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ABSTRACT

A METHOD OF
PARAMETRIC IDENTIFICATION FOR
CHAOTIC SYSTEMS

By

Ching-Ming Yuan

Amethodfmidcnﬁfyingpmmetusinimnhcm&almodelof&chwﬁcsymis
presented. It is an extension of an existing method for nonlinear systems with stable
periodic response. The method exploits the chaotic attractor, and extracts the unstable
periodic orbits from the attractor to represent the system behavior. Each term in the
mathematical model is expressed in a finite Fourier series using the extracted periodic-
orbits, and the harmonic-balance method is applied to form a set of linear algebraic
equations in system parameters for least-squares estimation.

This method has been successfully applied numerically to a forced Duffing oscillator, a
smooth Coulomb friction system, a parametrically forced system, and a Lorenz oscillator,
and experimentally to a forced oscillator with a two-well stiffness potential.

The identified models have been verified by comparing the Lyapunov exponeats, the
structure of the unstable periodic orbits, and the bifurcation diagrams of the original
system and the identified model.
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CHAPTER 1

Introduction

Parametric identification deals with the problem of determining the values of the
parameters in a mathematical model that represents a dynamical system, based on the
observed data from the system. It is a field of increasing interest, in part because of
applications in prediction and control.

Linear models have dominated in the description of the dynamical systems and control
theoretic approaches. Very complex and randomlike behavior has been viewed from a
statistical perspective in which many degrees of freedom were involved. More recently
nonlinear models have emerged, capable of describing chaotic dynamics and other
nonlinear behaviors. Such systems can exhibit extremely complex dynamical behavior,
even though the underlying dynamics may be low dimensional. On the other hand, high-
dimensional systems such as fluids and lasers can show simple and low-dimensional
dynamics, which may be described by a low dimensional model [43].

Chaotic motion features the sensitive dependence on initial conditions. Nearby orbits that
cannot be distinguished will diverge exponentially and soon become uncorrelated. Along

with new theoretical concepts have come practical techniques, such as Lyapunov



2
exponents and fractal dimension, for characterizing the dynamics of such systems. Yet, the

techniques for identifying the parameters of a chaotic system are not as well developed as
those for analyzing its dynamical behaviors. We briefly review parametric identification
methods below.

1.1 An Overview of the Parametric Identification Methods

Parametric identification work generally presupposes that a mathematical model has been
chosen to represent a nonlinear system and that the goal is to identify the unknown
parameters in the given model. The unknown parameters are determined by optimizing in
some sense the fit of the chosen model to the available data.

For linear systems, the superposition principle can be applied to the system response and
the transfer function that characterizes the system behavior can be obtained by a variety of
techniques, such as transient analysis, frequency analysis, correlation analysis, and
spectral analysis [37]. The system parameters are estimated by a curve fitting of the
transfer function.

For a nonlinear system, the techniques for linear systems fail fundamentally because the
superposition principle is no longer applicable. However, for small nonlinearities,
perturbation techniques were widely used in analyzing the system response and in
identifying the system parameters as well. For example, Hanagud et al. [32] used the
method of multiple scales to determine the nominal system response, which was used
iteratively to estimate parameters. Nayfeh [45] and Feeny er al. [23] used the method of
multiple scales to exploit resonances and produce expressions relating the parameters to
the experimentally measured nonlinear behavior such as jump phenomena and nonlinear

drift. The parameters could then be determined algebraically, or in a least-squares sense.
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Ibanez [33] used a describing function method to construct an approximate transfer

function of the nonlinear structural system and hence uncouple the original nonlinear
equations. System parameters were obtained by iteratively minimizing the error function
between the measured data and the theoretical solution. Gottlich et al. [27] used the
Hilbert Transform in their parametric identification of weakly nonlinear systems.

Another approach proposed by Mook et al. [41, 42, 52], called the method of minimum
model error (MME), combined the assumed model with the measurements to determine
the correct form of model for the nonlinear system under investigation. A correction term
which represented the model error was added to the assumed model and a cost function
was formed. By minimizing the cost function, a two-point-boundary-value problem was
formed and yielded the correction term, which was then fitted to an assumed polynomial
form to obtain the correct model of the nonlinear system.

Mohammad [40] used a direct approach by assuming a general form of the equation to
represent the nonlinear system under investigation. By measuring all of the system
responses, such as acceleration, velocity, and position, and directly introducing them into
the assumed equation, a set of algebraic equations was formed by balancing these
measurements and the input function. System parameters were then estimated by a
singular-value decomposition method.

In a similar direct approach, Yasuda ez al. [59, 60, 61] represented the system nonlinearity
as a sum of polynomials in the system equation, with unknown coefficients as the system
parameters to be determined. Periodic responses under periodic excitation were measured
and expressed in Fourier series. The harmonic balance method was used to balance the

Fourier coefficients of each harmonic and a set of algebraic equations in the system
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parameters was formed. The system parameters were then estimated by a least squares fit

to the algebraic equations.

Recently, methods for modelling a chaotic system and identifying the system parameters
based on experimental data have been developed. Abarbanel er al. [1] proposed a method
for constructing a parameterized map which evolved points in the phase space into the
future. This map was regarded as a dynamic system, and the parameter values were
chosen through a least-squares optimization procedure, constrained by the invariants of
the system, such as the Lyapunov exponents. Eisenhammer et al. [20] proposed a
trajectory method to extract ordinary differential equations from an experimental time
series. The experimental data were represented in a state space and the corresponding flow
vectors were approximated by polynomials of the state vector components. Starting from
appropriately chosen initial states, the model equation was used to obtain an estimation of
the states for later times, and the coefficients were fitted by minimizing the distances
between the states predicted by the model and the experimental states. Breeden and
Hubler [6] proposed a flow method for reconstructing a set of coupled maps or ordinary
differential equations from a trajectory of the system in state space. By choosing some
trial coefficients for a series expansion in the state variable, the error in these parameters
were computed by comparing the predicted values and the experimental values. The

parameters of the model were obtained by solving a chi-squared minimization problem.

1.2 Chaotic Motion
Chaos was known by Henri Poincare (1854-1912) about a century ago in the course of his
investigations on the three-body problem. Through his discovery of homoclinic solutions

(homoclinic intersection, or homoclinic tangles), Poincare showed that the three-body
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problem has no solutions of the type envisioned by Jacobi or Hamilton, in the sense that a

small error in the initial conditions produced an enormous error in the final response. In

his book, New Methods of Celestial Mechanics, Poincare wrote':
When we try to represent the figure formed by these two curves and their
intersections in a finite number, each of which corresponds to a doubly asymptotic
solution, these intersections form a type of trellis, tissue, or grid with infinitely
serrated mesh. Neither of the two curves must ever cut across itself again, but it
must bend back upon itself in a very complex manner in order to cut across all of
the meshes in the grid an infinite number of times.
The complexity of this figure will be striking, and I shall not even try to draw it.
Nothing is more suitable for providing us with an idea of the complex nature of the
three-body problem, and of all the problems of dynamics in general, where there is
no uniform integral and where the Bohlin series are divergent.
In the words of modern dynamical systems theory, the solution is sensitive to initial
conditions due to the inherent stretching and folding process of the nonlinear dynamics.
This sensitivity to initial conditions makes the nearby states on the attractor divergent
exponentially on the average, and results in a long-term unpredictability emanating from a
small amount of uncertainty in the initial conditions.
Confronted with his discovery of the homoclinic solution, Poincare went on inventing
several theories for new branches of mathematics, including topology, ergodic theory,

homology theory, and the qualitative theory of differential equations. He also pointed out

the possible uses of periodic orbits in characterizing his discovery?:

1. See Tufillaro, Abbott, and Reilly in An Experimental approach to Nonlinear Dynamics and Chaos, 1992, for more
historical comments [53].
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... there is a zero probability for the initial conditions of the motion to be precisely

those corresponding to a periodic solution. However, it can happen that they differ
very little from them, and this takes place precisely in the case where the old
methods are no longer applicable. We can then advantageously take the periodic
solution as first approximation, as intermediate orbit, to use Gylden's language...
Given equations of the form defined in art. 13 and any particular solution of these
equations, we can always find a periodic solution (whose period, it is true, is very
long), such that the difference between the two solutions is as small as we wish,
during as long a time as we wish. In addition, these periodic solutions are so
valuable for us because they are, so to say, the only breach by which we may
attempt to enter an area heretofore deemed inaccessible.
The periodic orbits are dense in the chaotic attractor, and all of them are unstable. This is a
characteristic sign of chaos that only the presence of unstable periodic orbits but absence
of the stable ones [2]. The periodic orbit theme has been pursued by many authors in
modern dynamical system theory in characterizing a chaotic attractor (5, 19, 35, 49, 53],
and in the course of controlling a chaotic system [16, 47, 50]. The unstable periodic orbits
have also been used in system identification [31], and in recognizing parameter variations
[35]. We use them as a major tool in our parametric identification scheme for a chaotic
system.
Chaotic signals have been discarded in the past as ‘noise’. But, as pointed out by
Abarbanel [2], ‘chaos is not an aspect of physical systems which is to be located and

discarded, but is an attribute of physical behavior which is quite common and whose

2. MacKay, R. and Meiss, J.,eds., Hamiltonian dynamical systems (Adam Hilger, Philadelphia, 1987), cited from Tufil-
laro, Abbott, and Reilly in An Experimental approach to Nonlinear Dynamics and Chaos, 1992 [53]
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utilization for science and technology is just beginning’. It has been discovered in many

nonlinear systems in the laboratory and in the mathematical models in the past two
decades, and has become a well-known phenomenon and an important subject in modern
dynamical system theory. Much of the work has concentrated on learning how to classify
the nonlinear systems by analyzing the output from known systems. These efforts have
provided, and continue to provide, significant insights into the kinds of behavior which
one might expect from nonlinear dynamical systems, and have led to an ability to evaluate
now familiar quantities such as fractal dimension, Lyapunov exponents, and other
invariants of the nonlinear systems [2]. Efforts have also been extended to predicting and
controlling the chaotic behaviors. For example, Farmer and Sidorowich [20] proposed a
local approximation approach for predicting a short-term chaotic time series using the
nearby states. Ott ez al. [47], Ditto et al. [16], and Shinbrot et al. [50] tried to control the
chaos by exploiting the periodic orbits embedded in a chaotic attractor and perturbing
some parameters of the system, so as to stabilize one of the unstable periodic orbits,
making the system become stable and more flexible under different operating conditions.
Cusumano and Sharkady [12] experimentally studied the bifurcation and dimensionality
of a chaotic attractor occurred in a low dimensional parametric-excited system, and built a
valid model for the physical system. This trend of study shows that the chaotic motion
may be often regarded as an annoyance, yet it provides an extremely useful capability

without counterpart in non-chaotic systems.

1.3 Motivation
Chaos is inherent to nonlinear dynamical systems, and is rich in information content as

compared to a periodic trajectory. This richness has been exploited in dimensionality
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studies, nonlinear prediction, and control schemes as stated in the previous section. The

potential usage of chaotic system in parametric identification has not been fully exploited,
because of the sensitive dependence on initial conditions and the long-term
unpredictability.

It is well known that a chaotic attractor is the closure of the set of unstable periodic orbits
[5]. They can be extracted and used to characterize the chaotic attractor [5, 19, 35, 49, 53],
and hence can be used for identifying the system parameters, because they are the solution
to the system equation.

Meanwhile, Yasuda and co-workers [59, 60, 61] have demonstrated that the stable
periodic solution to a nonlinear system can be used to identify the system parameters. This
inspires us to explore the applicability of the unstable periodic orbits in a parametric

identification scheme for a chaotic system.

1.4 Thesis Overview

In Chapter Two, we describe the methodology for identifying the parameters of a chaotic
system. A mathematical model is chosen to fit the characteristic of the original system
from which the chaotic data are obtained. The unstable periodic orbits are extracted from a
chaotic set for use in the identification algorithm. Then the harmonic-balance method is
applied to form a set of linear algebraic equations in system parameters, which are then
solved by a least-squares fit. This approach is applied to different kinds of nonlinear
systems, such as externally excited, parametrically excited, and autonomous systems.
Chapter Three contains the identification results for several numerical examples. Chaotic
data are generated numerically from known governing equations. Mathematical models

are chosen in polynomial form generally if no knowledge about the system nonlinearity is



9
available. Random noise is added to the periodic data to assess its effects on the

identification results. The identified models are verified by comparing the Lyapunov
exponents, the structure of the unstable periodic orbits, and the bifurcation diagrams of the
original system and the identified one.

In Chapter Four, we apply the method to a set of experimental data, taken from J. P.
Cusumano and B. W. Kimble at Pennsylvania State University. The phase space is
reconstructed by the method of delays, from which the unstable periodic orbits are
extracted for use in the identification procedure. A model is obtained and verified for the
experimental system.

