


IHIHHIIHHIIIUIHIWI?ll!ll'IHIIHIIIHIUIIIHHUIIM

THESIS 3 1293 01417 2690

l

This is to certify that the

dissertation entitled

ON PERIODIC AUTOREGRESSION: MAXIMUM ENTROPY
MODELING AND PARAMETER ESTIMATION

presented by

Hao Zhang

has been accepted towards fulfillment
of the requirements for

_Doctor _ degreein Statistics

V. Mandrekar Q’WQM d?@kan__

Major professor

Date___June 10, 1995

MSU is an Affirmative Action/Equal Opportunity Institution 0-1211




LIBRARY
Michigan State
University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES retum on or before date due.

DATE DUE DATE DUE DATE DUE

MSU ummmmuvewoMlmwon
e\circ\datedue.om3-p. 1




ON PERIODIC AUTOREGRESSION: MAXIMUM ENTROPY
MODELING AND PARAMETER ESTIMATION

By

Hao Zhang

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Statistics and Probability

1995



ABSTRACT

ON PERIODIC AUTOREGRESSION: MAXIMUM ENTROPY
MODELING AND PARAMETER ESTIMATION

By

Hao Zhang

We study a special class of periodically correlated time series for which the best
linear predictor of z(t) based on all past information , denoted by Z(t), depends

on at most p steps back, i.e., there exists an integer p such that
£(t) = Proj(z(t)|z(t — 1),---,z(t — p)), Vt.

We call such a periodically correlated process a periodic autoregression (PAR). A

PAR is equivalent to the following time domain model:

t
z(t) - xiia(j, t)z(t — j) = o(t)e(t),
j=
where p(t), o(t),a(j,t) are all periodic in ¢ and €(t) is the innovation process.
We first show that Burg’s maximum entropy principle can be generalized to
periodically correlated case and the generalized principle results in a PAR.
We then study estimation problems in a PAR model. We show that the Yule-
Walker equations provide consistent estimators for the coefficients a(j,t). We

also give a uniform convergence rate of the estimators. Finally, We generalize

Akaike’s Bayesian Information Criterion to give consistent estimation for the orders

p(1),p(2),---,p(T).
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Introduction

Time series analysis is one of the fields that have attracted interests of proba-
bilistists, statisticians and researchers from economics, engineering, social sciences
and other areas. Stationary time series has been studied extensively because of
its application in many fields and the adequate mathematical tools to handle it.
One of the most important class of stationary time series is ARMA models which
are widely used in applications. Problems studied for ARMA models are param-
eter estimation, spectral estimation and prediction. AR models, as special cases
of ARMA models, received more attention since stationary time series can be ap-
proximated by AR models (An, Chen and Hannan, 1982).

What makes AR models even more interesting is the application of informa-
tion theory in the study of stationary time series. Burg (1967) used the idea of
maximizing entropy in spectral estimation. He showed this approach results in
an AR model. Burg’s maximum entropy principle is better justified by Parzen
(1983) and has been widely used today in spectral estimation. Akaike (1974) ap-
plied information theory to develop the well-known Akaike’s Information Criterion
(AIC) for order estimation in AR models. AIC tends to overestimate orders and
yields inconsistent estimators (Shibata,1976). To get consistent estimators for the
order in an AR model, Akaike (1977) later modified AIC to Bayesian Information
Criterion (BIC). An, Chen and Hannan (1982) proved that BIC gives consistent



order estimation.

Although stationary time series describe many phenomena well, there are situa-
tions when data exhibit non-stationarity. Efforts to study non- stationary processes
can be found constantly in literature.

One natural generalization of stationary process is Loéve’s harmonizable pro-
cess. Spectral domain problems for harmonizable processes are studied by Cramér
(1961). Cramér (1964) also showed that time domain problems are difficult for
harmonizable processes. So far, no time domain model is discussed for general
harmonizable processes.

The effort is thus concentrated on non-stationary process for which both time
domain and spectral domain approaches can be applied. The major example in
this direction is periodically correlated (PC) processes, which are harmonizable
as shown by Gladyshev (1961). After the early work of Gudzenko (1959) and
Gladyshev (1961), several authors have studied the Kolmogorov-Wiener problem
(Miamee and Salehi, 1980, Hurd and Mandrekar,1991).

Motivated from applications (e.g., Bloomfield et al, 1994, Gardner, 1986), Hurd
(1989), Hurd and Gerr (1991) studied some inference problems for spectral measure
of PC processes. Time domain models have been also studied for PC processes.
Pagano (1978) introduced periodic autoregression (PAR). Anderson and Vecchia
(1993) studied periodic ARMA model and gave the asymptotic properties of sample
covariances. Adams and Goodwin (1995) studied on-line parameter estimation for
periodic ARMA models.

We study PC time series systematically by first showing that the analogue of
Burg’s algorithm holds for PC time series. For this purpose, we introduce a slightly
different definition of PAR. From this definition, we can easily show that PAR

satisfies maximum entropy principle. Our definition reveals an intrinsic property of



PAR models and overcomes a technical difficulty encountered by Pagano’s. These
are all discussed in Chapter 2.

We then consider parameter estimation for PAR models in Chapter 3. Here,
we study estimation of coefficients in PAR models. We give convergence rates for
these estimates by first studying the convergence rate for sample covariances. Then
we apply these rates to give consistent estimators for the order of PAR models.
Our work generalizes Akaike’s BIC order estimation to PAR model. Numerical
results are shown at the end of Chapter 3.

Throughout this thesis, we assume all sequences of random variables have zero
means. Let ||A] denote the sup-norm of a real matrix A and Z denote the set of

integers.



Chapter 1

Periodic Autoregression

A sequence of real valued random variables z = {z(t),t € Z} is called a periodically
correlated if for some integer T' and any ¢, s,
Ez(t) = Ez(t+T),
Cov(z(t),z(s)) = Cov(z(t + T),z(s + T)).
We always assume that Ez(t) = O for all t. Then the definition is equivalent to
that there exists a unitary operator U such that for some 7',
z(t+T) = Uz(t), Vt.

One chooses the minimum 7" as the period of the PC sequence. The best linear
predictor of z(t), given z(s),s < t, is the projection of z(t) onto the closed space
spanned by z(s),s < t (Kolmogorov, 1941). Hereafter, we denote this projection
by

Proj(z(t)|z(s),s < t).

From the definition of PC sequences, we see that if

Proj(z(t)|z(s),s < t) = icj(t)x(t =)

4



then
Proj(z(t + T)|z(s),s <t+T) =) cj(t)z(t + T — j).

j=1

In other words, the coefficients c;(t) are periodic in ¢ for every j > 1. Whereas for
general non-stationary sequences, nothing can be said about c;(t).

From the point view of prediction, the simplest class of PC sequences are those

for which prediction depends only on finite history. This leads to the following

definition.

Definition 1.0.1 A PC sequence is called a periodic autoregression (PAR for ab-

breviation) if there ezxists an integer p > 0, such that for any t
£(t) = Proj(z(t)|z(t — 1), z(t — 2), -+, z(t — p)).

We do not consider the case Z(t) is zero which is less significant in view of

prediction. Then for each ¢, there is a smallest positive integer p(t) satisfying
2(t) = Proj(z(t)|z(t — 1),z(t — 2),-- -, z(t — p(t))).

