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ABSTRACT

EXCITED STATE CHEMISTRY AND MECHANISTIC STUDIES OF
QUADRUPLY BONDED BIMETALLIC SYSTEMS

By

Tsui-Ling Carolyn Hsu

Multielectron reactions are fundamental to promoting energy conversion
transformations such as the oxidation of water, and the reduction of oxygen and
nitrogen. This research effort focuses on using the electronic excited state of
specially designed transition metal complexes to harness the energy of a photon
to drive oxidation-reduction reactions useful for energy storage. Can excited
states directly participate in multielectron reactions initiated by visible light? We
address this issue by using quadruply bonded metal-metal compounds (M-<+M) as
photoreagents. These systems possess low energy excited states localized at a
coordinately unsaturated, electron rich core, which is essential for small molecule
activation. The lowest energy 1(82—66*) transition of M4M complexes,
corresponding to a metal-to-metal charge transfer (MMCT) transition, produces a
two-electron mixed-valence excited state (i.e. MI_MIT 5 MI—Mm), which is
predisposed for multielectron photochemistry. Two-electron reductions of
substrate may be promoted at the M! site whereas oxidation may occur at the MIII
site.

The quadruply bonded metal-metal systems chosen to study are
Mo,[O;P(OCgHs)z]4 (D4p), MaCly(dppm); (Dap) and M,Cly(PR3)4 (Doyg), where
M,= Mo,, W3; dppm = bis(diphenylphosphino)methane, PR3 = PMe3, PMe,Ph,
PBuj. Moy[O,P(OC¢Hs),]4 photoreduces 1,2-dichlorocarbons and produces a
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mixed-valence Mo,;[O,P(OC¢H;5),]4Cl. Analysis of the organic photoproducts
reveals that dichlorocarbons such as 1,2-dichloroalkanes and 1,2-dichloroalkenes
are reduced via an initial chloride atom abstraction to yield olefins and
monohalogenated alkenes, respectively, depending on the nature of the
substrates. Excitation of M,Cly(dppm), in the presence of PhSSPh affords an
edge-sharing bioctahedral M,(IILIII) addition product, M,Cls(dppm),(SPh). The
wavelength dependence of quantum yield studies for the M,Cly(dppm),
photochemistry and the presence of a long-lived transient suggest that the
reactivity is derived from metal-localized excited states. W,Cl4(PR3)4 photoreacts
with dihalocarbons upon near-ultraviolet excitation and affords a mixed-valence
W (ILIIT) photoproduct, W,Cls(PR3)3. The photoreaction of the D,4 complexes is
consistent with LMCT excited state parentage as opposed to the metal-localized
excited states of D,;, counterparts.

The critical mixed-valence M!—M!!! excited state may be stabilized by
virtue of the asymmetry of the bimetallic core. Heterobimetallic Mo4W systems
represent a straightforward means to further study the multielectron
photochemistry. Prior to undertaking photochemical experiments of these
systems, their photophysics have been explored. The excited state properties
such as energy and lifetime of Mo4+W species fall in the range of their Mo-4Mo
and W-4W analogues.
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CHAPTER1

INTRODUCTION

Seeki;lg and developing alternate sources of energy is a necessary
endeavor as global needs continue to deplete fossil fuels. The energy resource for
nature is photosynthesis. Solar energy provides the driving force in
photosynthesis for the continuous cycling of atmospheric CO, and O, through
the biosphere to the high energy fuels, sugar and water, respectively. About 50%
of the incident radiation on the earth is used photosynthetically (350 to 700 nm
of the entire solar spectral distribution, which ranges from 350 to 2500 nm; see
Figure 1.1). Each year at least 3-6 x 1017 kcal of free energy from sunlight is
captured by photosynthetic organisms and used for biosynthesis.! This is more
than ten times the amount of energy derived from the annual global usage of
fossil fuels. In addition to its abundance, solar energy is also a pollution-free
source of energy. A challenging goal confronting chemists is to develop an
artificial photosynthetic system for the conversion of light energy into chemical
energy, thereby providing an alternate process for energy storage and
production.? Accordingly, mimicking the highly efficient initial reactions of

natural photosynthesis is a central goal of photochemical research.3-
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whe

Py

Invo

Whey

phot

Dam;

thlo;

Phot
v ]:

