n.. at. ? . monk: 3...: a» ii... I \v . Viv i. 5 :3: 1, ..x u n. i. 7.3 s Shit: Is any .ps‘uhuuhflfi Kuhn .. .\. 1i us“ H)! v, a 13 ,1 4;} u. i" .1 .3. , :6: .k. 15313.; xvi-.4}? if! Q :1... 9.. 6. ~ . .ml. . . ”and. 3.3 11} - ’1‘... I) 7:3;1; «Q. I); .91.“. ‘31),il5... t 6.! L. ‘.I 2 a a. AJH . r .5...2.r.: llllllllllIll”Ill!lllllllllfflllllllllllllllllll THESE 301420 3222 (1565) This is to certify that the thesis entitled The High Silica Rainier Mesa Magma Batches: Implications on the Origin of Large Volume Compositionally Zoned Magmatic Systems presented by Benjamin Woods Saltoun has been accepted towards fulfillment of the requirements for Masters degree in Geological Sciences WWW Major professor W/Z/fs/ 0-7639 MS U is an Affirmative Action/Equal Opportunity Institution LIBRARY Michigan State University PLACE Ill RETURN BOX to remove We checkout horn your record. TO AVOID FINES return on or before dete due. DATE DUE DATE DUE DATE DUE ___]l l__J |[:1__|::1 ||____| | ___l::L__J Er—‘l: ii;- MSU le An Afflrmetlve Wood Opportunlty Inetttmlon Wane-er THE HIGH SILICA RAINIER MESA MAGMA BATCHES: IMPLICATIONS ON THE ORIGIN OF LARGE VOLUME COMPOSITIONALLY ZONED MAGMATIC SYSTEMS By Benjamin Woods Saltoun A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Geological Sciences 1995 ABSTRACT THE HIGH SILICA RAINIER MESA MAGMAS: IMPLICATIONS ON THE ORIGIN OF LARGE VOLUME COMPOSITIONALLY ZONED MAGMATIC SYSTEMS By Benjamin Woods Saltoun Chemical heterogeneities occur in many large-volume ash-flow sheets. Most workers have assumed that the high-silica portions of these deposits evolved largely by differentiation processes that occurred within the magma chamber. However, the chemical heterogeneities of glassy pumice fragments within the large volume, Rainier Mesa ash-flow sheet are not consistent with these processes. They occur in two primary chemical groups. A low and high silica group. Additionally, the high-silica group contains two distinct populations; a low-Th and a high-Th population. Geochemical, mineralogical and geothermometry data on the high silica populations confirms the separate nature of these groups. All three magma types were resident in the pre-eruptive Rainier Mesa magma chamber. Yet, major and trace element variations of the high silica magma batches, especially La, Th and Zr, cannot be modeled by differentiation processes that can occur within a single magma body. This abstract has been cut from its original form to fit the space requirements of the university. ACKNOWLEDGMENTS I guarantee that you would not be holding this thesis were it not for the help of two pe0p1e: Tom Vogel and Kris Huysken. Firstly, I would like to thank my advisor, Tom, for his unmitigated financial, intellectual and moral support throughout the duration of this project. Tom knew when to help me, and he knew when to let me figure it out. I also thank Kris, firstly, for the comradeship and, secondly, for answering my many geology questions. I would also like to thank my committee members, Bill Cambray, Duncan Sibley and Dave Matty for their willingness to assist in the completion of this study. iii TABLE OF CONTENTS List of Tables .................................................................................................. vi List of Figures ................................................................................................ vii Introduction ................................................................................................... 1 Geologic Setting ............................................................................................. 5 Sampling Procedure ...................................................................................... 7 Rainier Mesa Geochemistry .......................................................................... 8 Mineral Assemblage Chemistries of the High and Low-Th Magmas ....... 23 Ilmenite ........................................................................................... 23 Magnetite ........................................................................................ 25 Biotite .............................................................................................. 25 Feldspar ........................................................................................... 26 Geothermometry ............................................................................................ 30 Fe-Ti Oxide Geothermometry ......................................................... 30 Ternary-Feldspar Geothermometry ............................................... 32 Discussmn .................................................. 36 Background ..................................................................................... 36 Confirmation of the High and Low-Th Magma Batches ............... 38 Geothermometric Considerations ................................................... 41 Conclusions .................................................................................................... 44 Appendix A: Analytical Techniques and Error Analysis ............................. 46 X-Ray Fluorescence ......................................................................... 46 INAA. ............................................................................................... 46 Electron Microprobe Analysis ........................................................ 47 Appendix B: Major and Trace Element Analyses ........................................ 49 iv Appendix C: Electron Microprobe Analyses ................................................. 62 Bibliography .................................................................................................. 74 LIST OF TABLES Table 1. Fe-Ti geothermometry data for the high and low magma batches .......................................................................................... 3 1 Table 2. Mean compositions of coexisting feldspar pairs for the high and low-Th magma batches. Ks denotes alkali-feldspar compositions. Pl denotes plagioclase feldspar compositions ...... 34 Table 3. Error analysis of Instrumental Neutron Activation Analysis... 48 Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. LIST OF FIGURES Location Map of the Southwest Nevada Volcanic Field .......... 6 Total Alkali-Silica classification diagram. The entire Rainier Mesa Tufi'is plotted. Includes data from (Mills, 1991) ............................................................................... 9 Si02 versus Th/Nb. This diagram shows the two primary magma groups of the Rainier Mesa Tufi’. The high and low magma groups are separated by a silica gap at approximately 70 wt% ........................................................................................ 10 Th versus Zr and La. The absence of difi‘erentiation pathways indicates that in situ difierentiation cannot petrogenically relate the three Rainier Mesa magma types ............................ 1 1 Th versus Nb for the high silica Rainier Mesa 'I‘ufi' ................ 13 Th/Nb versus selected major element oxides (after Cambray et al., 1995) ...................................................... l ......................... l4 Th/Nb versus selected trace element ratios (after Cambray et al., 1995) ................................................................................ 16 Th/Nb versus selected major element oxides; includes symbols that depict new whole-pumice geochemistry for the high and low-Th magma batches .................................. 19 Th/Nb versus selected trace element ratios; includes symbols that depict new whole-pumice geochemistry for the high and low-Th magma batches .................................. 2 1 vii Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17 . a) FeO versus 'l‘iOz variation diagram for ilmenite compositions of the high and low-Th magma batches. b) MgO versus MnO variation diagram for ilmenite compositions of the high and low-Th magma batches ............. 24 a) FeO versus TiOz variation diagram for magnetite compositions of the high and low-Th magma batches. b) MgO versus MnO variation diagram for magnetite compositions of the high and low-Th magma batches ............. 27 a) Ti02 versus A1203 variation diagram for biotite compositions of the high and low-Th magma batches. b) Si02 versus MnO variation diagram for biotite compositions of the high and low-Th magma batches ............. 28 Ternary feldspar diagram showing plagioclase and alkali-feldspar compositions. The arrows indicate inferred paths of magmatic evolution ....................................... 29 Fe-Ti oxide temperature distribution among the high and low-Th magma batches ...................................................... 33 Ternary feldspar temperature distribution among the high and low-Th magma batches.- ............................................. 33 Temperature versus Th/Nb. Both the Fe-Ti oxide and ternary feldspar temperatures indicate that the high-Th magma had significantly higher temperatures than the low-Th magma. Furthermore, the ternary feldspar temperature data provides confirmation of Fe-Ti ordde data ............................................................................................ 40 Si02 versus temperature diagram showing the discontinuous thermal gradient in the pre-eruptive Rainier Mesa magma chamber ............................................................... 42 viii Introduction The origin of compositionally zoned magma chambers is currently one of the most actively studied fields within igneous petrology. The common occurrence of zoned magma chambers is well documented. de Silva and Wolfi' (1995) maintain that in situ differentiation is almost entirely responsible for any observed major and trace element variations that occur within a zoned magma chamber. Their hypothesis is primarily based on: (1) the observation that smaller volume zoned magmatic systems exhibit extreme compositional zonation (Smith, 1979; Hildreth, 1981; de Silva, 1991), whereas, large volume systems are commonly weakly zoned or homogenous (Whitney and Stormer, 1985; de Silva, 1989a; Best et al., 1989; de Silva and Wolfi‘, 1995); (2) the range of major and trace element variation in zoned magmas which is consistent with crystal fractionation (Michael, 1983; Wolff and Storey, 1984; W6rner and Schmincke, 1984a, b; Cameron and Cameron, 1986); (3) the inference most isotopic variations are the result of magmatic contamination by fluids and/or assimilation of wall rock (Warner et al., 1985; Palacz and Wolff, 1989; Tegtmeyer and Farmer, 1990) and (4) that calculated zoning times are in general agreement with independent estimates. Large-volume, compositionally zoned magmatic systems have been observed by many workers (e.g., Dunbar and Hervig, 1992b; Stix and Gordon, 1993; Cambray et al., 1995). However, reasonable in situ 2 diflerenfiafion models fail to characterize the chemistry of these systems. Cambray et a1. (1995) have recently proposed that compositional zonation in the large volume Rainier Mesa magma system was the result of batch melting. They suggest that chemically distinct magma batches formed at the source area by partial fusion of a protolith; either by heterogeneous melting of a single protolith or simultaneous melting of multiple source areas (Sawyer, 1994). These chemically distinct magma batches were extracted from the source area either sequentially or simultaneously along faults. If different magma batches simultaneously used the same fault conduit, they would remain separate due to viscosity difi‘erences (Carrigan and Eichelberger, 1990; Carrigan, 1994). Over time, these chemically distinct magma batches were stored within a dilatant releasing