transmis-

sion delay determines the lower bound of the communication delay and is dependent

on the switching technology used. For wormhole routing, the transmission time is

k0 + Ir] * Dist + k2 * (L — 1), where Dist is path length, L is message length and

k0, la; and k2 are system dependent constants. The first term, 161, represents the fixed

network overhead. The second term, k1 * Dist, represents the time for the header flit

to set up a path and the last term, k2 * (L — 1), is the time to pass a message after

a dedicated path is established. Examples of the constant values used in the current

2-D mesh wormhole-routed multicomputer systems can be found in [94, 95].,

Routing delay is divided into two parts: queuing delay and contention delay. Queu-

ing delay is caused by the stochastic arrival pattern of messages to a communication

system that can only serve the messages at a fixed rate. This delay dominates the

communication time as the average rate of message arrivals to the communication

system becomes large. To remove this delay in our model, the rate of message gen-

eration is restricted by a source node. That is, the source node of a message does its

own local computation after the message has been sent to the destination, and the

computation takes at least as long as the message delay to the destination. The idea

of local computation in injecting messages has been employed in other work [96, 81].

Recent work in [97] suggests that this idea of limiting injection rate can actually

improve the performance of network. The average time of local computations by a

source node is called Mean Time Between Sending messages or MTBS. The inverse

of MTBS is called the mean communication rate. At the destination node, packet
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arrivals are taken from the network without any waiting time.

The second source of routing delay is contention. Contention delay occurs when

messages of two or more communication paths attempt to use a single channel at

the same time. Contentions are classified into two classes: internal contention and

external contention. Internal contention occurs when two or more routing paths

within a job try to use a physical channel at the same time. This type of contention

is caused by the rate and pattern of the communication of a job and therefore it is

an inherent property of each job. It can occur in both the contiguous and scattered

allocation models. External contention occurs when two or more routing paths of

different jobs try to use the same physical channel at the same time. When the

wormhole routing mechanism is used with the scattered allocation model, external

contentions cause additional delays in communication time.

For convenience, we call the contention delay seen by a message due to only inter-

nal contentions the internal contention delay of the message. The contention delay

due to a combination of internal contentions and external contentions is called the

(general) contention delay of the message. The internal contention delay added to

the queuing delay and the transmission delay is called the internal communication

delay of the message. The communication delay that is computed by using the gen-

eral contention delay instead of the internal contention delay is called the (general)

communication delay of the message.

3.2 Analytic Model: The Multipath Contention

Model

In this section, our analytic model is proposed to analyze the effect of job interactions

on communication performance. Consider the example illustrated in the part (a)

of Figure 3.1. It is a snapshot of a 6x10 2-D mesh system that allows scattered
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allocation. Currently, three jobs are allocated to the mesh system. Job 2 is assigned

to a contiguous submesh, and Job 1 and Job 3 are assigned to scattered submeshes.

We are interested in how Job 2 interacts with Job 1 and Job 3 when it shares routers

and wires of its allocated processing nodes. The long arrows illustrate an example of

three paths sharing physical channels between the nodes. P1, P2, and P3 belong to

Job 1, Job 2, and Job 3, and the MTBSs of those paths are mtbshmtbsz, and mtbsg,

respectively. The part (b) of the figure redraws the paths in the form of our analytic

model that has a stair-layered pattern.

A contention may occur when messages of P1, P2, or P3 attempt to use a single

channel at the same time. The location at which the contention may occur is called a

contention point, and the paths that compete for a physical channel at the contention

point are called the competing paths. The first contention point at the first com-

munication channel that a message faces when it is injected from a processor to the

network is called starting contention point. The remaining contention points along a ~

communication path are called the intermediate contention points. For example, in

the part (b), the ‘0’ symbols on P2 illustrates the starting contention point due to

P3, and the ‘X’ symbol on P2 illustrates the first intermediate contention point due

to P1.

Let us examine DP“, which is the communication delay of P2. The part (c) of

Figure 3.1 determines the time related to the communication delay. If there are no

contentions, DP2 is merely the transmission delay, which is approximately (d2 + d3 +

L) * T,, where T, is the flit transmission time, (d2 + d3) is the distance of message

passing, and L is the number of flits in a message. If L >> (d2 + d3), then the

transmission delay is approximately L * Tt. However, P2 has possibilities of external

contention in two places. The contention delay at the first contention point of P2 is

called the starting contention delay of P2 and is labeled CI. The next contention may

occur with P1 where messages on P1 are injected into the network. This contention
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(a)

       

 

P1 ( mtbsl )

P2 ( mtbs2 )

( mtbs3 )

Figure 3.1. A snapshot of a 6x10 2—D mesh system with three interacting jobs; A

close-up view of a 3—path contention is shown.
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delay labeled 02 is called an intermediate contention delay of P2. The communication

delay of P2 will be the sum of the transmission delay and the contention delays, which

is approximately Cl + 02 + L * T1.

Our analysis uses a contention model called the multipath contention model to

study performance degradation due to interactions between jobs. The contention

model is a representation of arbitrarily overlapped communication paths of several

jobs. Suppose that the model has m competing paths and let P1,...,Pm be the m

competing paths. The m competing paths can be rearranged by sorting in the order

of the occurrence of the starting contention points such that the m—path contention

model forms a stair-layered pattern, as illustrated in Figure 3.2. Since the transmis-

sion delay is fixed and relatively independent of the distance traveled by a message

and the effect of queuing delay is removed in our model, the only cause of variance

in the delay of a message is due to contention delays. Therefore, without loss of

generality, the paths in the contention model are assumed to be sorted in the order

of the occurrence of the starting contention points.
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3.3 Goal and Approaches

Our goal is to predict D1D1' for all j, which is the communication delay seen by a

message sent through Pj. In our model, DPi is composed of contention delay and

transmission time. The contention delay of DPJ' , which is CID1', can be computed by

accumulating C5131 3 for all i, which are the contention delays at the ith contention point

on Pj. Note that with the exception of Pm, P,- has j contention points. Therefore,

DP1' can be written as follows,

i=j

DP: = L*T.+Zcf”

i=1

where Tt is the flit transmission time, L is the number of flits in a message. Since the

message transmission time is a known constant when the size of the system is known,

what we have to determine are Cf’ , for all i.

To compute 0,?” , two different approaches are presented in the following two chap-

ters. The first one in Chapter 4 employs queuing theory, considering the communi-

cation in a wormhole-routed network a stochastic model. This approach is simple for

deriving formulas, but it is appropriate only for the multipath contention model in

which all paths have the same MTBS. Thus, this approach may be used to compute

the internal contention delay of a job that is allocated in a contiguous region. In

contrast, the second approach in Chapter 5 is more complex to derive formulas, but

it can be applied to general contention model whose competing paths have different

MTBSs. This approach uses a divide-and-conquer strategy that divide the mulitpath

contention model into manageable several 2-path contention models and combines

them.





CHAPTER 4

ANALYSIS OF INTERNAL

CONTENTION DELAY

As a first attempt to examine the interference and detrimental effect that can occur

when multiple jobs share communication bandwidth on a MPC, we apply queuing

theory to develop a set of formulas for evaluating internal contention delay of commu-

nication paths in a wormhole network. The detrimental effect of contention caused

by interference between competing paths has led us to analyze two different kinds of

communication contention. As described in the previous chapter, starting contention

occurs when a processor attempts to access the network at the first hop on its route

from the source to destination. Intermediate contention is the contention facing a

communication path as the message arrives at intermediate nodes on a path. The

starting contention of a path will increase if the processes on the path are allocated

to processors of the multicomputer that is internal to the other communication paths

that occupy surrounding processors. Conversely, the intermediate contention of a job

increases if the processes of the job are allocated to nodes that are dispersed across

the multicomputer and around processors allocated to other paths. The evaluation of

starting and intermediate contention may provide valuable insight on how a processor

allocation strategy should assign jobs to submeshes.
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We develop formulas for evaluating starting and intermediate contention that a

job faces without regard to the interactions with the other jobs. They are based on

a stochastic model of communication in a wormhole-routed network. This formula

works for a wide range of communication traffic rates, which includes rates that go

beyond a saturation point. This analytic study enables us to analyze internal con-

tention delays of a job that have a complicated communication pattern. We compare

the evaluation of our formulas to a simulation of the communication network and show

that our analysis yields very good results for predicting contention within wormhole

networks.

The rest of this chapter is organized as follows. Section 4.1 describes the ana-

lytic model on which we analyze the contention delay within a job in Section 4.2.

Concluding remarks are given in Section 4.4.

4.1 The Homogeneous Multipath Contention

Model

There are two parameters in the multipath contention model that affect the utilization

of a shared channel: the number of competing paths and the message communication

rate. By restricting each path to have the same message communication rate, we

can make a specific multipath contention model called the homogeneous multipath

contention model. The analysis of the homogeneous mulitpath contention model

provides a way to predict the internal contention delay seen by a message in a job.

Figure 4.1 illustrates an instance of the homogeneous multipath contention model

that has five layers. The ‘0’ symbols represent starting contention points and the

‘X’ symbols represent intermediate contention points. To analyze the homogeneous

multipath contention model, we define the following notations for convenience. The

notations are illustrated by using the middle path.
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0 PW; represents a path that encounters d competing paths at its starting channel

and has u intermediate contention points. For a given path P, u is the number

of paths stair-layered above the path P and d is the number of paths stair-

layered below the path P. For example in Figure 4.1, PM is the top path, P43

is the bottom path and P2,; is the third path from the top.

0 CP,-P is the ith contention point on path P. Figure 4.1 shows all contention

points on the path P”.

0 Fr? is the probability that a contention occurs at CP,” . This is the contention

probability, which is equal to the channel utilization of paths that compete with

P.

P
0 Ct? is the mean contention delay at CPt-P. Cimam,- represents a maximum

expectation of Ctr.

o CP"'4 is the mean contention delay of a message sent on path PM]. It is computed

by adding all contention delays at each contention point on PM (i.e. 22:: Pr:D =1:

Pu“; P
Ctr). CmamPu'd is a maximum expectation of C . Cmax M is composed of

Cmazspu" (the maximum expectation of the starting contention delay) and

Cmaa:[P“v“ (the maximum expectation of the intermediate contention delay).

0 DP“ is the mean communication delay of a message sent on path PM; and

Punt.
is the sum of the transmission delay and the contention delay, C In our

communication mode], the transmission delay is a constant, L at T, where L

P

is message length and T, is flit transmission time. Dmax "'4 is a maximum

expectation of DP“.

0 MTBS is the mean time between the sending of a message.
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0 AP“ is the mean message arrival rate of PM. Note that due to the assumption

Pu,d
of flow control, AP“ is not constant, but a function of D . For convenience,

we use And.

0 A?“ is the mean message arrival rate at the starting channel of PM].

0 A22; represents the mean message arrival rate at the kth intermediate channel

Of Pug.

4.2 Analysis

Consider a path, P, that has It contention points including the starting contention

point. The expected contention delay of a message sent through path P can be

computed by adding the expected contention delays at the contention points on the

path. The expected contention delay at the ith contention point on P, Cf, is given

by multiplying the probability of a contention at the point, Pr? by th, which

is the expected contention delay when the contention has occurred. The expected

communication time of the path P, DP, can be written as follows:

i=1:

DP:L*Tt+ZPT,P*th (4.1)

i=1

The probability of contention at the ith contention point of P can be interpreted

as the probability that the channel is used by the competing paths. To compute

this probability, we must know the number of P’s competing paths at the contention

point. By observing the Figure 4.1, we recognize that the number of competing paths

at the starting contention point, called the starting contention level, can be larger than

one. The number of competing paths at any intermediate contention point, called

intermediate contention level, is always one. Therefore, we decompose the summation

that includes th into the starting contention delay and the intermediate contention
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delay.

4.2.1 Intermediate Contention Delay

Figure 4.2 illustrates how to compute the intermediate contention probability and

delay for the path, P23, using the five layer communication model of Figure 4.1. First

we concentrate on the second contention point of path P2,; which we call CPI”.

Since CPzpz'2 is the first intermediate contention point of path P23, CP;2'2 is named

CP521”)2 . It has only one competing path, P13. To compute the contention probability

at CPET)” due to P13, which is called Prfff) , we evaluate the utilization of CP1P"3 due

to P13. We can compute Prfil”) by approximating the utilization by referring to a

simple M/M/1 queueing model that uses the channel capacity at CP1P1 ’3 as the server.‘

Message arrivals are generated by P13 as shown in the small box (a) of Figure 4.2.

The mean arrival rate, A?” , is the inverse of the mean inter-arrival time that depends

on the mean communication time of the messages generated through P13. In fact we

do not know the mean communication time, DP1'3. Instead, we approximate DP1-3 to

P1
the expected maximum communication time, Dmax 3, as the maximum bound of

the communication time. Suppose we know DmazP13. Then Afl'a is given as follows:

Af” = 1/(MTBS + Dmame) = 11,3 (4.2)

The mean service rate, pf” , depends on the mean service rates of the other con-

tention points on P13 due to wormhole routing. If a message header is blocked at one

of the later contention points, then the entire flit stream is blocked. Therefore, the

service time equals the mean communication time of P13, which is DP1’3. If we use

 

‘The queueing model is only an approximation of the system. We evaluate the quality of the

approximation when we later compare it to a simulation model.
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3

DmaxP1’3 as a estimate of DP1'3, then pf" is computed as

pf” = 1/DmaxP1-3 2 111,3 (4.3)

Therefore, by means of queueing theory, we can approximate the channel utilization

of GP}??? due to P13 by dividing A?" by pf”. That is

P P P

Prlfii = ’\11'3//‘11'3 = Ans/Ills (4.4)

We find the probability of contention at the other intermediate contention points of

path P2,; in a similar manner.

Next, we need to compute the expected delay at an intermediate contention point,

which is the term Ctr of Equation 4.1. When a contention occurs at CPI??? with

Prffi’), the expected maximum contention delay is the expected maximum channel

reservation time of the conflicting message on P13. In this case, however, the channel

has been reserved by the message and therefore the other competing paths fail to

acquire the channel. We do not need to consider P23, P3,1 and P”. Therefore, the

contention delay at the first intermediate contention point on path P23 is Ctfa”), which

equals Dma$P1v°, the maximum delay on a path that has one competing channel above

it in the stair-layered pattern and no competing paths below it. DmaxP1v° is a value

that we can compute. It is computed by adding the transmission delay of Pm, which

is L * Tt, with the expected maximum contention delay of Pop, which is L * Tt. Note

that when a contention occurs with the path PM at Cf” , the channel is reserved for

the maximum time, which is L at T,.

We can generalize the computation of the expected maximum contention delay

caused by u intermediate contention points on PM; in a model with basic communi-

cation pattern of lv layers, where lv = u + d + 1. Let Cmaxf‘“ be the sum of the
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d

expected maximum intermediate contention delays. Then Cmamf'“ is computed as

follows:

k=u

Pu, Pu,

= 2(Prmc‘)’ =1: Ctmci)

k=1

P
CmaxI“

k=u

= ZUk—uv—k/flk—uu—k) * Dmawpk"’°

lr=1

where Ak-lJv-k = 1/(MTBS + Dmaxpk-LW-k)

and uk_1,1v_k = l/DmaxP*""‘”"' (4.5)

To verify the formula, we simulated the basic communication model of Figure 4.1

while varying the number of layers. We used the Multisim [98] simulation package for

modeling wormhole-routed multicomputer networks, which is based on CSIM [99]. For

our simulation study, we assumed that the communication bandwidth of the wormhole

network requires 0.05 psec to transmit each flit of a message. Since the contention—

free transmission time in the wormhole network is assumed to be a constant, we set

the length of a message transmitted in the network to a large value, 500 flits. This

means that the transmission delay of a message is approximately 25 psec regardless

of the distance traveled. The simulation results are represented by the solid plots and

the analytic results are done by the dotted plots.

Figure 4.3 compares the prediction using Equation 4.5 with the simulation results.

Each plot in the figure specifies the number of levels in the stair-layered communica-

tion pattern. The vertical axis represents the communication delay and the horizontal

axis represents the MTBS of messages. Our formula does a good job of predicting the

maximum bound of intermediate contention delay for the entire range of MTBS, which

includes the rates when saturation occurs. Note that the estimation of prediction ob-

tained from Equation 4.5 (the plots labeled “prediction” in Figure 4.3) compares very

well with the simulation results when MTBS is very large and very small. This is
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Figure 4.3. The Maximum Intermediate Contention Delay: Cmaxf”.

because at these values DmarPhlJv-k is a very good estimate of DPk-lvlv-k. The es-

timate is not as accurate at intermediate values of MTBS, but nevertheless provides

a good bound for the intermediate contention delay.

