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ABSTRACT

ON INTEGRATING VISION MODULES

By

Shamthchandm Pankanti

Individual visual cues are often unreliable and ambiguous. Therefore, integrated

vision systems are necessary to obtain a reliable interpretation of complex scenes.

Design of such systems is challenging Since each vision module works under a different

and possibly conflicting sets of assumptions; an effective integration scheme must not

only deal with noisy input images but must also overcome the artifacts and restrictive

assumptions of the individual modules.

We propose a unified Bayesian integration framework for interaction among the vi—

sion modules to obtain a complete 3D reconstruction from a pair of intensity (stereo)

images. The proposed integration architecture allows a parsimonious modeling of

various interactions. Novel features of the proposed scheme include, (i) interaction

of each module with intrinsic map, (ii) multi-resolution representations and hierar-

chical coarse-to-fine control, (iii) fine—grained feedback mechanisms, and (iv) robust

estimation procedures based on the principle of coherence.

We have integrated perceptual grouping, stereo, Shape from shading, and Shape



from texture modules under the proposed Bayesian framework. We demonstrate the

efficacy Of our approach using real images of several different scenes and observe

improvements in the quality of recovered 3D structure as a result of integration. The

output of the integrated system is Shown to be insensitive to violations of individual

module assumptions. The numerical accuracy of the recovered depth is assessed

for photo-realistically rendered images from several scenes containing a variety of

generic surfaces. Average improvement due to integration in depths estimated from

the synthetic textured images of surface primitives was about 20%. The average

improvement in the Shape estimates due to integration was 16%. For non-textured

synthetic images, the corresponding improvements in depth and shape estimates were

25% and 23%.

Integrating vision modules is a difficult problem primarily due to our lack of

understanding of two underlying issues: (i) an accurate assessment of the strengths

and limitations of individual modules; (ii) the representations and control structures

which can exploit complementary constraints provided by the imperfect modules to

recover the true structure in the data. We have attempted to systematize the design

procedure for an integrated system which takes into account these research issues and

demonstrated that an integrated system thus designed leads to improved results in a

limited scene domain. Much more research is needed to obtain a definitive solution

to the integration problem.
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Chapter 1

Introduction

One of the central objectives in computer vision is to understand the input scene

and Objects therein from the image(s) of the scene for the purpose of recognition,

manipulation, navigation, or other visual tasks. Since the initial efforts of Roberts

[163], the field of computer vision has developed both in rigor as well as in the

repertoire of the methodologies. Yet, the goal of building vision systems capable of

undertaking visual tasks in a human-like way has remained elusive. Most computer

vision systems have remained restrictive in their domain assumptions and brittle

in their performance. A system making use of limited information will be fallible;

robust vision systems would need to necessarily take into account many independent

visual cues. How Should one develop vision systems that are capable of effectively

representing the world knowledge and information in the visual cues? What are the

control structures which allow efficient use of these representations? How do these

representations and control structures result in robust systems? The research reported

here is an attempt to understand these issues by developing a system which integrates

1



2

visual cues to achieve a 3D reconstruction of the input scene based on sensed (stereo)

intensity images.

This chapter is organized as follows. Section 1.1 discusses the motivation behind

the integrated systems for visual reconstruction in some detail. Sections 1.2-1.7 dis-

cuss literature (mostly from psychology and physiology) which provides some clues

on how the integration is actually effected in the human visual system. Section 1.8

reviews a computational basis for the classification Of integration methodologies. Sec-

tion 1.9 discusses the difficulties in integration of visual cues, both methodological as

well as implementational. Section 1.10 describes critical research issues in the design

of an integrated system. We also present a statement of the problem that we have

solved (Section 1.11), a list of our contributions (Section 1.12), and organization of

this thesis (Section 1.13). The chapter concludes with a summary.

1 .1 Motivation

Many vision related tasks like grasping, navigation, and exploration require extraction

of 3D information (e. g., depth, surface normals) about the input scene using a variety

of sensors. The generic 3D reconstruction problem in itself is an important research

problem since its study in the past has increased our understanding of the systematic

constraints and limitations in designing a vision system [7]. These constraints and

limitations could then be gainfully employed to disambiguate 3D structure of a scene

or to help design more robust vision systems.

A number of approaches have been used for recovering 3D characteristics of a



3

given scene. A comprehensive summary of these techniques could be found in Jain

and Flynn [88]. One of the approaches for obtaining 3D information has been through

direct depth measurement using time-of-flight sensors or structured light. Given pre-

cise imaging conditions and favorable surface characteristics of all the sensed objects,

a very accurate 3D reconstruction of the scene could be obtained with a high ac-

curacy. However, imaging conditions required by the direct range sensing strategies

can not always be improvised; large outdoor structures and distant objects can not

be effectively scanned by these Special-purpose sensors (e. g., laser, radar); and the

object surfaces may not be suitable (e. g., Specular/Shining surfaces) for the sensors

used in such systems.

An important research issue is whether the 3D structure of a scene could be

reliably recovered in less assuming and more realistic Situations? For instance, can

we precisely recover the 2.5D Sketch1 from a pair of intensity images of a scene?

To obtain a reasonable depth map, it would seem that with a careful management

and integration of the information available in the intensity images, we need not

have to resort to precisely engineered solutions. Besides, in many computer vision

applications, the imaging conditions and the surface characteristics of the objects to

be imaged are well beyond our control. In such Situations, a pair of stereo images

of a scene illuminated with a finite number of point sources with known positions

and possibly with (unknown) ambient light may be the only reasonable assumptions

which can be made about the input. The primary objective of this thesis is to

 

lA 2.5D sketch represents depth and surface orientation at each visible point in the scene. Ac—

cording to Marr[116], it is an explicit representation of depth, surface orientation, discontinuities in

depths, and discontinuities in surface orientations in a scene.
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explore and evaluate methods for a complete and accurate 3D reconstruction under

these conditions.

The projections of the 3D world onto 2D image planes suffer from a lOSS of explicit

depth information. The resulting intensity images convey 3D information in several

different and indirect ways. In the last couple of decades, a number of Shape-from-X

modules have been identified and shown to be capable of conveying Shape of the object

in constrained environments. Several other modules such as perceptual grouping have

been demonstrated to be helpful in the depth recovery process [72]. Problems posed

by many of these modules are ill-posed 2 and all these modules make assumptions

restricting the scope of their application. Tables 1.1 and 1.2 summarizes various

assumptions made by the (computer) vision modules. The primary considerations in

making these assumptions might be classified into three categories:

0 Ambiguity: A vision module (inherently) can not determine certain component

of the 3D structure of the scene.

0 Complexity: Although a vision module could potentially extract all the required

3D information, it might be easier to recover the information under Simplifying

assumptions.

0 Reliability: In order for the recovered 3D structure of an input scene to be

stable, it might be necessary to impose certain assumptions.

Violations of these assumptions result in making the module output less reliable. Only

 

2A problem is a well-posed problem when its solution exists, is unique, and continuously depends

on the data. A problem which is not well-posed is an ill-posed problem [187].



Table 1.1: Natural Assumptions in Computer Vision.
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ture [114]
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Line labeling Piecewise Malik
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Table 1.2: Synthetic Assumptions in Computer Vision.
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Texture Isotropy Garding
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Texture Perfect Ohta et
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Shading Single Lee &
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Structure Small Horn &

from motion motion Schunck
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Line labeling Origami Kanade

world [92]

Line labeling Polyhedral Sugihara

world [177]

Shape from Symmetry Gross

Symmetry [71]    



Table 1.2: Synthetic Assumptions in Computer Vision (contd).
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Line Labeling Orthographic Malik

Projection [112]

Texture Para- Aloimonos
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Structure Rigidity Weng
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Shading Constant Tsai
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cal
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Focus Gaussian Ens &
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& Brady
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Shading No Horn

interreflection [79]

Specularity Dichromatic Healey

reflectance & Bin-

ford [74]

Shading & Fractal Pentland

Texture surface [151]

model

Shape using Separable Christenser

color colors 85

Shapiro   l I40]
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in an integrated environment could one (i) avoid making very restrictive assumptions,

(ii) verify the accuracy of a module output using another independent output, and

(iii) assess applicability of the assumptions from the scene properties.

For instance, shape from shading module can not disambiguate “concave or con-

vex” ambiguity (Fig. 1.1). A line labeling module can not definitively resolve whether

the top surface of the block shown in Fig. 1.2(b) is curved or planar. Conventionally,

such ambiguities have been resolved either (i) by imposing arbitrary assumptions,

e. g., many Shape from shading algorithms are biased towards ‘convex surface’, or (ii)

by invoking synthetic constraints (see Section 1.8), e.g., arguments based on sym-

metry to decide the curvature of the top surface of the block in Fig. 1.2(b). The

imposition of arbitrary assumptions as well as a premature invocation of synthetic

assumptions can be avoided by making use of the other visual cues in the input im-

age(s). For instance, a stereo module could resolve the ambiguity in Fig. 1.1, or the

shading information (Fig. 1.2(d)) could facilitate a more reliable interpretation of line

diagram in Fig. 1.2(b).

 

Figure 1.1: Ambiguity in Shading: concave or convex?



 ((1)

Figure 1.2: Ambiguous line diagrams can be easily resolved by shading information.

Line diagrams in (a) and (b) are easier to interpret in conjunction with their Shaded

counterparts in (c) and (d) (Adapted from [13]).
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Figure 1.3: Imaging is a many—to—one mapping. The general viewpoint assumption

states that the interpretation (a) is more likely than (b) [109].
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In an integrated environment, it is also possible to assess the violation of a weak

assumption3. General viewpoint assumption is a case in point. Due to a lOSS of the

explicit depth information, the input images can not be uniquely interpreted based on

the projective geometry alone (Fig. 1.3); the assumption of general viewpoint posits

that Significant structural relationships in an image are unlikely to have resulted due

to accidental location or orientation of the observer. However, in a large image (espe-

cially, of a man-made environment), a few violations of general viewpoint assumption

might have occurred. In an integrated system, the individual modules can afford

to operate outside the scope of their nominal assumptions Since other independent

sources of information can correct its mistakes. For instance, a violation of general

viewpoint assumption can be ascertained in an integrated environment using several

independent sources of information.

The central role of constraints exerted by the world knowledge and visual cues in

image interpretation is widely agreed upon. The details of how these constraints are

effectively embedded into a working system are, for the most part, not known. In the

hope of finding answers to these problems, we often turn to the human vision liter-

ature. Several psychophysical and neurophysiological experiments have been carried

out to find the general structure of the perceptual processing in the last few decades.

The following sections summarize integration research in human visual processing.

 

3A weak assumption (also referred to as natural constraint) is an assumption about the world

which is frequently true. See Section 1.8.
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1.2 Bottom-up View

This view of solving vision problem hOldS that different sources of information dis-

ambiguate image interpretation by building increasingly abstract representations in

a domain-independent fashion. The system obtains higher-level descriptions from

image- (lower-) level descriptions by recursively grouping the features at each level of

description. This model enjoys a good support from conventional vision researchers.

Marr’s work is an excellent example of this approach [116].

Marr Paradigm

Marr suggested that it is useful to pose vision problems at a computational level

before dealing with representations, algorithms, or implementations. What is being

computed? Why is it being computed? While he was clearly aware of the top-

down influences, he felt that their role in early vision processes was marginal. He

proposed building the following three levels of representations during the course of

3D reconstruction:

Raw Primal Sketch: This representation is responsible for making the local struc-

ture in the image explicit. It consists of descriptions of physically meaningful events

(changes in albedo, illumination, depth, or surface orientation) by a combination of

Spatially coincident zero-crossings extracted from consecutive levels of representations

(Spatial coincidence)". Spatially localized configurations of (zero-crossings) are iden-

tified into units of representation: tokens. Tokens are categorized into edges, bars,

 

4These principles of combination of information across different spatial channels can be quite

involved and constitute the first systematic efforts in integration of information across the spatial

channels [117].
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blobs, terminations, etc. and have typically half a dozen features like orientation,

contrast, etc. Each token is a very localized descriptor. For instance, a long thin line

would be described by several small oriented segments. Spatial relations among the

tokens are also made explicit in the raw primal Sketch.

Full Primal Sketch: The tokens in the raw primal Sketch are recursively grouped

based on their Similarity. Such grouping procedures are local mechanisms for or—

ganizing perceptually Significant events such as texture boundaries and subjective

contours. The full primal Sketch makes organization of the perceptually Significant

2D structures explicit.

2.5D Sketch: The features in this representation are surface orientation, depth

discontinuities, orientation discontinuities, and coarSe depth estimates for visible sur-

faces in the scene. This representation is viewer-centered and iS essentially the first

description to make the 3D structure of the scene explicit. This representation is

the precursor to the final object-centered, segmented, and volumetric representation

[118]. Marr argued that a 2.5D Sketch description is a convenient common substrate

for the visual modules to combine their individual outputs.

Marr’s proposal has a strong argument in favor of the modularity of the human vi-

sion system. Several psychophysical experiments have demonstrated that the human

visual system processes different cues like Shape from shading, Shape from texture,

stereo, Shape from motion in a relatively independent way (Figure 1.4). For instance,

subjects could fuse random dot stereograms which did not have any other cues [91].

Neurophysiological data available at that time demonstrated the existence of different

channels of processing for different types of visual data [108]. Marr coined the term
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vision module for these autonomous processes, each handling one type of visual cue.

While there was no definitive evidence for the existence of vision modules, he argued

that the modular development of vision system would Simplify the complexity in its

design.
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Figure 1.4: Marr paradigm [109].

One of the advantages of the bottom-up approach is its generality. It is usually

characterized by lack of any restrictive domain-specific assumptions. Hence the use

of the bottom-up, data-driven approach has been recommended in exploratory and

generic computer vision tasks, where the details of the environment are not known a

priori.
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1.3 Top-down View

The world we live in is not an abstract space, but a three—dimensional world obeying

laws of physics. Most of the objects we perceive in our everyday life are opaque.

Object surfaces are smooth almost everywhere. The evolutionary process has built

mechanisms into our perceptual apparatus to exploit these features for easier inter-

pretation of our sensory stimuli. These default assumptions serve to disambiguate

and stabilize our perception in Situations where visual stimuli in themselves are not

sufficient.

A bottom-up, hierarchical model of perception has influenced much of both clas-

sical philosophical thought and psychological theories, thus top-down forces were

initially ignored. Marr’s paradigm described in Section 1.2 is a case in point. It

undermines our ability to infer 3D structures and recognize them in the absence of

explicit and conclusive 3D cues.

The human visual system assumes that its viewpoint precludes any accidental

alignment of non-causal object features. This assumption is called general viewpoint

assumption. Several researchers [199, 109, 13, 18] have emphasized that perceptual

organization imposes Significant 3D constraints in building the 2.5D Sketch as a result

of general viewpoint assumption; the presence of Significant structures in the full

primal sketch can be related to the presence of relevant causal 3D structures, making

our perception and recognition of objects from line drawings and from Single 2D

images effortless. Nakayama and Shimojo [138] have demonstrated several situations

where interpretation of images even in the presence of conflicting explicit 3D cues
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is influenced by the general viewpoint assumption. Although the general viewpoint

assumption influences 3D organization of image features in the early human visual

processing (and without domain-specific information), most of these inferences are

respected in the final image interpretation [199]. The Significance of our ability to infer

3D structure directly from a 2D organization of image features has led to the inclusion

of a 3D inference module into Marr’s bottom-up paradigm [109]. One interesting

example of the top-down influence is shown in Figure 1.5, where the Dalmatian dog

is not ‘visible’ until we are told to look for it. Here, the model-driven processes

appear to help the integration of the noisy visual cues, resulting in a relatively vivid

perception of the Dalmatian dog [116]. These and several other pieces of evidence

have prompted an augmentation of ‘classical’ bottom-up model of perception. Such

cognition-based theories involve interaction of knowledge and expectations with the

perceptual process in a more top—down manner [141].

 

Figure 1.5: Dalmatian dog [116].

The top-down information integration approach is often related to the goal-
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directed processing. Goals are decomposed into subgoals till each subgoal is suffi-

ciently Simple to be solved directly. A common top-down technique is “hypothesize-

and-test” paradigm; here an internal modeling process makes predictions about the

way information from each visual module iS being combined. Perception becomes an

act of verifying such predictions or hypotheses that flow from the model [25, 69].

It is generally agreed that our (human) low-level vision system processes prodi-

gious amounts of information in several cascaded parallel layers [108, 204]. With

serial computational hardware, it is very expensive to duplicate the power of our

low-level visual system. The desire to circumvent unnecessary low-level processing to

reconstruct a huge amount of 3D data is understandable and has given rise to the

purposive vision paradigm which emphasizes goal—oriented visual processing [8].

How could we incorporate top-down processes in a vision system that reconstructs

the input scene? Traditionally, the top-down constraints have been (i) explicitly

invoked by restricting the object domain (e.g., polyhedral objects, smooth objects)

or (ii) implicitly embedded in the representational framework ( e.g., polynomials,

Fourier descriptors).

1.4 Interaction between Top-down and Bottom-up

Processes

In computer vision practice, a judicious mixture of the data-driven analysis and

model-driven prediction often seems to perform better than either process in iso-
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lation. This hybrid control iS often implemented using hierarchical representations

with a Simple pass-oriented control structure [10, 195]. The uncertainties and ambi-

guities in the sensed data make it difficult for the model-driven processes to effectively

hypothesize locations of the features. In order to obtain a salient, noise-insensitive,

and useful description over which a model-driven process can ‘hypothesize-and-test’

efficiently, a few bottom-up passes are usually deemed to be necessary for deriving a

better representation. The low-level processes also seem to offer a certain degree of

reliability in the performance of the overall system. A number of purely tOp-down

approaches had to be eventually complemented by bottom-up groupings to offer an

overall robust performance. A recent example of such an augmentation is provided

by Jacob [86, 87].

Among others, Lowe [109] felt that Marr’s principle of least commitment was too

conservative in terms of making the information explicit. For instance, it had no ex-

pressive mechanism for exploiting probabilistic information. Further, it deemphasized

the role of perceptual organization in a topdown recognition and reconstruction of

the scene. Lowe’s proposal for an object recognition system is Shown in Figure 1.6.

The human object recognition remains easy even in situations where the explicit 3D

information contained in the image is minimal. He also argued that, in many cases,

it may not be expedient/necessary to reconstruct the 3D structure of the scene for

recognition of the objects therein.

What mechanisms does the human visual system use for combining top-down and

bottom-up processes? Guided search theory [200] hypothesizes an objective func-

tion which linearly combines bottom-up and top-down influences for directing visual
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attention. The bottom-up mechanism is represented by a metric measuring the Simi-

larity between the given object and neighboring Objects (grouping) and the top-down

mechanism is represented by a metric measuring the Similarity between an ‘adaptive’

template (expectations) and the given Object. Duncan and Humphrey [53] propose

a theory which is similar in spirit except that they conjecture a non-linear two-way

interaction between the top-down and bottom-up processes. Grossberg’s adaptive

resonance theory also contains similar mechanisms in the connectionist paradigm

(Section 1.6).

In most of the computer vision literature, the interaction of top-down and bottom-

up influences is implicit and is usually posed in the form of a constrained Optimization

involving parametric [174] or non-parametric representations [94, 186]5. These meth-

ods are sensitive to the initial conditions and the parameter values. For instance,

given undesirable initial conditions, the optimization scheme used by Solina and Ba-

jcsy [174] can produce strange and unintuitive superquadric fits to a given set of 3D

points.

1.5 Horizontal Interaction

Not only do the top-down and bottom-up processes interact, but the processes oper-

ating at the same level of the representation can also laterally exchange information

to disambiguate image interpretation. One common Situation in computer vision is

 

5A notable exception to the implicit tOp-down bottom-up interaction model is the distributed

scheme developed by Bozma and Duncan [27]. However, the modeling assumptions have not been

fully exploited in these studies due to the inability of the objective function to represent all the

physical constraints.
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the interaction among the processes in a Spatial neighborhood. The importance of

this Spatial interaction becomes obvious from the fact that human observers have

difficulty in interpreting isolated subimages (small portions of a scene) which can

otherwise be effortlessly interpreted in their proper Spatial context. There is also an

evidence for lateral inhibitory influence of neurons on their Spatial neighbors [168].

Another type of horizontal interaction is the exchange of information across the

vision modules. These interactions have been studied by Bulthoff and Mallot [113]

using psychophysical experiments. They hypothesize the following four types of such

interactions:

1. Accumulation: The evidence produced by each module could be accumulated

as probabilities or confidence indices. More generally, individual support for hy-

potheses could be linearly combined. Many of the cost functions in Optimization

formulations represent this kind of interaction.

2. Cooperation: This non-linear interaction could be used for synergistic interpre-

tation of noisy data. Competition between the modules can be considered as

an opposite of cooperation. Markov Random Fields (MRF) and game-theoretic

models can be considered as examples of this interaction.

3. Disambiguation: One module can help obtain a unique solution from an un-

derconstrained problem posed by another module. Many of the algebraic ap-

proaches proposed by Aloimonos [8] can be considered as examples of this type

of interaction.

4. Veto: This interaction provides for an overriding role played by a module which
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can not be challenged by the other modules. For instance, in several conflicting

Situations, stereo cue is considered more reliable than shape from shading and

the stereo module vetoes alternative interpretations provided by the Shading

module.

Bulthoff and Mallot [34] studied the integration of stereo disparities, edge information,

and Shading in the 3D perception of synthetically generated images. Subjects were

Shown images of end-on views of flat and smoothly-Shaded ellipsoids and they were

asked to judge the perceived depth. Based on the experimental data, they concluded

that

1. The human visual system underestimates depth if the stimulus consists of Shad-

ing cues alone;

2. When both Shading and stereo cues are present, the information provided by

the stereo module dominates the final interpretation of the scene;

3. Disparate Shading6 yields a vivid stereoscopic depth (even in the absence of

disparate edges); and

4. The human visual system interpolates the depth provided by the stereo system

using the information provided by the Shading cues.

A linear combination of individual module outputs is meaningful when the individual

module outputs agree [113]. Maloney and Landy [113] have described the following

results about the interaction between the cues based on their linear combination.

 

6Shading differences in the left and right stereo images.
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1. The weight assigned to each cue depends upon the reliability of the cue. The

measure of reliability in itself might be computed from some “ancillary” (not

necessarily a depth) cue.

2. The concept of promotion states that information provided by one cue makes

up for the deficiency in another cue.

3. The consistency among the cues can be used to adaptively weight the cues. If the

majority of the cues concur on a depth value, say, then the weights associated

with the dissenting cues are automatically reduced.

Studies related to the interaction between stereo and texture cues have been con-

ducted by Johnston et al. [90] and Buckley et al. [32, 33, 31].

Johnston et al. [90] studied. the interaction among stereo and texture cues. Their

experimental results suggest that stereopsis and Shape from texture are independent

processes in their early stages. They conclude that stereo and texture cues interact

Simply by means of a weighted linear combination, irrespective of whether the per-

ceptions resulting from the individual cues were in conflict or in agreement. Further,

the information from stereopsis was weighted much more heavily than that provided

by the texture cues. This indicates that stereopsis is considered to be a more reliable

source of information for the human visual system.

Buckley et al. [32, 33] studied interactions between stereo and shape from texture.

Their results can be summarized as follows:

1. Stereo and texture cues are pooled about the 3D surfaces only if evidence (infor-

mation) provided by the individual cues is Similar. The threshold on Similarity
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depends upon the expected noise in each channel [32].

2. Buckley et al. [33] studied the perception of discontinuities in a region of an im-

age devoid of any binocular cues (monocular region). The test images consisted

of a textured monocular region between the regions displaying strong binocular

depth cues (binocular regions). The perceived location of a 3D edge in a monoc-

ular region was found to be consistent with the Obvious texture boundaries in

that region and the explicit 3D edges perceived in the neighboring binocular

regions.

More recently, Buckley et al. [31] have studied interaction among stereo, texture,

and outline cueS7. The experimental designs are based on the cue conflict paradigm:

experiments are designed such that each cue might produce conflicting evidence about

the underlying 3D surface. Their experimental data consists of synthetic stereo pairs

of either horizontally or vertically oriented ridges. Their findings suggest that:

1. If the synthetic ridge is horizontal, then stereo cues strongly dominate the final

interpretation of the input scene.

2. If the synthetic ridge is vertical, then texture/outline cues dominate.

3. Stereo cues dominated in all real ridge stimuli. This result is in agreement with

that of Johnston et al. [90].

 

7Authors refer to contours as outlines.
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1.6 Connectionist Approaches

The most general approach of interaction would be where every intrinsic variable (e. g.,

reflectance, depth, surface orientation) in some way interacts with every other intrin-

sic variable as well as with the observations (pixel values). These types of interactions

can naturally be accommodated into a connectionist framework. Connectionist ap-

proaches are known for their learning capacity, graceful degradation in performance,

and Spontaneous generalization [125]. On the other hand, these approaches have a

tendency to be prodigal in terms of the computational and communication resources.

Due to the large number of parameters involved in the connectionist approaches, a

good insight into the solution space is needed before a connectionist approach can

be used to solve a non-trivial integration problem. Many studies have utilized con—

nectionist models for integration of image features for recognition and reconstruction

tasks [72, 203, 125, 115, 119].

1 .7 Utilitarian Theory

The most iconoclastic theory explaining how human visual system integrates all pieces

of information is proposed by Ramachandran [156]. He argues that the current theo-

ries of the human visual perception are “overarching” and impose unnecessary com-

plex mechanisms. According to him, the human visual mechanism was molded into

its present form by the evolutionary processes which had to exploit the available

neural hardware to effect an opportunistic perception. He cites several examples to

support his case. For instance, the human visual system has an “in-built” assumption
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of an overhead source of illumination. This can be directly attributed to the upright

posture of the human beings and Single illumination source in nature (sun). He has

devised a series of elegant and novel experiments to prove his case. But, how could

one believe that the entire reconstruction problem can be solved by a collection of

ad hoc heuristics? He counters that, in most cases, the information required by a

visual task iS qualitative in nature and could easily be extracted with the help of a

few heuristics. Some of these arguments can be traced back to Gibson’s theory of

affordances [64]. The utilitarian theory is Similar in Spirit to the purposive vision

paradigm [5] which has resulted in a few practical navigation and tracking systems

[19] but not in any recognition systems [180].

1.8 Interactions between Constraints and Data

A popular computational framework for studying various integration frameworks has

been adopted from Clark and Yuille [42]. They argue that all the integration methods

can be best understood in terms of the types of constraints they employ and the

methods of embedding constraints to achieve stable and unique solutions.

Clark and Yuille define the following three types of constraints:

1. Physical constraints: The constraints that can not be violated by our physical

3D world. These constraints often include the image formation models and

other laws of physics.

2. Natural constraints: The constraints that hold good in most of the situations

but fail occasionally. General viewpoint constraint or smoothness constraint are
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examples of this type of constraint.

3. Synthetic constraints: These are the constraints imposed by the designer of a

vision system by restricting the domain of the application of the vision system.

One classification scheme of integration methods is based on how the individual mod-

ules interact with the data. Accordingly, Clark and Yuille classify an integration

system as either weakly coupled or strongly coupled.

In weakly coupled systems, each module independently processes the sensed data.

In strongly coupled systems, the operation of a module may be affected by the oper-

ation of another module.

The weakly coupled systems are further classified into the following three subcat-

egories:

1. Class 1: Each module can produce a unique and stable solution. These in-

dividual outcomes are combined to reduce the uncertainties in the final result

(Figure 1.7). The weight assigned to the information provided by each module

is dependent on the reliability of that module. Accumulation can be considered

as a Class I type of interaction [90, 42].

2. Class II: In order to obtain a unique solution from the outputs of the individual

modules, it is necessary to apply a set of a priori constraints (Figure 1.8). These

methods rely on the algebraic solutions of the analytically modeled problems.

When the given Situation can not be modeled exactly, this method can not

be applied. These methods are sensitive to the modeling assumption and the
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Figure 1.8: Class II: weakly coupled system.

3. Class III: This method can be considered as a combination of the Class I and

Class II methods. An overdetermined system is achieved by a set of modules

and constraints (Figure 1.9).

The strongly coupled systems are further classified into feedforward and recurrent

systems (Figures 1.10 and 1.11). In recurrent systems, feedback paths are allowed.

In feedforward systems, the feedback paths are not allowed. The way in which a

module can affect another module is either by controlling its a priori constraints or
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Figure 1.9: Class III: weakly coupled system.

by directly modifying their inputs. These models of interaction are the most general.

Cooperation [34] and competition can be thought of as examples of strongly coupled

systems.

1.9 Difficulties in Integration

It is generally agreed that vision researchers have not devoted sufficient efforts in

designing and building complete vision systems [8] Consequently, there is a dearth

of expertise in the context of building complete vision systems.

