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ABSTRACT

THERMOANAEROBACTER ETHANOLICUS 39E SECONDARY-
ALCOHOL DEHYDROGENASE: MOLECULAR BASIS FOR STABILITY
AND CATALYSIS
By

Douglas S. Burdette

The adhB gene encoding Thermoanaerobacter ethanolicus 39E secondary-alcohol
dehydrogenase (2° ADH) was cloned, sequenced, and overexpressed in Escherichia coli
DHS5a (~15% total prot.). The protein was purified to homogeneity by heating and
precipitation. The 1056 bp gene encoded a homotetrameric recombinant enzyme (37.7 kDa
subunits) that displayed a 170-fold greater catalytic efficiency toward NADP(H)-dependent
propan-2-ol than toward ethanol oxidation. The 2° ADH site directed mutants C378S,
H59N, D150N, D150E, and D150C displayed < 3% of wild type catalytic activity. These
data and the wild type enzyme inactivation by dithionitrobenzoate (DTNB) and
diethylpyrocarbonate chemical modification, supported sequence predictions based on
Hydrophobic Cluster Analysis (HCA) that Cys37, His59, and Asp150 residues are
catalytic Zn ligands. X-ray absorption spectrometry data supported the presence of a
protein bound Zn with a ZnS1(N-O)34 coordination sphere. Induction coupled plasma
emission spectrometry data of wild type and mutant enzyme Zn binding, implicated these
residues in 2° ADH Zn liganding. Thus, a catalytic Zn atom and its immediate environment
are important in 2° ADH activity. Analysis of the G198D mutant supported the HCA based
prediction that this 2° ADH binds NADP(H) in a common nucleotide binding motif, a
Rossmann fold. The substrate and cofactor binding sites in the 2° ADH are structurally
distinct because catalytic Zn ligand mutations did not change cofactor affinity. The
thermophilic 2° ADH) was optimally active at ~90°C and displayed a half-life of 1.2 days at
80°C. Analysis of temperature dependent unfolding of 2° ADH in guanidine hydrochloride
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(GuHCI) indicated the enzyme was very rigid (50% unfolded at ~115°C). Thus, the
enzyme is nearly 100% folded at 90°C where it is maximally active. 2° ADH Activity
increased 2-fold at 37°C to 75°C in low concentrations of GuHCI (120-190 mM); and,
activity remained in 1.6M GuHCl demonstrating its high resistance to chemical
denaturants. Catalytic rate enhancement was also seen with weakly chaotropic (i.e.,
KNO3) and neutral (i.e., KCl) inorganic salts, indicating that specific ionic and not
hydrophobic interactions are required for the catalytic rate enhancement. Linear Arrhenius
plots for the oxidation of propan-2-ol by the native and recombinant 2° ADHs from 30°C to
90°C suggested that the thermal activity relationships are related to binding high kinetic
energy substrates and not to temperature dependent changes in enzyme unfolding.
Consequently it is suggested that the 2° ADH has evolved high rigidity for stability and

these molecular determinants are distinct from those which control catalysis.
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Chapter I

Literature Review

Adapted from an article published in Ann. Biotechnol. Rev.



2
ALCOHOL DEHYDROGENASES

Alcohol dehydrogenase structure and function

Alcohol dehydrogenases (ADHs) are integral to both prokaryotic and eukaryotic
metabolism. Categorized as 1° or 2° based on their displaying higher activity toward 1° or
2° alcohols, these enzymes typically act on a broad range of substrates. The 1° ADH
isolated from mammalian liver is proposed to oxidize alcohols and possibly steroids during
their detoxification [1]. ADHs are also involved in catabolic alcohol consumption by acetic
acid batceria [2]. More commonly however, catabolic ADHs mediate the terminal electron
transfer in solventogenic fermentations by yeasts [3-5] and bacteria [1]. Alcohol formation
by these organisms provides the oxidized nicotinamide cofactor necessary for glycolysis,
eliminating the need for an exogenous terminal electron acceptor. Catabolic 1° ADHs have
been identified in mesophilic (optimal growth between 25°C and 50°C) [1,6], thermophilic
(optimal growth between 60°C and 80°C) [7-9], and hyperthermophilic (optimal growth
above 80°C) [10,11] microorganisms. However, catabolic 2° ADHs have only been
reported in mesophilic [12,13] and thermophilic [8,14-16] bacteria. The mesophilic
bacterium, Clostridium beijerinckii, expresses a 2° ADH during propan-2-ol production
whereas, the thermophilic Thermoanaerobacter sp. and Thermoanaerobacterium sp. use a
2° ADH to form ethanol - a 1° alcohol - from acetylCoA [7,8]. These thermophilic bacteria
ferment sugars to ethanol and acetic acid (neither butanol, acetone, nor propan-2-ol have
been detected) and express a functional 1° ADH concurrently with the 2° ADH. The
Thermoanaerobacter ethanolicus 39E 1° ADH is proposed to function in electron transfer
between NAD(H) and NADP(H) and in ethanol consumption while the ethanol producing
2° ADH can function to reduce both acetylCoA and ethanal [8] using the generalized

enzymatic reaction:



i &
R—C—CH, + NADPH+H' — Rm=—(C-=CH, + NADP*
A

ADHs are predominantly nicotinamide cofactor dependent Zn metalloproteins
although Fe [17] and ferredoxin linked enzymes have been reported [18]. Theorell and
Chance proposed an ordered 1° ADH kinetic mechanism where cofactor binding is
followed by substrate binding, hydride transfer, product release, then cofactor release [1];
however a semi-random mechanism for product and cofactor release has also been reported
[19]. Isomerization of enzyme bound to reduced cofactor is believed to be the slow step in
liver ADH catalysis [20,21]. Cofactor binding is proposed to induce a slow enzyme
conformational change after a rapid initial binding step, completing active site pocket
formation. Even the NAD* molecular geometry required for horse liver ADH catalytic
activity has been determined [22]. Zn's catalytic role as a Lewis acid in the electrophilic
ADH mechanism is well established, with the metal mediating direct hydride transfer
between substrate and cofactor [23]. Kinetic and spectrophotometric measurements
provide direct evidence that the alcohol or carbonyl substrate binds to the catalytic Zn atom
[23-25]. This may explain both the broad ADH substrate specificities and why decades of
research into 1° ADH structure-function relationships have failed to identify residues
responsible for substrate binding and discrimination.

ADHs are either dimeric or tetrameric, composed of identical or nearly identical 35
kDa to 45 kDa subunits. Both 1° and 2° ADHs have been reported to contain catalytic Zn
atoms and Cys residues critical to catalytic activity [1,8,15]. The exact protein structure
has been determined for horse liver 1° ADH by x-ray crystallography [26] but no 3-
dimensional 2° ADH structure has been reported. X-ray structural data confirmed that 1°
ADH:s bind a structural Zn atom with 4 Cys residues and a catalytic Zn with a His plus 2
Cys residues. The broad specificity of liver 1° ADH is attributed to a wide and deep
hydrophobic binding pocket seen in the x-ray structure [1]. Nicotinamide cofactor was



4
shown to associate with a Rossmann fold in the 1° ADH structures as reported for other

NAD(P)(H) binding proteins [27]. The identification of Rossmann fold consensus
sequences {Gly-Xaa-Gly-Xaa-Xaa-Gly-(Xaa);g-20[negatively charged amino acid for
NAD(H) dependent or neutral amino acid for NAD(P)(H)] } [28] provide sequence based
predictions of cofactor specificity linked to this particular structural fold.

Stereoselectivity is both a hallmark of enzymatic catalysis and an area of great
biotechnological interest. ADHs are highly enentioselective catalysts despite their
characteristically broad substrate specificities. In pyridine dinucleotide containing
enzymes, stereospecificity results from the cofactor attack angle according to Prelog [29].
Carbony! reduction can result from hydride addition to the Re face, following Prelog's
Rule, or to the Si face, following Anti-Prelog's Rule. So based on the orientation of the
carbonyl relative to the cofactor and which cofactor hydrogen is transfered, there are 4
possible mechanisms for enantiospecific ADH reaction (Ej-E4) [30]. The E; mechanism is
defined as the pro-R cofactor hydrogen (HR) on the substrate Si face, Ej involves cofactor
pro-S hydrogen (Hg) attack on the substrate Re face, HR transfer to the substrate Si face
results from an E3 mechanism, and reduction on the carbonyl Re face by the cofactor Hg
describes mechanism E4. The horse liver and yeast 1° ADHs operate by the E3 pathway,
producing (S)-alcohols. E; reactions catalyzed by L. kefir and Psuedomonas sp. (SBD6)
ADHs form (R)-alcohols [30,31].