4.2.2 Starting Contention Delay

The number of competing paths at a starting channel can be larger than one. To

compute the channel utilization of the starting competing paths, we cannot. use the

M/M/1 queueing model directly. We must use a queueing model that has multiple

input sources. Assume there are n competing paths. Let S,- be the random variable

of the message injection rate for ith path and let As, be the mean value of 5;. Then,

the message injection rate at the starting channel of the path is 2le 5;. If the ith

path generates messages according to a Poisson arrival process, we can prove that

2;, 5'.- also follows an Poisson process whose mean value is 2;, A3, by using the

moment generating function technique [100]. This is an approximation to reduce the

multiple input queueing model to a M/M/l queueing model. The validity of this
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approximation is verified by the simulation results in Section 4.3.

Let us again consider the example illustrated in Figure 4.1. P23 has two competing

paths at its starting channel, P3,1 and P44), as shown in Figure 4.2. The mean arrival

rate at the channel by P31 is same as the mean arrival rate of P3,1 which is A3,].

Note that all mean arrival rates at each contention point on P3,1 are equivalent to

A3,] because the routing technology is assumed to be wormhole routed. Similarly the

mean arrival rate at the channel by P43 is Aw. Therefore the combined mean arrival

rate at the channel by P3,1 and P43 is

AP” — A A
s — 3.1 + 4,0 (4.6)

where Aux! = 1 /(MTBS + DmaccPM). The mean service time for a message at the

channel server is

P

#52'2 = #3.0 (4-7)

2

where 113,0 2: 1/DmaxP3»°. Note that ”1532’ is neither #3,“ 114,0 nor a combination of

two, but 113,0. These rates are shown in the small box (b) of Figure 4.2. Once A?”

2and #15’2, are provided, we can easily compute the contention probability at CF?”2

by dividing Afl'a by pf”, that is

Pr?” = Ate/u?“ = 0.1+ mm...) (4.8)

If a contention occurs at CP‘?’2 by a message sent through one of the competing

paths, the channel is reserved by the message. The expected maximum reservation

time is the expected maximum communication time of a message on P2,; when no

132,0
contention occurs at the starting channel, which is Dmaz . By multiplying this

delay by the contention probability, we can predict the maximum contention delay at

P O . Pu

CPS”2 on P23, Wthl’l lS Ctmams 'd.
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In general, the expected maximum contention delay caused by d competing paths

at the starting channel of PW; in the basic communication model with lv layers is

Cmaxgm", which is computed as follows. Note that lv = u + d + 1.

P P P
Cmaats'“ = Prs“"’*Ctma:cS‘"

=u+d

= ( Z Ak,lv—k—l/I1u+1,0)*Dmaxup

=u+l

where Ak’lv-k_1 = I/(MTBS + Dmaxk,l.,_k_1)

d

k=u+l,...,u+d

and #u+1,o = l/Dmaxp“+"° (4.9)

It is worthwhile to explain how to solve Equations 4.5 and 4.9. Notice that Equa-

tion 4.9 uses Equation 4.5 to compute the Dmax’s and Equation 4.5 uses Equation 4.9

to compute the A’s and u’s. We can solve the equations by a numerical method of

convergence. If we use AF”, and up”) instead of Ak_1,;.,_k and ,uk-1,1v_k respectively,

then the equations can be computed in backward fashion by starting the summation

when k=1. By using this solution as a starting point, we can converge to the correct

solution by iteratively solving the two equations based on the previous solution.

Figure 4.4 show the starting contention delays as a function of MTBS of messages

for our basic communication model as the number of layers varies. The figures com-

pare the prediction of starting contention delay due to our developed formula and the

. . P
Slmulatlon results of Cmascs""’. The top and bottom figures respectively show the

simulation and prediction results by overlapping the lines for the model with lv 2

l, 3 or 13. The trend of the plots of prediction is very similar to that of the plots

of simulation for all lo and for the entire range of MTBS. In the model of thirteen

levels, contention delay is very high for small values of MTBS until MTBS is less than

300. Beyond MTBS=300, the contention delay decreases slowly. This tendency gives

us insight of how internal contention within a jobs effects its performance and how
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independent jobs executing on a multicomputer can affect the performance of each

other. If one job uses processors that are external to the processors of another job,

then the messages between processors of the external job will pass through the paths

used by the internal job. The performance degradation experienced by the internal

job due to the contention caused by the external job’s messages can be significantly

increased as the MTBS experienced by the internal job decreases.

4.3 Results

In order to verify the analysis of our homogeneous multipath contention model, we

compare our analytic results with a simulation model for several configurations. For

simulations, We used the same simulator as before.

4.3.1 Contention Delay of a Path

We can compute the expected maximum contention delay of a path by adding the

two formulas for the starting contention delay and for the intermediate contention

delay from Equations 4.5 and 4.9. Therefore,

CmarP“"‘ = Cmaxs‘“ +Cmam1""’

_ km” Ala—Ivk- 1 “A1,-11%,, P_

— ( Z —)**,DuO +:—*Dmaz " "0 (4.10)

k=u+1 flu+10 k-1 ,uk— 1,lv-lc

The average contention behavior of the basic communication pattern can be ob-

tained if we average the expected maximum contention delays of each paths as follows:

k=lv-1 Pkl-k—

P_ k=0 Cmarc v" 1

iv

 
Cmaa: (4.11)

Figure 4.5 shows the average behavior of our stair-layered communication pattern
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by varying the number of paths. Our predictions follow the simulated average con—

tention delays over the entire range of MTBS, representing their maximum bounds.

Note how the predicted values of contention delay compares with the values obtained

through simulation. Equation 4.10 provides an excellent basis for evaluating con-

tention within a job on a multicomputer using wormhole routing. It can be used as a

basis for evaluating contention between independent jobs executing on a wormhole-

routed multicomputer.

4.3.2 Internal Contention Delay of a Matrix Transpose Pat-

tern

We apply our formula to a more complicated example, called the matrix transpose

communication pattern. This communication pattern illustrated in Figure 4.6 with

4-by-4 matrix has been used by Chittor and Enbody [101]. In this pattern, a subset

of nodes are actively sending messages. Only the nodes on the diagonal do not send

messages. Each active node has a related node with which it exchanges messages
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where

(U) = (ICL. SCL)

 
Figure 4.6. Transpose Pattern.

repeatedly. The communicating pairs of nodes using the matrix-transpose pattern

are specified as

Nodem- +—> Node,”-

where Node“ indicates the node in the submesh at the kth row and lth column. The

specification assumes there are n rows and 77. columns assigned to the job, with rows

and columns numbered from 0. ..n — 1. The symbol 4——> indicates bi-directional

communication. This pattern has a high potential for communication contention.

Every message generated by the job will use a path that is shared by other pairs of

processors in the job. For convenience, we will refer to the matrix-transpose pattern

simply as the transpose pattern.

To compute the expected maximum contention delay of a pattern, first we have

to know the average intermediate contention level (ICL) and the average starting

contention level (SCL) of the pattern. The average ICL can be calculated as follows:

i=N

ICLpattern = (Z ICLP‘)/N (4.12)

i=1

where N is the number of paths in the pattern and P,- is the ith path. Similarly, the
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average 5'CL of a pattern is

i=N

SCL”““"" = (Z SCLP‘)/N (4.13)
i=1

Once we evaluate the ICLpatte’" and SCLpattem, then the expected maximum

contention delay can be evaluated by using Equation 4.11. For example, the 4-by-

4 transpose pattern displayed in Figure 4.6 has 12 paths. The pair of numbers at

the beginning of each path indicates the ICL and SCL of the path. Therefore the

average ICL and SCL of 4—by-4 transpose pattern are both 0.67 by the Equations 4.12

and 4.13.

Since this result is not an integer, the maximum expected valued of contention

delay, Cmax4’4t'an‘po”, can be calculated by an interpolation as follows:

k=0

Cmaxllzultranspose = Z CTRGIBP'm—k—l

k=0

k=2 k:0

+ 0.67 =1: (2 Cmach"'2"‘ — Z Cmaxpk'1'k“) (4.14)

k=0k=0

That is, we interpolate between the case when ICLpatte'" = SCLpatter” = 0

and ICLpattc'” = SCL"°“°"" = 1. Note that the basic stair-layered pattern has

5CLP““°"" = ICLp‘m‘m = 0 when there is one layer and SCLpat‘e'" = ICLpatte'” = 1

when there are three layers. The term, 2::0 CmaxP'hl-k-1 , represents Cmaxbmclmmm

when ICL = SCL = 0, which implies that the number of layers, lv, is one. The term,

[:3 CmaxP*-2-", represents Cmarba‘wamm when ICL = SCL = 1, which implies

lv is three.

Figure 4.7 shows an evaluation of Equation 4.14 for the transpose pattern in

comparison to values of contention delay obtained by simulation. In addition, we

evaluate the contention delays from our formula and simulation for transpose patterns
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of larger submeshes: 6-by-6 and 12-by-12. The average ICL and SCL of a 6—by-6

transpose pattern are 1.3. For a 12—by—12 transpose pattern the average ICL and SCL

are 3.3. Interpolation was used to calculate the contention delays for both patterns.

Notice that how well our formulas bound the contention delays found by simulation,

and that our formulas provide a very good means for predicting contention for this

complex communication pattern.

4.4 Summary

We examined the interactions that occur within a job. We used queueing theory to

develop a set of formulas for evaluating internal contention delay of communication

paths in a wormhole network. The expected internal contention delay at the jth con-

tention point on ith path was computed by multiplying the probability of a contention

at the contention point by the expected contention delay when the contention occurs.

The probability of contention with a path can be interpreted as the probability that

the channel is used by other competing paths. This probability was estimated by
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means of queueing theory. An interesting technique applied in the computation of

the contention delay is the separation of the calculation of the expected contention

delay at the first starting contention point on a path from the calculation of delay at

the subsequent intermediate contention points.

We proposed two metrics that can be used when one wants to measure internal and

external contentions between jobs in a multicomputer. These metrics are called the

starting contention level and intermediate contention level. Based on the metrics, the

internal contention delays of a stair-layered pattern and a complex transpose pattern

were predicted and verified by means of simulation. According to the results, as the

starting contention level increases, the communication increases for a wide range of

communication rates. The amount of increase in communication delay depends on

the rate of communication as well as the contention delays facing the external paths

that contend at the starting point. Nevertheless, the detrimental delays due to the

intermediate contention level primarily occurs only at high rates of communication.
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CHAPTER 5

ANALYSIS OF GENERAL

CONTENTION DELAY

This chapter provides an analysis of job interactions to predict the contention delay

that can occur for a generalized model of job interactions in a 2-D mesh wormhole-

routed multicomputer system. The general job interaction model, which is called

the heterogeneous multipath contention model, is a representation of arbitrarily over-

lapped communication paths of jobs that have different message injection rates and

individual communication patterns. Based on this model, we analyze the degrada-

tion of communication performance due to multiple interacting jobs in a 2-D mesh

wormhole-routed multicomputer system. We compute the contention delay seen by a

message on a path in the heterogeneous multipath contention model. A divide-and-

conquer strategy divides the problem into several manageable problems of computing

the contention delay for the heterogeneous 2-path contention model.

The rest of this chapter is organized as follows. The heterogeneous multipath

contention model and our strategy to analyze the model are presented in Section 5.1

and Section 5.2. Section 5.3 analyzes the heterogeneous two-path contention model,

which is used for the analysis of the heterogeneous multipath contention model. Our

approach and expressions for predicting the general contention delay due to job inter-
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action are presented in Section 5.4. Section 5.5 compares the results of our analysis

with simulation. Concluding remarks are given in Section 5.6.

5.1 The Heterogeneous Multipath Contention

Model

Our analysis uses a contention model called the heterogeneous multipath contention

model to study performance degradation due to interactions of several independent

jobs. The contention model is a representation of arbitrarily overlapped communi-

cation paths of different jobs that have different MTBSs. Suppose that the model

has m competing paths that have independent MTBSs, where m 2 2. Let P1,...,Pm

be the m independent competing paths and mtbsl,...,mtbsm be their MTBSs, respec-

tively. Without loss of generality, the paths in the contention model are assumed to

be sorted in the order of the occurrence of the starting contention points, as done in

Section 3.3. Figure 5.1 is an illustration of a heterogeneous m-path competing model

for our analysis.

Our goal is to predict DP1' for all j, which is the communication delay seen by

a message sent through Pj. In our model, DP1' is composed of contention delay and

transmission time. The contention delay of DP1', which is CPI, can be computed

by accumulating Cf’s for all i, which are the contention delays occurred at the ith

contention point on Pj. Note that with the exception of Pm, P,- has j contention

points. Therefore, DP1' can be written as follows,

i=j

DP: =L*T.+ZC,-P’

i=1

where T: is the flit transmission time, L is the number of flits in a message. Since the

message transmission time is a known constant when the size of the system is known,
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Figure 5.1. The heterogeneous m-path contention model.

what we have to determine are Cip’ , for all i. The rest of this chapter develops the

formula to compute Cf,” and DPJ.

Before proceeding further with the analysis of the heterogeneous m-path con-

tention model, we define the following notation for convenience.

0 P1,. . . ,Pm are the m independent competing paths in the system, whose MTBSs

are mtbsl, mtbsg, ..., mtbsm, respectively. As illustrated in Figure 5.1, P,- is

assumed to be located at a higher layer than Pk, where k 2 j + 1.

o S,- is the entrance channel of P.- and is called stage i. The stages are numbered

from 1 to m in the reverse direction that the message is sent. 52-1 is the stage

of the next possible contention after 3;. Between 5.- and S-_1, there may be

channels that have no contention points. Note that a model with m-paths has

m stages.

0 D" is the transmission delay for a message in the model. It is a constant

(= L :1: T,) in our model.
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o Cg." is the contention delay at 5,- on P1,. C951. is the summation of the contention

delays from 5.- to 5,- on P1,, including the contention delays at 5; and 5,.

0 D3}, is the communication delay between 5,- and the destination node on Pk.

It includes Cg“. Note that D’s}, is Dt. for all k. Thus, Dgf’d = C351 + D",

Pk _ PI: PI:
and C535,.“ — D “d - Ds,,d-

o T5,,p, represents the mean waiting time between two successive messages passing

through 5,- on Pj. Note that rshp, is mtbs,.

o Ashpj- is the mean message arrival rates on P, at 5;, where 1 S i S j S m.

5.2 The Divide-And-Conquer Strategy

This section presents a divide-and-conquer strategy for predicting the communication

delay seen by a message on P], a path in the heterogeneous m-path contention model.

Consider P, of Figure 5.1. The number of competing paths of P,- at its starting

contention point can be larger than one, but the number of competing paths of P,-

at each subsequent intermediate contention point is just one. This is the reason that

we compute the starting contention delay separately from the subsequent contention

delays. If the several starting competing paths of P, (i.e., Pj+1,...,Pm) can be

reduced to a single competing path, called Q, that produces a similar amount of

contention delay as the original competing paths, then the contention delay seen by

a message on Pj can be computed, as in Figure 5.2, by adding the contention delays

at the X-marked contention points of the reduced model.Consequently, the problem

of computing the contention delay seen by a message on a path in the heterogeneous

multipath contention model can be solved by dividing the problem into several smaller

problems, each is the computation of the contention delay in a heterogeneous 2-path

contention model. To obtain the contention delay on Pj, the contention delays of the
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Figure 5.2. The reduced contention model for Pg.

smaller problems are simply added.

The computation of starting or intermediate contention delay in a heterogeneous

2-path contention model is not trivial if the 2-path model is the part of a heteroge~

neous m-path contention model; the computation for the 2-path contention model

requires several parameter values that could be obtained when computing the m-

path contention model. This problem is resolved iteratively as follows. Based on the

parameter values obtained at the (n — l)th iteration, for all P,- the nth iteration com-

putes DP1(n)s,,d, and C(n)? stage by stage from 51 to 5m in the backward direction.