The sources Of complexity for the integration problem can be broadly classified

into three categories: (i) the inherent difficulty in designing a complete vision system,

(ii) theoretical issues related to integration, and (iii) the implementational problems.

First, we list the difficulties arising due to the characteristics of the domain [164, 51]:

o Sheer quantity of data: The volume of input data to a computer vision system

is overwhelming. An image with a reasonable. resolution (512 x 512) and frame

rate (20 per sec.) would involve about 20 Mb data per second. A simple
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Figure 1.10: A feedforward system.



31

 

 

 

  

   
 

   

Sense Data

Outputl

Module 1 J >

T It

a priori

constraints

‘3 V

Output2

Module 2 J >

 

Figure 1.11: A recurrent system.

convolution Operator over this data would require almost half a billion arithmetic

instructions per second. Even massively parallel architectures will need to be

very selective in their choice of processing strategies.

0 Uncertainty in data: As mentioned earlier, visual data are often locally ambigu-

ous. In addition, image noise further deteriorates the information content.

0 Lack of introspection: Although every human being is an ‘expert’ in performing

visual tasks, we do not know how we acquire such a capability. What constraints

actually work? Why do the constraints that actually work are so unintuitive?

The only process of introspection of our visual processing is through data on

visual illusions and on psychophysical experiments.

We now discuss inherent theoretical and implementational difficulties in integration.
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0 One of the most difficult problems in integration is specification of the con-

straints and the role played by each of the constraints. The last few decades

have identified several cues that are useful in 3D reconstruction. However, the

exact role played by each of these cues in the context of a vision system recov-

ering the 3D structure of an input scene and its relative Significance is still an

active research issue.

0 Incorporation of these constraints into an integrated system appears to be the

most difficult problem. Quite often, the constraints exerted by the cues are

not obviously commensurable. For instance, the geometric constraints imposed

by line labelling algorithm are qualitatively different from the information Of-

fered by stereo or perceptual organization module. Is it possible to establish a

common framework/representation for interaction? The most general represen-

tation would be the multivariate joint probability distributions involving the 3D

properties of the world and the response (features) of each module. How can we

Obtain this distribution? Even if such a distribution could be estimated, we feel

that it would be too general to constrain the solution to the 3D geometry of the

world. IS there a better choice? Marr proposed that we could use 2.5D Sketch

as a common interaction ground for all the vision modules. This appears to be

a reasonable solution for all the modules providing depth information. What

about the cues which are not directly involved in estimating depth? Even when

we accept the depth map as an interaction ground for all the modules, it is not

clear as to what representations and what levels of representations will be most
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suitable. One could argue that coarse qualitative features would form a more

stable basis for interaction among the modules. But, what is a desirable choice

of qualitative features? How can these qualitative representations be made to

work in a domain where constraints of many vision modules are expressed in

quantitative terms?

0 A Simultaneous recovery of a large number of intrinsic variables (e.g., reflectance

and surface orientation at each pixel) is often intractable. If a limited auton-

omy is to be granted to each visual module, then such recovery of intrinsic

variables and reconstruction inherently needs Simplifying initial conditions to

be incorporated into each module. Sometimes, these assumptions are necessary

because 3D structure of the scene is not known a priori. For instance, if we de-

sire to include a mutual illumination model into a Shape from Shading module,

it needs an a priori knowledge of the geometry of the scene to be recovered!

How do these assumptions affect the performance of the other modules? What

approaches permit a gradual refinement of the initial assumptions made by each

module to obtain the optimal reconstruction?

0 Traditionally, researchers have used a linear combination of the individual ob—

jective functions to derive a global object function on the basis of simplicity

arguments. Often, these cost functions do not represent the dynamics of the

interaction among the constraints. The resultant systems often require a ‘good’

set of parameter values to deliver a reasonable performance.

0 Another difficulty in the integration problem is due to the diverse sets of as-
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sumptions made by the individual modules. Often the domains of applicability

of the individual modules do not overlap or overlap only slightly.

0 When Should a module actually be employed? AS Simple as this sounds, often

this issue can not be dealt with in a theoretical fashion. For instance, take the

case of a Shape-from-texture module. What is texture? Is texture isotropic?

Are the surfaces of objects in the scene piecewise continuous? These and other

questions need to be answered before we know when and where to ‘apply’ the

module.

0 Often, algorithms involved in each module are chosen off-the—Shelf for the visual

integration. The designer needs to take into account the artifacts and idiosyn-

crasies of the individual modules over and above the theoretical difficulties.

1.10 Design Issues

Design issues involved in developing a machine vision system are not very different

from those involved in developing any other complex system. Any non-trivial system

design will involve conflicting requirements and good judgment will be needed in

making the correct trade—offs. We discuss here some of the important issues.

0 Correctness and Reliability: The purpose of integration is to increase the relia-

bility of the final output. Hence, in a formal sense, the system should correctly

use all the available information. Unreasonable assumptions about the data and

the constraints often introduce artifacts in the final solution [20]. The overall
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solution Should continuously depend on the data [187].

Completeness and Generality: The integrated system Should include a reason-

able set of modules and constraints to provide an accurate depth information

in commonly occurring Situations where the individual modules fail. Yet, the

proposed framework Should be able to accommodate any additional information

and cues.

Optimality and Tractability: Systems employing a minimal number of con-

straints tend to be brittle; overdetermined systems deliver stable perfor-

mance [42]. Although, computationally effective models would be attractive,

the issues of optimality and tractability are currently of secondary interest.

Modularity and Extensibility: System design, development, and maintenance are

considerably streamlined if the system has a modular structure. It is also easy

to extend such a system. However, modularity may often result in suboptimal

solutions.

Defaults, Partial Information, and Ambiguity: Perhaps, this is one of the most

important issues related to integration. The individual modules need reasonable

mechanisms to represent their intermediate inferences which can be used by

other modules. In the absence of any external information, the modules need

to be aware of the context-dependent defaults.
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1.11 Problem Statement

We are trying to solve the following problem:

Given a pair of stereo images of a scene containing objects illuminated with a

finite number of point sources with known positions and possibly with ambient light,

our goals are (i) to recover a complete and accurate 3D structure (depth and surface

normals) of the input scene, and (ii) to evaluate the efficacy of the proposed integrated

reconstruction results.

A generic block diagram of modular integration is shown in Fig. 1.12. Given a

stereo pair of intensity images, the integrated system recovers the 3D structure in

the scene with the help of a given set of vision modules. Sample input images of a

synthetic scene along with the desired outputs from the integration system are shown

in Fig. 1.13.

 V fl
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Figure 1.12: A generic integration scheme.

The choice of which modules to incorporate into our system was not easy, given the

long (and extending) list of vision modules which have been used in the vision litera-

ture (Table 1.3). Stereo, Shading, texture, grouping, and line labeling information are

among the most extensively researched cues and form a representative sample from

the entire gamut of information that could be extracted from the intensity image(s).
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(C) (d)

Figure 1.13: System input/output: (a) and (b) synthetic left and right input intensity

images; (c) ground truth depth (pixels closer to us are brighter), (d) a wireframe

representation of the depths.
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Table 1.3: A list of vision modules.

 

Shading [80] Texture [61] Stereo [68]

Contour [78] Symmetry [186] Grouping [199]

Photometric stereo [202] Focus [55] Line labeling [139]

Color [40] Motion [197] Specularity [74]

Occlusion [97] Vergence [1] Perspective [131]

Darkness and Shadows [95]    

Further, principles of 3D reconstruction from several other cues closely resemble those

of the modules constituting the integrated system. For instance, solutions to struc-

ture from motion and stereo problems are based on establishing correspondence and

shape from structured light, shape from contour, and shape from texture modules

attempt at inverting the projective imaging geometry. Consequently, the integration

of the other modules into the existing systems should be fairly Similar. The proposed

unified Bayesian framework (Chapter 5) facilitates inclusion of a new module into the

integrated system with a relative ease. It should be noted that the proposed systems

do not impose any restrictions on extending them to include new modules.

1.12 Contributions of This Thesis

The following is a list of the contributions of our work.

1. We propose and implement a unified Bayesian framework for integrating vision

modules.

2. We have built two working integrated vision systems: one integrates perceptual

organization, stereo, shape from shading, line labeling and the other integrates

perceptual organization, stereo, Shape from shading, and Shape from texture.
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3. Design of a perceptual organization module which integrates region- and edge-

based segmentations using Gestalt and intensity gradient cues.

4. A limb detection module for reliably detecting occluding limb boundaries.

5. An improved implementation of the line labeling module which exploits strong

constraints exerted by limb boundaries.

1.13 Organization Of the Thesis

Rest of this thesis is organized as follows. The details of computational mechanisms

needed for the interactions described in this chapter are the topics of Chapter 2.

The individual vision modules and their limitations are studied in Chapter 3. A

non-uniform integration scheme is proposed and evaluated in Chapter 4. Chapter 5

provides a Bayesian integration framework for integrating vision modules. The con-

cluding chapter describes the contributions of this thesis and directions for future

research.



Chapter 2

Integration Methods

Computer vision researchers have studied several models of information integration.

In this chapter, we will first describe different models of integration methods. This

will be followed by a summary of the efforts on information fusion and integration

available in the vision literature. Each section will briefly describe an integration

model, followed by the relevant vision applications. We will conclude with a compar-

ison of the strengths and shortcomings of various approaches.

2.1 Complexity Of Integration

Complexity of integrating information can vary Significantly. In this section we make

a distinction between different types of integration based on their complexity and in-

troduce a terminology for different information integration strategies in the literature.

0 Type A: Registration. In this type of information integration, 3 common

frame of reference is established between two (or more) representations to make

40
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the Spatidtemporal relationships between the components Of each represen-

tation explicit with virtually no interpretation of the information (Fig. 2.1).

Example: Ton and Jain [188].

0 Type B: Fusion. The registered representations can locally be combined

to obtain a more reliable information. Fusion usually takes into account a

limited number of constraints like spatial dependency and continuity (Fig. 2.2).

Example: Nadabar and Jain [133].

0 Type C: Collation. Given a set of explicit constraints, two (or more) rep-

resentations are related and combined to obtain a more complete and reliable

information about the data (Fig. 2.3). Note that a collation problem might

involve global constraints. Example: Chang and Aggarwal [38].

0 Type D: Integration (of cues). In this scenario, the constraints are not

explicit and often, the interactions among the constraints are not clearly un—

derstood. Further, the integration problem might often be underdetermined.

(Fig. 2.4). Example: Moerdler and Boult [128].

The work described in this thesis primarily deals with the integration of cues.

2.2 Bayesian and Non-Bayesian Fusion

Consider a multisensor system with M sensors at each of the N locations producing

a set of M x N observations, {X,-,-}. Let {Yij} denote the true (unknown) world
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Figure 2.1: Registration: (a) and (b) are two images of a given scene; (c) Shows an

image which makes the Spatial relationship between (a) and (b) explicit. The dotted

lines demarcate positions of (a) and (b) with respect to each other.

 
Figure 2.2: Fusion: (a) stereo, (b) sonar, and (c) fused data. The density of the dots

represent the likelihood of occupancy of that Space by a physical object [129].
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Figure 2.3: Collation.
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Figure 2.4: Integration of line diagram and Shading data to obtain a correct 3D

interpretation.

variablesl denoting the state of nature at each of these locations. Given a set of

possible labels of objects at these locations, the system attempts to determine which

assignment of labels to the variables {16,-} best describes the observations.

Bayes’ formula states that the optimal prediction about the state of nature can

be made according to

{Xijllyij = y)P(YiJ’ = ye)

Pllxull 3

 

1304:“ = yz‘jliXijll = P(

where

o P(Y,-j = y,,-|{X,-j}) is the posterior probability of an object with label y,j, given

the set of observations, {Xij}.

o p({X,-,-}|Y,-J- = y,,) is the likelihood of a set of observations {X,j}, given 1”,,- = y,,-.

o P(Y,-j = y,,-) is the prior probability of the label Yij = y,,-.

 

1Also referred to as real world variables [8].
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o P({X,-j}) is the normalizing factor.

Each sensor i will be able to supply its opinion of the observations representing a

true label. Evaluation of p(Y,~j = y,,-[{X,~,~}) by the system involves integration of

the information received from all the sensors. Often, a simplifying assumption of

the statistical independence of the likelihood function of each sensor is required in a

Bayesian framework to yield tractable schemes of integration? Such an integration

results in an increased certainty of information [42].

Bayesian methods have been used by several researchers for information integration.

Bayes’ rule is the basis for determining ‘occupancy’ of the Space in mobile robot work

of Moravec [130] and of Mathies and Elfes [122]. They both fuse data originating from

different sensors to reliably avoid obstacles in the robot’s path. Chou and Brown [39]

have used Bayesian methods for labelling image regions. Chu and Aggarwal [41] have

used the maximum likelihood estimate for obtaining an edgesbased segmentation from

multiple sources of information. Bolle and Cooper [23, 24] have used Bayesian meth-

ods for integration of evidence offered by different parts of an object for recognition

tasks. Rao and Whyte [159] used a decentralized hierarchical algorithm for integrated

decision making in multisensor systems. Rigoutsos and Hummel [161] have used a dis-

tributed Bayesian formulation for objection recognition. One of the major difficulties

in implementing a Bayesian integration is in Specifying the a priori probabilities.

Several researchers have explored the possibility of making robust decisions instead

of taking the Bayesian approach [99]. Robust statistics Show a graceful degradation in

 

2More involved treatment of dependencies is deferred until Sections 2.4 and 2.5.
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performance in the presence of noisy observations. For instance, the median of a data

set is a more robust statistic than its arithmetic mean. Use of robust statistics usually

results in more practical systems at the expense of tractability of rigorous analyses.

Explicit voting schemes have also been used in the literature to reliably integrate

different sources of evidence. A statistical multi-source classifier iS a general method

for classifying multispectral data [167]. A linear opinion pool classifier uses consensus-

based classification [16] and is Shown to perform better than the maximum likelihood

classifier for certain simple data sets. Quite often, in the absence of quantitative

data, subjective methods of fusion are pursued. Two such approaches which Simplify

the integration of evidence are: Dempster-Shafer theory [169] and Possibility theory

[52]. They both are characterized by very simple rules of combination of evidence.

The price one often pays for such simplicity is the erroneous results due to implicit

independence assumptions underlying such subjective integration models. In order

to overcome these limitations, researchers have attempted to use more sophisticated

models [83]. However, it turns out that these models are not fool-proof, either [8].

2.3 Relaxation

A relaxation algorithm is an iterative method of constrained optimization. Given a set

of labels, a set of objects3, neighborhood relations among the objects, and constraints

among the labels of the neighboring objects, a relaxation algorithm finds the most

consistent configuration of the object labels. The idea is to initially assign all possible

 

3We have used the terms objects, sites, and pixels interchangeably in next few sections.
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labels to all the objects and then remove a label from the label set of an object if it

is found to be incompatible with any of the labels of the neighboring objects. This

removal may, in turn, make some labels of some other objects inconsistent. The

process continues until either (a) the label set of an object is empty indicating that

no solution iS possible; or (b) no label of any object can be removed indicating the

desired configuration(s). In the latter case, we may need to impose more constraints

to avoid ambiguity.

This concept can be extended to probabilistic relaxation. Here, instead of a def-

inite association of certain labels with an object, the likelihoods of an object being

associated with each label are computed. Note that the term probabilistic is merely

a misnomer; the derivations for the expressions used for ranking the likelihoods are

justified on the basis of subjective arguments. However, these (pseudo) probabilistic

approaches have been found to be useful in building practical vision systems.

Let Pt(y) E [0, 1] be the ‘probability’ or weight associated with site t (a pixel (i, j ))

and label y. Constraints are provided in terms of compatibility functions, rt,(y, y’),

quantifying the compatibility between label y at Site t and label y’ at Site 3. The

weights are updated in parallel according to the following iterative equation [107]:

 

n+1 _ Pt(y)‘"’[1 + APl(y)("’l

my” ) — 2,, Pl(y)‘"’[1 + APl(y)‘"’l’

where

APl(i/)("’ = Z dial; rots, y')Ps(y')‘"’l, (2-3)
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n is the number of iterations, and dt, are the weights Specifying the relative contri-

butions from the neighbors of y. The algorithm terminates when weights for some

label of most of the sites is close to 1. Given the values of visual cues at each pixel

(say), a set of labels to be associated with each pixel, and the constraints among the

labels of neighboring pixels, a relaxation algorithm is an iterative method of finding

the most consistent set of (label, pixel) association. However, as the integration prob-

lem becomes more complex (more number of measurements, intrinsic variables) and

the visual cues interact in a more complex way, it becomes harder to interpret the

parameters (rts, for instance) of the relaxation process. Secondly, the true measure-

ments are ignored after they have been used for constructing the initial estimates of

the labels. Due to these two reasons, relaxation methods are considered to be weaker

formulations for integration of evidence than the classical probabilistic models [132].

There is an extensive body of research on relaxation methods and their applica-

tions to vision problems [82, 165, 184, 67, 49, 96]. Marr and Poggio [119] were among

the first to suggest the utility of relaxation techniques for cooperative computing in

low-level vision modules. We will briefly mention a few studies that formulate visual

integration in terms of relaxation.

Barrow and Tenenbaum [12] used relaxation for computing intrinsic properties like

reflectance, surface orientation, and illumination of a given image. Given two images

of a scene taken at different times and from different positions, a relaxation approach

was used to match the images in [119, 11]. A multigrid technique in relaxation was

introduced by Terzopoulos [185] to accelerate prOpagation of constraints in relaxation

applications involving large high resolution images. Its efficacy was demonstrated in
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various applications, including a) finding lightness (reflectance) of Mondrian surfaces;

b) estimating surface orientation from Shading cues; and c) computing optical flow

from an image sequence.

2.4 Markov Random Fields

The Bayesian approach discussed in Section 2.2 gives us a method to find an ‘op-

timum’ estimate of the state of nature without exploiting any dependencies (e.g.,

Spatial dependency) among the neighboring pixels. In order to take advantage of the

Spatial constraints among the pixels (objects) in the neighborhood, we need a formu-

lation which can couple probabilistic decision making with Spatial constraints. The

use of Spatial constraints is often necessary to make the image interpretation problem

well-posed [121].
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Figure 2.5: Example neighborhoods of pixel and line (edge) sites for (a) a pixel Site;

(b) a horizontal edge site; and (c) a vertical edge Site (from [134]).
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One method to realize this is to consider a multivariate probability distribution

involving real world variables (intrinsic variables) at each pixel and observations of

visual cues at each pixel. Given measurements about the observable visual cues,

the prior constraints among the observed visual cues and the true label, one could

formulate a Bayesian solution according to:

P(ylx) = —f“f:((:')’”,

where

x = { x,,-; x,,- is the observation made by the j‘” visual cue at the ith site},

and

y = {yi; y,- is the state of nature at the ith site}.

Note that y,- is a vector representing the intrinsic variables at site Q,. This large sys-

tem of variables makes the problem not only intractable but often underconstrained.

We can, however, impose a reasonable assumption that only pixels within a local

neighborhood can interact directly (locality assumption). This simplification is the

essence of the Markov Random Fields (MRF) formulation. Let N(Q,) denote the

5
neighborhood of a Site Qi”. Let Y“, represent one of the intrinsic variables at Site 62,.

 

“For the sake of brevity, a linear ordering of the two-dimensional sites is assumed.

5Also referred to as real-world variables.
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The Markovian property states that6

P(Y.-k|Z\Y.-.) = P(Yik|ZN‘),

where Z = {Yij} U {Xij};

ZNi = Y1"i UXNi;

YN‘ = {YnlIQn E N(Qi)};

and

XN*={X,,1|Q,, E N(Qi)};

The constraints between ‘neighbors’ are defined by assigning energies to all realiz-

able configurations; lower energies indicate more likely configurations. These energies

contribute to the ‘internal’ energies (clique energies) at each Site. The external energy

at each Site depends upon P(Y,-,~|Z~"). The energy of the entire system will be the

sum of the internal and external energies of all the sites. Given X, definition of a

neighborhood N(.), and likelihoods of different configurations of neighbors (in terms

of clique energies), the problem of most consistent interpretation of the observations

is equated with the problem of finding a realization of Y which will result in a mini-

mum energy of the system. Notice that MRF formulations not only permit modeling

the constraints among the observed visual cues, X,,-, but they can also handle the

constraints among Y,J-S and the constraints between st and Xijs.

Although MRF formulations can elegantly model many real-world constraints like

transparency and continuity [111], there are certain difficulties in employing them for

 

6See appendix for notation.
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practical applications. First of all, MRF models are computationally expensive. Many

alternative formulations are being devised to alleviate this problem [17, 121, 120]. A

second problem plaguing implementation of an MRF formulation is the difficulty in

estimating the prior probabilities which represent the contextual information in the

given application. A few techniques have been devised to partially alleviate this

problem [134].

MRF models used for integration of different information sources require that all

the information from individual sources be available Simultaneously. Marroquin [120]

modified the MRF methods to ease these restrictions by decomposing the overall

processing into several stages. Each stage can be designed to handle partial data

(estimates). Marroquin claims that these new models, random measure fields, are

computationally less expensive than other regularization methods (see Section 2.7).

He also argues that these models are more appropriate for visual reconstruction prob-

lems due to their ability to handle phenomenon like transparency, occlusion, etc.

The pioneering research in MRF has been the work of Geman and Geman [63] who

formulated the problem of segmentation of intensity images using a tightly coupled

system of ‘line’ and ‘pixel’ processes. The line processes prevent smoothing across

a potential discontinuity. The maximum a posteriori (MAP) solution is achieved by

the Simulated annealing process.

Gamble et al. [60] have used MRF models to integrate the outputs of four vision

modules: color, edge detection, motion, and stereo. The integration is based on

the assumption that Shape and color discontinuities are usually (Spatially) related

to the brightness (intensity) discontinuities. And that motion boundaries coincide
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with the depth discontinuities. By selecting the coupling parameters empirically,

they have obtained a reasonable improvement in the localization of boundaries over

those estimated by the edge detection module alone. Modestino and Zhang [127]

have used MRF models for consistent labeling of presegmented regions. Daily [48]

has used MRF models to integrate information in color channels with the process of

segmentation. Nadabar and Jain [133] used the MRF models for fusing range and

intensity images.

2.5 Bayesian Networks

A more general modeling of the Spatial and other constraints can be carried out

by means of Bayesian networks. Bayesian networks, which are also called belief

networks, or causal networks, are directed acyclic graphs with nodes representing

propositions (or random variables) and arcs signifying direct dependencies quantified

by the conditional probabilities. An example of the Bayesian network is shown in

Figure 2.6. If the events Xl-Xg were independent, their joint density would have

been simply a product of the individual probabilities. The events in Figure 2.6 are

not independent (perhaps, due to common underlying cause). For instance, the nodes

X8 and X9 are related 7. This dependency is represented by node X7 and the joint

density of events X7, X8, and X9 is given by

P(X7,X8,X9) = P(X7)P(X8[X7)P(X9[X7).

 

7They represent two parallel boundaries, for instance.



 
HXI ..... X9) 3 HX‘XXD HXRIX'I) HX‘IIXJ) [’(XIIXIXJ) WXHXSWIXS‘XIWIXMX l )PIXZIXI )HXI)

Figure 2.6: An example of a Bayesian network.

The Bayesian network formalism becomes intractable for any non-trivial applica-

tion. Cooper has Shown that the problem of constraint propagation in such networks

is NP—hard [44]. Usually, there is a need to use additional domain-dependent heuris-

tics to make these networks feasible for any practical application.

Such a domain-dependent extension of the Bayesian network called perceptual

inference network was used by Sarkar and Boyer [166] to represent the statistical

dependencies among various features (e. g., curvilinearity, and symmetry) in images of

man-made environments. They used this network to integrate the information about

various Spatial features to form composite hypotheses and a prediction of structures

(e. g., rectangles and ellipses).

2.6 Information-theoretic Methods

Gestalt laws of good form (Prc'ignanz) have been proposed as the key to understand-

ing perceptual organization. This eventually led to the ‘minimum’ principle which

states that “other things being equal, that perceptual response to a stimulus will be
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obtained which requires the least amount of information to Specify” [75]. The mini-

mum description length (MDL) approach developed by Risannen [162] states that we

Should interpret the data in terms of minimal description with respect to a prespec-

ified model of the domain (language). Given a reasonable description language, the

Simplicity criteria provides an accurate and computable determination of perceptions

which are most likely. The Bayesian method of combining information is related to

the MDL method with a priori probabilities P(Y) corresponding to the length in the

description and the P(X IY) term related to the error of description [42].

In the MDL approach, the integration problem can be stated as follows: Given

a reasonable description language for the object domain, a bound on the acceptable

error in describing the observations, and a set of observations X,,-, i = 1,. . .,N,

j = 1, . . . , M, from N vision modules at M Sites, determine the shortest description

(most likely) of the observations within the prescribed error bound.

Leclerc [101] applied MDL approach for obtaining a reasonable segmentation of

monocular intensity images using piecewise constant and piecewise continuous models

for description of surfaces and boundaries, respectively.

MDL is an intuitive approach, but it has several implementational problems. First,

' what is the best language for a description of the domain? Researchers have used

piecewise polynomial models (descriptions) in their MDL formulations without any

objective justification. Since the power of MDL approach is derived from how well the

language captures the object descriptions in the domain [8], it is necessary to match

the constructs of the language with the peculiarities of the domain. But, how to

design such a language in an objective manner is an open research issue. The second
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issue regards the choice of the metric for the information content. The conventional

approach has been to use the number of bits required to represent a description as a

measure of the information content. While this is a good approximation of the infor-

mation content, it is not obvious as to why all the descriptors of a language Should

be weighted equally. For instance, if we choose Fourier descriptors as our choice of

the language, then not all descriptors are equally important. Given the domain of

polyhedral objects, lower frequencies are more reliable sources of information than the

higher frequencies. Some non-zero components may be more common (and, there-

fore, less meaningful) than the others. A particular combination of parameters may

be more meaningful than the sum of the information content of the individual param-

eters. It is also not known how to relate the information content in one vision module

with that of the others. Optimization formulations using the MDL approach require

relating the cost of inaccuracy due to a description and the information content of

the description into a single objective measure. Since the error in description and

the information content are two conceptually different entities, it is often not possible

to objectively relate the error in the approximation with the information measure

of the description. Finally, the solution surface of the MDL formulations has been

found to exhibit several local minima. Obtaining the correct solution usually requires

computationally demanding techniques [101].
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2.7 Mechanistic Models

Despite severe degradations and distortions undergone by sensed data, we are still

able to perceive the world in a stable manner. For this reason, we restrict our solution

space only to the stable solutions [20]: the solutions which continuously depend on

the input data.

Most early vision problems are inherently ill-posed. Often, we introduce ‘synthetic’

constraints to obtain a unique and stable solution from an ill—posed problem. This

method of converting an ill-posed problem to a well-posed problem by restricting the

space of acceptable solutions is called regularization.

Regularization usually involves enforcing synthetic constraints like smoothness of

the solution (first- and second- order differentiability). One approach to formulating

regularization is based on physical modeling. Physical objects resist bending, stretch-

ing, twisting, and breaking under the influence of external force(s). Their tendency to

maintain a characteristic smooth profile is used as the synthetic constraint in energy

minimization approaches involving mechanistic modeling. In this formulation, the in-

terpretation of the sensed observations is related to the behavior of a physical ‘object’

under the influence of a set of external forces and the sensed data are related to the

set of external forces. The object is usually in the form of a thin membrane, a plate,

or a rod. The stiffness, stretchability, and shear strength of the object are used to

model the relative desirability of the fit of the object to the external forces (data) and

the smoothness of its configuration. Each configuration of the object defines certain

energy depending upon the physical parameters of the object and its conformation
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to the external forces. It is hypothesized that the most likely solution will emerge as

the minimum energy configuration of the equivalent physical system.

Regularization alone can not guarantee physically meaningful solutions. If all

the ‘natural’ constraints are not well represented in the formulation, the ‘Synthetic’

constraints may produce strange results. For instance, in the regularization formu-

lation of shape from shading problem [30], the integrability constraint is not taken

into consideration. As a result, the algorithm often produces abstract (as opposed to

physical) surfaces. Subsequent enforcement of the integrability constraint corrected

this problem [59]. Many approaches, therefore, couple the regularization techniques

with the Specific geometrical and physical constraints pertaining to 3D world.

The integration problem can be formulated in the mechanistic setting in the fol-

lowing manner: Given the order of interaction among the objects, a set of parameters

governing the relative strengths (energies) of interaction among the neighboring ob-

jects, and the sensed data from different modules, the problem of integration is to

find the minimum energy (most likely) configuration as an interpretation of the sensed

stimuli. Note that the power of the model lies in correctly choosing the parameters

governing the interactions. These parameters assume the most likely “surfaces” in

the given domain.

