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ABSTRACT

ON PERIODIC AUTOREGRESSION: MAXIMUM ENTROPY

MODELING AND PARAMETER ESTIMATION

By

Hao Zhang

We study a special class of periodically correlated time series for which the best

linear predictor of a:(t) based on all past information , denoted by 5:(t), depends

on at most p steps back, i.e., there exists an integer p such that

5:05) = P7‘OJ’($(1¢)III=(t - 1), - - - ,w(t - 10)),Vt-

We call such a periodically correlated process a periodic autoregression (PAR). A

PAR is equivalent to the following time domain model:

t

W) - 200', t)5'3(t - j) = 0(t)€(t),
3:

where p(t), 0(t), a.(j, t) are all periodic in t and 6(t) is the innovation process.

We first show that Burg’s maximum entropy principle can be generalized to

periodically correlated case and the generalized principle results in a PAR.

We then study estimation problems in a PAR model. We show that the Yule-

Walker equations provide consistent estimators for the coefficients a(j, t). We

also give a uniform convergence rate of the estimators. Finally, We generalize

Akaike’s Bayesian Information Criterion to give consistent estimation for the orders

p(1),p(2), - - - ,p(T)-
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Introduction

Time series analysis is one of the fields that have attracted interests of proba-

bilistists, statisticians and researchers from economics, engineering, social sciences

and other areas. Stationary time series has been studied extensively because of

its application in many fields and the adequate mathematical tools to handle it.

One of the most important class of stationary time series is ARMA models which

are widely used in applications. Problems studied for ARMA models are param-

eter estimation, spectral estimation and prediction. AR models, as special cases

of ARMA models, received more attention since stationary time series can be ap-

proximated by AR models (An, Chen and Hannan, 1982).

What makes AR models even more interesting is the application of informa-

tion theory in the study of stationary time series. Burg (1967) used the idea of

maximizing entropy in spectral estimation. He showed this approach results in

an AR model. Burg’s maximum entropy principle is better justified by Parzen

(1983) and has been widely used today in spectral estimation. Akaike (1974) ap-

plied information theory to develop the well-known Akaike’s Information Criterion

(AIC) for order estimation in AR models. AIC tends to overestimate orders and

yields inconsistent estimators (Shibata,1976). To get consistent estimators for the

order in an AR model, Akaike (1977) later modified AIC to Bayesian Information

Criterion (BIC). An, Chen and Harman (1982) proved that BIC gives consistent



order estimation.

Although stationary time series describe many phenomena well, there are situa-

tions when data exhibit non-stationarity. Efforts to study non- stationary processes

can be found constantly in literature.

One natural generalization of stationary process is Loéve’s harmonizable pro-

cess. Spectral domain problems for harmonizable processes are studied by Cramér

(1961). Cramér (1964) also showed that time domain problems are difficult for

harmonizable processes. So far, no time domain model is discussed for general

harmonizable processes.

The effort is thus concentrated on non-stationary process for which both time

domain and spectral domain approaches can be applied. The major example in

this direction is periodically correlated (PC) processes, which are harmonizable

as shown by Gladyshev ( 1961). After the early work of Gudzenko (1959) and

Gladyshev (1961), several authors have studied the Kolmogorov-Wiener problem

(Miamee and Salehi,1980, Hurd and Mandrekar,1991).

Motivated from applications (e.g., Bloomfield et al, 1994, Gardner, 1986), Hurd

(1989), Hurd and Gerr (1991) studied some inference problems for spectral measure

of PC processes. Time domain models have been also studied for PC processes.

Pagano (1978) introduced periodic autoregression (PAR). Anderson and Vecchia

(1993) studied periodic ARMA model and gave the asymptotic properties of sample

covariances. Adams and Goodwin (1995) studied on-line parameter estimation for

periodic ARMA models.

We study PC time series systematically by first showing that the analogue of

Burg’s algorithm holds for PC time series. For this purpose, we introduce a slightly

different definition of PAR. From this definition, we can easily show that PAR

satisfies maximum entropy principle. Our definition reveals an intrinsic property of



PAR models and overcomes a technical difficulty encountered by Pagano’s. These

are all discussed in Chapter 2.

We then consider parameter estimation for PAR models in Chapter 3. Here,

we study estimation of coefficients in PAR models. We give convergence rates for

these estimates by first studying the convergence rate for sample covariances. Then

we apply these rates to give consistent estimators for the order of PAR models.

Our work generalizes Akaike’s BIC order estimation to PAR model. Numerical

results are shown at the end of Chapter 3.

Throughout this thesis, we assume all sequences of random variables have zero

means. Let "A“ denote the sup-norm of a real matrix A and Z denote the set of

integers.



Chapter 1

Periodic Autoregression

A sequence of real valued random variables :1: = {$(t), t E Z} is called a periodically

correlated if for some integer T and any t, s,

E$(t) = Ea:(t + T),

Cov(:r(t), 3(8)) = Cov(a:(t + T), :1:(s + T)).

We always assume that Ea:(t) = 0 for all t. Then the definition is equivalent to

that there exists a unitary operator U such that for some T,

a;(t + T) = Ua:(t), Vt.

One chooses the minimum T as the period of the PC sequence. The best linear

predictor of :z:(t), given 316(3), 3 < t, is the projection of a:(t) onto the closed space

spanned by 31(3), 3 < t (Kolmogorov, 1941). Hereafter, we denote this projection

by

Proj(a:(t)|a:(s), s < t).

From the definition of PC sequences, we see that if

Projwnzc), s < t) = fauna — j),
i=1



then

Proj(:1:(t+T)|ac(s),s<t+T)= Zc-( t(+T— j.)

In other words, the coefficients cj(t) are periodicm t for every j Z 1. Whereas for

general non-stationary sequences, nothing can be said about cj (t).

From the point view of prediction, the simplest class of PC sequences are those

for which prediction depends only on finite history. This leads to the following

definition.

Definition 1.0.1 A PC sequence is called a periodic autoregression (PAR for ab-

breviation) if there exists an integer p > 0, such that for any t

at) = Proj<x<t>|x<t — 1),x(t — 2), - - ',:r(t —p)>.

We do not consider the case :i:(t) is zero which is less significant in view of

prediction. Then for each t, there is a smallest positive integer p(t) satisfying

53(t) = Pr0j($(t)lm(t - 1),$(t - 2), - ° - ,$(t - p(t)»-

We will call p(t) the order of p(t). We will show in Proposition 1.0.1 that p(t) is

periodic, then we can simply say that x(t) has order p(l), p(2), - - - , p(T). We can

write

p(t)

(t) = 20(1) 13):!C (t - j)

i=1

8
)

or equivalently

p(t)

-Za(j,t)t - i) —6(13) (11)

where 5(t) = :L‘(t) — :i:(t). Thus e(t)lS orthogonal to 23(3) for all s < t.

Let

02(t) = E|a:(t) — 52(t)|2.



If 02(t) > 0 for every t, we say that $05) is non-deterministic. In this case, we can

write (1.1) as

90)

at) — g as, me - j) = a(t)e(t>, (1.2)

where {e(t)} is a the innovation sequence, 1.e.,

6 = at) — at)
(t) 0(t) -

The next proposition says all parameters are periodic in t.

Proposition 1.0.1 If a:(t) is a non-deterministic PAR, then the functions p(-),a(-, -)

and 02(t) are unique and for any t

p(t) = W + T)

02(t) = 02(t + T)

0(1', t) = 0(1) t + T)

Proof. p(.) and a2 (.) are obviously unique by definition. Since a: is non-deterministic,

it follows that :z:(t — 1), ...,x(t — p(t)) are linearly independent and thus a(-, -) is

unique. Notice that p(t) is periodically correlated if and only if there exists a

unitary operator U such that

U$(t) = :r(t + T).