Two sources of error, noise and the extraction of the periodic orbits, in the identification
process are discussed in Chapter Five. We examine a bound on the error in the Fourier
coefficients induced by the noise. We examine the extraction of the unstable periodic
orbits closely, and establish a bound on the deviation of the extracted periodic orbit from
the real one. We discuss the sensitivity of the errors induced by the noise and the
extraction of the unstable periodic orbit to the identification results.

Chapter Six contains some conclusions and future work.



CHAPTER 2

Methodology

2.1 Introduction

Parametric identification method is not well developed for a chaotic system, partly
because in the past chaos has been treated as noise to be discarded, and partly because
chaotic motion exhibits sensitive dependence on initial conditions and defies long-term
predictability. Traditional usage of time series data in a parametric identification scheme
for non-chaotic systems may not be appropriate for chaotic systems, because of sensitivity
to initial conditions. However, a chaotic system features a chaotic attractor!, in which
infinitely many unstable periodic orbits are present, but absent of stable ones [2]. These
unstable periodic orbits can be extracted and used to characterize the chaotic attractor [5,
35]. They provide a skeleton of the chaotic set, which can be used in characterizing a
chaotic system.

Each unstable periodic orbit is a “solution” to the system which generated the chaotic set.
Once a periodic orbit is extracted, each term in the mathematical model can be expressed

in a Fourier series, and the harmonic-balance method can be applied to form a set of

1. An attractor is an attracting set which contains a dense orbit. It is difficult to show in examples that a dense orbit
exists, and in fact many of the numerically observed “attractors™ may not be true attractors but merely attracting sets.
We use this term loosely to denote a set of points in phase space toward which a time history approaches afier tran-
sients die out. See Guckenheimer and Holmes [30] and Moon [43] for strict mathematical definition and examples.

10
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algebraic equations, in which the system parameters are estimated by a least-squares

method.
The harmonic-balance method has also been used as a parametric identification technique
by Yasuda an coworkers [59, 60, 61] for some nonlinear systems that have stable periodic

response. We extend this technique to chaotic systems, where unstable periodic orbits are

abundant in the chaotic attractor.

In this chapter, we will demonstrate the methodology in detail with three kinds of chaotic
systems, categorized as externally excited, parametrically excited, and autonomous. They
are treated differently because the excitation can affect the formulation of the
identification problem. We will discuss two important issues to our identification method,
the extraction of the unstable periodic orbits and the choice of a valid mathematical

model. We will also discuss the method for model verification.

2.2 Periodic Orbit Extraction

The genesis of a chaotic trajectory can be visualized as a random walk on the union of
infinitely many periodic orbits [14]. A physical trajectory approaches the saddle orbit
along its stable manifold, and remains nearby for a time before it is thrown out along the
unstable direction. It wanders around the union of periodic orbits, tracing out a strange!
attractor [14].

When the trajectory is near a periodic orbit, it approximately follows the motion of that
periodic orbit for an interval of time. If this time interval exceeds the period of the

reference orbit, the trajectory exhibits a recurrence. This property can be used to

1. The term strange attractor, referring to the attractor in the phase space on which chaotic orbits move, is associated
with a geometric object called a fractal set, while a chaotic attractor, denoting a bounded motion that is sensitive 10
changes in initial conditions, has at least one positive Lyapunov exponent [43). In our specific purpose, we intend not
to distinguish the difference, but use them interchangeably to refer to the long-term behavior of the nonlinear system.



12
approximate the positions of the unstable periodic orbits embedded within the attractor [5,

35].

Figure 2.1 is a sketch of a recurrent three-dimensional flow in the vicinity of a hyperbolic
periodic orbit [53]. The chaotic trajectory has a recurrent segment, shown in Figure 2.1(a),
which is very close to an unstable periodic orbit, shown in Figure 2.1(b). We can gently
adjust the “starting point” of the trajectory segment so that the segment nearly coincides
with the unstable periodic orbit and returns almost precisely to its starting point [14, 53].
This idea has been used in a control scheme to stabilize one of the unstable periodic orbits

for a chaotic system [16, 47, 50].
In practice, we may have a sufficiently large chaotic data set {x;},i=1,...N, in state

space. We scan the data set for recurrences by seeking points that come within a specified

spatial distance € of one another after a fixed elapsed time, such that [S, 35]

(a) ®)

Figure 2.1: (a) A close recurrence of a chaotic trajectory, and (b) a precise recurrence
after a gentle adjustment of the starting point of a chaotic trajectory.
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i x—x] se. @.1)

where K is the number of points per period of the unstable periodic orbit. If x; is a

recurrent point, then x; ;. X;, ,, ..., are likely to be “near” the unstable periodic orbit.
Thus, the segment of data, {x,x;, ,...,X;, x_1}, is then taken as the ‘approximated’

unstable periodic orbit. The ‘true’ one is generally unobtainable. The value i is the starting
point of the unstable periodic orbit, and is related to the phase angle associated with that
periodic orbit relative to the forcing function. It is important to record the phase angle for
later use in the calculation of the Fourier coefficients. This will become clear when we do
the calculation.

In a periodically forced system, all periodic orbits have a period that is an integer multiple

of the forcing period such that K = ng, 2n4, 3n,)..., where n, is the number of points per

forcing period [30]. However, in an autonomous system, such as in the Lorenz oscillator,
there is no such forcing period. Instead there are infinitely many unstable periodic orbits
with incommensurate periods. These incommensurate periods can be obtained using a
recurrence plot, which can be constructed by varying the period length and counting the
number of recurrent points found for each period length. The recurrence periods will be
clustered around certain values, indicating the periodicity of the periodic orbits and hence
the number of points in a period, which is then used as the fixed elapsed time X in Eq.
(2.1) for locating the periodic orbits, and also used as the fundamental period in the
calculation of their Fourier coefficients.

This procedure is quite successful in finding the unstable periodic orbits in many chaotic
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systems. However, if the positive Lyapunov exponent associated with the unstable orbit is

large, then in one period the orbit will most likely have so departed from the unstable
periodic structure in phase space that one will probably not be able to identify the unstable
periodic orbit within the spatial criterion. In such case, the spatial distance criterion € can
then be relaxed to include more points in the neighborhood. For finding low-order
periodic orbits, say less than ten, it is adequate to set € to be 0.5% of the maximum extent
of the chaotic attractor [5, 35].

The searching proceSs for the periodic orbits may reveal several distinct unstable periodic
orbits with the same period number. Nonetheless, all extracted periodic orbits can be used

in the parametric identification algorithm.

2.3 The Choice of a Mathematical Model

For the task of parametric identification, it is important to choose a valid mathematical
model to represent the physical system from which the measurements are taken. To do
this, we need to know the order of the system and the form of the system nonlinearity.
For typical mechanical vibratory systems, the system order is twice the number of degrees
of freedom. Also, for a nonlinear system to be deterministically chaotic, the system has to

be three or more dimensional. For a forced single-degree-of-freedom system, a general

mathematical model can be written as

mX+f(x,2,8) =0, 22)
where the time variable is taken as an additional dimension. For an autonomous chaotic

system, a general mathematical model can be written as

y=h(). 23)
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forye R n23.

In the forced case, the general function f(x, X, f) can take some specific forms when the
excitation and the nonlinearity of the system are known. For example, a system is
externally excited if it is modeled with an inhomogeneous term in the governing equation,
and parametrically excited if the system differential equations have time-varying
coefficients. Also, the form of the system nonlinearity can be determined using the
physical law that governs the system dynamics and the background knowledge about the
physical system. For example, sin(x) is usually used to model a pendulum system. A
power series can be used to model a system with an unknown smooth nonlinear function.
Whenever possible, models based on the physical mechanism should be employed. Thus,
for an externally excited single-degree-of-freedom nonlinear system, Eq. (2.2) can be

recast more specifically as
P
me+ Y Bf;(x,%) = E(1), 24)
i=1
where E(7) is a known external excitation, f; (x, X) are some known functions of x and %,
p is the number of nonlinear terms in the system model, and m and B; are the unknown

parameters to be determined. For a parametrically excited nonlinear system, Eq. (2.2) can

be recast as

r P
mX + 285(‘) { ZBi}fij(x’x)} =0, 2.5)

i=1 j=1

where g;(#) are the known parametric excitation functions, f,.j (x,x) are some known
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functions of x and X, r is the number of excitation terms, p; are the numbers of the
nonlinear terms associated with each excitation functions, m and Bij are the unknown

parameters to be identified. And for an autonomous system, Eq. (2.3) can be written as

P

y; = Z ﬁijhij »,i=1,..,n (n23), (2.6)
j=1

where y = [y,,...,y,] T, and h‘.j (y) are the nonlinear functions of the state variable y,
and p; are the number of terms in each equation of the model.

If the form of the system nonlinearity in Eq. (2.4) and (2.5) is unknown, but can be
assumed as a smooth function, and the system is operated in the neighborhood of the
equilibrium point, then the unknown function can be approximated by a truncated power
series. This is reasonable, because any smooth function can be represented by a power
series in some neighborhood of the origin (equilibrium). However, this approximation by
a power series may be accompanied by issues such as convergence and optimal truncation.
Ideas of convergence and divergence make sense when we consider infinite series. Since
we are using a truncated series, these ideas are not critical. If a power series indeed
converges to our function to be identified, then it is best to use as many terms as possible
without introducing numerical problems associated with large exponents. If the
underlying function has a divergent power series in the range of data, then there would be
some optimal truncation which is unknown. Thus, an imperfect identification result seems

to be the norm.
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2.4 Algorithm

2.4.1 Externally Excited Systems

The mathematical model for an externally excited single-degree-of-freedom system is

chosen as Eq. (2.4)

P
me+ Y Bf;(x,2) = E(1),

i=1

@7

where the external exciting function, E(t), is considered to be periodic with single

frequency w, such as

E(t) = acos (o1) .

(28)

Upon extraction of the periodic orbits from the chaotic attractor, the nonlinear functions

become periodic and can be expressed in Fourier series, such as

x, (1) =—+ z {a; cos(T‘)+b sm(j‘:t)}

ji=1
% Eél (5) hyeon{ 5 Jaysn( 5)s
40 =- 3 (1) o 92) oy sn( 120)
i

f‘.(x,x)P-"-' +2{c0 ( )+d sm(L(;—)-t)}

j=1

with the Fourier coefficients calculated as

29)

(2.10)

(2.11)

(2.12)
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(2.13)

;i = %.J:“f,- (x,x)Pcos(j%t)dt
o= 31 00 a1

where the subscript p denotes the function being evaluated using the period-k data, T is the

(2.14)

period of the employed periodic orbit, and ¢ is the phase angle of the extracted periodic
orbit relative to the forcing. Since the phase angle has been included implicitly in the
periodic-orbit data and the nonlinear functions (the beginning of the periodic orbit is the
index of the phase angle), the limits of integration in Eq. (2.13) and (2.14) are used in the
numerical integration of the data. Ignoring the phase angle will cause an inconsistency in
the Fourier series representation in Eq. (2.9) to (2.12), and consequently produce incorrect
identification results.

Substituting these Fourier series into the model equation (2.7), and balancing the Fourier
coefficients of Eq. (2.13) through (2.14) of any set of harmonics, a set of linear algebraic
equations in system parameters can be constructed. This usage of the harmonic balance
method contrasts its usual usage for response analysis, where the ordinary differential
equation is known, and the effort is to solve a set of nonlinear equations in Fourier
cocfficients. For systems forced with a single harmonic, and for autonomous systems, the
method of harmonic balance requires nonlinearity so that several harmonics can be
balanced.

In this thesis, we typically use the multiples of the primary harmonic. Thus, for the
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example of k = 1, the balance equations, in matrix form, are

[ T

0 €0 -+ Cpo -
1

0
-(nw)"an c,, Con B,, 0
2 - - =3 -

_—-(nm) bad,, dm

or,
Aa = q, (2.16)

where a is the parameter vector of the system model; A is a (2n+1) X (p+1)

coefficient matrix, with each column containing the Fourier coefficients of the
corresponding term in the system model; q is a (p +1) vector, containing the Fourier
coefficients of the external forcing function, which contains a non-zero element g in our
periodic excitation case; and n is the number of terms retained in the Fourier series
representation. For general values of &, the indices and frequencies in the elements of
matrix A are scaled by k.

If 2n = p and the matrix A is non-singular, the parameter vector a can be determined
uniquely. In practice, it is statistically better if the algebraic equation of Eq. (2.16) is
overdetermined, so that 22 > p. Consequently the exact solution will not generally exist,
but a best solution can be obtained by a method such as a least-squares fit. We seek a
solution that can minimize the average error in all of the equations. The error function is

most conveniently chosen as the sum of squares, or defined as [4]
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e = JAa-4l]. .17

The solution that minimizes Eq. (2.17) is called the least-squares solution of the linear
system. The minimization of the error function is performed by setting the partial

derivatives of the squared error function with respect to the parameters equal to zero, i.c.