An example will clarify these concepts. Consider fitting an energy minimizing

curve to the parameterized set of data points x(3) = (x(s), y(s)). The energy of the

fit u(s), E, consists of two components.

E = Eext + Eint°
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The external energy, Em, is defined as:

Eext : [AIIIX(S) _ 11(3)“2

and the internal energy is defined as:

Ea: / A21 ((1-1<s+>> as()l(s)l+/\3[u”(s)2(1-k(s))+fi(s)k(s)lds,

where l(s) and k(s) are functions denoting the first-order and second-order derivative

discontinuities, and u(s) and 5(3) are the penalties associated with these disconti-

nuities. The parameters A1, A2, and /\3 control the stretchability and stiffness of

the curve. The external energy term enforces closeness to the data and the internal

energy term enforces the smoothness properties of the curve. The resulting energy

minimization could be solved using Euler’s method [190].

We now mention a few examples of mechanistic and physical modeling formulation

in computer vision literature. Depth from stereo and surface interpolation algorithms

developed by Grimson [68] and Terzopoulos [183] are examples of mechanistic formu-

lations. Blostein and Ahuja [22] integrate the extraction of texture elements (texels)

with surface Shape extraction by modeling the Size change of the texel Shape due to

the projection process. Hoff and Ahuja [76] describe integration of depth from stereo

and surface interpolation process by assuming that the surfaces in the real world are

smooth. Their approach uses this constraint to mutually guide both processes in an

integrated manner. Sugihara [177] describes the integration of boundary extraction
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with 3D Shape extraction for polyhedral Objects. He uses various methods Of shape

extraction including Shape from Shading, Shape from texture, and line labeling. The

domain is sufficiently restricted to allow him to use surface models to complete the

line drawings and subsequently use this information to construct the 3D shapes of

objects. Unfortunately, his methods can not be easily generalized to more complex

domains. Malik and Maydan [113] use their line labeling scheme to derive boundary

conditions for object surfaces to compute Shape from Shading. Their method assumes

perfect line drawing as an input to their line labeling module. Stockman et al. [176]

integrate surface Shape from range data and line labeling. Aloimonos and Shulman

[8] describe several pairwise module integrations for obtaining depth, Shape, or struc-

ture. They Show that the direction of light and Shape can be uniquely computed using

motion and Shading information. However, results are presented for synthetic images

and the authors admit to stability problems related with their approach. They also

describe a method of integrating texture and motion to derive shape if the motion

parameters are known. Further, shape and 3D motion can be computed from contour

and stereo information if the correspondences in the image pair are known.

It has been theoretically shown that under certain conditions both mechanistic

and probabilistic models are equivalent [20, 179]. However, the efficacy in modeling

the physical surfaces and the well-behaved resultant descriptions are the strengths of

mechanistic modeling. Figure 2.7 is a case in point. Usually, first-order and second-

order MRF models produce less intuitive results than the corresponding mechanistic

models. However, mechanistic modeling has several Shortcomings also. It is diffi-

cult to model phenomenon like transparency and statistical dependence using these
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Figure 2.7: First-order and second-order MRF models produce unintuitive results

(from [20]).

models. The strong assumptions underlying the mechanistic modeling produce per-

ceptible artifacts in the resultant interpretation of the data. How will the models

behave when the assumptions do not hold? Since statistical models can inherently

model random variations, they are more robust than their mechanistic counterparts.

2.8 Game-theoretic Methods

Bozma and Duncan [28] have used a game-theoretic method to obtain reasonable

parametric descriptions of objects in medical images. In this formulation, each player

represents a vision module who can independently pursue its own objective. The

interests of the players can potentially conflict (non-cooperative game [9]). We briefly

describe some of the terminology below before presenting the formulation.

Formally, in a game with N players, each player is associated with a decision

vector, P,, and a payoff function, F,, as shown in Figure 2.8.
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Figure 2.8: A Single player.

1. At each decision epoch t of the game, player i chooses a Specific decision vector

pf. This is referred to as the move of the player i. The initial decision vector is

assumed to be p?.

2. A payofifunction, F,(p1, . . . , p;_1, pi, pi“, . . . , pN), evaluates the performance

of player i based on the set of decisions made by all the players. Player i strives

to maximize its payoff by modifying the decision vector, p,:

Player i 313?: argmpaxF,(p1, . . .,pi, . . .,pN).

The equilibrium point, p*, of the game is defined in terms of the equilibrium

points pf of the individual players: p* = (p1,. . .,pf, . .. ,pfq).

Nash Equilibrium, p* = (p1,. . .,p‘i", . . .,p’fi), is a set of decisions such that for

player i,

pf : “1;?deva ° °ipf-lipfipf+li ' ' ' a DIN)



P“:

r».

and
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From the viewpoint of the it” player, Nash equilibrium point Pf is locally optimum.

Decision Model: Given an operating point p, player i modifies its decision vector

to maximize its payoff. A reaction map of a player is the collection of all of its optimal

responses for each operating point in (p1, . . . ,pN).

A Simple example of a 2-player game will clarify these concepts [26]. The output

of player 1 is pl 6 R, and the output of player 2 is 192 E R. The objective8 of player

1(F1ER) IS

F1(P1,P2) = (P1 —1)2 '3' (P2 — 3)2 +(P1—1)(P2 — 3).

The objective of the player 2 (F2 6 R) is

F2(p1,pz) = 075002 — 1)2 +1-5(pl — 3)2 + 075(191— 3)(p2 — 1)-

The operating points for which an objective function takes a given value can be seen

as a level curve of the inverse objective function. The level curves of F1‘1(c) and

Ff‘(c) are shown in Figure 2.10. The X—axis represents the decision, p1, of player 1

and the Y—axis represents the decision, p2, of player 2. Each closed contour represents

a set of points for which the corresponding payoff function takes a constant value.

In Figure 2.11, a superposition of these two level sets and the individual reaction

maps are shown. In Figure 2.12, we have shown a set of successive moves made by

each player to eventually reach Nash equilibrium. It has been shown that even if

 

8Note that the use of cost function instead of payoff function converts a maximization problem

into the corresponding minimization problem.



63

the decision of each player was updated in a parallel fashion, the Nash equilibrium

is reached. The success of this formulation depends on the validity of the following

three critical assumptions:

0 Each objective function is locally convex in the neighborhood of each of the

Operating points during the evolution of the solution.

0 Each objective function is C2 with respect to the local variables.

0 Each objective function is bounded from below by a finite cost.

Bozma and Duncan [28] have used non-cooperative game-theoretic methods to

integrate two vision modules. Their strategy of integration allows for distributed,

modular implementation. However, designing appropriate (locally convex) objective

cost functions for the individual modules appears to be difficult. The bottom-up

module is responsible for detecting edges; the top-down module fits parametric Shapes

to the detected edges. The two modules independently optimize their individual

objective functions. Eflicacy of their approach was demonstrated for detecting organs

in fairly complex medical images.

2.9 Lattice-theoretic Methods

Jepson and Richards [89] proposed a framework for assimilation of information pre-

sented by several modules. In many situations, use of knowledge about the world for

passively regularizing the sensory data is not justified. For instance, a cost function

is often obtained by superposing several individual functions — each favoring a certain
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Figure 2.9: A 2—player game.
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[26].
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Figure 2.11: Payoff level sets for both the players are superimposed. Also shown are
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Figure 2.12: Successive moves made by the players to reach Nash equilibrium. R1

and R2 denote the reaction maps of player 1 and player 2. Note that player 1 always

moves horizontally and player 2 always moves vertically in this graph. Also, note

that in any given move, the payoff is maximized at the corresponding intercept on

the reaction map [26].

desired property of the final solution. The solution obtained by minimizing such a

cost function does not necessarily respect the physical reality of the world. In such

Situations, it is important to take into account consistency of an interpretation within

the chosen world models. Use of vetoes, accumulation and votes for integration of

the modular information without taking into account the underlying constraints of

the modules could produce grossly erroneous results. They contend that the modules

do not resolve their conflicts at the level of their outputs, but at the level of premises

used to arrive at any conflicting individual interpretations.

Given a set of observations, a set of premises (assumptions made by each module),

and a partial order of the assumptions, they represent the partial ordering of the

premises in the form of a lattice (fault-lattice). Each vertex of the lattice represents

a unique assertion about the validity (or the rejection) of each premise.
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Their theory can be illustrated with the help of a concrete example [89]. Suppose

an observer is watching a sequence of images of a moving 3D object being screened

on a TV. The stereo module will conclude that the object is planar and the motion

module will conclude that the object is three-dimensional. The resolution of this

conflict can not be effected at the level of the outputs of the two modules.

Figure 2.13 Shows a lattice formed by two premises D and G which are defined

below.

 

Figure 2.13: A Simple fault—lattice based upon a rigid motion premise and a copla—

narity premise (From [89]).

o Coplanarity Premise (D) is the assumption made by the stereo module that

disparity represents the depth of the object. Since the television screen is flat,

stereo module believes that Objects depicted on a television screen are coplanar.

o Rigidity Premise (G) is the assumption made by the motion module that

objects in the scene are rigid.



      

PICTURE

MOTION

(C)

(b)

Figure 2.14: Three methods of enforcing a unique solution: (a) Voting; (b) Priors;

and (0) Generation of a new hypothesis.

The vertex GD represents a Situation when the premise G holds, but D does not

hold. Similarly, GD means that both D and G do not hold for a given scene. Given

the data and the two premises, there is no world structure which can be both rigid

and coplanar. Hence the interpretation of an object being both rigid and planar is

ruled out. This incompatibility of the node is depicted by cross—hatching it. At the

opposite end is the node GT. There are several possible non-coplanar and non-rigid

3D structures which can give rise to the given sensed data. Hence this node is valid.

The remaining two nodes are the individual interpretations reached by the stereo and

motion modules. Everything else being equal, we would prefer the interpretations for

which the premises are satisfied over the interpretations for which they are violated.

Hence, the nodes GD (stereo) and GD (motion) are the preferred interpretations
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over the non-rigid and non-coplanar interpretations. This is pictorially depicted by

drawing arcs from GD to GD and GDQ. Thus, two ‘maximal’ interpretations are

possible. The issue of enforcing a unique interpretation can now be dealt in the

following ways:

1. Votes: Here, the node which has defaulted the least number of premises is cho-

sen as the most preferred perception. For instance, if there was a third premise

F which was satisfied by motion module but violated by the stereo module,

then the most preferred node would be GDF (motion) (Figure 2.14(a)).

2. Priors: In the absence of any hard evidence, we know that the stereo evidence is

less infallible than the rigidity premise. In this case, GD (stereo) interpretation

would be the most preferred interpretation (Figure 2.14(b)).

3. Generation of a new premise: We could generate a new premise correspond-

ing to the Situations in which conflicting evidences can be presented.

Picture Premise (T): “given a stereo disparity consistent with COplanar sur-

face and given other evidence about non-planar objects, the image depicts a

picture of a 3D object. This would add a new node PGD, which is supported

by both stereo and motion modules. This node will, then, become the most

preferred interpretation (Figure 2.14(c)).

Jepson and Richards conclude that, under this framework, integration of vision

modules emphasizes three main issues:

 

9An arc from node A to node B indicates that the interpretation offered by node B is the preferred

interpretation.
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1. What is the general set of constraints? How can we find a basis set for all the

constraints/assumptions made by the vision modules?

2. What constitutes consistency?

3. What are the rules of processing which reason about consistency among the

chosen premises?

Implicit in their work is the assumption that the outputs of individual modules

are reliable and an accurate depiction of the real world. They assume that each

module necessarily outputs ‘correct’ opinion about the world. This is often not true,

especially in the computer implementations of vision modules.

2.10 Active Vision

Marr and Nishihara’s thesis [118] hypothesized that the “higher level” processes do

not themselves bear upon the formation of a 2.50 sketch in the human visual sys-

tem and that different low-level visual modules arrive at a “complete and accurate”

reconstruction of the entire scene, independent of the task to be performed by the

higher level processes. This hypothesis resulted in a clear dichotomy between the

study of higher level processes (recognition and navigation) and lower level processes.

A further side effect of this hypothesis has been the treatment of sensed data used for

reconstruction (a low-level task) in isolation from the observers’ actions and intentions

(higher level tasks).

The proponents of the “active vision” school believe that both the complexity
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and the brittleness of the solution to problems faced by the individual modules can

be considerably reduced by making the observer sensing the world active. An active

observer is “one who is capable of engaging in some kind of activity whose purpose is

to control the parameters of sensors” [7]. By constantly interacting with the sensed

data, the observer has more opportunities to dynamically adapt its sensing parameters

to obtain favorable, Significant, and unambiguous data. The activity of the Observer

may be used for (but not limited to) selecting the visual orientation and location of the

sensor, and number and resolution of the frames of sensed data. Some results illustrate

that the ill-posed and non-linear optimization problems can become well-posed and

linear with the active observer [6]. An active observer also has the opportunity to

refer to the context (of sensing) to further remove ambiguities.

The following example might illustrate the difference between the approaches

adopted by the conventional and active vision groups. Many vision modules begin

with the assumption of “general viewpoint”. In any non-trivial scene, this assump-

tion may be true most of the time but not all the time. Therefore, a conventional

approach has to incorporate this assumption as a weak constraint and the resulting

energy formulations (say) provide an energy profile with many local minima — each

usually corresponding to the hypothesis of likely localizations of the violation of the

‘general viewpoint’ assumption. The exploration of this energy profile to detect the

global minima is a difficult non-linear optimization problem. In the active vision

paradigm, on the other hand, verification of the validity of the general viewpoint

assumption and localization of its possible violations can be made possible by per-

turbations of the viewing positions or orientations. This strategy usually will result



72

in a considerable Simplification of the subsequent processing.

Thus, the paradigm Of active vision emphasizes dynamic integration of the visual

cues. The information that will most effectively eliminate the ambiguity in the data

will be sought and dynamically integrated. An active vision system needs a meta-

level knowledge about the set of constraints, the utility of each constraint, a selection

method, and an ability to manipulate the sensor parameters.

2.11 Knowledge-based Methods

It is commonly agreed that there is a power-generality10 trade-off in any automation

task [57, 37]. This issue concerns types of knowledge utilized in the system (including

control knowledge). Strong methods apply task-Specific inference mechanisms using

domain-Specific knowledge. They allow easy and feasible solutions for the problems

that are too difficult to be solved by less specific approaches. Weak methods are

general in nature and can be applied across many domains. The price paid for the

generality is the cost in terms of (search) time and increased computational complex-

ity.

Special—purpose vision systems using strong methods have Shown considerable

success within their limited task domains [136, 51, 84, 56]. To date, however, there

have been no general-purpose vision systems that work across a variety of vision

domains. Thus, the strong methods, being better able to define, structure, and apply

the knowledge, realize effective and practical systems. Visual knowledge includes

 

10Powerful methods are less general and vice versa.
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domain-independent knowledge about occlusion, perspective, physical support, etc.,

as well as the domain-Specific knowledge about the objects the system is expected to

encounter, their 3D structure and appearance, their expected appearance in the 2D

image, and their relationship to the other objects. Control knowledge addresses how

the information in the image can be efficiently extracted, organized, and matched

against stored models, and when the object knowledge can be used to prune the

goal-directed search tree.

Vision systems working in restricted domains can bring very Specific recognition

and control knowledge to bear on their assigned tasks. This allows them to perform

sophisticated inferencing with relatively little computational effort.

Several knowledge-based architectures have been proposed for the integration

problem, including a logical framework [160], production systems [135] and black-

board architectures [54, 189].

Several researchers have used knowledge-based methods for solving image under-

standing problems. Lakin et al. have used a blackboard architecture for data fusion in

strategic naval control problems [98]. Nagao et al. analyzed aerial photographs using

this approach [136]. Shafer et al. have used a distributed architecture for real-time

navigation [170]. For a broader overview of the blackboard applications is vision, the

reader is referred to Engelmore and Morgan [54], for instance.

Although knowledge-based approaches work effectively for high-level vision, it is

our opinion that low-level visual integration tasks are leSS intensive in knowledge

requirements. The success of the low-level integration primarily depends upon ob-

taining general consensus (and compatibility) among a fine-grained ensemble of unre-



74

liable information pivoted on a few important high-level cues. The knowledge-based

approaches also need an enumeration Of all the possible Situations and a meticulous

programming for each such anticipated Situation. The integration of huge amounts

of uncertain data (with their Spatial dependencies) with a few high-level knowledge

sources is an open issue in vision research. However, the blackboard systems have

remainedan attractive choice of integration architecture owing to the ease of system

development and flexibility of control.

2.12 Summary

Table 2.1 presents a summary of various integration frameworks. We will now compare

two of the most influential models for integration in computer vision: probabilistic and

mechanistic models. There is a continuing debate on the suitability of probabilistic

and mechanistic models for different computer vision applications. Here, we will

discuss only a few significant issues:

1. Which approach is more suitable for modeling the world constraints? There

is no definitive answer to this question. The appropriate approach to model

constraints depends upon how naturally a significant set of constraints offered

by the given object domain can be captured. For instance, transparency and

statistical dependence of the data can be captured quite well by the probabilis-

tic models. Probabilistic models also appear to be better equipped to handle

imaging noise. The constraints of smoothness and continuity can be well cap-

tured by the mechanistic models. Nadabar and Jain [133] have found an elegant
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way of combining both the approaches: they use MRF models for represent-

ing the prior constraints and mechanistic models to generate a large number of

synthetic images to estimate these constraints“.

2. How are the model-Specific representations useful for further processing? For

instance, the statistical models offer an unintuitive and diffuse final represen-

tations. The mechanical models offer more intuitive and compact final repre-

sentations which make useful information explicit for further processing, e.g.,

object recognition.

3. The statistical models are inherently better suited for handling noise and outliers

in the data. Hence they Offer stability to the final representations. Both the

models appear to be deficient in handling geometric and qualitative constraints.

4. Both the approaches entail an ad hoc selection of parameters. The parameter

values represent relative signficance assigned to each constraint. Such a prior

weighting of different information sources precludes the possibility of handling

all the possible scene configurations equally well. In some applications, it is not

possible to ‘optimally’ rank the information sources. For instance, McCafferty

[124] found that different perceptual organization cues can not be ranked based

on different Gestalt cues.

5. These models are computationally demanding, both in terms of convergence as

well as in terms of propagation of the non-local constraints. Many statistical

 

11They observe that it is easier to generate images with edge continuity and smoothness using

mechanistic models.
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models are inherently parallelizable.

The other integration models discussed in this chapter are relatively new. While

they introduce novel ways of embedding certain Specific constraints, we feel that they

are not sufficiently general to offer a central role in the integration architecture.

In summary, the existing models of integration appear to be incapable of ex-

tracting stable, compact, and intuitive representations from the large quantities of

visual data. The limited implementations and evaluations of the existing integration

frameworks appear to be lacking in their ability to capture the essence of the sensed

data. The existing frameworks are brittle. We believe that effective vision systems

need to incorporate hierarchical feedback control structures to design robust systems

integrating vision modules. This issue is further motivated in Chapters 4 and 5.



T
a
b
l
e

2
.
1
:

I
n
t
e
g
r
a
t
i
o
n
M
e
t
h
o
d
o
l
o
g
i
e
s
.

 

M
e
t
h
o
d

S
t
r
e
n
g
t
h
s

L
i
m
i
t
a
t
i
o
n
s

E
x
a
m
p
l
e
s
 

B
a
y
e
s
i
a
n

F
u
s
i
o
n

U
n
i
v
e
r
s
a
l

a
p
p
l
i
c
a
b
i
l
i
t
y

a
n
d

o
p
t
i
m
a
l
i
t
y

D
i
f
fi
c
u
l
t
y

i
n

p
r
i
o
r
s

s
p
e
c
i
f
y
i
n
g

S
a
r
k
a
r

a
n
d

B
o
y
e
r

[
1
6
6
]
 

R
e
l
a
x
a
t
i
o
n

S
i
m
p
l
i
c
i
t
y

D
a
t
a

i
s

l
e
s
s
S
i
g
n
i
fi
c
a
n
t
t
h
a
n

t
h
e
c
o
n
s
t
r
a
i
n
t
s

Z
u
c
k
e
r

[
2
0
6
]
,

T
e
r
-

z
o
p
o
u
l
o
s

[
1
8
3
]
 

M
R
F

C
a
p
t
u
r
e
s

l
o
c
a
l
i
t
y

a
n
d

c
o
n
t
i
n
u
i
t
y

L
o
c
a
l

i
n
t
e
r
a
c
t
i
o
n
s
a
n
d

s
l
o
w

c
o
n
v
e
r
g
e
n
c
e

G
a
m
b
l
e

e
t

a
l
.

[
6
0
]
,
N
a
d
a
b
a
r
a
n
d

J
a
i
n

[
1
3
3
]
 

R
e
g
u
l
a
r
i
z
a
t
i
o
n

C
a
p
t
u
r
e
s

c
o
n
t
i
n
u
i
t
y

a
n
d

s
m
o
o
t
h
n
e
s
s

W
h
e
r
e
a
n
d
w
h
e
n

t
o
s
u
s
p
e
n
d

s
m
o
o
t
h
i
n
g
?

K
a
s
s

e
t

a
l
.

[
9
4
]

 

G
a
m
e
-

t
h
e
o
r
e
t
i
c

D
i
s
t
r
i
b
u
t
e
d
a
r
c
h
i
t
e
c
t
u
r
e

L
i
m
i
t
e
d

a
p
p
l
i
c
a
b
i
l
i
t
y

B
o
z
m
a

a
n
d

D
u
n
c
a
n

[
2
8
]
 

L
a
t
t
i
c
e
-

t
h
e
o
r
e
t
i
c

I
n
t
e
l
l
i
g
e
n
t

s
e
l
e
c
t
i
o
n

o
f

a
s
s
u
m
p
t
i
o
n
s

A
s
s
u
m
e
s

a
c
c
u
r
a
t
e

m
o
d
u
l
e

b
e
h
a
v
i
o
r

J
e
p
s
o
n
a
n
d

R
i
c
h
a
r
d
s

[
8
9
]
 

C
o
n
n
e
c
t
i
o
n
i
s
t

R
o
b
u
s
t

p
e
r
f
o
r
m
a
n
c
e

a
n
d

l
e
a
r
n
i
n
g
c
a
p
a
b
i
l
i
t
y

S
l
o
w
c
o
n
v
e
r
g
e
n
c
e

G
r
o
s
s
b
e
r
g

[
7
2
]

 

I
n
f
o
r
m
a
t
i
o
n
-

t
h
e
o
r
e
t
i
c

R
e
q
u
i
r
e
s

f
e
w
e
r

n
u
m
b
e
r

o
f

f
r
e
e
p
a
r
a
m
e
t
e
r
s

D
i
f
fi
c
u
l
t
y

i
n
s
e
l
e
c
t
i
o
n

o
f
d
e
-

s
c
r
i
p
t
i
v
e
l
a
n
g
u
a
g
e

L
e
c
l
e
r
c

[
1
0
1
]

 

T
s
t
i
m
a
t
i
o
n
—

t
h
e
o
r
e
t
i
c

O
p
t
i
m
a
l
i
t
y

C
o
m
p
u
t
a
t
i
o
n
a
l
c
o
m
p
l
e
x
i
t
y

S
i
n
g
h
a
n
d
A
l
l
e
n

[
1
7
3
]

 

A
c
t
i
v
e
V
i
s
i
o
n

D
y
n
a
m
i
c

a
n
d

d
i
r
e
c
t
e
d

i
n
t
e
g
r
a
t
i
o
n

A
d
d
i
t
i
o
n
a
l

c
o
m
p
l
e
x
i
t
y

i
n

c
o
n
t
r
o
l

A
l
o
i
m
o
n
o
s

[
7
]

 

K
n
o
w
l
e
d
g
e
-

b
a
s
e
d  

 T
r
a
c
t
a
b
l
e

 D
o
m
a
i
n
-
d
e
p
e
n
d
e
n
t

a
n
d

n
o
i
s
e

s
e
n
s
i
t
i
v
e

 B
r
o
l
i
o

e
t

a
l
.

[
3
0
]
,

P
a
n
k
a
n
t
i

e
t

a
l
.

[
1
4
8
]

 
 

77



Chapter 3

Vision Modules

In Chapter 1 we described the origins of the modular processing in computer vision

and illustrations about the nature of limitations of a vision system which relies solely

on the output produced by a Single module. In this chapter we describe in detail

several modules that will be incorporated into our integrated system. Sections 3.1-

3.5, describe the individual modules, their objectives, limitations, and the underlying

assumptions.

3.1 Perceptual Organization (grouping)

Segmentation is one of the central problems in computer vision. Even defining the

problem of segmentation is difficult since it is tightly coupled with the semantics of the

image content and the visual task under consideration. It is, therefore, expedient to

set up a working definition for the segmentation based on the photometric attributes

of the intensity image [2]. By this “segmentation” we mean a grouping of the pixels

78



79

based on homogeneity of their photometric attributes [2]. Given this definition, a

region-based or an edge—based operator would be sufficient to effect a perfect seg-

mentation in an idealized situation. However, in practice, poor imaging conditions,

 
Figure 3.1: Perceptual organization helps complete the obscure boundaries [116].

insuflicient contrast, noise sensitivity of the selected attributes, and artifacts inherent

in segmentation operators all conspire to produce an imperfect segmentation (See

Fig. 3.12). Image properties alone are not adequate in segmenting the input scene.

For instance, two perceptually significant regions cannot be identified in Fig. 3.1 us-

ing intensity gradients. In such Situations, the principles of perceptual organization

could be invoked to obtain a reasonable segmentation.

The human visual system recognizes statistically significant relationships in a

given image and uses them to infer causal structures in the scene without using any

higher level domain-dependent knowledge [199]. These perceptual phenomenon were

closely studied by psychologists and were accounted for in very subjective terms such

as Gestalt and Pra'gnanz. Some of these statistically significant relations (Fig. 3.2) are

collinearity, parallelism, symmetry, and connectivity. Human perceptual mechanisms
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Figure 3.2: Relations Significant in grouping [109].

help us organize the image features, complete the features obliterated by noise or

occlusion, permit 3D inferences from the 2D image relations, and facilitate efficient

indexing of the world knowledge [109]. This phenomenon of grouping is referred

to as perceptual organization. Many believe that perceptual organization plays an

important role in simplifying the computer vision problems [72, 155, 109].

The potential of the perceptual grouping module in computer vision systems was

relatively unexplored until recently. Witkin and Tenenbaum [199] were among the first

to recognize the importance of this module. Lowe [109] established a computational

framework for selecting perceptually significant relations. Several other researchers

have used perceptual organization, both, for 2D and 3D image features. These efforts

can be broadly classified into region-based and contour-based methods. The region-

based methods have used the Similarity of attributes of spatially adjacent pixels to
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categorize them into meaningful regions. Often, relaxation mechanisms are then

used to overcome noise and to impose a reasonable consistent relationship among

the neighboring pixels [207]. Hoffman and Jain’s region segmentation algorithm [77]

and 2D region segmentation preposed by Zucker et al. [207] are typical examples of

this strategy. In the contour-based algorithms, edge-like features are grouped into

boundaries. These boundaries are segmented into perceptually Significant segments

[109]. The segments may be finally grouped into objects and assemblies [166]. Kass

et al.’S [94] 2D snakes, and Lowe’s [109] methods of boundary segmentation can be

considered as typical examples of contour-based groupings. Ferrie and Whaite [58]

and Pankanti et al. [146] have used principles of Gestalt for grouping 3D boundaries.

Only a few researchers have attempted to integrate the region-based and contour-

based groupings [150, 124, 41].

We will now describe the perceptual organization module (See Fig. 3.3) that will

be used in the integrated system (Chapters 4 and 5). The novelty of this module is

that it not only takes into account the statistically Significant image relationships but

also the intensity gradient across a potential boundary.

Recent research in the human vision has shown that both region-based and edge-

based mechanisms are disjoint at a very low-level and serve complementary functions

[108, 157, 72]. These observations can be empirically corroborated by our experience

with several edge-based and region-based operators. The segmentation produced by

each operator has certain desirable prOpertieS, but the integration of these segmen-

tations often leads to better results than provided by either one of them [150]. Our

approach to integration (of region-based and edge—based segmentation) is carried out
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Figure 3.3: Perceptual Organization Module.

in two steps as described below. We have used outputs of Canny edge operator [35]

and Split and merge segmentation [149] as our edge-based and region-based segmen-

tations, respectively. But, in general, other edge-based or region-based operators can

also be used.

0 Selection and Extension: In the first phase, we select a subset of boundaries

which are supported by both the segmentations. This step is performed by

searching for the boundaries of the region segmentation (RB) in a fixed rectan-

gular neighborhood of the edges detected by the edge-based segmentation (EB).