Overall structural similarity among ADHs is presumed based on their similar gross
morphologies and functional characteristics despite their dissimilar peptide sequences [1].
The proposed structural similarity between ADHs and the difficulty in determining residues
involved in substrate specificity makes comparative analysis between enzymes with
overlapping but different specificities important. Cloning the genes encoding these
enzymes would provide adequate supplies of protein for structural studies and the means to
perform site directed mutagenesis experiments. Mesophilic (GenBank Acc. No. D90004,
L02104, M91440, X17065, X59263), thermophilic (GenBank Acc. No. D90421), and
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5
hyperthermophilic (GenBank Acc. No. $51211) 1° ADHs have been cloned and

characterized. The 2° ADH from the obligately acrobic mesophile Alcaligenes eutrophus
has been cloned and characterized [32] and the mesophilic C. beijerinckii 2° ADH gene
sequence has been deposited in GenBank (Acc. No. M84723) but no characterization has
been published. Alignment of peptide sequences derived from the translated gene
sequences indicated the conservation of putative catalytic and critical core residues among
the A. eutrophus and liver enzymes [32]. However, an alignment between the A.
eutrophus 2° ADH, liver 1° ADH, and T. brockii 2° ADH (The T. brockii peptide sequence
was determined by Edman degradation of purified protein fragments) led Peretz and
Burstein to conclude that insufficient similarity existed between the 3 sequences to make
comparative structural predictions [33]. These conflicting conclusions indicate that the
validity of 2° ADH structure-function hypotheses based on structural comparisons between

1° and 2° ADHs awaits assessment by genetic manipulation.

Alcohol dehydrogenase industrial applications
While industrial organic syntheses have typically been dominated by chemical-

synthetic processes, the rising public environmental awareness (reflected by new
legislation) plus the recent developments in enzyme biotechnology suggest that enzymatic
and mixed chemo-enzymatic processes will progressively be substituted for polluting or
toxic chemical processes. Four enzyme groups - carbohydrases, lipases, proteases, and
oxidoreductases - have a high potential for synthesizing peptides (e.g., pharmaceuticals,
neuropeptides, and specific peptides for research purposes) [34]; flavors and fragrances
(e.g., benzaldehyde, naringin) [35]; non-peptide polymers (e.g., polyesters, polyphenols,
polyacrylates) [36]; chiral compounds [37]; and surfactants (e.g., monoglycerides, sugar
fatty acid esters, alkyl glucosides) [38a]. Typically known for their hydrolytic activity,
lipases and proteases can, in specific environments, be used as synthetic enzymes.

Enzymatic syntheses present numerous advantages over chemical syntheses: they are
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6
usually highly specific (i.e., enantio-, regio-, and stereo-specific), environmentally

friendly, and their products are usually easily biodegradable.

Chiral alcohols are common in biological effectors (eg. the neurotransmitter
norepinephrine) and chiral alcohols can be used as stereospecific reaction centers in
bioactive compound manufacturing. With the top ten optically active drugs representing
sales of $10 billion (U.S. dollars) annually and with the recent FDA policy focused on
pharmaceutical enantiomeric purity [37], strategies to produce chiral compounds as either
drugs or as synthetic intermediates have growing industrial potential. ADHs,
enantioselectively active on a wide range of substrates, have been the focus of substantial
research into enzymatic synthesis of industrially relevant chiral compounds. The horse
liver 1° ADH is optimized for the interconversion of aldehydes and 1° alcohols but it will
stereospecifically reduce ketones [1]. Mesophilic liver 1° ADH has already been used in the
analytical scale production of chiral cyclic alcohols, polyalcohols, alcohol containing
aldehydes (eg. L-glyceraldehyde) or ketones (cis-cyclohexanone-2-ol), lactones, and
organosilicates [see 38,39). Similarly diverse and numerous potentially valuable chiral
bioconversions have been performed in vitro and in vivo with yeast ADH [see 38,40,41).
Resting cells of the hyperthermophile S. sulfataricus were shown to stereospecifically
reduce ketones and to express a 1° ADH with activity toward ketones and 2° alcohols [42].
Ketones and 2° alcohols however, were poor substrates for this enzyme. The mesophilic,
(R)-specific ADH from L. kefir has high activity toward alcohols near cyclic or aromatic
structures [31,43]). A range of chiral alcohols was also created using a mesophilic (R)-
specific 1° ADH from Pseudomonas sp. (ATCC 49794) [30].

The potential for enzymatic conversions in specialty chemical synthesis and racemic
resolution is widely recognized [38,44-51]. However, the expensive cofactor requirements
(NAD, NADP, FAD) of oxido-reductases such as ADHs may limit their applications

[37,52]. Several systems [51-54], have been demonstrated for cofactor recycling, but
cuarent biotransformations are typically performed in whole cells, where the cellular
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machinery retains and regenerates the cofactor [37,40,41,52]. The specific cases of chiral

diol synthesis using a host of microbial cells have been compiled and reviewed [55]. Many
important specialty chemicals and their precursors are sparingly soluble in water, requiring
a solvent stable biocatalyst. Horse liver ADH was shown to be catalytically active in
numerous organic solvents with specific activities similar to that in aqueous solution
[56,57]. The activity if horse liver 1° ADH was also examined in water-oil microemulsions
to enhance conversion rates for substrates with low water solubility [S8]. The
hyperthermophile S. solfataricus 1° ADH [10], and its resting cells have been used in
chiral biotransformations [42]. This enzyme has high stability in the presence of solvents
[59], but its low catalytic efficiency toward 2° alcohols and ketones might limit its
applications.

The importance of biocatalyst longevity and stabilty to their large scale utilization
makes necessary the development of strategies to stabilize mesophilic enzymes or the
isolation of highly stable analogs to them. Intrinsically stable and active at high
temperatures, thermophilic enzymes offer major biotechnological advantages over
mesophilic enzymes: (i) once expressed in mesophiles, thermozymes may be purified by
heat treatment [60-62]; (ii) their thermostability is associated with a higher resistance to
chemical denaturants (such as a solvent or guanidine-HCl); (iii) performing enzymatic
reactions at high temperatures can allow higher reaction rates, higher substrate
co-noentrations, and lower viscosity; and (iv) there is a higher product yield during certain
reactions due to chemical equilibrium shifts with ﬁigh temperature. Isolating and
characterizing thermophilic enzymes therefore, provides natural examples of structurally
stable enzymes with high active temperature ranges that are potentially robust industrial
biocatalysts. Comparisons of these thermophilic enzymes to their mesophilic analogs will
also provide insights into what molecular interactions confer high folded protein stability.

The extensive ADH structure and function research literature have been well reviewed [1].
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The emerging ideas regarding protein thermostability, thermophilicity, and folding

molecular mechanisms will be reviewed here.

THERMOPHILIC ENZYMES

Thermophilic enzyme sources and diversity

Originally, thermophilicity was a property associated exclusively with spore
forming bacteria. Thermophilic enzymes were believed to be unstable, with high protein
turnover rates explaining why thermophiles did not grow faster than mesophiles [66].
However, Thermus aquaticus, a non-sporulating thermophile, was shown to express
inherently thermostable enzymes [63], overturning these hypotheses. Subsequently, most
thermophiles and hyperthermophiles [64-69] have been shown to possess inherently stable
enzymes that function at temperatures above the organism's optimal growth temperature
[65,70]. Enzyme thermostability is the protein’s capacity to resist irreversible thermal
inactivation, and is commonly reported as the enzyme’s half-life at a given temperature
[71). Enzyme thermophilicity is defined as the temperature at which the enzyme is
optimally active [71]. An enzyme is thermophilic if it is optimally active at temperatures
above 60°C [71]. Although thermophilic enzymes typically originate from thermophiles
and hyperthermophiles, some mesophiles produce enzymes active and stable above 60°C
(eg. pancreatic ribonuclease A). Mesophilic enzymes are optimally active between 20°C
and 60°C [71]. Mesophilic enzymes, typically from mesophiles, include most eukaryotic
enzymes and those from mesophilic bacteria and archaea.