These values are again used for the (n + l)th iteration. The iterative computation

proceeds until steady state values are reached for C(n)? When the iteration reaches

steady state, the communication delay seen by a message on P,- is obtained by adding

the contention delays at all stages along the path. Computation in the forward di-

rection is impossible because the contention delay at 5,- is effected by contentions

that occur at 5;, for all k greater than i. To construct the basis of the first iteration,

the initial iteration computes D1DJ(0)3,- ,d, and C(0)? stage by stage, by ignoring all

starting contentions but including intermediate contentions.

Section 5.3 presents the detailed analysis and formula to predict the contention

delay in a heterogeneous 2-path contention model. Based on Section 5.3, Section 5.4

analyzes the starting and intermediate contention delay on P,- in the heterogeneous
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m-path contention model at stage i of the nth iteration, assuming that D(n — 1):],d

and C(n — 1):: are known at the (n —— l)th iteration, for all 1 _<_ i Sj S m.

5.3 Analysis of the Heterogeneous 2-Path Con-

tention Model

This section describes the analysis of the contention delay in a heterogeneous 2-path

model as a stand alone model, and not as a part of a heterogeneous m-path contention

model. The method in which the derived formula is applied to a heterogeneous m-path

contention model is discussed. As explained previously, the analysis in this section is a

building block for analyzing contention delays in a heterogeneous m-path contention

model. To verify our analysis of the heterogeneous 2-path contention model, we

compared our analytical results with a simulation model for several configurations of

contention.

5.3.1 Analysis

Suppose that a channel has two competing paths as illustrated in Figure 5.3. Let us

name the upper path P.- and the lower path Pj. Both paths have different MTBSs,

mtbs; and mtbsj. We assume that there is only one contention point between the

two paths, and it is the first contention point for both paths. The channel where the

contention occurs is called H. After the contention point, both paths have their own

remaining communication delays, rd,- and rdj, which are known constants.

Let T, and T,- be the random variables that represent the local computation times

Pk
between successwe messages at the source nodes of both paths, and let Cermtbswmb,’ ,

or simply Cexk, be the random variable of the external contention delay on P). (k

is either i or j) while MTBSs of P,- and P,- are mtbs; and mtbsj. Then, the real
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Figure 5.3. Heterogeneous 2-path contention model.

communication delay on P1, is Cerk+ rdk. If mtbs; is equal to mtbsj, then the 2-path

contention model is reduced to a two-layer stair-layered communication model, which

was proposed in [102]. Thus, we can employ a queuing model as an approximate

analytic model to predict the external contention delays in the worst case. However,

the queuing approach does not consider the difference between MTBSs of the inde-

pendent paths, and thus provides an inaccurate estimate of the external contention

delay. This section presents a stochastic approach for developing a prediction formula

of the external contention delay on Pk.

The expectation of Cea';c can be computed by summing the conditional expec-

tations of Ceanc for all possible conditions that could be made by the relationship

between (T,- and Ti) and (rd,- and rdj). All the possible cases are the following:

Case 1: Tg<rdj and Tj<rd; Case 2: Tg<rdj andeZrd;

Case 3: T.- 2 rd,- and T, < rd,- Case 4: T,- 2 rd,- and T,- 2 rd,-

and the expectation of the external contention delay on Pk is

4

E[Cexk] = z Pr{casen} =1: E[C'ea:;c | casen] (5.1)

n=l

where k is either i or j.

The following subsections discuss how to compute the probability and the condi-

tional expectation for each case.
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Figure 5.4. An illustration of Case 1.

Case 1

The probability of case 1 is computed as follows:

PT{CGS€1} : P'I'{T,' < de and Tj < ng}

= Pr{T.- < rdj} Pr{T_,- < rdg}, since T,- and T,- are independent (5.2)

To compute the conditional expectation of the external contention delay on P.- due

to P,- under case 1, it is worthwhile to examine an instance of the case as illustrated

in Figure 5.4. Since T.- and T, are less than rd,- and rd,- respectively, this instance

will repeat for the entire overlapping period between P.- and Pj even if T.- and T,- are

random variables. Therefore,

E[Cea:,-|case1] 2 rd, - E[T; | T,- < rdj] (5.3)

The reason that E[T, | T; < T'dj] is used instead of E[T.] is that T.- < rd, is the given

condition in case 1. The computation of E[T. I T,- < rdj] is in the appendix when T,-

has an exponential distribution with mean mtbs; as an example. E[Cex,- Icasel] can

be computed in the same way.
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Figure 5.5. An illustration of Case 2.

Case 2

The probability of case 2 is similarly computed as in case 1, i.e., PT{CGS€2} = Pr{T, <

rd,} Pr{T, 2 rd,}. To compute the conditional expectation of the external contention

delay under case 2 is complicated. We should consider two possible timings of P,’s

message arrival which depends on the status of P,- when the message arrives at H

on P,. One possible situation, as illustrated in the part (a) of Figure 5.5, is that

the message of P, arrives at H while P,- is free. In this case, the message can be

transmitted without any extra waiting time, but it causes an external contention

delay to a message that arrives at H on P,- during the transmission. The external

contention delay, which is named Cg“), is rd, minus the remaining time of T.- after the

time that the message arrives at H on P,. Our task in computing Cg“) is to calculate

the remaining time. By means of renewal theory of stochastic processes, we develop

an approximation.

Suppose a process whose mean of inter-arrival time is a and whose variance is 02.

The expected remaining time from a given time t until the next event generated by

the process is E[Rg] = %(1 + 0%). A proof of this equation is in the appendix. Note

that the remaining time is approximately greater than one-half of the mean inter-

arrival time. Therefore, the approximate remaining time of T,- can be computed as
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—[—|——11ET‘ 72'3'<Td' , and thus Cg“) is rd, — will. Since T, is greater than or equal to rdg,

Ci(a) is a contention delay after several transmissions. Thus, the expected external

C.‘ .

contention delay per a message, E[Cex,](a), is #155, where E[Nt] Is the mean number

of transmissions. Approximately,

rd, + E[T,' IT, Z 711;] .I

rd,-+E[T,|T.° < rd,]

 

Ethl = f (5-4)

where N, is the random variable of the number of transmissions, and [] is the ceiling

function that gives the nearest larger integer. In summary, the expected external

contention delays per a message on P,- and P, in the case of part (a) are given in the

following equations:

C.- .

E[C€$,’](a) = fl, E[C€C€j](a) = 0 (5.5)

The other possible timings of P,’s message arrival is that the message of P, arrives

at H while the channel is used for a message of E. This situation is illustrated in

and C-part (b) of Figure 5.5. In this case, both paths have contention delays. C.- ,(b,
(5)

represent the contention delays of P.- and P,, respectively. C,- can be computed in the
(5)

similar way as in Section 5.3.1, i.e., Cg“), = rd, — E'[T.- | T,- < rd,]. As in part (a), Cab)

is a contention delay after several transmissions. The expected external contention

delay per message on P,- is C; over the mean number of transmissions, E[Nt]. That
(6)

is,

rd, - E[T,' I T; < de]

Ethl

 

E[C€£Eg](b) = (5.6)

The external contention delay of P,, Cm), is the remaining communication time of

P, after the arrival of the next message. As an approximation, it is one-half of rd,-.

Since C,(,) may occur in every transmission, E[Cex,](b) = %.

Let the probability of part (a) be Pr(a), and let the probability of part (b) be

Pr“). The expected external contention delay of P,- and P, in the case that T,- < rd,



57

and T, 2 rd,- are computed as follows:

EICezglcaseg] = Pr(a)E[Ce.r,-](a) + Pr(b)E[Cex,](b)

EICex,Icase2] = Pr(a)E[Ce:r,-](a) + Pr(b)E[Cea:,](b) (5.7)

PrM is the percentage that H is reserved by P, without any contention delay

for several transmissions of Pg. This probability can be approximated by means of

renewal theory as follows:

E[T,' I T; < 7d,]

 

 

Pr”) : Td,’ + EIT,’ I T; < rd,] (5'8)

and since Pr“) is 1 — Pr(a), then

rd,-

PT(b) = 1 — PT(a) = (5.9)

rd,- + E[T,- I T; < rd,]

The proof of the equation for PrIa) is an application of the key renewal theorem. If

the channel is considered to be a system that alternates between two states, then a

proof is given in [103].

Case 3

Case 3 is exactly the same as case 2 if all notations related to P,- are changed for

P, and all notations related to P, are changed for P,-. We omit figures and formulas

corresponding to this case.

Case 4

The probability of case 4 is Pr{T,- _>_ rd,} Pr{T, Z ng}. Because T.- and T, are greater

than or equal to rd, and rdg, respectively, both E[0833,“ I case.;] and EICex, I case.,] is
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Figure 5.6. An illustration of Case 4.

computed by using renewal theory as we do in Case 2. Figure 5.6 illustrates how to

compute E[Cer,- I case4]. As before, we consider two possible situations depending on

the relative timing of the messages of both paths. If a message of P, arrives during

T,- as in the part (a) of Figure 5.6, then the waiting time of the message is zero. If a

message of P, arrives during rd,- as in part (b), then the waiting time is approximately

one-half of 711;. According to the renewal theory, the probability of the part (a), Prm,

E T' IT‘Zrdg]

is rd) +ElleTerdal’ and the probability of the part (b), Pr“), is 1 — Pr(a). Therefore,

the expected external contention delay of P; is

E[Ce:r,- I case4] = Pr(b) * er, (5.10)

Similarly, E[Cer, I case4] can be computed

d,- d -

E[Ce:c, I case4] = r r J (5.11)
 

rd,- + EITiITi 2 111,] * —2—

In summary, the external contention delay due to the interaction between P,- and

P, can be computed by Equation 5.1 with the input values, mtbs,, mtbs,, rd;, and

rd, when the two paths are not a part of a larger m-path contention model. However,

if there are other competing paths in the multipath contention model where the two
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paths are involved, input values should be the values that include the delays due to

the contentions with the other paths. Thus, T5,,pi, 75,,121, DEL“, and Dng’d, which

are defined in Section 5.1, are used instead of mtbs,, mtbs,, T‘dg, and rd, respectively,

where 5;, indicates the stage at which the 2-path contention situation is considered.

Based on that equation, in the next section we analyze the heterogeneous multipath

contention model. Equation 5.1 is used as a known function called f() This function

returns EICemP‘ ] + Dad, as f,() and EICerfpébp‘. ”51:,le + 051-13 as f,().
TS*,P.’ {75* ,PJ'

5.3.2 Results

We present results that demonstrate how well our analysis of the heterogeneous 2-

path contention model compares with a simulation model for several configurations

of contention. We used the same Multisim [98] simulator as before.

The simulation model is composed of two competing paths, P.- and P,, which are

parts of two independent homogeneous multipath contention models. The homoge-

neous multipath contention models for P,- and P, have different MTBSs, MTBS,- and

MTB5,, and m and n competing paths respectively. Figure 5.7 illustrates the simula-

tion model. We call the simulation model the m — n interaction model. For simulation

purposes, the remaining communication times of P,- and P, after the external con-

tention are assumed to be their own internal contention delays that are independent

of the other path. Based on the analysis in Chapter 4, the internal delays are assumed

to be a known value for the given MTBS and the given communication pattern. The

remainder of this subsection shows the effects of interactions of P, on the performance

of the P,- as the MTBSs and the numbers of the competing paths of the homogeneous

models are various. Since there is only one external contention point between P,- and

P, in this simulation model, the effects of P,- on the performance of P, are identical.

Figure 5.8 shows the mean communication delay of P, as a function of the MTB5

of P,- as different values of the MTBS of P, are used. The 1 — 1 contention model
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Figure 5.7. The m-n simulation model for 2-path contention.
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Figure 5.8. Performance effect of various MTBSs of P, on communication of Pg: Mean

communication delay of P,- vs.MTBS of P.- for 1-1 interaction model while MTBS of

P, is 0, 25 or 100.
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Figure 5.9. Performance effect of various MTBSs of P, on communication of P,- : Mean

communication delay of Pg vs.MTBS of P, for 1-1 interaction model while MTBS of

P.- is 0, 25, 100, 250 or 1000.

is employed for the simulation. Since Pg does not have any internal contention, the

communication delay of P,- without interactions with P, is merely the transmission

delay, i.e., 25 psec, as shown on the lowest plot of Figure 5.8. The only cause for

an increase in P,’s communication delay is its contentions with P,. The other plots

in Figure 5.8 show the effect of P, on the performance of Pg. As the communication

rate of P, increases, the communication delay of Pg increases for all ranges of commu-

nication rates of P,. It increases more significantly for high rates. This relationship

between MTBS of P, and the mean communication delay of Pg can be seen more

clearly in Figure 5.9. As the MTBS of P, becomes smaller (i.e., the communication

rate becomes larger), the analytical results show that the mean communication delay

of Pg becomes larger.

Another factor that has an effect on the communication time of P,- is the number

of competing paths of the homogeneous contention model in which P, resides. As we

have examined in Chapter 4, the internal contention delay of the path increases as the
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Figure 5.10. Performance effect of number of layers of P, on communication of P,

: Mean communication delay of P,- vs.MTBS of P; for 1-1, 1—3 and 1-5 interaction

model : MTBS; = 25.

number of layers becomes large. This increase in the internal contention delay can

effect the performance of P,. Figures 5.10 and 5.11 present the effect of the increase in

the number of layers in which P, resides on the performance of Pg. Figure 5.10 shows

the mean communication delay of Pg which is measured as a function of the MTB5 of

P,, while Pg has a path that shares a competing channel with P, that resides with 1,

3 or 5 layers. To provide insight to their relationship, the mean communication delay

of P,- is given in Figure 5.11. The delay is shown as a function of the number of layers

associated with P, for several combinations of MT1351 and MT852. The number of

layers associated with P, is varied from 0 to 7, while that of Pg is fixed to 1. As we

see in the figure, the communication of P.- is not affected by the communication of P,,

when P, sends message slowly at around 500 psec. Nevertheless, at high rates such

as 25 usec, the communication delay of P,- increases greatly for all ranges of MTBS of

P,. Figure 5.12 is an another view that shows the relationship among MTBSs of P,-

and P, and the number of layers. At extremely small values of MTBS of P,, a small

decrease in the MTBS of P, or a small increase in the number of layers causes very
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Figure 5.11. Performance effect of number of layers of P, on communication of Pg :

Mean communication delay of Pg vs.number of layers of P,. The pair represents the

MTBSs of Pg and P,.

significant interactions. At other rates of MTBS of Pg, the decrease of MTBS of P,

or an increase in the number of layers of P, increases the communication time of Pg

less significantly.

5.4 Analysis of the Heterogeneous Multipath

Contention Model

This section completes the divide—and-conquer strategy in Section 5.2 for predicting

the real communication delay seen by a message on a path in the heterogeneous m-

path contention model. Based on the analysis of the 2-path contention model, this

section derives formulas which compute the contention delay of P,(i S j S m) at

stage i in the nth iteration.
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5.4.1 Starting Contention Delay

Figure 5.13 illustrates the situation involving starting contention for a message on P,-

at stage i. As mentioned in Section 5.2, 702 — 1)s,,p,. and D(n — 1)::d are assumed to

be already computed at the (n — l)th iteration, for all 2', j such that 1 S i g j S m.

The number of the starting competing paths of Pg (i.e., Pg+1, . . .,Pm) is m — 2', as

shown in part (a) of Figure 5.13. This number may be larger than one. Recall that in

order to apply f() there should be only two competing paths at the contention point,

whose 7' and the remaining communication delays after the contention are known at

the considered stage. Therefore, our strategy for computing the starting contention

delay of P; at S'g in the nth iteration takes the following steps:

1. Identify T of P, at Sg in the nth iteration, i.e., T(n)3,,p,, for all j such that

iSjSm-

2. Reduce the multiple starting competing paths of Pg to a single competing path

(say Q) that generates the same amount of starting contention delay.

3. Identify the remaining communication delays after the contention for both Pg

and Q in the nth iteration, i.e., D(n)§:_hd. and D(n)g,_1,d.

4. Apply f;() to compute D(n)ISJ:,d .

In the first step, T(n)s,,p, is simply mtng. Let P, be one of the starting competing

paths of Pg, where i+ 1 S j S m. Due to the contention points that are on P, before

stage i,

T(n)3,,p,. = mtbs, + C(n —1)§j,3i

wherei+1$j$m.

For the second step, we use an approximation as follows. Let Ashpj, 2' + 1 S j S

m, be the random variable of the message arrivals of P, at stage 2', whose mean is
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Figure 5.13. Computation of starting contention delay.