The presence of RBS in a given neighborhood of the E83 is taken as a strong

evidence for the presence of a boundary (as opposed to a spurious edge) and we
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select all such boundaries. These boundaries are localized at the EB positions‘.

The boundaries thus obtained are tangentially extended based on the presence

of boundaries in region-based or edge-based segmentations.

o Voronoi-based Grouping: In the second phase, the boundary terminations and

corners in the representation obtained from the previous stage are linked based

on a set of Gestalt criteria (proximity, collinearity, cotermination) and the

presence of a Significant gradient across the linking edge in the region-based

segmentation. Instead of considering all possible linking edges, only the edges

connecting Voronoi neighbors are considered [3, 147]. Ideally, it would be desir-

able to consider the smooth snake-like extensions between the edge terminations

selected for linking, but the present implementation links these terminations us-

ing a straight line segment. Following components are superimposed to obtain

an objective function estimating the Significance of a Voronoi edge:

1. Proximity. Voronoi edges which are Short will be considered perceptually

more Significant than those which are longer. The contribution of a Voronoi

edge of length d connecting the edges of lengths D1 and D2 is defined as E,

= wde/D1 D2, where wp is the relative Significance of proximity attribute.

2. Curvilinearity. Voronoi edges which are in the tangential direction of the

edge terminations are more significant. A Voronoi edge which subtends

angles 01 and 02 with the terminations of the edges at its either end will

 

1We have found that our edge-based detector has a better localization than the region-based

segmentation. Some researchers have used the maximum likelihood estimate provided by both the

segmentations for this integration [41].



84

contribute E, = w,(61 + 62) /47r to the cost function, where w, is the relative

Significance of the curvilinearity.

3. Cotermination. The coterminant is the common point Shared by ter-

minations of two (or more) smooth boundaries. Coterminations are per-

ceptually Significant. We estimate the cost of a cotermination by EC 2

wc2/(n1 + n2), where n31 and n2 are the numbers of Voronoi neighbors of

each termination and wc is the weight indicating the perceptual Significance

of cotermination.

4. Gradient. Significance of a Voronoi edge is proportional to the average

intensity difference of the regions it abuts. Instead of computing a raw

intensity gradient, we consider difference in means of intensity values of

the adjoining regions as a reliable indicator of this criteria. The cost of the

gradient is measured by E, = M/G, where M is the maximum number of

gray levels in the image and G is the average difference of intensity across

the length of the edge.

Among the several Voronoi edge alternatives, only the minimum cost edge is

chosen, provided that its total cost is below a threshold T. Finally, we choose

closed boundaries to obtain regions with reasonably uniform photometric at-

tributes. There is no systematic way of estimating the “correct” weights of

each Gestalt component [124]. At present, we set the values of relative Signifi-

cance of each component of the cost function and the threshold, T, empirically.

Fig. 3.4 Shows results of our grouping algorithm for Mushroom and Vase image.
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 ((0

Figure 3.4: A grouping example for Mushroom and Vase image (512 x 512): (a)

input intensity image; (b) output from Canny edge detector; (c) output of region-

based segmentation; (d) significant closed regions after integrating segmentations in

(b) and (c) using Gestalt rules.
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3.2 Shape From Shading

Shading is an important source of information about the 3D structure of the input

scene, especially when binocular disparity and motion cues are absent. These situa-

tions commonly occur in pictures and scenes consisting of smoothly sculpted surfaces.

Artists have known the effectiveness of shading in visualization and have been using

this cue to convey the 3D structure in their paintings. However, inferring Shape from

shading using a computer algorithm has proved to be a difficult and underdetermined
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Figure 3.5: Recovery of saddle—shaped surfaces is especially difficult: (a) An image of

Lambertian hyperboloid surface with constant albedo; (b) True surface shape; (c) A

convex Shape recovered from (a) by Oliensis and Dupuis’ algorithm using default con—
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problem (see Fig. 3.5) and it has been generally regarded as an unreliable source of

information [205].

We will now briefly describe the physics of imaging. This description will be

interspersed with the imaging assumptions made by a typical shape from shading

algorithm. This will be followed by a summary of the common approaches to solve

shape from shading problem.
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Light reflected from the surface of an object depends on the following factors:

1. Incident light: The amount of incident light on an object depends upon the
 

illumination source(s), its distance from the object surface, and geometry of

the object. Light energy incident on an object surface is related to the source

flux by the law of inverse squares. This often gives rise to an intensity gradient

across the image illuminated by a single point source. However, all the previ-

ous researchers have made the simplifying assumption that the light source is

located at a sufficiently large distance (orthographic imaging geometry) and inci-

dent light energy does not depend upon the distance from the source. The light

reflecting from object surfaces often illuminates surrounding surfaces, a phe-

nomenon called the mutual illumination. Mutual illumination depends upon

the geometry of the object surfaces. Modeling mutual illumination is a difficult

problem which requires information about the object shape — which is usually

not known. Almost all the shape from shading algorithms hypothesize that the

incident light energy mainly depends upon the primary illumination and the

effects of secondary (mutual) illumination can be disregarded.

. Surface characteristics: A simple scene geometry is depicted in Figure 3.6.

When the light energy incidents on the surface of an opaque object, a part of

it is absorbed. The reflected part consists of two components: specular and

diffuse.

The specular component models reflection from mirror-like surfaces. In the

case of an ideal specular surface, light rays incident on the surface are reflected
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Figure 3.6: A simple image formation geometry. Rays AB, AC, and AD are in the

direction of source (8), surface normal (n), and sensor (k), respectively. The angles

BAC, BAD, CAD will be referred to as incidence angle (i), emittance angle (e), and

phase angle (9), respectively [80].

such that the angle of reflection equals the angle of incidence. In a typical

surface, however, specular reflections are restricted to a compact lobe around

the ideal specular reflection direction. Thus, if the sensor direction changes, the

amount of irradiance from a specular surface changes considerably and specular

highlights shift their positions.

A matte surface, on the other hand, models Lambertian or diffuse reflections.

Such reflections are a result of multiple bendings and bouncings undergone

by the light rays below the surface microstructure. The reflected light from a

perfect matte surface does not depend upon the sensor direction and depends

only upon the source direction and the object surface orientation.

The specular and diffuse components of the surface reflectance can be modeled

by the following expression relating image irradiance to the scene luminance
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[42]:

EOE, y) = 1($,y)(Rs(n) + R,(z, 31)),

where R, is specular reflectance map, R] is Lambertian reflectance map, E(:r, y)

is image irradiance, and I(1:, y) is the incident irradiance.

The specular reflectance can be modeled as:

Rs(n) = (k-(2(n(w, y)-S)n($, y) - 8))“,

where m is a parameter related to the sharpness of Specularity of a given surface

and ‘.’ denotes the “dot” product.

The Lambertian component is modeled by:

RICE: y) = (11(13, y)..S)

Typically, the shape from shading research has been restricted to the pure

Lambertian surface models. Incorporating specular reflections in the shape from

shading formulation is a relatively recent phenomenon [42]. Researchers have

used a priori decomposition of the surface image irradiance into specular and

diffuse reflectances using dichromatic reflectance models [73] or using empirical

methods devised by Wolff and Boult [201]. Others have attempted to estimate

these components from the images using optimization methods [42].

3. Sensor characteristics: It is generally assumed that the lens is isotropic and
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responds equally well to the objects in peripheral as well as central regions

in the image. These situations are, in most cases, exceptions rather than a

rule. Everything else remaining the same, two locations in the image may have

different intensities due to optical distortions of the lens system or non-uniform

sensitivity of the sensor array. In addition, the inverse square law may be

effective if the width of the sensor array is comparable to the average distance

to the object surfaces being imaged (wide-angled lens).

Given an imaging model and a single intensity image, a shape from shading algorithm

needs to reliably estimate the geometry of the sensed surfaces. First of all, due

to the ubiquitous assumption of an orthographic projection, we can not determine

absolute depths from shading cues alone (even when the reflectance map is completely

specified). Hence, all the shape from shading problems should be interpreted in

terms of recovery of surface normal information. The difficulty in recovering surface

orientation from shading (intensity) cues is due to a lack of a sufficient number of

constraints: we have only one (intensity) value at each location (pixel) while we are

expected to recover two parameters (tilt and slant) per location. In principle, it is

possible to obtain an infinite number of solutions if we hypothesize that the surface

normals at the neighboring locations are independent. In order to recover physically

meaningful and unique surfaces, additional constraints are necessary.

One approach to obtaining a unique solution to the shape from shading problem

is by imposing a smoothness constraint and incorporating it into a regularization

framework. If the boundary conditions are known, Blake et al. [21] have derived
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some theoretical results stating uniqueness of the solution under restricted situations.

In practice, these algorithms begin with known occluding boundaries and formulate

shape from shading as a variational problem with known boundary conditions [30, 85];

the solution typically involves regularization. There are several difficulties with this

formulation. For instance, correct recovery of spherical surfaces is difficult [205]. The

commonly used smoothness constraint might result in unintuitive results. Frankot

and Chellappa [59] have solved this problem by projecting each intermediate solution

on to the frequency domain representation to enforce the integrability condition.

The regularization approach is computationally intensive; it typically requires several

thousand iterations before obtaining a reasonable solution.

Another approach to obtaining shape from shading restricts the surface geometry

to provide local solutions. For instance, Pentland [152] assumes the surfaces to be

locally spherical. This requires recovering only a single parameter from each surface

location. Tsai and Shah [192] offer an iterative solution by assuming a linear ap-

proximation of the reflectance function. While these strategies are computationally

adequate, the restrictive assumptions make it difficult to improve upon the initial

results incrementally. Thus, this approach is a poor choice for an integration envi-

ronment.

Oliensis and Dupuis [144] have shown several counterexamples to the widely be-

lieved claim that surfaces are uniquely constrained by limb (occluding contours) edges.

They, instead, show that shape from shading problem is well-constrained only in the

presence of singular points — pixels with maximal brightness. They propose a novel,

computationally attractive algorithm based on the method of characteristic strips
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[79]. We have adapted Oliensis and Dupuis’ algorithm for our module integration re-

search. The characteristic strips are the curves of the steepest ascent in the direction

away from the light source. Given the depths at singular points, Oliensis and Dupuis

[145, 144] developed a noise—resistant method for reconstructing the characteristic

strips. This idea is based on an elegant method of propagating the depth values at

singular points to the rest of the locations in the image. If relative albedo at each

point on the image surface is known, then this concept can be easily extended to

arbitrary images with Lambertian surfaces.

3.3 Stereo

In humans, binocular stereo is a robust estimator of depth at an acute visual angle,

particularly in the image regions with a significant variation in intensity. A stereo

module is known to produce an erroneous depth map in regions of the image with no

texture or with very little texture [195]. It is also difficult to compute depth at those

parts of the scene which are visible only from a single camera.

A simplifying assumption which is frequently made in the stereo matching algo-

rithms is called the parallel axis geometry (Fig. 3.7). Consider a point P in 3D space

(Figure 3.7). Let us image this point from two known camera positions defined by

their optical centers, 0] and 0,. If we can identify the locations A and B, of the

point P in the two images taken from two known positions, then the 3D location of

P can be recovered from the disparity of the corresponding image points using the

principle of triangulation. Establishing the correspondence of all the points in the
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Figure 3.7: Parallel axis stereo geometry [50].

image pair is called the correspondence problem. Given the imaging geometry and the

correspondence of physical points in the stereo image pair, computation of the depth

from the disparity is relatively straightforward. There are two primary categories

of stereo algorithms: (i) Pixel-based: algorithms which establish correspondence for

every pixel in the stereo images; and (ii) Feature-based: algorithms which establish

correspondence for only selective points, called feature points. The depth for the

remaining points is determined by smooth interpolation.

Pixel-based Stereo:

There are two strong assumptions underlying the pixel-based stereo algorithms.

0 Lambertian Surfaces: It is hypothesized that the intensities at the corresponding

pixels are identical under the camera transformation. If we assume that the

optical axes of the two cameras are parallel, then this assumption is equivalent

to assuming that the object surfaces are Lambertian.

o Sufficient Saliency: It is also assumed that each pixel has sufliciently distinctive
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Figure 3.8: Stereogram of ambiguously perceivable center square flanked with un-

ambiguous areas in front of and behind the surround [91]. (a),(b) are left and right

random dot stereograms; (c), (d) are two perceived depth maps.
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spatial context to eliminate potential false matches in establishing the correct

correspondence.

In practice, due to noise in the imaging process, the gray level values at the corre-

sponding pixels are not identical; such a prOperty is valid only in a statistical sense.

To counter this problem, the pixel-based methods often use correlation between sets

of neighboring pixels in the left and right images to find the correct correspondence

[129]. The window used for computing the correlation depends upon the noise char-

acteristics of the sensing conditions. However, this strategy is not effective in dealing

with non-Lambertian scene surfaces. The sufifcient saliency assumption is violated

if the image has only slowly varying intensities — a lack of distinctive features makes

correspondence based on local, window-based properties difficult. The search region

for these pixel-based methods is restricted to alleviate computational burden and,

thereby, imposing a small relative motion assumption. One of the advantages of

using the pixel-based methods is that they provide a dense disparity (depth) map

without resorting to interpolation. Also, these methods avoid the problems associ-

ated with the feature-extractors and their artifacts.

Feature-based Stereo:

The feature-based algorithms require a selection of viewpoint invariant and noise-

resistant feature points. Since feature points are sufficiently distinctive, finding cor-

respondence in a feature-based stereo algorithm is relatively easy. However, these

algorithms result in a sparse disparity map and estimating the entire depth map for

sparse disparity map is a difficult problem (interpolation problem).



96

What feature points are desirable for establishing correspondence? Several can-

didates, including zero-crossings of LOG operator [117], oriented step-edges [126],

peaks of LoG Operator [123], and frequency domain-based descriptors [195] have been

proposed in the literature. Many of them are justified on the basis of either psy-

chological studies or computational arguments. Some less general features like line

segments have also been used to simplify the correspondence problem [126].

Both pixel—based and feature-based approaches implicitly assume that the more

similar the attributes of a given pair of pixels (features) are from the left and right

stereo images, the more likely they represent the correct correspondence. At limb

boundaries or due to specular highlights and occlusion, this hypothesis is not true

(and can be misleading). Although pixels near occluding limb edges in stereo images

have similar intensity profiles, they are images of different physical parts of the scene.

The specular highlights depend upon the viewpoint and the “corresponding” high-

lights might mislead matching based on similarity measures. Finally, it is meaningless

to obtain the correspondence based on a given similarity measure for the parts of a

scene which are visible in only one of the stereo image pair. In addition, the stereo

constraints alone are not sufficient in constraining the false correspondence problem.

Use of relaxation or other optimization [195] schemes is often necessary to impose

additional constraints to alleviate this problem. Marr’s computational theory pre-

scribed that the assumption of cohesive matter and unique correspondence should

be used for disambiguation. If the objects in the scene are cohesive, then the re-

sultant disparities should vary smoothly almost everywhere. The principle of unique

correspondence states that each feature may have only one correspondence. Mayhew
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and Frisby [123] observed that smoothing the disparities across the depth bound-

aries can be avoided by use of ‘figural continuity’; the disparities along a boundary

should vary smoothly. Prazdny argued that ‘coherence’ is a more general principle

for disambiguating matches [154].

There are several difficulties in interpolating depth between feature points. Many

interpolation methods use an implicit smoothing function for estimating the depth

at pixels between feature points. The rationale of these methods is based on the

argument that absence of feature points at these intermediate pixels indicates absence

of sharp depth discontinuities (no-news principle [68]). Naive implementations of

these methods might smooth the sharp depth discontinuities, or produce noisy depth

map. Blake et al. [20] have suggested a discontinuity-preserving smoothing method

based on regularization. Hoff and Ahuja [76] have proposed an integration scheme

which combines matching and integration.

The local matching schemes can not take into account large disparity ranges.

Hierarchical schemes have been suggested in the literature for handling large disparity

range. Here, the disparities obtained from matching feature points at a coarse level

guide the matching process at the next finer resolution [116, 195].

In our integrated systems (Chapters 4 and 5), we use the multi-resolution stereo

matcher proposed by Weng et al. [195]. This algorithm matches four attributes of

the intensity images which are reasonably insensitive to the relative camera motion.

These attributes are the (smoothed) image intensity, magnitude of the image gradi—

ent, and “positive” and “negative” curvatures. These four features grossly correspond

to functionals of zeroth-, first-, and second- order derivatives of the original image
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function tailored for the stability in terms of relative camera motion. The matcher

also imposes intra— and inter- regional smoothness constraints on the disparities. The

main idea underlying the matching algorithm is as follows: If the attributes of input

stereo images are insensitive to the relative motion of the camera, then the correct cor-

respondence implies that the dissimilarity (residuals) in the corresponding attribute

values should be minimum. Given an estimate of the correspondence vector field,

the stereo matcher at a given level of resolution obtains a refinement of the corre-

spondence vector field by minimizing a weighted sum of squared residuals using the

gradient descent method.

. . . ‘2

rndin Eu 2‘ w,[R,(u,d)] , (3.1)

where d is the correspondence vector field, Ri(u,d) is the residual contributed by

the it” attribute image at location 11 due to correspondence vector (1, and w,- is a

prespecified weight associated with the residual R].

The stereo system starts at the coarsest level of resolution and the final estimate

of the disparity obtained at any level guides the matcher at the next finer level. In

regions with small changes in intensity, there is not sufficient information available for

a gradient-descent technique to drive the disparities in the correct direction. Fig. 3.9

illustrates this limitation of the stereo algorithm.

3.4 Line Labeling
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(c) ' (d)

Figure 3.9: Mushroom and Vase image (size 512 x 512): (a), (b) Left and right stereo

images; (c) Recovered depth from stereo alone; (d) A wire-frame representation of

(C)-



100

 
Figure 3.10: A line drawing [13].

Given the boundaries in an image, we can infer a number of significant properties

of the surfaces giving rise to these boundaries. For example, take the case of the binary

line drawing shown in Figure 3.10. This figure conveys valuable information about

the surfaces of leaves even in the absence of other cues like stereo, shading, or texture.

Several experiments involving human infants have shown that our skill in interpreting

3D surfaces from the line drawings is innate [109]. It is now agreed that line labeling

is a fundamental cue for 3D inference from 2D images [13, 14]. Like other human

perceptual skills, the ability of interpreting line drawings is based on assumptions

of general viewpoint and detection of statistically significant properties, independent

of any higher level and domain-dependent knowledge. The line labeling module is

unique in that it exploits local geometric constraints and conveys its inferences in a

qualitative way. The labeled line diagram can be used for scene interpretation, object

recognition, and matching [142, 45, 13, 100, 171].

In a given image, a boundary detected by an edge detector could be a result of
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a number of different physical events such as discontinuity in illumination (shadow),

change in surface albedo, surface markings, discontinuity in surface orientation, dis-

continuity in depth, and self occlusion. Before a line drawing can be interpreted, it

needs to be parsed into a graph representation. The vertices of this graph represent

intersections (junctions) of the boundaries and arcs of this graph represent the indi-

vidual boundary segments between two junctions. Given a graph representation of a

correct line drawing, the objective of the line interpretation module is to obtain an

approximate and qualitative 2.5D sketch of the input scene by appropriately catego-

rizing each arc in the graph. The architecture of line drawing interpretation module

consists of the following three components:

1. Line Labeling: The line labeling module labels the boundaries into several dif-
 

ferent categories. The correct line labels of only a few boundaries can be initially

determined.

2. Junction Labeling: Boundary intersections in an image result in junctions which
 

are 2D depictions of the 3D surface intersections. The junctions can often be

categorized into a few qualitative categories based on the degree of the inter-

section and the angles between the boundaries involved. The correct labels of

only a few junctions can be initially determined.

3. Relaxation: The 3D world exerts strong constraints on the compatibility of the

neighboring junction labels and line labels. However, these constraints alone are

typically inadequate to obtain a unique solution; a unique line interpretation

is usually imposed on a line drawing using constraints based on perceptual
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mechanisms [103, 191].

Several efforts in interpreting line drawings have been made. The initial line

drawing interpretation for polyhedral objects was presented by Huffman and Clowes

[43], which was further augmented by Waltz [194]. Sugihara [177] derived a linear

programming type algorithm for labeling line diagrams of polyhedral objects. Kanade

[92] extended the object domain to include origami objects — objects composed of very

thin surfaces. Chakravarty [36] extended the original polyhedral object domain to

include curved objects. A mathematically rigorous and minimal junction catalog was

provided by Malik [112] for orthographic views of 3D scenes containing C3 surfaces.

This was later extended to perspective projection by Nalwa [139]. Leclerc and Fischler

[103] have formulated the problem of line drawing interpretation of wireframe objects

using minimum description length (MDL) approach.

Malik [112] classified lines into depth and orientation discontinuities. The depth

discontinuities are further classified into limb and non-limb categories. The orienta-

tion discontinuities are further classified into convex and concave boundaries. Malik’s

algorithm does not allow surface markings, shadow edges, and albedo edges. His

junction catalog is shown in Figure 3.11. When a unique solution is not possible, Ma-

lik’s algorithm imposes a uniqueness constraint by preferring an interpretation with

a minimum number of faces. ’Ifytten’s algorithm [189] is a refinement of the Malik’s

algorithm in that it imposes uniqueness by preferring “floating object interpretation”.

It also has a different control structure to facilitate integration with other modules.

Since the assumptions of orthographic projection geometry and C3 surfaces are not



103

too restrictive in practice, we prefer to use Trytten’s refined method of line labeling

for our non-uniform integration scheme.

Curvature-L:_ / A /—» {K (/

Three Tangent: —°'>' \ —»

I) II).

“YYY’YY

¢

    

  

  

Figure 3.11: Malik’s junction catalog. The double arrows indicate limb edges. The

object boundaries are shown by single arrows. Symbols ‘+’ and ‘—’ denote convex

and concave (internal) edges. Symbol ‘?’ denotes a don’t care line label [112].

Although the line labeling problem has been rigorously studied for a limited object

domain, it is plagued with innumerable implementation problems. Most reported

work on the line labeling problem assume availability of a perfect line diagram at the

outset. Obtaining a good line diagram appears to be a difficult problem (Fig. 3.12).
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(a)

Figure 3.12: Obtaining line diagrams is a difficult problem even in case of simple

scenes: (a) An image from the blocks world; (b) A typical edge map using Canny edge

detector. Note that the edge detector failed to detect many junctions and introduced

several extraneous edges.

Further, the parsing of a line diagram into vertices and arcs has been shown to be

extraordinarily tricky [139]. Many researchers wonder whether an ideal line diagram

and its accurate parsing could ever be produced in a practical situation. Even when

the line diagram is correctly parsed, the line labeling module may label it erroneously.

For instance, it often mistakes an L-junction for a curvature-L junction and T-junction

for a 3-tangent junction. Fig. 3.13 illustrates the difficulty faced by a line labeling

module in labeling a curvature-L junction.

3.5 Shape From Texture

The term texture defies a formal definition [106]. The simplest types of texture

can be characterized by the ‘regularity’ in placement of a texture element (texel). In

an image of a 3D surface, the spatial distribution of surface markings is distorted.
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This distortion systematically depends upon the shape and orientation of the surface

with respect to the imaging geometry (Figure 3.14). For instance, consider a plane

covered with a uniform surface texture; the spatial relationship among texels on this

surface is uniform. As the planar surface is tilted, the number of texels per unit image

area increases the most in the direction of slant (texture gradient). The magnitude

of the compression depends upon the amount of tilt. Shape from texture algorithms

attempt to estimate the orientation of a scene surface from the measurement(s) on

the spatial distribution of the surface markings.

Notation and Imaging Geometry: Following Garding [61], we will a assume

perspective spherical projection (Fig. 3.15). The optical imaging projects the events

present on the 3D surface S on to the unit viewsphere 23 around the focal point. The

angle subtended by the surface normal N to the visual ray p will be called slant (0)

and the angle subtended by the projection of the surface normal (on to the tangent

plane) to the reference X-axis is referred to as tilt direction, t. Together, slant and tilt

uniquely determine the orientation of the surface normal n. The tilt direction t and

direction orthogonal to tilt direction, b (= n x t) in the tangent plane form a natural

local coordinate frame for description of distortion due to the imaging geometry.

The linear backprojection map, F” projecting from tangent plane of 2 to tan-

gent plane of S is assumed to be sufficiently well-behaved. This map can be tersely

expressed in the bases (t, b) and (T, B) [61] as an affine transform, A, composed of

three generic components [61], scale, rotation, and shear:

A = 5(8)R(9)D(a, It),
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where S specifies scaling parameterized by a scaling factor:

12(9) denotes rotation by an angle 9:

c056 —sin9

13(9) = ;

sin6 c036

and D(a, a) represents an area-preserving shear distortion whose axis and magnitude

are determined by u and a:

0(0, II) = R(u)M(a)RT(II)

O[cosu -—sinu-3 a cosy sinu

D
l
r
-

[sin/i cosu I 0 —sinu cosu

isinzu + 00032]; (a — %)sinucos,u ]
I

l

a

l

a
3 (oz — )sinucosu sinzu + acoszu ]

If we exclude isotropic rotation component R, then A can be expressed as

r/coso 0 l/m O

F*= , (3.2)

0 r 0 l/M

where r is the radial distance of the point on the surface under consideration. M and

m can be visualized as the half major and minor axes of the ellipse in 2 resulting
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from imaging a unit circle in S.

Having realized that the absolute measurement of the distortion F* is difficult in

reality, vision researchers have focused on the measurement of spatial variation in the

distortion map as a basis for recovering shape from texture. These different measures

are collectively referred to as texture gradients. The following four texture gradients

have been commonly used: density, area, perspective, and scale. The density and area

gradients refer to the spatial variation in the texel densities and areas, respectively.

Perspective gradient refers to the variation in the linear dimension of the texels in

the direction of the surface tilt and scale gradient is the similar measurement taken

in the direction orthogonal to the direction of the surface tilt.

The exact nature of the surface markings on the scene surfaces is not generally

known. Therefore, constraints imposed by the projective geometry alone are not

sufficient. Additional constraints in the form of assumptions about the texture are

necessary. The most commonly used assumptions are: (i) uniform texture over all the

surfaces in the input scene, and (ii) orthographic imaging geometry. If the texels can

be reliably detected in the image, then it is possible to compute the gradient of texture

density. However, the texel identification problem is difficult due to imaging noise,

edge detection artifacts, and occlusion. Ahuja and Blostein [22] have integrated texel

identification with the estimation of the surface orientation to alleviate the problem of

erroneous preprocessing. Witkin [198] posed the shape from texture problem under

regular projective geometry, isotropy, and independence assumptions. Under these

assumptions, the maximal variation in the data is accounted for by the projective

geometry. He plotted the histogram of the orientation of the edge elements and
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showed that under orthographic imaging geometry, the amplitude and ‘phase’ of this

histogram are related to the orientation of the 3D surface. One significant advantage

of this scheme is that it does not require extraction and identification of the texels.

We use the shape from texture algorithm proposed by Super and Bovik [178].

Their algorithm consists of the following three steps:

1. Estimation of instantaneous frequency: In this step, a set of Gabor filters

(and their derivatives) are used to estimate the local frequency content at each

pixel.

2. Computation of invariant moments: A second—order moment matrix is

computed at each pixel using the local spatial frequency spectrograms. A pair

of coordinate frame invariant moments (M, m) can then be computed in the

directions (6, 6’) of the first two eigenvectors of the second-order moment matrix.

3. Estimation of surface normals: Given invariant moments (Mmmp) at a

pixel p(x1,y1) and invariant moments (Mq, mg) and slant orq at pixel q(xq, yq),

the slant 0,, at p can be computed using

 
COS 0' —— C08 0' .

P q M m

P P

The tilt T], can be computed using the following equations:

0 —9 ilarccosA ,
Tp = Q P 2 p

(3.4)

0,, — 9], :l: %arccos A], + 7r,
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where 0],, 6., are the orientations associated with Mp, mp, respectively, and AP

is defined by:

cos2 0,, + 1)(Mp + mp) — 2(Mq + m,,)

sin2 (7],,(Mp -— mp)

 

AP = (
i (35)

provided that ap(Mp — mp) is not zero.

Figure 3.16 illustrates a typical quantitative problems in estimating surface orien-

tation near limb edges using texture information. Note that these systemic inaccura-

cies were observed even after the perfect texture segmentation and scale information

was made available to the algorithm.

3.6 Summary

Vision researchers continue to propose, develop, and demonstrate novel algorithms

for shape-from—X modules. There are several limitations in the performance of the

individual modules:

1. Parameters Like most computer vision algorithms, a shape-from-X module

involves various parameters and its performance is often critically sensitive to its

operating region in the parameter space. The individual modules are unreliable

since the appropriate values of the parameters (i) can not be easily selected;

(ii) remain unstable over the domain of the images; and (iii) can not be, even

qualitatively, related to the tangible characteristics of the image domain. Utility

of most of the shape-from-X algorithms in practical situations is not obvious due
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to a lack of studies on the relationship between performance of the algorithm

and its operating region.