All known thermophiles (optimal growth from 60°C to 80°C) are microbial
including bacteria, archea, and some blue-green algae which grow at temperatures up to
60°C. The predominance of prokaryotic life forms at thermophilic temperatures is
consistent with the appearance of prokaryotes while the Earth was much warmer, with
eukaryotic life forms evolving much later. Thermophiles have been isolated from hot
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environments including: (i) natural volcanic environments (continental solfataras, hot

springs, soils, shallow marine and deep-sea hot sediments, submarine hydrothermal vents);
(ii) microbially self-heated environments (e.g., manure, coal refuse piles, compost piles);
and (iii) industrial environments (e.g., food industry effluents, hot-water lines, sewage
sludge systems, oil drilling injection water systems). Thermophiles, as physiologically
diverse as their mesophilic counterparts, include species that are aerobic and anaerobic,
heterotrophic, chemoorganotrophic, chemolithotrophic, autotrophic, and phototrophic
among others. |

Tables 1 and 2 list enzymes which have been characterized and/or cloned from
thermophilic and hyperthermophilic organisms, respectively. Thermophilicity and
thermostability properties are included where available. The heterogeneity of this data
reflects the lack of consensus on the way to guage these properties (we have proposed
specific methods for standardizing these data [71]). This list is not exhaustive, in most
cases, it includes only examples of each enzyme type and it focuses on enzymes with
potential biotechnological applications. An extensive list of enzymes purified from
thermophiles was published by Coolbear et al. [70] and detailed descriptions of individual
enzymes have also been compiled [64,70,72]. Thermophilic enzymes are inherently
thermostable with optimal activities at temperatures near the original organism’s optimal
growth temperature. The proximity to organism optimal growth temperature holds more
stringently for enzymes within a single structural family (i.e., a—amylases, proteases,
alcohol dehydrogenases [ADHs], glyceraldehyde-3-phosphate dehydrogenases
[GAPDHs], etc.) than across a range of proteins, suggcsﬁng that stability is partly a
function of the protein structural fold. Note that the optimal activity temperatures for some
thermophilic enzymes, oxidoreductases in particular, have not been determined because of
substrate or coenzyme (e.g., NAD, NADP) instability.

Despite being synthesized in a mesophilic host, recombinant thermophilic enzymes
usually have kinetic and thermal stability characteristics identical to those of the native
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protein, allowing the use of standard molecular biology techniques and hosts for

thermophilic enzyme studies. T. maritima and Pyrococcus woesei recombinant GAPDHs
were extensively studied. The T. maritima recombinant GAPDH had the same
fluorescence emission and circular dichroism (CD) spectra, the same Guanidine-HCl
(GuHCl)-dependent denaturation and heat-inactivation behaviors, the same Michaelis
constants, the same allosteric inhibitor effect, and same specific activity as the native
enzyme [141]. P. woesei recombinant GAPDH had the same heat-inactivation behavior,
the same Michaelis constants and Vp,,,, and the salt effect on stabilization as the native

P. woesei enzyme [143]. Thus, proper thermophilic protein folding was not strongly
temperature dependent, and all the information necessary for protein thermophilicity and
thermostability was encoded in the primary structure of the enzyme. This thermal property
dependence on peptide sequence suggests a direct genetic mutational mechanism for
enzyme adaptation to the thermal environment of its original source.

As more sequence information is gathered on thermophilic and thermostable
proteins, most evidence indicates that the catalytic machinery from thermophiles, like
thermophilic organism genetics, is homologous to that from mesophiles. Thermophilic
enzymes contain the same amino acids, the same catalytic consensus regions
[135,152,160,190], and, in many cases, enzyme structural analysis reveals that they share
the same 3-dimensional backbone as their mesophilic counterparts [151,160]. No distinct
structural features unique to thermophilic enzymes can account for their activity at elevated
temperatures and their resistance to heat denaturation. However, attempts have been made
to define amino acid “traffic rules” for high temperature molecular adaptation. Hypotheses
trying to explain the increased stability of thermostable proteins include: (i) a—helix
stabilization by substituting helix-stabilizing residues (such as alanines) for helix-
destabilizing residues (most often glycines) [192]; (ii) short-loop and f—~turn rigidification
by introducing prolines [193]; (iii) increased average protein hydrophobicity [85,143); (iv)

increased number of salt-bridges [194]; and (v) a decrease in cysteine and deamidable
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residues. However, as more genes from thermophiles and hyperthermophiles are cloned

and sequenced, examples accumulate of thermophilic enzyme sequences contradicting these
rules.

No trend in thermophilic GAPDH total amino acid compositions could be identified
from the thorough comparison of GAPDH sequences from twenty-six different organisms
spanning an 82°C growth temperature range [195]. In Table 3 the amino acid contents of
mesophilic, thermophilic, and hyperthermophilic enzymes from nine different enzyme
families are compared. No prominent general trend is observed and it is highly probable
that features accounting for protein thermostabilization differ from one enzyme class to
another. Enzymes from hyperthermophiles, in particular extracellular enzymes stable at
temperatures above 100°C, show a high resistance to amino acid covalent modification. In
Table 3, with few exceptions, enzymes from hyperthermophiles show a slight decrease in
their cysteine or deamidable residues contents compared to their mesophilic and
thermophilic counterparts. This trend is particularly noticeable among type II xylose
isomerases. The Asn+Glin contents of four type II xylose isomerases was compared to
their temperature for maximal activity [190], showing an inverse relationship between
Asn+Gln content and temperature for maximal activity. Although it is interesting, the
authors acknowledge that more information is needed on proteins from thermophiles and
hyperthermophiles to confirm the statistical significance of this trend. Contrary to the early
belief that thermophilic enzymes obtained their thermostability from a different amino acid
composition, enzyme thermostability appears to be enhanced by numerous subtle sequence
differences. These differences protect the highly labile residues and bonds (by modifying
their immediate environment), they limit destabilizing interactions, and they restrain protein
flexibility. These protein alignments and amino acid composition comparisons clearly
show that no simple, general protein thermostabilization traffic rule can be defined.

Therefore, elucidating the molecular mechanisms of protein thermostability and
thermophilicity will require careful study of protein molecular structural interactions and
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Table 3. Amino acid composition comparison of enzymes from mesophilic, thermophilic, and hyperthermophilic prokaryotes

Protein Class Gly Po Ala Val ILew Ie Phe Tip Tyr His Cys Met Ser Thr Lys Arg Asp Glu Asn Gln  Asn  H- Polar Char
+ phob
Gln
o-amylases
meso (13) 8.5 45 33 5y o g i) gl A5 Wl ) P G Al 88 88 2 92 45 97 9l 20 29
therm (4) 89 438 81 64 69 38 44 40 59 23 075 19 56 83 S1 41 74 36 40 33 {72305 19 2
hyper (1) 68 43 b G Gl G887 6 G 22 O3 1l S 18 SIS R OB SVT D 3 6.0 54 11 34
neutral proteases
meso (11) k) 24/ SHING.ORENT 4 B2 832 SR 0:00 S5 2 BNE2 3 IR 015 780152 B 816 BN 617 S 7- 3 B4 4 RS (O B 7 S O R M43 147 19 B3]
therm (2) 12333 Geh Ghl g0 B3O Tk G0 200 k) 1) GR G 87 48 GO 49 8¢ 48 LTRSS 17 28
1° ADHs
meso (5) 8207 Gl & g A a Wl G sl G A P 88 S0 84 90 40 2338 28 G2 ) 19 29
therm (1) 10 47 OIONN12] g9 G4 W O3 B35 28 20 1y 84 85 U8 98 4 Ky 20 38 Gl 8B 13 29
hyper (1) 11 35] BEUs K 8 97 @ 30 il a8 a0 A8 Sl 89 49 87 40 S8 29 80 54 17 29
2° ADHs
meso (2) 11 35 G US Z0 gy OE 0 1 P 8l 43 9l 85 49 8y 4D 8§83 2y 80 54 17 29
therm (1) 12 62 99 10 65 74 40 014 017 28 011 43 026 37 68 3.1 57 60 28 011 29 60 14 26
Glu DHs
meso (4) 11 3.6 95 88 70 49 40 16 3.1 il A6 8D 80 Gl 48 A6 73 48 89 78 53 16 31
hyper (3) 8.1 4.6 0/ R B4 S STRRT:S 2 3 B2 AR 4 S 0. 8788 0,32 383 A8 4 S 57 B 8 TR A 7A 6 0N 8 I B3 |G B 25 61 53 14 33
LDHs
meso (10) 68 46 10 G 3 el A Wl =gl 2 oo 24 Gl ol GF A 9l Gh 45 36 (SIS 2 17 30
therm (5) 94 3.6 12 10 GO gy Ges s zpd O g L Bl Eds G 86 G 82 20 58 59 12 28
hyper (1) 9.6 3.5 86 95 10 75 40 nd. 28 20 nd 20 41 49 65 43 nd nd nd nd 10 56 13 32
MDHs
meso (1) 11 45 12 10 10 64 029 00 0.13 096 09 013 58 54 70 026 38 64 35 42 77 58 14 28
therm (1) 82 49 15 56 99 5P 80 Ok Ol ik 00 24 Q98 48 85 88 8 78 34 37 7 &Y 12 31
hyper (1) 9.7 4.4 77 65 80 11 026 029 024 018 059 026 47 50 97 024 56 88 53 08 62 52 15 33
Lsomerases
D-xylose isomerases
meso (8) 87 58 11 89 88 g4 4k a9 ey g g5l il Gl 40 06 86 99 a1 89 90 16 32
therm (3) 6.5 3.0 On 43 ¢ S GO il 43 26 8 v 23 89 05 80 2y U8 Sl 4l B8 &D 15 35
hyper (1) 7.6 3.6 7.9 S'0RN0I0RES6E7:00N 0114 :38 2[5 0,68 0.1 88527808 5.6 SRR 6417 7: 280 0 N3 {4 N 0 1 S 3 6 B 52! 13 35
Gln synthetases
meso (12) 70 53 Bl G2 k88 80 Wl 88 9y W an 89 88 60 48 G Y 48 29 il £ 18 32
therm (1) 72 6.8 GB GG B9 88 47 B 89 @l 09l 28 59 88 66 sl 68 70 29 21 48 54 16 30
hyper (2) 3S10] 7510063 BN 812 710 S 1S N1 -4 NS\ 1 G 2.4 S 0:34 352 6 MIE 4 4 SR O NN 7.3 R4 | T S8 B 1 O N3 | S N 0.0 | BN 4 T4 I 5 4. 14 32

meso, enzymes from organisms with optimal growth temperatures below 60°C; therm, enzymes from organisms with optimal growth temperatures from 60-80°C; hyper, enzymes from organisms
with optimal growth temperatures above 80°C.