Asi’Pj. If Ashpj follows a Poisson distribution, then the mean message arrival rate

generated at the starting channel of Pg by the m — 2' starting competing paths of Pg,

is XXL-+1 Asi'p, [104]. In fact, we do not know the actual distribution of Asi'pj, but

the simulation results in the Section 5.4.3 verify that this approximation serves us as

a good estimate. Therefore, we substitute a. competing path, say Q, for the m — 1'

starting competing paths of P,, as in part (b) of Figure 5.13, and

mos-.0 = 1/ i Am — D(n —1)3..,.
j=i+1

where D(n — 1);, is the value defined in the next step of the (n — l)th iteration. In

our model, /\(n)si,p, is computed as 1/(T(n —1)s..,p,. + D(n — Did).

The last step identifies the remaining communication delays on P, and Q after

the contention at stage i. For the remaining communication delays on R in the nth

iteration, D(n — DEL”, can be used. The remaining communication delay on Q,

which is D(n)§l'._1 ,d, is approximated as a weighted average of the remaining commu-
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nication delays on Pg+1, . . . , Pm after the contention at stage 2'. A reasonable weight

for P,, i + 1 S j S m, is P,’s contribution to the arrival of Q, i.e., ratio A(n)5,,p, to

271m Mnlsm- Thus,

m r\(n)s- P P»
D n 9 = m " ’ * D n — 1 ?

( )Su—mi ij-H 21:,“ A005,,“ ( )S.-1.d

 

Consequently, the expected real communication delay seen by a message on Pg at

stage i is,

D(n)f5‘):,d = fi(T(n)3.',PivT(n)SnQ’D(n)§:_1,di D(n)gg-1,d)

and the expected starting contention delay of Pg is

5.4.2 Intermediate Contention Delay

Consider a situation of an intermediate contention on P, at stage i, where i+1 S j S

m. Figure 5.14 illustrates the case when j is i + 1. Pg is the only competing path of

P.-+1 at stage 2'. Therefore, we can apply f() without the second step of reducing the

number of competing paths. Again, T(n — 1)5,,p, and D(n — 1));f’d are known values

at the (n — l)th iteration for all i, j such that 1 S i S j S m.

The first step is the same as for the starting contention delay. That is, 'r(n)s,,p..

is simply mtbsg, and T(n)s,,pj = mtbs, + C(n — ”15:53" where 2' +1 S j S m.

The last step for identifying the remaining communication delays on P,- and P,

after the contention at stage 2' is more difficult than for the starting contention delay.

Without loss of generality, suppose that j is i + 1 as in the part (b) in Figure 5.14.

For the remaining communication delays on Pg+1 after Sg, D(n — 1);): ,d can be used.

However, the remaining communication delays for Pg may be larger than D(n—1%:l ’d,
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Figure 5.14. Computation of intermediate contention delay.

since the other competing paths at stage i, i.e., {Pg+2, . . . , Pm}, may increase the delay.

Thus, the contention delay between Pg and Pg+1 with {Pg-+2, . . . , Pm} must be larger

than the delay without {P,H, ..., Pm}. The difference can be interpreted as the

possibility of contention between Pg and {.Pg+2, ..., Pm}. Therefore, the remaining

communication delays on P,- increases as much as the contention delay between P;

and {Pg-+2, .. . , P,.}. The contention delay can be computed in the same way as the

computation of the starting contention delay of P,, which is described in Section 5.4.1,

except that there are m—i—l starting competing paths for P,, i.e., Pg+2, . . . Pm. Thus,

the modified remaining communication delays on P,- after stage i for computing the

intermediate contention delay on P, at stage i is

‘ R Pi Q I' ,m , '

D(n)s,-_, ,d = fi(T(n)Si.Pn T(n)sin(i+l,m),#j a D(n)Sg_1,d’ D(n)S.‘(_-:td ) #1 )
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Therefore, the expected real communication delay on P, from stage i to stage 1 is

PJ‘
“ P.” Pj

D(n)3.,d = fj(T(n)Si.PiaT(n)$i.PjiD(n)S.-_1,d1D(n)S,-_1,d)

and the intermediate contention delay on P, at stage i is

an): = 0002,. — D(n>’s’:_.,.

5.4.3 Results

In this subsection we provide results that show agreement between the analysis and a

simulation of the heterogeneous multipath contention model. In order to illustrate the

comparisons for the multipath contention model, we show analytical and simulation

results for a heterogeneous 5-path contention model.

Figure 5.15 shows the average communication delays of the five paths of a 5-path

contention model. We analyzed many different cases, and present in this figure the

results for fixed values of MTBS for all paths in the model with the exception of path

3, the middle path in the model. The respective values of the MTBS for each path

represented in this figure, from path 1 to path 5, are 0, 50, k, 250, 500 psecs, where It

varies from 0 to 500 psecs.

We observe how the communication delay relates to the MTBS. As the MTBS

decreases, the mean communication delay increases because the probability of con-

tention increases the average path delay. Path 1 is a path that has no intermediate

contention points and has four other competing paths at its starting contention point

in the heterogeneous 5-path contention model. In contrast, path 5 has four interme-

diate contention points and no starting contention point. Notice that the paths that

have the greater number of intermediate contention points are more sensitive to the

network load than the paths that have fewer intermediate contention points. Path 1
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Figure 5.15. Mean communication delay of each path vs. MTBS of Path 3 for

heterogeneous 5-path contention model. The MTBS of Paths 1, 2, 4, 5 are 0, 50, 250,

and 500 psecs, respectively.

is relatively unaffected by the network load.

5.5 Analyzing Two Transpose Jobs

We apply our analytical model to a more complex job-interaction model, which is

illustrated in Figure 5.16. Two jobs are interleaved and have overlapping communi-

cation paths. The first job is allocated to a contiguous partition of processors and is

placed inside of the second job. The second job has its processors scattered to two

contiguous regions outside of the first job. The overlapping communication paths

are illustrated. The logical communication pattern of each job is a 4-by-4 transpose

pattern, which has been used by other researchers to study performance effects of

processor mappings [101]. In this pattern, a subset of nodes actively send messages.

Only the nodes on the diagonal do not send messages. Each active node has a re-

lated node with which it exchanges messages repeatedly. The communicating pairs
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Figure 5.16. An allocation of two transpose jobs.

of nodes using the matrix-transpose pattern are specified as Nodeg, +—> Node,,g,

where Node“ indicates the node in the submesh at the kth row and lth column. The

symbol ¢—> indicates bi-directional communication. Note that the physical commu-

nication pattern of the outside job is different from its logical communication pattern.

In fact, the physical communication pattern of the scattered job is determined by the

location of the processors allocated to the job.

The job interaction model of this example can be divided into several heteroge-

neous multipath contention models, row by row. Each row has a pair of heterogeneous

multipath contention models; one model is directed to the left and the other model

is directed to the right. In other words, there are 6 left-directed heterogeneous mul-

tipath contention models and 6 right-directed heterogeneous multipath contention

models. To illustrate the effects of communication delays produced by the job inter-

action model, we compute the average communication delays for each path in each

direction separately, and then average the delays. In this example, the communica-

tion pattern of each direction is symmetric and therefore will be the same in each

direction. We thus compute the average communication delay of each job only for

the right direction. Let (i, j) be a heterogeneous (2' + j )-path contention model con-

structed by 2' paths that belong to the inside job and j paths that belong to the outside
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Figure 5.17. Mean communication delay of the inside transpose job while the MTBS

of the outside job varies from 0 to 500psecs. MTBSgn is MTBS of the inside job.

job. Using this notation, the 6 right—directed contention models can be represented

as (0,0),(0,0),(l,0),(2,0),(3,2), and (0,2) from the top row to the bottom row.

The simulation and analytical results are given in Figures 5.17 and 5.18. Fig-

ure 5.17 shows the average communication delay of the inside job for various values

of MTBS of the inside job as a function of the load of the outside job. Figure 5.18

shows the delay of the outside job for the same set of parameters. The simulation

results are verified with the computation of the analytical model for all cases.

5.6 Summary

We have analyzed the performance degradation due to the sharing of network re-

sources by multiple independent interacting jobs for a general contention model called

the heterogeneous multipath contention model. Our analysis is based on a divide-and-

conquer strategy, which derives the communication delay at each contention point on
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Figure 5.18. Mean communication delay of the outside transpose job while the MTBS

of the outside job varies from 0 to 500psecs. MTBSgn is MTBS of the inside job.

a path. It reduces a heterogeneous multipath contention model at each contention

point to a heterogeneous 2-path contention model. The computation of the reduced

model distinguishes the starting contention point from the intermediate contention

points. Simulations indicate that our analysis of the analytic model closely agrees

with the results of the simulations. These results help us understand the effect of

job interactions on network performance such that we are better prepared for find-

ing solutions to the problem of allocating processors in 2-D mesh wormhole-routed

multicomputers.
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CHAPTER 6

JOB PARTITIONING AND

PLACEMENT

In this chapter we study principles that may be applied when developing a scattered

processor allocation strategy for a 2-D mesh multicomputer. We believe that it is

important to develop scattered processor allocation strategies for MPCs in order to

enjoy the increased processor utilizations that they allow as long as the negative

effects of job interactions can be kept under control. We investigate the effects of

job interactions due to communication parameters such as the communication rate,

the internal competing level, and the congestion factor. The competing level is a

measure of the contention on a path within an individual job. The congestion factor

is a measure of the contention at a channel. By isolating each parameter, we study

whether the method of partitioning and placing jobs can change the negative effects

of job interactions. Our investigation of factors that affect a scattered processor

allocation strategy uses a combination of simulations and an analytic model that is

analyzed in Chapter 5.

The rest of the chapter is organized as follows. Effects of starting competing

paths and intermediate competing paths are examined in Section 6.1 with the con-

sideration of contention among competing paths. In Section 6.2, efficient methods for
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partitioning and placing jobs and effects of communication parameters are studied.

Concluding remarks are given in Section 6.3.

6.1 Contention Among Competing Paths

In order to investigate the effects of contention between jobs that have independent

communication characteristics, we must first study the effects of contention among

competing paths that have independent communication rates. This section examines

how contention between a set of competing paths can affect the delays experienced by

a path. The insight obtained from this examination is intuitive from the nature of the

wormhole routing switching technique, but it is basic and substantial to understand

the results ofjob placement and partitioning in the next section. This section presents

simulation results and the explanations of the results. For our simulation, we used

the same Multisim [105] simulation package as mentioned in the previous chapters.

Results provided by an analytical technique described in Chapter 5 can help explain

the characteristic of the results.

Suppose that we have five competing paths, P1,P2,P3,P4, and P5, which have

different MTBSs, as illustrated in Figure 6.1. In the figure, the gray ovals represent

processing nodes and the white rectangles between two consecutive ovals represent the

channels between two consecutive processing nodes. P1, P2, P4 and P5 have constant

MTBSs, but the MTBS of P3 varies from 0 to 500. The overall communication delay

of the communicating paths may depend on how the paths overlap. For the purpose of

our initial investigation, we consider two possible layouts. The layouts are illustrated

in Figure 6.1 by the Mean Time Between Sends (MTBSs) listed in the columns (a)

and (b), which we will label as layout (a) and layout (b). Layout (a) is the case in

which a path with a higher communication rate (i.e., smaller MTBS) is located at the

upper level among the paths, and the paths with the lower communication rates (i.e.,





 

MTBS MTBS

o 500

so 250

k k

250 50

500 0

(a) (b)

Figure 6.1. Two layouts of 5 competing paths.

larger MTBSs) are located at the lower paths. In contrast, layout (b) places a path

with a. lower communication rate (i.e., larger MTBS) at a upper level, while the paths

with higher communication rates are located at lower levels. As shown in the figure,

the set of communication rates used in the study are identical for both layout (a) and

layout (b). The only difference is the location of the paths with different MTBSs.

Figure 6.2 shows the average communication delays of the five paths in layout (a)

whose MTBSs (in psec) are 0, 50, k, 250, and 500, Where It varies from 0 to 500. The

communication delays are displayed as functions of MTBS of P3. Figure 6.3 has

the results for layout (b), which has the MTBSs for the paths to be 500,250, 16,50,

and 0. P3 has an MTBS that varies from 0 to 500. All dotted lines in Figures 6.2

and 6.3 present our results from the analytical model, and the solid lines present

our simulation results. As displayed by the figures, the communication delays for all

paths of layout (b) are smaller than that of layout (a). This result implies that the

overall communication delay can be reduced by positioning the paths in a particular

order, such as layout (b). This phenomenon can be explained by understanding the

detailed interactions between the competing paths.
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Figure 6.2. Communication delay of layout (a) vs. MTBS of P3 that varies from 0

to 500: MTBSs of P1,P2,P4, and P5 are 0,50,250, and 500, respectively. The mean

communication delay is greater for layout (a) than the delay for layout (b) shown in

the next figure.
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Figure 6.3. Communication delay of layout (b) vs. MTBS of P3 that varies from 0

to 500: MTBSs of P1,P2, P4, and P5 are 500, 250,50, and 0, respectively. The delay

shown in this figure is less than the delay of layout (a) shown in the previous figure.
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6.1.1 Path Interaction

In view of analyzing path interactions, this subsection re-interprets the effects of

starting contention and intermediate contention by considering the number of starting

and intermediate competing paths and the communication rate of the competing

paths.

Effect of Starting Competing Paths

Suppose path P starts at the processor that is connected to the router for the specific

channel that we are examining, and other paths route messages through the channel

(but start at other processors in the network) and will be competing paths to P. A

starting contention of P occurs if P sends a message while the channel is utilized by

a message from one of the starting competing paths. Even if there are potentially

several starting competing paths, only one path can contend at a time since a channel

can be used by only one path at a time. The probability that starting contention

occurs is greater as the number of the starting competing paths increases and the

communication rates of the starting competing paths increase.

Figure 6.4 shows the starting contention delay of a path as a function of its MTBS.

The figure shows results in which a path that has contention at its starting path com-

petes with 3 or 5 paths. Results are displayed when the MTBSs of starting competing

paths are 0, 50, 100, 250, and 500. The results show that starting contention delay

is relatively insensitive to the change in the number of competing paths and their

MTBSs. This can be explained by considering a message that is initially blocked at

its starting channel because the starting channel is utilized by one of the competing

paths. The message at its starting channel will be able to acquire the channel as soon

as the tail flit of the message utilizing the competing path passes the channel. No

other competing path will acquire the channel as quickly as a path with a message

waiting at its starting channel. Therefore, an increase in the number of competing
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Figure 6.4. The starting contention delay when competing with 3 or 5 competing

paths (CPs) at a starting channel.

paths does not have a great effect on a path’s access to its starting channel.

Effect of Intermediate Competing Paths

The starting channel of a path is also an intermediate contention point for channels

that are routed through the starting channel. A path has as many intermediate con-

tention points as the number of the intermediate competing paths it faces. Figure 6.5

shows the intermediate contention delay of a path that faces either 3 or 5 interme—

diate contention points. We assume that the path has no starting contention delay.

In contrast to the effect of starting contention delay, intermediate contention delay is

very sensitive to the increase of the communication rate and the number of the inter-

mediate competing paths. This is because an additional intermediate competing path

or an increased communication rate of an intermediate competing path has a chain

effect by increasing the delay of all other intermediate competing paths. Therefore,

the characteristics of intermediate competing paths affect the delay of a path more
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Figure 6.5. The intermediate contention delay when competing with 3 or 5 interme-

diate competing paths (CPS).

significantly than the characteristics of the starting competing paths.

6.1.2 Discussion

Let us reconsider the paths illustrated in Figure 6.1. The only difference between

layouts (a) and (b) is that the communication rates of upper paths and lower paths.

The higher communication rates of the lower paths contribute to the increase of the

starting contention delays of the upper paths. The starting contention delays, how-

ever, are relatively insensitive to the increased communication rate. In contrast, the

lower communication rates of the upper paths contribute to the decrease in the in-

termediate contention delay of the lower paths. The intermediate contention delay is

very sensitive to a change in communication rate. Therefore, the overall performance

of layout (b) is better than that of layout (a). In general, if you have control of the

layout of communicating paths, it is much better to cause the paths with greater com-

munication demands to encounter a greater number intermediate contention points
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relative to the number of intermediate contention points encountered by paths that

infrequently transmit messages. It is undesirable to have the paths with a greater

amount of communication demand to be intermediate contention points for other

paths.