3¢%/3a = 0 , which leads to the so-called normal equations as

AT (Aa-¢) =0, @.18)

and the least-squares solution of the parameters vector & is

-1
= (ATA) Alq. 2.19)
Since the operation of a matrix inversion is less accurate and time consuming, the normal
equation is often not recommended in the numerical implementation. The most general

least-squares solution using the singular-value decomposition method is

a = VStU' q = Atq, (2220

where through the singular-value decomposition, A = UZVT, and A' is its pseudo-
inverse; U and V are the orthogonal matrices with each column consisting of the left and
the right singular vectors of matrix A respectively; and X' is the pseudo-inverse of X,
which has the non-negative diagonal elements being the inverse of that of the
corresponding terms in X. (See, for examples, Atkinson [4] and Strang [S1] for a
geometric discussion).

Here arises a question as to how many terms should be retained in the Fourier series
representation of a periodic solution. Theoretically, the number of terms in the Fourier

series should be infinite, but Mickens [39] has shown that the upper bounds of the absolute
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magnitudes of the harmonic coefficients decrease exponentially, such that they become

ineffective in the least-squares estimation procedures. We found that the rule of thumb for

retaining the number of terms in the Fourier series is

3<nsS, (221
where n is the number of harmonics of the primary (driving) frequency. This limits the
number of unknown parameters in the model that can be estimated using a single periodic
orbit. However, we can use several periodic orbits to form several sets of algebraic
equations, thereby augmenting the matrix A to increase the redundancy of algebraic
equations for the least-squares estimation. This treatment can improve estimation result
even if the number of unknown parameters is not excessively large. Moreover, when the
parameter set is small, each set of algebraic equations formed by individual periodic orbit
can be used separately to obtain statistical information such as mean values and standard
deviations. This availability of several extracted periodic orbits from a chaotic set
increases the applicability beyond that of a simple periodic response, such as the case by

Yasuda and coworkers [59, 60, 61].

2.4.2 Parametrically Excited Systems

A parametrically excited system has time-varying coefficients in the governing equations
of motion. Examples of this kind of nonlinear system are a pendulum with a moving
support [46], a column with an axial time-varying force [46], and a flexible beam under an
clectromagnetic force [12]. Previous studies have focused on dynamic stability, in which
the introduction of a small vibrational loading can stabilize (destabilize) a system which

was statically unstable (stable) [46]. Recent studies show that the system can exhibit
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chaotic behavior in a large range of parameters (12, 38].

The mathematical model for a single-degree-of-freedom parametrically excited system is

chosen as Eq. (2.5),

r Pi
mx+ Y g,(1) { Y. B (x,.t)} = 0. 222)

i=1 j=1

This model is a degenerate case of a parameter estimation problem because the right-hand
side of the equation is zero. Also, the Fourier series representations must account for the
fact that the system variables are coupled with a time-varying function. To proceed, we
divide through by m. The ¥ term is taken as a known quantity by the fact that the
approximate periodic solution of the original system is known, and moved to the right-
hand side of the equation.

Using the extracted periodic orbits, the evaluated nonlinear functions in the model are
periodic. The excitation functions in time and the nonlinear functions in x and 2 are

combined together when they are to be expressed in Fourier series, such that

- C:. n
8;i(x.%,1) = g,(0f;(x,%) = —'5’9 + 2 ¢;jxc0s (kor) +dy,sin (kor),  (223)
k=1

with the Fourier coefficients calculated as

2 (+o.
Cije = ;.j: 8;j (x, %, 1) cos (kwr) dt

2 (T+o. ,
dye = 2], &; (%20 sin (koo de

224)

Here, the phase angle is included in the combined nonlinear function g ij (x,%,t) through

the variable x. The limits of integration are chosen to match with the phase angle of the
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extracted periodic orbits.
Substituting the Fourier series into the model equation (2.22), and balancing the Fourier

coefficients of each harmonic, a set of algebraic equations such as Eq. (2.16) can be

constructed, and the parameters can be estimated by a least-squares fit.

2.4.3 Autonomous Systems

An autonomous system of dimension three or more can exhibit chaotic behavior [30]. The

famous example is the Lorenz equation, given by
N =0(,-y)

Y2 = PY1—Y2—Y1Ys (225)
Yy = "B)’:; +y1Y2

There exists a ‘butterfly shaped’ chaotic attractor, in some region of the parameter space,
which consists densely of infinite many unstable periodic orbits whose periods are

incommensurate.

To extract the unstable periodic orbits, the incommensurate periods have to be determined
by constructing a recurrence plot, as stated in section 2.2.

The mathematical model for an autonomous system is chosen as Eq. (2.6). It can be
chosen more specifically if we know the type of the autonomous system under
investigation. In an experiment, each state variable y; must be measured. Using the
periodic orbits extracted from the chaotic attractor, each term in the model is periodic and

can be expressed in a Fourier series with the fundamental frequency as the one obtained

from the recurrence plot. The Fourier coefficients are calculated as before, except the

phase angle can be ignored since there is no forcing function involved. Treating the y,;-
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terms as known quantities, and balancing the Fourier coefficients of each harmonic in each

equation, a set of algebraic equations of the form of Eq. (2.16) is formed. The system

parameters are then obtained using a least-squares fit.

2.5 Strategy for Model Validation

The final step, and perhaps the most difficult step, in parametric identification procedure is
the model validation. The objectives of validation are to seek answers to questions such
as: Is the identified model adequate? Under what conditions is the model representative
the system? Traditionally, the method of model validation is to simulate both system and
model under similar conditions and compare the respective responses. This is subjective
and lacks consistency for chaotic systems, due to the system’s sensitivity to the initial
conditions [3, 57]. More sophisticated criteria based on gecometrical and statistical
invariants have been proposed, such as embedding trajectories [9, 43], Poincare sections
[11], bifurcation diagrams [3], Lyapunov exponents [1, 58], and the correlation dimension
[27], to characterize and compare reconstructed attractor and identified model.

We will seek consistency of the identification results from using different periodic-orbit
data sets. This is the most convenient way to check the quality of the identified
parameters.

The positive Lyapunov exponent is an invariant quantity of a chaotic system. Several
techniques have been developed into algorithm for estimating Lyapunov exponents from a
known dynamical system or from observable [5, 19, 35, 58]. We use the computer codes
by Wolf et al. [58] to calculate the Lyapunov exponents, which will be used in verifying
the identified model.

We will also compare the structure of the unstable periodic orbits that are extracted from
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the original attractor and from the one generated from the identified model. This is

reasonable because the unstable periodic orbits are the skeleton of the chaotic attractor.
The structure of the periodic orbits would provide some geometric information of the
chaotic system that is useful to assess the quality of the identified model.

The criterion of bifurcation diagrams of the system and the identified model, as suggested

by Aguirre and Billings [3], will also be used as a supplementary criterion when available.

2.6 Summary

We have outlined a scheme for identifying the parameters of chaotic systems by using the
unstable periodic orbits that are extracted from the chaotic attractor. The method is simple
conceptually and easy to implement. Models are chosen based on the knowledge of the
physical system, or on approximation by a power serics. Each term in the mathematical
model is expressed in a Fourier series, and the Fourier coefficients of each harmonic are
balanced to form a set of algebraic equations in system parameters, which are estimated
by a least-squares method.

Methods for model verification are proposed.

This is an extension of an existing method, previously applied to systems with a stable
periodic response [59, 60, 61], to chaotic systems. By using the unstable periodic orbits,
the method exploits the structure of the chaotic set. Thus, we overcome issues such as

sensitivity to initial conditions.
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CHAPTER 3

Numerical Results

In the previous chapter, we presented an approach for identifying parameters in a
mathematical model of a nonlinear system that exhibits chaotic behavior. The strategy is
to exploit the chaotic attractor of the system and extract the unstable periodic orbits
embedded within it. The extracted periodic orbits are used to express each term in the
model in a Fourier series, and their coefficients of each harmonic are balanced to form a
set of algebraic equations in system parameters, which are then obtained by a least-square
estimation. This approach can be applied to a general class of nonlinear systems with
smooth nonlinearity.

In this chapter, numerical studies on the forced Duffing oscillator, a smooth Coulomb
friction system, a nonlinear parametrically excited system, and a Lorenz equation, are
taken to demonstrate the applicability of this approach. Numerical integration of the
governing equations is carried out using a Sth-order Runge-Kutta method on a Sun
workstation. Typically, 50000 chaotic data points are generated for with a time step
interval of one-100th of the forcing period, or with 0.005 time step size in autonomous

systems.
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3.1 The Forced Duffing Oscillator

The forced Duffing oscillator is given as

mx+cx+Px+ yx3 = gcosw?. 3.1
It is a classic differential equation that has been used to model the nonlinear dynamics of
mechanical and electrical systems. With B = 0, Eq. (3.1) is a model for a circuit with a
nonlinear inductor [55, 56], and with B <0, y>0, it is a model for the postbuckling

vibrations of an elastic column under compressive loads [44]. It can be written as a set of

first-order differential equations

X, =x,/m
%, = —cxy—Ppx, - yxl?' +acoswt ¢
to fit the format of the computer integration routine in public libraries such as IMSL.
This equation admits chaotic motions for a large range of parameters. We choose the
parameter valuesas m = 1,¢c = 0.2, B = Yy = 1, and the forcing term as a = 27, and
o = 1.33 [54]. These parameters are to be estimated by the present method.
Using the numerical data generated from the governing equation, a phase portrait is
constructed as shown in Figure 3.1. We see that the trajectory wanders around the phase
space in the attracting set. Any initial condition within the basin of attraction leads to the
same qualitative appearance in the phase space. This is the attracting set from which the
unstable periodic orbits are to be extracted.
Also, the Lyapunov exponents, indicating the average exponential rates of divergence or

convergence of nearby orbits in phase space, are calculated using the computer code by

Wolf et al. [58]. They converge to A, = 0.18, and A, = —0.468, indicating that the
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Figure 3.1 Phase portrait of the Duffing oscillator

system of Eq. (3.2) is chaotic, since there is one positive value and the sum of them is
negative. (There is a zero exponent from the computer code, corresponding to the time

variable of the vector field. We omit it for convenience).

3.1.1 Extraction of the Periodic Orbits

The unstable periodic orbits can be extracted using the recurrence property of the chaotic
attractor, as stated in previous chapter. We repeat the idea here to emphasize its
importance. We scan the data set in state space forward to locate the recurrent points that

are close within a spatial distance €, such that

biox—-x]se (33)
for a periodic orbit with K data points in the orbit. Here the index i is taken as the phase

angle of the periodic orbit relative to the forcing function, which is to be used in the



calculat

span of

dx/dt

dwdt



29
calculation of the Fourier coefficients. The spatial distance € is chosen to be 0.5% of the

span of the data set [5,35]. Some of the extracted periodic orbits are shown in Figure 3.2.

pd-1 pd—-2
20 20
10 10
-10 -10
-2-0-5 [+] 8 -8 o 8
x x
pd-3 pd—4
20 20
10 10
g o g o
-10 -10
—20, ) s 205 ) s
x x

Figure 3.2 Some extracted periodic orbits of the Duffing oscillator

3.1.2 Choosing a Mathematical Model

To identify the system parameters, we need a mathematical model that can catch the
essential feature of the original system. Some a priori knowledge about the original
system will help choosing a valid model. In this case, we know that the system is an
externally excited, Duffing-type nonlinear system. Hence we choose a model in
polynomial form, which has been commonly used in modeling the Duffing type nonlinear

systems. The model with viscous damping is written as
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P
m¥ + ot + z Bx = acosat, (34)
i=1

where m, o, and P, are the parameters to be identified.

3.1.3 Identification Results

Applying the extracted periodic-orbit data to the mathematical model of Eq. (3.4), each
term in the model is expressed in a Fourier series. The phase angle associated with each
periodic orbit is included in the calculation of their Fourier coefficients, as discussed in
detail in Chapter Two. Then the principle of harmonic balance is applied to the primary
harmonics of the Fourier series, resulting in a set of algebraic equations in system
parameters to be estimated by a least-squares fit.

We first apply four sets of the periodic-orbit data separately to the model of Eq. (3.4), with
five terms retained in the polynomials, the identification results are shown Table 1.

Also, we apply four sets of periodic-orbit data together to increase the redundancy of the
least-squares fit with different number of terms included in the model. The identification
results are shown in Table 2.

The results are accurate compared to the actual values, and consistent with each other for
using different set of periodic- orbit data. The non-zero parameter values are recovered
within 1% of their nominal values, and the zero-valued parameters are close to zero, even
when the mathematical model contains many unnecessary high-order nonlinear terms. The
standard deviations are less than 1% of the non-zero parameter values, or close to the
average values of the zero-valued parameters, indicating the consistency of the results.