We will call p(t) the order of z(t). We will show in Proposition 1.0.1 that p(t) is
periodic, then we can simply say that z(t) has order p(1),p(2),---,p(T). We can

write
p(t)

&(t) = Y a(j, t)=(t - j),

Jj=1

or equivalently
p(t)

2(6) ~ 3 al, 0)a(t - 5) = e(0), (1.1)
where €(t) = z(t) — £(¢). Thus €(t) is orthogonal to z(s) for all s < t.
Let

o%(t) = Elz(t) — ()|

5



If 0?(t) > 0 for every t, we say that z(t) is non-deterministic. In this case, we can

write (1.1) as
p(t)

z(t) — ; a(j, t)z(t — j) = a(t)e(t), (1.2)
where {€(t)} is a the innovation sequence, 1.e.,
_ z(t) —£(t)

The next proposition says all parameters are periodic in ¢.

Proposition 1.0.1 Ifz(t) is a non-deterministic PAR, then the functions p(-),a(-,-)
and 0%(t) are unique and for any t

p(t) =p(t+T)

a’(t) = o*(t +T)

a(j,t) = a(5,t +T)
Proof. p(.) and 0%(.) are obviously unique by definition. Since z is non-deterministic,
it follows that z(t — 1),...,z(t — p(t)) are linearly independent and thus a(:,-) is

unique. Notice that z(t) is periodically correlated if and only if there exists a

unitary operator U such that
Uz(t) =z(t+T).
It is very easy to justify
UProj(y|S) = Proj(Uy|US)

for any y and (closed) subspace S, where US = {Uz : z € S}.
It follows that

UProj(z(t)|z(s),s < t) = Proj(z(t+ T)|z(s+ T),s < t)
UProj(z(t)|z(s),t —p < s <t) = Proj(z(t + T)|z(s + T),t —p < s < t).

6



We conclude from the above two equations that

p(t)=p(t+T), o*t)=0*t+T)

Since
p(t)
Z(t) = )_a(j, t)z(t - j),
j=1
then
p(t)
Ui(t) = Yol )a(t - +T).
j=1
On the other hand,
p(t+T)
Uz(t)=2t+T)= Y a(j,t+Tz(t+T - j).
j=1

From the facts that p(t) = p(t + T') and z(s), for t + T —p(t) < s <t+T —1 are

linearly independent, we obtain
a(j,t +T) = a(j,¢t),Vj,t.
QED.

We see that for non-deterministic PC sequences, our definition is equivalent to
(1.2) with periodic parameters, which was used to define periodic autoregression
by Pagano (1978). The definition here overcomes a technical difficulty. (See the
remark at the end of this section.) We are ready to give a characterization of PAR

model now. Let

Z(t) = (z(1 + tT),z(2 + tT),---,z(T +tT) )', V t,
R(t,s) = Ex(t)z(s).



Theorem 1.0.1 Let = be a PC sequence. Then z is a non-deterministic PAR 1is
equivalent to the followings.

(i) z(t) satisfies the following time domain model

p(t)

z(t) = 3 a(d t)z(t — §) = o(t)e(t), (1.3)

Jj=1
where €(t) is the innovation process and o(t) > 0.

(ii) The Yule-Walker equations hold, i.e.,

p(t)
R(t —k, t) - Za(ja t)R(t —k,t— .7) = Uz(t)‘sk,o (14)
j=1
for any k > 0, Vi.
(iii) £(t) is T dimensional AR(p) model for
p(t) — ¢t

p=lr§1taé)§,[ T ]+ 1.

(where [a] denotes the integer part of a.) Namely, there exist matrizes A; and G
and a T dimensional time series £(t) such that
P
I(t) — Y A;Z(t — j) = €(t) and (1.5)

=1

Cov(&lt), &s)) = G8,,, Eelt)E(s)' = 0,Vs < t. (1.6)

Proof. It is obvious that (i) and (ii) are equivalent and are necessary and sufficient
conditions for z to be PAR by definition 1.
Let us prove (i)=>(iii). Suppose z is PAR. Then z has the time domain expres-
sion given by (1.3) which can be written in vector form
P

Boi(t) — 3 B;Z(t — j) = D&t) (1.7)

j=1



where p is defined in the theorem and D=diag(o(1),...,0(T)), B; = (b;(k, 1))\,

for

bo(k,l) = &y —a(k—1D)xsy

bj(k,1) = a(Tj+k—1,k)X{Tj+k-1<pk)}, 1 <7< p.

Let €(t) = (e(1+tT),e(2+tT),---,e(T +tT))'". Then it is obvious that €(t) L Z(s)
for any s < t. Let

4;=B;'B;, &)= By'De
Then £(t) satisfies (1.6) with G = By ' D?(B;y!)’ and (1.5) follows from (1.7).

(iii)=> (i): Since G is positive definite, it has the following Cholesky decomposition
G=LHL

where L is lower triangular with all diagonal entries being 1 and H is diagonal and
non-singular. Multiplying (1.5) by L™, we get
P
L7'Z(t) — ZL'IA,-:i:’(t —-j)=L"1&
Jj=1
Since L~! is also lower triangular and Var(L~'¢) = H is a diagonal matrix, the

scalar form of the above equation will yield (i).

QED.
Corollary 1.0.1 A nondeterministic PAR is purely nondeterministic.

Proof. Let z be a nondeterministic PAR. Then the corresponding multiple se-
quence Z is a stationary AR. It is well known multiple AR is purely nondetermin-
istic. In [19], and [22], it is proved that z is purely nondeterministic if and only if

Z is so. Thus the proof is completed.



QED.

Remark. A stationary AR(p) model is defined in literature (Hannan, 1973) as a

second order stationary sequence satisfying
P
z(t) - ]z_; a;x(t — j) = oe(t),
for some constants o > 0, a; such that
P
|1 - a;jz’| #0, for |z] < 1.
j=1
and a white noise {¢(t)}. The constraint for the coefficients is a necessary and
sufficient condition for the existence of a solution of stationary sequence (see,
e.g., Hannan, 1970). Analogously, we need to know constraints on the coefficients
a(j,t) to guarantee a PC solution of (1.3) exists. We can give the constraint in
two equivalent ways. We note that (1.3) with periodic parameters has a non-
deterministic PC solution if and only if {p(t),0?%(t),a(j,t),7 = 1,---,p(t),t =
1,2,---,T} uniquely determines R(t, s) for |t — s| < p(t) such that

R(t,s) = R(s,t)=R(t+T,s+T)
and for any t = 1,2,---,T, the matrix
T = (R(t— j,t — k)ylo (1.8)

is positive definite. The necessity is obvious and sufficiency follows from Theorem
2.2.1 in the next chapter.
We also see from Theorem 1.0.1 that (1.3) has a PC solution if and only if

det(I — zpj A;z7) #£0,V |z| < 1. (1.9)

J=1

10



Indeed, (1.9) implies there is a stationary solution of (1.5)(Hannan, 1970, page
326). The corresponding scalar sequence must be a PAR satisfying (1.3) by Theo-
rem 1.0.1 It must be non-deterministic since o(t) is positive. We use the technique
of Whittle (1963) to show the other way. Supposefhat (1.3) has a PC solution.
Then the corresponding vector-valued stationary sequence satisfies (1.5) and (1.6).

Define the pT dimensional random vector

()
Y, = ?(t -1)
Z(t—p+1)

Project Y; such that
Y,=PYi .+ 2, Z 1Y,

and P is the projection matrix. We see from (1.5) that

(Al Ay -+ Ay, Ap\
I

\ - - T )

Z, = (£(¢),0,...,0)".
Let X be an eigenvalue of P and £ be the corresponding left eigenvector. Then
EP = A€ (1.10)
Observe that Cov(Y;) = Cov(Y;-;) is positive definite , then

E|¢Z[? = E|Y;[? - E|¢PY.|*
= EVar(YV)E(1 - |\ > 0.