bend and became density stratified to form a compositionally zoned magma chamber. Thus, the chemical variations among the difi‘erent magma batches are not consistent with in situ difi'erentiation mechanisms. However, the variations within a single magma batch could have been the result of in situ differentiation or continuous reaction melting (Cambray et al., 1995). Considering its large compositional range (55 to 76 wt% Si02), the Rainier Mesa ash-flow sheet is ideal for the study of large volume zoned magmatic systems. The Rainier Mesa ash-flow sheet represents an 1 1.6 Ma eruptive event that explosively erupted more than 1200 km3 of material. Given the compositionally zoned nature of the Rainier Mesa ash-flow sheet, 3 most workers have assumed that the pre-eruptive Rainier Mesa magma chamber was chemically and thermally zoned. Furthermore, prior studies have determined that the ash-flow sheet is associated in time and place with Basin and Range extension (Byers et al., 1976a; Christiansen et al., 197 7 ; Eaton, 1984). Mills (199 1) extensively studied the geochemistry of the Rainier Mesa ash-flow sheet. His detailed analysis indicated the presence of three compositionally distinct magma batches. Mills (1991) observed that the Rainier Mesa ash-flow sheet is composed primarily of two main groups of magma: a low silica batch (55 to 72 wt% Si02) and a high silica group (72 to 76 wt% Si02). The high silica group is, furthermore, composed of two separate and distinct magma batches: high-Th/Nb ratio magma and a low- Th/Nb ratio magma. Also, the high silica group comprises approximately 90% of the total volume of the Rainier Mesa ash-flow sheet (~ 1080 ms) (Mills, 1991). The purpose of this study is, firstly, to confirm the existence of the high and low Tthb ratio magmas observed by Mills (1991). Secondly, to determine if the high and low Th/Nb ratio magma batches are related by in situ difi'erentiation; and finally,at the same time, test the work of Cambray et al. (1995) and de Silva and Wolff (1995). In summary, de Silva and Wolff (1995) suggest that in situ differentiation cannot produce the significant chemical and thermal 4 zonations observed in many large volume systems. Consistent with this suggestion is the Cambray et al. (1995) proposal that batch melting is the mechanism by which the large volume compositionally zoned Rainier Mesa system formed. The purpose of this research is to determine the petrogenic relationship that exists between the high silica Rainier Mesa magma batches. Geologic Setting The Rainier Mesa Tufi‘ is part of the Southwest Nevada Volcanic Field (SWNVF), and is located within the south-central Basin and Range Province (Fig. 1). This area is characterized by extensive volcanism that occurred fiom 15.25 Ma to 7.5 Ma (Sawyer, 1994). Within the SWNVF are four large volume compositionally zoned ash-flow sheets, one of which is the Rainier Mesa ash-flow sheet. The eruption of both the Rainier Mesa (1200 ms) and Ammonia Tanks (900km3) ash-flow sheets resulted in the development of the large Timber Mountain caldera complex. The Timber Mountain Caldera complex was uplifted 1200 m after the eruption of the Ammonia Tank Tufi'. This uplift resulted in the formation of the present day Timber Mountain (Christiansen, et al., 1977). Structurally, the Timber Mountain Caldera complex is associated with the Walker Lane Belt (Carr, 1990). The Walker Lane belt is a northwest trending fault zone composed of right and left lateral detachment faults and northwest trending structural blocks (Stewart, 1988; Scott, 1990). Furthermore, geophysical evidence indicates that SWNVF overlies an extensional pull-apart basin that coincides to a right-step in the Walker Lane belt (Carr, 1990). "7'100' “"°°' Goldfielq/ -. 5 ' , erouevmu. uoumm ; came» comm: _ h 37'” 0... ‘ ' ...................... QC. ‘ .‘ ............... slim .". aucx uouumu 5:35" i. cALoenA . '-.\. 63 ii Q0... \. :0. \ nuaen MOUNTAIN- : ~. OASIS VALLEY -...,\ CALDERA corms ,o ,. arw ‘\ : t~ 5 '. \. Beatty : °o.§. 0 0 kn. O. ...\ I .. e O ‘- .a' e c a 4 o (1)310 4;. 4 \. \. 2 . . . . JP "" \. ‘\ 0. PIMUMP WOW 1 \j l . Figure 1. Location map of the Southwest Nevada Volcanic Field. The stippled line delineates the spatial extent of the Timber Mountain Group (after Carr et al., 1984; Noble et al., 1984; and Vogel et al., 1987). Sampling Procedure Glassy pumice fragments from the high silica portion of the Rainier Mesa ash-flow sheet were analyzed for major and trace elements using XRF and INAA techniques (see appendix A). Because glassy pumice fragments represent pockets of solidified magma that were instantaneously erupted from a single vent (Flood, 1989), they provide a better indication of processes that may have occurred within the magma than whole ash-flow tufi' samples (Hildreth and Mahood, 1985; Flood et al., 1989; Schuraytz et al., 1989; Vogel et al., 1989; Mills, 1991; Huysken and Vogel, 1993). Conversely, whole ash- flow tuff samples represent an average composition of all material being deposited over a given period of time at a given location. Hence, glassy pumice fragments provides the most accurate representation of actual magma compositions, minus lost volatiles, at the moment of eruption (Flood, 1987). Rainier Mesa Geochemistry Mills (1991) extensively evaluated the compositional and chemical spectrum of the Rainier Mesa ash-flow sheet. Glassy pumice sample compositions were classified by Mills (1991) using the Total Alkali-Silica (TAS) classification system of Le Bas et al. (1986). The TAS diagram indicates that the entire Rainier Mesa ash-flow sheet compositionally ranges from trachyandesite to rhyolite (Fig. 2) (Mills, 1991). It has been noted that mobilization of alkalis can occur by secondary hydration of glass (Aramaki and Lipman, 1965; Lipman, 1965; Noble, 1967). Hence, alkali mobilization can skew classification based on the TAS method (Le Bas et al., 1986; Irvine and Barager, 1971). Mills (1991) observed that alkali mobilization within the Rainier Mesa ash-flow sheet is minimal based on the small variance of the alkali data. As observed by Mills (1991) and Cambray et a1. (1995) the most remarkable characteristic of the Rainier Mesa ash-flow sheet is a large silica gap between 7 1 and 73 wt% Si02 (Fig. 3). This silica gap demarcates the existence of the two main trends within the Rainier Mesa ash-flow sheet. The low silica trend occurs between 57 and 71 wt% Si02 and the high silica trend occurs between 73 and 78 wt% Si02. The variation diagrams produced by plotting Zr and La versus Th provide the best picture of the distinct nature of these two trends (Fig. 4) (Mills, 1991). Furthermore, Figure 4 K,O + Na 20 16 14 12 10 lllllfilTllTT lllllllllllTTllllWlllllll .. Phonolite _ _ Tephri: phonoltte l. Trachyte _ Phono- .. , , Tephrite Fordlte Trachy- L. andes _ Ba ' Tephrite trachy, .. Basan'rte tachy- andeslte _ basalt _ . Andesite Basaltlc _ . Basalt andesite _ Picro- .. _ basalt _‘ llJll IJl llllll llllllllllllllllLllJlill 35 40 45 50 55 60 65 70 75 3102 Figure 2. Total Alkali-Silica classification diagram. The entire Rainier Mesa Tufi‘ is plotted. Includes data from Mills (1991). l0 3 0: Low silica magmal I A A A: High Th/Nb magma 00 A D: Low Th/Nb magma 0 0 AQ 0 0 A A 2 " o W 0 A A ‘ 32 00° (30 AA AAA 0 0 o °° 0 1 - o - O l l 50 60 70 80 SiO2 Figure 3. SiO2 vs Th/Nb. This diagram shows the two primary magma groups of the Rainier Mesa Tufi‘. The high and low silica groups are seperated by a SiO2 gap at approximately 70 wt%. ll 700 I I 600- 0 a 0° 0 500— ° 00 — 400+- °°°wo 00 - o 8 Zr 300* 0 - A 200- A A A - A AAAAgAAQAA AA 10w DD umfinEWJ A ‘ 20% i l 0: Low silica magma A: High Th/Nb magma U= Low Th/Nb magma 150'" 0 0 0 0 0W0 8 0° 0 La 100 F 0° 0 A A ‘ ° 0 o A Am A 0 AAA AAA: 50 - D D AAAAAA a flu nsflifip 0 l l 10 20 Th 30 40 Figure 4. Th vs. Zr and La. The absence of difi'erentiation pathways indicates that in situ difi‘erentiation cannot petrogenically relate the three Rainier Mesa magma types (after Cambray et al., 1995). 12 . clearly shows that Zr and La versus Th variations between the low silica trend and high silica trend cannot be produced by reasonable in situ differentiation processes such as crystal fractionation or magma mixing. This conclusion is based on the observation that there are no difierenfiafion pathways between the high silica and low silica trends for these elements (Cambray et al., 1995). Mills (1991) originally identified two separate high silica Rainier Mesa magma types based on Th and Nb; a high Th/Nb ratio magma batch and a low Th/Nb ratio magma batch (Fig. 5). These two high silica magma types are also easily distinguished by the Zr and La versus Th, and Si02 versus Tthb variation diagrams (Fig. 4). Additionally, Figure 4 also indicates that reasonable in situ differentiation processes cannot petrogenically relate the high and low Th/Nb magma types to one another. Cambray et a1. (1995) also noted that there is no geochemical overlap between the high and low-Th magmas; as exhibited by variation diagrams of major and trace elements versus Th/Nb (Figs. 6 and 7). The chemically distinct nature of the high and low-Th magmas in conjunction with the lack of reasonable difierentiation pathways suggest that these magmas are genetically unrelated (Cambray et al., 1995). Furthermore, step-wise major element and trace element modeling of the high and low-Th/Nb magmas was completed for this study. This modeling quantitatively determined if realistic in situ differentiation 4O 3O 2O 10 O 13 I l U 3 [j E] - U D U a.” D D El [3' A P A A % A A A A A A A A AA % AA _ A A A: High Th/Nb magma B: Low 'I‘h/Nb magma l l 10 20 30 Th Figure 5. Th vs. Nb for the high silica Rainier Mesa Tufl'. 14 Figure 6. W versus selected major element oxides (after Cambray et al., 1995). 15 A A _ fin A g A _ C110 :1 A A AA 2 O 5 ' DE 50% f‘ A " 0.0 . . 1.5 ' ' .. A A _. _ A A ‘55 __ 1.0 “A A“ A‘ F80 — flag A; A— 'B .. 0.5 t “$0 0 0.0 12 g _ D a o ._ 76 Dan C] A A A A n- @U AAA A .. Si02 74- “mu £24 A" . A - A A 72- A - 7° : : 0.4 0.3’ A 2“ 1 . A AA AAA Tl02 0.2- .43 A: A e‘ - A5 A W A A 0.1- - 0'00 1 '1‘wa 2 3 El: Low Tthb magma A: High Th/Nb magma 16 Figure 7. Th/Nb versus selected trace element ratios (after Cambray et al., 1995). l7 2000 T I . A . A A CeILu 1000 - & - AA AAA A A - :1 AA A I; . 5 AA A 0 “iii A AA , 0.20 : ' ' : .- .1 0.15 E A ‘3 - A A A u I A A Z EulSm 0.10 .— ‘A Am: ‘ 2‘ A AA A: ._ A ..a 0.05 I n (as A . : 0.00 F D a A , 3 150 ' D U ' a 100 r- an O ' RID/Sr - a - 50 - ° “'3: S ‘ L an A .4 0 D an A A A 30 A A $ A A A P A A AA AA -4 20 A %AA A A CeISm A A A 10 _ $9. . 1P 0 1 I 0 1 Tthb 2 3 E]: Low Th/Nb magma A: High Th/Nb magma 18 models could petrogenically relate these magmas. All models for Raleigh crystal fractionation, magma mixing and assimilation fractional crystallization fail to accurately predict the observed geochemistry of the high and low-Th/Nb magmas. For the remainder of this paper, the high and low Th/Nb ratio magmas will be referred to simply as the high-Th magma or the low-Th magma. In an effort to confirm the existence of high and low-Th magmas first observed by Mills (1991) and characterized by Cambray et a1. (1995), additional analyses of new high silica glassy pumice fragments from the Rainier Mesa ash-flow sheet was completed. A primary goal of this research was to determine if these distinct populations would be better defined by additional sampling of the high silica compositions. This analysis has confirmed the existence of the high and low-Th magmas. New geochemical data of the high and low-Th magmas also exhibit no geochemical overlap, as shown by variation diagrams of selected major and trace elements versus Th/Nb (Figs. 8 and 9). Figures 8 and 9 demonstrate that the high and low-Th magmas are distinct with respect to both major and trace elements. Note that new geochemical analysis for the high and low-Th magmas are consistent with Mills’ (1991) analysis. This data indicates that Mills’ (1991) XRF and INAA whole-pumice analysis are reproducable. 