Numbers in parentheses indicate the number of proteins represented in the category.

GenBank database accession numbers or specific references for the proteins used in the i Primary alcohol (1° ADH): meso - D90004, L02104, M91440, X17065,
X59263; therm - D90421; hyper - S51211. Sccondary aloohol dehydrogenase (2° ADH): meso - J03362, M84723; therm - [196]. Lactate dehydrogenase (LDH): meso - D13405, L29327,
M22305, M72545, M82881, M95919, X01067, X55118, X55119, Z22737; therm - DO0S85, M19394, M19396, M28336, X04519; hyper - ref #320. Glutamate dehydrogenase (Glu DH): meso -
K02499, M24021, M65250, M76403; hyper - L12408, L19995, M97860. Malatc dehydrogenase (MDH): meso - M95049; therm - J02598; hyper - X51714, Glutamine synthetase (Gln synth):
meso - D00513, D10020, L5609, L08256, M14536, M16626, M18966, M22811, M26107, M57275, X04880, X53509; therm - X53263; hyper - X60160, X60161. Neutral protease: meso -
D10773, K01985, K02497, M36694, M36723, M62845, M64809, M83910, X61286, X73315, X75070; therm - M11446, M63575. o-amylase; meso - J01542, K00563, L19299, M18244,
M24516, M25263, U04956, X07796, X12725, X12726, X52755, X52756, X55799; therm - M11450, M34957, M57457, X02769; hyper - 122346. D-xylose isomerase (XI): meso - L12967,
M15050, M36269, M73789, M84564, X00772, X02795, X61059; therm - J05650, L09699, M91248; hyper - L38994.




energetics. Thern

orzanisms have b

Thermostabilit

Protein the
Inacuvation is due
protein regions, or
beiieved to be 2 r3;
Eﬁl)ﬂr-spcciﬁc, t
Particular cmiromr
Razining (eterrn;
Ug) ina sample ;

Tomazic ang Klibar

Native tnzvn

(attiVe) |

RfPRStman’ons of th
h"““bau'on time ).




21
energetics. Thermostable enzymes isolated from thermophilic and hyperthermophilic

organisms have been termed thermozymes [71].

Thermostability

Protein thermostability is the protein’s resistance to irreversible thermal inactivation.
Inactivation is due either to protein chemical modification which destroys specific critical
protein regions, or to protein denaturation (i.e., irreversible unfolding). Denaturation is
believed to be a rapid cooperative process, once a threshold molecular energy is reached.
Enzyme-specific, this threshold is related to the characteristic protein stabilizing energy in a
particular environment. Thermostability is typically measured as the fraction of activity
remaining (determined by standard enzyme assay in the enzyme’s activity temperature
range) in a sample after heating it at a constant temperature for a specific period of time.
Tomazic and Klibanov proposed a general model for enzyme thermoinactivation [197]:

native enzyme <> non-native —> scrambled structures [scheme 1]

(active) (inactive) (often precipitate)

Representations of the natural log of enzyme residual activity plotted versus time are
usually linear, fitting a pseudo-first order equation { Equation (1), with k=rate constant and

t=incubation time}.

In(residual activity) = -kt [1]

Equation (1) contains no protein concentration term, suggesting that the rate-determining
step is intramolecular with respect to protein. The only way to ensure that a pseudo-first
order rate law reflects a truly intramolecular process however, is to measure thermal

inactivation at various initial protein concentrations, verifying that k remains constant.



Tomazic an
thermal inac
Protz
protein mo:z
thermophilic
rcombinan;
adin differe
natve enzymy
thermos:ahil;
Tanslationa]
Imeversible iy
dnaturaion
ProEin chemn
inf0mlan'0n I
(hpicaly 30,
fomes {203,



22
Tomazic and Klibanov’s model is consistent with an intramolecular rate-determining step in

thermal inactivation if the natine to non-native protein step rate determining.

Protein stability is due to numerous ionic and nonionic interactions within the
protein molecule and between the protein and the environment [198]. While some
thermophilic enzymes have been shown to be stabilized by glycosylation [199,200], most
recombinant thermozymes - expressed in mesophilic hosts, in the absence of glycosylation,
and in different cellular environments - remain as thermophilic and thermostable as the
native enzymes [141,143]. This observation demonstrates that thermophilicity and
thermostability are encoded in the peptide sequence; they are neither a consequence of post-
translational modifications, nor of non-covalent interactions with cellular components.
Irreversible inactivation of mesophilic proteins typically results from irreversible
denaturation, due to the disruption of numerous non-covalent interactions rather than to
protein chemical decomposition [201]. Thus, the original protein conformational
information remains intact in many denatured proteins. The protein stabilizing energy
(typically 30-65 kJ mol-! [202]) is 10-fold smaller than the magnitude of the opposing
forces [203]. Since each additional hydrogen bond or salt bridge can contribute
approximately 2-20 kJ mol-1 to the stabilizing energy, and since the possibilities to add
hydrogen bonds or salt bridges in a protein are vast, it is likely that the protein covalent
modification rates, rather than unfolding, determine the theoretical upper limit of protein
th.ermostability. Ahem and Klibanov [204] reported that peptide depolymerization becomes
significant at temperatures above 100°C, but oxidative decomposition of cysteine,
asparagine, and glutamine residues has been shown to limit the thermostability of some
enzymes to temperatures below 100°C. The identification of enzymes active at
temperatures above 120°C suggests that the non-covalent protein structural interactions are
strong enough to allow stability to approach the theoretical maximum temperatures defined
by peptide bond destruction.
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Thermophilicity

While the system kinetic energy increase (~RAT) is the same from 25 to 30°C or
from 65 to 70°C, the total molecular kinetic energy is greater at high temperatures.
Thermophilic and mesophilic enzymes similarly resist the structural changes associated
with variations in their molecular energy, but thermophilic enzymes must do so under
conditions of higher total kinetic energy. Therefore, while protein denaturation is not
directly involved in enzyme thermophilicity, structural interactions which oppose
denaturation are very important for thermophilicity. In other words, thermophilic enzymes
must be more resistant to denaturation, while having dynamic structural states allowing
activities similar to those of their mesophilic counterparts. Because of sub-A variations in
atom positions known to be tolerated in a functional active site, it is believed that, within its
active temperature range, an enzyme maintains its average structure within strict limits.
Differential scanning calorimetry measurements indicate that protein heat capacities remain
reasonably constant within their catalytically active temperature ranges, indicating an
absence of significant structural changes. Arrhenius plots for thermophilic and mesophilic
enzymes are typically linear, suggesting that mesophilic and thermophilic enzyme
functional architectures are similarly, tightly controlled throughout their respective
temperature ranges (significant structural changes that alter the functional architecture are
expected to cause non-Arrhenius behavior). Biphasic Arrhenius plots reported for some
mesophilic and thermophilic enzymes [82,145,205] represent an important exception to the
typical Arrhenius-like behavior, however, discontinuities are not a specific trait of
thermophilic enzymes. In the cases of yeast and Thermoproteus tenax GAPDHs, it has
been proposed that the discontinuity extent indicates the degree of enzyme thermostability
and thermophilicity [145]. Itis critical however, that such interpretations of Arrhenius data
are verified by careful biophysical and kinetic experimentation. More likely, the similar
Arrhenius plots obtained for mesophilic and thermophilic enzymes suggest that all proteins
respond similarly to temperature.
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In their respective temperature ranges, psychrophilic, mesophilic, and thermophilic

enzymes are more rigid at low temperatures than at higher temperatures (G. Petsko,
personal communication). Thermophilic enzymes are significantly more rigid than their
mesophilic counterparts at room temperature [198], however, increased rigidity at low
temperatures is observed in all enzyme categories. It has been proposed that the mesophilic
temperature rigidity of thermophilic enzymes [198,203] was responsible for their low
activity at these temperatures [140]. This implies that a catalytically significant enzyme
structural change occurs between low and high temperatures. However, the increasing
enzyme Vnax (keq) values with temperature seen for thermophilic and mesophilic enzymes
throughout their active ranges are typically consistent with the Arrhenius relationship. This
relationship predicts that the percent of maximal enzyme activity measured at some
temperature, a set number of degrees below the optimal activity temperature, is
predominantly a function of the reaction activation energy (Ea) (Fig. 1). Thus, the theory
predicts that a more thermophilic enzyme would have only a slightly broader temperature-
activity curve than an enzyme with a lower optimal temperature and the same Ea.
Therefore, the Arrhenius equation can explain poor low temperature activity for
thermophilic analogs to mesophilic enzymes while assuming that only the system thermal
energy is controlling the reaction rate (there is no catalytically significant enzyme structural
change). Recent work in our laboratory demonstrated that E. coli, B. stearothermophilus,
T. thermosulfurigenes, and T. neapolitana xylose isomerase Arrhenius plots were linear
[206]. Thus, the percent of maximal activity at any temperature below the optimal
temperature for an enzyme depended principally on the activation energy of the reaction.
These data clearly showed low thermophilic enzyme activity at mesophilic temperatures.
Also, the excellent agreement between the observed temperature-activity dependence and
Arrhenius theory suggested that throughout the active temperature range for each enzyme
no catalytically significant structural changes occurred.



