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ABSTRACT

THREE DIMENSIONAL VISUALIZATION OF ELECTROMAGNETIC FIELDS
AT RESONANCE IN AN IDEAL UNLOADED CYLINDRICAL CAVITY

By

Joshua Natarajan

The resonant electric and magnetic fields in a cylindrical cavity have complex
three dimensional trajectories that are not always easy to discern from two dimensional
field plots. This thesis attempts to realize a user friendly environment to visualize these
complex fields and their intensities in a three dimensional environment written in

Microsoft Visual C++™ for the Microsoft Windows™ operating system.
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CHAPTER1
FIELD SOLUTIONS TO THE CAVITY PROBLEM
L1 Introduction
The resonant fields inside microwave cavities have complex three dimensional
patterns. It is sometimes quite difficult to mentally extrapolate these fields into three
dimensions from two dimensional field plots illustrated in electromagnetic textbooks[2].
The following thesis develops a better way of visualizing and understanding these fields

using a computer and its graphing capabilities.

Solving Maxwell’s time harmonic equations inside a source free cylindrical cavity
with perfectly conducting walls yields two sets of eigenmode solutions, namely the TE
and TM modes [1]. The electric and magnetic field lines of these solutions have complex
three dimensional field patterns. The field solutions can be solved on any two orthogonal
planes cutting through the cavity. The three dimensional flow of these fields can then be
interpreted by correlating the field pattern on the two planes [2]. This thesis attempts to
make it even easier to visualize these fields by generating the field patterns in three
dimensions in a computer and then projecting them onto the computer screen. The user is
then given control to change his view point in real time to understand the complex flow
of the field patterns. The program was written in Microsoft Visual C++™ and runs in the
Microsoft Windows Operating System [3]. It also requires a math coprocessor and a

display palette of at least 256 colors.



Figure 1. Cavity Model



1.2 TE or H modes
Consider the magnetic Hertz potential

I, = 211, ,whereV’IT, + k’I1, = 0 (1.1)
Solving the above partial differential equation by applying the following boundary
conditions [1]
ixE=0 onr=a,z=0and z=c¢

gives,

I,(r.6,2) = AJ .,(E“ﬂr){cosne}si I ) (1.2)

a sinnd [

The electric and magnetic fields can then be obtained using the following two relations

- 101, a0l
E=jo (-f— h +O—") 1.3
Jop ~T-— o (1.3)
2 2 2
ﬁ:l(kznh+alz")+fan“+elan" (1.4)
oz oroz r 060z
Substituting (1.2) in (1.3) and (1.4) yields the following set of TE__, modal fields
' 1 0
E = ja)pAnlJn(p“"‘ r){ sinn }sin(liz) (1.5)
r a —cosné c
. p’ p. cosnb| . (In
E, = jopA| == |J'| —=1|1 . sin{ — (1.6)
a a sinné c
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2 , 0
H, =A(k2 -(]i) )J{p" r){c.osn }s' In ) (1.9)
c a sinné c
The resonant frequency is given by

N2 2
fom =3°-‘/(p—“"') +(13) (1.10)
2n a c

where n,m and | stand for the order of modes along 6, r, z coordinates and k, p/,,, and v,

stand for the wavenumber,zeros of bessel primes and velocity of light respectively.

L3TMor E modes

Consider the electric Hertz potential

-

I, = 2I1, ,whereV’I1_  + k’I1_ =0 (1.11)

Solving the above partial differential equation by applying the following boundary
conditions [1]

nxE=0onr=a,z=0and z=c¢

gives

ne(r’9’2)=BJn(pﬂr){cosne}co In ) (1.12)

a sinn@ c

The magnetic and electric fields can then be obtained using the following two relations

T 1011, ol
"H=j (“— € — °) 1.13
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‘ 0z ooz  r 000z
Substituting (1.12) in (1.13) and (1.14) yields the following set of TM__, modal fields



E, =-B(p—")(lﬂ)J;(p—"r){cf’sne}sm(lﬂ ) (1.15)
a C a sinné C

E, =Bn(li)11n(p—-r){ sinné }si In ) (1.16)
c/r a —Ccosno Cc

? ]
E, =B[k2 -(1’1) )J,,(Bﬂr){c_"s" }co In ) (1.17)
c a sinné c
innd

H, =-jmen-1-Jn(p—"‘r){ st }co liz) (1.18)

r a —cosné c

0

H, =-jma(p+")1;(p—"“r){c?sn }co In ) (1.19)
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The resonant frequency is given by

2 l 2
£ o=2e ‘/(31) + (i) (1.20)
2n a c _
/ \
where n,m and | stand for the order of modes along 0, r, z coordinates and k, b/,:m and Vv,

stand for the wavenumber,zeros of bessel function and velocity of light respectively.

The above set of equations completely describe the resonant electric and magnetic
fields inside an ideal unloaded cylindrical cavity. The next chapter will deal with a little
bit of background in three dimensional transformation and projection required by the

program to compute these field patterns.




CHAPTER 2
THREE DIMENSIONAL TRANSFORMATION
2.1 Three Di ional T f ional Matri
Rotation of any point in three dimensions about the origin for an arbitrary angle
can be accomplished by a sequence of rotations about the X,Y and Z axis. The following
set of matrices describe the rotational transformation that can be applied to a point in
three dimensions [4].