19 Figure 8. Th/Nb versus selected major element oxides; includes symbols that depict new whole-pumice geochemistry for the high and low-Th magma batches. 1.0 I 1 0.8 ’ 0.6 *' CaO . 0.4 " 0.0 ' . . ' 1.5 1 ' O r- e A - A 1.0 " O A A .- o 3:: £3“ 44 F60 " Pg ° 0 ‘ 5 5' ° 4* 0 5 - ”w i a 0.0 ; 1L 77 0 D A h- a O u 76 I:ch D 00A A o 75 ' ‘5'” ° ° ‘ A ‘ Si02 ‘3 ° ° . at. 74 ‘ 2'00 AA ' AM _ O A A 73 A 72 4' g. 0.3 A A0 0 AA A A 0 2 - A A A‘ «- c3 A° 'l‘iOz o 00% O W A 0.1 " " 0.0 1 I 0 1 Tthb 2 3 D: Low Tthb magma A: High Th/Nb magma 0: New Low ThINb magma 0: New High Th/Nb magma 21 Figure 9. Th/Nb versus selected trace element ratios; includes symbols that depict new whole-pumice geochemistry for the high and low-Th magma batches. 22 2000 ' ' .- A 0 A CelLu 1000 b 9 ‘ A ° 13% A A _ El 020 :°A A: o 0 “9* ° A‘ 0.20: ' ' : 0.15 E A 3 -_- 8 A A A 3 EuISm 0.105 °° “Mo 1‘ E 62: 4a of +- A - 0.05: n '33:: o ‘ : 0.00: ° ° ‘ . 3 150 ' 0 Cl . o . 100 - 81:: n 4 Rb’Sl‘ - a .4 n 50 ' a oil a ‘ . an A .. n o A . 0 ° . D W 30 fl 0 26 AA 20 p O ¢A°AA . ”A AA A O CeISm o ‘ A 10' $5 . JP 0 J l 0 1 Tthb 2 3 U: Low Tthb magma A: High Th/Nb magma 0= New Low Th/Nb magma 0: New High Th/Nb magma Mineral Assemblage Chemistries of the high and low-Th magmas In order to determine the relationship between the high and low-Th magmas, a complete electron microprobe study of the chemical compositions of the mineral assemblage was completed. The two magma types contain difi'erent assemblages with distinct compositions. Both the high and low-Th magmas contain biotite, ilmenite, magnetite, alkali feldspar and plagioclase feldspar. However, pyroxene and amphibole occur only in the high-Th magma. Ilmenite The chemistry of ilmenite for both the high and low-Th magmas are different. Ilmenite grains from the high-Th magma have FeO compositiOns which range from 49 to 55 wt%. TiOz compositions range from 36.4 to 40 wt%. Whereas, FeO compositions in ilmenite for the low-Th magma range from 45 to 49 wt% and TiOz compositions range from 42 to 45 wt% (Fig. 10a). Additionally, MgO and MnO concentrations in ilmenite are difl'erent for the high and low-Th magmas; the high-Th magma has higher MgO and lower MnO than the low-Th magma (Fig. 10b). 23 24 46 I _ A Q _. A A 44 —: r A A £1.95 .. AA A _ A 42 ' ‘ 'rio, - _ 4o - D _ D v— D — _ El = High Th/Nb magma D '38 Cl _ A: Low Th/Nb magma D1 U D 36 40 50 60 FeO Figure 10a. FeO versus ’I‘iO2 variation diagram for ilmenite compositions of the high and low-Th magma batches. 7 I ID = High Th/Nb magma 6 A A A: Low Th/Nb magmad AA A 4 ” AAk ' MnO A A n A _ 3 r E D A n D 2 _ DD (9 [a U n LP D D o l l 0 1 2 3 MgO Figure 10b. MgO versus MnO variation diagram for ilmenite compositions of the high and low-Th magma batches 25 Magnetite The composition of magnetite for the high and low-Th magmas are different. The TiOz content of the magnetite from the low-Th magma range from 4.5 to 5.5 wt% and FeO concentrations range from 83 to 85 wt%. In contrast, the TiOz compositions of magnetite from the high-Th magma range from 5.5 to 7.3 wt% and FeO compositions range from 77 to 84 wt% (Fig. 1 1a). The MgO and MnO content of the magnetite are difi‘erent among the high and low-Th magmas; this variation is similar to that of ilmenite. The high-Th magnetite grains have higher MgO and smaller MnO concentrations than the low-Th magnetite grains (Fig. 1 lb). Biotite Biotite is abundant in the high and low-Th magmas; and their compositions are distinct in both the high and low-Th magmas. The A1203 compositions of the biotite grains in the low-Th magma range from 1 1.7 to 13.5 wt% and 'l‘iOz contents range from 3 to 3.7 wt%. The high-Th biofites have a much larger chemical variation. The A1203 contents of biotite in the high-Th magma range from 12 to 18.5 wt% and TiOz contents range from 4.1 to 6.1 wt% (Fig. 12a). The Si02 and MnO contents in biotite are different between the high and low-Th magmas. The Si02 content in biotite of the low-Th magmas 26 . range from 35.5 to 40.7 wt%. Conversely the Si02 content in biotites of the high-Th magmas range from 31 and 38.4 wt%. Additionally, the low-Th biotites have higher MnO concentrations than the high-Th biotites. The MnO contents in biotite of the low-Th magma range from 0.5 to 0.7 wt%, while the MnO contents in biotites of the high-Th magma range from 0.3 to 0.6 wt% (Fig. 12b). Feldspar The plagioclase compositions are difl'erent between the high and low— Th magmas. The average plagioclase composition in the low-Th magma is A1114, whereas the average plagioclase composition in the high-Th magma is An21 (Fig. 13). Almost all plagioclase feldspars are compositionally homogenous from the center of the grain to the edge, with very little compositional variation among the plagioclase of each magma batch. However, approximately 5% of the plagioclase grain are compositionally zoned. These ubiquitous grains are clearly observable in Figure 13 and have Ca-rich cores that gradationally evolve to Na-rich edges. Unlike the compositions of magnetite, ilmenite, biotite and plagioclase, the composition of the alkali feldspar grains for both the high and low-Th magmas are indistinguishable from one another within error of analysis (Fig. 13). 27 TiO, 6 - '3 - U = High Th/Nb magma A: Low Th/Nb magma 4 l l l 70 75 80 85 90 FeO Figure 1 1a. FeO versus TiOZ variation diagram for magnetite compositions of the high and low-Th magma batches. 3 I A A A A A A MnO Ag '3 1A & A D 5' 1 F E] D u ‘ D D D = High 111le magma: l A= Low 'l‘h/Nb magma 0 0 l 2 MgO Figure 11b. MgO versus MnO variation diagram for magnetite compositions of the high and low-Th magma batches. 28 19 17" A1203 15 F 13 p— Etc: 0 38° _ D gag _ D .m B D A finned? ED .4 k #3 gas-n l l D = High Th/Nb magma- A: [jaw 'I‘h/Nb magma ll 4 5 c 7 Tio2 Figure 12a. 'l‘iO2 versus A1203 variation diagram for biotite compositions of the high and low-Th magma batches. 1.0 l I l I I Al I 1 l I U: HighTh/Nb magma A A=Low Th/Nb magma 0.8 r- A W A - A A A AA 43 A A MnO 0.5 - [9% AAA 3 - QC] [3 Cl 0 D '3 1:: 0.3 _ '3 é] ‘3 D ‘5] u U E] g 0.0 l I l l l J L l l J 30 32 34 36 38 40 Sio2 Figure 12b. Si02 versus MnO variation diagram for biotite compositions of the high and low-Th magma batches. 29 KAlSi308 NaAlSi3O8 CaAIZSiZOS I]: High Th/Nb magma A: Low Th/Nb magma Figure 13. Ternary feldspar diagram showing plagioclase and alkali-feldspar compositions. The arrows indicate inferred paths of magmatic evolution. Geothermometry Fe-Ti Oxide Geothermometry Electron microprobe analysis of ilmenite and magnetite allowed for the calculation of pre-eruptive magma temperatures and oxygen fugacities. Calculation of ulvospinel and hematite compositional parameters were completed by the program OXPROJWT (Anderson et al., 1993) for all magnetite grains. Ulvospinel and hematite compositions for all grains from a single pumice fragment were statistically analyzed to determine population distribution and mean composition. Mean compositional parameters for magnetite and ilmenite pairs were then inputted into the Turbo Pascal program QUIlF 4.1 (Anderson et al., 1993), which provided Fe-Ti oxide geothermometry and oxygen fugacity data. Traditionally, Fe-Ti oxide thermometry data is based only on equilibrium between Fe and Ti. QUIlF 4.1 is a versatile program that will calculate Fe-Ti oxide thermometry based . on equilibrium between Fe, Mn, Mg, and Ti, which provides better temperature resolution than Fe and Ti alone (Anderson et al., 1993). The low Th magma has an average value of 716 °C and the high-Th magma has an average value of 814 °C (Fig. 14) (Table 1). Mills (1991) concluded that the high silica Rainier Mesa had an average temperature of 755 °C. His Fe-Ti oxide thermometry data was based only on Fe and Ti equilibrium. Furthermore, the 7 55 °C temperature 30 3] Table 1. Fe-Ti oxide geothermometry data for the high and low magma batches. descrip. Si02 Th/Nb Temp°C R18-15 73. 13 0.75 723 R180 75.00 0.79 708 R23-7 72.48 1.74 810 R26-14 74.67 1.79 818 R1 1-7 74.07 0.68 735 R18-2 72.70 1.65 787 R18-16 75.40 2.83 801 32 Mills (1991) calculated reflects his treatment of the high silica magma batches as a single magma. Using QUIlF 4.1 (Anderson et al., 1993), Vogel (1995, unpublished data) recalculated Fe-Ti oxide temperatures for the entire Rainier Mesa based on Mills’ (1991) magnetite and ilmenite data. Vogel (1995, unpublished data) determined that the high-Th magma had an average temperature of 789 °C and the low-Th magma had a temperature of 7 35 °C. This recalculated thermometry data is based only on three samples; one low-Th sample and two high-Th samples. This thermometry data is presented because it indicates that the high-Th magma had a higher temperature than the low-Th magma; and hence supports the findings of this study. Ternary-Feldspar Thermometry The coexistence of sanidine and plagioclase in many of the high and low-Th pumice fragments allows for the determination of geothermometric data. Ternary-feldspar temperatures are constrained by equilibrium among the orthoclase, albite and anorthite components of these coexisting feldspars. Initially, the orthoclase, albite and anorthite components were each calculated from each feldspar grain edge analysis. Descriptive statistics then determined the mean plagioclase and sanidine compositions for each sample 33 3 u =high-Th temperature b 0=low-Th temperature 2 " 7 <0 ‘3’ ‘3’ Th/Nb 1 '- d o l l 700 g 750 800 860 Temp (°C) Figure 14. Fe-Ti oxide temperature distribution among the high and low-Th magma batches. 3 l j l I I l l l I l A =high-Th temperature A =low-Th temperature 2 >— ‘ .1 A Th/Nb A ‘ 1 - - A AA 0 I l l I J l l I I l 710 730 760 770 790 810 Temp (°C) Figure 15. Ternary-feldspar temperature distribution among the high and low-Th magma batches. 