X




I. Photosynthesis

The development of efficient, artificial systems for the conversion and
storage of solar energy requires an understanding of the mechanism of
photosynthesis. Natural photosynthesis occurs not only in green plants but in
lower microorganisms such as algae, cyanobacteria, and green sulfur bacteria.
Plants and bacterial photosynthesis are fundamentally similar processes and differ
by the hydrogen donors that they employ. The overall reaction of photosynthesis

can be written in a general form:

h
2H,D + CO, —_c_::T_> (CH,0) + H,0 +2D (L1)

where Chl = chlorophyll; H,D = H;O, H,S, or lactate; D = oxygen, sulfur, or
pyruvate for green plants, green sulfur bacteria and bacteria, respectively.’
The reaction that has been most intensively investigated in green plants

involves the absorption and transduction of light to chemical energy as follows,

hv
———
2H,0 + A = 2H,A +0, (12)

where A is the electron acceptor. This process is performed with two
photosystems. Each of them contains a photoreaction center working in series,
namely P700 in Photosystem I and P680 in Photosystem II (Figure 1.2). The
chlorophyll molecule in each of the photochemical reaction centers captures the
photon energy with 100% quantum efficiency to yield a high energy electronic
excited state. This initial absorption event initiates electron/hole charge

separation via a series of electron transfer steps within the reaction center. In
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5

Photosystem I, electrons are passed from the excited state of the P700 reaction
center through a series of carriers to ferredoxin (FRS), which in turn reduces
nicotinamide adenine dinucleotide phosphate (NADP+) to NADPH. In
Photosystem II, excited P680 transfers an electron to a series of
pheophytin/plastoquinone pigments (PQ) to create a charge-separated
P680*/PQ- pair. The P680* acquires an electron from a tetranuclear Mn cluster
containing protein complex to return to its ground state. By turning this cycle
over in successive one-electron steps, the tetranuclear Mn cluster is oxidized by
four electrons whereupon it catalyzes the oxidation of two water molecules to
yield four electrons, four protons and a molecule of oxygen.® The overall process
therefore uses light energy to energetically run electrons uphill from H,O to
NADP+, the biological electron acceptor, to yield NADPH, which in turn reduces
CO, to ‘give energy-rich carbohydrates.

II. Small Molecule Activation by Multielectron Transfer

Photosynthesis provides us with the two fundamental bioenergetic
processes in nature: conversion of light into chemical energy by charge
separation and multielectron transformations to activate small molecules. In
addition to Photosystem II, many examples of multielectron redox reactions are
found in enzymatic systems.”~'! These include SO32~ — HS~ (sulfite reductase),'?
NO;~ — NO,™ (nitrate reductase),'* NO,~ — NH; (nitrite reductase),!* 0, — H,0
(cytochrome ¢ oxidase),'> O, - H,0 (blue copper oxidases),'®* N, - NH;
(nitrogenase),'”!® and 2H* — H, (hydrogenase).!® In each case, the enzyme is
thought to have one or more metals at the active site to promote the multielectron
transformation. The mechanisms have been addressed by in vitro and in

functional model studies for redox processes.2%?! Bioinorganic and bioorganic
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6

chemistry has sought to emulate the overall multielectron transformations of

22-24 gych as the direct four-electron

biology with a number of metal complexes,
electrocatalytic reduction of O, to HO by ruthenated cyanophenyl cobalt
porphyrins.?®> However, these studies have yet to successfully drive the
multielectron transformations with light, a key step in designing energy
conversion schemes. Accordingly, the development of new small molecule
activation reactions by light-sensitive coordination compounds are important to

investigate, especially those involving multielectron transfer reactivity.

III. Photochemical Conversion

The addition of a photon to a molecule in its ground state raises it to its
excited state where the incident energy is stored. As a result, the electronically
excited molecule is a stronger oxidant and a stronger reductant than its ground
state parent. For this simple reason, a photon can be harvested by a molecule to
effect the reactions that are kinetically or thermodynamically inaccessible from
the ground state. Nevertheless, in order to mimic the high efficiency of sunlight
conversion of the photosynthesis system, certain criteria of the excited state
molecule are required.?® The excited state energy must be effectively translated
into a thermodynamically unfavorable chemical reaction at high photochemical
quantum yield. Thus energy degrading processes such as intramolecular
nonradiative decay and energy-wasting back electron-transfer reactions must be

In order to fulfill these criteria, many schemes rely on organizing the

photosensitizer, donors, and acceptors within the organized assemblies provided

27,28 29,30 31,32 3,5,33,34

by polymer-films, membranes, vesicles, molecular systems.