It is very easy to justify

UProj(y|S) = Proj(Uy|US)

for any y and (closed) subspace S, where US = {Um : a: E S}.

It follows that

UProj(a:(t)|:r(s), s < t) = Proj(:r(t + T)|:1:(s + T), s < t)

UProj(:I:(t)|:r(s),t —p S s g t) = Proj($(t +T)|:r(s + T),t —p S s S t).

6



We conclude from the above two equations that

p(t) = p(t + T), a"(t) = 02(t + T)

Since

then

p(t)

U§:(t) = ;a(j,t)a:(t -— j + T).

On the other hand,

p(t+T)

U5:(t) = :i:(t + T) = Z a(j,t+ T):1:(t + T — j).

i=1

From the facts that p(t) = p(t + T) and (12(3), for t+ T — p(t) g s S t+ T — 1 are

linearly independent, we obtain

a(j, t + T) = a(j, t),Vj, t.

We see that for non-deterministic PC sequences, our definition is equivalent to

(1.2) with periodic parameters, which was used to define periodic autoregression

by Pagano (1978). The definition here overcomes a technical difficulty. (See the

remark at the end of this section.) We are ready to give a characterization of PAR

model now. Let

£(t) = (a:(1 + tT),a:(2 +tT),. - -,:1:(T + tT) )’, v t,

R(t, s) = Ea:(t):c(s).



Theorem 1.0.1 Let a: be a PC sequence. Then :1: is a non-deterministic PAR is

equivalent to the followings.

(i) $(t) satisfies the following time domain model

p(t)

$(t) - Z: a(J',t):1«'(t - j) = 0(t)€(t), (13)

where €(t) is the innovation process and 0(t) > 0.

(ii) The Yule- Walker equations hold, i. e.,

p(t)

R<t — k, t) — zao, t)R(t — k. t — j) = out»... (1.4)
j=1

for any It _>_ 0, Vt.

(iii) 5(t) is T dimensional AR(p) model for

 

“[190;-

Pisa 1+1

(where [a] denotes the integer part of a.) Namely, there exist matrizes AJ- and G

and a T dimensional time series €(t) such that

5(t) — z A,-:i:'(t — j) = €(t) and (1.5)

Cov(é(t), 5(3)) = G6”, Eé‘(t):i:'(s)' = 0,Vs < t. (1.6)

Proof. It is obvious that (i) and (ii) are equivalent and are necessary and sufficient

conditions for :z: to be PAR by definition 1.

Let us prove (i)=>(iii). Suppose a: is PAR. Then a: has the time domain expres-

sion given by (1.3) which can be written in vector form

801:“) —:Bj$ =D€(t) (1.7)



where p is defined in the theorem and D=diag(a(1), ..., o(T)), B, = (bj(k, l))Z:,___1

for

bo(k,l) = 6k,l—a(k—lil)X{k>l}

bj(k1l) : (1(Tj + k _ 1’ k)X{Tj+k—lgp(k)}a 1 S j S p

Let €(t) = (6(1 +tT), 6(2 + tT), - - ~ ,e(T+ tT))'. Then it is obvious that €(t) 1 55(3)

for any 3 < t. Let

A,- = 80—18,, €(t) = 130-119;.

Then €(t) satisfies (1.6) with G = B51D2(Bo-1)’ and (1.5) follows from (1.7).

(iii)=> (i): Since G is positive definite, it has the following Cholesky decomposition

G = LHL'

where L is lower triangular with all diagonal entries being 1 and H is diagonal and

non-singular. Multiplying (1.5) by L“, we get

9

L-lsa) — Z L"1A,-:I:'(t — j) = L-la

j=1

Since L‘1 is also lower triangular and Var(L’1é) = H is a diagonal matrix, the

scalar form of the above equation will yield (i).

QED.

Corollary 1.0.1 A nondeterministic PAR is purely nondeterministic.

Proof. Let a: be a nondeterministic PAR. Then the corresponding multiple se-

quence 53' is a stationary AR. It is well known multiple AR is purely nondetermin-

istic. In [19], and [22], it is proved that :1: is purely nondeterministic if and only if

53' is so. Thus the proof is completed.



QED.

Remark. A stationary AR(p) model is defined in literature (Hannan, 1973) as a

second order stationary sequence satisfying

:0

$(t) — Z"? 01$(t- j) = 0603),

for some constants a > 0, aj such that

:0

|1 — Zajzjl 75 0, for |z| S 1.

j=l

and a white noise {e(t)}. The constraint for the coefficients is a necessary and

sufficient condition for the existence of a solution of stationary sequence (see,

e. g., Hannan, 1970). Analogously, we need to know constraints on the coefficients

a(j, t) to guarantee a PC solution of (1.3) exists. We can give the constraint in

two equivalent ways. We note that (1.3) with periodic parameters has a non-

deterministic PC solution if and only if {p(t),02(t),a(j, t), j = 1,---,p(t),t =

1, 2, ~ - - ,T} uniquely determines R(t, s) for It — s] g p(t) such that

R(t, s) = R(s, t) = R(t + T, s + T)

and for any t = 1,2, - - - ,T, the matrix

P. = (W — it — with (1.8)

is positive definite. The necessity is obvious and sufficiency follows from Theorem

2.2.1 in the next chapter.

We also see from Theorem 1.0.1 that (1.3) has a PC solution if and only if

P

det(I — Z Ajzi) 7e o,v |z| g 1. (1.9)

i=1

10



Indeed, (1.9) implies there is a stationary solution of (1.5)(Hannan, 1970, page

326). The corresponding scalar sequence must be a PAR satisfying (1.3) by Theo—

rem 1.0.1 It must be non-deterministic since a(t) is positive. We use the technique

of Whittle (1963) to show the other way. Suppose that (1.3) has a PC solution.

Then the corresponding vector-valued stationary sequence satisfies (1.5) and (1.6).

Define the pT dimensional random vector

/ 5(t) )

EU—l)

  ( :‘E(t — p + 1) f

Project Yt such that

Y: = PYt—l + Z, Z, _L Yt-l

and P is the projection matrix. We see from (1.5) that

(Al A2 A,,_1 AP)

I

  (....1)
Zt = (é(t)’,0, ...,0)’.

Let /\ be an eigenvalue of P and E be the corresponding left eigenvector. Then

{P = A5. (1.10)

Observe that Cov(Yt) = Cou(Yt_1) is positive definite , then

Eléztl2 = EIEKP -- EIEPYHI2

= £Var(K)€’(1 — IAIZ) 2 0.

11



it follows that IAI S 1 with equality if and only if {Z = 0. Because of the special

form of P, ( 1.10) implies that E and {0 must be 0 together where {0 is the first T

entries of 6. Since Var(é't) is non-singular, for non-zero E,

EZt 2 £053 74 01

So all the eigenvalues of P have modules less than 1. Now suppose 2 satisfies

p

det(I — ZAJ-fj) = 0.

i=1

1
It suffices to prove z‘ is an eigenvalue of P. There exists an row vector 61 6 RT

such that

51(1 — f: 14,51): 0. (1.11)

":1

Let J

5,- : 25,--1 — £1Aj_1, j: 2, ...,p. (1.12)

Set

5 =(€1,...,€p).

Notice (1.11) and (1.12) imply immediately

5P = 25.

(1.9) now follows.