2. Ambiguities Often the individual modules can not completely constrain the

object surfaces from the input image(s).

3. Assumptions Different assumptions are often built into vision modules. The

synthetic constraints prove to be too restrictive for real images. The violations

of natural constraints can not be reliably detected.

All these factors make it difficult to rely on the individual modules for obtaining

robust performance. How these individually fragile modules can be integrated to

obtain better performance is the topic of the next two chapters.
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Figure 3.13: Junction labeling example for Mushroom and Vase image (Fig. 3.9(b)):

(a) correct input line diagram; (b) labeling using line diagram alone; L, C, T, Y, A,

and P denote L, curvature—L, tangent, Y, arrow, and phantom junctions, respectively.
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Figure 3.14: Shape from texture example: (a) image of an object with uniform surface

texture; (b) Edge map (scaled) extracted from the image shown in (a). Both pictures

adapted from [106].

Surface, S

viewsphere, 2

 

Figure 3.15: Imaging Geometry (adapted from [61]).



the object in (a); and (d) normalized error in the recovered slant.

from (a) using a shape from texture algorithm [178]; (c) ground truth slant field for

(b) recovered slant field (here we show 90°

i.i.d. noise and Lambertian shading);

complement of slant for better visibility)

an object with uniform surface texture (10%

Figure 3.16: Shape from texture example: (a) a synthetic texture-mapped image of
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Chapter 4

Non-Uniform Integration

The shape-from-X modules are motivated by Marr’s paradigm of modular design

of a vision system [116]. We have seen in Chapter 1 that the vision modules have

several limitations and one can not depend on the individual modules to extract the

true 3D structure in all situations. Ideally, the vision processes could be modeled as

a connection matrix with each state variable interacting with every other variable,

thereby eliminating the concept of a vision module. To design such a system would

be an ambitious goal; to maintain and extend it would be even more difficult.

A reasonable implementation of an integrated system would involve models of

each vision module and models of their interactions. However, past computer vision

research in integration of vision modules has not emphasized explicit information

exchange among the modules in the context of a complete system. We believe that

designing integration strategies based on explicit information exchange between the

modules is a first step towards building more robust and tractable vision systems. This

approach also emphasizes cooperation and resonance between the individual modules

114
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which many researchers believe to be the key to the effectiveness of the human vision

system [72, 46, 193, 172]. Earlier efforts in integration assumed that the estimates

obtained by the individual modules are reasonably accurate and hence adopted a

feedforward strategy. However, in reality, each module is imperfect and, therefore,

those integrated systems based on feedforward strategy alone are critically dependent

on the performance of individual modules. Our effort here is to demonstrate the

efficacy of a feedback-feedforward strategy for integration.

Integration models proposed in the literature are based on Bayesian [166], MRF

[133], lattice-theoretic [89], game-theoretic [29], regularization [94, 153], and energy

minimization [20] formulations (Table 2.1). It is reasonable to assume that each

strategy is best suited for a certain type of interaction and hence can not be used

as the integration framework for the entire vision system without sacrificing either

performance or efficiency. Thus, each interaction could be modeled by the strategy

best suited for that particular interaction. The success of these individual interac-

tion models depends on a number of user-specified parameters. It is hoped that the

dynamics of the system with interacting modules obviates these elaborate models of

interaction among the modules and replaces them with simpler interaction schemes,

facilitating the implementation of large integrated systems.

The general integration problem is formidable. Illustration of the advantages of

integration in a general setting is both abstract as well as ambitious. Instead, we

integrate a few specific vision modules with an objective of obtaining accurate 3D re-

construction. We demonstrate that the integrated system can withstand the violation

of the nominal assumptions underlying the design of the component modules. In this



116

Table 4.1: Vision modules in the proposed integrated system.

 

 
 

 

 

 

Module | Strengths J Problems ]

Stereo Reliable short-range Correspondence and

depth information Occlusion

Shape from Shading Orientation estimation ir- Mutual illumination and

respective of distance fine textures

Line Labeling Geometric constraints Extraction of line

diagram

Perceptual Organization Boundary completion in Oversegmentation

noisy images     

chapter, we describe an implementation of the integration of perceptual organization,

stereo, shape from shading, and line labeling modules [148]. These modules were cho-

sen primarily because of their importance in low-level vision. Also, they are known

to interact with each other [72, 158] and are complementary in their strengths (Ta-

ble 4.1). Our strategy for integration can be extended to include additional modules.

The overall block diagram of the proposed system is shown in Figure 4.1.

Rest of this chapter is organized as follows. In the next section, we describe the

interactions among the modules. Section 4.2 presents the integration algorithm. In

Section 4.3 we will discuss our experiments and results. We will conclude with a

summary of our experimental results and research issues that need to be addressed

in the design of robust integrated vision systems.

4. 1 Interactions

In this section we describe our formulation of interactions among the modules and

their implementation. The relevant literature will also be mentioned.



 

 

 

 
 

 

 

  
 
 

 

  

 

 
Figure 4.1: Overall Block Diagram.

4.1.1 Interaction between Shape from Shading and Stereo

Modules

The algorithm proposed by Oliensis and Dupuis [145] has several shortcomings typ-

ical to the traditional shape from shading and early vision problems. It assumes

Lambertian surfaces and a finite number of point sources. It is extremely difficult

to take into account the effects of interreflections, Specularity, and innumerable other

nonlinear effects in a general situation — since that requires an a priori knowledge

of the object geometry itself! Finally, every shape from shading approach is inher-
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ently incapable of determining concavity/convexity of the surface. It is also not easy

to model the photometric variations due to variable distance of scene surfaces from

the illumination source. These shortcomings can be overcome with the help of the

information provided by the other modules.
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Figure 4.2: Shape From Shading Module.

We have extended the algorithm by Oliensis and Dupuis to work on piecewise

constant albedo surfaces. The extension is based on segmenting the image into re-

gions with constant albedo and treating them independently. The singular points

are now detected in the individual regions and the propagation of the depth values

is prevented across the region boundaries. Such a treatment, when implemented in

an isolated module, is plagued with erroneous depth recovery. The resulting recon-

struction often is only qualitatively reasonable and may not have desired numerical

accuracy primarily due to the following reasons: (i) the stereo module, needed for
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initial depth values at singular points, itself might provide erroneous depths; (ii) the

Lambertian model may not be an accurate model for the image surfaces; and (iii)

interreflections and specularities may also cause inaccurate reconstruction.

Dis arities Estimated

t Level (I -1)

 

Detection Of

Singularities

 

Next A Intermediate

Disparities
Iteration

 

 

 Corrected
let-De th From

I D‘spimiesHShang Module
' At Levell

---------------------------

Disparities Estimated

At Level I

Figure 4.3: Stereo Module.

According to Bulthoff et al. [34], the depth conveyed by disparity overrides the

information conveyed by shading. When both cues actually agree, the perception

of the surface curvature is reinforced. They also have accumulated evidence that in

scenes with scarce zero crossings, shape from shading interpolates depth in the area

between two sparse zero crossings.

Some attempts have been made in the past to integrate the shape from shading

and stereo modules. Grimson [70] has used shading to constrain the image irradiance

equation to obtain the surface normal directions. Blake et al. [21] have established
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that given the depth at the boundary conditions, the surface reconstruction by shape

from shading is unique. Leclerc and Bobick [102] have used shading to interpolate

the depth obtained from the stereo. Cryer et al. [47] have used frequency domain

methods based on the psychophysical theories to integrate the shape from shading and

stereo modules. Most of these earlier integration schemes assumed a single constant

albedo over the surfaces comprising the entire scene. Further, they do not include

any strategy for two-way interaction between the stereo and shape from shading nor

does the shading guide the computation of stereo disparities.

In our approach, we have a more general model of surface reflectance of the scene

(piecewise constant albedo) and a more reliable and robust strategy for treating scenes

deviating from our model assumptions. Specifically, the feedback loop between the

shape from shading and stereo modules is designed to counter the limitations of both

the modules. When there is sparse texture in the scene, the shape from shading mod-

ule will interpolate the surface depths between the (sparse) zero crossings. On the

other hand, when the reconstruction offered by shape from shading is in error, the

gradient descent iteration of the stereo module will attempt to force the resultant re-

construction towards the true depth value. This synergistic cooperation compensates

for the errors in individual modules.

Usually, albedo of the scene surfaces is not known. In such a situation, the depth

map obtained from the shape from shading module is only qualitatively correct and

can not be directly related to the depth map obtained from stereo module. Then, how

should the information obtained from the shape from shading module be meaningfully

used to improve the depth map obtained from stereo? Given an initial estimate of
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the depth from the stereo module, the proposed integration method uses a variational

approach to make the surface orientation at each point on the depth map ‘consistent’

with the surface orientation at the corresponding point obtained from the shape from

shading module. In addition, we impose a smoothness constraint in driving the final

depth reconstruction. A detailed formulation of our approach is described below:

1. Smoothness Constraint: The surface depth varies smoothly over each segmented

region. The measure of departure from smoothness of the surface can be ex-

pressed by (D3, + D5), where D,C and Dy represent partial derivatives of depth

map, D, in :1: and y direction, respectively. We minimize:

e, = f/(DE; +D§)dxdy. (4.1)
x y

2. Shading Constraint: The resultant shape obtained by the integrated system

should conform with the shape obtained by the shading module. More specif-

ically, the surface orientation at each point (2:, y) of the reconstructed surface,

D, should be consistent with the orientation of the surface estimated at that

point by the shading module alone. If D“ is the estimate of the reconstructed

surface by the shape from shading module, then the aforementioned consistency

can be measured by the term:

e. = f/ [(0, — 1);")2 + (Dy — 1);”)2] d2: dy. (4.2)

x :1

Let e, and D represent the discretized representations of e, and D, respectively. Let éc
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and D“ represent the corresponding discretized versions of ec and D3", respectively.

Given an initial estimate of the reconstructed (discretized) depths by the stereo

module, D“, and that by the shape from shading module, D“, the integrated output,

D, is the surface that minimizes

é = éc + Aé,, (4.3)

where A is the regularization parameter; (E, éc, and 63', are the discretized versions of

e, co, and 6,, respectively.

Differentiating é with respect to D(i, j ), we obtain

‘12:.— = —~a—e.C—. + Afia—ef—J (4-4)

000,1) 500,1) 600.1)

After differentiation1 and a rearrangement of term, we have

$37) =2(D(z'.j) 501231)), (4.5)

where D(i, j) denotes the local 4—neighbor arithmetic mean of D(i, j ), and

ac". _ ~ . . _._z..
m —2(D(Z,]) D(,]))

+2 (15%, j) — 75%, 3)). (4.6)

 

1We use finite differences (on the 4-neighborhood system) to approximate differentiation.
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Setting 51%;?)- to zero gives us an iterative solution of the depth estimate:

~ A ~ 1:
Dn+l - - :5" ~ - _ __ sh . . .

(m) (2.2) 1+ AHAD (m) H, (47)

where

IIADS"(i,j)”II = i<Dsh(z‘+1,j)+ 15%,) + 1)+

15% — 1,2“) + 15W) — 1))

—Dsh(z', j), (4.8)

and D0 = D". In order to avoid the instability in the reconstruction process, Eq. (4.7)

is applied only when the Sign of IIAD3h(i,j)n|| differs from the sign of ||AD(i,j)n||,

where

IIAD<é,j)"II = §(D(z'+1,j) + D(i,j+1)

D(i—1,j)+ D(i,) — 1)) — D(M) (4.9)

Parameter a (= iii—A) is the coupling coefficient between the shape from shading

module and the stereo module. Notice that correction term in Eq. (4.7) is not based

on any precise calibration, but is set to an arbitrary monotonic function of the depth

depending on the value of a. In practice, we have seen that the performance of

the integrated system does not critically depend on the value of a as long as it is

sufficiently small (a g 0.05).

The flow of information from the stereo module to the shading module is relatively
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straightforward. The depth values at the singular points are initialized to the corre-

sponding depth values predicted by the stereo module. The concavity or convexity

of the surface at the singular points is also estimated from the depth map obtained

from the stereo module.

4.1.2 Interactions between the depth modules and the Per-

ceptual Organization Module

Both the general viewpoint and the relationship of significant 2D features (See Fig-

ure 3.2) with 3D causality are based on fallible assumptions. The advantage of an

integrated environment is the capacity to oversegment the image using these fallible

assumptions and then, at a later stage, recover the “correct” segmentation with the

help of other information cues.

The human visual system interprets gradual changes in irradiance as a change

in surface orientation of a single surface while abrupt changes in the irradiance are

interpreted as the presence of boundaries between two distinct surfaces (or change

in albedo). The process of demarcating the image plane into regions is shown to be

a precursor to the 3D interpretation of the scenes. However, in the real world, this

delineation is not decided by the image characteristics alone, but also by perceptually

significant relations among the image features. Regions formed by perceptual bound-

aries are filled-in with the appropriate features (like color, brightness, texture, etc.)

and the perceptual boundaries act as feature barriers [72]. Many vision researchers

have been using intensity gradient as a deterrent to smoothing across uniform regions
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[195], but perceptual boundaries have not been used frequently for this purpose.

In shape from shading module used in our integrated system we have prevented

the propagation of depth values across the perceptual boundary. Similarly, in stereo

module, the smoothness constraint is not enforced across perceptual boundaries. This

has significantly reduced the blurring of the sharp depth boundaries in the recovered

depth map. We also set the depth at perceptual boundaries to the values predicted

by the stereo module since the reliability of the stereo module is at its best in these

regions.

4.1.3 Interactions with Line Labeling Module

Although the line labeling problem has been rigorously studied for a limited object

domain, it is plagued with innumerable implementation problems. Most reported

work on the line labeling problem assumes availability of a perfect line diagram at the

outset. Obtaining a good line diagram appears to be a difficult problem. Further, the

parsing of a line diagram into vertices and arcs has been shown to be extraordinarily

tricky [139]. Many researchers wonder whether ideal line diagram and its accurate

parsing could ever be produced in a practical situation.

Integrating line labeling module with other modules is a challenging task since the

constraints involved in it are quite different from those in stereo, shape from shading,

or shape from texture modules. The line drawing interpretation module uses geo—

metrical and qualitative constraints whereas the other modules rely on quantitative

constraints.
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Figure 4.4: Line Labeling Module.

Attempts to integrate shape from shading and line labeling for curved objects

have been reported by Malik and Maydan [113]. They formulated the integration

problem as an optimization problem to simultaneously recover surface orientation

and line labels. Their cost function also includes a regularization term. However,

their problem has been formulated for scenes composed of the single constant albedo

and demonstrated only for synthetic images. Malik’s line labeling algorithm has been

used by Stockman et al. [176] for constraining the fit of the object models to range

data. 'Ifytten has attempted to label the line drawings obtained from perceptually

grouped edgels [191]. Our approach is an improvement over the strategy proposed by

Trytten [191] and exploits the powerful constraints exerted by the limb boundaries

to disambiguate line drawing interpretation.

The proposed integration mechanism described here investigates whether the er-

rors in extraction of the line diagram and its parsing can be compensated for by the
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information provided by the depth modules described earlier. We use the line labeling

module for curved objects proposed by Malik [112] who provided an explicit catalog

of legal line labels for objects with C3 surfaces. Our method of extracting and parsing

the line diagram and favors an interpretation of the scene in which the surfaces of one

object do not touch surfaces of any other object (floating object hypothesis [189]).

Traditionally, deterministic discrete relaxation methods have been used for label-

ing line diagrams. However, the errors in the measurement of various features (e. g.,

boundary curvatures, tangent directions) from the line diagram warrant a better mod-

eling of the uncertainties involved in the process of extraction of the line diagram and

its parsing. One obvious choice is probabilistic relaxation formulation.

Let .C = £5 U L4 be the set of labels, where £3 is the set of junction labels

and .CA is the set of are labels. Define £3 = {L, C, T, Y,A,R, P}, where L, C, T,

Y, A, R, and P represent L, curvature-L, T, Y, arrow, three-tangent, and phantom

junctions, respectively. Define EA 2 {:17, +, —, —>, ——>—>}, where +, —, —>, —>——) denote

convex, concave, (outside) boundary, and limb labels for arcs of the line diagram,

respectively. Note that the arc label a: could represent any non-depth are including

surface markings, albedo, or shadow edges. Function Pk(lp) denotes the ‘probability’

of vertex (arc) I: having a label lp.

Junction labels determined from tangent-based and curvature-based features of

an arc are unreliable [189]. We, therefore, supplement this information by using three

depth-based features extracted from the depth modules: dihedral angles, depth dis-

continuity, and limbness of an are (See Table 4.2). A dihedral angle ((151) is estimated

using the 3D information extracted from several patches from regions abutting an
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are. The dihedral angles are measured in such a way that for convex arcs the angle

measurements are positive. The present implementation of estimating dihedral angles

does not fully address the issues related to invisible junction [112]. We have grouped

the invisible junctions and the spurious degree-2 junctions formed due to noise into

phantom junctions. The presence of the depth discontinuity is measured in a similar

manner. The measurement of limbness of an arc is described below.

Estimation of “Limbness” of a Boundary

To reliably determine “limbness” of a boundary, we use the information offered by

an ensemble of surface normals in its vicinity. Let us call the angle defined by the

surface normal (ni), the viewing direction, and the boundary normal (n) as 9,- (see

Fig. 4.5). Usually, these angles decrease monotonically as we move in the direction of

boundary normal pointing inside the region enclosed by the limb edge. For non-limb

edges, this trend should be considerably less significant.

Suppose we are investigating “limbness” of a point b on the boundary B and

the two estimated normals of the boundary are in the directions 11 and —n. Let

n1, n2, 113, ~ - - , nm be the m surface normals sampled in the direction 11 at distances

d1,d2,d3,---,dm from the boundary. We assume that the sampling is guided by

segmentation to avoid observations coming from different surfaces of the scene. Con-

struct a separate rank ordering of the angles 6’, and distances (breaking any existing

ties randomly) to obtain two rank sequences 7‘,- and 3,. We compute the Spearman’s

rank-order correlation statistic, S [105]. The significance of a negative value of S is

 

tested by computing R = S\/(m — 2) / (1 — S?) and comparing it to a threshold with
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Figure 4.5: Limb Detection.
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a size of 0.05. This test is supplemented by the average starting angle test. This

test evaluates whether the arithmetic mean of the first few angles (9,) is larger than

a threshold, t. Both of these tests are repeated for the samples of surface normals

taken in the direction of the other boundary normal (—n). A point on the boundary

is assessed to be part of a limb edge if at least one set of surface normals passes

both the trend test as well as the average starting angle test. The fraction of points

belonging to an are passing the limbness test determines the limbness of that arc.

Estimation of Relaxation Parameters

We compute the initial probabilities using Tables 4.3—4.4 ((T¢, = 7r/20, T9 = 4 pixels,

61 = 0.5, 62 = 0.7, T453 2 7r/3, Td = 5). We have used the generic sigmoid function

for specifying the a priori probabilities:

0(13; 6, K.) = 1/(1 + exp(——6 at (a: — It))).

For notational convenience, we denote o(—a:; 6, K.) by 0’ (:13; 6, K). The compatibility

functions, 7'“: L, x C, —-> [—1,1], model the ‘likelihood’ of labels t and 3 being

labels of the neighboring arcs (or vertices). A compatibility function is negative,

positive, or zero depending upon whether the labels are incompatible, compatible, or

independent, respectively. The compatibility functions are directly determined from

Malik’s junction catalog.

The relaxation algorithm alternates between two epochs: vertex and arc. In the

vertex epoch, it updates the probabilities of the vertex labels. At the end of the
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(1)3 = min(A,B,C)

Figure 4.6: Line diagram features.
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Table 4.2: Arc and vertex features. The features g, (151, ll relate to an arc; (b2, d, and

lg are degree—2 vertex features; (1)3 and l3 are degree-3 vertex features (see Fig. 4.6).

 

 

 

 

 

 

 

 

 

  

Feature Definition 1

g Average depth gradient across the arc.

(151 Average dihedral angle between the

surface normals across the arc.

l1 Limbness of the arc.

(132 Angle between tangents to the two arcs.

d Length of the shortest of the two arcs.

12 Maximum of limbness of the two arcs.

(153 Maximum of the angles between tangents

of each pair of arcs.

l3 Max. of the limbness of all arcs.   
 

Table 4.3: Prior probabilities for are labels. The term Z = 2,65}, 1(2) is the normal-

ization factor. Note that Tk specifies threshold for parameter k.
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epoch, it assigns a tentative label to each vertex according to the ranking offered by

the computed probabilities. Thus, in each vertex epoch, the relative probability of

label y assigned to vertex v is updated according to

va()‘"’[1+Ava()‘"’l

EyecJP(y)(")[1+AP,,y()(n)]’ (4-10)
 Pv(y)‘"+”=
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Table 4.4: Prior probabilities for junctions. Note that Tk specifies threshold for

parameter k and Sgn(.) is the conventional sign function.

 

rLabel I Prior Probability ]

0W2; d/Td, g)

(1 - 0’(¢2;d/Td,§) * (1 —12)

(1- 0'(¢2; (ii/71mg) * 12

MG) = 0(Na - 7r; 5, |T¢3l)

My) = 0’(¢3 - 7r; <5, IT¢3I))

Sgn(¢3 - 7r) * (1 - p(d))+

(1 - 59w. — 7r)) * (1 - p(y)) * (1 - ls)

Sgn(¢3 — 7r) * (l — p(a))+

(1 - Sgn(¢3 - 70) * (1 - PM) *13

 

 

 

 

 

 

 

 

i
=
0

H
’
K
‘
I
L
Q
B
’
U

    

where

APv(y)‘"’= Z Z rvu(y,y’)Pu(y’)("’, (4-11)

uENa(v) y’ECJ

n is iteration number and Na(v) is the set of all arcs incident on vertex 2). Considering

these tentative vertex labels, the label probabilities of the arcs are updated in the arc

epoch using an updating strategy similar to that in Eq (4.10). Since the boundary arcs

(vertices) exert stronger constraints, the order in which each arc (vertex) is visited

favors peripheral arcs (vertices). The relative probabilities of each label of each arc

(vertex) are restored to their original values after entering each epoch. The algorithm

terminates when the weights for some label of most of the sites is close to 1 or there

are no changes in the successive epochs.
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4.2 Integration Algorithm

In this section we present a high-level description of the overall integration algorithm.

Given a stereo pair of intensity images, I1 and 12, direction of the illumination source,

S, weight vector w (Eq. (3.1)), a coupling coefficient (oz) (Eq. (4.7)), various threshold

parameters (Tables 4.3 and 4.4), the depth values and the line labels are reconstructed

using the following steps.

1. Compute the four attribute (smoothed, gradient, positive curvature, and nega-

tive curvature) images. Initialize the disparity at each pixel in the coarsest level

(I = 6) to zero.

2. Compute the closed regions of uniform intensity using perceptual organization

module (Section 3.1). This will be referred to as the label image.

3. Starting with the coarsest level (I = 6), do at each level I:

A. Obtain the four attribute images at level I by blurring the attribute images

at level 0.

B. Obtain label image at level I by median filtering the label image at level

0. This is essentially a map of the regions of uniform intensity in the im-

age. Applying an edge detector to this label image will provide perceptual

boundaries at level I (boundary image, 8;).

C. Identify singularities in each region from the intensity image at level I (8;).

Do steps (i) to (v) for N(= 20) times.
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(i) Update the disparities at level 1, (d,), by one iteration of Weng et al.’s

algorithm (Eq. (3.1)). The resulting depth map computed from these

disparities will be denoted by Di".

(ii) Initialize the depth at each singularity position in S; by appropriate

depth values from 15,“.

(iii) Normalize the intensities in each region with respect to the average

intensities in that region. Assess from Di" the convexity/concavity of

each region.

(iv) Apply shape from shading algorithm to obtain a depth map, Df".

(v) Obtain the corrected depth map D; from th and D,“ using the shape

from shading and stereo integration (Eq. (4.7)). Update the disparity

map using D1.

. Parse the boundaries in B, into a line diagram graph 9 = {MA}, where

V is the set of vertices and A is the set of arcs.

. Compute the line diagram features from the depth map D1 and the bound-

ary image 8, (Table 4.2).

. Initialize the a priori probabilities of labels (Tables 4.3 and 4.4).

. Iterate through the probabilistic relaxation until the label probabilities

stabilize (Eq. (4.10) shows the updating scheme for vertex epoch).

. Project the disparities to level (I — 1) by replicating disparity 2d¢(2', j) to

locations (22', 23'), (22+ 1, 2]), (22', 23' + 1), and (22' + 1, 23' + 1).
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Table 4.5: CPU times for Mushroom and Vase Image on Sun Sparc 20.

 

 

 

 

 

 

Computation Time

Perceptual Grouping 6ls

Shape from shading 810$

Stereo 5945

Line labeling 357s

Integrated System 22845    

4. Output the final depth map [3 = Do, and line labels. The surface orientation

(normals) at each point can be computed from D.

The major components of the integration themselves require local computations

(Eqs. (4.7) and (4.10)). The integration of the stereo and shape from shading modules

needs one pass over the entire image and its computational complexity is 0(P2), for

a total of P2 pixels. The computation of features from the line diagram is somewhat

image dependent and its overall complexity is 0(IVI2), where IV] is the cardinality of

V. The probabilistic relaxation does not usually take more than a few iterations over

the entire graph. Thus, the proposed integration mechanism is an efficient and reliable

method of integrating vision modules. Table 4.2 presents actual timing statistics on

a Sun Sparc 20 for Mushroom Vase image (Fig. 4.8).

4.3 Experiments

All the real images were captured by an inexpensive CCD camera (Panasonic GP-

KR202, f = 25 cm, maximum aperture). The images were subsequently gamma

corrected with '7 = 2.0 and normalized to 256 gray levels. The stand off was



137

approximately 80 cm and to obtain a stereo pair of images, the camera was either

translated or translated and rotated. The translation was in the direction of :r-axis

and rotation was about the y-axis (the z-axis being approximately aligned with the

optical axis). The imaging setup was not calibrated; all alignments, translations, and

rotations were approximate and were not precisely measured/verified. The rotation

of the camera was effected to bring the disparity of the region of interest close to zero.

The scene was illuminated with ambient light and a single incandescent light source

was located (30 cm) behind the camera (approximately in :c-z plane) pointing in the

direction (0,0,1). A polarizing setup similar to the one suggested in [140] was used

(when necessary) to reduce the specular component of the reflection.

In most of the experiments, we have chosen to compare the reconstruction results

obtained from the integrated system with corresponding results from stereo module

alone; the reconstruction results from the other individual modules were not as reli-

able as those of the stereo module. All the reconstruction results are presented for

the right image of the stereo pair and for all the experiments the parameter a was

set to 0.001. Further, the shape from shading constraints were exploited only for four

different spatial resolutions (64 x 64, 128 x 128, 256 x 256, and 512 x 512). Use of

shape from shading module for lower resolution representations did not significantly

improve the results. Figures 4.8(a) and 4.8(b) show a stereo pair of a scene consisting

of two unglazed ceramic objects (image size 512 x 512) with near ideal Lambertian

surfaces. Figures 4.8(c) and 4.8(d) show the (relative) depth reconstruction obtained

by the stereo module and the integrated system, respectively. The diffusion of dis-

parities across the perceptual boundaries significantly blurs the depth map by the
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stereo module; this is prevented in the depth map obtained by the integrated system.

Figures 4.8(e) and 4.8(f) show the orientation of the object surfaces for stereo and

integrated system, respectively. In case of the stereo depth map, it can be observed

that as the size of the untextured region increases, the quality of reconstruction de-

teriorates.

The objective of the second set of experiments is to quantitatively demonstrate

that our integration mechanism can handle images of various types of surfaces, includ-

ing concave, convex, and saddle shaped objects. In particular, this set of experiments

is designed to evaluate our integrated system on a range of intensity images of syn-

thetic scenes consisting of Lambertian algebraic surfaces. The shaded intensity images

(Fig. (4.9)) were synthesized using ray tracing method [66] of photo—realistic render-

ing (with atmospheric turbulence modeling the imaging noise) with a parallel camera

geometry (standoff = 50 units, cameras at (—5, 0, 0) and (5,0, 0)) and a distant point

source illumination (at (0,0, —100)) (see Fig. 4.7). We then matched these stereo

pairs obtained from synthetic rendering using (a) stereo module alone and (b) the

integrated system. The resultant reconstructions were compared with the depth data

projected from the range images (ground truth) using a squared error function based

on differences in true and estimated depth and shape (surface normals) measurements

(Den. and Se", respectively). Percentage reduction in this squared error is used for

assessing the performance of the proposed integration strategy. Table 4.6 shows that

the surface reconstruction using the integrated method is superior to that obtained

by stereo module alone. Note that stereo module can almost always correctly find

correspondence at the boundaries of the object. The accuracy of the disparity map in
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Figure 4.7: Image synthesis using ray tracing.

the regions between the boundaries is dependent on the changes in the corresponding

brightness patterns in the image. The fewer the changes in the brightness in this re-

gion, the greater the scope of improvement in the performance due to integration. If

the foreground regions in the image have smaller diameter (maximal width) then the

stereo module alone can produce reasonably accurate correspondences in the regions

between the boundaries. Consequently, it is harder for the integration to improve the

performance in this situation.