Combining individual sets of algebraic equations increases the redundancy in the least-
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Table 1: Identification results using individual periodic orbit for Duffing’s equation

Pz-i:i(:l;c m a ﬁl Bz B3 54 Bs

actual 1.0000 .2000 1.0000 0.0000 1.0000 0.0000 0.0000
pd-3 09999 .1997 09915  -.0023 1.0009 .0002 .0000
pd4  1.0008 .2002 1.0498 -0050  0.9803 0007 0010
pd-S 09997 .1998 09659 -0020 1.0124  .0001 -.0006
pd-6  1.0001  .1999 1.0015 .0016 1.0009 -0002 -.0061

Average 1.0001 .1999 1.0022 -.0019  0.9968 0002  -.0014
std. dev. 0.0005  .0002 0.0351 0027 00134  .0004 0032

squares fit, and improves the accuracy of the identification results when the model

includes many parameters.
The identified results suggest that the model can be refined by removing the higher-order
nonlinear terms whose parameter values are negligible. The reduction of the unnecessary

terms in the model tends to yield higher accuracy in the identification results.

3.1.4 Model Verification

From the numerical results, the model of Eq. (3.4) can be easily verified. However, we use
the identified model with the average values in Table 2 to generate a set of data, and
extract the unstable periodic orbits, for comparison with the original ones. The extracted

unstable periodic orbits from the identified model are shown in Figure 3.3. They resemble
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Table 2: Identification results using 4 periodic orbitsfor Duffing’s equation

orders m a Bl Bz Bs ﬂ4 Bs ﬂs 57

actual 1,000 .2000 1.000 0.000 1.000 0.000 0.000 0.000 0.000
p=4 1000 0200 1.005 -0.001 1.000 0.000
p=5S 1000 0200 1015 -0.001 0996 0.000 0.000
p=6 1000 0200 1.010 0.004 0998 -0.001 0.000 0.000
p=7 1000 0200 1.005 0004 1000 -0.001 0000 0.000 -0.000
Avg. 1000 0200 1.009 .001S 0999 -001 0.000 0.000 0.000
stddv 0.000 0.000 0.005 0.003 0.002 0.001 0.000 0.000 0.000

closely their counterparts in Figure 3.1 and Figure 3.2.

The bifurcation diagrams, as shown in Figure 3.4, are calculated using the original
equation and the identified one, by slowly increasing the forcing amplitude and sampling
the steady-state response at the same Poincare section. The resemblance of the original
bifurcation diagram and the identified one can be clearly seen.

The Lyapunov exponents of the identified model calculated by the computer code of Wolf
et al. [58] are convergent to A; = 0.20, and A, = —0.49, which are close to the original

valuesof A, = 0.18 and A, = —0.468, with deviations of 11.1% and 4.7% respectively.

Thus our model is verified.

3.1.5 Effect of Noise

Numerically generated data are considered to be essentially noise free. The excellent



33

period—1
10!
s 5
o
-5
s ) 5
x
period—3
10 10
g o g0
-10 -10
s [) s ]
x x

Figure 3.3 The simulated chaotic attractor and some of the extracted periodic orbits
of the identified model

identification results in the example above may deteriorate if noise is present in the
periodic data. To assess the influence of noise on the identification results, a set of
uniformly-distributed random noise is added to each periodic orbit for use in the
identification algorithm to test sensitivity of A, q and Aa = q. If the noise is added to the
chaotic set before the extraction of the periodic orbits, the spatial criterion € may need an
adjustment.

The noise level is set by the ratio of its maximum amplitude to that of the employed
periodic-orbit data. Figure 3.5(a) shows a period-3 noise-free periodic orbit and Figure

3.5(b) shows its 2% noise contaminated counterpart in phase space. We examine the noise



Figure 3.4 Bifurcation diagrams of the Duffing’s equation (a) using the original
equation, and (b) using the identified model with the average values in Table 2

effect by using the model (3.4) with varying nonlinear terms and varying noise levels.

Four sets of noisy periodic-orbit data are used together in the identification algorithm. The
identification results are shown in Table 3.

Comparing with the previous results in Table 2 for the same model, we find that,

(1) within 5% noise level, the noise effect is not significant for a model with three or four
terms in the polynomial. As the nonlinear terms increase beyond five, the noise effect
increases. The errors are within 2.3% of the non-zero parameters. The zero-valued
parameters have larger deviations than in previous case;

(2) For the nonlinear terms in the model are greater than five, the noise effect increase

rapidly, resulting in less accurate identification results. The issue of noise will be
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Figure 3.5 (a) A noise-free periodic orbit, (b) the noise-contaminated counterpart

discussed in Chapter Five;

(3) For a small amount of noise, the effect of noise is not catastrophic to our method, but
in a robust way.

With the model identified using the noisy periodic data, we proceed to verify the model by
comparing the Lyapunov exponents, the structure of the unstable orbits, and the
bifurcation diagrams as before. Using a model with the parameter values as in the last

second row of Table 3, the Lyapunov exponents calculated by the computer code of Wolf
et al. [58] are convergent to A, = 0.21, and A, = —0.5, which are close to the original

values of A, = 0.18 and A, = —0.468, with deviations of 16.67% and 6.84%

respectively.
The simulated chaotic attractor and the extracted periodic orbits from the identified model
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Table 3: Identification results for Duffing’s equation using noisy data

noise orders m a 51 Bz B3 B4 Bs
actual 1000 .200 1.000 0000 1.000 0.000 0.000

1% p=3 1.000 .200 0999 -.006 1.000
1% p=4 1.000 .200 1.000 -001 1000 .000
1% p=5 1000 .200 1.058 .016 0983 .001 .001
2% p=3 1000 .200 0999 -013 1.002
2% p=4 1.000 .200 1.004 -029 1001 .001
2% p=5 1.001 .201 0947 .016 1.036 -009 -.005
3% p=3 1000 .200 0995 -020 1.002
3% p=4 1000 .200 1.002 -042 1.001 .001
3% p=5 1.001 .201 1.136 -.044 0958 .002 .002
5% p=3 1.000 .200 0977 -032 1.002
5% p=4 0999 .200 0.988 -069 1.001 .002
5% p=5 1001 .201 1202 -073 0931 .003 .003
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Figure 3.6 The simulated chaotic attractor and some of the extracted periodic orbits
of the identified model using the noise-contaminated periodic orbits

are shown in Figure 3.6. The qualitati bl with the original ones of Figure 3.1
and Figure 3.2 is clearly seen.

A bifurcation diagram is constructed for the identified model, by slowly increasing the
force amplitude as the control parameter, and sampling the steady-state response at the

same time interval, as shown in Figure 3.7(b). It closely resembles the original one in

Figure 3.7(a). Thus the model is verified.

3.2 A Smooth Coulomb Friction System

A smooth Coulomb friction system is given as

X+cx+x+ (1+kx)tanh (ax) = fcos (w?), 35)

which is one of the models of a dry-friction system, studied extensively by Feeny and
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Figure 3.7 Bifurcation diagrams of the Duffing’s equation (a) using the original
equation, (b) using the identified model of the noisy case

Moon [24]. The dry-friction is often modeled as a multivalued, discontinuous nonlinear
force, which causes a “stick-slip” chaotic motion in a large parameter space. Here, the
smooth function, tanh (ax) , is used to approximate the Coulomb friction model. This
system exhibits ‘almost sticking’ motions, featuring a funnel-like structure in the phase
space under the harmonic excitation [24]. We choose the parameter values as ¢ = 0.03,
k =15, a = 50, and the forcing term as 1.9cos (1.37) , for numerical simulation.
Numerical integration is carried out by a Sth-order Runge-Kutta method as before. A two-
dimensional phase portrait is shown in Figure 3.8, where a funnel-like structure is clearly

secen.

The Lyapunov exponents are calculated from the known equation using the computer code
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by Wolf er al. [58], which converge to )‘1 = 0.13 and A, = -39.8, indicating that the

system is chaotic indeed.

To proceed identifying the parameters of this chaotic system, we look for the periodic
orbits embedded within the chaotic set. Using the procedures stated previously, some of
the unstable periodic orbits are extracted, as shown in Figure 3.9.

Also we choose a model in a polynomial form as that of Eq. (3.4), assuming no knowledge
about the nonlinear function of the system. But, after conducting the identification

procedures, we found that the identification results were very poor. We postulate that the

power series rep ion of the nonli; function, tanh (ax) , may not be valid with

the numerical data, due to the large value of a = 50. We then choose another model that



1 186
pd-1 pd-2
Y 1
0.8 ]
of
o
-08 -0.8 1
s ) 0.5 1 bs ) 0.5 1
2 15
pd-3 Jf pas
M| 0.5 ]
ol o
-0.5
- o 1 2 - -0.5 ) 0.5 1

Figure 3.9 Some extracted periodic orbits of a Coulomb friction system

contains the smooth function as a known function, such as

1 4 . l4 .
mxX+cx+ z aix' + Z (Bix"l)tanh (ax) = fcos (w¢) . 3.6)

i=1 i=1
Applying four sets of the periodic orbits to this model with different numbers of nonlinear
terms retained, the identification results are shown in Table 4.
Up to the nonlinear order of five in the mathematical model, the parameters identified are
accurate within 1.0% error, with the standard deviation less than 1.0% of the non-zero
parameters or close to the average identified values of the zero-valued parameters.
The identified results suggest that the model can be refined by the same procedure as in

previous case. By removing the high-order nonlinear terms whose parameter values are
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Table 4: Identification results using 4 periodic orbits for Coulomb friction system

P m c @, o, oy oy B, ) Bs Bs

real 1.000 .0300 1.000 .0000 .0000 .0000 1.000 1.500 .0000 .0000
p=3 9977 .0291 .9997 .0086 -.016 1.002 1.501 -.009

p=4 9971 .0294 .9904 .0192 .0036 -.021 1.002 1503 -006 -.008
p=s® 993 030 970 .030 .0170 -021 1.000 1515 -000 -.036

avg. 996 .0295 .9867 .0193 .0015 -.021 1.001 1506 -005 -.022
std. 002 .0004 .0152 .0107 .0166 .000 .0011 .0076 .0046 .0198
a ag = -0.003 and B = 0.009

negligible, the accuracy of identification results is improved, and the consistency remains.
The model can be verified by the same criteria used in the previous case also. From the
numerical results that the identified values are close to the real ones within 1%, we expect

to get similar results, and reluctantly omit them here.

3.2.1 Effect of Noise

We wonder how noise will affect the identification results of this system. We add the
uniformly-distributed random noise to the periodic orbit for use in the identification
algorithm. Three sets of periodic-orbit data are applied to the chosen model of Eq. (3.6).
Parameter identification results are shown in Table 5.

We find that the noise deteriorates the accuracy of the parameter identification results

rapidly when the noise level is increased. Due to the large parameter value in the hyper-
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Table 5: Noise effect on identification results for Coulomb friction system

noise level orders m c o, o, o B; Bz 33

real 1.000 0.030 1.000 0.000 .000 1.000 1.500 0.00
1% p=2 1002 0.093 0998 -.021 0.968 1.508
1% p=2 0994 0.165 096 -.005 0933 1.515
2% p=3 0996 0.084 1.019 0.017 -083 0979 1518 -.041
2% p=3 0982 0.150 1.004 0.072 -.168 0953 1.532 -.074

tangent function, tanh (ax) , the noise amplitude has been amplified significantly, such
that the accuracy of the identification results may have been distorted. This is a case in

which sensor noise may cause trouble in obtaining accurate identification results.

3.3 A Parametrically Excited System
The numerical example for a parametrically excited system is a nonlinear Mathieu

equation, given as [13]

mX+cx+ (B+asincot)x+u(*y-asinr.ot)x3 = 0. 3.7
This is a model of an inverted pendulum under a two-well potential generated from above
by a magnetic dipole, studied experimentally by Cusumano and Sharkady [13] for the
bifurcation and low-order modeling of a parametrically excited system. The pendulum can
be buckled and unbuckled by changing the voltage applied to the electromagnet. It is also

an example of a periodically disappearing separatrix, analyzed previously by Coppola and
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Rand [10], and Bridge and Rand [8].