34 Table 2. Mean compositions of coexisting feldspar pairs for the high and low-Th magma batches. Ks denotes alkali-feldspar compositions. Pl denotes plagioclase feldspar compositions. Sample An Ab Or Cn R23-7 ks 0.014 0.368 0.617 0.0003 R23-7 p1 0.189 0.716 0.095 0 R23-8 ks 0.014 0.377 0.609 0 R23-8 p1 0.206 0.714 0.080 7E-05 R23-4 ks 0.012 0.383 0.597 0.0002 R23-4 pl 0.310 0.630 0.059 0.0012 RIB-14 ks 0.011 0.350 0.639 0 R18-l4 pl 0.148 0.780 0.072 0.0009 R26-l9 ks 0.016 0.369 0.614 0.0017 R26-19 pl 0.212 0.715 0.073 0 R18-9 ks 0.008 0.366 0.623 0.0029 R18-9 pl 0.136 0.787 0.078 0 R18-l5 ks 0.007 0.360 0.633 0 R18-15 pl 0.129 0.794 0.076 0 35 (Table 2). Using the mean coexisting feldspar compositions, temperatures were calculated by the Fuhrman and Lindsley (1988) feldspar thermometry model in the SOLVCALC (Wen and Nekvasil, 1994) program. The ternary-feldspar thermometer is pressure dependent. Typically, this thermometer predicts an increase of 18 °C for every lkbar increase in pressure (Stormer, 1975; Brown and Parson, 1981). However, ternary- feldspar modeling of the high and low-Th magmas at various pressures did not produce significant temperature variations. Mills (1991) used the quartz- amphibole geobarometry technique to determine that the best pressure estimate for the Rainier Mesa magmatic system is 4.2 kbars. As such, a pressure constant of 4.2 kbars for the feldspar thermometry calculations was used for this study. The low-Th magma has feldspar temperatures which range from 712 to 747 °C and has a mean temperature of 726 °C. The high- Th magma has feldspar temperatures which range from 790 to 815 °C and has a mean temperature of 799 °C (Fig. 15). Discussion Background The occurrence of compositionally zoned magma chambers is not an uncommon phenomena and, subsequently, has been the focus of much research. Yet the physical processes controlling the development of these features remain enigmatic. Many workers have regarded in situ differentiation processes as the likely mechanism for the origin of compositionally zoned magma chambers. For example, de Silva and Wolff (1995) stipulate that efiiciency of any in situ differentiation mechanism ultimately depends on convective fractionation at the vertical chamber wall. Furthermore, de Silva and Wolfi‘ (1995) discuss the relationship between zonation times, volume of magma and chamber shape. Thermal, mechanical and volumetric restrictions require that small volume magma chambers have a column-like chamber shape; whereas, larger volume magmatic systems require a sill or coin-like chamber geometry (de Silva and Wolfl‘, 1995). de Silva and Wolff (1995) suggest there is an inverse relationship between volume of magma and the magnitude of compositional zonation. This conclusion is based, partially, on the observations of Smith (1979), Hildrith (1981) and de Silva (1991). Hence, they maintain that significant magmatic zonation due to in situ differentiation can only occur in 36 37 small to intermediate volume systems. In large volume magmatic systems, in situ differentiation mechanisms cannot produce significant compositional zonation. The pro-eruptive Rainier Mesa magma chamber was, without question, a large volume compositionally zoned magmatic system. In concordance with the observations of de Silva and Wolff (1995), Cambray et al. (1995) have proposed that the compositional spectrum observed in the Rainier Mesa Tufi‘cannot be the result of in situ difl'erentiation mechanisms. This observation is best illustrated by the Zr and La versus Th variation diagrams (Fig. 4). As previously mentioned, these diagrams illustrate that in situ differentiation processes cannot relate the three distinct Rainier Mesa magma types. There are no reasonable difl'erentiation pathways among the magma batches (Cambray et al., 1995). The variation diagrams led Cambray et al. (1995) to propose that the chemistry of the three magma types was controlled by batch melting processes at the source area(s). The models of de Silva and Wolff (1995) and Cambray et a1. (1995) are mutually supporting. Both models conclude that in situ difl'erentiation cannot produce large volume compositionally zoned magmas. The Batch Emplacement model of Cambray et a1. (1995) was tested by: (1) determining if the magma batches first observed by Mills (1991) are real by better defining the chemistry of the system; and (2) characterizing the petrogenetic 38 relationship between the high and low-Th magma types. It has been determined the compositionally distinct high and low-Th magma batches observed by Mills (1991) are real. Additionally, it has been determined that these magma batches are compositionally distinct and cannot be petrogenically related by in situ differentiation. Confirmation of the existence of the high and low-7h magma batches Using mineral and whole-pumice geochemistry in conjunction with geothermometry, the existence of the high and low-Th magma batches has been confirmed. All geochemistry, both whole-pumice and mineral, indicates separate and distinct compositions for the high and low-Th magma batches. For whole-pumice geochemistry, Figures 8 and 9 clearly demonstrate, firstly, that the high and low-Th magmas are distinct with respect to both major and trace elements. Secondly, these figures indicate that Mills’ (1991) XRF and INAA whole-pumice analysis are reproducable. Note that new geochemical analysis for the high and low-Th magma batches are consistent with Mills’ (1991) analysis. Furthermore, mineral assemblage compositions for all phases are, almost without exception, separate and distinct . Figures 10 through 13 demonstrate the compositional distinctness of all mineral phases present: magnetite, ilmenite, biotite and plagioclase. Only alkali feldspar compositions for both the high and low-Th magma batches are similar. If the 39 high and low-Th magmas were related by in situ differentiation, then it would be reasonable to expect mineral compositions to overlap in a manner that reflects progressive evolution of a single magma. The evidence of the compositionally distinct mineral assemblages provides additional evidence that the high and low-Th magma types are not petrogenically related by in situ differentiation. Mineral chemistry and composition can provide an understanding of phase relationships, and also provide constraints on the physical conditions present in the magma chamber prior to eruption. Fortunately, the mineral assemblages for both the high and low-Th magmas were conductive to the calculation of Fe-Ti oxide and ternary-feldspar geothermometry data. Both the Fe-Ti oxide and ternary-feldspar thermometry data indicate that the high-Th magma has a consistently higher temperature than low-Th magma (Fig. 16). The high and low-Th magma types have difl'erent whole-pumice geochemistry, different mineral compositions and different temperatures. On the basis of these fundamental and consistent distinctions, the existence of the compositionally distinct high and low-Th magma batches has been confirmed. 40 l l 0 ‘ — 0 <0» ‘ ‘3’ ‘ ‘ F 1 O A. . m l l 700 750 Temp (0 C) 300 350 0 = Low-Th magma Fe-Ti oxide temperature A = Low-Th magma feldspar temperature ‘3’ = High-Th magma Fe-Ti temperature A = High-Th magma feldspar temperature Figure 16. Temperature versus Th/Nb. Both the Fe-Ti oxide and ternary-feldspar temperature indicate that the high-Th magma had significantly higher temperatures than the low-Th magma. Furthermore, the ternary-feldspar temperature data provides confirmation of Fe-Ti oxide data. 41 Geothermometric Considerations The geothermometry data establishes that the two magmas had temperature difi'erences that ranges from 74 to 98°C. This temperature contrast implies that the surface area of contact between the high and low-Th magmas must have been relative small to prevent thermal equilibrium. Possibly, the magmas were vertically stratified in the pre-eruptive magma chamber rather than commingling as unmixed blebs prior to eruption. Vertically stratified magmas would have less contact surface area than relatively spherical pockets of coexisting magma types. Mills (199 1) evaluated the temperature distribution of the entire Rainier Mesa Tufl'. His thermometry data indicates the low silica Rainier Mesa magma had temperatures which range from 875 to 900 °C. The temperatures of the low silica magma are higher than the temperatures of the high silica magmas. This observation is consistent with models of stratigraphically zoned magma chambers. These models predict that mafic magmas are overlain by cooler, less dense silicic magmas (e.g. Hildreth, 1981; Smith, 1979). However, it should be noted that typical models of stratigraphically zoned magma chambers require in situ difl’erentiation mechanisms to produce cooler, silica rich, magmas. These models, furthermore, stipulate that the temperature gradient continuously becomes cooler, higher in the magma chamber (Hildreth, 1981; Smith, 1979). Contrary to the conclusions Temp (°C) 900 850 800 750 700 42 l T l l I + + + + + + .— ++ _ 0 Q _ ‘ ‘ 4;, _ 0 A 0 0 A l l l I Q 50 55 60 65 70 75 80 Sio2 ‘ 0 = Low-Th magma Fe-Ti oxide temperature A = Low-Th magma feldspar temperature = High-Th magma Fe-Ti temperature L = High-Th magma feldspar temperature ‘1" = Low silica magma Fe-Ti oxide temperature (Mills, 1991) Figure 17. SiO2 versus temperature diagram showing the discontinuous thermal gradient in the pre-eruptive Rainier Mesa magma chamber. 43 of Mills (1991), the pre-eruptive Rainier Mesa magma chamber had a discontinuous thermal gradient. All three of the Rainier Mesa magma types had significantly different temperatures (Fig. 17). However, it should be noted that this geothermometic data cannot preclude the existence of multiple high silica magma chambers. In summary, geothermometric data are interpreted to indicate that the magmas in the pre-eruptive Rainier Mesa magma chamber were stratigraphically isolated rather than commingling as unmixed blebs prior to eruption. Furthermore, the presence of a discontinuous thermal gradient with sharp temperature interfaces additionally indicates that the high and low-Th magmas cannot be petrogenically related by in situ differentiation. Conclusions The purpose of this investigation was to obtain whole-pumice geochemistry and mineral assemblage chemistry to better characterize the high and low-Th magma batches and, subsequently, test the batch emplacement model of Cambray et a1. (1995). The significant conclusions that resulted from this study are: l) The existence of the high and low-Th magma batches, first observed by Mills (1991), has been confirmed. This confirmation is based on a through analysis of high and low-Th pumice geochemistry, mineral chemistry and geothermometry data. The data indicates that the two high silica Rainier Mesa magma types are chemically, mineralogically and physically distinct. 2) Fe-Ti oxide and ternary-feldspar thermometry data both indicate that the high-Th magma is hotter ( 3:790 °C) than the low-Th magma (~7 30°C). Therefore, the contact surface area between the two magma batches must have been relatively small in order to inhibit thermal equilibrium prior to eruption of the Rainier Mesa Tufl’. To minimize contact surface area, it is likely that the magmas were stratigraphically segregated and did not commingle as unmixed pockets of distinct magma. 3) The batch emplacement model of Cambray et al. (1995) is supported by this study. All step -wise multiple linear regression major element and trace element models fail to relate the high and low-Th magmas ‘ 45 by in situ difi‘erentiation mechanisms. Additionally, there are no differentiation pathways that relate the high and low-Th magmas within variation diagrams of pumice geochemistry and mineral chemistry. 4) The models of Cambray et a1. (1995) and de Silva and Wolff (1995) both stipulate that in situ differentiation cannot produce large volume zoned magmatic systems. Because the work of Cambray et a1. (1995), and ‘ consequently de Silva and Wolff (1995), has been supported by this study, I the origin of many large volume compositionally zoned magmatic systems may be attributed to batch melting processes, not in situ difi’erentiation. APPENDICES APPENDIX A Analytical Techniques and Error Analysis 46 Appendix A' Analytical Techniques and Error Analysis X—Ray Fluorescence X-Ray Fluorescence analysis (XRF) of glassy pumice fragments provided geochemical data on all major elements and the trace elements: Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, La, and Ba. Samples were prepared for analysis by the XRF methods outlined in Mills (1991). United States Geological Survey (U SGS) standards were used as both known and unknowns to determine XRF analytical error. All analytical errors for major elements are below 1%. Errors for Zn, Rb, Sr, Y, Zr, Nb are all below 10 ppm. However, La and Ba errors are greater than 10 ppm. La and Ba concentrations were resolved with greater precision using instrumental neutron activation analysis (IN AA). Cr, Ni and Cu concentrations for these samples are generally below the detection limits of XRF analysis. Instrumental Neutron Activation Analysis All samples of the high and low-Th magma batches were analyzed by Instrumental Neutron Activation Analysis (INAA). Each sample consisted of a 0.200g to 0.250g split of the XRF powder. All samples were heat sealed in a high purity quartz tubing and sent to the Phoenix Laboratory/Ford Nuclear Reactor at the University of Michigan for extended irradiation. Sc, Hf, Th, La, Ce, Sm, Eu, Tb, Yb, and Lu concentrations were obtained by this analytical technique. INAA analysis errors for all of these elements are reported in Table 3. 