6.2 Partitioning and Placing Jobs

Our investigation of the effect of contention among multiple paths in a wormhole

network provides a basis for our investigation of the interferences that occur among

interleaved jobs. This investigation is important in order to understand how to allo—

cate jobs to a 2-D mesh system when the processors allocated to a job can be scattered

across the system.

6.2.1 Methodology

We constrain our study to examine how two interleaved jobs interact. For simplicity

we assume that all paths that belong to a job have the same communication rate and

the job has a specific pattern in which messages are transmitted. We consider two

patterns of communication. A diagonal pattern is used when we want a given job to

have no internal contentions, such that the only contentions from which a job suffer are

the contentions due to other jobs. The communicating pairs of nodes in the diagonal

pattern are specified as Nodeg, +——> Node(,g_g_1),(,g_g_1), where Node“ indicates the

node in the submesh at the kth row and lth column. The specification assumes there

are n rows and 12. columns assigned to a job, with rows and columns numbered from

0. . .n — 1. The symbol <——) indicates bi-directional communication. The second

pattern of communication that we use is the matrix-transpose pattern, which has

been introduced in Chapter 4. This pattern is used when we want to consider cases

that the internal contention within a given job is significant. The two patterns of
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(a) Diagonal (b) Transpose

Figure 6.6. Two logical communication patterns within a 4x4 job.

communication are illustrated in Figure 6.6. These two communication patterns are

very simple, but by using these patterns we form job interaction scenarios that can

isolate the effect of several communication parameters due to the job interactions. In

Section 6.2.5, we discuss how to apply the results that we obtain by the simulation

of two interleaved jobs for developing scattered processor allocation strategies.

Suppose that two jobs should be allocated to an MPC. Consider a situation in

which we cannot allocate both jobs to contiguous regions of the MPC due to the lack

of available processors in partitions that are large enough for both jobs. What will

be the effect of one job on the other if one of the jobs is allocated within a contiguous

region, while the other jobs must be partitioned into two pieces and be allocated

to regions that surround the first job? How to choose which job to allocate to a

contiguous region, and which job to allocate to dispersed partitions? For the job that

is partitioned, how to partition it into separate pieces? In other words, how should

we cut a job and allocate it to disperse regions?

In addition to the communication rate that is used in Section 6.1, two more

communication parameters are considered: internal competing level and congestion

factor. The internal competing level of a path within a job is defined as the number

of the path’s starting and intermediate competing paths that belong to the same job.

The average internal competing level of a job is the average of the internal competing
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levels for all paths within the job. For the detailed explanation and examples of this

parameter see Chapter 4. The congestion factor of a channel is defined as the number

of competing paths that share a channel. In contrast to the internal competing level,

the competing paths that compose the congestion factor may come from any job. This

parameter is a measure of contention at a channel. To isolate the effect of parameters

due to job interactions, we consider the following scenarios:

0 Scenario A: One job has a higher rate of communication than the other job.

Both jobs are composed of a 4-by-4 matrix-transpose pattern that has significant

internal contention. Since the pattern of each job is the same, with this scenario

we examine the effects of communication rate on job placement.

0 Scenario B: One job has a 4-by-4 matrix-transpose pattern and the other job

has a 4-by-4 diagonal pattern. Both jobs have the same rate of communication.

In this case we isolate the effect of internal competing level on job placement.

A difference between the jobs is that one has a significant amount of internal

contention relative to the other.

6.2.2 Effect of Communication Rates

We use Scenario A to investigate the effect of communication rate on the placement

of jobs on the MPC. Scenario A can be represented as the two jobs illustrated in

Figure 6.7. Each job has the same communication pattern, but different rates of

communication. We compare the effects on performance when the job in the con-

tiguous portion of the system communicates at a lower rate in comparison to the

communication rate of the job that is partitioned into two pieces and is to the out-

side of the first job. Likewise, we will examine the performance when the job to the

inside communicates at a rate that is higher than the job to the outside.

As illustrated in Figure 6.7, the communicating paths of the job to the inside serve
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Figure 6.7. Job interaction model for investigating the effect of communication rate.

as intermediate contention points to the job that is placed to the outside. Likewise,

the job to the outside will provide starting contention to the inside job. Therefore,

the effect of the outside job on the performance of the inside job can be explained

by the effect of starting competing paths on a channel. Similarly, the effect of the

inside job on the performance of the outside job can be explained by the effect of the

intermediate competing paths.

Figures 6.8 and 6.9 Show the communication delays of the inside job and the

outside job as a function of the MTBSS of two jobs, which range from 0 to 500. The

x-axis represents the MTBS of the inside job, and the y-axis represents the MTBS

of the outside job. The communication delays are represented as 2-D contour lines.

Gray shadings in each figure represent different communication delay thresholds for

each job at various communication rates of the pair of jobs.

Imagine a diagonal line is drawn from the point (0,0) to the point (500,500) for the

two figures. The upper triangle due to the diagonal line would represent the case when

the communication rate of the inside job is greater than the communication rate of

the outside job. The lower triangle due to the diagonal line would represent the case

when the communication rate of the outside job is greater than the communication

rate of the inside job. For both figures, the contention delay represented in the upper
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Figure 6.8. Communication delay of inside job: The x-axis represents the MTBS of

inside job and the y-axis represents the MTBS of outside job.

  

Figure 6.9. Communication delay of outside job: The x-axis represents the MTBS of

inside job and the y-axis represents the MTBS of outside job.
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triangle is greater than the contention level in the bottom triangle. This means that

it is more desirable for both jobs if the job that communicates less frequently is to

the inside of the job that communicates frequently.

6.2.3 Effect of Internal Competing Level

We use Scenario B to examine the effect of internal competing level on job placement

when the two jobs have the same communication rates but have different communica—

tion patterns. The transpose job has a higher internal competing level in comparison

to the diagonal job. We compare two ways to allocate the jobs. First, we allocate the

transpose job to a contiguous partition and allocate the diagonal job to the outside

with two pieces. Likewise, we consider the case when we reverse the method of allo—

cation. Figure 6.10 illustrates the cases. We use the same MTBS for both jobs and

partition the outside job in the middle and remove one of the communication path

of the transpose job. This modification of removing one of the communication paths

is made because we do not want to change the congestion factors of all channels in

the inside job after exchanging the location of two jobs. Therefore, only the internal

competing levels are exchanged.

Figure 6.11 compares the communication delays for the two cases. The commu-

nication delays are shown as functions of the communication rate. The solid lines

represent the results when the matrix-transpose job is to the inside of the diagonal

job, while the dotted lines represent the opposite case. The starred lines indicate the

communication delays of the modified transpose job and the circle lines indicate the

communication delays of the diagonal job.

The job located to the outside has higher communication delays than the job

located to the inside, regardless of the communication patterns. This is because the

intermediate contention delay caused by the inside job is much more severe than

the starting contention delay caused by the outside job. The overall communication
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Diagonal inside—matrix-transpose outside.

Figure 6.10. Job interaction model for internal competing level.
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Figure 6.11. Effect of exchanging internal competing levels. (a) represents the com-

munication delay of the inside job and (c) represents the communication delay of the

outside job while the inside matrix transpose job interacts with the outside diagonal

job. (b) represents the the communication delay of the inside job and ((1) represents

the communication delay of the outside job while the inside diagonal job interacts

with the outside matrix transpose job.

performance when the matrix-transpose pattern is to the outside of the diagonal job

is better than when it is to the inside. This is because when the matrix-transpose is

to the outside, the outside job creates a large number of starting competing paths for

the inside job. The performance effect caused by the number of starting competing

paths is not large. When the matrix-transpose job is to the inside, it causes a large

number of intermediate contention paths for the outside job. The performance of a

job is very sensitive to the number of intermediate contention points, and therefore

the diagonal job to the outside will suffer significantly.

6.2.4 How to Partition: Effect of Congestion Factor

Suppose we have determined which job will be place to the inside and which job

will be placed to the outside. We must also decide how to partition the outside job.
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Second partitioning method.

Figure 6.12. Job interaction model for partitioning.

For simplicity, we focus our attention on partitioning along a vertical line. Different

manners of partitioning will change the congestion factor even if the communication

rates and the internal competing levels do not change.

We compare two different methods of partitioning using the model in Scenario A,

which has two transpose jobs communicating with different rates. Figure 6.12 illus-

trates the two methods of partitioning. The first method partitions the outside job

between the first and second columns. The second method partitions between the

second and third columns. The first partitioning method causes one row to have a

high congestion factor and three rows to have low congestion factors. The second
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partitioning method causes each row to have a medium congestion factor.

Figure 6.13 shows the effect of the communication rates of the outside job on the

communication delay of the inside job. The dotted line is for the first partitioning

method, and the solid line is for the second partitioning method. The communication

delay of the outside job for the first partitioning method is lower than the second

partitioning method for all ranges of communication rates of the outside job. However,

the communication delay of the inside job for the first partitioning method is lower

than the second partitioning method only if the communication rate of the outside

job is not too high. The reason is because the high congestion caused by the outside

job saturates the channel when the communication rate is high. Therefore, if the

communication rate of the outside job is not too high, then partitioning at the vertical

line where the overall congestion factor is lower is a good decision.

6.2.5 Discussion

Let us consider the scattered processor allocator of a MPC system that serves multiple

jobs simultaneously. When a job is scheduled for allocation by the job scheduler of the

system, the processor allocator allocates the job in a contiguous partition, if possible.

Otherwise, the allocator may partition the job into several pieces and allocate the sub-

pieces into scattered regions. In this case, our conclusions of Section 6.2.2—6.2.4 could

be used as “rules of thumb” by the scattered allocator. As an example, the result of

Section 6.2.4 can be used for the Multiple Buddy Strategy in [7]. The strategy divides

the request of the job into smaller square submeshes whose sides have sizes of 2" when

there are no contiguous partitions that are big enough for the required submesh. At

each time of division, the scattered allocator should decide which among the four

equal buddies is divided further. Obviously, different decisions cause different ways of

partitioning the job. The result of Section 6.2.4 suggests that if the communication

rate the job is not too high, then partitioning at the vertical line where the overall
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congestion factor is lower is a good idea.

As an second example, we can apply the results of Section 6.2.2 and 6.2.3 in order

to improve the performance of the Naive allocation strategy that is used in [7]. Under

the strategy, a job request for k processors is allocated the first It free processors

in a row major scan of the mesh. According to the result of Section 6.2.3, the

communication rate affects the communication interference between the interleaved

jobs more significantly than the internal competing level. So, in the situation that

the processors that surround the submesh allocated to a job should be allocated

to the other job, the processor should check the communication rate of the already

allocated job. If the communication rate of the allocated job is high, then the result

of Section 6.2.2 suggests that it would be better not to allocate the processor to the

job. The allocation surrounding a job with high communication rate may decease

the communication performance of both jobs significantly. In this case, the allocator

would improve the performance of the system by allocating the job to next possible

places in a row major, or do not allocate the job in such a scattered way if there are

no other possibilities.

An important argument against the practicability of our approach is that the

characteristics of communication patterns and rates are not known before the time

of processor allocation. If no characteristics of any job can be known in advanced,

then no technique to exploit the characteristics can be used. Nevertheless, many

jobs that use parallel processing systems execute for long periods and are re-executed

many times. Many researchers have been building tools to analyze the performance

bottlenecks of parallel computations. For jobs that execute for long periods, and are

re-executed many times, the analysis of the patterns and rates of communication of the

long and frequently executing jobs may be very beneficial to the overall performance of

every user of the parallel processing system. Therefore, when these job characteristics

are acquired, they might be used by the processor allocator when it makes its decisions
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of scattered allocations.

6.3 Summary

Jobs interact with each other due to overlapping communication paths. The over-

lapped competing paths cause contention delays to be suffered by each job. Our re-

sults from an analytical model and simulation indicate that the effects of intermediate

competing paths are more significant than the effects of starting competing paths as

the number of competing paths and the communication rate increase. Our analysis

provides guidelines for placing and partitioning jobs. For example, it is better to have

the highly interactive jobs partitioned and placed at locations that cross the paths

of other less interactive jobs, rather than partitioning the less frequently interacting

jobs and placing them at locations such that they suffer from many intermediate con-

tention points. Likewise, the point at which a job is partitioned is important, such

that it is beneficial if the point of partitioning will lower the congestion factor.



CHAPTER 7

EFFECTS OF JOB SIZE

IRREGULARITY ON

DYNAMIC RESOURCE

SCHEDULING

In order to provide a highly utilized parallel computing system, the problem of frag-

mentation has been addressed by a number of research studies. Most research has

focused on developing innovative processor allocation strategies that can minimize

system fragmentation. Many innovative strategies for allocating jobs to parallel com-

puting systems have been proposed [66, 6, 67, 69, 7]. The proposed processor alloca-

tion strategies have been used in association with first-come—first-serve job scheduling,

in which the jobs come to the system in a single queue. We will use SQ-FCFS to notate

this job scheduling approach. A cited reason for using SQ-FCFS for job scheduling

is because researchers wish to focus on the relative merits of the processor allocation

strategies being explored. More importantly, SQ—FCFS is favored because it has an

inherent notion of fairness, which is to say that jobs are served as they arrive in the

single queue, and jobs are not favored on the basis of the size of the partitions that

94
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they require.

Nevertheless, Krueger et al. [15] observed for a hypercube multicomputer sys-

tem that the system performance is affected more significantly by the job scheduling

algorithm rather than the processor allocation strategy. Sophisticated processor allo-

cation strategies do little to improve the response time in relation to job scheduling

strategies. By allowing jobs to be scheduled in an order that does not follow FCFS,

the system utilization can be improved while the system fragmentation is reduced.

Krueger et al. proposed the scan [15] discipline for hypercube multicomputers. Ac-

cording to the scan discipline, job arrivals are placed in multiple queues corresponding

to the sizes of the subcubes requested. Jobs are scheduled by scanning through the

non-empty queues, similar to the c-scan algorithm for disk scheduling [106]. The

authors showed that with the scan algorithm a simple processor allocation strategy

such as buddy allocation performs as well as more sophisticated strategies under most

workload conditions for a hypercube system [15].

In contrast to the hypercube, jobs requesting resources on a general 2-D mesh

system could request computing nodes that form irregular-shaped submeshes. In this

chapter, we investigate effects of irregularity of job shapes and sizes and effects of

a job scheduling strategy that uses multiple queues on the performance of dynamic

scheduling. For the study, we examine a dynamic scheduling system that schedules

jobs with requests that range from regular-shaped partitions of a multicomputer to

irregular-shaped partitions. The employed job scheduling strategy, called the BWQ-

search algorithm, provides additional opportunities for allocation of resources to jobs

that require smaller submeshes when the job scheduler is blocked by a large job that

cannot be assigned immediately. By means of this algorithm, we identify important

corflponents of a multiqueue job scheduling strategy and evaluate the relative benefit

of the components. We address that irregularities of the shapes and sizes of jobs are

imPortant factors affecting the performance of a resource scheduling algorithm in a
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2—D mesh multicomputer.

Section 7.1 provides motivation for our performance study of the job scheduling

problem in a 2-D mesh system. A simulation model of a system on which our approach

is analyzed is presented in Section 7.2. Section 7.3 includes a description of the job

scheduling strategy. The results of a study of the performance is given in Section 7.4.

Based on the simulation results, we discuss effects of the variability in the size and

shape of an incoming job on the performance of the job scheduling algorithm. A

summary and conclusions are given in Section 7.5.

7.1 Motivation: Irregularity of a 2-D Mesh Sys-

tem

The development of a dynamic resource scheduling algorithm for a general 2-D mesh

multicomputer must deal with the inherent property of irregularity in the size of job

requests and the irregularity in the shape of processor allocations. The irregularity

of a 2-D mesh system is clearly illustrated, if it is compared with the inherent regular

characteristics of jobs scheduled and allocated to a hypercube multicomputer system.

Due to the special structure of a hypercube system, an incoming job request to the

hypercube will require 2" computing nodes that are configured as a subcube of the

hypercube. Note that the unallocated parts of the system are also 2" subcubes. It is

straightforward to develop a job scheduler and a processor allocator that utilizes these

regularities in order to reduce system fragmentation. In contrast to the hypercube,

jobs requesting resources on a general 2-D mesh system could request computing

nodes that form irregular-shaped submeshes. Figure 7.1 shows an example of the

E“llocation of jobs to submeshes in a 2-D mesh multicomputer system. It assumes

that the allocated submeshes match the shape and size requested by incoming jobs.