Figure 1. Arrhenius dependence of reaction rate on the temperature and

activation energy for mesophilic and hyperthermophilic enzymes. Tmax is
defined as the temperature for maximal enzyme activity and Ea is the reaction activation .

energy.
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The Arrhenius plot discontinuities reported for some thermophilic enzymes have

been attributed to a catalytically significant enzyme structural change from an excessively
rigid, inefficient catalyst to a less rigid sturcture optimized for enzymatic activity [140].
Although a discontinuous plot is not absolutely consistent with theory, Arrhenius
discontinuities can result from temperature dependent changes in the reaction slow step or
other phenomena not linked to enzyme structure [207,208]. However, whether
thermophilic enzyme Arrhenius plot discontinuities indicate a temperature dependent change
in enzyme structure and whether such a change can account for the low mesophilic
temperature activity of thermophilic enzymes, remains to be determined.

As kinetic data accumulate on thermophilic enzymes, it becomes evident that,
despite their activity at high temperatures, thermophilic enzymes catalyze reactions with
Vmax and Ky, values similar to those of their mesophilic counterparts at their respective
optimal temperatures. Thermophilic enzyme-catalyzed reactions were initially expected to
have high catalytic efficiencies based on extrapolations of mesophilic enzyme rates and the
assumption of similar substrate affinities for the mesophilic and thermophilic enzymes.
Instead, thermophilic and mesophilic enzyme V,,, values at their respective optimal
temperatures are typically similar, as is typified by a series of xylose isomerases (Table 4).
Substrate affinities for thermophilic and mesophilic enzymes at their respective optimal
temperatures are also usually similar (Table 4,5) [215]. These similar K;;, and V., data
yield similar optimal temperature catalytic efficiencies among analogous thermophilic and
mesophilic enzymes (Table 4). While higher reaction rates with increasing temperature can
be attributed to increased rates of collision and a larger fraction of the substrate population

possessing kinetic energies above the reaction activation energy, the temperature
dependence of Ky, is less clear [208]. Even for the simple Michaelis-Menten case
(equation 1)
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ki %)
E+S©ES—SE+P (1
k,

the K, value, composed of 3 fundamental rate constants kj, k.1, and ka, yields equation 2
for the temperature dependence of Ky,

Km = (A.;Ay/A,2)el(2Ea; - Ea - Eay)/RT] )

Symbols Aj, A.1, A2, Eaj, Eaj, and Eaj represent the preexponential factors (A) and
activation energies (Ea) for the reactions corresponding to rate constants ki, k_, and kj,
respectively. While the specific effect of temperature on enzyme K|, values cannot be
predicted without a great deal of mechanistic information, these values are expected to vary
with temperature. Reported K, values were indeed significantly higher at higher
temperatures for both T. maritima xylose isomerase [190] and P. furiosis glutamate
dehydrogenase (Table 5). If thermophilic enzymes are exact structural and functional
analogs to mesophilic enzymes excepting their greater resistance to denaturation, the
extrapolation of an enzyme's K, values to different temperatures using the Arrhenius
relationship yields results inconsistent with the assumption of generally similar enzyme
sqbstratc affinities at mesophilic and thermophilic temperatures. The observations of
similar substrate affinities for thermophilic enzymes at high temperature and mesophilic
enzymes at low temperatures therefore, argue that thermophilic enzymes must expend more
energy or employ a different mechanistic strategy to so efficiently bind substrate. The circe
effect described by Jencks contends that excess energy from substrate binding is used for
catalytic rate enhancement [216]. Increased partitioning of this total energy to maintain
substrate binding affinity versus catalytic rate enhancement in thermophilic enzymes or their
structural limitations reducing the total efficiency of substrate energy utilization therefore,
may account for the activity and affinity differences between Arrhenius theory prediction
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and observation. Reports of enzyme mutants that have consistently lower kca; values with

increasing thermostability supports a direct structure-function link between folded protein
stability and reduced efficiency of substrate energy utilization [217,218].

Protein folding

Thermophilic and mesophilic proteins are typically similar and thermophilic
enzymes fold properly at mesophilic temperatures arguing that both classes of proteins fold
by similar mechanisms. The link between protein folded structure, enzyme activity, and
enzyme stability argues that understanding protein folding may yield insights into these
enzyme characteristics. Protein folding begins as the peptide is synthesized at the ribosome
and involves the rapid condensation of particular regions, or nuclei, into native-like states.
Folding is believed to be driven primarily by hydrophobic forces, and the native protein
structure is stabilized by a variety of hydrophobic, covalent, and coulombic interactions
between parts of the protein and between the protein and the solvent [219]. Despite the
staggering number of theoretical structures they may occupy, the fact that proteins fold
rapidly into their active conformation indicates that they reach their final structure through a
series of well-defined intermediate states. Rapid, cooperative protein folding suggests that
partially folded intermediates are not stable and that the native state includes very few
structural conformers of similar energy. This conclusion is supported by the conserved
structures seen in x-ray crystallography and NMR. Extending this conclusion to protein
folding energetics suggests that the free-energy well containing the protein native state is
steep-walled and deep, comprising most of the free energy range that describes the actual
folding pathway.

Freire et al. [220] proposed that at least two factors are specifically related to the
unfavorable energetics of exposing complementary surfaces to the solvent in the partially
folded/unfolded states: (i) the driving energy in protein folding and (ii) the protein
stabilizing forces. The authors define complementary surfaces as surfaces which are not
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solvent-exposed in the native state, but which become solvent-exposed in the partly

unfolded states. These result from regions of the folded core remaining condensed in
partly folded/unfolded proteins that expose surfaces uniquely present in these intermediate
states. Their model predicts that protein folding intermediates are highly unstable in
aqueous solution due to the exposure of hydrophobic complementary surfaces to the
solvent, and that these states are poorly populated. This CORE model relies on universal
protein characteristics, not on structural motifs (c—helices and B—sheets) specific to
individual protein folds, and is consistent with the observation that most proteins,
regardless of their secondary structural composition, fold in a two-state process. These
authors also noted reports that protein condensed phases which retain a “...significant
percent of the secondary structure content of the native state, exhibit considerable flexibility
and have a highly disrupted tertiary structure” are stable under certain conditions. The
existence of these stable condensed cores indicates that secondary structural element
interactions cannot, by themselves, control the protein folding pathway and folded protein
stability. Haynie and Freire proposed a thermodynamic model to determine the conditions
maximizing the stability of folded protein intermediate states [221,222]. Their model
predicts that, in the presence of a denaturant, intermediate-state stability is independent of
the free-energy variation between the intermediate and the native state, and that, in the
absence of denaturant, the intermediate state AH is derived from the thermodynamic
parameters of the unfolded state alone. This model implies that, thermodynamically,
protein folding is de facto a one-way process. The successive steps depend only on their
thermodynamic properties relative to the previous state and not to the subsequent one.
Furthermore, contrary to the current belief, they predict that the two-state protein folding
process relies on a small entropy contribution to the intermediate state stability.
Examining protein folding as a function of the total energies of the folded and
unfolded states further complicates this scenario [223]. At 25°C and high dilution it has
been established that non-polar solute transfer into water was opposed mainly by entropy
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and not enthalpy. Under these conditions, protein folding can be considered to be entropy

driven. However, because of the large, positive heat-capacity change of non-polar-solute
transfer to water [223,224], the AH and AS for this process cannot be considered
temperature-independent. The AG of non-polar-solute transfer into water is predicted to be
highest between 130°C and 160°C, where TAS=0 [223,224]. At these temperatures the
transfer is proposed to be completely enthalpy driven. Considering that the cell cytoplasm
loosely approximates a dilute water solution, and that a protein loosely approximates a
small, non-polar molecule, protein folding can be considered entropy driven only at room
temperature. Above this temperature, both entropy and enthalpy contributions become
significant. Therefore, at temperatures where many proteins are folded (37-100°C),
entropy and enthalpy contributions to the folding free-energy are expected to be
approximately equal [224,225]. These predicted energy contributions are consistent with
experimental results [225], and may help explain why, despite the temperature dependence
of partitioning entropy and enthalpy, thermophilic proteins are correctly folded when
expressed in mesophilic hosts. Protein folding is therefore, a robust process resistant to
entropy and enthalpy variations. Unfortunately, folding intermediates do not necessarily
contain local, condensed conformations identical to their counterparts in the native enzyme,
so the free energies of structural intermediates cannot predict the partial free energy of the
corresponding region in the native protein [226].