11



it follows that |[A| < 1 with equality if and only if £Z;, = 0. Because of the special
form of P, (1.10) implies that £ and & must be 0 together where & is the first T

entries of £. Since Var(&;) is non-singular, for non-zero &,

€Zt = EOEt # Oa

So all the eigenvalues of P have modules less than 1. Now suppose z satisfies

P
det(I - Z Ajz_j) =0.
Jj=1

1

It suffices to prove z~! is an eigenvalue of P. There exists an row vector & € RT

such that
&(I - f:A,-z-f) =0. (1.11)
=1
Let J
& =281 —&EAjim, 7=2,..,D. (1.12)
Set
§= (&, &)

Notice (1.11) and (1.12) imply immediately

EP = 2€.

(1.9) now follows.

12



Chapter 2

Maximum Entropy Modeling of
PC Time Series

2.1 Introduction

The entropy of a random vector in R™ with probability density function f(z) is
defined as
H(X) = -Elf(X) = - [ f(@)lnf(e)do.

Burg (1967) developed a maximum entropy approach for spectral estimation of
stationary time series which has been widely used since then. Burg’s approach can
be stated in the following way. Suppose p+ 1 autocovariances R(0), R(1),- - -, R(p)
of a stationary sequence are known (usually estimated from observations). Instead
of taking R(n) to be 0 for all n greater than p, as in windowed spectral estimation,

we extrapolate R(n) for n > p in such a way that maximizes the entropy
H(x(t),:z:(t - l)a e ,.'E(t - n))’
for all n > p.

13



It turns out that the only such extrapolation is given by Yule-Walker equations,
thus this maximum entropy method results in an AR model.
We consider here the same question for PC sequence. Suppose for each t =

1,2,---,T, we know the covariance matrix of

(J:(t),.’t(t - 1)7 T ,.’L‘(t - Pt))

for some integers p, > 0. Because the time series is PC, we do not require that the
p:’s are the same. We will extrapolate the covariance function in such a way that

maximizes the entropy
H(.’B(t), :I:(t - 1)9 Tt ,.’E(t - 3))

for all s < t. Problems we will consider are
(1). whether there is a PC solution to this maximizing problem and
(2). the properties of such PC sequences which maximize the entropies.
We will prove in the next section that there is a unique Gaussian PAR sequences

which maximizes the entropies.

2.2 Maximum Entropy Modeling of PC Time
Series

To avoid the ambiguity of saying part of covariances of a sequence is known without
knowing such sequence exists, we state the problem in a more mathematical way.

Let py,p2, - - -, pr be positive integers and 7(.,.) be defined on the set
A=U {(v,2v)€ZxZ:t—p, <uv<t}

We assume that

Te=(r(t —J,t — k)]0

14



is positive definite for all t =1,2,-..,T and
r(s,t) =r(s+T,t+T) =r(t,s) (2.1)

whenever (s,t),(t,s) and (s + T,¢t + T) are in A.
These assumptions are seen necessary for r to be a covariance function of a PC
time series. Let K be the set of all PC time series with period T whose covariances

are r(t, s) for (¢,s) € A. The next theorem says K is not empty.
Theorem 2.2.1 There is a non-deterministic Gaussian PAR in K.

Proof. Since I'; is positive definite, the equations
Pt
r(t—k,t) =Y a(G,t)r(t — k,t — j) = 8ko0?(t), for k=0,1,---,p,, (2.2)
Jj=1
have unique solution a(1,t),a(2,t),--,a(ps,t),0%(t) and o%(t) > 0. These Yule-
Walker equations actually provide a way to extend r(t, s) to be a covariance func-

tion of a PC time series. But we will adapt a statistical approach here.

Let i € {1,2,---,T} be such that
i—pi<t—pforvVt=1,2---T.

Then there are Gaussian random variables z(t) of 0 mean, fori —p; <t <i -1,
such that
Ez(t)z(s) =r(t,s), fori —p; <t,s<i-1.
Let €(t),t > ¢ be a sequence of i.i.d standard normal random variables and also
independent of {z(t),i — p; <t <i— 1}. Define, for t > ¢,
p(t)

z(t) = )_a(s, t)z(t — 5) + o(t)e(t)

j=1

15



where p(t),a(j,t) and o(t) are the periodic version of p;,a(j,t) and o(t) respec-
tively.
This definition together with (2.2) yield

Ez(t)z(s) = r(t,s), for (t,s) € A.
We now show that z(t) is PC, i.e.,
Ez(t+ T)z(s + T) = Ez(t)z(s), (2.3)

for Vt,s > i — p;. We observe that (2.3) is true for i — p; < t,s < 0, because of
(2.1). Assume it is true for i — p; < t, s < n. Replacing z(n + 1) by the definition,
we have for t < n + 1,

p(n+1)

Ez(t)z(n+1) E Ez(t)z(n+1-j)

p(n+1)
> Ez(t+T)z(n+1+T) (by the induction assumption)
j=1
=FEz(t+T)z(n+1+7T)

Similarly, we can prove
Er*(n+1) = Ez*(n+1+4T).

Thus (2.3) is true for t,s < n+ 1. So we have proved (2.3).
Let
r(t,s) = Ez(t)z(s)

for all ¢, s > i — p;. Then r(t, s) still satisfies (2.1). Now we extend r(t, s) to Z2 by

r(t — mT,s —mT) =r(t,s),Ym > 0.

16



For any m < n, the matrix
{r(t,s) :m <t,s <n}

is positive definite because of the periodicity of r(t, s) and the fact that {z(¢),t > 0}
are linearly independent. So there is a Gaussian sequence with (¢, s) as covariance
function by Kolmogorov’s Theorem. This sequence must be a PAR by Theorem 2

and non-deterministic since o?(t) > 0.

QED.

This Gaussian PAR must be unique in distribution. It might have orders p(t) < p:
for t = 1,2,---,T because a(j,p;) might be zero. But the orders are uniquely
determined by TI';’s.

The next theorem says that it is the one that maximizes entropy.

Theorem 2.2.2 Let z(t) be a Gaussian PAR in K, then for any s <t,
H(z(t),2(t 1), .., (s)) = sup H(y(t), y(t = 1), -, 4(s)) (2.4)

where the supremum is taken over all sequences Y in K for which the entropies in
(2.4) can be defined.

Conversely, if a PC sequence y(t) in K satisfies (2.4), then y(t) is a Gaussian
PAR.

Remark. The problem we considered here is more general than assuming Ro, R;, - - -

the covariance of a vector-valued stationary sequence, are known. Actually, the
later is a special case of our problem here. Thus Theorem 3 contains the maximum
entropy method for stationary vector-valued sequence as a special case. There is

a practical consideration why we assume r(t,s) is known in the set A instead of

17



a square area {1 — ¢ < t,s < T} for some ¢ > 0. To approximate a PC sequence
using a PAR, we might choose different orders p(1),p(2),---,p(T). Given finite
observations of a PC sequence, we should just estimate r(t,s) for (¢,s) € A and
extrapolate it through Yule-Walker equations since smaller |t — s| tends to give
better estimate of (¢, s).

To prove this theorem, we need some basic properties of entropy. The following
two lemmas are known.(e.g., for Lemma 1, Choi, 1983, Parzen, 1983; for Lemma

2, Gallager, 1965, Kullback, 1978.)

Lemma 2.2.1 For any random vector Y, let X be a normal random vector having

the same covariance matriz as Y. Then
H(Y) < H(X)
The equality holds if and only if Y has normal distribution.

For two random vectors with joint probability function f(z,y), the conditional
entropy of X given Y is defined as, provided it exists,

H(X|Y) = - [ 1n f(aly) (@, y)dady.
where f(z|y) is the conditional probability density of X given Y. Thus
H(X|Y)=H(X,Y)—-H(Y). (2.5)

We use H(X|Y, Z) to denote the conditional entropy of X given Y and Z. H(X|Y)
can be interpreted as the remaining uncertainty of X given Y is observed. Then

the following lemma is clear intuitively based on this interpretation.