The gray rectangular regions represent the allocated processors and the white
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Figure 7.1. Processor allocation in a general 2-D mesh multicomputer system.

regions represent the unallocated regions of free processors. Most of the white regions

have the irregular shapes and sizes and therefore it may be difficult to find a place

to accommodate the next scheduled job even if there remains a partition for the job.

The average amount of system fragmentation may vary and depends on the freedom

that the shape of jobs may assume and sizes that a job can request. Greater freedom

in the variations of shapes may cause larger system fragmentation. An important

design issue for a resource scheduling strategy is to study the amount of performance

degradation with respect to the amount of irregularity of the size of a job or the

irregularity of the shape of the partition of processors the job will occupy. For this

purpose, we study the performance effects of four representative cases of jobs, which

can be described in terms of the shapes of the perimeter of the required partitions.

The shapes are chosen with the restriction that processors are allocated in contiguous

regions in which the routing technology of the multicomputer will not overlap one

job’s message traffic with the message traffic of other jobs. Then, the type of jobs

illustrated in Figures 7.2(a)-(d) would not overlap message traffic of different jobs.

For our study, the length of the sides of a partition will determine the shape of the

jobs. The following job shapes are considered:

0 Square-2": each side length is equal, and the length is 2", where k 2 0.

o Square-var: each side length is equal, but can be any integer value in the range
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(a) Square-2"k (b) Square-Variable

 

(c) Rectangular-restricted (d) Retangular—unrestricted

Figure 7.2. Four different types of inputs.

from 1 to the maximum side length of the mesh system.

0 Rectangular-restricted: side lengths of a job partition can be different, but the

difference should not be larger than a given constant.

0 Rectangular-unrestricted: each side length can be any integer value from 1 to

the maximum size of a side of the mesh system.

7.2 Simulation Model

We model a dynamic scheduling system in which job arrivals follow a Poisson process.

An incoming job consists of a number of interacting tasks that communicate via

messages and specifies the geometry of a submesh it will need to occupy. The job will

be allocated to a submesh of the requested geometry to avoid internal fragmentation.
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The four cases of jobs described in the Section 7.1 are considered. The hold time for

each job is assumed to be exponentially distributed and independent.

Since little information is available about the computing time demands required

for jobs on mesh multicomputers, we consider the case that jobs are executed on

a multicomputer in order to increase the throughput produced by a job, which is

described as uncorrelated workloads by [15, 34]. Therefore, the amount of work done

by each processor is independent of the submesh size. A job that consumes a large

submesh will hold the submesh relatively the same length of time as a job requiring

a small submesh. The larger submesh will have a greater computational throughput.

Our model of a multicomputer system consists of a processor manager and a

number of general-purpose processors that are interconnected by a 16*16 2-D mesh

network. In our study we consider only the allocation of processors to a job in a

contiguous region. In order to allocate processors to a job in a contiguous region, we

used the frame sliding method [6], which was developed for a general 2—D mesh system

and allocates jobs in contiguous regions in an efficient way of minimizing system

fragmentation. For evaluating components of job scheduling algorithms, a group-

based strategy, called BWQ-algorithm, is used and described in the next section. The

algorithm is studied for its ability to increase system utilization by reducing system

fragmentation and improve the mean job turnaround time.

7.3 The BWQ Searching Algorithm

One method for restricting fragmentation due to processor allocation is to group jobs

of similar sizes to locations in the multicomputer in a close vicinity. It is straight-

forward to implement the concept of grouping within a job scheduler by using multiple

queues. Depending on how the queues are manipulated, an implementation may be

classified as either blocking-multiqueue scheduling or nonblocking-multiqueue schedul-
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ing. If a job is so large that it cannot be assigned to adjacent free processors, the

first strategy blocks the job scheduler until processors become available. In contrast,

the second strategy provides an additional opportunity to allocate jobs that require

smaller submeshes. The job scheduler searches for jobs within the current queue or

other queues. The underlying idea behind blocking-multiqueue scheduling is to take

advantage of the grouping effect by blocking the job scheduler and collecting jobs of

the similar sizes during the blocking period. This strategy can help reduce system

fragmentation. However, as the blocked job waits, not only does its turnaround time

increase but the turnaround times of other waiting jobs increase, which may result in

a large average job turnaround time for the system.

We propose a nonblocking multiqueue—based job scheduling algorithm, called the

BWQ algorithm. This job scheduling algorithm is divided into two parts: the Between

Queue (BQ) policy and the Within Queue (WQ) policy. The BQ policy controls the

order that a scheduler selects queues. The WQ policy controls the order that jobs

are selected from a queue. Each queue has its own Within Queue(WQ) policy. In

general, the WQ policy for each queue reorders the jobs within the queue so that in

some situations a smaller job can be allocated before a larger job for which a partition

is not available. However, the WQ policy is simply FCFS if all jobs in a queue have

the same size.

7.3.1 Between Queue (BQ) Policy

The BQ Policy controls the order that queues are considered for selecting jobs to

allocate. Queues are ordered according to the size of the jobs they contain, ranging

from the smallest to largest jobs as illustrated in Fig. 7.3.

Initially, the scheduler searches the queue that holds the smallest jobs and sched—

ules its jobs according to the WQ policy of the queue. If the queue is empty, the

scheduler moves to the next non-empty queue in circular-right pattern and tries to
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Figure 7.3. Multi-queue based job scheduling.

schedule the jobs of the queue with the WQ policy. When all jobs are scheduled and

assigned without blocking, the BQ policy moves to the next non-empty queue. If no

jobs within the queue can be scheduled for allocation, the job scheduler moves back to

a. non-empty queue that holds smaller jobs. The scheduler is not necessarily blocked

from assigning jobs for which partitions exist. Therefore, an additional opportunity

for resource allocation is given to smaller jobs that require smaller submeshes. This

non-blocking property may decrease the turnaround times of the smaller jobs and

reduce the external fragmentation in the system. Depending on the scheduling pol-

icy, the scheduler may move to the queue with the smallest jobs or to the previous

non-empty queue. The policy needs a limit on the number of times the scheduler

can return to queues holding smaller jobs to avoid starvation of larger jobs. Every

time the scheduler passes a large job, the priority of the job is increased by 1. If

the priority reaches the Between Queue Search Limit (BQSL), then the scheduler is

blocked to schedule the “starving” job. Initially the priority of each job is set to zero.

The BQSL is a design parameter with performance implications that we will discuss

later in this section.

7.3.2 Within Queue (WQ) policy

The WQ policy is controlled by a lookahead window that provides an additional

allocation opportunity for smaller jobs within a queue. When a job or multiple jobs

are ready to be scheduled within a single queue Q,, the jobs that are chosen from the
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Figure 7.4. An illustration of job scheduling of three queues.

queue for scheduling come from the set of jobs within the lookahead window of the

queue. Initially the set of jobs in the lookahead window are the n jobs at the head

of the queue, where n is the lookahead window size. If n is greater than one and the

first job of the queue cannot be allocated, then the job scheduler considers jobs in the

queue within the lookahead window to find a job that is allocatable. If it finds such

a job, it schedules the job and looks to the next n jobs. Otherwise, the job scheduler

moves to another queue according to the BQ policy. A large lookahead window size

increases the probability of finding a job that can be scheduled, but also increases

the cost to search for a job. The window size needs to be bounded depending on the

type of jobs assigned to a particular queue. The window size of each queue is a design

parameter that is discussed later in this section.

Figure 7.4 shows the state of a queuing system of an job scheduler that has 3

queues. The first queue (Q0) is a FCFS queue, i.e., the size of the lookahead window

is 1 and the BQSL is fixed to 0. Jobs in the queues have priority P set to 0. Notice

that J5 and J7 in queue Q1 have P > 0, which means that these jobs were not able
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to be scheduled in previous attempts.

The second and third queues, Q1 and Q2, are general lookahead window queues.

Each has a BQSL given as a design parameter. After scheduling the jobs in Q0, the

scheduler is currently working in Q1. Some jobs have been assigned and the scheduler

searches within the lookahead window of Q1. Notice that Q1 has a dotted—line that

is called the Qboundary. This parameter is discussed in the next subsection.

7.3.3 Design Parameters

In this subsection, three design parameters are studied to maximize system perfor-

mance. To isolate the effect of each parameter, we fix the other parameters at specific

values. Experiments were conducted for all four job types. Since some of our stud-

ies produce similar results, only the results of the rectangular-unrestricted input are

displayed when they are similar.

Number of queues

The number of queues used is an important design parameter that can have a signif-

icant effect on the system performance. In a hypercube multicomputer system, the

number of queues used is the number of possible subcubes whose sizes are powers of

2 [15]. For the 2-D mesh system we cannot apply the same method since jobs have

irregularity. This parameter depends on factors such as the allocation strategy, job

arrival rates, distribution of job sizes and system size.

Figure 7.5 presents the effect of increasing the number of queues on the perfor—

mance of BWQ job scheduling algorithm in our simulation model of mesh system.

We could use a large number of queues due to the variability of the possible sizes for

all types of jobs. However, the number of queues was limited to six or less in order to

study the effect of increasing the number of queues. The Simple case of using only one

queue implies a FCFS queue. The BQSL of each queue is set to 30. Thresholds that
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Figure 7.5. Response Time (RT) effect of increasing number of queues on the perfor-

mance of job scheduling policy: BQSLs = 30, Input type = Rectangular-unrestricted.

establish the sizes of jobs placed in each queue are defined in order to balance the

number of jobs that arrive at each queue. When the number of queues is increased

from one to three, the mean turnaround time decreases significantly. However, for

more than 3 queues the mean turnaround time does not improve. Consequently, for a

certain number of queues we obtain a system performance that is near the maximum.

The appropriate number of queues may change, depending on the allocation strategy,

distribution of job sizes, and the size of the mesh system. Larger mesh systems with

incoming jobs that have greater variability in sizes may need more queues. For our

simulation model, 3 queues are enough.

Between Queue Search Limit(BQSL)

Another important design parameter is the BQSL of each queue. Any queue with

a BQSL equal to zero becomes a scheduling bottleneck. Large jobs in a queue that

cannot be scheduled immediately block all other jobs in the system, which may result
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in an increased mean turnaround time. Therefore, the BQSL of each queue should be

tuned in relation to the BQSLS of the other queues. Results providing information

about the tuning of the BQSL are displayed in Fig. 7.6 and 7.7. Three queues were

used and incoming jobs of the unrestricted rectangular type were generated with the

arrival rate set to result in 50% system utilization. Because Q0 is designed as a

FCFS queue, the BQSL for Q0 was set to 0. The simulation results Show that mean

turnaround times are much higher when at least one of the BQSLS is zero. Therefore, a

significant improvement in performance occurs when the BQSL of each queue is larger

than zero. These results imply that providing an additional scheduling opportunity

for smaller jobs when blocking would occur (i.e., non-blocking) has a profound effect

on the mean turnaround time. However, it is inappropriate to set the BQSL to a

value that is too large. If the BQSL is greater than or equal to 5, then the mean

turnaround time increased significantly since large jobs can wait too long. Another

interesting aspect is the relative effect of the BQSL of one queue on the performance

of the jobs in another queue. When we compare Fig. 7.6 and 7.7, the effect of the

value assigned to the BQSL of Q2 is more significant than the value assigned to Q1.

Lookahead Window

The lookahead window of each queue is used to reorder jobs within a queue. The

size of the lookahead window is another factor that should be tuned appropriately for

system performance. At a high level of system utilization, as illustrated in Fig. 7.8,

large lookahead windows improve the performance. The diamond plot of Fig. 7.8

shows the simulation results when the lookahead window size of queues 1 and 2 is

one (WS=1). The cross plot of Fig. 7.8 shows the improved performance for larger

window sizes. We have found that the performance improvement due to the lookahead

window is sensitive to the type and characteristics of the incoming job stream. An

incoming job stream with a wide variation in the sizes of jobs benefits much more
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Figure 7.8. Response Time (RT) effects of lookahead windows: 3 queues, BQSLS of

Q1 and Q2 = 30, Input type:Rectangular—unrestricted, FS-allocator.

from a larger lookahead window size than an incoming job stream with uniform sizes

of jobs.

Qboundary

The purpose of the boundary is to avoid starvation of jobs. Only the current queue

for which the scheduler is selecting jobs has a Qboundary. It is established when

the scheduler first considers a queue and remains until all jobs below the Qboundary

have been scheduled. .Iobs arriving after the Qboundary has been established will not

be considered candidates during the current scheduling phase of the queue. Suppose

there is no Qboundary established for a queue, e.g., Q1. Further suppose all new

jobs are placed in Q1. Therefore, the scheduler will only select jobs from Q1, which

results in the other jobs starving.
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7.4 Performance Effects of Variability in Size and

Shape

Once we obtain parameters for the BWQ algorithm, we are ready to examine the

effects of the variability of sizes and irregularity of shapes of jobs on the dynamic

scheduling system. Figure 7.9 shows results that demonstrate these effects. The four

curves show the mean job turnaround times of BWQ scheduling algorithm for the

four different types of inputs described in Section 7.2. An important feature is the

difference between the curves for Square-2" input and the other inputs. The mean job

turnaround time of Square-2" is stable up to 60% system utilization. In contrast, the

other inputs become unstable before 45% system utilization. This fact implies that a

variability of input sizes has a dramatic effect on the performance of a job scheduling

policy.

One of the key factors that contributes to the difference in the results is the system
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fragmentation. As the system utilization increases to 80%, the external fragmentation

due to Square-2" input decreases to 12%. However, the other types of inputs cause the

system to become unstable at lower system utilizations, resulting in a high external

fragmentation (38% external fragmentation at 45% utilization). Although our job

scheduling algorithm tries to reduce system fragmentation by allowing non-blocking

for the other types of inputs, the processor allocator has difficulty in assigning jobs

efficiently because the sizes of inputs vary greatly. While the variability of input size

has a profound effect on the performance of job scheduling algorithms, irregular input

shapes do not make a significant difference in the system performance, as illustrated

in Fig. 7.9. The performance for the input types Square-var, Rectangular-Restricted,

and Rectangular-Unrestricted are similar as the system utilization increases. As a

result, we have the freedom to change input shapes when assigning jobs. Nevertheless,

the “less-regular” jobs (i.e., Rectangular-Unrestricted) display a little poorer result

than the “more regular” jobs (i.e., Square-var). From the above analysis, we can

conclude:

o The type of input has significant effects on the performance of a job scheduling

algorithm. A regular—shaped job — regular-shaped (2") cluster — can be sched-

uled with significantly better performance in comparison to other input shapes

that have less regularity.

o If the geometry of job partitions are allowed to be arbitrary shapes, then differ-

ences between separate classes of irregular jobs (e.g. , Square-Var, Rectangular—

Restricted, Rectangular-Unrestricted) are insignificant.

Restructuring Job Input

Suppose we allow scattering a submesh requested by a job into several smaller sub-

meshes. This assumption is possible if wormhole routing is used as a switching tech-
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nology for the mesh multicomputer and the frequency of communication between

processors allocated to a job is not large. We can improve the performance of the job

allocation strategy by dividing the required submesh into square-shaped submeshes

with side lengths equal to 2", k 2 0. A simple buddy processor allocation strategy

with a multiqueue-based job scheduling algorithm can be used to achieve good job

scheduling performance. However, further complications are required in order to co-

schedule the separate submeshes that are part of a single job. Also, if a large amount

of communication is required between the processors allocated for a job, then the

contentions for the communication system can be significant. As a result, the com-

munication contention generated by one job will likely affect the performance results

obtained by other unrelated jobs. Other jobs can be inhibited from accessing the com-

munication network if jobs must communicate between processors that are dispersed

in the multicomputer. For jobs that require a large amount of communication, it is

advantageous to allocate partitions of processors to the jobs in contiguous regions of

the multicomputer so that they will not inhibit the performance effect of other jobs.

Therefore, we need a strategy that can transform the shape of an incoming job to

allow for efficient utilization of the system, while keeping the submesh allocated to

the job in a contiguous shape.