Protein unfolding

Protein unfolding is fundamental to protein stability with the Gibbs energy of
unfolding a direct measure of the folded protein stabilizing energy. Protein destabilization
by thermal energy and chemical denaturing agents has been well documented [227].
Extensive irreversible denaturation (i.e., loss of active architecture that is not recovered by
the removal of the denaturing force) is far more common than extensive reversible

denaturation (where active structure is regained upon removal of the denaturing force).
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Since the system is usually chemically or thermally altered to initiate protein unfolding,

reversible unfolding is not necessarily a mirror image of protein folding. The existence of
irreversible protein denaturation also indicates that irreversible unfolding is not a mirror
image of protein folding. Thus, unfolding intermediates do not necessarily represent
folding intermediates. For example, the molecular aggregation and precipitation common
in protein thermal denaturation did not occur for these protein molecules during proper
folding. For systems at equillibrium, the flux through each specific fundamental reaction
pathway must be the same in both directions. Thus, the mechanism of reversible protein
unfolding must exactly mirror the folding mechanism under the same conditions. Not a
process at equilibrium however, this microreversibility principle describing equilibrium
processes does not apply to irreversible protein denaturation. The AG between the
completely unfolded and native states in the same environment, however, must be identical
for both folding and unfolding. Thus, studies of protein folding energetics using data from
unfolding experiments can yield direct insights into the molecular determinants controlling
folded enzyme stability. But, extrapolations from these data to the protein folding
mechanisms may be misleading due to the potential for folding versus unfolding
asymmetry.

Protein denaturation is directly related to thermophilicity and thermostability.
Enzyme activity usually increases with temperature until it falls precipitously above the
temperature of maximal activity. This rapid loss of activity is consistent with the loss of an
enzyme'’s active structure by denaturation. Many enzymes, however, have long half-lives
at temperatures above their highest active temperature. For these enzymes, the recovered
activity upon cooling into their active temperature range has been attributed to reversible,
incomplete unfolding [228,229]. Denaturation is usually rapid and cooperative but the
observation that denatured proteins in solution retain some condensed structure indicates

that denatured protein is not necessarily complete unfolding. Mechanistically, denaturation

is the loss of native 3-dimensional structure sustained by solvent molecules invading the
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unfolding protein. This hydration reaction (in aqueous solutions) must originate at the

proteih solvent interface, its surface.

Molecular mechanisms of Thermostability
Intrinsic Factors

The retention of thermophilic properties by enzymes recombinantly expressed in
mesophilic hosts argues that these protein characteristics result in part from the nature of the
peptide. These intrinsic factors include sequence specific amino acid replacement, altered
entropy of unfolding, hydrophobic core packing, and loop region architecture, among
others. The characterization of thermophilic and thermostable enzymes, structurally and
functionally similar to well characterized mesophilic enzymes, allows the use of
comparisons to determine the factors involved in stabilizing enzyme architecture against
denaturation. No universal mechanism explains the differences between thermophilic
enzymes and mesophilic enzymes. Thermostability and thermophilicity properties are
believed to be due to subtle changes throughout the amino acid sequences of thermophilic
enzymes. An extensive comparative amino acid analysis by Argos et al. led to the
conclusion that thermal stability was related to (i) increased internal hydrophobic amino
acids and decreased external hydrophobic amino acids, (ii) the replacement of Gly, Ser,
Ser, Lys, and Asp by Ala, Ala, Thr, Arg, and Glu, respectively, and (iii) to helix
stabilization by more exclusive use of amino acids commonly found in helices [230].
Not all amino acid substitutions alter the function or stability of a protein. Specific
interactions and residues, rather than all_amino acids, contribute significantly to protein
structural stability [231]. While single substitutions can increase the stability of an enzyme
over 10°C [232], the thermostability intrinsic to thermophilic enzymes most often results
from multiple amino acid substitutions [233-235]. The effects of single and multiple amino

acid substitutions on enzyme thermostability are shown in Table 6. The examples were
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chosen from site-directed mutagenesis experiments in which the mutational effects were

thoroughly studied by biophysical structural analyses (e.g., crystallography, hydrogen
exchange measurements, Fourier transformed infra-red spectroscopy [FTIR], calorimetry).
These examples are also representative of the known mutational effects. Typically, several
mechanisms are used to stabilize a single protein. Finally, because of the structural
similarities between mesophilic and thermophilic proteins, reviewing selected literature on
mesophilic protein thermostabilization may aid in understand the the general mechanisms
controlling thermophilic-protein folded stability.

Multiple substitutions and protein stabilization - A great deal of protein
thermostability research has focused on enhancing mesophilic enzyme thermostability
through mutagenesis. Because mutataional effects on protein stability are proposed to be
local structural phenomena, they can be independent (multiple amino acid substitutions
have the same effect as the sum of the individual substitutions) or cooperative (the multiple
mutant stability is either greater than or less than the sum of the single mutations) when
constructive or destructive interferences occurs between the spheres of individual
mutational effects [234]). When Matthews and collaborators introduced multiple alanines in
an a-helix of T4 lysozyme, the mutation effects were additive (Table 6). However, when
they constructed multiple mutations affecting a single internal cavity (where the side-chains
of the target residues interacted with each other), the effects of the multiple mutations were
cooperative and less predictable (Table 6). Further work on chicken egg-white lysozyme
has corroborated this range of mutational effects [240,241]. Therefore, from an
engineering standpoint, a continuum of thermostabilities should be attainable by protein
engineering, bounded only by the thermodynamic limits of the protein’s total molecular
energy. However, the difficulty in predicting the stabilizing effects of multiple
substitutions prevents the use of amino acid thermostabilizing "traffic rules” to identify
specific amino acids responsible for one enzymes thermostability relative to another.
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Substitutions and modification of the thermodynamics of unfolding -

Since entropy has traditionally been considered the main factor driving protein stability, it
has been proposed that reducing the entropy gained by protein unfolding stabilizes the
native structure [248]. Reducing the entropy gain upon protein unfolding by adding a
constraint not removed upon denaturation may be achieved by disulfide bond formation,
replacing Gly residues with any other amino acid, and replacing any amino acid with Pro
residues. While disulfide bond engineering has been shown to affect mesophilic enzyme
thermostability [242,246,261-263], the chemical instability of Cys residues at thermophilic
temperatures makes this strategy ineffective for high temperature applications [267], and it
does not appear as an evolutionary strategy for thermophilic enzymes. Moreover, enthalpy
appears to be a significant factor (often dominating entropy) in protein stabilization by
disulfide bonds even when these bonds remain intact in both the folded and unfolded
protein forms [242]. Lacking a B-carbon, glycine residues in solution have more
conformational flexibility and entropy than any other amino acid. Matthews et al. predicted
that replacement of glycine by any other amino acid containing a f-carbon would stabilize
either thermophilic or mesophilic protein folded structure by ~4 kJ mole-1 relative to the
unfolded state [248]. Unfortunately, results of their subsequent exhaustive mutagenic
study of T4 lysozyme were not completely consistent with the theory. While mutations of
poorly mobile amino acids (as determined by low average crystallographic B values) with
reduced solvent accessibility were far more likely to have a significant effect on protein
thermostability, stability mutants primarily affecting the free energy of the unfolded state
were rare [268]. Therefore, they concluded that folded protein local packing efficiency,
rather than an entropy difference between the folded and unfolded states, was responsible
for the observed thermostabilization. Furthermore, the lack of significant differences
between the thermophilic and mesophilic Gly residue percent compositions (Table 3)
indicates that this strategy is also not employed to stabilize thermophilic proteins.
Matthews and colleagues, using similar arguments, predicted that the extra geometric
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constraint of proline residues present in both the folded and unfolded protein would

stabilize the folded protein by ~4 kJ mole-1 [248]. The specific minimum-energy
configurations prolines can occupy have been carefully calculated [269]. It has further
been demonstrated that prolines play an important role in directing the local conformations
surrounding them [269], and that proline insertions are only well tolerated in specific parts
of a protein structure [269]. Proline substitutions have been shown to stabilize mesophilic
proteins [233,243,248,258] and to further stabilize thermophilic proteins [254],
demonstrating that the practical limits of enzyme stability are higher than those engineered
by nature. These results suggest that careful proline substitution is a general technique
which can enhance enzyme thermostability, and, in some cases, thermophilic proteins do
appear to contain higher Pro residue percent compositions than their mesophilic
counterparts. Also, as seen in disulfide stabilization of folded proteins, both enthalpic and
entropic components were important to proline substitution thermostabilization effects
[233,270]. The extent of proline steric constraints relative to other amino acids predicts a
smaller energy gain from entropy due to proline introduction into a protein than is often
seen.