Figure 4.10 shows the images synthesized using imaging conditions identical to

those in Figure 4.9 except that Phong model of Specularity was used (17 = 0.8) in-

stead of the Lambertian assumption. Table 4.7 shows that the reconstruction results

are relatively stable when surfaces are non-Lambertian (specular) (Figure 4.10). The
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improvement in the performance in the case of specular surfaces is smaller in magni-

tude than for the corresponding Lambertian surface (Table 4.6). This is largely due

to the improvement in performance of stereo module in the case of specular surfaces

— the sharper changes in intensity at specular highlights make the correspondence

problem easierz.

Figures 4.11(a) and 4.11(d) show the range images of two objects used for

quantitatively evaluating the accuracy of the depth map obtained by our integrated

system. Two pairs of synthetic stereo intensity images were generated from these

depth maps using Lambertian surface assumption. An additive 2'.sz Gaussian

noise (with standard deviation 2%) was then added to the left and right images

separately. A sample pair of these synthetically generated stereo pairs is shown in

Figures 4.11(b), 4.11(c), 4.11(e), and 4.11(f). A comparison of reconstructions is

summarized in Table 4.8.

Table 4.6: Improvement in surface reconstruction due to integration: Lambertian

surfaces.

 

| Surface primitive I Sm(%) | De" (‘76) I
 

 

 

 

 

 

 

Parallelopiped 30.0 41.3

Sphere 23.4 35.7

Cylinder 22.0 26.5

Paraboloid 18.1 20.0

Hyperboloid 24.1 20.2

Torus 15.8 17.6     
 

Figures 4.12(a) and 4.12(b) show stereo images of an unglazed ceramic object

 

2Location of specularities in an image depends upon the viewing direction and then the corre-

spondence based on the features derived from Specularity are unreliable. However, when an entire

surface lacks any significant change in the albedo (or the irradiance) and change in the viewing di-

rection is not very large, the correspondence is somewhat improved due to the presence of specular

features.
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Table 4.7: Improvement in surface reconstruction due to integration: Specular sur-

faces.

 

I Surface primitive ISer,(%) ID", (%) I
 

 

 

 

 

 

 

Parallelopiped 30.0 41.3

Ellipsoid 10.0 13.9

Cylinder 12.5 16.9

Paraboloid 13.4 17.6

Hyperboloid 15.3 13.6

Torus 6.8 8.1     

Table 4.8: Improvement in surface reconstruction due to integration: intensity images

synthesized from real range images.

 

 

 

 

I Object I Sm(%)I Den. (‘76) I

Tomato 25.2 22.7

Pipe 35.0 32.6
     

(mushroom) and an object made of acrylic plastic (Y—shaped pipe). These images

were captured without cross-polarized filters to allow the specular reflections to be

imaged. Notice the two specularities on the surface of the pipe. The quality of the

reconstructed depth map of the integrated system as shown in Figures 4.12(d) and

4.12(f) has largely remained insensitive to the specular reflections. Figures 4.12(c)

and 4.12(e) show the corresponding outputs of the stereo module.

Figures 4.13(a) and 4.13(b) show stereo images of a granny smith apple and a

yellow pepper. The surfaces of both the objects do not possess a very uniform albedo.

Again, as depicted in Figures 4.13(d) and 4.13(f) the integrated system performs

better than the stereo module alone.

The segmentations obtained in the earlier images (Figs. 4.14(a)-(c)) by the group—

ing module were near perfect. We now demonstrate the efficacy of our approach in

case of an imperfect segmentation of an image consisting of piecewise constant albedo
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surfaces. Note that the grouping module fails to obtain a correct segmentation of this

image (Fig. 4.14(d)). Figures 4.15(a) and 4.15(b) show stereo images of an unglazed

ceramic object (egg) and a foam cup. Notice the lack of secondary reflections on

the lower part of the egg. Figures 4.15(c) and 4.15(e), respectively, show the depth

reconstruction and surface needle map obtained from the isolated stereo system. Fig-

ures 4.15(d) and 4.15(f) show the corresponding representations for the integrated

system. Very bright (low depth values) regions between the objects and in the far

left of the image are due to occlusions. Notice that the quality of surface recon-

struction for the cup in case of the stereo module alone (Figures 4.15(c) and 4.15(e))

is comparable to that of the integrated system (Figures 4.15(d) and 4.15(f)). The

depth reconstruction provided by the integrated system is relatively more accurate

except for the slight deterioration on the lower part of the egg. The surface of the egg

has been incorrectly reconstructed by the isolated stereo module (Figures 4.16(a))

compared to the integrated system (4.16(b)). Note that stereo module (alone) could

reconstruct surface of glass correctly due to the presence of texture features.

Figure 4.17 shows the contours detected from the Mushroom and Pipe image

by the line labeling module. The objects in this image do not have any surface

markings and the image does not contain any shadows. The detected contours have

been classified into limb and non-limb edges. Recall that these representations form

an input to the junction labeling module. Figures 4.18(a) and 4.18(b) show the

outputs of the line labeling algorithm proposed by Trytten [189] and our algorithm,

respectively. Note that all the curvilinear-L junctions are correctly labeled by our

algorithm. In addition, the labeling of the T-junctz'ons is a gross approximation of
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the physical reality [139], given the quality of output generated by the segmentation

module.

4.4 Summary

The visual world can be ambiguous only in relatively contrived situations. In the real

world a combination of cues (visual or other kinds) conveys a unique physical reality.

Whether to reconstruct the entire visual input or to extract its components relevant

to the given task, a reliable vision system is expected to integrate many visual cues

to obtain an unambiguous output. However, the information provided by each cue is

based on its own set of assumptions. This raises several important research issues in

solving the problem of integration. What is the most reliable information provided by

each visual cue? How to design an integrated system which can be easily maintained

and extended? How to integrate vision modules so that the system performance does

not critically depend on individual modules? Definitive answers to these questions do

not appear to be in sight. In this chapter we have made an attempt to explore some of

these issues in a somewhat limited context of an integrated system which reconstructs

3D information from a pair of (stereo) intensity images using the following four vision

modules: perceptual organization, shape from shading, stereo, and line labeling.

Several integration strategies have been reported in the literature for primarily

studying pairwise integration of vision modules. But only a few studies have compre-

hensively integrated more than two modules for a complete 3D reconstruction of real

images. We have proposed and implemented an integration framework emphasizing
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interaction and information exchange among the four vision modules. We have shown

the reconstruction results using integrated system for both synthetic and real images.

We also demonstrated the consistent performance of the integrated system even in the

adverse situations where one or more assumptions made by the individual modules

are violated. The numerical accuracy of the recovered depth is assessed in case of

synthetically generated data. We have also quantitatively evaluated our approach by

reconstructing geons from the depth data obtained from the integrated system.

In general, the potential of a system relying on low-level modules has been grossly

underestimated because of the vulnerabilities of the individual modules. We have

demonstrated that these shortcomings in the individual modules can be overcome

in an integrated environment. In particular, the limitations of a stereo module in

dealing with images displaying no significant intensity changes can be alleviated by

the shading module. Our perceptual organization module completes the boundaries

obscured due to low contrast and noise and facilitates in obtaining a reasonable line

diagram. The perceptually completed boundaries also serve as feature propagation

barriers and help in obtaining more reliable results for both shading and stereo mod-

ules. Difficulties in obtaining correct arc and junction labels can be overcome using

depth information obtained from the stereo and shading modules.

The proposed system is far from ideal. The perceptual organization system does

not get any feedback from the other modules. It is not obvious in what form the

other modules can detect and convey the errors made by the perceptual organization

module. Our design is largely inspired by psychophysical and neurological evidence. It

is, therefore, not easy to extend the current integrated system to include an arbitrary
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vision module without understanding the strengths and limitations of the module.

A considerable amount of further research is needed to obtain better strategies of

integration and establish a formal and more unified framework to ease the design of

an integrated system. This constitutes the topic of the next chapter.
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Figure 4.8: Mushroom and Vase image (size 512 x 512): (a) and (b) Left and right

stereo images; (c) Recovered depth from stereo alone; (d) Recovered depth from the

integrated system; (e) Recovered surface normals from stereo alone; (f) Recovered

surface normals from the integrated system.



147

 
(d) (0) (0

Figure 4.9: Synthetic surface primitives (Lambertian surfaces): (a) Parallelopiped;

(b) Sphere; (c) Cylinder; (d) Paraboloid; (e) Hyperboloid; and (f) Torus.
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 (e) (0

Figure 4.10: Synthetic surface primitives (Specular surfaces): (a) Parallelopiped; (b)

Ellipsoid; (c) Cylinder; (d) Paraboloid; (e) Hyperboloid; and (f) Torus. All surfaces

are shown with Phong shading.
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 ((0
Figure 4.11: Synthetic stereo images: (a), ((1): Range Images of Tomato and Pipe

obtained from White scanner [110]; (b), (c): Left and right stereo images generated

from (a); (e), (f): Left and right stereo images generated from (d).
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Figure 4.12: Mushroom and Pipe image (size 512 x 512): (a) and (b) Left and right

stereo images; (c) Recovered depth from stereo alone; (d) Recovered depth from the

integrated system; (e) Recovered surface normals from stereo alone; (f) Recovered

surface normals from the integrated system.
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Figure 4.13: Apple and Pepper image (size 512 x 512): (a) and (b) Left and right

stereo images; (c) Recovered depth from stereo alone; (d) Recovered depth from the

integrated system; (e) Recovered surface normals from stereo alone; (f) Recovered

surface normals from the integrated system.
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 (C)
Figure 4.14: Segmentation results: (3) Mushroom and Vase 4.8(b); (b) Mushroom

and Pipe 4.12(b); (c) Apple and Pepper 4.13(b); (d) Egg and Cup 4.15(b).
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Figure 4.15: Egg and Cup image (size 512 x 512): (a) and (b) Left and right stereo

images; (c) Recovered depth from stereo alone; (d) Recovered depth from the inte-

grated system; (e) Recovered surface normals from stereo alone; (f) Recovered surface

normals from the integrated system.
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Figure 4.17: Limb edges detected in Mushroom and Pipe image (Figure 4.12). Limb

boundary pixels are rendered as thick boundaries and non-limb boundary pixels are

depicted as thinner edges.
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Figure 4.18: Junction labeling results for Mushroom and Pipe image (Figure 4.12):

(a) using line diagram alone; (b) by the integrated system using the information

provided by the depth modules and line diagram; L, C, T, Y, A, and P denote L,

curvature-L, tangent, Y, arrow, and phantom junctions, respectively.
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Figure 4.19: Junction labeling results for Mushroom and Vase image (Figure 4.8): (a)

using line diagram alone; (b) by the integrated system using the information provided

by the depth modules and line diagram; L, C, T, Y, A, and P denote L, curvature-L,

tangent, Y, arrow, and phantom junctions, respectively.



Chapter 5

A Uniform Bayesian Framework

for Integration

There is a substantial amount of literature on specific algorithms for pairwise in-

tegration of vision modules [8]. However, typically, these schemes lack a broader

perspective of the integration problem and do not systematically deal with the prob-

lems encountered with images of real and complex scenes. Hence, these integration

algorithms often can not be extended either to other domains or to different mod-

ules. A method of including additional vision modules in the non-uniform integration

schemes similar to the one pr0posed in Chapter 4 is also not obvious. Several generic

methodologies in the literature (Table 2.1) offer a diverse set of tools for the inte—

gration problem, but do not offer a ready-made solution. A considerable insight is

needed in order to implement these techniques for solving a particular integration

problem.

A uniform integration framework deals with the constraints provided by each

158
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module in a systematic and regular fashion. One of the simplest examples of the

uniform integration framework is Moravec’s [130] work on fusion of data from multiple

depth sensors to derive space occupancy information using Bayes rule. It is desirable

to have a uniform framework for integrating information available from the vision

modules. Such a framework will help us identify the essential components of an

integration task and facilitate the incorporation of a given vision module into an

existing system. In this chapter, we pr0pose and evaluate a Bayesian framework for

the recovery of structures specific to the 3D world.

Rest of this chapter is organized as follows. Section 5.1 formulates the 3D recon-

struction problem as an estimation problem. Section 5.2 presents the four modules

which we have integrated and their interactions with the intrinsic map. In Section 5.4,

we describe the overall integration algorithm. Experimental results and imaging setup

are described in Section 5.5. Section 5.6 concludes with a discussion of various is-

sues pertaining to the visual integration, and accomplishments and limitations of the

proposed scheme.

5.1 Bayesian Estimation

Let us illustrate the concept of Bayesian integration using the following simple ex-

ample. Consider a Bayesian estimator integrating three depth observations, 01, 02,

and 03 at the same pixel site from three different vision modules, M1, M2, and M3,
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respectively. Consider the following formulation]:

 

01 n1

,.

03 n3

where 6 is the (true) depth variable to be estimated based on the observed depths

01, 02, and 03 contaminated with additive noise n1 ~ N(0, 01"), n2 ~ N(0, 0%), 713 ~

N(0, 03).

The Bayesian estimate is given by maximizing the a posteriori probability of G:

6:) = argmax P(9I01,02,03). (5.2)

Using Bayes’ formula, the maximization problem in Eq. (5.2) can be restated as:

Q = arg max P(01,02,03I9)P(9)

P(01a02303)

 (5.3)

Since the denominator P(01,02,03) is independent of 9, the maximization problem

is simplified to:

A

9 = arg max P(01,02,03|G)P(9). (5.4)

 

1In a more general case, the depth is a linear or non-linear function of the observed variables (see

Section 5.3 for the linear case).
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Assuming 6 follows a uniform distribution, Eq.( 5.4) reduces to

(:3 = arg max P(01,02,03|(-)).

Assuming that observations are statistically independent leads to:

G) = arg max P(01|@)P(02|(-))P(03|9).

Let

"
‘
0

II
I

HM®HMWW%W)

. .1... (4+9?)1(Lee-Mam (_._,.._..2,”1 1 ‘72 ‘73

Differentiating ln(P) with respect to 9 and setting QI—g‘éfl to zero, we obtain

From Eq.(5.9), the MAP estimation of 6 turns out to be:
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This Bayesian solution for integrating the three observations, 01, 02, and 03 is in-

tuitively appealing. The larger the variance in the module output, the lower the

influence of the module in the final outcome of the integration. The reader may also
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notice that this solution also corresponds to the least squares solution.

We now present the integration problem in the context of 3D scene reconstruction

as a classical Bayesian estimation problem. Let I 2 (I,, I1) E D” represent the right

and left (stereo) images of size N (= n X n), where 5R” denotes an N—dimensional real

vector. Let S represent the set of all sites (pixels) (11:, y), S = {(23, y,);i = 1, . . . , n;j =

1,. . .,n}. Let D = {D1,...,DK}, D], E 9?”, be the kth component of the intrinsic

map. For example, D,- could be the boundary, depth, or surface reflectance map.

The generic problem of 3D reconstruction, given I, can then be stated as finding the

maximum a posteriori estimate of the intrinsic map:

A

D = argmgxP(D|I), (5.11)

where P(DII) denotes the probability of intrinsic map D, given the observed intensity

maps, I = {IbIr} (see Fig. 5.1).

In a modular integration, this basic 3D reconstruction problem (Eq. 5.11) is mod-

ified as follows (see Fig. 5.2). Let us assume that the vision module M, can reli-

ably estimate a function F, : I —> ER” of (often, a projection of) the intrinsic map

component, D], j = 1, . . . ,K2. The corresponding imaging process is described by

R, : D ——> I. The modular integration problem can then be stated as follows: given

I and a set of modules {M,, r = 1, . . . , m}, find an accurate and stable estimate of

 

2For instance, some modules do not directly determine depth but only depth derivatives, e. 9.,

surface normals.
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Intensity Cues

  

 

Intrinsic Map

  

Figure 5.1: Generic Integration Problem.

the intrinsic map D:

A

D = argmgx P(R1(D),...,R,,,(D)II), (5.12)

where P(R1(D), . . . , R,,,(D)|I) denotes the joint probability of modules R1, . . . , Rm

producing images similar to the observed intensity images I.

The formulation in Eq. (5.12) is a very difficult optimization problem for the

following reasons. First, the number of random variables involved is extremely large;

for a n x n image, there are n2 random variables in each D,. Secondly, the inverse

optical imaging problem (function F,) being solved by each vision module is often

underconstrained. Finally, it is not easy to separately model the interactions among

the modules; even if the joint density of random variables (outputs) associated with

different modules can be estimated, the resultant model will be extremely complex
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Module A Module B

Figure 5.2: Modular Integration.

and diflicult to optimize.

It is desirable to have a uniform interface mechanism to facilitate an extensible

and a flexible overall system (even at the expense of accuracy). One pragmatic way

to incorporate all these (integrated) system features is to make the operations of each

module transparent to the operation of the other modules in the system. One of

the simplifying assumptions is that at any stage, the intrinsic map could be updated

by a given module by maximizing its (random variables associated with the intrinsic

map) a posteriori probability independent of the other modules; the interaction of the

modules is permitted only through a centralized intrinsic map. Each module observes

the current state of the intrinsic map and the input intensity information to arrive

at the best possible (MAP) refinement of the intrinsic map. The resultant iterative
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strategy then is to obtain (see Fig. 5.3)

75in) = arg mgx P(R,(t)(D)|D:(‘,1_1),I), (5-13)

where r(t) defines a module Mr(t) operating at time t and Dim is an intermediate

solution at time t proposed by module Mm). Involving Dial” in the solution of Dim

makes the approach iterative and stable. Further, due to the distributed nature of

this approach, it facilitates the implementation of each module independent of the

implementation of the other modules. However, the solution of this new formulation

is not guaranteed to coincide with that of Eq. (5.12) in all the situations. Under

certain conditions, the iterative strategy converges to the correct solution3:

1mom=v. an)
t—ioo

Thus, in our Bayesian approach, the problem of module integration is formulated

as the maximization of P(R,(D)|Dfi(‘,l_1),I), the posteriori density of a module M,

producing intensity maps similar to the observed I at time t (given the current

solution D211) and I). Notice that since the operation of a typical vision module

itself is very complex, finding the solution in Eq. (5.13) will essentially involve a

(enumerative) search even if the module and its implementation were perfect. Our

approach to obtain a practical solution to this problem consists of decomposing the

 

3The conditions under which the distributed solution corresponds to the exact solution are de-

scribed in Chapter 2.
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Intrinsic Map

  

M°d“'° A Module B

Figure 5.3: Modular Integration (restricted interactions).

original formulation into the three components described below. While each of these

components could potentially make a suboptimal choice, we hope that an integrated

system can tolerate these myopic decisions due to the multitude of constraints exerted

by several modules, each compensating for the mistakes committed by the other. Such

simplifications have been routinely (and successfully) incorporated into both natural

and man-made system designs [182, 181, 156].

(i) Intrinsic Map Estimation The estimation of F, by module M, is known to

be a difficult and an unstable problem. This can be considerably simplified by

restating the original problem of independently estimating F, : I —) 5R” as an

incremental (iterative) estimation problem:

11, : Dial—1) x I -> Dim. (5.15)
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This function may determine a feature which completely constrains the depth

values (e.g., disparities in stereo module) or a depth-related feature which may

partially constrain the depth map (e. 9., surface normals estimated by shape

from shading). In some other modules (e. g., perceptual organization module),

this function determines the boundary segmentation which indirectly constrains

t—l

the depth values [72]. The dynamics of such a feedback (involvement of Dru—1)

in estimating Dim) often reduces sensitivity of the system to the violation of

individual module assumptions and the operating parameters [42].

Coherence Function: To account for the spatial and systematic variations in

the module performance, we associate a confidence map with each component

of the intrinsic map and module outputs. These confidence maps are used to

validate the individual module outputs.

Most vision modules are based on a simple imaging model. For instance, shape

from shading and stereo modules often assume Lambertian surfaces. In some

situations, model parameters are simply not available since they depend on

(unknown) scene geometry. Many of the existing integration methodologies

are biased against either data or synthetic constraints and, consequently, result

in serious artifacts. It is desirable that erroneous outputs from the individual

modules do not significantly degrade the output of the entire system and each

additional module should leave the overall system output no worse than it origi-

nally found. In essence, we would like to assess the quality of the module output

at each image site, and discard the noisy components of the feature map before
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permitting this output to modify the intrinsic map. This problem can not be

solved in its total generality. However, knowing that the features have origi-

nated from a physical surface helps us design a strategy based on the principle

of coherence [154]. Simply stated, this principle hypothesizes that if there is

a statistical interaction among an ensemble of estimates then they might have

been derived from the same physical source(s).

Computation of coherence involves using the scene geometry and the existing

intrinsic map. In our scheme, we validate a feature value at a location if it

‘agrees’ with its independent estimates derived from its neighbors. Note that

we are not relating an estimate at a site with the estimates at its neighbors;

we are relating an estimate of a variable at a site with the estimates of the

same variable at that site derived from the information at the neighbors using

a intrinsic map estimation function.

Let us illustrate a typical coherence function model:

c. : ({P1,P2,...,P°},P°,p) -+ (,6, 5,15), an. 6 ER.

Given a set of c attribute vectors {P1,P2,...,P°} and an attribute vector

of the same type P”, a coherence function evaluates the likelihood that all

the (c + 1) objects have originated from a single source and this likelihood is

represented by the confidence value 6. The parameter n represents the confi-

dence value that all members in {P1,P2, . . .,Pc} are coherent. P is the at-

tribute vector which is considered to be a representative of the entire ensemble
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{P1,P2, . . .,Pc} U{P°}, if B > p and K. > p; p is a user-specified parameter.

Given the intrinsic map, the updating mechanism seeks the opinion of each

neighbor of a particular site (as, y) to predict the value of F,(a', y). If there is

a consensus of opinions among the neighbors (according to the coherence func-

tion (3,), and it is consistent with the F,(x,y) computed from D (since F, is

a known function of D), then we increase our confidence in D(x,y). If there

is a consensus of the opinions among the predictions of the neighbors, but it

does not agree with F,(3:,y) computed from D, then we can replace F,(:1:,y)

by the consensus value prescribed by C,. If there is no consensus among the

predictions of neighbors of (x, y), then the value of F,(x, y) is not updated and

we decrease the confidence value of D,(x, y).

(iii) Consistency Mapping: The problem of module integration (Eq. (5.13)) then

reduces to obtaining the most likely and consistent (re)interpretation of the

current solution Di-(tl—l) in the light of new (validated) evidence u,(D:(-,‘_,,,;r).

13:“, = arg mgx P(Dlu,(Df.(‘,1_1),I), 193-,1”). (5.16)

The integration scheme can now be expressed in terms of three major steps: (i)

a method for module output estimation (Eq. (5.15)), (ii) a method for estimating

the reliability of the module output, and (iii) a method for deriving the validated4

module output using (Eq. (5.16))5.

 

4A module output is validated using the associated confidence map.

5For conciseness, we will be referring to Dial— 1) as Do”.
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Figure 5.4: Interaction Model (for one module at one level of resolution).

Fig. 5.4 shows our interaction model for one module at one level of resolution.

In this model, each module interacts only with the intrinsic map. Given a pair

of intensity images and an initial estimate of intrinsic map, each module refines a

component of the intrinsic map. Coherence module assesses the refined map by the

degree of consensus among the independent estimates. Incoherent and noisy estimates

are discarded and used to refine the segmentation of the image. Finally, the intrinsic

map is updated using consistency mapping, so that it is consistent with the ‘coherent’

estimates of the module.

This basic model described above needs to be supplemented with the additional

mechanisms to deal with the following issues:

1. Scale of Integration The interaction model will typically also involve neigh-
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borhood definition JV, : S —> 25, where 2S is the set of all the subsets of

S. Given a site (z,y) E S, N, defines a set of sites which are considered as

neighbors of (3:, y).

2. Order of Module Operation: The proposed integration scheme in itself does

not impose any ordering constraints on the module operations. In fact, it is pos-

sible to implement the operation of the module concurrently. In our sequential

implementation (see Fig. 5.5), we adopt the following sequence of module op-

erations: perceptual grouping, stereo, shading, and shape from texture.

Initialization

I

Perceptual

Shading

  

Figure 5.5: Sequence of Module Operation (at one level of resolution).

3. Initial Intrinsic Map How should one obtain the initial guess for the intrinsic

map? This problem can be considerably alleviated by (i) the multi—grid, multi-

resolution processing (see Fig. 5.6), (ii) default assumptions, and (iii) proper

choice of models. Our system starts out with a planar depth map. A coarse-

level solution guides the next finer level solution; the data-driven mechanisms
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Figure 5.6: System Integration.

will iteratively refine the initial output into more accurate intrinsic maps at

finer levels.

. Segmentation issues: Most shape-from-X algorithms are sensitive to the do-

main assumptions. Indiscriminate application of a module to an arbitrary region

in an image usually results in nonsensical results. While it is desirable to local-

ize and restrict the scope of each module to appropriate regions in the image,

it is difficult in practice to prespecify these regions. The principle of coherence

permits not only the rejection of the unreliable results from a given module, but

also a gradual refinement of the existing segmentation to eventually achieve an

‘emergent’ segmentation.
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Table 5.1: Vision modules for the proposed integration.

 

 
 

 

 

 

  

I Module I Strengths Problems I

Stereo Reliable short—range Correspondence and

depth information Occlusion

Shape from Shading Orientation estimation ir- Mutual illumination and

respective of distance fine textures

Shape from Texture Orientation estimation ir- Texture segmentation,

respective of distance uniform albedo

Perceptual Organization Boundary completion Oversegmentation    

5.2 Modules for Integration

Four modules have been chosen for demonstrating the utility of the proposed inte-

gration framework: shape from shading, shape from texture, stereo, and perceptual

organization. Only the first three of these modules directly determine the depth;

the importance of these low-level cues in determining depth has been recognized in

the literature [116] and they display complementary strengths and limitations (see

Table 5.1). Perceptual organization module has been known to interact with every

other vision module and it helps determine depth by providing additional constraints

in adverse situations. While these four modules form a good combination for illus-

trating the concept of the integration methodology, note that any other module can

be incorporated into the implementation with equal ease because of our “uniform”

integration methodology. In this section, we will describe the problem solved by each

individual module. We will then present our formulation of interaction between the

individual modules and the intrinsic map.
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5.2.1 Perceptual Organization Module

The primary role of the perceptual organization module in our integrated system

is to estimate and refine significant 3D boundaries. This boundary segmentation is

difficult due to several confounding factors, including imaging noise and artifacts of

the boundary detection operators. We have, therefore, collated different sources of

information to reliably estimate these boundaries. A secondary role of the perceptual

organization module is anisotropic diffusion of the depth features, where the estimated

boundaries act as diffusion barriers [72].

Rewriting the generic modular integration equation (Eq. (5.16)) for grouping6

module,

15;, = arg mgx P(D|ug,,(p°’”, I), 130‘”), (5.17)

where, for conciseness, we have replaced Dial—1) by Dabs. In our present implementa-

tion, grouping module does not affect the depth map and refines the boundary map

only. Eq. (5.17) can, therefore, be written as:

B3,, = arg max P(Blugp(B°"",I), BO‘”). (5.18)

B is the boundary component of the intrinsic map. For conciseness, we will refer to

Ligp(B°b’, I) as B”. Thus, the term P(BIB”, BO‘”)) denotes the posteriori probability

of boundary map B, given the boundary map produced by grouping module (B9?)

and the current state of boundary map (Bd’s).

 

6We will be using perceptual organization module and grouping module synonymously.
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Boundary Estimation (119,, : D0“ x I —> B): We use (i) an edge segmentation

of the intensity image using Canny edge operator [35]), (ii) a region segmentation of

the intensity image using a split-and-merge algorithm (Pavlidis [149]), (ii) an edge

segmentation of current depth map (from Do”) using a Sobel operator, and (iv)

the current boundary map to obtain an initial estimate for the object boundaries.

Each terminal boundary pixel in the current boundary map B0“ is extended in the

tangential direction when supported by two of the three remaining segmentations.

Let us call this representation B’. We then detect corners and terminations in the

resultant representation. A Voronoi tessellation V of the corner and termination

pixels augments B’. Thus, B* = B’ U V is an initial estimate of the refined boundary

map.