Lemma 2.2.2 For any three random vectors X,Y, Z with joint probability density

function f(z,y, 2),
H(X|Y,Z) < H(X[Y),

18



with equality if and only if X and Y are independent conditionally on Z, i.e.,

f(zly, z) = f(z|y), ae.

Proof of Theorem 2.2.2. We know from Lemma 1 that we should look for a
maximizer of entropies among Gaussian sequences. Let y(t) be a Gaussian sequence

in K. Using (2.5) repeatedly, we get for any s < t,

H(y(t),y(t —1),---,y(s))
=H(y(s) + X Hy@ly(u—1),---,y(s)).

u=s+1
We see that for those terms for which u > s > u — p(u), the conditional entropies

are known. (since y is Gaussian and the covariance matrix is known.)

Thus, to find a maximizer is to maximize, for s < u — p(u),

H(y(u)ly(v —1),---,y(s))
< H(y(u)ly(u—1),---,y(u — p(u))) (by Lemma 2) (2.6)
= H(z(u)|z(u —1),---,z(y — p(u)))
The last equality is true because (z(u),z(u — 1),---,z(y — p(u))) and
(y(u)|ly(u —1),-- -, y(u — p(u))) have the same Gaussian distribution. We see this
upper bound is reached by the Gaussian PAR z(t). So z(t) maximizes the entropy.

Conversely, if a Gaussian sequence y in K maximizes all the entropies, then the

equality in (2.6) must hold. Then, following Lemma 2,
fly()ly(u —1),---,y(s))
= f(y(u)ly(u — 1), -, y(u — p(u)))-
In terms of conditional expectation, it means
E(y(u)ly(u —1),---,y(s))
= E(y(u)ly(u — 1), -, y(u — p(u))).
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Since y has Gaussian distribution, the conditional expectation is the projection

onto corresponding space. Then the last equality is exactly

Proj(y(u)ly(u — 1), -, y(s))

= Proj(y(u)|y(u — 1), - -, y(u — p(w))).
so y is a PAR.
QED

Finally, we note that MEM picks up the most random or the most unpredictable
time series. It is much clearer to state it terms of prediction. Let o%(t;z) be the

mean square of prediction error defined by
o?(t;z) = E|z(t) — Proj(z(t)|z(s),s < t)|?
for a sequence {z(t),t € Z} in K.
Theorem 2.2.3 z € K is a PAR if and only if
o’(t;z) > o*(t;y), Yy € K.

Proof. Let z(t) be the PAR in K and y(t) be any sequence in K, we have for any
t= 1)25"'7Ta

p(t)

o?(t;y) < Ely(t) - 2_: a(5,t)y(t — 5)I° (2.7)
p(t)
=r(t,t) — z_:a(j, t)yr(t,t — j) = o%(t; x)

Conversely, if y(t) satisfies

o*(t;y) = supo?(t;€),
éek
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The equality must hold in (2.7). It follows that
p(t)
>_a(i, L(t)y(t - 5) = Proj(y(t)ly(s), s < ).

J=1

So y(t) is a PAR.

QED.
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Chapter 3

Parameter Estimation in PAR

Model

In this Chapter, we consider parameter estimation in PAR. We assume, throughout
this Chapter, that z(1),z(2),---,z(NN) are observations from a non-deterministic
PAR {z(t):t =0,%£1,%2,---}.

Define the sample covariance by

Ry(t,s) = [NT7'™Y Y z(t+ jT)z(s + jT) (3.1)
JED(t,s)

fort=1,2,---,T,s=0,1,---,N—t—1, where D(t,s) = {j : max(t,s)+jT < N}.
Rn(.,.) can be extended by

RN(ta S) = RN(s’t)a RN(t + kT,S + kT) = RN(tas)

Then Ry (t,s) serves as estimator of R(t,s). In Theorem 3.2.1, we give the
uniform convergence rate of these estimators. The solution of Yule-Walker equation
with R replaced by Ry estimates regression coefficients. Uniform convergence rate

of them is given in Theorem 3.3.1. In the last part of this Chapter, we generalize
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Akaike’s BIC for stationary AR model to PAR model to get consistent estimator
of order p(1),p(2),--,p(T).

The following assumption is made throughout this Chapter. Since we will
consider properties of sample covariances, we assume the moments of order more
than 4 exist and are bounded. For two sequences of real numbers a, and b,,

a, = b, means a, = O(b,,) and b, = O(a,).
Assumption 3.0.1 {¢(t) :t € Z} is the innovation process of {z(t) :t € Z} and

E(e(t) | Fi-1) =0,
E(é(t) | Fior) =1, a.s
i V(ez(tTI}-tT—-T) xn,a.s

t=1
where  F, = o{e(s) : s < t}. Suppose also that for some § > 0,

sup Ele(t)|** < oo
tez

3.1 Preliminary Results on Martingale Differ-
ences

In this section, we give some results of sample covariances of a martingale differ-
ence. We need this to derive results for PAR model.

We will give a law of the iterated logarithm for martingale difference and apply
it to give the convergence rate of covariance of martingale difference. For stationary
and ergodic martingale difference, a law of the iterated logarithm has been given
in literature. ( See, for example,[30]). But we assume higher moments instead of

stationarity and ergodicity since we believe that the assumption of higher moments
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being bounded is less restrictive in time series than the assumption of stationarity

and ergodicity.

Theorem 3.1.1 Let {Y,, F,,n > 1} be a martingale difference such that for some
6 >0, M >0 and for any n,

ElYn|2+6 < M

Let s2 =¥ | E{Y?|F._1}. Suppose also that
2

. .. oS
liminf = >0, a.s.
n—oco n

Then almost surely

nYn

limsup —==L-% _ =1
nooo /252 Inln s2
Proof. Stout [29] proved that for martingale difference Y,, the following law of
the iterated logarithm holds

.Y
limsup —==L % _ =1
nooo /252 Inln s2
if s2 = ¥, E(Y2|Fi-1) = oo and there exists a sequence K, which is F,_;
measurable and goes to zero such that
S BYIX{(Y2 > 7)) < oo, (3.2
i=1
where
2 Kas?
vE = .
" Inlns?
In our theorem, it is obvious that s2 — oo. Take
1
K,=——.
Inln s2
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We only need to check (3.2). Since

E(Y,X{Y; > v})

< (BIYal"?)o.? < M - 57,
we see that the sum in (3.2) is bounded by
M i s;2P
n=1
which is finite almost surely because liminf s2/n > 0. So the theorem follows.
QED.

We first state a lemma which is needed to prove our next theorem.

Lemma 3.1.1 Let {Y,,F,,n > 1} be a supermartingale difference with EY; =0
and for some K €(0,1/2],

Sn
v2Inlns2

where s2 = Y| E{Y?|F;_1}. Suppose for some constants b > 9, almost surely,

Y,<K

a.s

s2 < b%,Vn.
Then for any 0 < 6 < 2,

P(sup Y_ Y; > 6{2b?InIn b*}!/?) < exp(—FInInb?)

n2l1 =)

where 3 = §2(1 — %—‘-)

Proof. Let
c=Kb/vV2lnlnb?, A= §b~'v21In1n b2.
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Then
Ae=6K < 1.

-1/2

Since z(zInlnz) is increasing for z > 9, we have

Y, <c,Vn.