7.5 Summary

We discussed the performance effects of arbitrary sizes of jobs in 2—D mesh system

and proposed a job scheduling strategy based on a concept of grouping. The job

scheduling algorithm used is a nonblocking multiqueue-based job scheduling algo-

rithm that is efficient and suitable for general 2—D mesh multicomputer systems. In

order to decrease the job turnaround time and increase the system utilization, the

strategy minimizes the external fragmentation by reordering the scheduling of jobs.
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The simulation results showed that the amount of inherent system fragmentation of

a 2-D mesh system depends on the amount of irregularity of the sizes and shapes of

job requests. There is a large performance improvement between very regular-shaped

partitions and the other types of partitions. The results were analyzed in the context

of developing a processor allocation strategy for wormhole-routed 2-D mesh systems.



CHAPTER 8

EFFICIENT JOB SCHEDULING

WITHOUT DISCRIMINATION

AGAINST LARGE JOBS

Research activity has been divided between those seeking better system response

times by means of job scheduling and those who insist that fair scheduling requires

FCFS. Since SQ-FCFS does not favor small jobs to the detriment of large jobs, re-

searchers continue to use SQ-FCFS and concentrate on processor allocation tech-

niques. Nevertheless, other researchers have made efforts to develop job scheduling

algorithms that can achieve significant performance gains by reducing system frag-

mentation. The BWQ-search algorithm in Chapter 6 is the effort in this direction.

Generally, these algorithms favor small jobs by changing the execution order and have

been criticized because they provide improved average performance by favoring small

jobs at the expense of large jobs [65].

In this chapter we propose a new job scheduling discipline, called the HELM

discipline, which takes advantage of the performance gains that are possible via job

scheduling, while it ensures that small jobs are not inappropriately favored in compar-

ison to large jobs. The HELM discipline adapts its scheduling policy to the changes

112
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of workload by using parameters that dynamically update their values depending on

the history of the workload (A detailed description of these parameters is given in

Section 8.2). Under low loaded conditions HELM follows the SQ-FCFS discipline.

If the load is low, little performance gain would be possible even if a non-FCFS

scheme was used. Under a highly loaded condition, the HELM discipline reorders

the jobs to increase the utilization of the system. However, to avoid the long waiting

time charged to large jobs that have been skipped several times in order to allocate

smaller jobs, the discipline checks the waiting time experienced by a job when it con-

siders scheduling it. If a job waits for such a long time in comparison to the average

waiting time experienced by jobs that have been served, then the discipline raises the

priority of the job so that it will not be skipped again. To evaluate the fairness of the

HELM scheme, we compare the performance ratio that large jobs achieve relative to

the performance of small jobs. This is evaluated by classifying jobs into two groups,

large and small, and then computing the ratio of average waiting time experienced

by the large jobs to the average waiting experience by the small jobs. We compare

our algorithm’s ratio with that of SQ-FCFS.

The rest of the chapter is organized as follows. The following section describes

the HELM discipline. The design parameters of the discipline are examined in Sec-

tion 8.2. Section 8.3 presents simulation results and a comparison to other disciplines.

Concluding remarks are given in Section 8.4.

8.1 The Proposed Strategy

The HELM scheduling discipline controls the order of scheduling by using three types

of queues: High-priority queue, Entrance queue, and Lookahead Multiple queues

(HELM).
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o The Entrance Queue (EQ): The entrance queue is a FCFS queue with a

lookahead window (LW). This queue is used for keeping jobs in the order of

arrival. When an incoming job arrives at the multicomputer system, the job is

placed in the entrance queue in the FCFS fashion. The job scheduler schedules

jobs from EQ one by one. When an attempt to allocate the current job has

failed, the HELM discipline allows the scheduler to look ahead to the next

job, passing the current job to the Lookahead Queues (LQ), which will be

described below. The amount of look-ahead is controlled by the lookahead

window (LW), whose size is adaptive to the change of workload. Tuning the

size of LW for the entrance queue is discussed in Section 8.2. Due to the

adaptive lookahead window, the HELM discipline has a tendency to follow the

FCFS discipline, especially under low loaded conditions. Under highly loaded

conditions, however, the FCFS discipline is inefficient because of the randomness

in the shapes and sizes of consecutive jobs. As the system workload becomes

high, the HELM discipline places large jobs in the LQs where jobs are scheduled

in an efficient order to achieve better system performance.

0 The Lookahead Queues (LQ): The jobs passed to the lookahead queues are

classified according to the size of request submesh and are queued to one of the

LQs in the order of arrival. The HELM discipline attempts to schedule all the

jobs in the LQs one by one, skipping the jobs that cannot be allocated. The

advantage of using lookahead queues is that the HELM scheduler can allocate

as many jobs as possible under a highly loaded condition. However, jobs are

scheduled in an different order from FCFS. To avoid unfair treatmentof large

jobs, the HELM discipline uses a parameter called the Upper Bound of Waiting

Time (UB WT). UBWT is a linear function of the average waiting time of the

jobs that have been served so far. The coefficient of the linear function has to
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be tuned. The UBWT is a dynamic parameter that is updated every time a job

leaves the system after its execution. When a job in a lookahead queue cannot

be allocated by the scheduler at its turn, the HELM discipline compares the

waiting time of the job to the current value of UBWT. If the value of UBWT

is larger, then the scheduler passes the job. Otherwise, the job is moved to

the high-priority queue in which the job would not be passed again until it is

allocated. The high priority queue is described below.

0 The High-priority Queue (HQ): The jobs that have waited in the system

more than the UBWT are moved to the high priority queue. This queue is

a typical FCFS queue. This queue is highest in priority in comparison to the

other queues; the HELM scheduler checks this queue first when a job releases

processors allocated to it. If there are jobs in this queue, the HELM scheduler

schedules the jobs one by one in the FCFS fashion until the queue is empty.

Figure 8.1 describes the algorithm of the HELM discipline. The job scheduler

based on the HELM discipline first checks whether the HQ is empty. If not, then the

job scheduler schedules the jobs in HQ one by one in FCFS fashion until the HQ is

empty. When the HQ becomes empty, the control of the job scheduler moves to LQS.

If there are some jobs in the LQs, then the HELM scheduler considers all the jobs in

LQs, checking whether each considered job can be allocated. After considering all the

jobs in a LQ, the HELM scheduler moves to the next non-empty LQ. If the allocation

of the current job is possible, then the job scheduler schedules the job. Otherwise,

the scheduler checks whether the waiting time of the job is larger than UBWT, the

upper bound of waiting time, where UBWT = K * AWT, K is the positive constant

and AWT is the average waiting time of the jobs that have left after their executions.

If the waiting time of the job is larger, then the job is move to HQ. Otherwise, the

scheduler passes the job and considers the next job in the next non-empty LQ. After
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do{

wait( not_empty );

while( there is something in queues ) {

/* SCHEDULE THE HIGH-PRIORITY QUEUE (HQ) */

while ( H0 is not empty ) {

schedule and allocate the jobs in HQ in the FCFS fashion

} /* end of while *I

It SCHEDULE THE LOOKAHEAD QUEUES (L0) */

while( All LQs are not empty as All jobs in LQs are not considered ){

J = the first non-considered job from the next non-empty LQ

if (J is allocatable) then allocate J

else {

It Update the Upper Bound of Waiting Time (UBWT) */

/* The coefficient of UBWT, K1, is determined in Section 8.2.2 */

UBWT 8 K1 * the average waiting time of the served jobs

if( HTCJ) > UBWT) move J to H0

}

} /* end of while */

It SCHEDULE THE ENTRANCE QUEUE (E0) */

/* Update the Size of Lookahead Window (LookaheadSize) */

/* The coefficient of LookaheadSize, K2, is determined

/* in Section 8.2.3 */

Cnt-Lookaheaded_Jobs I O;

LookaheadSize = K2 * the average queue length of E0

while( E0 is not empty as Cnt-Lookaheaded-Jobs < LookaheadSize ){

J = the first job in E0

if (J is allocatable) then allocate J

else {

Cnt-Lookaheaded_Jobs++

move J to one of L0 depending on the given classification policy

/* In our simulation we classify the jobs

depening on the size of job request *I

}

} /* end of while */

It To AVOID BUSY WAITING */

if ( Nothing could be allocated ) then wait until a job leaves

} I* end of while */

}while(TRUE);

Figure 8.1. The HELM Algorithm
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considering all the jobs in LQs, the control of the HELM scheduler moves to the EQ.

The scheduler considers jobs within the size of lookahead window. If the job can be

allocated, then it schedules the job. Otherwise the job is moved to one of the LQs.

8.2 Design Parameters

We conducted a set of discrete event-driven simulations in order to find suitable

values for the parameters of the HELM algorithm. The HELM discipline has three

parameters to be tuned: the number of lookahead queues, the coefficient of UBWT for

LQs, and the size of the lookahead window. To isolate the effect of each parameter,

we varied the value of one parameter at a time while the other parameters were fixed

to constants.

The simulator, which is written in the CSIM simulation language, progresses its

time according to the occurrences of events, which are job arrivals and departures.

The interarrival time and the service time of jobs are assumed to be exponential.

In the simulation, the mean service time was fixed to 20 time units, but the mean

interarrival time, called IATM, varied in order to generate various loads. When a

job arrives to the system, the incoming job requests a number of processors. The

number of processors requested by a job follows a uniform distribution. Given the

request by a job, the processor management part of the operating system assigns the

smallest submesh that can accommodate the job request. This method of submesh

assignment generates submeshes having more uniform sizes than the method that

was used in [68, 67]. For the simulation, a 32x32 mesh system (the total number

of processors are 1024) was used. The processor allocation strategy used in the

simulations is First-Fit strategy [68]. The simulations run a series of batches of 1000

jobs until a 95% confidence interval is achieved.

Four performance metrics have been employed for examining the performance of
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the scheduling disciplines. First, the job turnaround time and the system utilization

are measured, which are the most important performance indicators for users and

system administrators. The job turnaround time, denoted by TAT, is defined as the

time interval from the point when a job arrives in the system to the point when the

job leaves the system after its service is done. The system utilization, denoted by

UTIL, is defined the ratio of the number of allocated processors to the total number

of processors in the system. Both are measured when a job leaves the system and

the measured values are averaged after the simulation is done. As another indicator

of system performance, the external fragmentation is measured. This metric will be

denoted by FRAG. When the job scheduler is not able to allocate any jobs, the ratio

of the number of idle processors to the total number of processors in the system is

measured and averaged to compute the external fragmentation of the system. This

metric is also used in order to explain the effects of reordering jobs on the system

performance. Finally, to examine the fairness of the disciplines the L/S Ratio is

measured. This metric classifies the jobs into two groups, a large group and a small

group, depending on the submesh sizes assigned to the jobs. The median job size

is used to distinguish to which group each job is classified. The ratio of the waiting

time of the jobs in the large group to the waiting time of the jobs in the small group

is defined as the metric, L/S Ratio. If this ratio is near to 1, the discipline is said to

be fair.

8.2.1 Number of LQs

The two lines in the first figure of Figure 8.2 show the effects of the number of

queues on the turnaround time (TAT) of the MQ-SCAN discipline and of the HELM

discipline, respectively. MQ-SCAN is the job scheduling algorithm using Multiple

Queues in which jobs are scanned similarly to the c-scan algorithm for disk schedul-

ing [106]. This algorithm is a variation of the “scan” algorithm in [15], that is orig-
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inally designed for hypercube multicomputers. Like the HELM discipline, the MQ-

SCAN discipline also employs multiple queues. In order to make the TAT sensitive

to the changes of the number of queues, a high workload is applied.

According to the figure, as the number of queues increases the performance of the

MQ-SCAN discipline improves significantly, while the TAT of the HELM algorithm

is relatively low and steady. The improvement of the performance of MQ-SCAN can

be explained in terms of the system fragmentation illustrated in the second figure

in Figure 8.2. As the number of queues increases in the MQ-SCAN discipline, a

greater number of small jobs can be considered for allocation. However, it also means

that if more queues are used, then large jobs may be treated unfairly. Therefore,

the L/S Ratio of MQ-SCAN increases significantly, as presented in the third figure of

Figure 8.2. In contrast, as the number of the LQs increases, the system fragmentation

of the HELM algorithm remains steady. Because the HELM algorithm considers all

jobs in LQs for scheduling, a small number of queues enables the HELM scheduler to

allocate a job if an allocation exists. For the remainder of the simulation study, the

number of queues for MQ-SCAN is fixed to 5 and the number of LQs for HELM is

fixed to 2.

8.2.2 Coefficient of UBWT

The first figure in Figure 8.3 shows TAT as a function of the coefficient of UBWT.

UBWT is computed by multiplying the coefficient with the average waiting time of the

completed jobs. The y-axis represents TAT, and the x-axis represents the coefficient.

In the simulation, the number of lookahead queues is set to 2 and the size of lookahead

window is set to one-half of the average length of EQ. The coefficient varies from 1 to

8. As shown in the figure, TAT changes significantly when the coefficient varies from

1 to 4. After 4, however, the coefficient does not have much effect on the performance

of the system. If the coefficient is 1, most jobs in the LQs are moved to HQ and the
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HELM discipline behaves as the FCFS discipline. Therefore it shows high system

fragmentation and low L/S ratio. As the coefficient increases from 1 to 2, the role of

the LQs increases. The coefficient 2 ensures that on average the job waiting time of

the jobs in HQ is not much larger than two times of the average job waiting time. If

the coefficient is larger than 2, the UBWT becomes too large and most jobs remain

in LQs without going to HQ. For the remainder of the simulation study, the value of

this coefficient is fixed to 2.

8.2.3 Coefficient for the Size of Lookahead Window

Figure 8.4 shows the effect of the coefficient of the size of lookahead window (LW)

on the job turnaround time. When the current job in EQ cannot be allocated, the

HELM scheduler moves the job to one of the LQs. To adapt to the change of the

system workload, the size of LW is not fixed to a constant. Rather, the value could

change depending on the number of jobs waiting in the EQ. For the simulation, the

size of the LW is computed by multiplying the average queue length of EQ with the

coefficient. In the figure, the coefficient varies from 0.1 to 1. As the rate increases

to 0.5, the system performance is improved. The HELM scheduler with a very small

lookahead window behaves as a SQ-FCFS. As the window size increases, the role of

LQs become more active, but the L/S Ratio increases. If the window size is too large,

the searching time in LQs increases, which decreases the system performance. For

the remainder of the simulation, this coefficient is fixed to 0.5.

8.3 Simulation Results and Comparison

We compare the HELM discipline to two other job scheduling disciplines: SQ-FCFS

and MQ-SCAN. The L/S Ratio of the SQ-FCFS algorithm is used as a standard of

fairness. MQ-SCAN is the job scheduling algorithm using Multiple Queues in which
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jobs are scanned similarly to the c-scan algorithm for disk scheduling [106]. This

algorithm is a variation of the “scan” algorithm in [15], that is originally designed for

hypercube multicomputers. Like the HELM discipline, the MQ-SCAN discipline also

employs multiple queues.

8.3.1 Job Turnaround Time and System Utilization

Figure 8.5 presents the TAT of the scheduling disciplines for varying system work—

loads, which is controlled by the IATM (mean interarrival time). The TAT of the

SQ-FCFS algorithm increases very quickly at higher loads. Compared with the SQ-

FCFS algorithm, the multiple queue algorithms have much better TAT at higher

loads. The HELM algorithm shows a little higher turnaround time than the MQ-

SCAN algorithm under low loaded conditions, however its performance under highly

loaded conditions is much better than that of MQ-SCAN. The reason why HELM

shows a little higher turnaround time than MQ-SCAN is that it needs to maintain a

steady L/S Ratio.

Figure 8.6 shows the system utilization of each algorithm. It can be seen that

under various loads the HELM algorithm shows higher system utilization than the

other algorithms. It means that the HELM algorithm schedules jobs more efficiently

so that more jobs can be allocated on the system.

8.3.2 External Fragmentation

Figure 8.7 shows how the external fragmentation changes as a function of IATM. In

the SQ-FCFS discipline, 41% of processors are idle no matter what is the system

workload. In contrast, the external fragmentation of MQ-SCAN and HELM decrease

as the workload increases. At very high load, the external fragmentation of MQ-SCAN

and HELM are 36% and 33%, respectively. This tendency of decreasing external
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fragmentation under high system workload means that the non-blocking aspect of

the schemes makes the job scheduling algorithms more adaptive to the change of

system workload. The HELM algorithm shows some external fragmentation under

low loaded conditions. This is because the size of the lookahead window in EQ

dynamically changes depending on the workload. Under low loaded conditions, the

lookahead window has a small size such that the HELM scheduler only “looks-ahead”

to a few jobs. Under highly loaded conditions, the size of lookahead window increases

as the length of EQ increases. Therefore, more jobs move to LQs and the HELM

scheduler allocates as many as possible. The HELM scheme can achieve high system

utilization and low external fragmentation under highly loaded conditions.