Coherence Function: The design of this component is based on the grouping

module described in Section 5.2.1. The coherence at a boundary site b,- E B’ is

estimated as:

'f_ b?

@- = #, (5.19)

where r(= 4) is the number of segmentations participating in the perceptual grouping

and bf is 1 if a boundary exists at the site i in the jth segmentation.

The estimation of coherence of Voronoi edges v, E V at site i uses a different

7
procedure . The significance of each Voronoi edge is determined by the following

factors:

1. Proximity Voronoi edges which are short will be considered perceptually more

 

7Some of this description is already described in Section 5.2.1
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significant than those which are longer. The contribution of a Voronoi edge

of length d connecting the edges of length D1 and D2 is defined as E, =

'w,,d2/D1D2, where w, is the relative significance of proximity attribute.

. Curvilinearity Voronoi edges which are in the tangential direction of the edge

terminations are more significant. A Voronoi edge which subtends angles 61

and 62 with the terminations of the edges at its either end will contribute E; =

103(61 + 02)/47r to the objective function, where u), is the relative significance of

the curvilinearity.

. Cotermination It is the common point shared by terminations of two (or

more) smooth boundaries. Coterminations are perceptually significant. We

estimate the contribution of a cotermination to the objective function by E,

= uJC2/(n1+ n2), where n1 and n2 are the numbers of Voronoi neighbors of

each termination and "wC is the weight indicating the perceptual significance of

cotermination.

. Depth Gradient Significance of a Voronoi edge is proportional to the average

depth difference across its length: Ed 2 de, where AD is the difference of

depth across the Voronoi edge of length L.

. Brightness Gradient Significance of a Voronoi edge is proportional to the

average intensity difference of the regions it abuts. Instead of computing a raw

intensity gradient, we consider difference in means of intensity values of the

adjoining regions as a reliable indicator of this criteria. The contribution of
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the brightness gradient is measured by E, = mg %, where M is the maximum

number of gray levels in the image and G is the average difference of intensity

across the length of the edge.

Total perceptual significance of a Voronoi edge is

E :2 Ep + E1+ EC + Eg + Ed. (5.20)

The coherence of a Voronoi edge 21,, then, is determined as follows:

5— E

‘_wp+w,+wc+wg+wd

 (5.21)

From the set of c Voronoi edge alternatives at an edge termination (or a corner) with

the corresponding coherence s {51,52,...,flc}, all the Voronoi edges except with

leg, 2 fig, 2 maxf:1 6‘ are discarded, provided that its coherence is above a threshold

p912:

Consistency Mapping

P(ng, B°”5|B)P(B)

P(Blnga Bobs) : P(ng Bobs) ’

 (5.22)

where B is a binary map of the refined boundaries, and B” and 80’” are the out-

put of the perceptual grouping module and the current boundary map (from the

intrinsic map), respectively. As the denominator in Eq.(5.22) is independent of B,

the maximization of P(BlB-‘W, BO’”) essentially requires maximization of the product
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P(B9P,B°”"|B)P(B). The first term in the product is the data term which depends

on the output of perceptual organization module. The second (model) term imposes

desirable characteristics of a boundary map. The present implementation assumes

a spatially uniform distribution of boundary elements; our problem then reduces to

maximization of P(ng, BObSIB).

The data term, P(BQ”, BObslB) is given by (Chu and Aggarwal [41]):

P(Bg"(i,j),B°"’(i,J')IB(i,j)) 0<

1

x —- 9p k,l k,l — i, ' , 5.23me p 2 fi( )||(( ) (1))” ( )

89P(k,l) U Bobs(k,l)eN(z’.j)

 

where N(i, j) denotes the neighborhood of site (i, j). We make the simplifying

assumption that the scale factor x/L— does not significantly influence the form of

9?

 

the P(ng, BObSIB) and consequently discard its. By assuming spatial independence

among the boundary elements, we have

P(Bg". B°’”IB)) oc II P(Bg"(z'.j), B°’”(z',j)IB(z'.j))

(231')

cc exp —2 Z figs/m) (HUM) -— (231)“) (5.24)

(131') 39P(k,l) U B°b’(k,l)€N(i,j)

The overall optimization problem then reduces to maximizing individual terms at

each site, P(ng(i,j), Bab‘(i,j)IB(i,j)). Let S(i,j) be the set of all boundary coor-

dinates in a neighborhood of (i, j) in the set 39,, UBO’”. The required optimization

 

8This assumption about the scale factor is not often true and has negative impact on the perfor-

mance of the integrated system. However, use of this assumption makes the solution tractable.
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problem reduces to the following closed-form solution:

 1 3 (k,l) such that (i,j) : Zflllip(’ll:)zs)j(k”)

B(i,j) Z
9’ ’ (5.25)

0 otherwise

5.2.2 Stereo Module

Rewriting the generic modular integration equation (Eq. (5.16)) for stereo module,

15;, = arg mgx P(DlLl,,(D°’”, I), DO”), (5.26)

where, for conciseness, we have replaced Dig; ” by DO’”. In our present implemen-

tation, stereo module does not affect the boundary map and refines the depth map

only. Eq. (5.26) can, therefore, be written as:

D5,, = arg max P(DIU,t(D°"S,I), Do‘”), (5.27)

where D is the depth component of the intrinsic map. For conciseness, we will refer to

U,t(D°”‘,I) as D". Thus, the term P(DID”, D°b3)) denotes the posteriori probability

of depth map D, given the depth map produced by stereo (DS’) and the current state

of intrinsic map (DOb’).

We use the stereo module proposed by Weng et al. [195] (see Section 3.3). The

components for integrating the stereo module into the system are described below.

Disparity Estimation (L1,; : DO‘” x I -—+ ’P): Let (1‘, d' be the current right

and left disparity maps derived from DO’”. The two-way matching results in two
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correspondence vector fields, ’P’ and 73' (u E (i, j)):

’P‘(u) = arg min 2: Zw,[Rf(u,d)I, (5.28)

d€N(d‘(u)) “61‘ i

where N(.) denotes a neighborhood function. Similarly,

73’(u) = arg min 2 Zw,[Rf(u,d)], (5.29)

dEN(d’(U)) “6L ,-

where Ri(u,d) is the residual contributed by the 2'“ attribute image at location 11

due to correspondence vector d, and w,- is a prespecified weight associated with the

residual Ri.

Neighborhood Definition: A standard 4-pixel neighborhood N is used.

Coherence Definition: Two coherence functions are defined, one each for left and

right stereo matching. Here, we describe the coherence function for the right stereo

matching. We hypothesize a correspondence at (:13, y) defined by ’P, (as, y) to be coher-

ent if the back-projection of neighborhood of its correspondence, N((m, y) +P,(;r, y)),

prescribed by ”P; falls in the neighborhood N(:13, y). Farther the back-projected cor-

respondences fall, lower is the confidence.

CStCT€O(F($) y), P(x, 3]), pstereo) : (fistereoa ”stereo, 13(1’3 y)), (530)

~

where ’P(:I:,y) is the disparity at (2:,y) determined by the intrinsic map, F($,y) =

{(mm) 5 (k,l) + P,(k,l);(k,l) E (233') + Pr(i,j);V(i,j) 6 N($,y)} is the set of

disparity estimates at (x, y) by the stereo module in the neighborhood of (x, y). Like-



181

lihoods fistemo and nstmo are measured using the variance estimates of F(a:, y) and

F(:r, y) U{’P(a:, y)}, respectively.

~

P(CL‘, y) if pstereo > 'Bstereo

73(559 y) = median(F(z,y) U{’P(:1:,y)}) if pmm, > Esta-co (5-31)

median(F(:r, y)) otherwise

We have used pstmo < 4 pixels.

Consistency Mapping Given the depth maps DI and D" corresponding to the

left and right (validated) disparity maps, P‘ and ’P' and their associated likelihoods

6' and S”, how to refine the estimate of the depths D in the intrinsic map? We resort

to the Bayesian estimation. Let D3t be the depth map estimated by a (right or left)

stereo module and 53‘ be the associated estimate of its likelihood 9 (st 6 {l, r}):

Dst, ,8“, DobsID)P(D)

P(Dst, fist, Dabs)

 

P(DIDSt,IBSt,DOb3) : P( (532)

Since the denominator in Eq. (5.32) is independent of D, the MAP estimate of D

involves maximizing the product of P(D“, fl“, DObSID) and P(D).

Let B E {B(i,j)|i = 1,. . .,n;j = 1,. . .,n} represent the binary boundary map.

B(i, j ) = 1 indicates the presence of a boundary at location (i, j) and B defines closed

regions ”R", r = 1,. . .,p. The data dependent term P(D", 5”,D°”’|D) at location

 

9Eq. (5.32) is applied twice; once for the left stereo matching and once for the right stereo

matching.
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(i, j) can be estimated as

P(Draj), W231), D°’S(i,j)|D(i,J‘)) o< 7773—2'7 exp(—imam), (5.33)

6.1033) = fi"(i,j)(D”(i,j) - D(MW- (534)

We make the sim lif in assum tion that the effect of the scale factor 1 is
 

negligible and discard it. By assuming that the likelihoods ed(i, j ) are spatially inde-

pendent, we obtain,

P(D|D3’,fls’,D°bs) o< exp( —=kded) H exp( -—(kded(i ,j)) (5.35)

(U)

ed = g; B”(i,j)(D”(i,j) - D(Mllz- (5-36)

The prior term P(D) is chosen to favor smooth depth profiles:

P(D(i,j)) 0< exp(-kses(i,j)), (537)

where

6303]) = 03031) + 193,031), (538)

and D,(i, j) and Dy(i, j) denote partial derivatives of the depth map in a: and y

direction, respectively. These partial derivatives are estimated as follows.



183

O (i-l.j)

 

\
J

O . .
(i,j) (LJ‘H)

 
(i+l,j)

Figure 5.7: 4-neighborhood system.

, , D(i+1.j)—D(z'.j) if<i+1.j).<i.j)evzp.
DAM) = (5.39)

0 otherwise

, , D(i,j+1)—D(i,j) z'f (i,j+1),(i,j) €73”,

Dy(z,]) = (5.40)

0 otherwise

By assuming that the likelihoods e,(i, j) are spatially independent, we obtain,

P(D) oc exp(—k36,) 2H exp(—k,e,(i j,)), (5.41)

(U)

where

= Z2 [1930.0 + 03033)] . (5.42)

i 1'

Thus MAP estimation in Eq. (5.32) is identical to maximizing

P(DID".16",D°"’)0< exp(—kded)exp—(k.e.) (5.43)
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o< exp(—(kded + 19363)) (5.44)

o< exp(ed + Ases). (5.45)

From Eq. (5.45), we observe that the problem of MAP estimation is identical to

minimizing

est = ed + A3th (546)

«2.. = :2 [fi3’(D”(i,J’) - Danfl + A... ZZ [Dian + Bath] . (5.47)

If we assume a 4—neighborhood system, then the resultant stereo estimate is given by

the following equation [15]:

fi”(i,j)D"(i,j) + Asmidl

fi8t(iaj) + A3 ’

 D(i, j) = (5.48)

where D(i, j) is the local (4—neighborhood) average at D(i, j). The true average

(D(i, j)) is not known and is approximated by D0b8(i, j).

5.2.3 Shape From Shading

Rewriting the generic modular integration equation (Eq. (5.16)) for the shading mod-

ule,

15:. = argmgx P(Dlush(73°”,1), 12°“). (5.49)

where, for conciseness, we have replaced Dial) by Do‘”. The shape from shading

module does not affect the boundary map and refines the depth map only. Eq. (5.49)
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can, therefore, be written as:

D:,, = arg mgx P(DIU3h(D°”",I), Do’”), (5.50)

where D is the depth component of the intrinsic map. For conciseness, we will refer

to U,h(D°b3,I) as D“. Thus, the term P(DID‘h,D°”3)) denotes the a posteriori

probability of depth map D, given the depth map produced by shading (D’h) and

the current state of intrinsic map (DOM).

Given a Lambertian image surface with constant albedo 17, the image irradiance

equation relates the brightness (E) at a position (:13, y) with the surface normal,

11 E (n,, ny, 72.2), by E(:r, y) = nnsn, where n, is the unit vector pointing towards the

illumination source. The goal of shape from shading module is to recover the surface

orientation (normal) It at each pixel, given the intensity image.

Surface Normal Estimation (Us), : DO’” x I ——> (9): Given a surface orientation

n(:z:, y) at site (:23, y), usually two solutions exist for surface normals for the neighbors

in the directions (15 and —¢. These solutions correspond to the maxima of a constant

brightness equation [80]. Given the current estimates of the depth (from the intrin-

sic map) and intensity image, our shape from shading module directly estimates the

depth at each pixel using Oliensis’s algorithm [144]. However, the depth informa-

tion thus obtained is only qualitatively correct; the consistency mapping function is

designed to utilize the relative depth information from the depths obtained by the

shape from shading module.

Neighborhood definition: We use a standard 8-pixel neighborhood, N.
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Coherence Function:

Cshading(B($a y), 15(3) y): pshading) = (fishadinga ”shading, fi($r y)), (551)

where fi(:r, y) is the surface orientation at (:r, y) computed from intrinsic map,

B(z, y) = {n(i,j), (i,j) E N(at, y)} is the set of surface orientation estimates at (:r, y)

by shape from shading module in the neighborhood of (:r, y). Likelihoods [33,",de and

I‘Cshadmg are measured using the variance estimates of B(x, y) and B(x, y) U{fi(:z:, y)},

respectively. We define the median of a set of vectors to be the nearest Euclidean

neighbor of median of individual components and variance of the set to be an arith-

metic mean of the individual component variances.

fit”: y) if pshading > fishading

fi($a y) = median(B(a:, y) U{fi(:1:,y)}) if pshading > rimming (5'52)

median(B(at, y)) otherwise

Consistency Mapping Usually, albedo of the scene surfaces is not known. In

such a situation, the depth map obtained from the shape from shading module is

only qualitatively correct and can not be directly related to the depth map obtained

from stereo module. Then, how should the information obtained from the shape

from shading module be meaningfully used to improve the depth map obtained from

stereo? Given a current estimate of the depth, the boundaries from the intrinsic map

and an estimate of the shape from the shading module, we propose to use a Bayesian

strategy to arrive at a refined estimate of the depth map.
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Let D E {D(i,j)|i = 1,. . .,n;j = 1,. . .,n} represent depth map random

variables“). Let B E {B(i,j)|i = 1,. . .,n;j = 1,. . .,n} represent the binary bound-

ary map. B (i, j) = 1 indicates presence of a boundary at location (i, j) and B defines

closed regions R’, r =1,...,p. DS” E{D3h(i,j)Ii=1,...,n;j=1,...,n} denotes

the ‘depth’ map obtained using shape from shading module.

P(Dsh, D°b3|D)P(D)
P D Dsh Dobs =

( l 1 ) P(Dsh)

 (5.53)

The denominator is independent of D, therefore, the estimation of refined depths

reduces to computation of P(Ds”, DObSID) and P(D). The first term is referred to as

the data term and the latter term is referred to as the model term or the prior term.

We model the data term as the consistency between the existing depth map and the

(relative) depth map obtained from the shading module; the prior term is modeled

as the piecewise smooth depth map. These terms are described below.

1. Prior density of D, P(D): The surface depth varies smoothly over each image

region of constant albedo. The measure of departure from smoothness of the

surface at pixel (i,j) can be expressed by (D;,(i,j)2 + Dy(i,j)2), where D,(i,j)

and Dy(i, j) represent partial derivatives of depth map at D(i, j), in :1: and y

direction, respectively.

P(D(i,j)) 0< exp (_kses(iaj))a (5-54)

830,3.) = 21' zj(Dz(zaj)2 + Dy(ivj)2)v (555)

 

10Recall that N(= n x n) is the image size.
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where k, is a constant. The partial derivatives are estimated as follows.

Di 1,'—Di,' i ' 1,,i, RP,DAM) = (+ J) (J) f(2+ J)( J)6 (556)

0 otherwise

, , D(i,j+1)—D(z‘,j) if(i,j+1),(i,j)e72".

Dyan = (5.57)

0 otherwise

By assuming that the likelihoods e,(i, j) are spatially independent, we obtain,

P(D) or exp(—k363) 211 exp( —kse,( i ,j)), (5.58)

(1 .7)

= Z Z: [D§(i,j) + 0304)]- (5.59)

2. Data Term, P(Ds”,D°"SID): The resultant shape obtained by the integrated

system should conform with the shape obtained by the shading module. More

specifically, the surface orientation at each point (i, j) of the reconstructed sur-

face, D, should be consistent with the orientation of the surface estimated at

that point by the shading module alone. The aforementioned consistency can

be measured using:

P(D‘“(i.j),D°“(z'.j)lD(z'.j)) o<

1 . . . .

_—exp ("kcfishadingav])6c(z’]))a (560)

V [Bshading

(5.61)
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where

ec(i,j) = (0503]) - D§h(i,j))2+

(Dz/(233’) _ D;h(i,j))2, (562)

where k, is a constant and D;” and D;” are defined similar to D, and D3,

(Eqs.(5.56) and(5.57)), respectively. We make the simplifying assumption that

1 . u . . .

the effect of the scale factor ——m 1s negllgible and hence discard 1t.

By assuming that the likelihoods ec(i, j) are spatially independent, we obtain,

P(Dshv Dable) 0‘ 9X1) (—kcflshadingec) =

11 exp (‘kc/Bshadinguajlecuajlla (563)

(is)

(5.64)

where

ec = 22123,- [ (D3033) - Dal”(i,j))2

+(Dy(z',j) — D;"(i,j))2] . (5.65)

Combining Eqs. (5.53), (5.54), and (5.63), we have

P(DIDSh: Dabs) 0‘ exp (_kses) exp (—kcflshadt‘ngec) (566)

(X exp (—kcflshadt’ngec) exp (—kses) (567)
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OC eXp —(kc,63hadingec + kses)

OC exp "(kcfishadt’ngec + 16385)

= Kexp —(ec + A63):

(5.68)

(5.69)

(5.70)

(5.71)

where K is a constant and /\ decides the significance of the shading module output

at each site. Bayesian (optimal) estimate corresponds to D which maximizes the a

posteriori probability P(DIDS”). Eq.(5.71) implies that the problem of obtaining a

maximum a posteriori estimate of D is identical to minimizing

e =ec+Ae,.

Differentiating e with respect to D(i, j), we obtain

68 686 aes

606', j) = 60(2', j) + "”jlopa, j)’
  

where

6e,

512033)

 = —0.5(D(i + 1,1) — 09.7)) — 05(061’ + 1) - D(i,”)

+0.5(D(i,j) — D(i,j - 1)) + 0.5(D(i,j) — D(i — 1,j)).

(5.72)

(5.73)

(5.74)
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After differentiation11 and rearrangement, we have

('36,

30(2) j)

 = 2 (D(i,j) — D(i,j)), (5.75)

where D(i, j) denotes the local 4-neighbor arithmetic mean of D(i, j), and

86

3190.1) = —0-5(D(i + 1,j)— D(i,j)) + 0.5(D3h(i+1,j) —— D3h(i,j)) 

—O.5(D(i,j + 1) — 09.7)) + 0.5(D8"(i.j + 1) — D’h(i.j))

+0.5(D(i,j) — D(i,j—1))— 0.5(D’h(i,j) — D3h(i,j — 1))

+0.5(D(i,j) — D(i—1,j))— 0.5(D3h(i,j) — 03"(2' — 1,j)). (5.76)

Again, rearrangement results in

Be

300,3)

 

= 2 (Day) — 59.7))

—2 (0%, j) — 53%, j)). (5.77)

Combining Eqs. (5.75) and (5.77), we have,

8e

300,1)

 

= (1+ Aw» (Dar) — 39.7))

—A(i,j) (Dre's) — 13%.»). (5.78)

 

11We use finite differences (on 4-neighborhood system) to approximate one-sided differentiation.
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Setting 81')D( to zero gives us an iterative solution of the depth estimate:

.. ..—.. ..8..—sh..

(1+ /\(z,J))(D(z,J) - 00.1)) = 4(2,J)(D "(z,J) - D (2.1)) (5-79)

This results in an iterative solution of the depth estimate:

D"+1(i,j) =E"(z', j)— 1—_:-(::(—':,)]—,)-ADS”(i,j)n, (5.80)

where ADS”(i, j)" is the magnitude of the mean gradient at (i, j) in 03” at the n‘h

iteration and is given by

ADshm)" = 1(D:h(z'+ 1.1) + Dsh<m+1>+

DS"(2‘ — 1.1) + D“"(z‘.j — 1))

—D3"(i,j), (5.81)

and D0 2 Do‘”. In practical situations, albedo of the scene surfaces is not known

a priori and hence shape of the surface obtained from shading information is only

qualitatively correct. In order to avoid the instability in the reconstruction pro-

cess, Eq. (5.80) is applied only when the sign of AD’h(i, j)" differs from the sign of

AD(i, j)", where

ADM)" = 31(D(z'+1.j) + D(zyj +1)+

D(i—1,j)+ D(i,j-1)) — D(i,j). (5.82)
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We will refer to% in Eq. (5.80) as ashadmg(i, j). Parameter ashading(ia j) is the

coupling coefficient between the shape from shading module and the intrinsic map at

the site (i, j). Notice that the correction term in Eq. (5.80) is not based on any precise

calibration, but is set to an arbitrary monotonic function of the depth depending on

the value of ashading. In practice, we have seen that the performance of the system

does not critically depend on the value of ashadmg as long as it is sufficiently small

(ashading S 0.05). In the present implementation, we assume ashadmg to be a global

constant. We have used pshading g 0.2.

5.2.4 Shape from Texture

Rewriting the generic modular integration equation (Eq. (5.16)) for texture module,

D2,. = arg mgx P(Dlut,(D°‘”,I), DO’”), (5.83)

where, for conciseness, we have replaced [DR—1:1) by DO’”. In our present implementa-

tion, texture module does not affect the boundary map and refines the depth map.

Eq. (5.83) can, therefore, be written as:

15:, = arg mgx P(Dlu,,(v°b3,;r),1)°b8), (5.84)

where D is the depth component of the intrinsic map. For conciseness, we will refer to

Ut,(D°”’, I) as D”. Thus, the term P(DID", D"”")) denotes the posteriori probability
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of depth map D, given the depth map produced by shape from texture module (Du)

and the current state of intrinsic map (DOM).

The algorithm we adopt here is a variation of Super and Bovik’s [178] shape from

texture algorithm described in Section 3.5. This algorithm assumes that the surface

texture is uniform and can be correctly segmented.

Surface Normal Estimation (L7,, : Dab” x I —> 0): Let g(:c,y) =

(g,(:1:, y), gy(a‘, y), gxy(:1:, y)) represent :13, y, and my squared image moments of a texture

3
feature12 at (2:, y). Given image moments g(:1:, y) and surface orientation n E (o, r)1

at a site (51:, y), surface moments can be estimated by:

3 _

g (13,31) — T*g($1y)v
(5.85)

where matrix T is given by

cos2 0 cos2 7 cos2 0 cos r sin r cos2 a sin2 r

T = —2 cos 0 cos r sin r cos (r(cos2 r — sin2 r) 2 cos 0 cos r sin r (5-86)

. 2 - 2
sm r — cos r sm r cos r   

Canonical image moments (M, m) and angle 6 are determined from image moments

g(:1:, y) by (after dropping the qualifier (x, y) for brevity)

  

[M, mlT = % [(9. + 9y + do? + (9x — gxy)2)1(gx + 937 — ([93 + (91 — 9:02)](5-87)

 

12Our implementation uses intensity gradients.

13For conciseness, we represent orientation as (slant, tilt) pair.
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0 = %arctan 973’; (5.88)

Similarly, surface canonical moments can be computed. Let p(a:1,y1) and q(x2, yg) be

two sites located on a uniform textured surface. Given surface orientation nq at a site

(162, yg), and image moments of a texture feature at site p and q, surface orientation

np = (n,, ny, n,) at p can be constrained by the following system of equations:

 

 

 

_ Mum . 1mm . 1
”z — Moiihmaliyi’i 1 (5'89)

n, = cos r, (5.90)

my = \/1— (nap)2 - (nz)2, (5.91)

where M3 (2:2,y2) and m3(:1:2, yg) are maximum and minimum canonical surface mo-

ments of the selected features at site (332,312); M(:r1,y1) and m(:r1,y1) are the corre-

sponding image moments of the same feature at site (21:1, yl).

1

0 :1: éarccos A

., ___ (5.92)

6i§arccosA+7r

20 _ s 1. s :r .

,\ = (cos +’)[M(””y’);:’g(:II’Z”_,:E’I ( 2’y2)+”’ ‘ 2"”2”, Slno 75 0, MA ¢ ma, (593)

where 6 is the orientation determined by canonical image moments M($1,311) and

m($11y1)14'

Since shape from texture module also estimates surface orientation (although from

 

1“Among the four estimates of r, only the one which is the closest to the current surface normal

estimate is considered.
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different features), we have essentially used the same neighborhood definition and

coherence mapping described in Section 5.2.3. We will denote the corresponding

parameter set associated with shape from texture module by (amme, ptexme). The

values of these parameters are identical to the values of the corresponding shape from

shading parameters.

5.3 Computation of Reliabilities

Given input intensity images, a vision module outputs a map of intrinsic variables

or of variables which partially constrain the intrinsic map. The reliability of the

module output is not spatially uniform due to several reasons. First, not all parts

of the input images have the information desired by a module; the module output

from the corresponding parts of the image are erroneous. Secondly, the assumptions

made by a given module might be violated in some regions of an image invalidating

the module output in those regions. Finally, recovery of structural information from

intensity images inherently depends upon the imaging geometry and the reliability

of resultant module output might systematically depend upon both the scene and

imaging geometry.

Assessing the reliability of a module at each pixel is important since such infor-

mation directly helps in determining to what extent each portion of a module output

is to be believed. It would be useful to obtain a measure of reliability of a module

output for each part of the input images. Such an index will associate a confidence

value R(:r, y) 6 ill with output of the module at each site (any) in an image. This
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reliability information might then be used for discarding highly unreliable portions

of a module output or for relating a module output with the other module outputs.

Unfortunately, consistent and accurate estimation of reliability of a module is an ex-

tremely difficult task in its most general form. We briefly discuss a few approaches

to solve this problem and the limitations associated with each of these approaches.

1. Intramodular approaches: Typically, these methods make assumptions

about the imaging process and estimation of reliability is based on operation

of the module itself, i.e., the method of extraction of the requisite information

by the module. The intramodule assessment of the output usually does neither

verify whether the required information is available nor question the module

assumptions. For instance, in Figure 5.8, we show an image of a cylindrical

surface with circularly shaped stripes along its circumference. a typical shape

from texture module will infer a flat surface in the image with a high degree

of reliability. Similarly, a typical shape from shading algorithm would predict

a curved surface after analyzing the intensity profiles across the photo frame in

Figure 5.9. Therefore, the reliability of a module output (as estimated by an

intramodular approach) is not always an indicator of its correct behavior. We

now describe an intramodular method of assessing the reliability of the stereo

module.

In this section we will briefly describe a method of assessing the reliability of a

module using analyses of the stereo module presented in Weng et. al [196]. Let
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Figure 5.8: An Image of a cylinder.

 

us first consider the following generic linear problem:

y = AD + 6y, (5.94)

where we need to estimate the parameter p. Note that 6,, is a random vector

contaminating the measurements y. Let the expectation of 6,. be zero (8(5) =

0) and its covariance matrix be Fy = £(eyey’). According to Gauss-Markov

theorem [175, 65], the unbiased linear minimum variance estimator of p is

p = (A‘I‘;1A)A‘I‘;1y (5.95)
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Figure 5.9: Image in an image.

whose error covariance matrix is

. . _ '1

F6 E 5((p — p)(p - p)’ = (A’Fy’A) - (5-96)

This estimator is equivalent to the least-squares estimator with weight matrix

1"; 1 minimizing objective function (Weng et. al [196]):

(y - AP)’ F371 (y - AP) - (5.97)

Let us now consider the estimation of disparities by the stereo module. This

algorithm matches four different attributes of the intensity images (see Sec-

tion 3.3). The stereo module assumes Lambertian scene surfaces and posits
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that the image attributes of the corresponding pixels in a stereo image pair are

identical. The difference in these image attribute values at the corresponding

pixels (residuals) contribute to an error function which guides the matching

process.