The parameter values used to generate the chaoticdataare m = 1, ¢ = 0.01, B = 0.25,
¥ =075, v = 1/3, and the parametric forcing function is 0.55sin (0.28¢) [13].
Numerical integration of the governing equations is carried out by a Sth-order Runge-
Kutta method on a Sun workstation as before. The phase portrait is constructed using the
numerical data, as shown in Figure 3.10, from which the unstable periodic orbits are

extracted, as shown in Figure 3.11.
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Figure 3.10 Phase portrait of the parametrically excited system

The Lyapunov exp are calculated using the p code by Wolf ez al. [58], and

converge to A, = 2.03 and A, = -32.35, indicating that the li system of

Eq.(3.7) is chaotic indeed.
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Figure 3.11 Some extracted periodic orbits of the parametrically excited system

The mathematical model is chosen as

P .
cx+ Y (B+vsinwn)x =% . (38)

i=1

Here, the X-term is taken as an known quantity based on fact that the periodic solution is
known by the extracted periodic orbit data. Using these periodic orbits, each term in the
model is expressed in a Fourier series, with the parametrically excited force being
combined with the x-term as a single function. Applying the principle of harmonic balance
to each harmonic of the Fourier series, a set of algebraic equations in system parameters is
formed. Four sets of periodic-orbit data are used to increase the redundancy of the

algebraic equations, and the identification results are shown in Table 6, for different

numbers of nonlinear terms retained in the model.
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Table 6: Identification results using 4 periodic orbits for a parametrically excited

system
c B, B, B, Be Bs N Y, Y3 Y4 Ys

real 001 025 000 025 000 000 055 000 - 0.00 0.00
183

p=3 011 250 .001 .254 550 -00 -
181

p=4 011 250 -00 .252 .011 550 -00 - 010
182

p=5 011 249 -01 249 .018 .012 .559 -00 - 022 .034
221

Avg. 011 250 .004 .252 .015 .012 .553 -00 - - 034
195 .003

std. 000 .001 .006 .003 .004 .00 .004 .00 .021 .033 .000

The results are accurate compared to the real values for the number of nonlinear terms in

the model is not excessively large, such as the first two cases in the table (p=3 and p=4).

The non-zero parameters are close to the actual values, with less than 1% error of the

nominal parameter values, and the zero-value parameters are close to zero.

As the number of the nonlinear terms in the model increases, the identified parameters that

are coupled with forcing function are less accurate. Among the parameters, the damping is

small in value and vulnerable to numerical errors. In this case, perhaps the damping

should be estimated independently by traditional method, or using the global estimation

method proposed by Cusumano and Kimble [12].

Refining the model by removing the high-order nonlinear terms with negligible values, the
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accuracy is improved. We expect the model verification will be satisfactory for this

parametrically excited system, as demonstrated by the example in section 3.1.

3.3.1 Effect of Noise

To assess the influence of noise on the identification results, the set of uniformly-
distributed random noise generated before is added to the periodic orbits for use in the
identification algorithm. The noise level is set as the percentage of the maximum
amplitude of the employed periodic data. Applying four sets of the contaminated periodic-
orbit data to the model of Eq. (3.8) with varying nonlinear orders, the identification results
are shown in Table 7.

Compared with the noise-free cases in Table 6, the effect of noise on the identification
results are not significant for three or four nonlinear terms retained in the mathematical
model. It becomes more significant when high-order nonlinear terms are included in the
model and higher level of noise is added to the periodic orbits. Up to the noise level of 3%

of the employed periodic data, identification results are acceptable.

3.4 An Autonomous System: the Lorenz Equations

We take the Lorenz equation as an example of an autonomous chaotic system, written as

X3 = =Py +x;x)
with the parameter values as ¢ = 16, p = 4592, and B = —4. Numerical data are
generated from Eq. (3.9) using a Sth-order Runge-Kutta method for 10000 data points

with time interval being 0.025sec. There exists a ‘butterfly shaped’ chaotic attractor, as
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Table 7: Noise effect on identification results for a parametrically excited system

c 51 Bz 53 B4 Bs ) ¢ Y2 Y 2 Ys Ys
real .010 .250 .000 .250 .000 .000 .550 .000 .183 .000 .000

1% p=3 .011 .250 -00 .253 547 001 .177
1% p=4 011 .251 -01 .252 .01 547 -00 .177 .01
1% p=5 .011 251 -01 243 01 .02 .553 -00 .208 .01 .03
2% p=3 011 251 -00 .253 544 -00 .173
2% p=4 011 251 -01 .252 .01 544 -00 .173 .01
2% p=5 011 253 -01 .238 01 .02 .548 -00 .195 .01 .02
3% p=3 011 .251 -00 .253 541 -00 .168
3% p=4 011 .252 -01 .252 .01 541 -00 .168 .01
3% p=5 011 254 -01 .234 00 .02 .543 -00 .183 .00 .02
5% p=3 .011 251 -01 .254 535 -00 .158
5% p=4 011 252 -01 .252 .01 535 -00 .158 .01
5% p=5 011 .257 -01 .227 -00 .02 .533 -00 .159 -01 .01

a. negative values as in the problem setting.
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Figure 3.12 Phase portrait of a Lorenz system

shown in Figure 3.12, in which infinitely many unstable periodic orbits are dense and have

ani period iated with each periodic orbit.

Since the system is unforced, there is no fundamental period to be used as a guide for
finding the unstable periodic orbits for use in our parametric identification scheme. We use
the recurrence property of the chaotic attractor to construct a recurrence plot to determine
the period length of the periodic orbits, as stated in detail in Chapter Two. The recurrence
plot is shown in Figure 3.13, in which the recurrent points that are clustered around certain
values can be clearly seen. These values indicate the incommensurate periods of the
periodic orbits. Using the values, the corresponding periodic orbits can be located within

the Lorenz attractor. Some of the extracted periodic orbits are shown in Figure 3.14, which
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Figure 3.13 Recurrence plot of the Lorenz system (period lengths are indicated in the
numbers of time steps used in the numerical integration)

are to be used in our identification algorithm.
Knowing that the system is a Lorenz type autonomous system, a mathematical model is

chosen such that the linear terms and the quadratic nonlinear terms are included as

% = i (“15’:*’ ibzﬁi"j) (3.10)

i=1 j2i
2, = i (“zt"t* icijxixj) G.11)
i=1 j2i
3 3
2y = a3ix‘.+2d‘.jx,xj , (3.12)
i=1 j2i
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Figure 3.14 Two extracted periodic orbits of a Lorenz system: (a) period length
of 110 time steps, (b) period length of 144 time steps

where a; b‘.j, Cij» and d‘-j are the parameters to be determined.

Using the periodic orbits, cach term in the model is expressed in a Fourier series with the
fundamental period obtained from the recurrence plot. The Fourier coefficients are
calculated as before, except the phase angle is ignored, due to the fact that there is no

forcing function involved. By balancing the Fourier coefficients of each harmonic in each

equation, and treating the x;-terms as known quantities, a set of algebraic equations in
system parameters is constructed for the least-squares estimation.

We use two periodic orbits with period lengths of 110 time steps and 144 time steps
respectively, as shown in Figure 3.14, in the identification algorithm. The estimated

parameter values are shown in Table 8.
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Table 8: Identification results for the Lorenz equation® (a)

Xy Xy X3 XX, X X;  XX3 XXy XpX3  XaXy

¢ -15951 15971 -098 -030 .019 -003 .000 .003 003
1 (-16.0) (16.0)

5 45748 -927 230 039 -028 -995 003 -004 -.006
2 (4592 (-1.0) (-1.0)

1., 089 041 -3.877 .031 980 .003 .000 -0.003 -.004
3 (-4.0) (1.0)

a. The values are the parameter values of each equation in Eq. (3.12) indicated by the first column.

The actual parameters presented in the original system are identified accurately as
highlighted in bold-face in the table, although some of the zero-valued parameters are not
close to zero, such as the third term in the second equation.

The model equation of (3.12) can be refined by knowing that there is no ‘square’ term in
the Lorenz equation. This refinement improves the accuracy of the identification results
significantly, not only the non-zero parameters are closer to the real values, but also the

zero-valued parameters are close to zero, as shown in Table 9.

3.4.1 Effect of Noise

To assess the influence of noise on the identification results, we add a set of uniformly-
distributed random noise to the periodic orbits as before. With 1% noise added to the
extracted periodic orbits, the identification results of the model without square-terms are
not significantly affected, although some of the zero-value terms have non-zero values, as

shown in Table 10. With higher-level noise added to the periodic orbits, the identification
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results deteriorate rapidly. This case shows that noise is influential to the parametric

identification results for the autonomous system.

Table 9: identification results for Lorenz equation® (b)

Xy X3 X3 X)Xy XyX4 XX3

-16.011 15.953 -0.006 0.001 0.0002 0.0011

i (160)  (16.0)

£ 45.900 -1.0228 -0.0127  0.0020 0.9996  0.0021
2 (45.92) (-1.0) (-1.0)

%, 0.0041 0.007 -3.9991  0.9999 -0.0001  -0.0002

(-4.0) (1.0)

a. The values are the parameter values of each equation in Eq. (3.12) as indicated by the first column without the
square terms in the model.

Table 10: Identification results for Lorenz equation® with 1% noise

X Xy X3 XXy X1 Xy XpXy

2 -15.5813 159582  0.0757 0.0006 -0.0087 0.0011
1 (-16.0) (16.0)

i, 474206 -1.8632 0.0256 0.0034 -1.0252 0.0112

(45.92) (-1.0) (-1.0)
2 -0.9178 0.5717 -3.9468 0.9902 0.0200 -0.0129
3 (-4.0) (1.0)
8. The values are the parameter values of each equation in Eq. (3.12) as indicated by the first column without the
square terms in the model.

3.5 A Case Study on Modeling the Nonlinearity with a Power Series

‘We have confronted a problem in modeling a hyperbolic-tangent function with a power
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series in Coulomb-friction system. We postulate that the power series representation may

not be valid in such case. We examine this problem by a similar example, written as

X+ cx+x+ktanh (x) = fcos (wr) 3.13)
We want to show that, if the nonlinear function is known, our method is capable of
identifying the parameters accurately, as shown in section 3.2; if the nonlinear function is
unknown, and the power series is used to approximate it, then the radius of convergence of
the power series and the truncated series representation are the factors influential to the
identification results.
The parameter values in Eq. (3.13) are chosen as ¢ = 0.3, k = 0.5, and 0 = 1.3.
Numerical data are generated using the Runge-Kutta method with several forcing
amplitudes. The maximum periodic responses under different forcing amplitudes are
listed in Table 11.

Table 11: Force and response in model (3.13)

case force, f max. x
b 0.5 1.0
c 1.0 20
d 20 30

Note that, by Taylor series expansion, tanh(x) can be represented by

tanh (x) =x—lx3+2 s_11 7

T
3* 15 ~315° +..,.dsz%. (3.14)

2
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3.5.1 Using the Known Function in the Model

We choose a mathematical model in a polynomial form as that of Eq. (3.4), with the

addition of the known function of tranh(x) in the model, such that

P
mE+ax+ Yy Bx +ytanh (x) = fcos (wr), (3.15)

i=1
where the parameters m, &, B; and Y are to be determined using the periodic data. The

identification results are very accurate, as shown in Table 12, even when the mathematical

model includes many unnecessary terms.

Table 12: Identification resuits using the exact function in Model (3.15)

cases m o By B, B, Bs Bs Y

actual 1.0000 0.3000 1.0000 0.0000 0.0000 0.0000 0.0000 0.5000
a~b 1.0006 0.3000 1.0300 -.0009 -.0000 0.0000 0.0021 0.4700
a~c 09999 0.3000 1.0008 -0000 -.0002 0.0000 0.0000 0.5000
a~d 1.0000 0.3000 1.0000 .0000 .0000 0.0000 0.0000 0.5001

3.5.2 Using the Power Series Approximation

Assuming that the nonlinear function of the system is unknown, our first choice is using a
power series to approximate it. Part of the reason is that it is “easier” to fit the nonlinear
function with a polynomial, and “possible” when data is within the radius of convergence.

A model is chosen in a polynomial form as



P .
mi+ox+ Y Bx = feos (i) .

i=1

55

(3.16)

Applying the periodic data to this model, the identification results are liable to errors,

depending on the amplitude of the response and the nonlinear terms retained in the model,

as shown in Table 13.

Table 13: Identification results using power series® in Model (3.16)

cases m a Bl Bz 53 54 Bs B6 B7 Bs 69
a~b 101 300 152 .000 -.155 -.000 .036

a~d 951 300 135 .000 -.062 -.000 .003

a~b 999 300 150 -000 -166 .000 .060 -.000 -.014

a~d 991 .300 146 -.000 -.103 .000 .013 -.000 -.001

a~b 1.00 300 150 .000 -167 -000 .067 .000 -.025 -.000 .005
a-d .11 300 151 .000 -.139 -000 .031 .000 -.003 -.000 .000
actual 1.00 300 150 .000 -.167 .000 .067 .000 -.027 .000

a. The terms retained in the series is indicated by the last column number.

In each case, better identification results are obtained using the smaller response data

(cases a and b), which are within the radius of convergence of the series. The best result is

obtained in the last case, in which the smaller response data are used in the model with

nine terms included, which almost fits the power series in Eq. (3.14).

Although the nonlinear function of the system is unknown, we may obtain a qualitative

feature of the nonlinear function from the identification results. The nonlinear function is

plotted using the identified values, as shown in Figure 3.15, in which the qualitative
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Figure 3.15 Nonlinear function in a power series

feature of the nonlinear function is clearly seen.