12



Chapter 2

Maximum Entropy Modeling of

PC Time Series

2.1 Introduction

The entropy of a random vector in R" with probability density function f (:13) is

defined as

H(X) = -E1nf(X) = — l... f(:v)1nf(x)d$-

Burg (1967) developed a maximum entropy approach for spectral estimation of

stationary time series which has been widely used since then. Burg’s approach can

be stated in the following way. Suppose p+ 1 autocovariances R(O),R(1), - - - ,R(p)

of a stationary sequence are known (usually estimated from observations). Instead

of taking R(n) to be 0 for all n greater than p, as in windowed spectral estimation,

we extrapolate R(n) for n > p in such a way that maximizes the entropy

H(CL‘(t), $(t — 1)1' ' ° ,£E(t — 71.)),

for all n > p.

13



It turns out that the only such extrapolation is given by Yule-Walker equations,

thus this maximum entropy method results in an AR model.

We consider here the same question for PC sequence. Suppose for each t =

1, 2, - - - ,T, we know the covariance matrix of

(~73(t),:v(t - 1), - - - ,$(t —pt))

for some integers pt > 0. Because the time series is PC, we do not require that the

pt’s are the same. We will extrapolate the covariance function in such a way that

maximizes the entropy

H(:v(t),:v(t — 1). - - - .xa — s»

for all s < t. Problems we will consider are

( 1). whether there is a PC solution to this maximizing problem and

(2). the properties of such PC sequences which maximize the entropies.

We will prove in the next section that there is a unique Gaussian PAR sequences

which maximizes the entropies.

2.2 Maximum Entropy Modeling of PC Time

Series

To avoid the ambiguity of saying part of covariances of a sequence is known without

knowing such sequence exists, we state the problem in a more mathematical way.

Let p1, p2, - - - , pT be positive integers and r(., .) be defined on the set

A = Uf=1{(u,v) E Z x Z :t—pt S u,v S t}.

We assume that

Pt = (TU _j1t_ k))§,tk=o

14



is positive definite for all t = 1, 2, - - - ,T and

r(s, t) = r(s + T, t + T) = r(t, s) (2.1)

whenever (s, t), (t, s) and (s + T, t + T) are in A.

These assumptions are seen necessary for r to be a covariance function of a PC

time series. Let [C be the set of all PC time series with period T whose covariances

are r(t, s) for (t, s) E A. The next theorem says IC is not empty.

Theorem 2.2.1 There is a non-deterministic Gaussian PAR in IC.

Proof. Since Ft is positive definite, the equations

Pt

r(t _ k3 t) — 20(j1 t)7“(t - kit — j) : 6k,002(t)1 for k = 0111' ° '1pt1 (2'2)

i=1

have unique solution a(1,t),a(2, t), - - - ,a(pt,t),02(t) and 02(t) > 0. These Yule-

Walker equations actually provide a way to extend r(t, s) to be a covariance func-

tion of a PC time series. But we will adapt a statistical approach here.

Let i E {1,2,---,T} be such that

i—p,St—ptfoth=1,2,---,T.

Then there are Gaussian random variables r(t) of 0 mean, for i — p,- S t S i — 1,

such that

Ea:(t):1:(s) = r(t, s), for i —p,~ S t,s S i — 1.

Let €(t), t Z i be a sequence of i.i.d standard normal random variables and also

independent of {x(t),i — p,- S t S i — 1}. Define, for t 2 i,

p(t)

ac(t) = Z: 0(3) t)$(t - j) + 0(t)€(t)

15



where p(t),a(j, t) and 0(t) are the periodic version of pt,a(j, t) and 0(t) respec-

tively.

This definition together with (2.2) yield

Ea:(t):r(s) = r(t,s), for (t,s) E A.

We now show that r(t) is PC, i.e.,

E:r(t + T):1:(s + T) = Ea:(t):1:(s), (2.3)

for Vt, s _>_ i — pi. We observe that (2.3) is true for i -— p,- S t, s S 0, because of

(2.1). Assume it is true for i — p,- S t, s S n. Replacing r(n + 1) by the definition,

we have for t < n+1,

p(n+1)

Ecr(t):1:(n + 1) = Z Ea:(t):r(n + 1 — j)

j=1

p(n+1)

= 2 Ed?“ + T):13(n + 1 + T) (by the induction assumption)

j=l

= Ea:(t + T)a:(n + 1 + T)

Similarly, we can prove

Ex2(n +1) = E$2(n + 1+ T).

Thus (2.3) is true for t, s S n + 1. So we have proved (2.3).

Let

r(t, s) = Ea:(t):r(s)

for all t, s 2 i-p,. Then r(t, 3) still satisfies (2.1). Now we extend r(t, s) to Z2 by

r(t — mT, s — mT) = r(t, s),Vm Z O.

16



For any m S n, the matrix

{r(t,s) : m S t,s S n}

is positive definite because of the periodicity of r(t, s) and the fact that {r(t), t Z 0}

are linearly independent. So there is a Gaussian sequence with r(t, s) as covariance

function by Kolmogorov’s Theorem. This sequence must be a PAR by Theorem 2

and non-deterministic since 02(t) > 0.

QED.

This Gaussian PAR must be unique in distribution. It might have orders p(t) S pt

for t = 1,2, - - - ,T because a(j,pt) might be zero. But the orders are uniquely

determined by I‘t’s.

The next theorem says that it is the one that maximizes entropy.

Theorem 2.2.2 Let r(t) be a Gaussian PAR in IC, then for any 3 S t,

H(Iv(t),rv(t - 1), .--,x(8)) = 313 lib/(13).“t - 1), ---,y(8)) (2.4)

where the supremum is taken over all sequences Y in K: for which the entropies in

(2.4) can be defined.

Conversely, if a PC sequence y(t) in IC satisfies (2.4), then y(t) is a Gaussian

PAR.

Remark. The problem we considered here is more general than assuming R0, R1, - - -

the covariance of a vector-valued stationary sequence, are known. Actually, the

later is a special case of our problem here. Thus Theorem 3 contains the maximum

entropy method for stationary vector-valued sequence as a special case. There is

a practical consideration why we assume r(t, s) is known in the set A instead of

17



a square area {1 — q S t, s S T} for some q > 0. To approximate a PC sequence

using a PAR, we might choose different orders p(l),p(2), - - - ,p(T). Given finite

observations of a PC sequence, we should just estimate r(t, s) for (t, s) E A and

extrapolate it through Yule-Walker equations since smaller |t —- s| tends to give

better estimate of r(t, 3).

To prove this theorem, we need some basic properties of entropy. The following

two lemmas are known.(e.g., for Lemma 1, Choi, 1983, Parzen, 1983; for Lemma

2, Gallager, 1965, Kullback, 1978.)

Lemma 2.2.1 For any random vector Y, let X be a normal random vector having

the same covariance matrix as Y. Then

H(Y) S H(X)

The equality holds if and only if Y has normal distribution.

For two random vectors with joint probability function f(x, y), the conditional

entropy of X given Y is defined as, provided it exists,

H(X|Y) = — f1uf<xly)f(x,y)dxdy.

where f(xly) is the conditional probability density of X given Y. Thus

H(X|Y) = H(X, Y) — H(Y). (2.5)

We use H(X |Y, Z) to denote the conditional entropy of X given Y and Z. H(X|Y)

can be interpreted as the remaining uncertainty of X given Y is observed. Then

the following lemma is clear intuitively based on this interpretation.

Lemma 2.2.2 For any three random vectors X, Y, Z with joint probability density

function f(x, y, 2),

H(XIY, 2) s H(X|Y).

18



with equality if and only if X and Y are independent conditionally on Z, i.e.,

f(xly, Z) = f(IEIy), a.e.

Proof of Theorem 2.2.2. We know from Lemma 1 that we should look for a

maximizer of entropies among Gaussian sequences. Let y(t) be a Gaussian sequence

in IC. Using (2.5) repeatedly, we get for any 3 < t,

H(y(t),y(t - 1), - - - 131(8))

= H(y(8)) + Z H(y(u)ly(u - 1), - - -,y(3))-
u=s+l

We see that for those terms for which 11. Z s 2 u — p(u), the conditional entropies

are known. (since y is Gaussian and the covariance matrix is known.)