It follows [31] (Lemma 5.4.1 on page 299) that

n A2 Ac,
T, = exp(A)_Y)) exp(——(1+ =-)sp).

i=1

is a super-martingale w.r.t ¥,, and ET; < 1. Thus for any a > 0,
P(Sl'llpT,, >a)<1/a.
Then
P(supzn: Y; > §(2b% In1n b%)'/?)
noi=1

= P(sup )_Y: > \b?)
noi=1
A
< P(sup T, > exp(A\?b? — %(1 + ?c)b"’)

< exp(—A%b%(1/2 — Ac/4)) = exp(—FInlnb?).
QED.

Theorem 3.1.2 If {e(t), F;,t > 1} satisfies Assumption 3.0.1, then for any posi-

tive real number d and integer T,

. | > o=1 fz(ST) —n|
1 2 < 00, 3.3
l{zn—»sogp v2ninlnn (3:3)
lim sup MaXo<t<dinn | oy €(ST)e(sT + t)| < V2. (3.4)
n—oo \/211. Inlnn
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Proof. Let
Y(s) = €(sT) — 1.

Notice that Assumption 3.0.1 implies {Y (s), F,r,s > 1} is a martingale difference

and

sup E|Y (t)***/? < oo,

Applying Theorem 3.1.1 to {Y(s), Fer, s > 1} and the fact

n

E E(Y2(s)l-7:sT—T) = n,
s=1
: i1 Y(s)
3.5
VP Vnkmn ~ (33

(3.3) is proved now. To prove (3.4), we need first truncate €(s). Let

_ (S ypel
Als) (lnlns) Ins

£(s) = e(s)X (i< i/mm)
n(s) = f(s)xue(s)lz\//\(s)}

For a fixed t > 0, let

-7:: = fsT—HVT
Yi(s) = &(sT)E(sT +t) — E{E(sT)E(sT + t)|Fy_1}

Then {Y:(s), F,,s > 1} is a martingale difference. We will finish the proof by

proving the followmg,

max z le(sT)e(sT + t) — Yi(s)| = o(v/n), (3.6)

o<t<d In'n

. | 351 Ye(s)]
limsup max 12s=1 2e88)] < V2. 3.7
n_poop0<t<dlnn vV2nlnlnn — ( )
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To prove (3.6), we first note that

Eln(s)|* < Ele(s)|***A(s) 7172,

It follows
= Eln(s)[?
< oo. (3.8)
=V
Then Kronecker’s lemma implies
> n(s)?=o0(vn) as. (3.9)
s=1
and
Y- B(*(s)|F,_1) = o(v/A), a.s. (3.10)

8=1

We will show first

max Z le(sT)e(sT +t) — E(sT)E(sT + t)|

1<t<dlnn

= max z [n(sT)n(sT + t) + n(sT)E(sT + t) + E(sT)n(sT + t)|

1<t<dlnn =3

= o(v7) (3.11)

Applying Holder’s inequality and (3.9), we get

Z In(sT)n(sT +t)]

nT+d Inn

< Y 7*(s) =o(vnT +dlnn) = o(v/n) (3.12)

1<t<dlnn

Since VInln s - In s is increasing and
(s+t)l/4 S Sl/4+t1/4,

then
A2(s + 1) < AV2(s) + AV3(1). (3.13)
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Because £(s) < AY2(s), (3.13) implies

nT

S [9(TIEGT + ) < 3 In()€(s +9)

s=3 =3
nT
< 2o In(s)| (A3 (s) + A2 (2))
s=3
Notice that by (3.8)

S)\l/2 0o s)|2
S ) & o)

Then Borel-Cantelli lemma implies

nT nT
Z In(s)| = of m)-

s=3

Applying it to (3.14), we get
5%, 2 ITIECT +0) = o)

Similarly, we can prove that

max 3" [€(TIn(sT +1)| = o(VR)

1<t<dlnn =3

Now, (3.11) follows from (3.12), (3.15) and (3.16).

Using the same approach, we can prove that

1<z<dlnnz |E(e(sT)e(sT +t) — £(sT)E(sT + t)|F,_,)| = o(v/n).

(3.14)

(3.15)

(3.16)

(3.17)

(3.6) follows (3.14) and (3.17). Next, we will use the exponential inequality in

lemma 3.1.1 to get (3.7). Let us now investigate sum of the conditional variance

of Yi(s).

max z |E{€(sT)E(sT + )| Fy_y }I?

1<t<dlnn

29



< max z |£(ST)2|E{1](ST + t)|.7:'_ }|2

1<t<dlnn
nT+dlnn
< A(nT) Z_; E(n*(s)|F,-1)
= o(v/n)o(vVnT + dlnn) = o(n) (3.18)

Here we have used (3.10). Since

E((sT + t)|Farse-1) = 1, asandF, ;| C Fyrys—1, then
E(E(sT +1t)|F,_;) = 1.

Consequently,

> B(@(T)ET + O1F)

= Y E(T)(1 - E(P(sT + )| Ficy)) (3.19)

8=3

Applying (3.10) and the fact that
€2(sT) < A(sT),
we get

ax 3 E(sT)E(r(sT = t)|F1_y)

m
1<t<dIlnn
=3

< A(nT) i E(n*(sT +t)|F,_y)

8=3

= vlnln -o(v/n) = o(n) (3.20)

Notice also that (3.3) and (3.9) imply

éez(sn - il(é(sT) _ P (sT))

=n+ o(n) (3.21)
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Then (3.19), (3.20) and (3.21) yield that uniformly in 1 < t < dInn,

il E{€*(sT)E*(sT + t)|F._;} = n+ o(n). (3.22)
It follows from (3.18)"and (3.22) that uniformly in t < dlnn,

s2(n) = f:IVar{Yt(s)LF:_l} =n+o(n). (3.23)
Notice that from the deﬁnitior_x of Y;(n),

[¥i(n)] < 2A(T)A(nT +¢)

— K (n)—2) (3.24)
Inln s?(n)
where
_ nT nT+t 4, s(n) 1
Ki(n) = 2(ln InnT Inln(nT + t)) lnlns?(n) (nnT)In(nT +t¢)’
Then by (3.23)
lim Ki(n) = 0. (3.25)
Choose 0 < K < 3?, let
Yi(s) = Ya()X(ku(o12)-
Then 3
. max; Y5, Y:(s) . max; 35, Yi(s)
s = . 3.26
llin_’solgp (2nlnlnn)i/2 hfln_)sol.}p (2nlnlnn)i/2 (3.26)
We will prove that _
lim sup ot ERAC) < v(K),d (3.27)

naoo  (2nlnlnn)l/2 —
where (K) € (0, g5z) is the unique root of 8(z,K) —2 =0  and f(z,K) =
z?(1 — £2). Since B(z, K) is decreasing in K, we see that v(K) decreases to V2
as K goes to 0. Then (3.26) and (3.27) yield

: max, ¥, Yi(s)
llin_*s:p (2nlnlnn)l/2 <V2. (3.28)
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Apply this results to the martingale difference {-Y;(s), F.,s > 1}, we get

.. .min Y7, Yi(s)
> .
lim inf Gninlnn) /2 > -V2. (3.29)

Now (3.7) follows (3.28) and(3.29). So it is enough to prove (3.27). To reach that
goal, let p > 1 and define the stopping times

Tmt = inf{n > 1, stz('n +1) > pz"‘}

Let
= inf{n > 1, | Juax st(n+ 1) > p*}

Then 7,, < 7y, for any t. (Notice that 7,, is not a stopping time.) Then for

0< 4 < oo,

P( max ZY, ) > éV2nlnlnn,i.o)

3<t<dlnn

< P( sup _max zy, > 8y/(7m + 1) InIn(7,s + 1), 1.0 inm) (3.30)

n<Tm4y 3St<dIn ng

Since we have proved

lim n7! max s?(n) =1,
noo 1<t<dlnn

then almost surely for sufficiently large m,

2m—1

p < T < p2m+l

Using this inequality and the fact that

\/p2m—l Inlnp?m-1 > p=2 \/p2m+2 InIn p2m+2,

for sufficiently large m, the probability in (3.30) is less than

P({ sup max ZYt >6p'2\/p2'"+2lnlnp2’"‘1,i.o in m)}) (3.31)

n<Tm41 3<t<dlnn
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It is easy to verify for a fixed t, the martingale difference {f’t(s)x{s < Tmy1t}, Fay 8 2
1} satisfies conditions in Lemma 3.1.1 with this b = p?™+2.