47 Appendix A: Continued Electron Microprobe Analysis Phenocryst compositions were obtained by automated electron microprobe analysis on a Cameca microprobe at the University of Michigan. Phenocrysts were separated from the glassy pumice fi'agments using the methodology described by Mills (1991). Typically, each grain was analyzed in three localities (edge, middle and center) to determine compositional homogeneity. All minerals were analyzed with a beam current of 9.4nA at l5kV. The beam was rastered over an area of 100 umz. Oxide and silicate standards were analyzed intermittently for calibration purposes. Furthermore, the software controlling the automated electron miroprobe analysis used the Bence-Albee correction procedure to resolve all quantitative analyses (Bence and Albee, 1968). Appendix A: Continued 48 Table 3. Error analysis of Instrumental Neutron Activation Analysis. J G-3 is a U.S.G.S. granodiorite geostandard, and JR-2 is a U.S.G.S. rhyolite geostandard. Analytical uncertainty was calculated by determining the difference between the known and INAA predicted elemental concentrations. Sc Hf Th La Ce Sm Eu Tb Yb Lu JG-3 Known (ppm) 8.93 4.29 8.0 20.7 41.1 8.41 0.91 0.46 1.86 0.27 Predicted (ppm) 8.40 4. 45 8.5 21.8 41.2 3.32 1.01 0.64 1.47 0.20 Uncertainty (ppm) 0.53 0.16 0.5 1.1 0.1. 0.09 0.10 0.22 0.39 0.07 JR-2 Known (ppm) 5.57 5.23 32.2 16.9 38.8 5.71 0.15 1.18 5.46 0.9 Predicted (ppm) 5.38 6.22 33.9 16.5 42.9 5.34 0. 20 1.21 5.40 0.9 Uncertainty (ppm) 0.19 0.99 0.7 0.4 3.9 0.37 0.05 0.03 0.06 0.0 APPENDIX B Major and Trace Element Analyses 49 Appendix B: Major and Trace element analysis of the high silica Rainier Mesa Tufl‘. Includes data from Mills (1991). The * denotes new chemical analyses. Sample Number , R8-l R8-2 R8-3 R8-6 R8-7 R8-9 [ Weight Percent Oxide (wt%) 8102 76 75.99 ' 75.75 75.86 76.3 75.48 T102 0 0.11 0.1 0.11 0.11 0.1 .41203 12 12.03 11.89 12.09 12 12.09 FeO 0 0.52 0.55 0.44 0.58 0.52 MnO 0 0.07 0.06 0.07 0.06 0.07 MgO 0 0 0 0 0 0.01 CaO 0 0.4 0.48 0.42 0.48 0.43 NazO 3 2.91 2.52 3.08 2.52 2.69 K20 5 5.34 5.69 5.16 5.7 5.54 P205 0 0.01 0.01 0.01 0.01 0.01 Total 97 97.38 97.05 97.24 97.76 96.94 I X-Ray Fluorescence (ppm) 1 Cr 14 7.1 0.5 10.7 12.8 7.3 Ni 0 0 1.9 0 10 0 Cu 0 10.8 0 0 0 0 Zn 30 34.3 16.3 36.1 14.8 28.3 Rb 265 258.56 264.8 257.16 271.9 266.5 Sr 3 0 4.55 0.19 0 4.96 Y 30 33.38 31.32 31.28 26.01 32 Zr 69 89.26 73.64 78.21 80.16 70.78 Nb 29 25.72 26.26 29.57 23.85 30.25 La 35 20.14 41.66 48.36 28.14 22.19 Ba 132 100 190 86 169 87 L INAA (ppm) ] Sc 4 4.25 4.17 4.14 3.34 4.59 Hf 4 3.9 3.44 2.62 2.31 2.9 Th 25 25.22 21.8 16.64 11.69 15.58 La 21 21.1 21.34 19.64 20.32 24.11 Ce 51 58.68 48.81 44.91 36.33 40.07 Sm 6 6.26 5.77 5.51 5.22 5.5 Eu 0 0.18 0.17 0.14 0.19 0.2 Tb 1 0.63 0.61 0.56 0.52 0.55 Yb 4 3.54 2.81 2.87 1.67 2.15 Lu 0 0.36 0.3 0.32 0.24 0.26 50 Appendix B: Major and Trace element analysis of the high silica Rainier Mesa Tuff. Includes data from Mills (1991). The * denotes new chemical analyses. Sample Number I R8-10 R8-ll R8-14 R8-15 R8-16 R8-32A | I Weight Percent Oxide (wt%) 8102 74.69 73.93‘ 75.54 75.45 73.77 73.09 Tio2 0.09 0.09 0.1 0.1 0.12 0.21 A1203 12.2 12.48 12.21 12.16 12.86 12.84 FeO 0.42 0.39 0.42 0.46 0.74 0.86 MnO 0.07 0.07 0.07 0.07 0.08 0.05 MgO 0 0 0.04 0 0.52 0.12 CaO 0.4 0.44 0.41 0.43 0.41 0.79 NazO 3.48 3.54 2.73 2.52 2.51 2.82 K20 5.04 5.05 5.41 5.83 4.92 5.85 P20, 0.01 0.01 0.01 0.01 0.02 0.03 Total 96.4 96 96.94 97.03 95.95 96.66 F X-Ray Fluorescence (ppm) I Cr 0 0 1.4 0 2.9 7.1 Ni 0 7.4 6.6 0 13 18.9 Cu 0 0 0 0 0 0 Zn 26.8 16.9 15.9 18.5 186.8 11.3 Rb 255.72 259.5 261.78 281.95 252.21 116.65 Sr 3.65 3.48 0 0 14.09 74.99 Y 32.1 29.77 31.56 28 45.77 16.95 Zr 59.8 62.01 71.89 72.43 107.22 168.08 Nb 27.96 26.77 27.61 24.32 26.24 14.09 La 44.95 16.44 15.24 9.33 35.86 82.39 Ba 88 229 203 88 268 485 L INAAgppm> Sc 4.21 3.76 4.11 3.44 3.56 1.81 Hf 3.29 3.35 3.5 3.27 4.02 5.78 Th 22.14 21.81 22.83 22.74 24.43 35.23 La 18.72 18.91 18.62 16.91 16.34 80.23 Ce 44.2 45.19 47.79 48.97 61.18 129.64 Sm 5.22 5.6 5.25 5.29 5.83 5.69 Eu 0.12 0.14 0.17 0.17 0.28 0.73 Tb 0.62 0.61 0.62 0.61 0.63 0.68 Yb 4.08 3.79 3.84 3.65 3.99 1.81 Lu 0.42 0.41 0.35 0.36 0.49 0.19 51 Appendix B: Major and Trace element analysis of the high silica Rainier Mesa Tuff. Includes data from Mills (1991 ). The * denotes new chemical analyses. Sample Number R8-3ZB R8-35 R8-40 R8-41 R8-42 R1 1-3 Weight Percent Oxide (wt%) | Si02 74.22 75.62 73.53 73.54 74.19 73.97 TiOz 0.25 0.2 0.2 0.22 0.27 0.11 A1203 12.35 11.72 12.83 12.95 12.59 12.53 FeO 1.01 0.87 0.81 0.88 1.02 0.5 MnO 0.06 0.04 0.04 0.05 0.05 0.05 M30 0.15 0.03 0.07 0.12 0.15 0.25 CaO 0.81 0.51 0.73 0.78 0.75 0.67 NaZO 2.67 2.18 2.83 2.61 2.86 2.41 K20 5.68 6.1 5.93 6.08 5.67 6.39 P205 0.03 0.02 0.03 0.03 0.03 0.02 Total 97.23 97.29 97 97.26 97.58 96.9 I X-Ray Fluorescence (ppm) J Cr 5.4 0 5.7 6.3 0 0 Ni 0 0 0 1 0 1.4 Cu 0 6.7 0 0 0 0 Zn 33.3 32.6 26.8 16.1 20.9 16.3 Rb 117.04 141.98 112.09 125.06 121.2 247.68 Sr 58.69 34.59 62.92 72.58 68.19 0.23 Y 18.1 21.34 21.25 23.85 21.1 28.76 Zr 183.27 153.51 152.99 169.47 193.7 78.5 Nb 13.22 15.09 14.96 15.85 16.39 31.28 La 74.55 79.83 76.09 82.36 89.85 0 Ba 189 157 263 454 433 0 INAA (ppm) 1 Se 1.81 1.97 ‘ 1.62 1.73 1.95 3.66 Hf 5.78 4.71 4.4 4.87 5.42 3.27 Th 35.23 33.45 29.19 33.19 37.56 22.26 La 80.23 68.72 62.9 83.79 86.51 21.81 Ce 129.64 110.48 98.98 122.99 138.12 58.25 Sm 5.69 6.04 5.32 7.15 6.43 5.58 Eu 0.73 0.59 0.8 0.92 0.69 0.12 Tb 0.68 0.68 0.64 0.68 0.69 0.48 Yb 1.81 1.66 1.48 1.83 1.47 2.24 Lu 0.19 0.16 0.17 0.17 0.1 0.31 52 Appendix B: Major and Trace element analysis of the high silica Rainier Mesa Tufi‘. Includes data from Mills (1991). The " denotes new chemical analyses. Sample Number R11-7 R11-20 R18-1 R18-2 R18-3 R18-4 | Weight Percent Oxide (wt%) 8102 74.08 72.16 76.12 72.72 74.98 75.58 Tio2 0.11 0.26 0.1 0.16 0.11 0.11 A1203 12.98 13.4 12.3 14.36 13.03 12.38 FeO 0.53 1.18 0.56 0.77 0.56 0.53 Mno 0.1 0.05 0.07 0.05 0.07 0.07 MgO 0.27 0.16 0.01 0.48 0.25 0 CaO 0.43 0.78 0.39 0.51 0.41 0.42 N820 2.59 2.39 3.51 2.56 3.05 3.58 K20 6.24 7.13 4.65 5.09 5.1 4.86 P205 0.02 0.05 0.01 0.02 0.01 0.01 Total 97.35 97.56 97.72 96.72 97.57 97.54 I X-Ray Fluorescence (ppm) I Cr 0 0 0 0 0 0* Ni 13 0 0 0 0 0 Cu 0 0 0 0 0 0 Zn 8 20.1 26.9 44.1 36.4 33.5 Rb 238.42 165.9 251 155.22 238.56 252.75 Sr 4.4 97.46 1.88 10.96 0 0.47 Y 32.17 16.3 29.94 22.56 31.77 31.04 Zr 78.68 210.82 67.21 112.18 80.92 73.46 Nb 31.16 16.21 27.26 20.42 27.54 26.43 La 36.8 85.6 27.4 33.6 10.3 36.2 Ba 0 407.6 0 0 0 0 I INAA (rpm) l Sc 4.1 2.08 4.5 1.61 2.66 0.94 Hf 3.09 4.57 ‘ 3.26 4.53 1.96 3.79 Th 21.11 31.26 21.44 33.72 20.88 23.29 La 23.67 82.03 26.58 31.4 16.7 31.54 Ce 60.34 135.5 42.75 79.44 48.7 47.33 Sm 5.39 6.03 5.37 5.4 5.13 5.43 Eu 0.13 0.6 0.07 0.17 0.13 0.01 Tb 0.44 0.06 0.52 0.39 ' 0.49 0.49 Yb 2.21 1.18 2.94 2.13 1.83 2.75 Lu 0.28 0.09 0.44 0.33 0.37 0.47 53 Appendix B: Major and Trace element analysis of the high silica Rainier Mesa Tufi’. Includes data fiom Mills (1991). The * denotes new chemical analyses. Sample Number R18-5“ R18-6“ R18-8 R18-9* R18-10* R18-11“ 7 Weight Percent Oxide (wt%) I Si02 74.77 75 75.07 76.16 75.48 75.7 TiOz 0.1 0.12 0.18 0.1 0.14 0.1 A1203 13.08 12.73 12.92 12.81 12.61 13 FeO 0.58 0.68 0.81 0.51 0.63 0.51 MnO 0.07 0.07 0.05 0.07 0.06 0.07 MgO 0.29 0.08 0.37 0.14 0.25 0.33 C80 0.38 0.39 0.58 0.41 0.48 0.4 Nazo 2.94 3.48 2.53 2.8 2.51' 2.87 K20 5.28 4.9 5.22 5.56 5.67 5.35 P205 0.01 0.02 0.23 0.01 0.02 0.01 Total 97.5 97.47 97.96 98.57 97.85 98.34 X-Ray Fluorescence (film) I Cr 46.19 50.37 0 54.04 44.58 50.687 Ni 0 0 0 0 0 0 Cu 0 0 0 0 0 0 Zn 40.94 33.47 49.6 29.83 54.15 29.71 Rb 245.06 252.29 151.73 253.55 195.36 251.54 Sr 2.03 4.73 23.87 2.69 13.65 2.93 Y 30.28 31.56 20.07 30.23 21.7 27.69 Zr 77.78 73.44 112.39 78.23 97.31 82.97 Nb 27.6 28.8 17.56 31.4 22.6 30.4 La 59.26 17.51 22 12.62 19.7 0 Ba 138.02 6.23 0 158.42 113.98 23.54 INAA (ppm) 1 Se 4.04 3.95 3.63 4 2.67 3.89 Hf 3.91 3.79 4.15 3.81 3.91 3.6 Th 24.57 22.64 34.49 23.58 29.35 23.02 La 22.55 21.15 38.23 22.03 36.43 22 Ce 51.45 50.58 88.54 51.53 72.12 48.97 Sm 4.32 4.32 5.12 4.37 5.13 4.46 Eu 0.09 0.167 0.25 0.17 0.178 0.172 Tb 0.84 0.672 0.37 0.86 0.728 0.726 Yb 3.06 3.17 2.03 3.37 2.24 3 Lu 0.513 0.527 0.26 0.52 0.337 0.495 54 Appendix B: Major and Trace element analysis of the high silica Rainier Mesa Tufi’. Includes data from Mills (1991). The * denotes new chemical analyses. Sample Number 7 R18-12 R18-14* RIB-15* Rl8-l6 R18-l8 R18-19 7 I Weight Percent Oxide (wt%) I S102 75.11 76.1 73.13 75.42 76.22 75.41 1102 0.12 0.11 0.1 0.16 0.12 0.11 A1203 12.49 12.42 12.55 12.39 12.02 12.48 FeO 0.63 0.58 0.56 0.72 0.6 0.48 MnO 0.06 0.07 0.08 0.05 0.05 0.07 MgO 0.04 0.01 0.56 0.18 0 0 CaO 0.46 0.4 1.23 0.58 0.49 0.43 Na20 3.41 3.47 2.75 2.93 3.36 3.53 K20 5.2 4.94 5.64 5.54 4.93 4.94 P205 0.01 0.01 0.01 0.02 0.01 0.01 Total 97.53 98.11 96.61 97.99 97.8 97.46 I X-Ray Fluorescence (ppm) I Cr 0 42.54 39.04 0 0 2 Ni 0 0 0 0 ' 0 0 Cu 0 0 0 0 0 0 Zn 30.7 29.35 36.68 28 24.6 30.3 Rb 222.31 236.45 265.82 144.77 177.93 251.26 Sr 0 1.81 53.36 21.61 6.97 0 Y 25.65 33.28 26.43 18.17 19.92 27.99 Zr 83.07 70.94 87.04 109.77 87.2 71.32 Nb 21282 33.6 29.9 11.12 15.01 23.96 La 40.9 4.86 21.74 39.6 51 22.3 Ba 0 144.94 6.5 12.8 0.9 0 L INAA (_ppm) 1 Sc 3.5 3.59 3.83 3 3.17 3.04 Hf 3.93 3.54 3.98 3.5 3.42 3.87 Th 25.06 21.03 22.5 31.47 25.72 22.34 La 27.96 20.48 21.22 36.68 30.19 29.06 Ce 57.59 46.74 47.15 85.23 61.88 46.64 Sm 5.51 4.16 4.22 4.97 5.06 5.05 Eu 0.16 0.102 0.166 0.32 0.08 0.05 Tb 0.4 1.04 0.811 0.5 0.23 0.53 Yb 2.41 3.09 3.14 2.01 2.36 3.16 Lu 0.41 0.5 0.535 0.25 0.41 0.53 55 Appendix B: Major and Trace element analysis of the high silica Rainier Mesa Tufl‘. Includes data from Mills (1991). The * denotes new chemical analyses. Sample Number R18-20 R18-22 R18-23 R21-5 R21-6 R21-9 L Weight Percent Oxide (wt%) Sio2 73.97 75' 75.35 73.48 74.2 74.91 Tio2 0.23 0.12 0.1 0.27 0.24 0.2 A1203 12.64 12.37 12.35 12.72 12.74 12.34 FeO 0.93 0.56 0.48 1.18 0.98 0.79 MnO 0.05 0.06 0.07 0.07 0.06 0.06 MgO 0.17 0 0.04 0.61 0.09 0.08 C80 0.65 0.5 0.42 0.82 0.67 0.61 N820 3.37 3.52 3.59 2.89 2.98 2.81 K20 5.23 5.04 5.03 5.38 5.45 5.55 P20, 0.03 0.01 0.01 0.05 0.03 0.02 Total 97.27 97.18 97.44 97.47 97.44 97.37 I X-Ray Fluorescence (_ppm) J Cr 0.3 0 0 1 0.4 0 N1 0 0 0 0 0 0 Cu 0 0 0 5.4 1.1 3.5 Zn 49.3 29.7 26.9 55.9 37.8 34.6 Rb 127.58 206 253.88 99.18 111.49 122.2 Sr 45.52 6.65 5.27 66.79 59.29 31.54 Y 14.28 23.99 28.15 14.96 14.86 14.51 Zr 169.42 81.61 72.21 205.05 187.38 150.12 Nb 15.94 25.75 27.45 14.76 13.78 13.01 La 56.2 30.1 15.8 103.94 76.27 74.03 Ba 94.2 0 0 277 263 35 I INAA (ppm) Sc 1.86 3.6 3.1 1.7 1.87 2.45 Hf 5.1 3.62 3.82 5.28 5.43 4.35 Th 33.3 26.16 21.93 32.2 34.69 31.54 La 56.73 33.34 28.81 76.52 78.5 69.46 Ce 122.61 62.65 45.59 130.81 135.81 111.06 Sm 5.99 5.17 5.26 6.63 5.76 5.38 Eu 0.54 0.03 0.03 0.59 0.6 0.4 Tb 0.3 0.37 0.42 0.74 0.74 0.75 Yb 2.16 2.64 2.98 1.84 1.85 1.86 Lu 0.32 0.42 0.55 0.18 0.25 0.24 56 Appendix B: Major and Trace element analysis of the high silica Rainier Mesa Tufl‘. Includes data from Mills (1991 ). The * denotes new chemical analyses. Sample Number 7 R21-12 R21-18 R21-19 R21-23 R21-26 R21-40 I Weight Percent Oxide (wt%) I 8102 74.52 75.11 