Thus, to find a maximizer is to maximize, for s < u — p(u),

H(y(U)|y(U - 1), ' ° ' ,y(s»

_<. H(y(u)|y(u —1).---.y<u — p(u))) (by Lemma 2) (2.6)

= 1‘1’(-‘I=('u)liv(u -1),---,x(y - p(u»)

The last equality is true because (x(u), x(u — 1), - - - , x(y —- p(u))) and

(y(u)|y(u — 1), - - - ,y(u — p(u))) have the same Gaussian distribution. We see this

upper bound is reached by the Gaussian PAR x(t). So x(t) maximizes the entropy.

Conversely, if a Gaussian sequence y in IC maximizes all the entropies, then the

equality in (2.6) must hold. Then, following Lemma 2,

f(y(u)|y(u _ 1)) ' ' '1y(3))

= f(z/(u)|y(u - 1), - - - , y(u — 1900))-

In terms of conditional expectation, it means

E(y(U)ly(u - 1), - - - ,y(8))

= E(v(®|y(u - 1), - - - ,y(u - p(U)))-
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Since y has Gaussian distribution, the conditional expectation is the projection

onto corresponding space. Then the last equality is exactly

Pv“03'(y(u)|y(u - 1), - - ' ,y(8))

= Proy'(y(U)ly(u - 1), - - - ,y(u - p(U)))-

so y is a PAR.

QED

Finally, we note that MEM picks up the most random or the most unpredictable

time series. It is much clearer to state it terms of prediction. Let 02(t; x) be the

mean square of prediction error defined by

02(t; x) = E|x(t) — Proj(x(t)|x(s), s < t)|2

for a sequence {x(t), t E Z} in IC.

Theorem 2.2.3 x E [C is a PAR if and only if

020%) 2 02(t;y),Vy 6 IC-

Proof. Let x(t) be the PAR in IC and y(t) be any sequence in IC, we have for any

t= 1,2,---,T,

p(t)

02(t; y) S E|y(t) - 20(13if)y(t-j)l2 (2-7)

p(t)

= r(t, t) — gag, t)r(t,t — j) = 02(t; x)

Conversely, if y(t) satisfies

02(t; y) = sup 02(t; 6),
(GK:
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The equality must hold in (2.7). It follows that

p(t)

Z 0(1) L(It))"y(t - j) = Proj(y(t)ly(8), 8 < t).

3:1

So y(t) is a PAR.

QED.
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Chapter 3

Parameter Estimation in PAR

Model

In this Chapter, we consider parameter estimation in PAR. We assume, throughout

this Chapter, that x(l), x(2), - - - ,x(N) are observations from a non—deterministic

PAR {x(t) : t = 0,:t1, i2, - - }.

Define the sample covariance by

RN(t,s)=[NT‘1]‘l Z x(t+jT)x(s+jT) (3.1)

j€D(t,s)

fort = 1,2,~-,T, s = 0,1,---,N—t—1, where D(t,s) = {j : max(t,s)+jT S N}.

RN(., .) can be extended by

RN(t13) : RN(31t)1 RN(t+kTas+kT) = RN(t13)

Then RN(t,s) serves as estimator of R(t,s). In Theorem 3.2.1, we give the

uniform convergence rate of these estimators. The solution of Yule-Walker equation

with R replaced by RN estimates regression coefficients. Uniform convergence rate

of them is given in Theorem 3.3.1. In the last part of this Chapter, we generalize
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Akaike’s BIC for stationary AR model to PAR model to get consistent estimator

of order p(l),p(2), - - - ,p(T).

The following assumption is made throughout this Chapter. Since we will

consider properties of sample covariances, we assume the moments of order more

than 4 exist and are bounded. For two sequences of real numbers an and b,,,

an m bu means an = 0(bn) and bn = 0(an).

Assumption 3.0.1 {e(t) : t E Z} is the innovation process of {x(t) : t E Z} and

E(€(t) lf-t—I) : 0:

E(€2(t) | 71-1) = 1, a.s

Z V(62(tT|f}T_T) a: n, a.s

t=1

where f} = 0{e(s) : s S t}. Suppose also that for some 6 > 0,

sup E|e(t) |4+6 < oo

tez

3.1 Preliminary Results on Martingale Differ-

ences

In this section, we give some results of sample covariances of a martingale differ-

ence. We need this to derive results for PAR model.

We will give a law of the iterated logarithm for martingale difference and apply

it to give the convergence rate of covariance of martingale difference. For stationary

and ergodic martingale difference, a law of the iterated logarithm has been given

in literature. ( See, for example,[30]). But we assume higher moments instead of

stationarity and ergodicity since we believe that the assumption of higher moments
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being bounded is less restrictive in time series than the assumption of stationarity

and ergodicity.

Theorem 3.1.1 Let {Ym .77", n 2 1} be a martingale difierence such that for some

6>0, M>0 andforanyn,

ElYn|2+6 S M

Let sf, 2 L1 E{Y,-2|.7:,-_1}. Suppose also that

2

C I 8

11m 1nf—'—l > 0, a.s.
n—-+oo n

Then almost surely

- ?=1 Y"

11m sup = 1

"40° \/2s,2, ln ln 5?,

Proof. Stout [29] proved that for martingale difference Y", the following law of

the iterated logarithm holds

 

 

 

" Y
- i=1 n

11m sup 2 1

we ,/23,2,1n1ns;~;

if 3?, = 2;, E(Y,,2|.7-'-_1) —> 00 and there exists a sequence Kn which is 75,4

measurable and goes to zero such that

Emma: > v3.» < oo, (32)
i=1

where

2 K7152:
v = .

" lnlnsf,

In our theorem, it is obvious that sf, —+ 00. Take

1

Kn = .

lnlns,2,
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We only need to check (3.2). Since

E(Y.3X{Y.3 > v33)

3 (EIYnI2+P)v;P s M - 3,7»,

we see that the sum in (3.2) is bounded by

Mi s;2_p

n=l

which is finite almost surely because lim inf sf, /n > 0. So the theorem follows.

QED.

We first state a lemma which is needed to prove our next theorem.

Lemma 3.1.1 Let {me'mn Z 1} be a supermartingale difference with EYl = 0

and for some K 6(0, 1/2/,

311

‘/21nlnsf,

where 3?, = 2;, E{K2|E_1}. Suppose for some constants b 2 9, almost surely,

YnSK a.s

sf, S b2,Vn.

Then for any 0 < 5 < 2,

P(supZY, > 6{2b2 lnlnb2}1/2) _<_ exp(—s1n1nb2)

"21 i=1

where ,8 = 62(1 - 6—53).

Proof. Let

c = Kb/VZlnlnbz, /\ = 6b—1V21nlnb2.
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Then

Ac = 6K S 1.

—1/2
Since x(x ln In x) is increasing for x 2 9, we have

Y” S c, Vn.

It follows [31] (Lemma 5.4.1 on page 299) that

n A2 A

Tn = €XP(/\ZY1) eXP(“"'2"(1 + 'Z—C

i=1

193.)-

is a super-martingale w.r.t f}, and ETl S 1. Thus for any a > 0,

P(sngn > a)S1/a.

Then

P(supzn: Y,- > (5(2b2 lnln b2)1/2)

" i=1

2 P(supZYi > Abz)

" i=1

A

S P(sup Tn > exp(A2b2 - -b23(1 + 30)b2)

S exp(—A2b2(1/2 — Ac/4)) = exp(—fllnln b2).

QED.