Prolines and loop regions - It has been proposed that analogous to the stop on
a zipper, prolines are used in constrained loop regions to prevent the sequential dissociation
of numerous coulombic stabilizing interactions between the two adjacent core elements
[71]. This proline-zipper model predicts a crucial role for loop regions in protein
thermostability (Fig. 2), contradicting the traditional thinking that, typically structurally
insignificant, loops act as flexible links maintaining a continuous peptide between two
properly positioned core elements. This traditional view is supported by the observations
that loop regions can withstand the accumulation of more neutral substitutions than can core
clements, and that there is usually a greater sequence variability in loop regions than in core
elements within an enzyme family [271]. However, the proline-zipper hypothesis
described here for thermostabilization by loops follows from the mechanistic understanding
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Figure 2. Role of proline residues in protein structural stabilization.
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that the rapid cooperative protein unfolding process originates at the protein-solvent

interface and that loops are usually found at the surface of protiens. Furthermore,
emerging data suggests that manipulating turn structures may be a common method for
protein thermostabilization in nature [259,272]). Studies focusing on B-turns suggest that
constrained loop regions play a major role in protein resistance to denaturation. Kimura et
al. [259] constructed E. coli RNaseH site-directed mutants, using the results of a previous
mesophilic/thermophilic enzyme sequence comparison [258].. Mutations K95G and K95N
that targeted a B-turn clearly stabilized the protein, as shown by activity assays and circular
dichroism measurements. Based on the enzyme x-ray structure and on molecular
modeling, Kimura et al. proposed that the K95G mutation eliminated some structural strain
created by the lysine residue, and allowed a better interaction between the two neighboring
core elements. The K95N mutation allowed the formation of an asparagine intra-residue
hydrogen bond. This bond created a structural constraint analogous to the constraint
introduced by prolines [259]. Additional prolines were observed in short loops and in
longer, constrained loops (those whos flexibility is limited by factors such as salt bridges
or multiple Pro residues) in two thermostable and one hyperthermostable xylose isomerase.
These prolines were absent in the mesophilic enzymes (see Table 3). These unpublished
data predict that loop stabilizing mutations are more effective when introduced into
structurally constrained loops thus, the Pro residue positions in a peptide, as well as the
number, will control their effect on folded protein stability. Proline introduction in turn
regions appears to indicate a general importance for turn regions in protein stability and to
represent a naturally occurring thermostability control mechanism that can be applied to
protein engineering.

Salt bridges - Activities of ions immobilized on the same molecule are extremely
high, even compared to those in bulk solution at molar concentrations [273]. This fact
suggests that intramolecular salt bridges may be very stable, even at the surface of a protein

in a highly polar solvent environment. Comparing the thermophilic B. stearothermophilus
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and mesophilic yeast phosphoglycerate kinase crystal structures led to the conclusion that

extra salt bridges present in loops in the thermophilic protein contribute to its
thermostability [274]. Crystal structure analysis of ribonuclease H [275] and 3-
phosphoglycerate kinase [276] allowed the identification of salt-bridges as important
factors in these enzymes’s thermostabilities. An intra-peptide salt bridge also stabilizes the
Actinoplanes missouriensis xylose isomerase [265]. A careful study of chaotropic salt
effects on S. solfataricus carboxypeptidase similarly concluded that surface salt bridges
contributed significantly to the enzymes resistance to thermal denaturation [175]. A
number of surface residue to arginine substitutions also implicated electrostatic interactions
in protein thermostability [265]. It is important to note that the presence of suitable
additional charged residues in a peptide 1° structure is not sufficient to identify this
thermostabilizing mechanism. Tomazic and Klibanov proposed that additional salt bridges
in B. stearothermophilus o-amylase reduced reversible unfolding, thus reducing the
probability of the partially unfolded enzyme forming scrambled structures and preventing
irreversible denaturation [138]. However, subsequent crystallographic exidence indicated
that none of the added Lys residues were involved in salt bridges [277].

Hydrogen bonds - The importance of hydrogen bonds (H-bonds) in maintaining
folded protein structure was first recognized by Mirski and Pauling in 1936 [201].
Subsequently, the role of these coulombic interactions in protein stability has been
th;)rouglﬂy studied and reviewed [278]. A recent publication by Cleland and Kreevoy
addressed the importance of low-barrier H-bonds in catalysis [279]. Low-barrier H-bonds
are formed between residues carrying functional groups with similar pKa'’s, and are
significantly stronger than ordinary double-well H-bonds. They can be detected
crystallographically by either their characteristic short bond distances (< 2.5 A) or by field
position shifts in NMR [280]. It has long been known that the pKa’s of ionizable groups
are strongly dependent on environmental factors; in proteins, the environment surrounding

H-bonding partners is often quite different from their environment in solution. These
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observations, combined with recent x-ray crystallography showing that the core of

thermophilic proteins contains fewer and smaller cavities (i.e., higher atomic density) than
their mesophilic counterparts [124], suggest that both enzyme thermostability and
thermophilicity may be enhanced by the formation of stronger H-bonds. Thus,
thermophilic proteins can substantially increase their stabilization energy with only small
differences in structure or amino acid content. The excess enthalpic component of protein
stabilization created by proline substitution in constrained loops may also be explained by
the geometric constraint strengthening the H-bonds between adj aécnt core elements.
Substantiating or refuting this hypothesis will require careful analysis of exact protein
structures.

Hydrophobic interactions and core packing - Hydrophobic interactions are
believed to provide the energy needed to fold proteins in aqueous solutions. Thermophilic
B. caldovelox a-amylase [85] and ES4 GDH [135] contain more hydrophobic-interaction-
forming residues than their mesophilic counterparts. It has been proposed, therefore, that
hydrophobic interactions play a significant role in enzyme thermophilicity and |
thermostability. Matsumura ez al. [281] created multiple substitutions of Ile3, a residue
which contributed to the major hydrophobic core in T4 lysozyme. The hydrophobicity of
the engineered residue (measured as the free energy of transfer from water to ethanol)
appeared clearly related to protein stability (measured as the difference between the free
energy of unfolding of the mutant and the wild-type protein). Water/ethanol transfer free
energies for the substituted residues could account for approximately 80% of the difference
in overall protein stability, indicating that hydrophobic interactions were the main
stabilizing factor at this position. Other amino acid substitutions increasing the
hydrophobic content of the protein core have increased protein thermostability
[247,251,253,255,282]. Furthermore, the stability cost of burying a polar hydroxyl group
in the core of T4 lysozyme was significant [251]. Itis generally believed that hydrophobic

residues at the surface of proteins are unfavorable for protein stability. However, the
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protruding hydrophobic surfaces of some surface residues create a hydrophobic pocket in

the protein surface, where the presence of a hydrophobic residue will favor protein
stability. The B. stearothermophilus neutral protease was significantly stabilized either by
introducing bulky hydrophobic residues or by Arg or Lys residues in such a surface pocket
[256].

Extensive x-ray crystallographic studies have shown (i) that folded proteins contain
significant cavities (some filled by water molecules, some not) [283], (ii) that protein local
core packing is surprisingly able to compensate for deformations due to amino acid
substitutions [284,285], and (iii) that aromatic-aromatic interactions in the hydrophobic
core environment may stabilize the folded structure [234,252]. Other crystallography-
based mutagenesis experiments have demonstrated the potential to increase protein
thermostability by filling cavities in the folded structure [236,240,247,257,286}, and by
displacing buried HyO molecules with either amino acid sidechains [255] or benzene [253].
Sequence analysis of T. maritima GAPDH was used to argue that its high thermostability
was attributable to local packing interactions specifically involving the T. maritima
enzyme’s higher percentage of large hydrophobic groups [142]. Crystallographic studies
have also shown a link between increased core hydrophobicity and better packing
efficiency in thermostable proteins, supporting the importance of protein hydrophobicity in
thermostability [287,288]. Some thermophilic enzymes are significantly stabilized by an
overall increase in hydrophobicity but this trait is not universal among thermostable
enzymes since, in many enzyme families, no significant differences in hydrophobic residue
content exist between thermostable and thermolabile proteins (Table 3). This observation
indicates that increased hydrophobicity is not the only stabilizing tool used in naturally
occurring proteins. While better core packing is often linked to increased hydrophobicity,
in some cases it can affect stability by more subtle means such as the reduction of bond
strain [285,289,290]. Not necessarily stable in solution, secondary structural elements are

still important in maintaining active enzyme architecture [224]. Based on the ability of high
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densities of short peptides to form a-helices in crystals, it has been proposed that
increasing peptide concentration increases the stability of helices [224], and that helix
stabilization in core domains was implicated in protein thermostability [232,257,291].
Denser internal packing, therefore, may enhance protein thermostability either as a general
stabilizing force or as a factor altering the stability of secondary structures.