These artificial photosynthetic systems have the advantage that specific
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7

properties of the photoinduced electron transfer reaction can be tuned by
synthetically designing sensitizers, charge-relays, donors, bridges and acceptors
spatially juxtaposed within the assembly.’*¢ Figure 1.3 shows the general
strategy of the photochemical molecular device.’” Light may be absorbed by a
diverse array of photoactive redox metal systems ranging from metalloproteins to
mononuclear metal complexes such as the ruthenium polypyridine complex.38-40
Parallel to the function of chlorophyll in the reaction center of the green leaf, an
electron is transferred from the photosensitizer one at a time to an electron
storage center, where electrons are passed to reduce substrate. A frequently
encountered problem in designing an artificial photosynthetic system is the fast
charge recombination of the energy-releasing process in the charge separation
state has to be prevented before the chemistry can be achieved. A highly efficient
forward reaction when combined with a slow back electron transfer, results in a
long-lived, charge separation state, which determines the overall efficiency of the
photochemical process.

The time scales of the forward and back reactions can effectively be
managed in the heterogeneous environment.*'* TiO, semiconductor particles
with two metal/metal-oxide sites on a surface have been explored as promising
water-splitting photocatalysts.**>*7 Figure 1.4a shows how water is split on the
surface of TiO,. Upon excitation across the band gap of the photocatalyst,
electron-hole pairs are generated; negatively charged electrons get injected into
the conduction band (CB) and positively charged holes remain in the valence
band (VB). Electrons trapped in the metal site 1 (e.g. Pt cathode) reduce water to
Hj, and holes trapped in the metal site 2 (e.g. RuO, anode) oxidize water to O,.
The system is driven by a sacrificial electron donor such as MeOH, which is

oxidized to CO, (Figure 1.4b). In contrast, if the metal modified
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(b)
hv
CH,OH
> .
cO,
(c) COo,
<~,o
v CH,,CH,0,
CH,COOH,etc.
H,0
2 TiO,
02

Figure 1.4 Photosplitting of water on (a) composite catalyst (b)
catalyst with sacrifical donor (c) catalyst with sacrifical acceptor.

(ref.46)
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10
TiO, catalysts (M; = Pd, Rh, Au, Cu, Ru, or Hg) are irradiated in the presence of

CO;, as a sacrificial electron acceptor, several reduced products can be observed
such as methanol,*® methane,*-*° formic,*® acetic acid,>® and formaldehyde®!
(Figure 1.4¢c). TiO, is a quite stable photocatalyst, however, its large energy gap
(Eg = 3.2 eV) in the ultraviolet region, which is 10% of the overall solar intensity,
limits its application for solar energy conversion (Figure 1.1). Recent studies have
focused on surface modification of the catalyst by deposition of composite
semiconductors (e.g. CdS),’? photosensitizers (e.g. organic dyes** or ruthenium
complexes>*-3), or transition metal dopants (e.g. Cr>*, Fe3*, Cu?*)*¢ in order to
increase the efficiency of charge-separation process, the selectivity of the product
formation, and for tuning the photoresponse into the visible region.

Some photosensitizers are able to accomplish multielectron reactions in the
absence of a solid-mediated redox reaction. Polyoxometalates are a widely
studied example of a family of polynuclear complexes that can undergo up to
four electron photoreduction.’’ Heteropoly oxometalates, XM;,04" (X= P, Si,
Te, Hy; M= Mo, W),%% and isopoly tungstates, [W;,03,]+,5%6! photo-oxidize
primary and secondary alcohols to their corresponding aldehydes and ketones
via the multielectron-transfer steps shown in Figure 1.5. Upon excitation of the
oxygen-to-metal charge-transfer transition, the photoexcited heteropoly-
oxometalate reacts with the organic substrate by interelectron/hydrogen transfer
resulting in the reduction of polyoxometalate, W;,* or W125‘, and oxidation of
organic substrate. The reduced polyoxometalate can be re-oxidized to its original
oxidation state by protons to produce hydrogen, or if oxygen is present, to
produce water.%?