Theorem 3.1.2 If {e(t),.7:t,t 2 1} satisfies Assumption 3.0.1, then for any posi-

tive real number d and integer T,

 

 

. I 2":1 62(ST) — n]
11m su 5 < 00, 3.3

'Hoop V2nlnlnn ( )

lim sup maX0<t<dlnn I 28:1 €(ST)€(ST + t)] S «5 (34)

11—100 «27111111177,
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Proof. Let

Y(s) = 62(8T) — 1.

Notice that Assumption 3.0.1 implies {Y(s), $37, 3 Z 1} is a martingale difference

and

sup E|Y(t) [Nd/2 < 00,

t

Applying Theorem 3.1.1 to {Y(s),.7:sT, s 2 1} and the fact

2 E(Y2(S)].7:3T_T) z TL,

12114831) fi—ga— < 00. (3.5)

(3.3) is proved now. To prove (3.4), we need first truncate 6(8). Let

_ 3 mi

MS) — (lnlns) lns

6(3) : 6(S)X{|e(s)l<\/:(:)I}

77(5) = ‘(S)X{Ie(s)12\/A_(5}

For a fixed t > 0, let

I

f : fsT-l-tVT8

14(8) = €(ST)E(ST + t) - E{€(ST)€(ST + t)|}'§_1}

Then {K(s),.7-';,s Z 1} is a martingale difference. We will finish the proof by

proving the following,

 

0<Itil§11cnn2|e(s(T)(sT+t)— Yt(s)| = o(\/r—1), (3.6)

limsup max IZFIYAS)| < \/2. (3.7)

n—mo 0<t<dlnln Vannlnn _
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To prove (3.6), we first note that

E|n(8)|2 S E|6(8)|4+6/\(S)’1‘6/2-

 

It follows

°° E|n(8)|2
< 00. (3.8)

.2}. «3
Then Kronecker’s lemma implies

2317(3)2 = o(\/fi) a.s. (3.9)

3:1

and

z: wens.-.) ——- (Jo/Ems. (3.10)
s=1

We will show first

Krtxéaixnn i |e(sT)e(sT + t) — £(sT)£(sT + t)|

— — 3:3

= 13:31ch2 |n(sT)77(sT + t) + n(sT)€(sT + t) + £(sT)n(sT + t)|

- — 3:3

: 06/5) (3.11)

Applying Holder’s inequality and (3.9), we get

151,231,;".2 |n(sT)n(sT + t)|

nT+dlnn

S 2 172(3) = o(\/nT + dlnn) == o(\/fi) (3.12)

s=1

Since Vlnln s - ln s is increasing and

then

A1/2(s + t) _<_ A1/2(s) + 11/20:). (3.13)
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Because {(3) S A1/2(s), (3.13) implies

n nT

Z In(sT)£(sT + t)| _<_ Z In(s)€(s + t)|
3:3 3:3

nT

S 2 |77(8)|(A1/2(8) + *1/20» (3-14)
3:3

Notice that by (3.8)

|n(8)HIV/2(8) |7)(S)l2 00 a S
2: \/3 S Z—fi < , . .

8:3 3:

 

Then Borel-Cantelli lemma implies

nT n

2; ln(8)l -—- 0((/-,(—nTT—,).

Applying it to (3.14), we get

max 2:: ln(sT)€(sT+t)l= am) (3.15)
1StSdlnn

Similarly, we can prove that

1331‘ Z |€(8T)n(sT + t)! = 0M?) (3-16)
— " n”51:3

Now, (3.11) follows from (3.12), (3.15) and (3.16).

Using the same approach, we can prove that

max 2 [E((s((T)e(sT + t) — £(sT)§(sT + t)|}:_1)| = o(\fii). (3.17)
1StSdlnn.‘J

(3.6) follows (3.14) and (3.17). Next, we will use the exponential inequality in

lemma 3.1.1 to get (3.7). Let us now investigate sum of the conditional variance

of Yt(s).

max ZIE{€(ST){(sT+t)I}-;_1}I2
lStSdlnn:J
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S max ZIHST))2|E{n(sT+t)|.7-"_1H2
1<t<dlnn

nT+dlnn

S WIT) Z; E(nz(8)|f§_1)

= o(\/7—t)o(\/nT + dlnn) = 0(n) (3.18)

Here we have used (3.10). Since

E(62(sT+t)|FsT+t_1) = 1, a.s andf;_1CJ-'3T+t-1, then

E(62(sT+t)If;_1) = 1.

Consequently,

2:331:7(52(sT):(sT + ma.)

=:€2(8T E(()2(8T + t)|J-"_)) (3.19)

Applying (3.10) and the fact that

62(sT) 3 AW).

we get

..ea.§€2<sT)E<n2<sT = fill-11-1)

g A(nT) 2": 12(27on + t)|f;_.)
3:3

<(/1n,nT.1.-o(\/’)= o(n) (320)

Notice also that (3.3) and (3.9) imply

 

:52(5T):-Zl(€(6—2(8T) 772(3T))

——n + 0(n) (3.21)
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Then (3.19), (3.20) and (3.21) yield that uniformly in 1 S t S dln n,

i E{€2<sT)s(sT +01%.) = n + om). (322)
3:1

It follows from (3.18) and (3.22) that uniformly in t S dln n,

2 _ n _
s.<n) — ZVar{K(s)le_1}— n+o<n). (323)

3:1

Notice that from the definition of Yt(n),

mm) s 2A<nT>A<nT + t)

= n st (n)

Kt( ) lnlns?(n) (3.24)

where

_ nT nT + t 1/4 st(n) _1 1

K101) _ 2(ln ln nT lnln(nT + t)) lnln s?(n)) (1n nT) ln(nT + t) '

  

Then by (3.23)

lim K,(n) = 0. (3.25)
1}.—NI)

Choose 0 < K < 3?, let

1748) = Yt(3)X{K¢(s)SK}-

  

 

Then ~

, max, Zn=11’t(s) . max; 22:1 Yt($)
3 = . 3.26

113183.31) (2n ln 1n n)”2 11:33:11 (2" In 1n n)”2 ( )

We will prove that ~

lim sup max: 25:1 ”(8) S "y(K), d (3.27)

n—mo (2nlnlnn)1/2

where y(K) E (0, 51471) is the unique root of [3(x, K) — 2 = 0 and )6(x,K) =

x2(1 — %). Since 3(2):, K) is decreasing in K, we see that y(K) decreases to x/2

as K goes to 0. Then (3.26) and (3.27) yield

. maxt 23:1 Yt(3)

11313.3" (2nlnlnmm 5 ‘5' (3'28)
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Apply this results to the martingale difference {—Y,(s), .7” ,s > 1}, we get

 

. . mind); Y,(s)
> .11,33”: (2nlnlnn)1/2 _ —f. (329)

Now (3.7) follows (3.28) and(3.29). So it is enough to prove (3.27). To reach that

goal, let p > 1 and define the stopping times

rm, = inf{n Z 1, s?(n + 1) Z pzm}

Let

_ - 2m

——1nf{n Z 1,Krtrégxnns,(n + 1) _>_ p }

Then Tm S Tm, for any t. (Notice that Tm is not a stopping time.) Then for

O<6<oo,

3.1:}:ij)> 6J2nlnlnn,i.o)
P(BSItnSdlnns

 

S P(mgup+1 351:3anZ(Y,(s)> 6\/('rm + 1) lnln(rm + 1),1.o mm) (3.30)

Since we have proved

lim n‘1 max sf(n) = 1,
"400 lStSdlnn

then almost surely for sufficiently large m,

2m—1p < Tm < p2m+1

Using this inequality and the fact that

  

\/p2m—1 ln ln p2m-l > p-2 \/p2m+2 ln ln p2m+2,

for sufficiently large m, the probability in (3.30) is less than

 

P({ sup ax217,03>6p'2\/p2m+2lnlnp2m‘1,i.o in m)}) (3.31)
"STm+1 3SItnSdlnn8
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It is easy to verify for a fixed t, the martingale difference {Y,(s)X{s S Tm+1,,}, f}, s 2

1} satisfies conditions in Lemma 3.1.1 with this b2 = pm”.