From Lemma 3.1.1 and the fact 7, < 7,,; for any t, we have

P( sup Zn:}.’t(s) > dp~2Vb2 Inln b2)

n<Tm+1 s=1

< P( sup zn:f’t(s) > 6p~2vb2Inln b?)

n<Tm41,t g=1

<exp(—Blnlnp™ V) = (2m —1)Inp)™?, VI<t<dlnn

where 8 = 8(6p~2, K). Since B(z, K) is increasing in z € (0,4/(3K)), then 8 > 2
for § > p?y(K). It follows then for such a &,

co ding2m3 e
Z Z P({sup Z Yi(s) > (5\/p2""-1 In In p?m-1})
m=1 t=3 n

< i d(2m + 3)(Inp)((2m — 1) Inp) ™ < co. (3.32)

(3.31), (3.32) and Borel-Cantelli lemma imply

P( sup max zn:f/t(s) > 6\/(1',,1 +1)Inln(r,, +1),i.0inm)) =0  (3.33)

n<Tm41 3St<dlnn

for § > p?>y(K). Since p > 1 is arbitrary, let p goes to 1,then (3.33) is true for
d > v(K).

Then we have proved

P(lsrtr:%ol(nn;f’t(s) > v(K)V2nlnlnn, i.0)=0.

(3.27) follows now. The proof is completed.

QED.
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3.2 Convergence Rate of Sample Covariances

In this section, we prove the following theorem.

Theorem 3.2.1 If {z(t) : t € Z} is PAR and Assumption 3.0.1 holds, then for

any constant d > 0, almost surely,

sup | Ry(t,s) — R(t,s) |= O(y/ 22
[t—sj<dIn N N

where Ry is defined by (3.1). R(t,s) is the autocovariance function of z.

)

We will need some lemmas to prove the theorem. Clearly, Ry(t,s) can be
linearly expressed by the sample covariances of the corresponding martingale dif-
ference €(t). So, we first investigate the Wold coefficients for a PAR model. It
is well known that the corresponding multivariate stationary AR model Z has

representation
#(t) = ) Cielt - ) (3.34)
=0

where

&t) = (e(1 +¢T),e(2 +¢T),- - -, (T + tT)Y,
#(t) = (z(1 +tT),2(2 +¢T),- -, =(T + tT))’.

If we write (3.34) for each component, we get

2(0) = 3 G Ol ~3) (3.35)
=0
and obviously c(j,t) is periodic in t. We call ¢(j,t) the Wold coefficients of the
PAR z(t).
The following fact about PAR is analogous to a well known one for stationary

AR model.
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Lemma 3.2.1 There exists constants v, > 0 and v, > 0 such that for any j,t
le(d, )] < mezp(—v27)

Proof. It is well known that the Wold coefficients C,, of a stationary multivariate

process go to zero at an exponential rate, i.e., there exists positive constants a and
[ such that
ICall € arexp(—nB),

where the norm ||C,| is the maximum of entries in C,. Observe that for any
0 <m < T and j =nT +m, c(j,t) is an element of the matrix C, for any
t=1,2,---,T. Hence

| c(4:t) |< ICall < aexp(—np) < aexp(—jB/T).
QED.

Next, we consider the sample covariance of the innovation process €(t). For any

positive integers ¢, s and positive real number b, let
[b]
u(t,s;b) = Y _ {e(t + mT)e(s + mT) — Ee(t)e(s)} (3.36)

m=0

where [b] as before denotes the integer part of b.

Lemma 3.2.2 Let {M,} be a sequence of increasing , non-negative random vari-
ables and {A,} be an increasing sequence of real numbers. If A, — oo and
E(M,) = O(A,), then

M, =o(A,InA,(Inln A,,)1+6)

for any 6 > 0.
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Proof. For a given § > 0, let A(n) = A,IlnA,(Inln A4,)'*%. Without loss of
generality, assume that

E(M,) < cAn (3.37)

for some constant ¢ > 0.
For j > 1, let
n; =inf{n > 1:In A4, > j}. (3.38)

Then n; increases to oo as j — oo.

It follows from Markov’s inequality, (3.37) and (3.38) that

A c

P(My, > M) < 3075 < s

Since 332, J—W < 00, Borel-Cantelli Lemma implies that
P(M,, > \(n,),i.0) = 0.
Now, for n; < n < nj;; — 1, we have from the monotonicity
A(n) > A(n;) and M, < My,

Then almost surely, for sufficiently large n,

M, Mn~ ,\(n 1)
Dol o DO (3.39)
A(m) = An;) = Any)
Since
. Anjp) _ . exp(j+1)(i+1)"In(j + 1)
—_ L <L =
Ay exp(7); " In j ©

(3.39) implies
M, = O(A(n)) = O(A, In A,(Inln A,)'9).

Since it is true for any § > 0, O can be replaced by o. The proof is completed.

QED.
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The following lemma is needed to prove our theorem and is of interests of its

own.
Lemma 3.2.3 Under Assumption 3.0.1, for any constant d > 0,

limsup max [ult, tin)|

nooo [t|[<dlnn v/2nlnlnn
t .
limsup  max lult, sim)l < V2, as. (3.41)

n—oo |t|ls|<dInnt#s \/2nInlnn

Proof. The proof is an application of Theorem 3.1.2 and Lemma 3.2.2 with

< o0, a.s. (3.40)

some computation. We only need to prove the lemma for ¢t < s since u(t, s;n) is
symmetric in ¢, s.

For a fixed |t| < dlnn, let ny be the integer such that
to =t—- ’noT € [I,T]

First notice that Theorem 3.1.2 implies that for any fixed ¢o,
| Zme1(€2(to + mT) — 1)]

lim su <00, a.s. 3.42
n—roop \/21’1 Inlnn ( )

limsup max | ey €lto + mT)e(s + mT)| <V2, as. (3.43)
nooo to<s<dlnn v2nlnlnn

Let s = s — noT. It is clear that u(t, s;n) can be written as

n+ng
u(t,s;n) = Y ((to + mT)e(so + mT) — 6,.,)
m=ng
and
lu(t, s;n) — Y €(to + mT)e(so + mT)| < 2M,, (3.44)
m=0

where M,, denotes the the maximum of |u(t,s;?)| over [t|,|s|, < dlnn . Since
{u(t, s,;%), Fmax(t,s)+iT-1,% > 1} is a L? martingale under Assumption 3.0.1 and
Elu(t, s;3)/”

= i E|e(t + mT)e(s + mT) — Ee(t)e(s)|* < c(i +1). (3.45)

m=0
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for ¢ = 1 + sup, E|e(t)|*. It is evident that

E(MZ) < EY |ut,si)f

t,8,1

< (1+42dInn)*-c(lnn +1).
Then E(M,) = O(A,) for A, = (Inn)?. Lemma 3.2.2 implies

M, = o(A,lnA,(Inln A,)?)

= o(n%), Va>0.

The lemma now follows.

QED.