74.52 74.57 75.49 7613 T10; 0.21 0.14 0.13 O. 13 0.13 0.13 A1203 12.21 12.13 12.63 12.41 12.09 11.99 FeO 0.85 0.72 0.72 0.69 0.71 0.61 MnO 0.05 0.08 0.08 0.08 0.08 0.05 MgO 0.34 0 0.32 0.01 0 0 CaO 0.59 0.41 0.35 0.37 0.37 0.51 Na20 2.54 3.55 2.99 3.75 3.6 2.88 K20 5.48 5.07 5.3 4.7 4.99 5.29 P205 0.03 0.01 0.01 0.01 0 0.01 Total 96.82 97.22 97.05 96.72 97.46 97.6 I X—Ray Fluorescence (ppm) I Cr 0 0 0 O 0 0 Ni 0 0 0 0 0 0 Cu 0.3 1 0 1.6 0 0 Zn 32.7 53.3 55.9 55.3 54.2 75.6 Rb 133.75 218.76 208.97 217.9 222.23 163.87 Sr 26.96 3.8 0 4.79 2.42 22.03 Y 13.94 30.06 27.64 27.16 34 15.31 Zr 166.75 131.3 128.13 120.08 125.52 95.8 Nb 12.81 28.38 28.3 31.03 31.15 18.69 La 92.15 50.51 51.7 44.27 34.22 48.65 Ba 55 0 25 128 104 134 I INAA (ppm) 1 Sc 1.79 1.34 1.54 1.58 1.69 2.66 Hf 5.05 5.22 3.92 5.31 5.58 2.66 Th 32.43 29.95 24.19 31.96 32.76 20.96 La 72.62 34.67 28.48 33.06 32.04 ' 40.47 Ce 118.15 64.01 49.65 57.84 69.9 55.41 Sm 5.92 5.8 5.51 5.24 6.13 5.18 Eu 0.4 0.09 0.12 0.17 0.16 0.16 Tb 0.75 0.76 0.47 0.75 0.74 0.33 Yb 1.93 3.11 1.3 2.76 2.98 0.99 Lu 0.28 0.55 0.22 0.5 0.55 0.11 57 Appendix B: Major and Trace element analysis of the high silica Rainier Mesa Tufl‘. Includes data from Mills (1991). The * denotes new chemical analyses. Sample Number 7 R21-44 R21-5 R21-6 R21-9 R21-12 R21-18 | Weight Percent Oxide (wt%) I $10; 74.4 73.48 74.2 74.91 74.52 75.11 TiOz 0.24 0.27 0.24 0.2 0.21 0.14 A1203 12.83 12.72 12.74 12.34 12.21 12.13 FeO 1.06 1.18 0.98 0.79 0.85 0.72 MnO 0.05 0.07 0.06 0.06 0.05 0.08 7 MgO 0.13 0.61 0.09 0.08 0.34 0 C80 0.75 0.82 0.67 0.61 0.59 0.41 NaZO 3.03 2.89 2.98 2.81 2.54 3.55 K20 5.47 5.38 5.45 5.55 5.48 5.07 P205 0.03 0.05 0.03 0.02 0.03 0.01 Total 97.99 97.47 97.44 97.37 96.82 97.22 X-Ray Fluorescence (ppm) j Cr 11.8 1 0.4 0 0 0 N1 0 0 0 0 0 0 Cu 0 5.4 1.1 3.5 0.3 1 Zn 45.5 55.9 37.8 34.6 32.7 53.3 Rb 116.25 99.18 111.49 122.2 133.75 218.76 Sr 69.91 66.79 59.29 31.54 26.96 3.8 Y 14.52 14.96 14.86 14.51 13.94 30.06 Zr 186.51 205.05 187.38 150.12 166.75 131.3 Nb 9.71 14.76 13.78 13.01 12.81 28.38 La 82.9 103.94 76.27 74.03 92.15 50.51 7Ba 258 277 263 35 55 0 INAAme) Sc 1.73 1.7 1.87 2.45 1.79 1.34 Hf 3.66 5.28 5.43 4.35 5.05 5.22 Th 24.06 32.2 34.69 31.54 32.43 29.95 La 73.02 76.52 78.5 69.46 72.62 34.67 Ce 87.38 130.81 135.81 111.06 118.15 64.01 Sm 5.25 6.63 5.76 5.38 5.92 5.8 Eu 0.55 0.59 0.6 0.4 0.4 0.09 Tb 0.33 0.74 0.74 0.75 0.75 0.76 Yb 0.66 1.84 1.85 1.86 1.93 3.11 Lu 0.07 0.18 0.25 0.24 0.28 0.55 58 Appendix B: Major and Trace element analysis of the high silica Rainier Mesa Tufl‘. Includes data from Mills (1991). The * denotes new chemical analyses. Sample Number 7 R21-19 R21-23 R21-26 R21-40 R21-44 R23-7* 7 | Weight Percent Oxide (wt%) | SiO2 74.52 74.57t 75.49 76.13 74.4 72.48 TiO2 0.13 0.13 0.13 0.13 0.24 0.29 .41203 12.63 12.41 12.09 11.99 12.83 13.65 FeO 0.72 0.69 0.71 0.61 1.06 1.36 MnO 0.08 0.08 0.08 0.05 0.05 0.06 MgO 0.32 0.01 0 0 0.13 0.44 CaO 0.35 0.37 0.37 0.51 0.75 0.85 NaZO 2.99 3.75 3.6 2.88 3.03 2.94 K20 5.3 4.7 4.99 5.29 5.47 5.64 P205 0.01 0.01 0 0.01 0.03 0.05 Total 97.05 96.72 97.46 97.6 97.99 97.76 I X-Ray Fluorescence (m) I Cr 0 0 0 0 11.8 55.92 Ni 0 0 0 0 0 0 Cu 0 1.6 0 0 0 0 Zn 55.9 55.3 54.2 75.6 45.5 35.82 Rb 208.97 217.9 222.23 163.87 116.25 131.19 Sr 0 4.79 2.42 22.03 69.91 122.08 Y 27.64 27.16 34 15.31 14.52 26.53 Zr 128.13 120.08 125.52 95.8 186.51 250.45 Nb 28.3 31.03 31.15 18.69 9.71 20.2 La 51.7 44.27 34.22 48.65 82.9 69.63 Ba 25 128 104 134 258 485.13 1 INAA (9pm) I Sc 1.54 1.58 1.69 2.66 1.73 2.13 Hf 3.92 5.31 5.58 2.66 3.66 8.04 Th 24.19 31.96 32.76 20.96 24.06 35.07 La 28.48 33.06 32.04 40.47 73.02 100.65 Ce 49.65 57.84 69.9 55.41 87.38 168.28 Sm 5.51 5.24 6.13 5.18 5.25 6.6 Eu 0.12 0.17 0.16 0.16 0.55 0.781 Tb 0.47 0.75 0.74 0.33 0.33 0.741 Yb 1.3 2.76 2.98 0.99 0.66 1.63 Lu 0.22 0.5 0.55 0.11 0.07 0.223 59 Appendix B: Major and Trace element analysis of the high silica Rainier Mesa Tufi‘. Includes data from Mills (1991). The * denotes new chemical analyses. Sample Number R23-9* R23-8* R25-1 R25-11 R25-12 R25-14 Weight Percent Oxide (wt%) | SiO2 76.02 7505' 75.97 72.32 75.27 73.86 TiO2 0.18 0.24 0.13 0.29 0.11 0.24 A1203 12.2 12.69 11.64 13.82 12.45 12.9 FeO 0.81 0.91 0.74 1.15 0.42 0.86 MnO 0.04 0.05 0.1 0.06 0.05 0.05 MgO 0.34 0.23 0.18 0.31 0.03 0.28 C80 0.53 0.66 0.5 0.81 0.38 0.56 NazO 2.67 3.06 2.84 3.22 2.78 3.05 K20 5.41 5.46 5.76 5.26 5.55 5.3 P205 0.02 0.03 0.1 0.06 0.01 0.03 Total 98.22 98.38 97.96 97.3 97.05 97.13 I X-Ray Fluorescence (ppm) I Cr 39.51 48.02 0 0 1.4 0 Ni 0 0 12.4 0 0 1.7 Cu 0 0 0 0 0 0 Zn 29.38 58.07 32.8 156.8 95 108 Rb 143.44 118.85 240.85 161.35 272.61 272.23 Sr 37.31 56.71 7.45 84.66 0 47.1 Y 18.62 16.98 40.46 18.99 30.88 14.72 Zr 135.09 193.55 127.96 239.99 82.73 186.98 Nb 20.6 21.9 35 16.28 27.09 15.8 La 71.95 45.44 19.8 82.6 12.4 76.7 Ba 111.46 140.15 1.7 288 0 153.6 INAA(_ppm) I So 1.67 1.85 1.93 2.44 3.47 2 Hf 4.99 6.51 4.48 5.18 3.16 4.41 Th 28.14 32.02 31.12 31.59 21.75 31.22 La 48.71 75.13 33.51 93.86 23.06 70.44 Ce 94.06 129.53 79.59 156.19 57.22 125.41 Sm 4.57 5.53 6.13 6.37 5.07 5.43 Eu 0.352 0.577 0.26 0.72 0.13 0.49 Tb 0.525 0.412 0.4 0.38 0.43 0.24 Yb 1.5 1.44 2.33 1.64 2.14 1.4 Lu 0.183 0.285 0.3 0.17 0.28 0.13 60 Appendix B: Major and Trace element analysis of the high silica Rainier Mesa Tuff. Includes data from Mills (1991). The "' denotes new chemical analyses. Sample Number 7 R25-16 R25-20 R26-12* R26-14* R26-19* R26-20* 7 | Weight Percent Oxide (wt%) | SiO2 75.68 76.07 74.98 74.67 75.67 75.1 TiO2 0.15 0.1 0.18 0.19 0.19 0.15 4.1203 12.19 12.48 12.92 12.58 12.8 12.98 FeO 0.56 0.35 0.89 0.76 0.93 0.82 MnO 0.04 0.05 0.04 0.04 0.05 0.06 MgO 0.08 0.01 0.24 0.14 0.18 0.26 CaO 0.5 0.36 0.51 0.5 0.54 0.37 NaZO 2.77 2.94 2.38 2.77 2.45 3.16 K20 5.54 5.5 6 6.01 6.09 5.03 P205 0.01 0.01 0.01 0.01 0.02 0.01 Total 97.52 97.87 98.15 97.67 98.92 97.94 X-Ray Fluorescence (ppm) I Cr 0 0 41.87 44.53 51.84 40.59 Ni 0 7 0 0 0 0 Cu 0 0 0 o 0 0 Zn 32.7 59.9 27.03 65.46 28.01 62.33 Rb 220.07 337.53 160.05 131.05 140.36 215.54 Sr 9.22 0 25.78 27.81 32.18 0 Y 25.63 28.26 19.12 19.59 20.49 34.95 Zr 104.17 68.25 131.3 144.79 150.8 95.96 Nb 17.07 28.5 22.6 17.6 21.6 29.9 La 40.9 11.4 26.42 47.88 68.18 0 Ba 0 30.8 67.07 152.27 165.88 0 INAA (ppm) l Sc 2.47 3.88 2 1.75 1.92 4.18 Hf 3.25 2.9 4.88 5.15 5.23 4.37 Th 28.46 19.28 30.13 31.57 30 23.42 La 42.3 22.27 51.18 63.93 66.13 25.5 Ce 81.96 49.76 94.41 111.84 105.84 60.18 Sm 5.35 4.98 5.41 5.51 6.06 4.6 Eu 0.17 0.06 0.399 0.507 0.618 0.183 Tb 0.21 0.43 0.482 0.682 0.746 0.755 Yb 1.33 1.92 1.83 1.54 1.73 3.31 Lu 0.14 0.26 0.281 0.205 0.326 0.518 61 Appendix B: Major and Trace element analysis of the high silica Rainier Mesa Tufl‘. Includes data from Mills (1991). The * denotes new chemical analyses. Sample Number R26-21* R26-23* Weight Percent Oxide (wt%) 8102 76.04 76.78 TiOz 0.1 0.16 A1203 12.77 12.35 FeO 0.56 0.81 MnO 0.06 0.04 MgO 0.04 0.07 CaO 0.38 0.51 NaZO 2.56 2.51 K20 6.03 5.94 P205 0.01 0.01 Total 98.55 99.18 X-Ray Fluorescence (ppm) iCr 42.92 37.12 Ni 0 0 Cu 0 0 Zn 18.63 23.79 Rb 260.8 150.23 Sr 0 20.3 Y 32.39 19.38 Zr 72.78 123.18 Nb 32.4 21.8 La 13.14 44.9 Ba 74.07 18.89 INAA (gm) Sc 3.77 1.87 Hf 3.41 4.26 Th 22 30.45 La 22 49.59 Ce 51.12 89.52 Sm 4.57 5.25 Eu 0.153 0.361 Tb 0.766 0.536 Yb 3.65 1.65 Lu 0.568 0.312 APPENDIX C Electron Microprobe Analyses 62 Appendix C: Electron Microprobe Analyses I Biotite Analysis I |descn'pt. F N820 MgO .41203 SiO2 c1 K20 CaO TiO2 Cr203 M110 FeO TotalJ R23-14-1 edge 0.69 0.58 13.57 18.10 33.07 0.05 8.24 0.02 5.79 0.02 0.29 15.01 95.43 R23-14-1 mid 0.56 0.65 13.52 18.34 32.92 0.05 8.06 0.01 6.01 0.00 0.27 15.24 95.63 R23-14-1 ctr 0.32 0.47 13.81 18.54 32.90 0.05 8.36 0.01 5.94 0.00 0.25 15.27 95.90 1123-14-2 edge 0.63 0.68 13.61 17.84 30.99 0.02 8.23 0.02 5.98 0.00 0.27 14.93 93.21 R23-14-2 mid 0.81 0.72 14.13 18.34 36.38 0.05 8.67 0.03 5.83 0.00 0.30 15.53 100.81 R23-14o2 mid2 0.70 0.69 13.75 18.32 36.20 0.04 8.52 0.06 6.08 0.00 0.33 15.48 100.16 R23-l4-3 edge 0.93 0.62 14.20 17.46 31.74 0.04 8.38 0.06 5.70 0.00 0.30 14.34 93.78 R23-14-3 mid 0.59 0.58 13.72 17.73 33.56 0.04 8.60 0.02 5.71 0.00 0.34 15.17 96.05 1123-14-3 ctr 0.77 0.64 13.93 17.67 33.74 0.03 8.44 0.02 5.71 0.00 0.28 14.85 96.08 1126-19-1 edge 1.06 0.54 13.88 16.52 36.60 0.06 8.47 0.02 4.21 0.03 0.33 15.71 97.43 R26-19-1 mid 0.97 0.55 13.88 17.73 36.96 0.08 8.38 0.02 4.12 0.01 0.35 15.68 98.74 1126-19-1 ctr 2.42 0.38 13.62 17.31 38.00 0.10 8.40 0.03 4.15 0.00 0.40 14.45 99.25 R26-19-2 edge 0.77 0.64 15.55 17.32 37.13 0.04 8.64 0.00 4.61 0.03 0.33 14.43 99.49 R26-l9-2 mid 0.78 0.64 15.28 17.08 36.99 0.05 8.55 0.01 4.71 0.00 0.28 14.17 98.52 R26—19-3 edge 1.31 0.48 14.60 16.86 36.59 0.06 8.45 0.04 4.62 0.00 0.33 14.63 97.97 R26-19-3 mid 0.99 0.56 15.22 17.06 36.21 0.08 8.59 0.01 4.92 0.00 0.30 14.31 98.23 R26-19-3 ctr 0.94 0.53 14.83 17.10 35.96 0.05 8.31 0.03 4.73 0.00 0.26 14.01 96.75 R18olS-l edge 2.38 0.44 14.19 13.01 37.82 0.10 9.07 0.02 3.52 0.04 0.67 16.19 97.45 R18-15-l mid 2.25 0.40 13.82 12.94 37.52 0.09 8.66 0.04 3.51 0.04 0.62 16.04 95.94 R18-15-1 ctr 2.02 0.40 13.77 12.95 38.29 0.09 8.72 0.06 3.62 0.06 0.63 16.42 97.02 Rl8-15-2 edge2 2.50 0.51 14.21 13.05 37.54 0.07 9.35 0.02 3.61 0.06 0.77 16.73 98.41 R18«15-2 mid 1.74 0.52 13.81 12.71 35.97 0.09 9.12 0.00 3.59 0.02 0.60 16.41 94.59 R18—15-2 ctr 1.78 0.52 13.94 12.81 36.88 0.06 9.29 0.01 3.71 0.03 0.63 16.26 95.92 R18-15—3 mid 2.20 0.42 13.93 12.83 37.05 0.11 8.82 0.11 3.43 0.03 0.63 16.53 96.11 R18—6—1 edge 1.81 0.51 14.24 12.05 38.62 0.10 9.15 0.00 3.56 0.08 0.73 16.89 97.74 Appendix C: Electron Microprobe Analyses 63 I Biotite Analysis I klescript. F N820 MgO A1203 8102 C1 K20 CaO TiO2 Cr203 MnO FeO Total] R18-6-1 mid 1.49 0.51 14.20 11.89 38.25 0.11 9.11 0.00 3.64 0.02 0.73 16.50 96.43 R18-6-1 ctr 1.44 0.57 14.68 12.19 39.39 0.09 9.30 0.00 3.53 0.08 0.76 16.43 98.46 R18-6-2edge 1.84 0.51 13.81 12.08 38.60 0.09 9.16 0.06 3.58 0.00 0.76 16.94 97.42 R18-6-2mid 1.67 0.52 14.54 12.60 39.94 0.09 9.17 0.00 3.65 0.05 0.78 16.33 99.33 R18-6-2 ctr 1.64 0.54 14.12 12.46 39.32 0.09 8.99 0.05 3.53 0.04 0.75 16.23 97.77 R18—6-3edge 1.58 0.54 13.80 11.91 39.08 0.06 9.30 0.00 3.58 0.07 0.77 16.44 97.13 R18-6-3mid 1.28 0.49 14.10 12.01 38.33 0.07 9.17 0.01 3.61 0.03 0.74 16.15 96.00 R18-6-3 ctr 1.89 0.49 14.24 12.15 38.29 0.07 9.15 0.00 3.58 0.01 0.77 15.80 96.45 R26-14-1 ctr 1.25 0.57 15.65 12.46 36.14 0.04 8.94 0.00 4.63 0.06 0.37 14.57 94.68 R26-14-2 edge 1.85 0.57 15.47 12.33 35.80 0.07 9.27 0.01 4.61 0.00 0.32 14.71 95.02 R26-14-2 mid 1.09 0.59 15.44 12.56 36.77 0.07 9.12 0.01 4.68 0.06 0.36 14.46 95.21 R26-14-2ctr 1.15 0.49 15.54 12.44 36.75 0.05 9.11 0.01 4.84 0.00 0.41 14.21 94.98 R26-14-3 edge 1.29 0.42 14.98 12.61 36.52 0.08 9.08 0.02 4.44 0.02 0.44 15.50 95.40 R26-14-3ctr 1.43 0.50 15.06 12.69 36.68 0.06 9.17 0.01 4.54 0.01 0.38 15.58 96.11 R18—15-1 edge 2.38 0.44 14.19 13.01 37.82 0.10 9.07 0.02 3.52 0.04 0.67 16.19 97.45 R18-15-1 mid 2.25 0.40 13.82 12.94 37.52 0.09 8.66 0.04 3.51 0.04 0.62 16.04 95.94 R18-15-1 ctr 2.02 0.40 13.77 12.95 38.29 0.09 8.72 0.06 3.62 0.06 0.63 16.42 97.02 R18-15.26dg62 2.50 0.51 14.21 13.05 37.54 0.07 9.35 0.02 3.61 0.06 0.77 16.73 98.41 R18-15-2mid 1.74 0.52 13.81 12.71 35.97 0.09 9.12 0.00 3.59 0.02 0.60 16.41 94.59 Rl8-15-2ctr 1.78 0.52 13.94 12.81 36.88 0.06 9.29 0.01 3.71 0.03 0.63 16.26 95.92 R18-15-3 mid 2.20 0.42 13.93 12.83 37.05 0.11 8.82 0.11 3.43 0.03 0.63 16.53 96.11 R18-11-1 edge 1.80 0.66 12.31 12.68 40.66 0.08 7.19 0.28 3.16 0.04 0.61 15.64 95.10 R18-11-1 mid 1.71 0.68 12.53 13.03 39.79 0.10 7.55 0.28 3.25 0.01 0.54 14.98 94.43 R18-11-lctr 1.90 0.55 12.94 12.33 39.45 0.12 7.62 0.35 3.23 0.03 0.55 14.87 93.95 R18-ll-2 edge 1.95 0.44 13.53 12.54 36.93 0.08 