From Lemma 3.1.1 and the fact Tm S rm, for any t, we have

(sup ZY,(s))>6p-2Vb21nlnb2)

Pn<Tm+1 8:].

SP( sup ZY,(S)>6p2\/b21nlnb5")

”(Tm+1¢ 8’1

S exp(——=,Blnlnp2m‘1)) ((2m —1)lnp)"fi, V1 S t S dlnn

where ,8 = map-2, K). Since ,B(x, K) is increasing in x E (0,4/(3K)), then 3 > 2

for 6 > p27(K). It follows then for such a 6,

 

Z; Z: P({Sgp 2; 13(8) > 6\/p2m-1 1111np2m—1})

5i d(27” + 3))(lnp)((2m — 1) Imp)” < oo. (3.32)

(3.31), (3.32) and Borel-Cantelli lemma imply

 

P( sup max ZY,() >)6\/(Tm + 1) lnln(Tm + 1), i.o inm)) = 0 (3.33)
"(Tm-+1 3StSd Inns

for 6 > p27(K). Since p > 1 is arbitrary, let p goes to 1,then (3.33) is true for

6 > 7(K).

Then we have proved

P( max if“) 7(K)\/2nlnlnn, i.o)=0.
lStSdlnns

(3.27) follows now. The proof is completed.

QED.
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3.2 Convergence Rate of Sample Covariances

In this section, we prove the following theorem.

Theorem 3.2.1 If {x(t) : t E Z} is PAR and Assumption 3.0.1 holds, then for

any constant d > 0, almost surely,

 

lnlnN

sup |R~(t,s)—R(t,s)l=0( N )
|t—s|<dlnN

where RN is defined by (3.1). R(t, s) is the autocovariance function of x.

We will need some lemmas to prove the theorem. Clearly, RN(t,s) can be

linearly expressed by the sample covariances of the corresponding martingale dif-

ference E(t). So, we first investigate the Wold coefficients for a PAR model. It

is well known that the corresponding multivariate stationary AR model 2'? has

representation

x(t) = i 0,50: — j) (3.34)

where =0

E'(t) = (6(1 + tT),e(2 + tT), - - -,e(T+ tT))’,

x(t) = (x(l + tT), x(2 + tT), - - - ,x(T + tT))’.

If we write (3.34) for each component, we get

x(t) = gamma — j) ‘ (3.35)

and obviously C(j, t) is periodic in t. We call c(j, t) the Wold coefficients of the

PAR x(t).

The following fact about PAR is analogous to a well known one for stationary

AR model.

34



Lemma 3.2.1 There exists constants '71 > 0 and 72 > 0 such that for any j,t

ICU, t)| S warm-723')

Proof. It is well known that the Wold coefficients C" of a stationary multivariate

process go to zero at an exponential rate, i.e., there exists positive constants a and

fi such that

”Cull S aexp(-nfi),

where the norm ”Call is the maximum of entries in C". Observe that for any

0 S m < T and j = nT + m, C(j, t) is an element of the matrix C" for any

t: 1,2,---,T. Hence

I C(J'J) IS IICnll S aexp(-nfi) S aexp(-j)6/T)-

QED.

Next, we consider the sample covariance of the innovation process e(t). For any

positive integers t, s and positive real number b, let

['9]

u(t, s; b) = Z {e(t + mT)e(s + mT) — Ee(t)e(s)} (3.36)

m=0

where [b] as before denotes the integer part of b.

Lemma 3.2.2 Let {Mn} be a sequence of increasing , non-negative random vari-

ables and {An} be an increasing sequence of real numbers. If An —) 00 and

E'(Mn) = 0(An), then

Mn 2 0(An ln An(ln 1n An)1+5)

for any 6 > 0.
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Proof. For a given 6 > 0, let A(n) = AnlnAn(lnlnA,,)1+5. Without loss of

generality, assume that

E(Mn) S CA" (3.37)

for some constant c > O.

For j Z 1, let

n, = inf{n Z 1:1nAn > j}. (3.38)

Then n,- increases to 00 as j —+ 00.

It follows from Markov’s inequality, (3.37) and (3.38) that

 

P(Mn, > A(n)” S

Since 23:3 “Tip“ < oo, Borel-Cantelli Lemma implies that

P(Mnj > A(nj),i.o) = 0.

Now, for n,- S n S n,“ — 1 , we have from the monotonicity

A(n) Z A(nj) and Mn S Mn.
1+1-1

Then almost surely, for sufficiently large n,

  

M" Mnj+l A(nj'f'l) (339)

Since

 

, ' ' 1+6 ' 1

J-too A(nj) J—mo exp(])_71+5lnj

(3.39) implies

M, = 0(A(n)) = O(A,, lnAn(lnln A,)1+5).

Since it is true for any 6 > 0, O can be replaced by 0. The proof is completed.

QED.
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The following lemma is needed to prove our theorem and is of interests of its

own.

Lemma 3.2.3 Under Assumption 3. 0.1, for any constant (1 > 0,

t t'

limsup max |u(, ,n)|

n—too ItISdlnn V 2nln lnn

t o

limsup max M- < V2, a.s. (3.41)

1).—+00 |t|.lsISdln mess \/2n ln 1n n ‘

Proof. The proof is an application of Theorem 3.1.2 and Lemma 3.2.2 with

00, a.s. (3.40)

some computation. We only need to prove the lemma for t S 3 since u(t, s; n) is

symmetric in t, s.

For a fixed |t| < dln n, let no be the integer such that

to = t — 710T E[1,T]

First notice that Theorem 3.1.2 implies that for any fixed to,

n 2 _

,imsuplz =.<e (to+mT) 1))
n—)oo «27111111177,

lim sup max l2m=1 €(t0 + mT)e(s + mT)| S \/2, a.s. (3.43)

n—too to<3<dlnn v2nlnlnn

Let so = s — noT. It is clear that u(t, s; n) can be written as

< oo, a.s. (3.42) 

1}.-+110

u(t, s; n) = Z (6(t0 + mT)e(so + mT) — 6“,)

and

[u(t,s;n) — Z: e(to + mT)e(so + mT)| S 2M”, (3.44)

m=0

where Mn denotes the the maximum of [u(t,s;i)| over |t|, |s|,i S dlnn . Since

{u(t, s, ; i),.7-'m,,x(,,,)+,-T-1,i Z 1} is a L2 martingale under Assumption 3.0.1 and

Eln(t, 8; i)|2

= : E|e(t + mT)e(s + mT) — Ee(t)e(s)|2 S c(i + 1). (3.45)

m=0
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for c = 1 + sup, E|e(t)|4. It is evident that

E(Mf) S E}: ln(t, 8; i)|2
t,s,i

g (1 + 2dlnn)3 . c(lnn + 1).

Then E(Mn) = O(A,,) for An = (1n n)2. Lemma 3.2.2 implies

Mn = o(A,,lnA,,(ln1nA,,)2)

= 0(n“), Va>0.

The lemma now follows.

QED.

Proof of Theorem 3.2.1 Without loss of generality, assume N = nT. Then by

(3.1)

n—max(t,s)/T

RN(t, s) = n—1 : x(t + mT)x(s + mT) (3.46)

m=l

fort: 1,---,T.,and s=0,1,-~,N—t—1.