Given an estimate of the correspondence (disparity) vector field, the stereo

matcher at a given level of resolution obtains a refinement of the correspon-

dence (disparity) vector field by minimizing a weighted sum of squared residuals

(errors):

mdin Z ZWiIRi(u, d)]2, (5.98)

where d is the correspondence (disparity) vector field, Ri(u, d) is the residual

contributed by the i‘” attribute image at location 11 due to correspondence

vector (1, and w,- is a pre-specified weight associated with the residual R) (with

W = diag({w;})). For instance, intensity residual is defined as follows:

Rm(u, d) = I,(u + d) - I,(u). (5.99)

Expanding R at d = d’ + 6,, and assuming that higher order terms of ||d — d’II

are negligible, we have

R(u, d) = R(u, d’) + J (d — d’), (5.100)
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where J = 21%?)-

Rewriting Eq. (5.100), we obtain

My2Md— R(u, d). (5.101)—R(u,d)+ 6d 6d

This equation can be related to Eq. (5.94) where the term —R(u, d’) + (Egg-Lad

could be considered as y, A = anag’d , p = d, and 6y 2 —R(u, d). The

least squares solution (Eq. (5.98)) and the minimum variance estimator of p in

Eq. (5.94) are related through Eq. (5.97). If we make the simplifying assumption

that cy = 021 and W :2 1111, it can be observed from Eq. (5.96) that

I}, o< (JTJ)‘1. (5.102)

Thus, the confidence in the stereo module output is directly proportional to the

magnitude of J (evaluated at the final solution). Relating J to the reliability of

the module is intuitive: since steeper the R(u, (1) profile at u with the variation

in d, the more likely that the salient image features (as opposed to noise fluctu-

ations) are contributing to the matching process. In addition, a large residual

value R(u, d) could indicate a larger likelihood of the solution being spurious.

However, all these heuristics are merely gross indicators of the reliability of the

module and tend to be inconsistent and even misleading in rather simplistic

images.

Consider a simple synthetic stereo image pair of a cylinder shown in Figure 5.10.
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Figure 5.11 illustrates some of results derived from matching the stereo pair in

Figure 5.10 using the stereo module. Figure 5.11(a) shows the intensity profiles

of the cylinders in the 256‘” row. Figure 5.11(b) shows the error in the depth

computed from the stereo module for the 256“ row. In this illustration, we

will only consider the intensity attribute of the image. Figure 5.11(c) shows

the intensity residuals computed in the 256‘” row at the final solution. Fig-

ure 5.11(d) depicts 3,, = amgéxu’d , where dz. is the x-axis component of the

disparity. From these illustrations, it could be observed that (i) the large final

values of the residuals are not directly related to the error in the disparity com-

putation and (ii) the higher magnitude of J?” does not necessarily equate to
mt

more accurate disparity values.

In our experience, one of the the primary sources of error in the stereo module

output is due to the violations of the implicit assumptions embedded in the

stereo module. For instance, the stereo module we use assumes that all the

pixels in each stereo image are visible to both the cameras and the corresponding

pixels possess similar image features. Image regions representing occlusion, limb

edges, etc., conspicuously violate these assumptions and result in an erroneous

disparity output which can not be assessed using this method of reliability

estimation.

Some other criteria for computing the confidence measures have been suggested

in the literature based on a spatial variation in the magnitude of residuals with

respect to change in observed disparity. For instance, Singh and Allen [173]
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(a) (b)

Figure 5.10: Synthetic stereo pair image of a cylinder (size 512 x 512).

propose a confidence measure based on the eccentricity of this spatial distri-

bution. These and other measures suffer from similar limitations when the

correspondence estimation based on similarity of the image attributes is not

adequate. Hence, caution needs to be exercised in the use of confidence mea-

sures based on intramodule approach alone.

. Empirical approaches: These approaches are based on the known facts about

a given vision module. These facts may have been either derived from psy-

chophysical experiments or from the human neurophysiological data. For in-

stance, there is some evidence that the weight assigned to each cue is computed

from an unrelated “ancillary” cue [72]. In some situations, the human visual

system might have empirically learnt to weight the stereo module output more

heavily than the output from shape from shading module. However, such heuris-

tics are not readily known and tend to display inconsistent performance in real
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Figure 5.11: Error analysis of synthetic stereo image pair in Figure 5.10. This figure

shows the results for the 256‘” row only: (a) Intensity profiles of the left and right

stereo image in the 256“ row. (b) Error between the observed and the true depths;

(c) Intensity residuals; ((1) Sensitivity of the intensity residuals.

situations.

For instance, it is commonly known that the stereo modules perform better in

the regions of high contrast. Consider Figure 5.12. Figure 5.12(a) shows the

right image of a stereo pair of sphere. Figure 5.12(b) depicts the edge output

from Canny operator (only 10% of the strongest edges shown). Figures 5.12(c)

and (d) show the depth map obtained from the stereo module and ground truth

depths, respectively. Note that the regions of large error in estimates do not
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directly correspond with the regions of higher edge density.

. Intermodular approaches: Here the communication among the modules

themselves is used for resolving the uncertainty about the overall system output.

As mentioned in Chapter 1, there are several methods of resolution: accumu-

lation, cooperation, competition, veto, disambiguation, promotion, consensus,

coherency, etc. Since the information from several independent modules are

juxtaposed in this approach, such an approach has better opportunities to cor-

rectly assess output of individual module. In this thesis we have used a novel

method of assessing the reliability of the module output based on coherency.

In the present implementation we do not weigh the module output at a site

by the corresponding confidence value (except in the case of stereo integration

(Eq. (5.48)) and uniformly treat the outputs at all sites. This means that the

values of A and flgp in Eqs. (5.80) and (5.25) are assumed to be globally constant.

The confidence maps of the module output influence the weighing of the evi-

dence gathered by that module. The present approach does not estimate the

reliability of the intrinsic map itself and the information regarding the reliabil-

ity of a given solution is lost after each module performs its update. In a more

general solution, a confidence map could be associated with each component

of the intrinsic map. Given a module output along with its confidence map,

the current state of intrinsic map, and the current state of the confidence map

associated with the intrinsic map, it is possible to use a Bayesian framework

to updating not only the intrinsic map but also the confidence map associated
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Figure 5.12: Empirical method for stereo evaluation (only the right stereo image is

shown): (a) intensity image of sphere; (b) output from Canny edge applied to (a);

(c) depth output from stereo module; (d) ground truth depths; (e) error in (c).
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with it. These representation and updation schemes are similar to the Kalman

filter approach. The advantage of such a scheme is that the confidence map

associated with the intrinsic map indicates the reliability of the final solution.

5.4 Integration Algorithm

Our representation of the input images and the extracted features uses seven levels

of resolution; each coarser level of resolution reduces the number of pixels by a factor

of 4 (half in each dimension, :1: and y).

The integration system starts with an initial planar depth map (and no bound-

aries) at the coarsest level of resolution (8 x 8 image size). Each module sequentially

updates the intrinsic map a fixed number of times (20) and then the control is passed

to the next finer level of resolution (Fig. 5.6).

We now present a high-level description of the overall integration algorithm.

Given a stereo pair of intensity images, I) and 1,, direction n, of the illumination

source, weight vector w (Eqs. (5.28)), thresholds related to the coherence func-

tions (pshadz'ng, patereo, Ptemture, and p9?) (Eq. 5.52), coupling coefficients (amading and

mature) (Eq. 5.80), and the weight vector associated with perceptual grouping module

(Section 5.2.1), the depth values are reconstructed using the algorithm in Figure 5.13.

Note that our uniform framework facilitates extension of the current system to

include additional modules. All components of the integration system require local

computations. The integration of the perceptual grouping and stereo modules at
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1. Compute the four attribute (smoothed, gradient, positive curvature, and neg-

ative curvature) images. Initialize the disparity at each pixel at the coarsest

level (I = 6) to zero.

2. Starting with the coarsest level (I = 6), do at each level I:

A. Obtain the four attribute images at level I by blurring the attribute images

at level 0 (input image).

Do steps (2') to (iv) N (= 20) times.

(i) Apply perceptual organization module to refine the boundary map. Do

a fixed number (5) of anisotropic diffusion iterations of depth values.

(ii) Update the disparities at level l by one iteration of stereo module

(Eqs. (5.28)).

(iii) Apply shape from shading module to refine the depth map.

(iv) Apply shape from texture module to refine the depth map.

E. Project the disparities to level (l — 1) by (quadratically) interpolating dis-

parities at level I. Project the regions from level I to (l — 1).

3. Output the final depth map and boundaries. The surface orientation (normals)

at each point can be computed from the depth map.

 

Figure 5.13: Uniform Bayesian Integration Algorithm.

each level of resolution for each iteration needs one pass over the entire image and

its computational complexity is 0(n2), for an n x 71 image. The complexities of inte-

grating shape from shading and texture modules are somewhat data-dependent and,

from our experience, require a few dozen iterations before convergence. The compu-

tations required for the integration constitute about 25% of the overall computations

of the system. The modular and distributed organization facilitates parallel imple-

mentation. Table 5.4 presents actual timing statistics for a typical pair of 512 x 512

intensity images on a Sun Sparc 20.
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Table 5.2: CPU times for a typical image on Sun Sparc 20.

 

 

 

 

 

 

 

Computation Time

Perceptual Grouping 18308

Shape from shading 8108

Stereo 1188s

Shape from texture 33608

Integrated System 84398   

5.5 Experimental Results

Our experimental results will be discussed in the context of quality of reconstruction

obtained from the integrated system. The experiments are primarily designed to

demonstrate the graceful deterioration in the performance of the system in situations

where assumptions made by the individual modules are violated. Many results are

presented for subjective evaluation by the reader. Objective evaluation of the quality

of surface reconstruction is presented in case of synthetic images. We will now briefly

describe our imaging setup before presenting our results.

The objective of the experiments described in this section is to demonstrate the

improvements in the recovery of the 3D structure of the scene due to integration

as well as the graceful degradation in the performance of the system under adverse

situations. In most of the experiments, we have chosen to compare the reconstruction

results obtained from the integrated system with corresponding results from stereo

module alone; the reconstruction results from the other individual modules were not

as reliable as those of the stereo module. The experiments are organized as follows.

First, we describe the improvement in numerical accuracy of 3D reconstruction due
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to integration for synthetic images rendered under a variety of controlled imaging

conditions. The second part of the section illustrates the qualitative improvement in

the recovery of 3D structure due to integration for several real images.

Synthetic Data: Six volumetric primitives (parallelopiped, cylinder, hyper-

boloid, paraboloid, ellipsoid, and torus) were used for generating photo-realistic stereo

images. This set of primitives was selected primarily due to its wide range of sur-

face profiles. This data set was supplemented by the range image of a Mozart bust.

Texture-mapped stereo images of these surfaces were obtained using a photo-realistic

renderer, pov-ray.

Imaging Conditions: In all the experiments involving synthetic images, the im-

age centers of the left and right cameras were located at (—9, 0, —90) and (9,0, ~90),

respectively. The optical axes of both the cameras pointed towards the origin and

were located in X—Z plane. A pin hole camera geometry determined the imaging

projections. A point illumination source was placed directly behind the camera at

(0,0, —1000). The sensing noise was simulated by 10% i.z'.d Gaussian jitter in the

projected intensity of pixels.

The first set of experiments was designed to demonstrate the soundness of the

integration scheme to recover the 3D structure for the entire data set (which encom-

passes a wide range of surfaces) from their stereo images. Each object surface was

texture-mapped with a synthetic checkerboard texture and was modeled as a perfect

Lambertian surface. The right stereo image for each of the surface primitives and their

reconstructions obtained from stereo module alone and from the integrated system

are depicted in Figs. 5.14 and 5.15. The regularity of the fine-grained texture often
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presented a severe challenge to the stereo module in obtaining the correct correspon-

dence [76]. In an integrated system, some of the mistakes committed by the stereo

module were corrected by the information provided by the other modules. However,

the performance of the integrated system is far from perfect. The errors in the re-

construction obtained by the integrated system can be primarily attributed to the

late introduction of the other modules in the processing of data 15. Consequently,

the errors committed by the stereo module at the coarser levels of resolution could

not always be reversed. The 3D reconstructions obtained from stereo alone and from

the integrated system were compared with the ground truth (given), using a squared

error function based on differences in true and estimated depth and shape (surface

normals) measurements. Percentage reductions in this squared error are used for as-

sessing the performance of the proposed integration strategy. Table 5.3 shows that

the surface reconstruction using the integrated method is superior to that obtained

by the stereo module alone.

Table 5.3: Improvement in surface reconstruction due to integration: Lambertian

surfaces.

 

 

 

 

 

 

 

Surface primitive % Reduction in shape % Reduction in depth

estimation error estimation error

Parallelopiped 31 28

Sphere 20 23

Cylinder 22 26

Paraboloid 17 22

Hyperboloid 8 14

Torus 5 12     
 

Violation of nominal assumptions made by individual modules should not signif-

 

15At very coarse resolutions (8 x 8, 16 x 16, and 32 x 32), no meaningful features could be extracted

from the image pair for the modules other than stereo.
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icantly deteriorate the overall system performance. The second experiment focussed

on the reconstruction of a surface of an arbitrary complexity (Mozart bust) under

various “adverse” conditions. Each of the confounding situations is shown in (a) and

(b) part8 Figs. 5.16—5.20. Fig. 5.16(a) is the right stereo image of a Lambertian surface

with no texture and hence the performance of shape from texture module was not ex-

pected to be reliable. The resultant integrated system performance remained stable.

The improvement in performance (Table 5.4) was primarily contributed by the shape

from shading module and was not significant since considerable variation in brightness

across the image surface helped stereo module to obtain the correct correspondences.

Stereo images in Figs. 5.16-5.19 present challenging conditions for not only the shape

from shading module (due to violation of single surface albedo assumption), but also

to the shape from texture module. First, the texture is not uniform and the variation

of the texture features across a physical surface does not systematically relate to its

orientation. Further, in Fig. 5.19 the surface is mapped with two similar yet distinct

textures. All these confounding conditions did not significantly interfere with the

performance of the integrated system. We primarily observed an improved shape es-

timation rather than improved depth estimation under these situations. Figs. 5.20(a)

and (b) depict a more complex situation. Here, the Specularity violates the “Lamber-

tian surface” assumption made by the shape from shading module in addition to the

unique surface albedo. The specular patches also interfere with the performance of

the stereo module (since the sites with similar intensity attributes do not necessarily

imply correspondence). Finally, the non-uniform texture violated the assumptions

made by the texture module. The violation of assumptions made by all the three
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modules results in a very low improvement in the overall system performance (see

Table 5.4).

Table 5.4: Improvement in surface reconstruction in texture-mapped Mozart images.

 

 

 

 

 

 

Surface % Reduction in shape % Reduction in depth

estimation error estimation error

No texture (Fig. 5.16) 8 4

Partial texture (Fig. 5.17) 27 12

Full texture (Fig. (5.18) 32 14

Two textures (Fig. 5.19) 37 18

Specular texture (Fig. 5.20) 16 14     

Finally, Figures 5.21 and 5.22 illustrate (visually) how the performance of the

integrated system improves the 3D reconstruction of real images. In the fruit im-

age (Figs. 5.21(a) and (b)), the integrated system improved the shape estimation

(improvement is conspicuous over the cantaloupe and table-cloth surfaces) and the

depth estimation (especially over the cantaloupe surface). Figures 5.24(a) and (b)

show superquadric fits to the depths obtained from stereo module and the integrated

system, respectively.

The image of Egg and Cup (Figs. 5.22(a) and (b)) was captured by an inexpensive

CCD camera (Panasonic GP-KR202, f = 25 cm, maximum aperture). The images

were subsequently gamma corrected with 7 = 2.0 and normalized to 256 gray levels.

The stand off was approximately 80 cm. To obtain a stereo pair of images, the camera

was translated and rotated. The translation was in the direction of x-axis and rotation

was about the y-axis (the z-axis being approximately aligned with the optical axis).

The rotation of the camera was effected to bring the disparity of the region of interest

close to zero. The scene was illuminated with ambient light and a single incandescent
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light source was located (30 cm) behind the camera (approximately in the :c-z plane)

pointing in the direction (0,0,1). The integrated system improved the estimation of

the shape and depth features over the egg surface.

Fig. 5.23 shows segmentation results for Fruit image (Fig. 5.21(b)) and Egg and

Cup image (Fig. 5.22(b)).

5.6 Summary

The visual world can only be ambiguous in relatively contrived situations, but in

real world it is the combinations of the cues which convey a unique physical real-

ity. Whether in reconstructing the entire visual input or in extracting its component

relevant to the given task, the designer of a vision system confronts the challenging

problem of integrating all visual cues to obtain a reliable performance. Several inte-

gration strategies have been reported in the literature which primarily study pairwise

integration of vision modules. But, there is a dearth of results on integrating more

than two modules for real images. We have presented a unified framework for inte-

grating vision modules which facilitates a design of a flexible and extensible integrated

system for 3D reconstruction from a pair of stereo images. Based upon this frame-

work, we have implemented a system for integrating four vision modules: perceptual

organization, shape from shading, stereo, and shape from texture. We show the re-

construction results using the integrated system for both synthetic and real images.

We also demonstrate the consistent performance of the integrated system even in the

adverse situations where one or more assumptions made by the individual modules
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are violated. The numerical accuracy of the recovered depth is assessed in case of

synthetically generated data.

Finally, we note some of the limitations of our current system which are significant

topics for further research: We have only provided some empirical evidence for the

convergence and stability of the integrated system. A rigorous analysis of these issues

needs to be undertaken which is a subject of our ongoing exploration. Further, the

present flow of control is fixed and is not suitable for partial and dynamic reconstruc-

tion. A more flexible control might provide a congenial environment for many active

and purposive vision systems.
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 (11)

Figure 5.14: Synthetic texture-mapped surface primitives (Only the right stereo im-

age is shown): (a) parallelopiped (31%); (b) sphere (20%); (c) cylinder (22%); (g)—(i)

and (m)—(o) depict the depth reconstruction for these primitives from stereo mod-

ule and from the integrated system, respectively. Figures in the parentheses show

improvements in the depth estimate due to integration (see Table 5.3).
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Figure 5.15: Synthetic texture-mapped surface primitives (Only the right stereo im-

age is shown): (d) paraboloid (17%); (e) hyperboloid (8%); and (f) torus (5%); (j)—(l)

and (p)—(s) depict the depth reconstruction for these primitives from stereo module

and from the integrated system, respectively. Figures in the parentheses show im-

provements in the depth estimate due to integration (see Table 5.3).
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Figure 5.21: Fruit image (size 512x512): (a) and (b) Left and right stereo images; (c)

Recovered depth from stereo alone; (d) Recovered depth from the integrated system;

(e) Recovered surface normals from stereo alone; (f) Recovered surface normals from

the integrated system; (g) and (h) show (e) and (h) as shaded perspective views [76].

Fruit image was provided by Prof. Narendra Ahuja.
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  (
Figure 5.22: Egg and Cup image (size 512x512): (a) and (b) Left and right stereo im—

ages; (c) Recovered depth from stereo alone; (d) Recovered depth from the integrated

system; (e) Recovered surface normals from stereo alone; (f) Recovered surface nor-

mals from the integrated system; (g) and (h) show (e) and (h) as shaded perspective

views [76].
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  (a)
Figure 5.23: Segmentation results for (a) Fruit image (Fig. 5.21(b)) and for (b) Egg

and Cup image (Fig. 5.22(b)).

  
(a) (b)

Figure 5.24: Recovery of 3D shape of cantaloupe in the Fruit image (Fig. 5.21): (a)

Recovered superquadrics from stereo alone; (b) Recovered superquadrics from the

integrated system.



Chapter 6

Conclusions and Future Work

Information integration is an important research problem and is a constant theme of

exploration in many scientific fields, including computer vision. Integration of vision

modules for 3D surface reconstruction is the focus of research presented in this thesis.

In this chapter we present a brief overview of our work (Section 6.1), a list of di-

rections for future research (Section 6.2), and some concluding remarks (Section 6.3).

6.1 Overview

Individual visual cues are often unreliable and ambiguous. It is extremely difficult

to overcome the limitations in implementations of the individual vision modules in

an isolated system; integrated vision systems are necessary to obtain a reliable inter-

pretation of complex scenes. Design of such systems is challenging since each vision

module works under a different and possibly conflicting sets of assumptions; an ef-

fective integration scheme must not only deal with noisy input images but must also

226
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overcome the artifacts and restrictive assumptions of the individual modules.

Research reported in this thesis emphasizes modeling the interaction and infor-

mation exchange among the vision modules to overcome the limitations in their indi-

vidual performance in isolation. In a detailed case study presented in Chapter 4, we

demonstrated how the interactions among the vision modules (via, shape from shad-

ing, stereo, line labeling, and perceptual organization) can improve 3D reconstruction

from a pair of stereo intensity images.

In Chapter 5 we made an attempt at systematizing design of integration of vision

modules using a simple control structure. We proposed a unified Bayesian integra-

tion framework for interaction among the vision modules to obtain a complete 3D

reconstruction from a pair of intensity (stereo) images. The proposed integration

architecture allows a parsimonious modeling of various interactions. Novel features

of the proposed scheme include, (i) interaction of each module with intrinsic map,

(ii) multi-level, multi—resolution representations and hierarchical coarse-to-fine con-

trol, (iii) fine—grained feedback mechanisms, and (iv) robust estimation procedures

based on the principle of coherence. We have integrated perceptual grouping, stereo,

shape from shading, and shape from texture modules under the proposed framework.

We demonstrated the efficacy of our approach using real images of several different

scenes and observed improvements in the quality of recovered 3D structure as a result

of integration. The output of the integrated system is shown to be insensitive to vi-

olations of individual module assumptions. The numerical accuracy of the recovered

depth is assessed for photo-realistically rendered images from several scenes contain-

ing a variety of generic surfaces. We have also qualitatively evaluated our approach
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by reconstructing geons from the depth data obtained from the integrated system.

6.2 Future Directions

Whether to reconstruct the entire visual input or to extract its component relevant to

the given task, a reliable vision system is required to consider all the available visual

cues to obtain an unambiguous output. This raises several important research issues

in solving integration problem. What is the most reliable information provided by

each visual cue? How to design an integrated system which can be easily maintained

and extended? How to integrate vision modules so that the system performance does

not critically depend on the performance of individual modules? How much weight

should be assigned to the information provided by each module? We have made an

attempt to address some of these research issues in our work, but a definitive solution

to these problems will need more extensive research. Here we list some possible

enhancements to the present system:

1. Color is an important source of information in the human visual system. Until

now, we did not consider this cue in order to keep the magnitude of the image

data manageable. As seen in Section 3.2, the recovery of surface orientation from

shading information alone is an underconstrained problem. Inclusion of color

information will provide additional physical constraints (one irradiance equation

per channel). Such an augmentation is likely to improve the performance of the

integrated system.
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. The current system does not include a systematic model for specular reflectance.

Our experiments indicate that a limited amount of Specularity does not critically

degrade the performance of the system. Inclusion of even a simple model for

Specularity could improve the performance of the system for scenes with highly

specular surfaces.

. The present implementation separately models interaction between each cue

and the intrinsic map to derive a simple control structure. How eflective is this

model, in practice, compared to the pairwise modeling of interactions among

the modules?

. Our system is relatively insensitive to the various module and interaction pa-

rameters due to the manner in which we have incorporated feedback into the

system. It would be desirable to automatically learn the parameters of the

system.

. The flow of control in our system is fixed and is not suitable for partial and

dynamic reconstruction. A more flexible control might provide a congenial

environment for many active and purposive vision systems.

. The present approach, in a sense, egalitarian; it assumes that all modules per-

form equally well in all regions of an image. This situation can be vastly im-

proved by our knowledge about the performance of a module on the image

features. For instance, Karu, Jain, and Bolle have recently shown that it is pos-

sible to identify textured regions in an image. Such mechanisms are expected
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to vastly improve the system performance [93]. The present approach does not

utilize the common knowledge about the performance of various modules.

7. The present system proposes an ambitious goal of generic 3D reconstruction. A

given application domain often offers opportunities to recover from the errors in

the sensing and intermediate processing by coupling goals of the system with the

object models in the domain. Such an augmentation of the current integrated

system in the context of a given application ( e. 9., 3D object recognition for a

limited class of objects) would be useful.

6.3 Conclusions

The visual world can only be ambiguous in relatively contrived situations (e. g. Necker

cube) but the visual input from the scenes in real world abounds with a number

of visual cues. It is only the combination of several cues that permits a reliable

interpretation1 .

There is a general agreement among the computer vision researchers about the

need for information integration. However, the potential of a vision system relying

on low-level modules has been grossly underestimated because of individual vulner-

abilities of the modules. While much of the research is directed at improving the

performance of individual modules, a relatively few studies emphasize the impor-

tance of integration. Our results from a limited scene domain demonstrate that an

integrated system comprising of several low-level modules can provide a better 3D

 

1This line of thinking is associated with the theory of direct perception.
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reconstruction than the individual modules without using any top-down knowledge.

However, attaining the performance of the human visual system using computers

appears to be a far cry.

Integrating vision modules for 3D reconstruction from a stereo pair of intensity

images is a diflicult problem primarily due to our lack of understanding of two under-

lying issues: (i) an accurate assessment of the strengths and limitations of individual

modules; (ii) the representations and control structures which can exploit comple-

mentary constraints provided by the imperfect modules to recover the true structure

in the data. We have attempted to systematize the design procedure for an inte-

grated system which takes into account these research issues and demonstrated that

an integrated system thus designed leads to improved results in a limited scene do-

main. Much more research is needed to obtain definitive and robust solutions to the

integration problem.
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Appendix A

Notation and Conventions

R: set of real numbers.

Rd: d-dimensional real space.

C": A function differentiable n times.

f() variable probability distributions.

P(.): specific named probabilities.

Xij: jt" observation (measurement) at the it” location (site).

Y”: 3"" intrinsic parameter of the it” location (site).

Pi: Decision vector variable.

p;: A decision vector.

P;: Optimal decision vector variable.

Sgn(:c): Sign function; Sgn(:z:) = 1 if a: > 0 else zero.

Id.Sgn(a:,y): 1 if Sgn(:2:) = Sgn(y) else zero.

Z\y: All members of set Z except y.
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Appendix B

Glossary of Assumptions in

Computer Vision

1. Transparency: Depth map could be a multi-valued function.

2. Opacity: Depth map is a single-valued function.

3. General VieWpoint: Statistically significant structural relationships among im-

age features are unlikely to have resulted due to accidental viewpoint of the

observer.

4. Coherence: Features resulting from a single physical event display statistical

interaction.

5. Cohesiveness: Objects are usually compact and opaque.

6. Continuity: A given property is smoothly varying and is differentiable. Usually,

used in the context of the linear image (or scene) features, e. g, boundaries.
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10.

11.

12.

13.

14.

15.

16.

17.

18.
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IsotrOpy: all edge orientations are equally likely in the scene.

Homogeneity: The surface is covered with a single texture.

Independence: The edgel orientations extracted from the input image are inde-

pendent.

Regularity: The texture is periodic and not stochastic.

Regular projective geometry: The unprojected texture in the scene and the

imaging geometry are not conspiring to compensate for their individual contri-

butions.

Smoothness: Differentiable property. Typically used for surface properties.

Integrability: The reconstructed surface is required to be physically meaningful.

Local spatial interaction: Spatially distant image features are less likely to

display statistical interaction.

Lambertian Surface: Irradiance is independent of viewing direction and follows

Lambert’s cosine law.

Gaussian noise: Noise process follows Gaussian distribution.

Perfect segmentation: The objects of “interest” (foreground) can be accurately

identified in the given image(s).

Single source of illumination: Objects in the image are illuminated by a single

source of light.

 



19.

20.

21.

22.

23.

24.

25.

26.

27.
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Small motion: Infinitesimal motion of each image feature between successive

image frames.

Polyhedral world: Objects in the image are polyhedral and possess definite

volume.

Paraperspective projection: Imaging projection process is considered to be a

composition of two projections: (i) first, all features on surface of an object

are orthographically projected onto a a plane parallel to the image plane and

passing through the center of mass of that object, (ii) the projected surface

features are then projected on to the image plane using perspective projection.

Sufficient context: The projective distortion of surface markings due to imaging

is not trivially degenerate.

Symmetry: Objects in the image are symmetric.

Rigidity: Objects in the image are rigid. No relative motion of any part of an

object with respect to any other part of the object.

Locally spherical surface: Maximum and minimum curvature at every point on

the object surface are identical.

No interreflection: The amount of illumination at each point on an object sur-

face is accounted for by the source of direct illumination.

Piecewise continuity: Image features (boundaries) are piecewise continuous.



28.

29.

30.

31.

32.
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Dichromatic reflectance: Spectral distribution of the diffuse component is deter-

mined by the colorant in the surface whereas the specular component preserved

the spectral distribution of the incident light.

fiactal surface model: The surface shape can be adequately described by a

fractal.

Separable colors: Piecewise constant albedo.

Constant albedo: Albedo of all the surfaces in an image is identical and constant.

Gaussian blurring: Camera’s point spread function can be approximated by a

two dimensional Gaussian function.
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