Proof of Theorem 3.2.1 Without loss of generality, assume N = nT. Then by
(3.1)

n—max(t,s)/T
Ry(t,s)=n"" Y z(t+mT)z(s + mT) (3.46)

m=1

fort=1,.---,T.,and s=0,1,---,N—-t—1.

Since both Ry and R are symmetric and periodic, we only need to prove the
theorem fort =1,..,7. and t < s <t+dlnn, and

Let Qn = /2122 Notice that from (3.35) and the orthogonality of {e(t)},

[0 o]

R(t,s) = Y c(j,t)c(k, 8)8¢—jsk (3.47)

3,k=0

Then it follows from (3.46) and (3.47) that

Ru(t,s) - R(t,s) =n1 3 c(G, H)clk, s)

J,k=0
n—s/T
X Y [e(t + mT —j)e(s + mT — k) — 84— &)
m=0

—_ —s/T] &=
+2—[1L—__S-/—_]' Z C(ja t)C(k, S)‘st-—j,s—k
n k=0
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The sum in the second term is finite by Lemma 3.2.1, thus the second term is
obviously O(n~!Inn) uniformly in s < dlIn.
Denote the first term by W, (¢,s). Then
Walt,s) =n"1 Y (4, t)e(k, s)u(t — j,s — k;n — s/T) (3.48)
7,k=0
where u(t, s; z) is defined by (3.36).
Next, truncate the sum in (3.48) at j, k¥ < dInn. Denote by Z,(t,s) the truncated

sum, i.e.
dlnn

Zu(t,s) =n"" Y c(f, t)c(k, s)u(t — j,s — k;n — s/T) (3.49)
j,k=0

Then it follows Lemma 3.2.3

max |u(t—j,s—k;n—s/T)|=O0(Vninlnn).

max
0<s—t<dInn 0<jk<dlnn

Consequently
dinn

|Za(t,5)] < n7'O(Vnlnlnn)max 3 (5, t)e(k, s)| = O(Qn) (3.50)
! 3,k=0

max
0<s—t<dInn

So it is sufficient to show

max  |Wy(t,s) — Zn(t, s)| = O(Qn). (3.51)

0<s-t<dlnn

The left hand side is dominated by I, , + I2 ., where

oo 00

La=_ max a7 Y Y c(ht)e(k,s)ut —j,s — k;n —s/T)|

0<s—-t<dlnn j=dInn k=0

Ln=_max n7'| Y Y c(t)elk,s)u(t —j,s — k;n—s/T)|

0<s—t<dinn 0<j<dlnn k>dlnn

Applying Markov’s inequality, it is easy to see

P( max n7!| i ic(j, t)c(k, s)u(t — j,s — k;n—s/T)| > Qn)

0<s—t<dlnn j=dInn k=0
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oo 0o

<Qn™ Y. E|l 3 Y oc(t)e(k,s)ult — 5y s — kin —s/T)[?

0<s—t<dlnn j=dlnn k=0
(3.52)

We have proved in (3.45)
Elu(t,s;1)|* < c(i + 1),

then Holder’s inequality implies for Vt;,n;,i =1,---,4,7 = 1,2,

Elu(ty, t2;ny)ults, ta;ng)| < c\/(nl +1)(ng + 1).

This together with Lemma 3.2.1 implies that the expectation in (3.52) is dominated
by

> . 2 > 2 c'y‘lt n n—Z’ygd
(40 3 0 Selkol* < gyl D

where 71,7, are the same as in proposition 2.

Then (3.52) is bounded by (d1nn)?Q;%cn=1-272¢ = O(n~2). It follows that
> P(l1n > Qy) < 0.
Borel-Cantelli lemma implies
La,=0(Q,) as
Similarly, we can prove that
In=0(Qs) as.

(3.51) is established now and the proof is finished.

QED.
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3.3 Convergence Rate of Coefficients

Solution of Yule-Walker equations provides estimators for the coefficients. If the
orders p(1),p(2),---,p(T) are known, then we will have no difficulties to show,
using the results in last section, that these estimators are consistent and have the
same convergence rate as the sample covariances. Since the orders are unknown,
we need a little extra work and notations get complicated. To make our statements
clearer, we will define random inner product which will simplify our statements.
Let L?(Q, F,dP) denote the Hilbert space of random variables with zero means
and finite second moments. Then {z(t),t € Z} is a set in this Hilbert space and
Yule-Walker equations are just normal equations of projection. We want to use
this convenience of projection even when the covariances R(t,s) in Yule-Walker
equations are replaced by the sample covariances Ry(t,s). For this purpose, we
introduce random inner product. Let X’ denote the the subset {z(t),t € Z} of
L?(2, F,dP). For each integer N, let < -,- > (-) be a map from X x X x Q to

the set of real numbers such that
< z(t),z(s) >~ (w) = Rn(t, s)(w)-

We can not yet say < -,- > (w) is an inner product for a fixed w. But for a given
finite sequence of integers to,t;,...,t, and a fixed w, (RN(tj,tk)z‘k=o is positive
definite for sufficiently large N. So for such a N, < -,-, >y (w) can be regarded as

an inner product on a linear space spanned by z(ty), ..., z(t,) such that
< z(t;), z(tk) >~ (W) = R (t), k) (w).

We will suppress w in the inner product and write it as < -, >5. The correspond-

ing norm will be denoted by ||.| .
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For the sake of convenience and unity of notations, let < .,. >, and ||.||« be

the inner product and norm in L?(RQ, F,dP), i.e.

<z(t),z(s) >0 = Ez(t)z(s)
lz(®)lle = Ez*(t).

Then for any t, s, almost surely,
lim < z(t),z(s) >y=< z(t), z(8) >0 -
N-ooo

For each N = 1,2,:--,00, denote by Projn[z(to)|z(t1), -, z(tm)] the projec-
tion of z(tp) onto the subspace spanned by z(t;),- - -, z(t») under the ||.||v. Let

PTOjN[x(t) | .’L‘(t - l)a e ,IL‘(t —P)] = iaN(j’t;p)x(t _.7) (353)

an(4,t;p),7 =1,---,p are actually the solution of

Tn(t;p)an(t;p) = Rn(t;p), (3.54)
where
Tn(tip) = (Bn(t—g,t—k))iems (3.55)
RN(t;p) = (RN(t- 17t)a"',RN(t_p?t))’ (356)
an(t;p) = (an(1,t;p),---,an(p,t;p)) (3.57)

For N = oo, the above equations are just the Yule-Walker equations we dis-
cussed in Chapter 2.

Let I(.) be a periodic function from A to N with period T. [(t) may depend
on sample and serves as an estimator of p(t). Choose a dominating function L(N)

from N to N and assume the following throughout the rest of this section.
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Assumption 3.3.1 L(N) increases to oo and L(N) = O(In N)

Theorem 3.3.1 Let {z(t),t € Z} be a PAR with order p(1),---,p(T). Then
under Assumption 3.0.1 and 3.3.1,
Inln N

ig'll) I G.N(j, t;l(t)) - aoo(jat;l(t)) I= O( N )

where the supremum is taken over any t, j < I(t) and any periodic function I(.)

with period T such that I(t) < L(N), V t.

Remark. Notice that for p > p(t) , ax(j, t; p) are the actual regression coefficients
in the PAR model, this theorem says if we choose order p greater than the true

order in (3.54), then the estimator from Yule-Walker equation converges to true

parameter at the rate of /X,

The proof of this Theorem needs the following Lemma.

Lemma 3.3.1 Let z(t) be a PAR. T'(t;q) = (R(t—j,t—k))} 0. Then there ezists
an M > 0 such that for any t and q, ||I"1(¢;q)|| < M.