Since both RN and R are symmetric and periodic, we only need to prove the

theorem for t = 1, ..,T. and t S s S t+ dlnn, and

Let Q" = W. Notice that from (3.35) and the orthogonality of {e(t)},

oo

R(ts) = z c(j,t)c(k.s)cs._.~,._, (3.47)
J'.k=0

Then it follows from (3.46) and (3.47) that

RN(t, s) — R(t, s) = n—1 it): c(j,t)c(k, s)

j,k=0

n—s/T

x Z [e(t + mT — j)e(s + mT — k) — 6,_j,3_k]

m=0

+n — [n - S/T] i c(j,t)c(k,8)61—j,s—lc

j,k=0

 

n

38



The sum in the second term is finite by Lemma 3.2.1, thus the second term is

obviously 0(n’1 1n n) uniformly in s S dln.

Denote the first term by Wn(t, 3). Then

w, (t, s)—_ n1 Z c(j,t)c(k,s)u(t —j,s — k, n— s/T) (3.43)

j,k=0

where u(t, s; x) is defined by (3.36).

Next, truncate the sum in (3.48) at j, k S dln n. Denote by Zn(t, s) the truncated

sum, i.e.

dlnn

Zn(t, s) = n"1 E c(j, t)c(k, s)u(t — j, s — k; n — s/T) (3.49)

j,k=0

Then it follows Lemma 3.2.3

max max |u(t—j,s—k;n—s/T)|=O(\/nlnlnn).
0<s—tSd lnn OSj,de In 11

Consequently

dlnn

|Z,,(t,s)| S n‘10(\/n1nlnn))maxjzzo |c(j,t)c(,k s)|—— 0(Qn) (3.50)max

OSs—tSdlnn

So it is sufficient to show

max |W,,(t, s) — Zn(t, s)| = 0(Qn). (3.51)

OSs—tSdlnn

The left hand side is dominated by I1," + 12,", where

11,11: max IIZ ZC(j,t)C ”(t—j13_kin_S/T)l
OSs—tSdlnnn j—dlnn k-O

12,1. = osgggmnql Z Z 60'. 0606. 8)U(t - 133 - k; n - s/T)|

0Sj<dlnn k>dlnn

Applying Markov’s inequality, it is easy to see

[)(OSsInaxtSdlnnn '2 ZC(j,t)C )’Ll(t—j,S—' k;n—S/T)| >Qn)

j=d In 11 k=0
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0000

S Q;2n‘2 Z E| Z Z c(j, t)c(k, s)u(t — j, s — k; n - s/T)|2

OSs—tSdlnn j=dlnnk=0

(3.52)

We have proved in (3.45)

E[u(t, s; i)|2 S c(i + 1),

then Holder’s inequality implies for Vt,, nj,i = 1, - - - ,4, j = 1, 2,

 

E|u(t1, t2; n1)u(t3, t4; n2)] S c\/(n1 + 1)(n2 + 1).

This together with Lemma 3.2.1 implies that the expectation in (3.52) is dominated

by

 

oo . 00 f _2 d

n+1c cg,t2 ck,szS n+1n 72.

where 71, 72 are the same as in proposition 2.

Then (3.52) is bounded by (dln n)2Q;2cn'1“272d = 0(n‘2). It follows that

213(1va > Q”) < oo.

Borel-Cantelli lemma implies

[1,” = 0(6),) a.s

Similarly, we can prove that

12,1: = 0(Qn) “-3-

(3.51) is established now and the proof is finished.

QED.

40



3.3 Convergence Rate of Coefficients

Solution of Yule-Walker equations provides estimators for the coefficients. If the

orders p(1),p(2),- - - ,p(T) are known, then we will have no dificulties to show,

using the results in last section, that these estimators are consistent and have the

same convergence rate as the sample covariances. Since the orders are unknown,

we need a little extra work and notations get complicated. To make our statements

clearer, we will define random inner product which will simplify our statements.

Let L262, F, dP) denote the Hilbert space of random variables with zero means

and finite second moments. Then {x(t), t E Z} is a set in this Hilbert space and

Yule—Walker equations are just normal equations of projection. We want to use

this convenience of projection even when the covariances R(t, s) in Yule-Walker

equations are replaced by the sample covariances RN (t, s). For this purpose, we

introduce random inner product. Let X denote the the subset {x(t), t 6 Z} of

L2(Q,F,dP). For each integer N, let < -,- >N () be a map from X x X X (2 to

the set of real numbers such that

< x(t),$(8) >N (w) = R~(t, 3)(w)o

We can not yet say < -, . > (w) is an inner product for a fixed w. But for a given

finite sequence of integers to,t1, . . .,tm and a fixed (1), (RN(tj,tk);-’,‘k=o is positive

definite for sufficiently large N. So for such a N, < -, -, >N (at) can be regarded as

an inner product on a linear space spanned by x(to), . . . ,x(tm) such that

< x(tj),x(t;,) >N (w) = RN(tj,tk)(w).

We will suppress w in the inner product and write it as < ., . > N. The correspond-

ing norm will be denoted by H.” N.
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For the sake of convenience and unity of notations, let < ., . >00 and [|.||co be

the inner product and norm in L2(Q, F, dP), i.e.

Ex(t)x(s)< x(t),x(s) >co

”x(t)“... = 3132(0-

Then for any t, s, almost surely,

Iii—130 < x(t),x(s) >N=< x(t), x(s) >oo .

For each N = 1, 2, - . - ,oo, denote by ProjN[x(to)|x(t1), - - - ,x(tm)] the projec-

tion of x(to) onto the subspace spanned by x(tl), - - - ,x(tm) under the ||.||N. Let

)0

PTOle$(t) l x(t - 1), - -- ,~'I:(t - 19)] = Eat/(j. t;p)$(t - 1'). (3-53)

j=1

aN(j, t;p),j = 1, . - . ,p are actually the solution of

I‘~(t;p)a~(t;p) = R~(t;p), (3-54)

where

I‘m/(tun) = (RMt - it - k))§,k=1 (3-55)

RN(t;P) = (RN(t_1)t))"°:RN(t —P,t))’ (3-56)

a~(t;p) = (a~(1,t;p), - - - ,a~(p, t;p))' (13-57)

For N = 00, the above equations are just the Yule—Walker equations we dis-

cussed in Chapter 2.

Let l(.) he a periodic function from N to N with period T. l (t) may depend

on sample and serves as an estimator of p(t). Choose a dominating function L(N)

from N to N and assume the following throughout the rest of this section.
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Assumption 3.3.1 L(N) increases to 00 and L(N) = 0(ln N)

Theorem 3.3.1 Let {x(t),t E Z} be a PAR with order p(l),---,p(T). Then

under Assumption 3. 0.1 and 3.3.1,

mp | a~(j,t;l(t)) — a..<j,t;z(t)) I: 0< 3%!)
1'.“

where the supremum is taken over any t, j S l (t) and any periodic function l(.)

with period T such that l(t) S L(N), V t.

Remark. Notice that for p Z p(t) , a0o (j, t; p) are the actual regression coefficients

in the PAR model, this theorem says if we choose order p greater than the true

order in (3.54), then the estimator from Yule-Walker equation converges to true

parameter at the rate of ‘/ MiG—N.

The proof of this Theorem needs the following Lemma.

Lemma 3.3.1 Let x(t) be a PAR. I‘(t; q) = (R(t—j, t—k))3l,k=0. Then there exists

an M > 0 such that for any t and q, |]I“1(t; q)” S M.

Proof. We note that for any positive definite matrix F, ”F“ is less than or equal

to the maximum eigen value of I‘. Since F‘1(t; q) is positive definite, we only need

to show that the eigenvalues of F‘1 (t; q) is bounded from above, or equivalently, all

eigenvalues of I‘(t; q), for any t = 1, 2, - - - ,T and q 2 l, are no less than a positive

number A.