3.6 Conclusion

Numerical examples taken from the Duffing’s equation, a Coulomb friction system, the
nonlinear Mathieu equation, and the Lorenz equation, show that the present method can
accurately identify the parameters in a mathematical model that has been well-chosen to
match the characteristic of the original chaotic system.

The mathematical model can be refined by removing the unnecessary terms that have
negligible values. Consistent identification results are remained for the valid models,
implying that the suspicious terms are indeed unnecessary. Models are verified by
comparing the structure of the unstable periodic orbits, the Lyapunov exponents, and the

bifurcation diagram. The usage of many periodic orbits in the identification scheme
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improves the accuracy of the least-squares estimation and provides the statistical

information of the identified results. This is suitable for systems with many parameters to
be identified.

Random noise added to the periodic orbits can deteriorate the accuracy of the
identification results, but in a robust way. This effect worsens when the mathematical
models are not well-chosen, for example with many unnecessary terms.

When the precise form of the nonlinearity is unknown, yet smooth, the accuracy of
identified truncated power series coefficients deteriorates. However, the truncated power

series may be applicable for qualitative modeling.






CHAPTER 4

Experimental Results

4.1 Introduction

In this chapter, we investigate a chaotic data set taken from a periodically driven magneto-
oscillator by J. P. Cusumano and B. W. Kimble at Pennsylvania State University. The
experiment was designed for observing the global phase-space structure of basins of
attraction and homoclinic bifurcation using the stochastic interrogation method [12]. The
experimental system was known to be similar to a two-well potential system.

The techniques developed in the previous chapters are to be applied to the given set of
chaotic data, in effort to identify the parameters of this experimental system. The chaotic
attractor is reconstructed using the method of delays [26, 53], from which the unstable
periodic orbits are extracted for use in the identification algorithm. A mathematical model
is chosen in polynomial form by knowing that the experimental system has a smooth two-
well stiffness potential. The method of harmonic balance is used to form a set of algebraic

equations in system parameters, which are estimated by a least-squares fit.

4.2 Experimental Setup

The experiment conducted by Cusumano and Kimble consisted of a stiffened beam

58
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buckled by two magnets. The beam had extra rigidity in the form of steel bars epoxied and

bolted along the length away from the clamped end. This additional rigidity was included
in effort to make the system behave as a single degree of freedom. The uncovered portion
of the beam near the clamped end acted as an elastic hinge from which the position of the
beam was measured by a strain gauge. Two rare-earth permanent magnets were placed on
the base of the frame holding the beam to create the two-well potential. The frame was
then fixed through a rigid mount to an electromagnetic shaker. A periodic driving signal
was fed through a power amplifier to the shaker to provide the external forcing function.

The experimental set-up is shown in Figure 4.1. [12]
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Figure 4.1 Sketch of the experimental setup.

Data from the strain gauge was acquired using a 12-bit data-acquisition (A/D) board, with
the digital values from -2408 to 2407 corresponding to -5V to 5V. With no forcing, three

equilibria exist; two are stable at digital values of -495 and 315, and one (saddle) is
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unstable at approximately zero. When forcing is added, periodic orbits exist instead of

equilibrium points. The driving frequency was set at 7.5 Hz with 1.5V of the function
generator output, by which the chaotic data were generated and collected at the sampling

frequency of 187.5 Hz for 7000 periods of excitation.

4.3 Phase-Space Reconstruction

Since there is only one observable in the data set, denoted by {xj},j = 1,...N, with

X; = x(jAr) , At is the sampling time interval, the phase space of the experimental

system is to be reconstructed. The most common method of phase space reconstruction is
the method of delays [26, 53]. It is used to construct a d-dimensional pseudo-vector with

its elements being the single observable separated by a constant delay time, such that

yj = (xj,xj+x,...,xj+t(d_l)), @.1)
where t is the delay time, and d is embedding dimension. Both of which are to be
determined. The pseudo-vector represents a data point in the embedding space.
In theory, for any sufficiently large dimension d and almost any choice of delay time t, an
embedding of the original attractor can be obtained, and the geometrical invariants such as
dimension and positive Lyapunov exponents can be preserved. In practice, the delay time

© should be chosen so that the elements of y; are uncorrelated. If T is too small, then the
coordinates at X; and X; , ¢ Tepresent almost the same information. If T is too large, then

X; and X; , Tepresent distinctly unrelated components of the embedding space. If the

embedding dimension d is too small, the trajectory may cross itself. The requirement of a
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sufficiently large embedding dimension prevents such ambiguity and ensures that the

reconstruction is differentiable and invertible [2]. But an excessively large embedding
dimension may lead to excessive computation and corrupt data, since noise will dominate
the additional dimensions of the embedding space where no dynamics is operating [26].

There are several methods that have been proposed to determine the suitable delay time
and the embedding dimension [1, 5, 9, 25]. We use the criterion proposed by Abarbanel
[1] to determine the delay time T to be approximately 1/10~1/20 of the time
associated with the first local minimum of the autocorrelation function of the

measurement data {xj}. The autocorrelation function is defined as

N
R(7) = ﬁzxi*"txi' @42)

i=]

and is shown in Figure 4.2 for the chaotic two-well data.

x 10° Autocorrelation function of the experimental data
3 LJ L 1§ A L] T v

[o] 20 40 60 80 100 120 140 160 180 200
time steps

Figure 4.2 Autocorrelation function of the experimental data.
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The proper embedding dimension is estimated by the correlation function method [27] and

the singular system analysis method [9]. The correlation function method calculates the

distribution of points within a small region for a large data set, such that

N N
C(r) = lim 1&2 S SH(r i) @3
P

where H(z)=1 if z is positive; and H(z)=0 otherwise; y is a pseudo-vector constructed as
Eq. (4.1). If the attractor is properly unfolded by choosing a sufficiently large dimension,
then any property associated with the attractor which depends on distances between points
in the phase space would become independent of the value of the embedding dimension

[2, 15, 27]. In a regime that C(r) becomes independent of d, and exhibits a power law

dependence on r as r — 0, that is limoC (r) = ard, the correlation dimension could be
r—

obtained by measuring the slope of the plot of 1ogC(r) versus logr, such as

d = lim '26C() @4
r-0 logr

Figure 4.3 shows the plot of logC(r) versus log(r) for several values of the dimension d.
The slopes are about 2.5, which becomes independent of the dimension as d 2 3. Ding et
al. [15] reported that the plateau begins when the embedding dimension first exceeds the
correlation dimension. Thus, this criterion should produce a lower bound to our required
embedding dimension.

The singular-system analysis method involves constructing a covariance matrix C = r'y

and decomposing it into two unitary matrices U and V and a diagonal matrix X, such that
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Correlation function method

Figure 4.3 Correlation function of the experimental data.

c = UV, 45
where Y is the matrix with each column containing the pseudo-vector y as constructed in
Eq. (4.1). Varying the dimension in constructing the pseudo-vectors, and conducting the
singular values analysis, a plot of the singular values versus the embedding dimension is
shown in Figure 4.4.

By comparing the singular values with the values induced by ‘noise’, which is assumed
uniformly distributed in the extra dimensions and will be nearly equal, the singular values
become flat when d 2 4. Thus we determine the suitable embedding dimensions to be
four.

A two dimensional projection of the reconstructed phase space is shown in Figure 4.5,

from which the unstable periodic orbits are to be extracted for use in our identification
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Singular values versus embedding dimensions
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Figure 4.4 Singular system analysis of the experimental data.

algorithm. Also, a transformation of the reconstructed phase space into the singular

coordinates is performed by using the singular vectors, as shown in Figure 4.6.

4.4 Periodic-Orbit Extraction
From the reconstructed chaotic attractor, the unstable periodic orbits can be extracted as

described in Chapter two. In the pseudo phase space, we seek recurrent points such that

Pi.x—v]<e 4.6
where € is set as 0.5% of the maximum extent of the chaotic set as before. Some of the

extracted periodic orbits are shown in Figure 4.7. The corresponding periodic orbits in the

singular coordinate are shown in Figure 4.8.
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Reconstructed phase space of the experimental system

i+iau)
)

v T g v

185

x(t)

Figure 4.5 Reconstructed phase space of the experimental system

Projection of the reconstructed phase space on singular coordinates
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singular coordinate, q1

Figure 4.6 Reconstructed phase space in singular coordinates
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Figure 4.7 Some extracted periodic orbits from the reconstructed phase space
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Figure 4.8 Some extracted periodic orbits in singular coordinates
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4.5 Choosing a Mathematical Model

Knowing the experimental system is an externally excited nonlinear system with a two-
well potential, we choose a mathematical model in a polynomial form to fit the
characteristics of the nonlinear function. We choose a polynomial because we know that
the magnetic and elastic forces are smooth. We do not know, however, whether a power
series converges to the actual stiffness characteristic in the domain of displacement.
Furthermore, in the case of divergence, we do not know the optimal truncation of the
series representation. Our best hope is to obtain a model which qualitatively fits the
characteristic of the experimental system.

The model with viscous damping is then written as

(4 .
me+at+ Y Bx = acosor, @7

i=1
where m, a, and B, are the parameters to be determined, p is the number of terms in the

power series.

4.6 Data Processing Issues

The experimental data are in a digital format, ranging from -2048 to 2047 corresponding
to -5V to 5V of the voltage output from the A/D converter. There is a scaling factor
between the digital numbers and the actual physical unit. The parameters in Eq. (4.7) are
scaled by this factor in a nonlinear fashion. Assume that the factor between the digital data
z and the variable x in Eq. (4.7) is a constant v in units of (displacement unit)/(digital

unit), such that



68

X =7yz. 438)

Substituting this into Eq. (4.7), the model equation can be rewritten as

P N
(my)2+ (an) 2+ Y (ﬂﬁ‘)z‘ = acoswr. “9)

i=1
Since the digital data are large in amplitude, the high-order nonlinear terms will be even
larger in amplitude, causing an ill-conditioning of the matrix A used in the least-squares
fit. To prevent this, we can choose Y in such a way as to normalize the data to the unit

interval. The time variable can also be nondimensionalized to a new variable, 7 = f.
This normalization of time is manifested in the velocity and acceleration terms, and
improves the conditioning of the least-squares problem.

Meanwhile, we know that the external forcing is periodic, although the forcing amplitude
is unknown. This implies that Eq. (4.9) is actually indeterminate, and one of the quantities
in the equation has to be taken as known and moved to the right hand side of the equation,
as having been done in the parametrically excited and the autonomous cases in previous
chapter.

In this work, we deal with the unknown forcing amplitude by discarding the first harmonic
of Eq. (4.9) so that the other parameters may be identified. Another approach would be to

include the forcing amplitude as unknown sine and cosine coefficients to be identified.

Hence, we divide through Eq. (4.9) by the quantity m‘yco2 , and recast it in a form as

P _ .
6z + Y Biz = " +acost, (4.10)
i=1
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where & = a/mo, B; = B‘.‘Yi-l/mmz, and @ = a/m‘yn)z, are the scaled parameters to
be determined.

Using the extracted periodic orbits, each term in the model equation (4.10) is periodic and
expressed in a Fourier series as done before. The Fourier coefficients of the multiples of
primary harmonics, except the first harmonic, are balanced to form a set of algebraic
equations in system parameters for least-squares estimations as usual. The phase angles
associated with the extracted periodic orbits are ignored since the harmonics which

balance the forcing function are not used.

4.7 Identification Results and Model Verification
Using ten extracted periodic orbits together in the identification algorithm, with the data
being processed as discussed above, and using four terms in the polynomial in the model

Eq. (4.9), i.e., p=4, identification results are shown in Table 14.

Table 14: Identification results for the experimental system

o & B, B, B, By
1to0 10 0.034 -0.266 0.141 0.323 -0.041
6, 8, 10 0.025 -0.304 0.184 0.338 -0.078
3,5,7,9 0.041 -0.269 0.190 0.346 -0.067
3109 0.034 -0.244 0.199 0.338 -0.070
Average 0.035 -0.280 0.178 0.336 -0.064

Std. dev 0.007 0.041 0.026 0.0096 0.016




The ide:

orbits.

factor
We h:
stiffn

nega

€no

As

Yex
Tc
fu

-\

L€



70
The identification results are consistent by using different combinations of the periodic

orbits. The standard deviation of each identified parameter is small compared to the
corresponding average value. The values in the table are scaled to SI units by an unknown
factor as discussed in previous section.

We have also used a third-degree polynomial in the identification process. The identified
stiffness parameters were similar to those in Table 14. However, the damping term was
negative. A priori knowledge tells us that the damping should be positive. Since the
damping is small, it is likely that slight inadequacy in the third-degree model caused
enough error in the damping term to reverse its sign.