8.3.3 Fairness

Figure 8.8 shows L/S Ratio of the three algorithms. The ratio of SQ-FCFS is near

to 1 because SQ-FCFS does not discriminate on the basis of job size. In contrast,

MQ-SCAN shows high L/S Ratio for many workloads. This is because the MQ-
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Figure 8.8. The L/S Ratio for the Three Schemes.

SCAN discipline changes the order of jobs to decrease external fragmentation. As

MQ-SCAN, the HELM algorithm rearranges the order of job scheduling due to LQs

under highly loaded conditions to achieve high system utilization. However, the

HELM scheduler always checks its waiting time when a job is passed. If the waiting

time of the job is larger than UBWT, then the scheduler moves the job to HQ so

that the job would not be passed again. Because the value of UBWT dynamically

changes depending on the system workload, HELM is more adaptive to the change of

workload. Therefore, under highly loaded conditions the HELM scheme shows a lower

L/S Ratio in comparison to the MQ—SCAN. Unlike MQ-SCAN, the HELM discipline

shows the low L/S Ratio as SQ-SCAN under low loaded conditions. This is a very

important performance characteristic of the HELM discipline.

8.4 Summary

We proposed in this chapter an innovative job scheduling discipline, called HELM,

which adapts its scheduling policy to the changes of workload. HELM achieves low
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job turnaround time and high system utilization while not inappropriately favoring

small jobs to the detriment of large jobs. HELM manipulates three types of queues:

the entrance queue, the lookahead queue and the high-priority queue. For jobs that

arrive at the entrance queue that cannot be allocated, HELM moves them to the

lookahead queues. The lookahead queues are non-blocking for allocation efficiency.

If a job cannot be allocated, HELM searches for other jobs until it finds a job that

can be allocated. For fairness and adaptiveness to workload, HELM changes the size

of lookahead window of the entrance queue depending on the length of the entrance

queue. Under low loaded conditions, this lookahead window will be small so that

most jobs are scheduled in a FCFS fashion by the entrance queue. As the work-

load increases, the window size increases. Therefore, under highly loaded conditions,

many jobs move to the lookahead queues and HELM can schedule them efficiently by

reordering the jobs. The reordering of jobs in the lookahead queues decreases the sys-

tem external fragmentation and increases the system utilization. However, to avoid

the situation where a job waits in the lookahead queues too long, HELM uses a upper

bound of waiting time in the lookahead queues. If a jobs waits longer than the bound,

HELM moves the job to the high-priority queue. The high-priority queue keeps and

schedules the jobs in the order of arrival time one by one. The upper bound of wait-

ing time is a dynamic parameter whose value changes depending on the characteristic

of the system workload. According to our simulation results, the HELM discipline

shows much better performance under highly loaded conditions than the MQ-SCAN

and SQ-FCFS disciplines. HELM schedules fairly as the SQ-FCFS discipline under

low and medium loaded conditions.



CHAPTER 9

CONCLUSIONS AND FUTURE

RESEARCH

Processor management is one of the important services provided by an operating

system for massively parallel computers that serve multiple jobs simultaneously. Re-

search activity on the processor management problem has been divided between those

seeking better system utilization by allocating a job to any set of processors regard-

less of their geometric location (scattered scheme) and those who insist contiguous

allocations in which each subpartition is a contiguous region of the MPC (contiguous

scheme). In this thesis, we studied the processor management problem on a wormhole-

routed 2—D mesh multicomputer for the issues that may be critical in both processor

management schemes: the network contention issue and the system fragmentation

issue. The major objective was to gain insight into the system behavior and to un-

derstand the basic principles underlying the performance of processor management

strategies in the system. In this chapter, we summarize the major contributions made

by this research and present the directions for future research.
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9.1 Summary and Major Contributions

The effects of contention in wormhole-routed networks can cause the characteristics

of one job to affect the performance of another job when a job is allocated to scat-

tered partitions on an MPC. In this thesis, the performance degradation due to job

interactions has been intensively studied. We studied the effects of competing paths

on network contention due to the nature of wormhole routing networks when several

paths are overlapped that have different communication rates. We proposed a general

contention model, called the heterogeneous multipath contention model. The model

is a representation of arbitrarily overlapped communication paths of jobs that have

different message communication rates. Based on the proposed contention model,

we analyzed the performance characteristics of 2D mesh multicomputers under con-

tention due to job interactions. The analysis may help the system designer to gain

insight into system behavior, to understand the basic principles underlying the per-

formance of system strategies, and to compare scattered allocation strategies with

contiguous allocation strategies.

As a starting point for analyzing the interactions and interference that occur be-

tween jobs, we examined interactions and interference between communication paths

that have the same communication rate. We proposed two metrics that can be used

when one wants to measure internal and external contentions between jobs in a mul-

ticomputer. These metrics are called the starting contention level and intermediate

contention level. Based on the metrics, the internal contention delays of a stair-layered

pattern and a complex transpose pattern were predicted and verified by means of

simulation. According to the results, as the starting contention level increases, the

communication increases for a wide range of communication rates. The amount of

increase in communication delay depends on the rate of communication as well as the

contention delays facing the external paths that contend at the starting point. Nev-
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ertheless, the detrimental delays due to the intermediate contention level primarily

occurs only at high rates of communication.

We also analyzed the performance degradation due to the sharing of network

resources by multiple independent interacting jobs in a 2-D mesh wormhole-routed

multicomputer system. The analysis is based on a divided-and-conquer strategy,

which derives the communication delay at each contention point on a path. This

strategy reduces a heterogeneous multipath contention model at each contention point

to a heterogeneous 2-path contention model. The computation of the reduced model

distinguishes the starting contention point from the intermediate contention points.

In addition, we analyzed a contention model in which two jobs have complex internal

communication patterns that overlap. These results help us understand the effect

of job interactions on network performance such that we are better prepared for

finding solutions to the problem of allocating processors in 2-D mesh wormhole-routed

multicomputers.

Based on the performance analysis of network contention, we developed efficient

processor allocations strategies for 2-D mesh wormhole-routed multicomputer sys-

tems. Our examination on the effects of the overlapped competing paths on the

network contention indicated that the effects of intermediate competing paths are

more significant than the effects of starting competing paths as the number of com-

peting paths and the communication rate increase. This phenomenon is substantial

in wormhole routing networks due to the nature of the wormhole routing switching

technique. Based on this examination, we investigated the effects of several com-

munication parameters on communication interference between interleaved jobs due

to job partitioning and placement. Our conclusions drawn from simulation results

provide guidelines for placing and partitioning jobs. For example, it is better to have

the highly interactive jobs partitioned and placed at locations that cross the paths

of other less interactive jobs, rather than partitioning the less frequently interacting
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jobs and placing them at locations such that they suffer from many intermediate con-

tention points. Our results also show that the overall communication delay is very

sensitive to the relative partitioning and placement of jobs. This research offers just

a starting point for more in-depth research to address placing and partitioning jobs.

It emphasizes that careful partitioning and placing jobs in scattered allocation can

reduce the negative performance effect of job interaction.

Another investigation of this thesis is to characterize the effect of job size irreg-

ularity. We examined a dynamic scheduling system that schedules jobs of various

shapes from regular shape to irregular shape. According to the results, job’s regular-

ity in both shape and size can contribute to improved system performance. We found

that the performance is similar when the system schedules jobs that request various

types of irregular-shaped partitions. A large improvement in performance occurs if

all jobs scheduled on the multicomputer request very regular-shaped partitions. This

study gives us some insight into what are the important characteristics to be consid-

ered to design a system partitioning scheme for a processor allocation strategy. We

outlined an approach for restructuring incoming job requests to use partitions from

a multicomputer so that the performance advantage of regular-shaped partitions is

utilized.

Finally, we proposed a new job scheduling strategy that can achieve low job

turnaround time and high system utilization while not inappropriately favoring small

jobs to the detriment of large jobs. Many innovative schemes for allocating jobs to

parallel computing systems have been proposed in order to achieve highly utilized par-

allel computing systems. Since most schemes that have been proposed for allocating

jobs to parallel computing systems have concentrated on approaches for processor al-

location, the schemes have used First-Come—First-Serve (FCFS) as the job scheduling

discipline. However, it has been previously established that job scheduling algorithms

for parallel computing systems can have a large impact on the system utilization and
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job response time. Schemes that use multiple queues, which reorder the sequence of

jobs allocated to the parallel system, can be very effective in improving the system

performance. However, such non-FCFS schemes have been criticized because they

provide improved average performance by favoring small jobs at the expense of large

jobs. The proposed job scheduling strategy, called the HELM discipline, adapts its

scheduling policy to the changes of workload so that it behaves in a FCFS manner

under low loaded conditions, but exploits performance enhancing features of multiple

queue schemes under highly loaded conditions. According to our simulation results,

the HELM discipline shows low job turnaround time and high system utilization while

not inappropriately favoring small jobs to the detriment of large jobs.

9.2 Future Research

The research presented in this thesis has focused on the network contention and

system fragmentation issues that are fundamental in developing efficient processor

management schemes. Future work relating to this research will include the following.

0 Although the analysis presented in this thesis can be successfully applied to

characterize the communication performance of wormhole routing under job

interactions, it has a limitation that the routing scheme should be determinis-

tic, such as XY routing. Multicomputer systems can employ adaptive routing

schemes that adapt to dynamic changes of network condition. A system using

an adaptive routing takes advantages of taking another path in the conditions

such as while message traffic is heavy on one path or a faulty node exists on

one path. Moreover, for scattered allocation schemes in which jobs are allo-

cated to processors in any dispersed regions, adaptive routing may be an better

alternative than deterministic routing. Future research will include the study

of examining the performance of scattered processor allocation strategies under
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adaptive routing scheme. Adaptive routing will have effects on partitioning and

placing a submesh request to small subpartitions in the system.

Virtual channel can be used to reduce network contentions. In the systems

supporting virtual channels, scattered allocation will become more competitive

than in the systems without virtual channels. Therefore, it would be interesting

to extend our analytic formula for the systems that support virtual channels.

This extension causes modifications in our formula. Consider a 2D mesh mul-

ticomputer that supports virtual channels. Assume that a physical channel is

split into at least two virtual channels. In the system, intermediate contention

delays no longer exist. Each intermediate contention delay in the original for-

mula should be substituted with the delay that takes in sharing a physical

channel by two paths through the supported virtual channels. This delay is a

variable that depends on the system characteristics to support virtual channels

and the message communication rates on the paths. The modification for com-

puting the delay at the first contention point may be more complicated. Let n

be the number of competing paths at the first contention point and m be the

number of virtual channels per each physical channel. If n is smaller than m,

the starting contention delay in the original formula should be substituted with

the delay in sharing a physical channel by the n competing paths through the

supported m virtual channels. Again, the delay is a system-dependent variable.

If n is larger than m, a contention might occur at the first contention point.

This delay includes two kinds of delay: the delay in sharing a physical channel

by the n competing paths through m virtual channels and the contention delay

by (n -— m) competing paths. Research issues are how to compute the system-

dependent delay and how to combine it with the contention delay generated by

the (n — m) competing paths.
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0 External fragmentation in 2—D mesh multicomputers occurs when an scheduled

job fails to be allocated to every available subpartitions in the system. The

failures can be caused by either types of mismatching: size mismatching Or shape

mismatching. Size mismatching occurs when the number of processors in an

available subpartition is smaller than the number of processors required by the

incoming job. External fragmentation due to size mismatching is unavoidable

in general parallel processing environment where the sizes of incoming jobs vary

and processor migration [64] and limit allocation [65] are not supported. Shape

mismatching occurs when an subpartition has sufficient processors, but has a

shape into which the submesh required by the job cannot fit. This type of

mismatching occurs because any shape of submesh can be assigned to the job.

It has been shown in this thesis that the regularity of the shapes of jobs is an

significant factor affecting the performance of a resource scheduling algorithm

in a 2-D mesh multicomputers. Another goal for future research is to design a

set of rules for submesh shaping that can be applied in the process of submesh

assignment and to analyze its effects on the performance of processor allocation

strategies.

0 Better processor allocation strategies that can achieve lower job turnaround

time and higher processor utilization may be hybrids between contiguous and

scattered schemes. As the results of the research indicate, the negative effects

of network contention due to job interactions will be increasingly visible in

the future MPCs that can deliver messages as fast as the network capacity.

Therefore, a goal for future research is to develop a hybrid processor allocation

strategy that enjoys the increased processor utilizations as long as the negative

effects of job interactions can be kept under control.
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The following is given to complete Section 5.3.

Conditional Expectations

Let X be a continuous random variable having an exponential distribution with mean

i and k be a constant. In this subsection we compute the expectation of X upon the

condition that X Z k, i.e. E[X IX 2 k]. The computation of E[XIX < k] can be

solved in a similar way as the computation of E[XIX 2 Is]. To conserve space, we

omit the computation of E[X IX < [C].

To compute the conditional expectation, E[X IX 2 k], we have to solve the con-

ditional probability density function (p.d.f) conditioned by X 2 k.

fX|X2k($) = 1— Pr{X Z :ch 2 k} = 1- Pr{X Z a, _ k}

z\e”\(”"‘), ifa: Z k

0, otherwise

And therefore the conditional expectation, E[X IX 2 k] is

E[XIX 2 k] = floofo|X2k($) dz

= Amer-A(x_kl = AeAk/ooxe_’\xda: = k+

k
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Expectation of the Remaining Time, Rt

Consider a renewal process whose inter-arrival times, T0, T1, ..., are random variables

having mean u and variance 0'. Although we do not need to specify T,"S distribution,

for convenience we denote F(:c) and f(.73) as the c.d.f and p.d.f. of Ti, respectively.

Let R, denote the time between the last renewal and the next renewal, and 0(3) and

g(x) be the c.d.f. and p.d.f. of Rt, respectively.

From renewal theory [103] we know that

3320 PrIR. < z}=;,1— /71 - F(y))dy

and therefore g(a:) = (l — F(13)) Using this fact, we can compute the expectationl

p

of the R, as follows:

E[Rt] fowzg(z)dz=%/oooz(1—F(z))dz

_ .1. °°2 __1_ 2 2 _ e. 93._ 2“/0 zf(:c)dx—2#(U +p) _ 2(1+u2)
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APPENDIX

The following is given to complete Section 5.3.

Conditional Expectations

Let X be a continuous random variable having an exponential distribution with mean

i— and k be a constant. In this subsection we compute the expectation of X upon the

condition that X Z k, i.e. E[XlX Z k]. The computation of E[XIX < k] can be

solved in a similar way as the computation of E[X[X Z Is]. To conserve space, we

omit the computation of E[XIX < h].

To compute the conditional expectation, E[X[X Z k], we have to solve the con—

ditional probability density function (p.d.f) conditioned by X Z k.

fX|X2k($) = 1— Pr{X 2 :rlX 2 k} = 1.. p,.{X 2 x _ k}

Ate-”(34), if a: Z k

0, otherwise

And therefore the conditional expectation, E[X[X Z k] is

E[XIX _>_ k] = Aw$fX]x2k($)d$

oo oo 1

= / rAe-Mf'kl = AeAk/ re_”d:c = k+—

k k A
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Expectation of the Remaining Time, Rt

Consider a renewal process whose inter-arrival times, T0, T1, ..., are random variables

having mean u and variance 0. Although we do not need to specify T,’s distribution,

for convenience we denote F(m) and f(x) as the c.d.f and p.d.f of T,-, respectively.

Let R, denote the time between the last renewal and the next renewal, and C(z) and

g(a:) be the c.d.f. and p.d.f. of Rt, respectively.

From renewal theory [103] we know that

tlim Pr{Rt < 9:} = % /$(1 — F(y)) dy

and therefore g(a:) = -‘1;(1 — F(x)) Using this fact, we can compute the expectation

of the R, as follows:

E[Rt] Ang(z)dz=%/0°oz(1—F(x))dx

_ _1_ °° 2 __1_ 2 2 _. 1‘. if
— 2,]0 zf(2)dx—,,,(a +11) — 20+,»
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