8.62 0.22 3.42 0.03 0.62 15.48 93.85 Appendix C: Electron Microprobe Analyses 64 I Biotite Analysis I Idescript. F N820 MgO 74.1203 SiO2 C1 K20 CaO TiO2 Cr203 MnO FeO Total| R18-11-2mid 1.68 0.46 13.63 12.51 37.93 0.08 8.01 0.24 3.26 0.04 0.53 14.95 93.33 R18-11-2ctr 1.76 0.36 13.74 12.59 38.35 0.10 8.20 0.17 3.50 0.00 0.53 15.14 94.44 R18-11-3 edge 2.59 0.48 13.88 13.05 38.05 0.06 8.72 0.22 3.45 0.00 2.36 15.60 98.46 R18—11-3mid 1.65 0.58 13.17 12.78 38.79 0.07 8.01 0.24 3.18 0.04 0.65 15.72 94.89 R23-7-1edge2 0.45 0.71 14.46 13.77 34.71 0.00 8.41 0.00 5.60 0.00 0.27 13.93 93.67 R23-7-1edge3 0.74 0.49 14.73 13.87 35.38 0.02 8.45 0.00 5.23 0.02 0.30 14.20 94.69 R23-7-1 mid 0.36 0.53 14.66 13.67 35.28 0.02 8.40 0.00 5.21 0.00 0.28 14.14 93.75 R23-7-1 mid 1.72 0.60 14.57 13.95 35.51 0.09 8.71 0.13 5.63 0.13 0.40 14.48 97.72 R23-7-1ctr 0.57 0.61 15.09 14.08 35.82 0.06 8.59 0.13 5.45 0.12 0.40 14.10 96.74 R23-7-1edge4 0.86 0.79 15.24 14.46 35.81 0.09 8.46 0.16 5.85 0.15 0.46 13.91 98.15 R23-7-2 edge 0.76 0.67 14.65 13.47 36.14 0.10 8.86 0.21 5.73 0.14 0.51 14.83 97.12 R23-7-2mid 0.66 0.69 14.53 13.62 35.96 0.09 9.01 0.19 5.79 0.11 0.49 14.83 97.14 R23-7-2ctr 0.84 0.52 14.95 13.91 36.45 0.08 8.97 0.20 5.47 0.14 0.50 15.26 98.47 R23-7-3edge 1.46 0.60 15.13 13.52 36.54 0.10 8.90 0.14 5.49 0.12 0.53 14.39 97.77 R23-7-3mid 0.65 0.57 15.17 13.15 36.06 0.10 9.07 0.14 5.34 0.13 0.48 14.73 96.36 R23-7-3ctr 1.45 0.58 14.96 13.14 36.43 0.08 8.96 0.15 5.42 0.14 0.55 14.74 97.41 R23-8-1 edge 1.21 0.57 15.52 12.65 36.61 0.06 9.23 0.00 4.73 0.00 0.28 14.19 95.21 R23-8-1ctr 0.85 0.63 15.62 12.69 36.52 0.05 8.71 0.09 4.62 0.01 0.31 13.76 93.99 R23-8-2 edge 1.52 0.49 14.61 12.32 36.56 0.07 8.82 0.01 4.41 0.00 0.32 13.82 93.02 R23-8.2etr 1.39 0.44 14.72 13.58 35.04 0.07 8.46 0.08 5.27 0.00 0.35 14.75 95.98 R23-8—2mid 0.85 0.49 14.98 13.51 35.45 0.07 8.76 0.01 5.34 0.00 0.38 15.36 96.71 R23-8-3 edge 1.01 0.66 16.54 13.14 38.25 0.06 9.03 0.00 4.52 0.00 0.30 13.97 97.58 R2383 mid 1.12 0.40 15.84 12.76 37.75 0.07 9.26 0.00 4.44 0.00 0.27 14.53 96.50 R18—14-1 edge 2.11 0.49 14.36 13.63 37.99 0.07 8.65 0.03 3.58 0.00 0.71 16.84 98.55 R18-14-1ctr3 1.70 0.38 12.83 13.22 38.68 0.09 7.65 0.22 3.07 0.00 0.52 14.75 93.20 Appendix C: Electron Microprobe Analyses 65 I Biotite Analysis I Idescript. r N820 MgO A1203 sro2 c1 K20 CaO TiO2 Cr203 MnO FeO TotalI Rl8-14-2edge 1.79 0.42 14.79 12.74 37.73 0.10 9.27 0.03 3.13 0.00 0.68 16.14 96.81 R18-14-201I' 1.96 0.47 14.88 13.42 38.10 0.09 9.18 0.02 3.53 0.00 0.65 16.25 98.61 R18-l4-3edge 1.52 0.30 12.45 13.41 39.76 0.07 7.50 0.26 3.05 0.00 0.51 14.19 93.04 R18-14-4edge 1.86 0.57 14.35 13.34 38.02 0.14 8.78 0.02 3.33 0.12 0.75 15.88 97.70 R18-l4-4ctr 2.08 0.58 14.60 13.17 37.33 0.13 9.29 0.00 3.44 0.13 0.90 16.39 98.60 R18-14-5edge 1.86 0.52 13.73 12.45 35.67 0.15 9.22 0.00 3.59 0.14 0.95 16.30 95.10 R18-14-5ctr 1.88 0.66 13.55 12.88 38.76 0.10 8.08 0.19 3.44 0.17 0.68 15.08 95.97 R18-14-5mid 1.93 0.40 13.40 12.52 38.92 0.15 8.16 0.22 3.21 0.10 0.73 15.59 95.88 Appendix C: Electron Microgobe Analyses 66 I Fcldspar Analysis I Idescript. NazO $102 ,4le3 MgO K20 CaO BaO FeO F6303 Total | R23-7-l ctr 4.08 67.48 19.08 0.01 10.64 0.26 0.00 0.09 0.10 101.66 R23-7-1 edge 4.16 67.56 19.14 0.00 10.58 0.27 0.00 0.06 0.06 101.83 R23-7-1 mid 3.91 65.67 18.76 0.00 10.62 0.31 0.03 0.06 0.06 99.42 R23-7-2 edge 8.19 63.95 22.39 0.00 1.65 3.92 0.00 0.23 0.26 100.35 R23-7-2 mid 8.35 63.48 22.30 0.01 1.66 3.95 0.00 0.25 0.28 100.05 R23-7-2 ctr 8.16 63.58 22.64 0.00 1.52 4.36 0.00 0.18 0.20 100.46 R23-7-3 edge 4.05 65.80 18.68 0.01 10.34 0.30 0.03 0.13 0.15 99.41 R23-7-3 mid 4.11 66.76 18.92 0.01 10.41 0.28 0.08 0.03 0.04 100.64 R23-7-3 ctr 4.15 66.49 18.76 0.01 10.43 0.27 0.06 0.09 0.10 100.34 R23-8-l edge 4.48 63.31 18.03 0.00 10.20 0.28 0.00 0.05 0.06 96.46 R23-8-1 edge 4.19 66.12 18.65 0.02 10.30 0.29 0.00 0.10 0.11 99.69 R23-8-1 mid 4.21 65.77 18.61 0.01 10.40 0.29 0.00 0.13 0.15 99.48 R23-8-l ctr 4.10 65.87 18.50 0.00 10.57 0.30 0.00 0.05 0.06 99.46 R23-8-2 ntid 8.34 62.94 22.54 0.01 1.50 4.10 0.01 0.22 0.25 99.67 R23-8-2 ctr 8.51 63.86 . 22.17 0.01 1.60 3.89 0.00 0.21 0.23 100.29 R23-8-3 edge 8.41 62.78 22.79 0.02 1.41 4.46 0.00 0.24 0.26 100.10 R23-8-3 mid 8.17 62.52 22.70 0.03 1.39 4.43 0.00 0.27 0.30 99.52 R23-8-3 ctr 8.27 62.25 22.58 0.01 1.40 4.57 0.00 0.30 0.34 99.39 R23-8-3 edge2 8.27 62.44 22.78 0.01 1.33 4.52 0.00 0.29 0.32 99.67 R23-4-1 mid 3.95 64.25 18.44 0.00 10.78 0.23 0.10 0.11 0.12 98.02 R2341 edge 3.98 64.68 18.41 0.00 9.97 0.21 0.10 0.09 0.10 97.44 R23-4-1 edge2 4.28 65.16 18.11 0.00 9.60 0.48 0.10 0.07 0.08 97.80 R23-4-1 ctr 3.97 65.22 18.50 0.00 10.21 0.26 0.14 0.11 0.12 98.43 Appendix C: Electron Microprobe Analyses 67 I Feldspar Analysis [descript Na20 8102 .41203 MgO K20 CaO BaO FeO Fe203 Total] R2342 edge2 7.23 58.48 23.60 0.01 1.03 6.45 0.07 0.30 0.34 97.20 R23-4-2 mid 6.96 57.75 24.61 0.02 0.79 7.25 0.22 0.29 0.32 97.91 R2342 edge 8.19 62.52 22.38 0.00 1.49 4.07 0.00 0.23 0.26 98.92 R2343 mid 8.08 62.63 22.61 0.00 1.33 4.42 0.00 0.21 0.23 99.29 R2343 ctr 8.25 62.60 22.32 0.00 1.42 4.23 0.01 0.28 0.32 99.14 R2344 edge 6.56 56.80 26.61 0.01 0.53 8.10 0.25 0.28 0.31 99.16 R2344 ctr 6.27 56.88 26.27 0.01 0.47 8.46 0.07 0.32 0.35 98.78 R18-14-1 edge 8.90 63.46 21.19 0.01 1.24 3.05 0.05 0.13 0.15 98.05 R18-14—1 mid 9.33 62.49 21.01 0.02 1.42 2.74 0.00 0.17 0.18 97.20 R18-14-l ctr 9.42 62.91 21.17 0.00 1.27 2.95 0.00 0.16 0.17 97.89 R18-14-2 edge 3.86 63.19 17.80 0.00 10.76 0.21 0.00 0.11 0.12 95.95 R18-14-2 ctr 4.13 63.12 18.20 0.00 10.80 0.25 0.00 0.04 0.04 96.53 R18-14-2 mid 4.09 65.70 18.34 0.00 10.78 0.17 0.00 0.09 0.10 99.19 R18-14-3 edge 3.91 65.85 17.70 0.00 10.80 0.23 0.00 0.12 0.13 98.62 R18-14-3 ctr 4.06 66.08 18.43 0.00 10.81 0.17 0.00 0.11 0.12 99.65 R26-14-1 ctr 4.35 65.68 18.51 0.01 10.07 0.51 0.01 0.14 0.15 99.30 R26-14-1 mid 4.14 65.29 18.47 0.00 10.61 0.30 0.07 0.16 0.17 99.06 R26-14-2 mid 3.82 64.23 17.94 0.02 10.76 0.30 0.00 0.14 0.16 97.24 R26-14-2 ctr 3.98 64.83 17.97 0.00 10.56 0.23 0.00 0.21 0.23 97.80 R18-11-1 ctr 3.93 64.51 17.92 0.01 11.06 0.20 0.00 0.12 0.13 97.75 R18-11-2 mid 3.91 63.95 18.19 0.00 10.96 0.18 0.00 0.14 0.15 97.35 R18-11-2 ctr 4.01 64.68 18.24 0.01 10.69 0.14 0.00 0.09 0.10 97.87 R18-11-3 mid2 3.79 63.27 17.82 0.01 10.74 0.20 0.00 0.07 0.08 95.89 Appendix C: Electron Microprobe Analyses 68 r Feldspar Analysis Idescript. NagO SiO2 A1203 MgO K20 CaO BaO FeO Fe203 Tori] R18-6-1 edge 8.93 65.34 20.34 0.00 1.68 2.37 0.00 0.06 0.07 98.73 R18-6-1 ctr 9.00 64.72 21.66 0.00 1.25 3.09 0.00 0.08 0.09 99.82 R18-6-1 mid 9.00 62.86 21.44 0.00 1.28 3.07 0.00 0.10 0.11 97.77 R18-6-2 mid 9.08 63.80 21.36 0.00 1.18 2.89 0.07 0.07 0.08 98.46 R18-6-2 ctr 9.31 64.37 21.15 0.00 1.28 2.82 0.01 0.11 0.12 99.08 R18-6-3 edge 7.55 59.43 23.14 0.00 0.63 5.65 0.02 0.06 0.07 96.50 R18-6-3 ctr 8.46 62.86 22.08 0.00 0.98 3.98 0.05 0.16 0.18 98.59 R18-6-3 edge2 7.80 59.06 24.65 0.00 0.52 6.40 0.00 0.13 0.14 98.57 Rl8-6-4 ctr 9.25 63.90 21.34 0.00 1.32 2.88 0.00 0.08 0.09 98.79 R18-6-4 edge 9.14 63.90 21.59 0.00 1.29 3.03 0.00 0.09 0.10 99.06 R26-19-1 edge2 4.13 65.37 18.21 0.00 10.52 0.31 0.09 0.17 0.19 98.82 R26-19-1 mid 4.06 65.12 18.12 0.00 10.53 0.30 0.18 0.15 0.17 98.47 R26-19-1 ctr 4.03 65.12 18.27 0.00 10.57 0.32 0.16 0.20 0.23 98.68 R26-19-2 edge 8.44 62.76 22.90 0.01 1.31 4.54 0.00 0.25 0.28 100.24 R26-19-2 mid 8.41 62.70 22.63 0.00 1.38 4.28 0.00 0.21 0.23 99.65 R26-19-2 ctr 8.17 60.87 21.93 0.00 1.44 4.06 0.04 0.24 0.27 96.77 R26-19-3 edge 4.21 64.95 18.59 0.00 10.58 0.33 0.10 0.14 0.16 98.91 R26-19-3 mid 4.10 64.89 18.36 0.00 10.54 0.34 0.10 0.13 0.15 98.48 R26-19-3 ctr 4.17 64.87 18.45 0.00 10.59 0.30 0.11 0.15 0.17 98.66 R18-9-1 mid2 4.04 65.22 18.26 0.00 10.75 0.16 0.11 0.05 0.06 98.60 R18-9-1 ctr 4.14 65.44 18.17 0.00 10.62 0.16 0.04 0.12 0.13 98.71 R18-9-1 edge 4.03 65.43 18.00 0.01 10.60 0.16 0.16 0.10 0.12 98.50 R18-9-2 edge 4.04 66.44 18.16 0.02 10.46 0.16 0.16 0.11 0.12 99.57 Appendix C: Electron Microprobe Analyses 69 I Feldspar Analysis Idescript. N820 sro2 A1303 MgO K20 CaO BaO FeO F6303 Total I R18-9-2 ctr 4.18 65.34 18.52 0.00 10.56 0.13 0.09 0.10 0.11 98.94 111853 edge 8.82 62.57 20.92 0.00 1.33 2.75 0.00 0.19 0.21 96.59 R18-9-3 ctr 9.21 63.50 21.23 0.00 1.27 2.77 0.00 0.13 0.15 98.13 R18-9-3 mid 9.13 63.62 20.75 0.01 1.29 2.75 0.00 0.16 0.17 97.73 Rl8-15-1 edge 4.02 65.45 18.40 0.01 10.86 0.15 0.00 0.06 0.07 98.96 Rl8-15-l mid 4.10 65.89 18.46 0.00 10.93 0.14 0.06 0.12 0.14 99.72 Rl8-15-l ctr 4.02 66.19 18.37 0.00 10.74 0.15 0.00 0.10 0.11 99.59 R18-15-2 edge 4.12 66.47 18.52 0.00 10.76 0.14 0.00 0.04 0.05 100.06 R18-15-2 mid 4.04 66.41 18.58 0.00 10.85 0.12 0.01 0.04 0.05 100.07 Rl8-15-2 ctr 4.11 65.81 18.60 0.00 10.77 0.15 0.00 0.01 0.01 99.46 R18-15-3 edge 9.17 65.71 21.03 0.00 1.34 2.70 0.00 0.11 0.12 100.08 R18-15-3 mid 9.29 65.59 21.17 0.00 1.35 2.80 0.00 0.13 0.14 100.34 R18-15-4 edge 3.95 63.59 18.13 0.00 10.69 0.14 0.00 0.05 0.06 96.56 R18-15-4 mid 4.11 65.72 18.43 0.00 10.78 0.13 0.06 0.08 0.09 99.32 R18-15-5 edge 4.07 66.18 18.54 0.00 10.81 0.12 0.01 0.07 0.08 99.80 R18-15-5 ctr 4.02 66.31 18.49 0.01 10.85 0.17 0.00 0.04 0.05 99.89 Appendix C: Electron Microprobe Analyses 70 | Maggtite Analysis [descrip. MgO A1208 T102 Cr203 MnO FeO Total R18- 15-2 mid 0. 57 0.99 4.71 0.04 2.06 84.78 93.18 R18-15-2 ctr 0.58 0.97 4.68 0.01 2.13 84.77 93.20 R18-l5-3 edge 0.22 l. 12 4.84 0.00 1.24 82.69 90.18 R18-15-3 ctr 0.46 0.89 4.81 0.00 2.15 84.48 92.86 R23-7-1 edge 0.84 1.23 6.67 0.01 0. 98 82. 39 92. 32 R23-7-1 ctr 0.22 0.95 7.25 0. l l 0. 31 79.43 88.80 R23-7-2 edge 1.03 2. 11 4.99 0.05 0.91 65.79 80.21 R23-7-2 edge2 1.54 2. 19 5.46 0.06 1.36 81.52 92.39 R23-7-2 ctr 1.13 1.83 7.19 0.03 0.95 81.33 92.67 Rl8-6-l mid 0.26 1.30 5.33 0.16 1.54 83.22 91.99 R 18-6-1 mid2 0.16 0.95 5.03 0. 11 1.37 84.28 92.02 R 18-6-1 ctr 0.16 1.11 5.08 0.14 1. 33 83.82 93.49 R18-6-2 edge 0.30 1.08 5.08 0.13 1.50 84.56 92.77 R 18-6-2 mid 0. 41 0. 8 1 4.98 0. l3 2. 39 84. 74 93.65 R 18-6-2 ctr 0.51 1.05 4.94 0.14 2.57 84.59 93.97 R 18-6-3 edge 0. 39 0.88 4. 79 0.1 1 2. 52 84.63 93.44 R18-6-3 ctr 0.34 1.11 5.07 0.15 1.74 83.79 92.31 R26- 14-1 edge 0.93 1.06 6.05 0.04 1.08 80.99 90.38 R26- 14-1 mid 0.94 0.95 5.61 0.00 l. 12 83. 75 92.44 R26-14-2 edge 0. 41 2. l4 6. 59 0.07 0. 78 76.86 90. 56 R26- 14-2 mid 1.09 1.32 5.34 0.09 1.53 83.30 92.82 R18-15o2 mid 0.57 0.99 4.71 0.04 2.06 84.78 93.18 R18-15—2 ctr 0. 58 0. 97 4.68 0.01 2. 13 84.77 93. 20 R18-15-3 edge 0.22 1.12 4.84 0.00 1.24 82.69 90.18 Rl8- 15-3 ctr 0.46 0.89 4.81 0.00 2.15 84.48 92.86 . R23-7-1 edge 0.84 1.23 6.67 0.01 0.98 82.39 92.32 R23-7-1 ctr 0.22 0.95 7.25 0. 1 1 0. 31 79. 43 88.80 R23-7-2 edge 1.03 2. 11 4.99 0.05 0. 91 65. 79 80.21 71 Appendix C: Electron Microprobe Analyses [ fiagnetite Analysis [descrip. M 50 A1203 T102 C1903 MnO FeO Total R23-7-2 edge2 1.54 2.19 5.46 0.06 1.36 31.52 92.39 R23-7-2 ctr 1.13 1.83 7.19 0.03 0.95 81.33 92.67 Rl8-ll-1 mid 0.54 0.94 4.84 0.11 2.31 84.16 93.00 R18-11-1 ctr 0.31 1.11 4.96 0.00 1.60 83.26 91.35 1118-15-1 mid 0.02 0.17 0.00 0.02 1.26 87.17 89.53 R18- 15- ledge 0.00 0.38 0.00 0.00 1.11 87.72 90.00 Appendix C: Electron Micgonobe Analysis 72 | 11mgn1te Analysis Hescript. MgO A1203 T102 Cr203 MnO F 90 - Total R23-14-1 edge 1.22 0.11 39.80 0.07 1.54 49.50 92.56 R23-14-1 mid 2.65 0.17 36.53 0.04 3.47 49.77 92.86 R23-14-1 ctr 1.31 0.18 36.48 0.06 1.67 53.06 93.06 1123-14-2 edge 1.21 0.19 42.69 0.10 3.11 44.73 92.22 R23-14-2 mid 1.20 0.09 43.43 0.06 3.49 43.69 92.19 R26-19-1 edge 1.13 0.08 38.60 0.10 1.40 53.44 94.85 R26-19-1 ctr 1.57 0.14 39.48 0.07 1.81 51.58 94.79 R26-19-2 edge 2.56 0.28 36.60 0.04 2.16 51.32 93.82 R26-19-2 mid 1.75 0.18 38.00 0.16 1.41 53.83 95.41 R26-19-2 ctr 0. 