As in Chapter three, we are tempted to neglect the 4th-degree term since its coefficient is
small. However, we favor the identified parameters based on the 4th-degree model since it
led to a reasonable damping term.

To show effect of the 4th-degree term in range of data, we first examine the nonlinear
function of the system by plotting it with the identified parameter values. Using the
average values in Table 14, the nonlinear function is shown in Figure 4.9.

Within the scaled data range, the curves are qualitatively similar using three and four
terms in the power series. The curves represent a nonlinear function similar to the one
generated by a two-well potential to which the experimental system belongs. Hence, we
obtain a qualitative model for the experimental system, with unknown factors as discussed

in previous section, Eq. (4.10), in the following equation:

2" +0.0357 — 0.28z + 0.1782° + 0.3362° — 0.064z" = Gcos?. @.11)

We proceed to do a numerical simulation using the identified model of Eq. (4.11).

However, since the force amplitude is unknown, we estimate it indirectly. By substituting
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Figure 4.9 Qualitative nonlinear function of the experimental system.

the identified values into the algebraic equations A = ¢ formed from balancing the first

harmonic, we find that the force amplitude a to be 0.25 on average by using the first ten
extracted periodic orbits.

We also conduct a bifurcation diagram using the identified model by slowly increasing the
forcing amplitude as done experimentally, and sampling the steady-state response at the
same time interval. We carry out two bifurcation diagrams, one with the nonlinearity up to
the cubic term in the equation, the other one with the fourth term, as shown in Figure 4.10.
Both parameter sets came from the same 4th-degree model. Figure 4.10(a) shows a
nonperiodic response when the force amplitude is in the range of 0.23~0.29 for the model
with cubic nonlinearity, and about 0.2~0.29 for the model with fourth power nonlinearity

in Figure 4.10(b). In the forcing range shown in the diagrams, the bifurcation diagrams are
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Figure 4.10 Bifurcation diagram of the identified model, (a) with the cubic nonlinear
term in the model, and (b) with the fourth power term in the model

similar. As the forcing amplitude increases beyond four, the bifurcation diagrams are
different, since the fourth nonlinear term makes the system globally unstable.

The calculated forcing amplitude can generate chaotic motion, as happened
experimentally. Hence, a forcing amplitude @ = 0.25 is used as a typical one in Eq. (4.11)
for numerical simulations.

Numerical integration of Eq. (4.11) is carried out using a Runge-Kutta method as usual.
The phase portrait of the model with cubic nonlinearity is shown in Figure 4.11, from
which the unstable periodic orbits are extracted as shown in Figure 4.12.

There is some resemblance between the periodic orbits extracted from the reconstructed
attractor in Figure 4.12 and the identified one in Figure 4.8. A large difference between

periodic orbits extracted from the experimental and the numerical models does not
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Figure 4.11 Phase portrait of the identified model with cubic nonlinearity
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Figure 4.12 Some periodic orbits extracted from the phase portrait of Figure 4.11
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exclude the possibility of the existence of more similar orbits. Thus, we can conclude that

Eq. (4.11) qualitatively represents the experimental system. Given the mass and the scale

factor y discussed in section 4.6, the physical parameters can be obtained accordingly.

4.8 Estimation of the Natural Frequency and the Damping Ratio
Linearizing the identified model of Eq. (4.11) around the equilibrium points, we can
calculate the cigenvalues of the linearized model, and hence estimate the natural
frequencies and damping ratios for comparison with experimental measurements.

The Jacobian of Eq. (4.11) is

Df = [ 0 ) 3 l] 4.12)
=By —2Byx 3By x" +4Bx" —a

The equilibrium points are obtained from Figure 4.9 by locating the zero-crossing of the
nonlinear stiffness function. The equilibria for the curve with four nonlinear terms are
0.72 and -1.1. Then the eigenvalues of Eq. (4.12) are —0.0175%0.6348{ and
—0.0175 £ 0.9426i in the time-normalized system. The real part represents the decaying
rate, and the imaginary part represents the undamped natural frequency ®,. The damping
ratio can be calculated by dividing the real part by the imaginary part, yielding 2.76% and
1.86% for the right and the left well respectively. Converting to real time system by
multiplying by the driving frequency (7.5 Hz in this case), the damped natural frequencies
w, = @ /1- are 4.76 Hz and 7.07 Hz, respectively.
Omitting the fourth degree nonlinear term, the equilibrium points are 0.68 and -1.2 from

Figure 4.9, and the eigenvalues of the linearized model are —0.017510.6541i and
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—0.0175 £ 0.8626i. The damping ratio becomes 2.68% and 2.03%, and the real time

damped natural frequencies are 4.91 Hz and 6.47 Hz for the right and the left well
respectively
The transfer functions of the experimental system were measured by Bart Kimble!, as

shown in Figure 4.13.

S
|
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Figure 4.13 Transfer function of the right well of the experimental system

Using the half-power point method, and assuming the damping ratio, {, is small, the

damping ratio can be estimated by

_W-0,
20

4.13)

1. The transfer functions of the experimental system were kindly given by Bart Kimble at Penn State University.
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where @, and ‘2. are the frequencies at the half-power point of the transfer function, ®,
is the undampec natural frequency, as indicated in Figure 4.13. Table 15 contains a
comparison of the natural frequencies and the damping ratios of the linearized model and
the experimental measurement. Since the stiffness function in the identified model, Eq.
(4.11), is in some sense a best fit to the experimental stiffness function, variation in the

slope of these functions leads to variations in linearized quantities.

Table 15: Comparison of the natural frequency and the damping ratio

linearized linearized
nonlinearity nonlinearity
right well o, 7.7Hz 491 Hz 4.76 Hz
4 2.73% 2.68% 2.76%
left well o, 8.5Hz 6.47 Hz 7.07 Hz
4 2.52% 2.03% 1.86%

4.9 Discussion

Using the experimental data, we reconstructed the phase space of the experimental
system, from which the unstable periodic orbits were extracted for use in our parametric
identification algorithm. A qualitative model is obtained to represent the experimental
system as Eq. (4.11).

There are some discrepancies in the identification results when using different extracted

periodic orbits individually. We used several periodic orbits together because different
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periodic orbit vi.iis different area of the reconstructed phase space. Using several of them

provides a better representation of the system behavior, and also gives some statistical
information of the identification results.
For this reason, chaotic dynamics is beneficial for parameter identification, particularly

when the form of the model is approximate. We will revisit this issue in next chapter.



CHAPTER §

Errors in Parameter Estimates

5.1 Introduction

Errors are inevitable in any parametric identification method, arising from the incorrect
modelling, data acquisition and data manipulations. Modelling is not only a main source
of error, but also a critical factor for the success of an identification method. We have
discussed this issuc when we presented our method in Chapter Two, and some criteria
have been used to validate the model in Chapter Three.

In this chapter, we will focus on the quality of the data, and its effect on the formulation of
the least-squares estimation Ac = q. An obvious source of error is the noise, which is
inherent to the data acquisitions and manipulations. We will treat it as external to the
system response, and assume it is random and bounded. We have also used the unstable
periodic orbits exclusively in our identification scheme for a chaotic system. The unstable
periodic orbits are extracted from a chaotic attractor, and used as an approximation of the
real periodic orbit of the system. The deviation of the extracted unstable periodic orbits

from the real one is another source of error to be discussed in detail.
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5.2 Errors induced by Noise

Suppose some noise n(¢) is added to a periodic orbit p(r), such that

p@) =p() +n(n), .0
where the noise is assumed to be uniformly distributed and uncorrelated to the periodic

orbit. Applying this noisy periodic-orbit data to a power-series model (assumed to be

valid),anonlineartermxt in the model is expressed in a Fourier series in a form

F{®)"Y = F{p +knp" 1.} = F(p") +kF {np* 7'} ... 52)

where F denotes the Fourier series representation.
Suppose that the upper bounds of p(r) and n(z) are known, i.c., there exists real positive

numbers & and {, such that

lp ()]s @, and,In(n)| sE, (53)

for te [0, T] . The Fourier coefficients of the real periodic orbit are

2 .
a, = TJT p* (1) cos (jor) dt o

by 12. p* (1) sin (joor) dt

where the subscript k refers to the nonlinear term xt.

Similarly, the Fourier coefficients of the noise-contaminated periodic orbit can be
calculated as

= 2{75* (1 cos Gon s
(535
by = j'rp (#) sin (joor) dt
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Thus, the differences of the Fourier coefficients between ﬁk(t) and pk () will be

bounded by the following relationship:
-2 T( k, . -k ) :
lAajkI!Iajk ajlcl = TIJO p ()-p (9 cos(lo)t)dl|

ol & w k-i i .
= T‘Jo E-l G_pmP Wn @ °°"J°")"" 6)
k i
<23 (k—ki')!i!pk(%)

i=1

for every harmonic j. Normalizing the error bound of Eq. (5.6) by pk yields

Aaiszk(%)+k(k—1)(%)2+... ex)
P

The arguments will be the same for [Ab,| = |b,,— b .

For k = 1, the bound depends on the bound of noise only, which is usually assumed to be
as small as a few percent, specified by the noise-to-signal ratio, {/ @ . As k increases, the
error bound will accumulate, making the perturbations in A larger accordingly. If the

degree of the nonlinear term in the mathematical model is excessively large, the accuracy

of the estimation results will deteriorate rapidly by the noise.

Having these bounds on |Aa ; J and |Ab jkl , we can determine a bound on JAA] and JAq]

due to noise!l. Then by a method given in section 5.4 below, a bound on the error of the

identified parameters, JAaf, can be estimated.

i. All norms here are Euclidean 2-norms.
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5.3 Errors Induced by the Periodic Orbit Extraction

Another source of errors comes from the extraction of the unstable periodic orbits. We
have specified a spatial criterion € in the state space, such that |x;, , —x] <€, to look for
the recurrent points in a large chaotic data set. We presume that when the trajectory comes
close to a periodic orbit, it approximately follows the motion of that periodic orbit, so that
whenthcrecurrcntpointsarclocated,thesegmentofdataismkcnastheappmximatc
periodic orbit. This approximation is related to a characteristic quantity of the associated
periodic orbit as discussed below.

Consider a neighborhood X () of a saddle fixed point x of a period-k orbit in the

Poincare section, as sketched in Figure 5.1.

E® : stable manifold

E® : unstable manifold

x E®

Figure 5.1 Close look of the periodic orbit extraction on the Poincare section
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The dynamics of the system in this neighborhood can be viewed in terms of a linear map

T, such that

X, = X=T(x,-2) , 8
where T is the linearized map about the period-k orbit X in the period-k Poincare section,
which is invertible, since the periodic point is a saddle for a chaotic system, and X is the
saddle point, representing the true periodic orbit of a nonlinear system. If the orbit is near

the saddle to be considered as an approximate periodic orbit of period k, then by the

linearized map, the spatial distance between an orbit and its k iterations can be written as

|xk—x°| = |(x,‘-x) - (xo-x)l
- |T (xg—2) - (xo—x)l (5.9)
= |(T-D (xp-2)] se

Taking the matrix norm, Eq. (5.9) is bounded by the singular values of the matrix (T -1/) ,
such that

Mpo—3 S|(T-D (xg-B) | <A - A, (5.10)
where A, and A, are the maximum and the minimum singular values of the matrix
(T-1I). Since |(T—-l) (xo—x)| <&, the distance between the approximate periodic
orbit and the true periodic orbit, by the criterion Jx, - xo] <€, is bounded by

5, =|xo— x| se/A,. (5.11)
Note that, since x is a saddle point, the singular value A, will not be zero in any case.

Similarly, taking the map backward, the spatial distance becomes
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- xo] = I("t") -1 (J‘rl')l = l(rl—lj(x,—x)l. (5.12)

and the distance between x, and the saddle is bounded by

5 = fx, - x| sesp,, (5.13)

where |, is the smallest singular value of the matrix (T'I—I), which is non-zero
because x is a saddle point. Thus the approximate periodic orbit by the criterion of

Jx.—xo] <& will be bounded by the larger of 8, and 3,, i.c.

& = max{3,,5,} Smax {-—e-, -E-} . (5.14)

AWy

Since A, and , are the minimum singular values of matrices relating to the linearized

map of the periodic orbit, the bound 3 in Eq. (5.14) bounds the error of the extracted
periodic orbit. The smaller the pre-specified spatial criterion € is, the smaller the bound 3
will be. However, the criterion € should be determined by the data set, since excessively
small € may result in no data points fitting in the criterion.

With the error bound 8 determined by the characteristic of the periodic orbit as above, we
can proceed to bound the errors in A and q, i.e. we . 1 find a bound on JAA|] and |Aql
due to the periodic-orbit extraction. The argument is the same as that presented in previous
section, Eq. (5.2) to (5.6), except that the upper bound of noise { is replaced by the error
bound 3.