Rotational transform for any point in the X-Y plane is given by

cos® —-sin@ 0 O

R (6)= sin@ cos®6 0 O
* 0 0 1 0
0 0 0 1

Similarly, the rotational transform of Y-Z and X-Z planes are given by

0o o0 0 0 cosO 0 -sinB O

R (9) _ 0 cos@ -sin® O R (9) _ 0 1 0 0
ve 0O sin@ cos6 O * sin@ 0 cos®@ O
0 o0 0 1 0 O 0 1

The following example gives us an idea on how these matrices could be used.

X'

Y’

7'
1

=R,,(45°)-R,,(35°)- R ,(25°)-

— N =< X

The above equation would rotate a point (X,Y,Z) on X-Z first, then followed by Y-Z and

X-Y respectively to give (X/,Y/,Z/)



Figure 2.1 Rotation Sequence of the Reference Frame



Object Vertex
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Figure 2.2 Two Dimensional Projection Scheme



2.2 Fund tals of Two Di ional Projecti

The procedure used in finding the two dimensional projection of the vertices of an
object centered at the origin requires a sequence of rotations followed by a translation
operation be performed on each vertex of the object before projecting it onto a plane.
Here the X-Y plane is used as the projection plane the orientation of which corresponds
to the X and Y axis of the computer screen. In the sequence of rotations shown in Fig 2.1
the X°-Y* plane is rotated and translated to a view point specified in spherical coordinates.
In the orientation shown in Figure 2.2 the object can then be projected onto the x5-y$

plane quite easily by employing a vanishing point located on the Z° axis as follows

x5 =5 —NPD) __ yay @.1)
(VNPT + Z) Offset

ys=5.—(YNPD__ gy 2.2)
(VNPT + Z) Offset

S=Scale Factor Xorse™ Y ofser=Center Offset

VNPT=Vanishing Point (X, Y 7°")=A Vertex on the Object

The purpose of the vanishing point is to add perspective to the projected image and the
offset for centering the image on the computer screen. It is important to note that the
view point angles entered by the user are the camera coordinates and hence the negative
of the input angles should be used in all of the rotations shown in Fig 2.1. This results in

the following equation
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X'] —sin@ cos0 0 0
Y’ cosOcosd¢ sinBcos¢p —sing O
ol
1

= : o (2.3)
VA —cosBsin¢g -sinBsing -cosd

X’ X
Y’ Y
=R,,(-6)- Ru(°(1 80- ¢)) ' ny(_90°)- 7
1
X
Y
z
1 0 0 0 1

Equation (2.3) represents the transformation required to orient the computer screen or the
camera toward the origin as shown in Fig 2.1. Applying equations (2.1) and (2.2) to (2.3)
will yield the two dimensional projection of a three dimensional object centered around

the origin.



CHAPTER3
GENERATION OF FIELD AND INTENSITY

3.1 Cavity Geometry
The cavity model as shown in Figure 1 used by the program has the following geometry
a=10cm, ¢ =20cm
Depending on the mode the user requests the field patterns are computed using either
equations (1.5)-(1.9) or equations (1.15)-(1.19) using the resonant frequency computed by
either equation (1.10) or equation (1.20) for the above cavity dimension.
32G . { Field P

The volume shown in Figure 3 is inside the cavity and is bounded by the surfaces
described by their normals. The electric and magnetic fields are then generated from
points on these surfaces. The field direction is computed on a point on the surface and is
used to compute the next point a finite distance in that direction. This procedure is
repeated until the point reaches any one of the bounding surfaces. If the field happens to
point away from the volume at any one of the starting surfaces the points are then back
traced to fill the volume. The surfaces and the density of lines can be specified as inputs
to the program. The program will then compute the field lines and display them on the
computer screen. The user can then can move the view point in spherical coordinates
around the cylinder to visualize the fields.
33G ion_of Field I .

The intensity of the fields can be generated along either the z = constant plané or

the 6=constant plane. The intensity values are then scaled to an Asv color map that ranges
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Figure 3 Input Volume Slice
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from purple(highest) to green(medium) to red(lowest). The slice is then superimposed on
the cylinder and displayed in three dimensions. As in the case of viewing field trajectories
the view point of the user can then be moved around the cylinder to visualize the slices.

It is important to note that the scaled range of values for the intensity plot is
relative to the intensities on the input plane. It does not take into account the maximum
or the minimum field intensity in the entire cavity. An analytical solution to the
maximum field intensity in the entire cavity could be derived to scale the intensity values.
The next version of the software will address this problem. In the mean time inspection of
both the z-slice and the theta-slice is enough give a good idea of the field intensity
distribution in the entire cavity. There is also a limit set on the highest mode the program
can handle in its current form. This was set because of the limitations in the computing
speed and screen resolution available on a typical run-of-the-mill computer currently
accessible to a student.
35F Modificati

The future version of this software will incorporate better shading algorithms to
include translucent color surfaces and other surface rendering algorithms to enhance the
quality of the display subroutines [5]. The use of three dimensional synchronized
polarized glasses is also another possibility to give a virtual reality feel to the viewing

environment [6].
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APPENDIX



SAMPLE MAGNITUDE OUTPUT FROM THE PROGRAM
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