93 0.22 37.54 0.08 0. 85 53.81 93.54 R26- 19-3 edge 1.64 0.16 38.32 0. 10 1.72 53.41 95.41 1126-19-3 ctr 1.46 0. 13 38.05 0. 13 1.65 53.92 95.38 R23-7-1 edge 1.36 0.17 37.96 0.00 1.10 52.60 93.34 R23-7-1mid 2. 32 0. 15 36. 75 0.05 2.00 53.82 95. 14 R23-7- lctr 2. l6 0. 16 36.83 0.01 1.75 53.96 94.88 R23-7-2 edge 1.76 0.15 37.40 0.00 1.55 53.68 94.58 R23-7-2 mid 2.41 0.18 36.85 0.00 1.86 53.54 94.88 R23-7-2 ctr 2.18 0.17 37.01 0.02 1.94 53.93 95.29 R23-8-1 edge2 1. 17 0. 1 1 38.56 0.09 0.84 52.89 93.77 R23-8-l mid 1.57 O. 18 37.78 0.04 1.23 53.34 94.21 R23-8—1 ctr 2.07 0. 1 1 37.45 0.02 1.39 52.57 93.77 R23-8-2 edge 0. 76 0.16 38.37 0.02 0.67 52.07 92.24 R23-8-2 mid 0. 87 0.18 36.80 0.00 0.61 55.08 93.69 R23-8-2 ctr 1.15 0.12 38.33 0.01 0. 89 52.80 93.47 R23-8-3 edge 1.53 0.15 38.45 0.00 1.14 52.05 93.42 R23-8-3 mid 1.98 0.14 38.98 0.04 1.60 51.30 94.26 R23-8-3ctr 0.62 0.21 38.03 0.00 0.40 53.73 93. 20 R18-6-l edge 0.61 0.00 44.86 0.11 2.71 47.82 96.25 Appendix C: Electron Microprobe Analysis 73 | Ilmenite Analysis I [descript MgO A1203 T102 Cr203 MnO Fe0 Totfl R18-6-1 mid 1.09 0.00 44.41 0.10 4.75 48.40 98.85 R 18-6-1 ctr 1.28 0.01 43.77 0.09 4.87 47.65 97.81 R18-6-2 edge 0.49 0.03 45.01 0.14 2.26 47.59 95.64 R 18-6-2 mid 1.16 0.01 43.89 0.09 4.68 48.12 98.07 R18-6-2 ctr 1.20 0.00 43.95 0.12 4.91 47.84 98.13 R18-6-3 edge 0.63 0.00 45.08 0.07 2.89 46.61 95.43 R18-6-3 mid 1.10 0.00 43.93 0.10 6.10 45.49 96.86 R26-14-l edge 2.33 0.08 38.51 0.08 2.49 51.67 95.32 R26-14-1 mid 2.30 0.06 38.72 0.10 2.22 52.39 95.90 R26-14-2 edge 1.20 0.09 38.66 0.13 1.20 52.77 94.12 R26-14-2 ctr 2.08 0.09 38.07 0.04 2.23 53.26 95.94 R23-7- ledge 1.36 0. 17 37.96 0.00 1.10 52.60 93. 34 R23-7-1m1d 2.32 O. 15 36. 75 0.05 2.00 53.82 95. 14 R23-7- lctr 2. 16 0. 16 36.83 0.01 1.75 53.96 94.88 R23-7-2 edge 1.76 0.15 37.40 0.00 1.55 53.68 94.58 R23-7-2 mid 2.41 0.18 36.85 0.00 1.86 53.54 94.88 R23-7-2 ctr 2.18 0.17 37.01 0.02 1.94 53.93 95.29 R18-11-1 mid 1.14 0.09 43.22 0.00 4.25 47.11 95.89 R18-ll-1 edge 1.20 10.07 42.95 0.00 4.69 47.15 96.14 R18-1 1-2 mid 0. 98 0.10 43.47 0.00 3.83 47.33 95.77 R18-15-1 mid 1.50 0.05 43.47 0.00 5.35 45.07 95.53 R18-15-l ctr 1.42 0.04 42.82 0.00 6.19 45.16 95.68 R18-l5-1 edge 1.06 0.04 42.77 0.00 3.82 48.19 95.92 R18-15-2 mid 1.12 0.08 42.34 0.00 4.08 47.22 94.97 R18-15-2 ctr 1.01 0.07 42.80 0.01 4.36 47.98 96.34 R18-15-3 edge 1.08 0.07 44.10 0.01 3.55 46.04 94.97 R18- 15-3 ctr 1.56 0.09 43.86 0.00 5. 47 45.09 96.09 BIBLIOGRAPHY BIBLIOGRAPHY Anderson, D.J., Lindsley, DH, and Davidson, P.M., 1993. QUIlF; a pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz. Computers and Geosciences, v.19, p.1333-1350. Aramaki, S., and Lipman, P.W., 1965. Possible leaching of Na20 during hydration of volcanic glasses. Japan Acadamy Proceedings, v. 41, p. 41-47. Bence, A.E., and Albee, AL, 1968. Empirical correction factors for the electron microanalysis of silicates and oxides. Journal of Geology, v. 76, p. 382- 403. Best, M.G., Christiansen, E.H. and Blank, RH, 1989. Oligocene caldera complex and calc-alkaline tufl's and lavas of the Indian Peak volcanic field, Nevada and Utah. Bulletin of the Geological Society of America, v. 101, p. 1076-1090. Brown, W.L., and Parsons, I., 1981. Towards a more practical two-feldspar geothermometer. Contributions to Mineralogy and Petrology, v. 76, p. 369- 377. Byers, F.M. Jr., Carr, W.J., Orkild, P.P., Quinlivan, W.D., and Sargent, K.A., 1976a. Volcanic suites and related cauldrons of the Timber Mountain- Oasis Valley caldera complex southern Nevada. US. Geological Survey Professional Paper, v. 919, 70pp. Cambray, F.W., Vogel, T.A., Mills, J .G., Jr., 1995. Origin of compositional heterogeneities in the tufl's of the Timber Mountain Group: The relationship between magma batches and magma transfer and emplacement in an extensional environment. Journal of Geophysical Research, v. 100, no. B8, p. 15,793-15,805. Cameron, KL, and Cameron, M., 1986. Whole-rocklgroundmass differentiation trends of rare earth elements in high-silica rhyolites. Geochimica et Cosmochimica Acta, v. 50, p. 759-769. 74 75 Carr, W.J., 1990. Styles of extension in the Nevada Test site region, southern Walker Lane Belt; an integration of volcano-tectonic detachment fault models. In: Wernicke, B. (Editor), Basin and Range Extensional Tectonics Near the latitude of Las Vegas, Nevada. Memoirs of the Geological Society of America, v. 176, p. 283-303. Carrigan, OR, 1994. Two-component magma transport and the origin of composite intrusions and lava flows. In: Ryan, M.P. (Editor), Magmatic systems. Academic, p. 319-353. Carrigan, OR, and Eichelberger,J.C., 1990. Zoning of magmas by viscosity in volcanic conduits. Nature, v.343, p. 248-251. Christiansen, R.L., Lipman, P.W., Carr, W.J., Byers, F.M., Orkild, PR, and Sargent, K.A., 1977. The Timber Mountain-Oasis Valley caldera complex of southern Nevada. Geological Society of America Bulletin, v. 88, p. 943- 959. de Silva, S.L., 1989a. The orig'n and significance of crystal rich inclusions in pumices from two Chilean ignimbrites. Geol. Mag., v. 126, p. 150-175. de Silva, S.L., 1991. Styles of zoning in Central Andean ignimbrites- insights into magma chamber processes. Geological Society of America Special Paper, v. 265, p. 217-231. de Silva, S.L., and Wolfl‘, J .A., 1995. Zoned magma chambers: the influence of magma chamber geometry on sidewall convective fractionation. Journal of Volcanology and Geothermal Research, v. 65, p. 111-118. Dunbar, N.W., and Herving, R.L., 1992b. Volatile and Trace Element Composition of Melt Inclusions From the Lower Bandelier Tufi': Implications for Magma Chamber Processes and Eruptive Style. Journal of Geophysical Research, v. 97, no. B11, p. 15,151-15,170. Eaton, GR, 1984. The Miocene Great Basin of western North America as an extending back-arc region. In: Carlson, R.L., and Kobayashi, K. (Editors), Geodynamics of back-arc regions. Tectonophysics, v. 102, p. 275-295. Flood, T.P., 1987. Cyclic evolution of a magmatic system: The Paintbrush Tufl‘, Southwest Nevada Volcanic Field. Ph.D. thesis, 147pp., Michigan State University, East Lansing. Flood, T.P., Schuraytz, B.C., and Vogel, T.A, 1989b. Magma mixing due to disruption of a layered magma body. Journal of Volcanology and Geothermal Research, v. 36, p. 241-255. 76 Flood, T.P., Vogel, T.A, Schuraytz, B.C., 1989a. Chemical evolution of a magmatic system: The Paintbrush Tufl', Southwest Nevada Volcanic Field. Journal of Geophysical Research, v. 94, p.5943-5960. Fuhrman, ML. and Lindsley, DH, 1988. Ternary-feldspar modeling and thermometry. American Mineralogist, v. 73, p. 201-215. Hildreth, W., 198 l. Gradients in silicic magma chambers: implications for lithospheric magmatism. Journal of Geophysical Research, v. 86, p. 10,153-10, 192. Hildreth, W., and Mahood, G., 1985. Correlation of ash-flow tufl‘s: Geological Society of America Bulletin, v. 96, p. 968-974. Huysken, K.T., Vogel, T.A., and Layer, P.W., 1994. Incremental growth of a large volume, chemcially zoned magma body: A study of the tephra sequence beneath the Rainier Mesa ash-flow sheet of the Timber Mountain Tufl. Bulletin of Volcanology, v. 56, p. 37 7 -385. in volcanic conduits. Nature, v. 343, p. 248-251. Irvine, TN, and Barager, W.R.A., 1971. A quick guide to the chemical classification fo common rocks. Canadian Journal of Earth Science, v. 8, p.523-548. Le Bas, M.J., Le Maitre, R.W., Streckeisin, A, and Zanettin, B., 1986. A chemical classification of volcanic rocks based on the Total Alkai-Silica diagram. Journal of Petrology, v. 27, p. 745-750. Lipman, P.W., 1965. Chemical comparison of glassy and crystalline volcanic rocks. Geological Society of America Special Paper, v. 82, p. 260-261. Michael, P.J., 1983. Chemical differentiation of the Bishop T1111 and other high- silica magmas through crystallization processes. Geology, v. 1 1, p. 31-34. Mills, J .G., Jr, 1991. The Timber Mountain Tufi', southwestern Nevada volcanic field: Geochemistry, mineralogy and petrogenesis. Ph.D. thesis, 332pp., Michigan State University, East Lansing. Noble, DO, 1967. Sodium, potassium, and ferrous iron contents of some secondarily hydrated natural silicic glasses. American Mineralogist, v. 52, p. 280-286. 77 Palacz, Z.A., and Wolfl', J .A, 1989. Strontium, neodymium and lead isotope characteristics of the Granadilla Pumice, Tenerife: a study of the causes of strontium isotipe disequilibrium in felsic pyroclastic deposits. In: A.D. Saunders and M.J. Norry(Editors), Magmatism in the Ocean Basins. Geological Society of London Special Publication, v. 42, p. 147-159. Sawyer, D.A, Fleck, R.J., Lanphere, M.A., Warren, R.G., Broxton, DE, and Hudson, M.R., 1994. Episodic caldera volcanism in the Miocene southwestern Nevada volcanic field: Revised stratigraphic framework, 40Ar/39Ar geochronology, and implications for magmatism and extension. Geological Society of America Bulletin, v. 106, p. 1304-1318. Schuraytz, B.C., Vogel, T.A., and Younker, L.W., 1989. Evidence for dynamic withdrawal from a layered magma body: The Topopah Spring Tufi‘, southwestern Nevada. Journal of Geophysical Research, v. 94, p. 5925- 5942. Scott, R.B., 1990. Tectonic setting of Yucca Mountain, southwest Nevada. In: Wernicke, B. (Editor), Basin and Range Extensional Tectonics Near the latitude of Las Vegas, Nevada. Memoirs of the Geological Society of America, v. 176, p.251-282. Smith, R.L., 1979. Ash-flow magmatism. Geological Society of America Special Paper, v. 180, p.5-27. Stewert, J .H., 1988. Tectonics of the Walker Lane belt, western Great Basin: Mesozoic and Cenozoic deformation in a zone of shear. In: Ernst, W.G. (Editor), Metamorphism and Crustal Evolution of the Western United States, Ruby v. VII, p. 683-713. Stix, J. and Gordon, MP, 1993. Replenishment and crystallization in epicontinental silicic magma chambers: evidence from the Bandelier magmatic system. Journal of Volcanology and Geothermal Research, v. 55, p. 201-2 15. Stormer, J .C., Jr, 1975. A practical two-feldspar geothermometer. American Mineralogist, v. 60, no. 9, p. 723-726. Tegtmeyer, K.J., and Farmer, G.L., 1990. Nd isotopic gradients in upper crustal magma chambers: evidence for in situ magma-wall-rock interaction. Geology, v. 18, p. 5-9. Vogel, TA, 1995. unpublished data. 78 Vogel, T.A., Mills, J .G. Jr., Aines, RD, and Merzbacher, C.I., 1989. Pre-eruptive volatiles in a chemically zoned magma body based on melt inclusions. Geological Society of America Abstracts with Programs, v. 21, n.6, p. A27 1. Vogel, T.A., Ryerson, F.J., Noble, DO, and Younker, L.W., 1987. Limits to magma mixing based on chemistry and mineralogy of pumice fragments erupted from a chemically zoned magma body. Journal of Geology, v. 95, p.659-670. Wen, S. and Nekvasil, H., 1994. SOLVCALC' an interactive graphics program package for calculating the ternary feldspar solvus and for two-feldspar geothermometry. Computers and Geology, v.20, p. 1025-1040. Whitney, J .A, and Stormer, J .C., 1985. Mineralogy, petrology, and magmatic conditions from the Fish Canyon Tufl', central San Juan Volcanic Field, Colorado. Journal of Petrology, v. 26, p. 726-762. Wolff, J .A, and Storey, M., 1984. Zoning in highly alkaline magma bodies. Geol. Mag., v. 121, p. 563-575. Worner, G., and Schmincke, H.U., 1984a. Mineralogical and chemical zonation of the Laacher See tephra sequnce(East Eifel, FRG). Journal of Petrology, v. 25, p. 805-835. Worner, G., and Schmincke, H.U., 1984b. Petrogenesis of the zoned Laacher See tephra. Journal of Petrology, v. 25, p. 836-851. Worner, G., Staudigel, H., and Zindler, A, 1985. Isotopic constraints on open system evolution of the Laacher See magma chamber (Eifel, FRG). Earth and Planetary Science Letters, v. 75, p. 37-49.