In reality, we have to analyze the data to approximate the map T. The procedure follows
ideas of [5,18, 19,35,49].
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Figure 5.2 A sketch of the construction of a linearized map

Let {xj} ,J = 1,..., P, be a set of data points in state space, denoting a periodic orbit

extracted from a chaotic attractor!. We intend to find a sequence of local linearized maps

Tj,j = 1, ..., M, by increments of m, such that

Xiom = TX; (5.15)
where M = P/m, an integer, and X(M+1)m = Xp» Since the orbit is periodic. Then we

construct a compound map by multiplying each local linearized map Tj in a reverse order,

such as

T = TyTy_,---Ty (5.16)

This compound map T represents the total linearized map of the periodic orbit, as the one
used in Eq. (5.8) on the period-k Poincare section. Figure 5.2 is a sketch of the
construction of this linearized map.

1. It should be noted that we used the same notation x for points on the Poincare section earlier in this section.
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Consider a small ball of radius 7 centered at the orbital point xj,andasetofndatapoints

{xk'},i = 1,...,n, included in the ball. The number of data points n is to be discussed

later. The set of displacement vectors between X and x; is formed as

{y;} = {xk'- j"’g‘- ]Is'} . (5.17)

After the evolution of a time interval T = mAt?, the orbital point x; will proceed to x;

j +m
and the neighboring points x kO X e The displacement vectors y; are thereby mapped

to

{z;} = {xt‘+m—xj“_||xk‘-xI|Sr} . (5.18)

The evolution time interval mAr effects the quality of the linearization, depending on the
dynamics of the system. If mA¢ is too small, the map will resemble an identity map. If

mAt is too large, nearby points evolve beyond the regime of linearity. We have found no

proposed method for optimizing the choice of m. Usually we choose m to be one or two.

Let Y be a matrix containing the vectors y; and Z containing the vectors z;. If the radius

r is small enough, evolution of Y to Z can be approximated by a linear mapping

represented by a matrix Tj , such that

Z=TyY . (5.19)

By minimizing the squared error norm of Eq. (5.19) with respect to all components of the

matrix Tj , we obtain an expression for Tj as
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A | ’
7= () (2r). 62
where () denotes the matrix transpose. The matrix T; is an approximation of the
linearized map at X;. If there is no degeneracy, Eq. (5.20) can be solved for Tj. In some

situations, Y may not be uniformly distributed in all direction of X; (because of the data),

' }-1
and may not span the entire phase space, such that (YY)_ does not exist and the matrix
T; may not be well defined. In such case, we might simply skip it and proceed to the next

point X; . m» OF USC larger ball to find another set of neighboring points to eliminate the

degeneracy. In this way, we can construct a sequence of linearized maps for the periodic
orbits, and multiply each one around the periodic orbit in reverse order as that in Eq.(5.16)
to obtain the final map for use in Eq. (5.11) and (5.13).

To include enough neighboring points, n, around the orbital point for constructing the
linearized map, the radius of the neighborhood has to be larger than the spatial criterion
used to find the approximate periodic orbit. Lathop and Kostelich [35] used a radius of 6¢
to include 50 or more points. Eckmann and co-workers [5,18,19] increased the radius until
30 or more points were found, while Sano and Sawada [49] set the number of points to be
20, and confirmed that lower number still gave similar results, provided that number was

greater than the embedding dimension.

5.4 Sensitivity of the Parameter Estimates to Errors

Knowing the error bounds JAA| and JAg] induced by the noise and by the periodic orbit

extraction, we could proceed to estimate the sensitivity of the parameter estimation results
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to these errors.

Let AA and Ag be the perturbations of A and q respectively in the linear system, with A
being a full-rank matrix. Define

a= qu
a* = (A+AA) Y (g+Aq) (5.21)
r=qg-Aa

where At is the pseudo-inverse of A, which yields the optimal least-squares solution of

Aa = g, asdoesthe (A +AA)t for a* in Eq. (5.21). Assuming

IV LY D
n=max [ -ﬁr cond (A) (5:22)
and
sin(e)s:gllz<l. (5.23)
2

implicitly defining 6, 0 S0 < 1t/2, then the error in the parameters o is bounded by [4]

*_
H—miz Sn[z—c-‘::';s—déﬂ + tan0 [cond (A) ]2] + O(nz). (5.24)
2

For a given model and given periodic orbits, A and q are fixed, and N is determined by
lAA] and JAq] indubed by the error sources discussed in previous sections. If the model
is chosen properly, the residual, r, is usually very small, resulting in small ©. Thus the
error bound is Eq. (5.24) depends linearly on cond(A). If the model is not properly chosen,
the error bound is Eq. (5.24) will depend on the square of cond(A), making the error bound

sufficiently larger. From numerical results presented in Chapter Three, we found that the
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choice of a model is the most influential factor on estimating the parameters. Also, an

improperly chosen model results in a large condition number for A, resulting in a violation
of the assumption in Eq. (5.22). In fact, this occurred when we tried to compute the bound
of the error in section 3.1.5. In that example, we directly computed [AA| and JAq] by
comparing the quantities in the noise-free and noisy cases. Thus, the estimate (5.23) may

not always be practical, but at least indicates some trends.

5.5 Using Several Periodic Orbits

In this section, we discuss how an application of several periodic orbits together in the
identification scheme, as opposed to using a single periodic orbit, can reduce the

sensitivity of the parameter estimates to errors.
Suppose a mathematical model has been chosen, and different matrices A; are formed
using p different periodic orbits, such that i = 1,...,p. Suppose different sets of

parameters &; are then estimated from

Aiai=qi" =1,..,p. (5.25)

Then, combining several A; into a single matrix A, such that

= [AL.A4%,...47]. (526)
and combining the corresponding g; into a single vector q, we obtain a set of parameters

& from the combined equation, AG = q, through

(4"4)a = 47, (5:27)

which is equivalent to
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P 4
T T
(ZAjAj)& = Y A;q; (5:28)
j=1 j=1

Summing Egq. (5.25) on i, and subtracting from Eq. (5.28), yields

2 T a P T -
ZAjAj(a-aj) = ZA]AJ( (G-a) +(a—aj)) =0, (529)
j=1 j=1

where a is the true parameter vector. Defining

T, \((.,T
R; = (A A)- (A‘.Ai)
A=a-a (5.30)

we obtain an expression of the error using different sets of periodic orbits, as

4
A= .leJAj (531)
].

P
Note that, Z R; = 1. Thus, Eq. (5.31) implies that the error in parameter estimates from
j=1
several periodic orbits is a weighted average of parameter errors from individual periodic
orbits, through the weights Rj . If a particular periodic orbit were known to yield the best

estimation, we would use it for identification. However, we have no idea which one will
be the best in general. Hence, using a combination of several periodic orbits has
advantages. It can give a reasonable estimate, reduce the sensitivity to errors, and improve

the statistical properties of the identified results, which has been shown in our previous

applications.



CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

We have preseated a method for identifying parameters of nonlinear systems that exhibit
chaotic behaviors. This is an extension of an existing method for nonlinear systems with
stable periodic response. We exploit the chaotic attractor of the nonlinear system by
extracting the unstable periodic orbits from the chaotic attractor to represent the system
behavior. Each term in the mathematical model is expressed in a finite Fourier series using
the extracted periodic orbit, and the harmonic-balance method is applied to form a set of
linear algebraic equations in system parameters for least-squares estimation. We have
demonstrated that the present approach is applicable to externally excited, parametrically
excited, and autonomous chaotic systems. This may not be feasible using other methods.
Although chaos has been regarded as undesirable noise to be discarded from the physical
systems, it has rich information content as compared to a periodic trajectory. This richness
has been exploited in dimensionality studies, nonlinear prediction, and control. The
central theme is the presence of unstable periodic orbits, which can be extracted and used
to characterize the chaotic attractor. Therefore they are useful in parametric ideatification
for a chaotic system. Furthermore, the availability of many periodic orbits with different
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periods provides a ‘persistent excitation’ for a system with many parameters. This is an
advantage of using chaos in parametric ideatification.

Modelling is an important issue in the parametric ideatification scheme. The model must
be able to catch the essential characteristics of the system under investigation, such as the
form of the nonlinearity and the type of excitation. For smooth systems throughout this
study, we choose a power series to represent the system nonlinearity, based oa the fact that
a smooth function can be expressed in a power series around the equilibrium points. Some
questions related to this representation, such as how to choose the optimal truncation of
the power series, and whether or not the data are within the radius of convergence of the
series, remain to be studied further. We have discussed this problem using a numerical
example in Chapter Two. We found that, when the data are within the radius of
convergence of the power series, the model can be accurately identified. When the data are
out of the radius of convergence, the accuracy of ideatification resuits deteriorate. In such
case, the real nonlinear function of the system has to be known in order to obtain accurate
results. Knowing something about the system under investigation is fundamental for
parametric identification. Otherwise, we have to be coatent with partial description of the
identified system. The moral is that good models lead to good quantitative resuits.

We have applied this method numerically to several chaotic systems, such as a forced
Duffing oscillator, a smooth Coulomb friction oscillator, a parametrically excited beam,
and a Lorenz oscillator. The accuracy is typically within 1% error of the identified
parameters for noise-free data. When the noise level increases, the accuracy deteriorates,
although in a robust way, especially when the mathematical model is not properly chosen.

We have also applied this method to a forced mechanical oscillator with a two-well
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stiffness potential. Chaotic data were acquired from a strain gauge by an analog-to-digital
converter. The data were proportional to the displacement of the oscillator. The amplitude
of the periodic forcing function was unknown. We modeled the experimental system in a
power series. The unstable periodic orbits were extracted from a reconstructed attractor
using the method of delays. Consistency of the identified parameters was achieved using
different combinations of the extracted periodic orbits, leading to a qualitative description
of the system nonlinearity, and hence to a qualitative mode! of the experimental system. A
bifurcation diagram was constructed using the identified model, revealing phenomena of
period doubling and chaos. This qualitative model can be useful for further investigation
of the experimental system.

Models were verified by comparing the Lyapunov exponeats, bifurcation diagrams, and
the structure of the unstable periodic orbits in the original and the identified systems. We
also sought consistency in the identified parameters by using different sets of periodic
orbits.

Two main sources of errors in the parameter estimates, noise and the extraction of the
unstable periodic orbits, have been examined closely from statistical and geometrical
points of view. We considered the noise to be uncorrelated to the system response and
uniformly distributed. We constructed a linearized map for the periodic orbits, and derived
a bound by the singular values of the corresponding linearized map. By expressing the
noisy periodic orbits in Fourier series, the error in the Fourier coefficieats of a nonlinear
term in the mathematical model can be bounded as a function of the noise-to-signal ratio.
Errors enter the algebraic equations in a nonlinear fashion, increasing the uncertainty of

the identification results. The error bound of the parameter estimates is proportional to the
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square of the conditional number of the matrix A of the identification equations, Aat = ¢,

if the residuals are large. Otherwise, the error bound is linear in cond(A). We found that
using several extracted periodic orbits together will reduce the sensitivity of the parameter

estimates to these errors.

6.2 Future Work

We have used the unstable periodic orbits exclusively to represent the system behavior in
our parametric identification scheme. The system is in a form of an ordinary differential
equation, and recast as a set of linear algebraic equations through the balancing of the
Fourier coefficients of each term in the equation. This is strategically convenient for our
applications, but not mathematically rigorous. Further studies may lead to a better
understanding of how it relates to the ordinary differential equation.

We expressed the periodic orbit in a Fourier series, using the fundamental frequency in
calculating their Fourier coefficicnts. The Fourier series of a period N orbit consists of
frequency componeats m/N, m = 1, ..., N, thus making available many harmonics to
balance. It may be worth examining whether subharmonics or superharmonics yield better
results.

Errors in the identification process can be investigated more thoroughly by examining
how they manifest themselves in the formulation of the least-squares estimation, such as
the extraction of the unstable orbits from the chaotic attracting set and the fluctuation of
the Fourier coefficients of these unstable periodic arbits.

We chose to use polynomials as the basis functions to model the system nonlinearity.
Other form of basis functions such as wavelets, Pade functions, sigmoid functions, and
radial functions, might be worth investigation.
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Experimental work can be explored further, such as with autonomous systems and higher

degree-of-freedom systems. Quantitative studies, involving specific material or system
parameters, such as in identifying the elastic modulus, might be valuable. Experimental
studies on distributed systems would complement the numerical work of Yasuda and co-
workers [59, 60, 61], and might raise other interesting issues.

This study focused on smooth noalinear functions. Non-smooth systems, such as impact
and friction, might call for adjustments in this method.

Also, adapting this method to identify parameters which are expressed nonlinearly in the
differential equation of motion, such as in arguments of functions (e.g. tanh (ox) )
requires some development. An exteasion of the preseat method to broadband spectra, by
balancing the real and imaginary parts of the Fourier transform of each term, may
accommodate the case of noisy input.
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