Let Aq be the minimum of all eigenvalues of P(t; q) for all t = 1,2, . - - ,T.

Evidently,

Aq > 0.

It suffices to show that

min 02 (t)

1 + max, 25:] 0(1', t)2 .

 Ag“ 2 min(Aq, (3.58)
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Let

  

(x(t) \

x,(t)= ‘3‘“) mm

\$(t-q))

Then

Xq+1(t) = $(t)

xq(t " 1)

For any vector CH, of q + 2 dimension such that

llC9+1ll2 : 11

C

Cq+1 = 1

C9

where Cq is a (q + 1)-dimensional vector. Using (1.2), we get

we write it as

C;+1Xq+1(t) = ”(t) + (cdp(t) + Cpllpr):

where ('1'? = (a(1,t),a(2,t), . - - ,a(p(t),t),0, - - - ,0).

The orthogonality of c(t) with x(s), s < t together with the definition of Ag

imply

C;+1P(t; q + 1)Cq+1 = IICQHXQHUHIZ

= c202(t) + ”(05120) + Cp)’Xp(t)||2

2 0202(1) + A,||ea,(t) + qul2

2 620205) + Aq|62||5q(t)||2 - ||qu|2|

Since c2 + IIqul2 = 1, and

(ax + Abe — 1]) = min(A,a/b),Va > 0,A > 0,b > 1,inf

OSxSl
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we have

 C’ I P(t'q + 1)C , > min(A 2(t) )

q 1 , q l q, llaq(t)ll2+1 .

(3.58) now follows.

QED.

Proof of Theorem 3.3.1 For brevity, we omit l (t) in FA), RN and aN. Observe

that

I + I‘;1(t)(I‘N(t) — I‘oo(t)) (am(t) — GNU»

= I‘:(t)[R..(t) — R~<t> + (F~(t) — r...)a..(t)) (3.59)

Theorem 3.2.1 and Lemma 3.3.1 imply that the maximum absolute value of the

entries of F;1(t))(I‘N(t) — Foo(t)) is 0(‘/M13—N). Thus

ll I‘;.'J(t)(1‘1v(t) - Poo(t)(aoo(t) - a~(t))ll

 _ 0( 1"]3’" )12(t))|a..(t)-a~(t)n (3.60)

= 0(1)|laoo(t)-a~(t)ll (3.61)

Similar argument proves RHS of (3.59) is

lnlnN

N

Also notice that every 0(1) and 0(1) appeared above is uniform in t and functions

I such that l(t) S L(N). Then the Theorem follows from (3.59),(3.61) and (3.62).

 0( )(1, 1, - -. ,1)'. (3.62)

3.4 BIC for Order Estimation

For stationary AR(po) model, Akaike(1977) first proposed to estimate p0 by 15

which minimizes

1nd; +plnN/N
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Here 6: is the estimate of 02 from the Yule-Walker equations of order p.

An—Chen—Hannan (1982) proved BIC estimator is consistent under general con-

ditions.

In this section, we develop similar criterion for PAR models. It turns out that

BIC is included as a special case. Let x(l), x(2), - - - ,x(N) be observations from a

PAR model with order p(). Let RN(t, s) be defined by (3.1). We will follow the

notations in the last section. Let

amt; 1) = ”x(t) — Proms) I x(t — 1), - - - ,x(t — 1))“; (3.63)

Let q(N) be a sequences of positive integers such that

 

, lnlnN _ . q(N) _

1313,13» q(N) — 0, and [[1130— — O. (3.64)

Let p(t) = pN(t) minimize

lnai,(t;l) + l - q(N)/N, V0 S l S L(N). (3.65)

Then p(t) is a consistent estimator of p(t) under general assumptions.

Theorem 3.4.1 Let x(t) be PAR satisfying Assumption 3.0.1 and L(N) satisfy

Assumption 3. 3.1. Then for any t, almost surely

p(t) —) p(t), asN —> 00.

Proof. Since RN(t, s) —> R(t, s), a.s, then

ll 2:33cj$(tilllN —) “213013 t1)”; (3-66)

for all real c1, - - - ,cm and integers t1, t2, ' - - ,tm.

As a special case of (3.66),we have

012v(t;l) 3 02.9; l) = “x(t) — Fromm) Im<t — 1), ~ - - , x(t — 1))“; (3.67)
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Suppose that

PTOjN[$(t) I1?“ — 1), ' ' ' ,$(t " 1)] = ZGNUJJWU — j) (3-68)

J=1

for N: 1,2,---,oo.

It is helpful to realize that for l 2 2,

02 (t' l)

1——N—’—= 2lt-l 3.69
012V(t;l—1) aN(3!) ( )

In fact, (3.69) is just application of Pythagorean Theorem. In fact, let

p(t) = ProjN[:1:(t) | x(t — 1), - - - ,x(t — l + 1)].

Then

am — 1) — owl)

= |$(t) - Pr0j~[$(t) |96(t - 1), - ' - ,x(t - l + 1)]lliv

—||$(t) - PTOjNIIIIU) |$(t"1),“',$(t—l)l”iv

lli‘(t) - 1'31‘01'1v[373(t)|2=(t - Ur - - ,x(t - 1+ 1)]II2

diva: t; l)llx(t) - Fran/[x(t) |$(t - 1), - ° - ,x(t - l)]||?v

a (l,t;l)0}"v(t; 1)

Since ago(t,p(t);p(t)) is positive, (3.69) implies

0300,19“) - 1) > 0300.120» (370)

Thus

03w) 2 amps) — 1) > amps» (3.71)

It follows that for any I < p(t),

. q N
<1Vlgn°o(ln012V(t,l)+l(—l).M)

N N
13320011 Uzi/(15,190)) + p(t)
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This inequality implies that asymptotically

W) Z p(t) (3.72)

Using (3.69) repeatedly and applying Theorem 3.2.1, we get for l > p(t),

viva, 1)

_ 012v(t,P(t))

l

= Z amtm)=(z—p(t))0(ln1nN/N)

j=p(t)+1

Since

1&3?» 012v(t;l) = gigglvfimfifl = 030(t;p(t)),

then for sufficiently large N,

012v (t, l) _ _

0737:1017» 2 (1

It follows from (3.73)-(3.74) that

01%; l)

1“ 0?»;(t_;p(t))

ln 01%,(t, l) — ln afv(t,p(t)) = (l —-p(t))0(lnlnN/N).

where the 0(1) is uniform in l S L(N).

The assumption on q(N) and (3.75) imply that

min [mom I) — mammt» + [z — p(t)]q(N)/N] > 0.
p(t)<l<L(N)

for sufficiently large N. So asymptotically

W) S p(t)-

Then the assertion follows from (3.72) and (3.76).
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(3.73)

(3.74)

(3.75)

(3.76)

QED.



Corollary 3.4.1 Suppose 55 is a multivariate AR(p) model and p(t),t = 1, - - - ,T,are

the order estimators for the corresponding PAR a: defined before. Then

 

13: max[fi(t) —t

195T T 1+ 1

is a consistent estimator of p.

Proof. It follows from theorem 3.4.1 and Theorem 1.0.1 (iii).

QED.

We also use simulated data to estimate order of the following model

132:; — 0-7172n-1 + 35332714 = €2n

$2n+1 - (15332:: — -25$2n—1 = 6211—1

where 6,, are i.i.d normal sequence. So T = 2,p1 2 p2 = 2. We took N =

200, q(N) = In N,. Our simulated results are shown in the tables. We see that it

picks up the right order.

 

pl 1 2 3 4 5 6 7

BIG .05429 .02231 .04451 .06129 .08767 .10455 .12899

 

       
 

 

152 1 2 3 4 5 6 7 H

BIC .06602 003244 -0.00682 0.01884 0.04428 .06567 .09199 I]
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