As these heterogeneous and homogeneous systems show, an
extraordinarily diverse array of photoactive redox metal systems have been

elaborated. However, in each case, the basic redox chemistry of the excited state
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12

is the same, evolving little since the initial discovery of excited state redox
chemistry over thirty years ago. Namely, the photoactive metal complexes
undergo single electron transfer to or from their excited states. By itself, the single
electron transfer step is limited inasmuch as most important reactions including
small molecule activation processes involve two or more electrons. Thus, as is
prevalent in the systems discussed heretofore, the single electron transfer step
must be coupled to achieve the multielectron reactivity.

We wondered if an excited state could be designed to undergo a direct
multilelectron reaction. The realization of this goal is important because it
fundamentally represents a new reaction of excited states and therefore opens
new avenues in the design of energy storage schemes. Because we wished to
observe a multielectron reaction, we thought it would be logical to consider
binuclear redox systems where the redox activity of the two metal subunits might

be exploited for a rich redox chemistry.3-65

IV. Metal-Metal Binuclear Complexes

The photochemistry of binuclear complexes was popularized with the d’—
d” and d°>—d° metal-metal compounds.’®-7" The lowest energy transitions in
these complexes are metal-localized 6, - do* and dx* — do and their irradiation
usually results in the cleavage of the metal-metal bond (Figure 1.6a). From the
1(0’2 — oc™*) singlet excited state, metal-metal bond breaking correlates to
M(CO)st+ and M(CO)s™ disproportionation products. Altemnatively, if the singlet
state nbnradiatively decays to the lower lying 3oo*) triplet state, dissociation
produces M(CO)s radicals. More generally, homolysis of the metal-metal bond to
generate reactive radical species is the general rule for binuclear metal-metal

single bonded complexes. This process is also observed for d°>-d> (Cp;M,(CO),
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M= Mo, W), d°—d” (Cox(CO)g(PR3),), d>—d’ (CpM(CO);M(CO)s, M = Mo, W;
M’ = Mn, Re), d’—d° (CpFe(CO),M’(CO)3(PR3)3, M = Mn, Re), and d>—d°
(CpM(CO0);Co(CO)4, M = Mo, W) complexes.®’” The disadvantage of these metal-
metal single bonded systems is that the energy of the photon is diverted to metal-
metal bond breaking. This results in the loss of polynuclearity in the excited state.
Hence, the uncoupled, selective multielectron activation of substrates by these
complexes is difficult to control.

Conversely, the structural integrity of metal-metal core can be preserved in
the excited states of d3---d3,7"-74 d10...40 bimetallic,™ or d!°---d® heterobimetallic
systems.’® Excitation of the lowest energy do* —pc transition of these
complexes yields an associative diradical species with a long-lived excited state
(Figure 1.6b).”> The excited state chemistry of this class of compounds is
exemplified by the d8...d8 binuclear compound Ptz(P205H2)44‘, which consists of
two square-planar tetracoordinated Pt(II) metal units held together in a face-to-
face orientation by the four bridging P205H22‘ bidentate ligands. The dz2 and p,
orbitals of the platinum centers overlap with each other to give do/dc* and
po/pcs” bonding/antibonding orbitals. Since do and dc™ are filled, the ground
state is expected to be nonbonding, although spectroscopically it has been
shown there is a weak interaction between the two metal units. Upon the lowest
energy do* > PO excitation, an electron is promoted from a localized antibonding
orbital on the exterior of the M, unit (do* orbital) to a localized bonding orbital
in the interior of the dinuclear cage (po orbital). This electron promotion results in
the formation of a net metal-metal bonding interaction in the excited state.
Chemically, the excitation creates a hole on each of the coordinatively
unsaturated metal centers thereby generating a very reactive associative diradical

( [d8—d®]* = [eM—Me]* ). The 3A,, excited state of
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Figure 1.6 Photooxidation mechanisms for the reaction of an organic
substrate (RX) with the photogenerated (a) "dissociative diradical” of d’
and (b) "associative diradical” of d® dinuclear complexes.
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Pt,(P,05H,),+, which exhibits a long lifetime, 9 us, and high quantum yield (¢ =
0.5), enables Pt,(P,0sH,)4* to undergo excited state bimolecular reactions.”” The
triplet diradical activates organic substrate via single-electron or atom transfer to
effect the overall two-electron photocatalytic reduction of the organic substrates
such as the conversion of isopropyl alcohol to acetone’! and the
dehydrogenation of selected hydrocarbons to olefins.”-’®

The above systems illustrate a general characteristic of classic
photosystems: triplet excited states correlate to triplet-spin type primary
photoproducts<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>