Proof. We note that for any positive definite matrix I, ||T'|| is less than or equal
to the maximum eigen value of I'. Since I'"!(t; q) is positive definite, we only need
to show that the eigenvalues of I'"1(¢; q) is bounded from above, or equivalently, all
eigenvalues of I'(t; q), for any t = 1,2,---,T and ¢q > 1, are no less than a positive
number A.

Let A; be the minimum of all eigenvalues of I'(t;q) for all t = 1,2,.--,T.
Evidently,

A > 0.
It suffices to show that
min o2(t)

1 + max, E}’(:ti a(j,t)?

Ag+1 > min(Ag, )- (3.58)
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Let

z(t)
x,0=| "7V | e
z(t - q)

Then

xq+1(t) = =)
xq(t - 1)

For any vector Cg,, of g + 2 dimension such that

ICell? =1,

C c
+1 = )
q Cq

where C, is a (¢ + 1)-dimensional vector. Using (1.2), we get

we write it as

C;+1xq+1(t) = cx(t) + (cdp(t) + Cp)' Xp(t),

where @, = (a(1,t),a(2,1),---,a(p(t),t),0,---,0).
The orthogonality of €(t) with z(s),s < ¢ together with the definition of A,
imply
ConT(ta+1)Copa = [|C X (B)]?
= co*(t) + ||(cp(t) + Cp) X, ()11
> 2o?(t) + Agllcdy(t) + Cyl|?
> 0?(t) + Agl®||Gg (£)|[* — [ICyl ]

Since 2 + [|C,||> = 1, and

Oingl(a:c + Albz — 1]) = min(A,a/b),Va > 0,A > 0,b > 1,
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we have
a(t)

C _ott)
llag()]1? + 1

e+11'(t.g+1)Cqiq > min(A,, ).

(3.58) now follows.

QED.

Proof of Theorem 3.3.1 For brevity, we omit /(t) in I'y, Ry and ay. Observe
that

I+ T2 () - Teol®)) (ae(t) — an ()
— T2 (t)[Ren(t) = Bv(#) + (T (8) = Too)aeo(2) (3.59)
Theorem 3.2.1 and Lemma 3.3.1 imply that the maximum absolute value of the
entries of T2} (t)) (T (t) — Coo(t)) is O(y/=2%). Thus
| T2 (T () — Teolt)(ao(®) — an(®)]
2 Y )2 1)llaco(t) — an (D) (3.60)

N
= o(1)]|lac(t) — an(t) (3.61)

< O(

Similar argument proves RHS of (3.59) is

Inln N
N

Also notice that every O(1) and o(1) appeared above is uniform in ¢ and functions

I such that I(t) < L(N). Then the Theorem follows from (3.59),(3.61) and (3.62).

O( )1,1,--- 1) (3.62)

3.4 BIC for Order Estimation

For stationary AR(py) model, Akaike(1977) first proposed to estimate po by p

which minimizes

In62 + pln N/N
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Here 62 is the estimate of 02 from the Yule-Walker equations of order p.
An-Chen-Hannan (1982) proved BIC estimator is consistent under general con-
ditions.
In this section, we develop similar criterion for PAR models. It turns out that
BIC is included as a special case. Let z(1),z(2),---,z(N) be observations from a

PAR model with order p(-). Let Ry(t,s) be defined by (3.1). We will follow the

notations in the last section. Let
ox(t;1) = ||lz(t) — Projn(z(t) | z(t — 1),---,z(t = D)]I% (3.63)

Let q(N) be a sequences of positive integers such that

. InlnN . q(N) _

Let p(t) = pn(t) minimize
Ino%(t;l) +1-q(N)/N, Y0<1<L(N). (3.65)
Then p(t) is a consistent estimator of p(t) under general assumptions.

Theorem 3.4.1 Let z(t) be PAR satisfying Assumption 3.0.1 and L(N) satisfy

Assumption 3.3.1. Then for any t, almost surely
p(t) = p(t), asN — oo.

Proof. Since Ry(t,s) — R(t,s), a.s, then

m m
1D cz(t)lih = 11 - izt (3.66)
Jj=1 =1
for all real ¢, - -, ¢, and integers ty,tz,- -, tm.

As a special case of (3.66),we have
ox(t;1) = 05 (t;1) = |l2(t) = Proj(z(t) | z(t — 1),---,z(t = D)% (3.67)
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Suppose that

!
Projn(z(t) | z(t — 1),---,z(t = 1)) = Y_an(j, t; )z(t — 7)

j=1
for N=1,2,---,00.
It is helpful to realize that for I > 2,
2
ox (1) 2
-——— = It
1 U?V(t,l—l) aN() ) )

In fact, (3.69) is just application of Pythagorean Theorem. In fact, let
£(t) = Projn([z(t) | z(t = 1),---,z(t — L+ 1)].
Then
on(til = 1) — oy (1)
= |z(t) — Projn[z(t) | z(t - 1),--+,2(t = 1+ 1)]|I%
—llz(t) = Projnla(t) | z(t - 1),---,z(t = D]lI%
= ||&(t) — Projn[£(t)|z(t - 1),---,z(t = 1 + 1)]|?

ay (L, D)|=(t) = Projulz(t) | z(t — 1),---,z(t = DIy

= ay (L, t; )on(t;1)

I

Since a2 (t,p(t); p(t)) is positive, (3.69) implies
Too(t P(t) — 1) > 05, (t, p(t))
Thus
e (t:1) 2 0508, p(t) — 1) > 05, (¢, p(2))

It follows that for any I < p(t),

Jim (0o (6,p(0) +pOT) < tim (no (1,0 +1850)
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(3.71)



This inequality implies that asymptotically

p(t) > p(t)

(3.72)

Using (3.69) repeatedly and applying Theorem 3.2.1, we get for I > p(t),

ox(t 1)

k(¢ p(t))
1
= Y &&(it;) = (—p(t))O(lnln N/N)

J=p(t)+1
Since
Jim o (1) = Jim ok (tip(1) = oL (6p(2)
then for sufficiently large N,

alzv(tal) _( _ Ulzv(t;l)
o%(t,p(t)) = o%(t; p(t))

It follows from (3.73)-(3.74) that

In

Inof (t,1) — Inoy (¢, p(t) = (I - p(t))O(Inln N/N).

where the O(1) is uniform in I < L(N).
The assumption on ¢(N) and (3.75) imply that

min [Inof(t,1) —Ino} (¢, p(t)) + [ - p(t)la(N)/N] > 0,

p(t)<I<L(N)

for sufficiently large N. So asymptotically
B(t) < p(2).

Then the assertion follows from (3.72) and (3.76).
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(3.74)

(3.75)

(3.76)

QED.



Corollary 3.4.1 Suppose Z is a multivariate AR(p) model and p(t),t =1,---

the order estimators for the corresponding PAR z defined before. Then

. p(t) —t
p—gﬂ[

ax [=— ]+1

s a consistent estimator of p.

Proof. It follows from theorem 3.4.1 and Theorem 1.0.1 (i:3).

We also use simulated data to estimate order of the following model

Ton — 0.7T2n_1 + .25Z3n_2 = €24

Zons1 — 0.5T2, — .25Z2,_1 = €201

,T,are

QED.

where ¢, are i.i.d normal sequence. So T = 2,p; = p; = 2. We took N =

200,¢(N) = In N,. Our simulated results are shown in the tables. We see that it

picks up the right order.

po|1 2 3 4 5 6 7
BIC | .05429 | .02231 | .04451 | .06129 | .08767 | .10455 | .12899

”ﬁz 1 2 3 4 5 6 7

|| BIC | .06602 | -0.03244 | -0.00682 | 0.01884 | 0.04428 | .06567 | .09199 ||
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