Covalent destruction and irreversible denaturation - Enzyme irreversible
denaturation by temperature-induced covalent modifications (i.e., Asn or GIn deamidation,
or the oxidation [134,204,267] of Cys to cysteic acid [284,293,294]) directly affects
protein thermostability. These covalent alterations possibly affect thermophilicity directly
through catalytic residue decomposition (e.g., Cys residue in ADHs or GAPDHs) or
indirectly through their role in irreversible denaturation due to protein degradation or
aggregation. For example, peptide cleavage at the C-terminal end of arginine residues in a
hyperthermophilic GAPDH limited its thermostability [151]. Klibanov and collaborators
indicated that deamidation was probably involved in the formation of scrambled structures
after significant protein unfolding occurred [295]. They also showed that deamidation was
the major mechanism controlling thermoinactivation in Bacillus a-amylases [197] and hen
egg-white lysozyme [138]. Sicard et al. roported a similar conclusion for Streptomyces
violaceoniger and S. olivochromogenes glucose isomerase thermoinactivation [292]. The
rates of amino acid covalent degradation become significant only at elevated temperatures
(usually above 90°C), indicating that only under these conditions will such processes be a
significant cause of enzyme inactivation [296]. Tomazic and Klibanov showed that
Bacillus amyloliquefaciens and B. stearothermophilus a-amylases are inactivated by
unimolecular conformational scrambling, whereas the more thermostable Bacillus
licheniformis enzyme was inactivated by Asn/Gln deamidation [297].

An inverse relationship was seen between the percent of Asn plus Gln residues in D-xylose
isomerases and their respective temperature for maximal activity (ranging from 55°C to
95°C) [190]. The general trend of fewer Cys, Asn, and Gln residues in the more
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thermophilic proteins provides indirect support for the hypothesis that the thermally

induced decomposition of these residues is undesirable for protein function at very high
temperatures. In a comparative study of mesophilic and thermophilic type II D-xylose
isomerases [206], we extrapolated the enzyme melting temperatures (i.e., temperature for
50% unfolding) from melting experiments performed in the presence of GuHCI (Table 7).
The mesophilic E.coli, thermophilic T. thermosulfurigenes, and thermophilic B.
stearothermophilus xylose isomerases were 50% unfolded at temperatures (53°C, 80°C,
and 85°C, respectively) close to their respective maximal activity temperatures (55°C, 80°C
and 85°C, respectively) and their precipitation initiation temperatures (52°C, 80°C, and
85°C). The T. neapolitana enzyme's melting temperature (120°C), however, was 25°C
higher than its temperature for maximal activity (95°C) and for initiation of protein
precipitation (95°C). Thus, the mechmﬁsm of T. neapolitana xylose isomerase inactivation
appears to differ from that of the other three xylose isomerases, and does not involve a high
percentage of initial unfolding. Further experimentation is required for verification, but we
suspect that T. neapolitana xylose isomerase inactivation occurs through deamidation (or
another covalent destruction mechanism) at temperatures where the enzyme is barely
unfolded [206]. These data argue that the engineering of protein hyperthermostability will

require either the removal or the modification of any thermolabile residues in the source

protein.

Extrinsic mechanisms

Extrinsic factors, those due to the influence of non-protein effectors on folded
protein stability (glycosylation, immobilization, stabilization by salts, metals, thermamines,
pressure effects, etc.), have also been implicated in enzyme thermostability and
thermophilicity. It is well known that in vitro enzyme activity is strongly affected by the
nature and concentration of effector molecules present in solution as well as by

environmental factors. Allosteric effectors, substrates, and ions (such as Ca2* and PO,3")
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are specifically bound by proteins. It is not surprising, therefore, that numerous enzyme

thermostabilities are altered by such effectors [298]. Substrate molecules have long been
known to stabilize enzymes, presumably by interaction in specific binding sites [250,266],
and these effects are not reviewed here. Chemical cross-linking or immobilization,
glycosylation, inorganic salts, and high pressure also stabilize enzymes. This discussion
of these topics is confined to the current mechanistic theories and provides representative
examples supporting or opposing these theories.

Glycosylation - An increasing number of bacterial extracellular enzymes have
been shown to be glycosylated (for example, C. thermocellum cellulosome components
and T. saccharolyticum endoxylanase [298a-300]). Most of these glycosylated enzymes
retain their catalytic and stability properties when expressed in mesophilic hosts (not known
to extensively glycosylate recombinant proteins). Also, a major source of thermal
destabilization for the A. missouriensis glucose isomerase has been shown to be the
glycosylation of a Lys residue by glucose - a glycoside as well as the glucose isomerase
substrate [264]. While some glycosylated proteins have been shown to be more stable than
their non-glycosylated forms [199,301], glycosylation is not a thermostabilization method
commonly found in nature.

salts - Inorganic salts stabilize proteins by either a specific salt effect, where a
metal ion interacts with the protein in a conformational manner or a general salt effect,
which mainly affects water activity. Ca2* binding by ai-Amylases is an example of the
former mechanism. The a-amylase catalytic site is located in a cleft between two domains
(an [o/B]g barrel and a large loop). Coordinated by ligands belonging to these two
domains, Ca2* is essential for the a-amylase's catalytic activity and thermostability [302].
Xylose isomerases bind two metal ions (either Co2*, Mg2t, or Mn2+). One cation is
directly involved in catalysis (the catalytic metal) and the second stabilizes the folded
protein (the structural metal) [303,304]. The two metal-binding sites can have different
specificities, and replacing one cation with another often significantly alters enzyme
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activity, substrate specificity, and thermostability [303,305]. Ca2* stabilization of

lysozyme was proposed to be due to a decrease in the entropy of the Ca2*-bound unfolded
protein, relative to the entropy of the unfolded protein in the absence of Ca2* [298]. This
specific salt effect was attributed to the characteristics of the specific binding sites (i.e.,
size, coordination number, and the nature of the liganding residues) [65].

A study of GAPDH thermostabilization by salt indicated that the relative effects of
K3POy4, NazPOy, K2S03, NaySO3, KCl, and NaCl were consistent with their abilities to
reduce the enzyme solubility in aqueous solvent. Their action was attributed to their
decreasing effect on water activity, a general salt effect [76]. Ammonium sulfate protein
precipitation is a common application of the general salt effect for enzyme precipitation.
Once precipitated, enzymes are typically also stabilized. This procedure is a standard,
convenient way to store enzymes. Thauer and colleagues studied the effect of salts on the
thermostability and activity of five M. kandleri methanogenic enzymes [153-155,164,183].
While the five enzymes are activated and stabilized by salts, the extent of the salt effect
varied from enzyme to enzyme. CHO-H4MPT formyltransferase was optimally stabilized
in the presence of 1.5 M Ko;HPO,4 while the F45¢-dependent CHy=H4MPT reductase was
stabilized by 0.1 M K,HPO,. K+ and NH4™ cations typically improve enzyme stabilities
more efficiently than other cations. Of all the anions, SO42- and HPO,42- had the strongest
activating effect [164]. Enzyme stabilizing salt requirements however, are not always
sa;isﬁed by the intracellular salt concentration. M. kandleri’s intracellular salt concentration
(>1 M potassium plus 1.2 M 2,3-diphosphoglycerate) [164] seems to favor CHy=H4MPT
reductase activity (optimal at 2.0-2.5 M salt), but this intracellular salt concentration is far
from being the optimal enzyme stabilizing concentration (optimal between 0.1 and 1.5 M
salt) [155]. These studies illustrate the variety of situations encountered: (i) similar
enzymes from different organisms do not have the same stabilization and activation

requirements, (ii) enzymes from the same organism are not equally affected by an
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environmental (i.e., cellular) factor, and (iii) thermophilicity and thermostability are not

necessarily controlled or favored by the same factors.

The hypothesis that the general salt effect was due to direct electrostatic interactions
between charged amino acids and salt counterions was not corroborated by experimental
data [306]. Instead, a smeared charge repulsion mechanism was proposed: Salt-induced
protein destabilization was due to nonspecific charge repulsion and to ionization changes at
the interface between complementary peptide surfaces in the partially unfolded protein.
This hypothesis agrees with the well-documented protein stabilizing effect of intermediate
salt concentrations, in particular with the relatively high salt concentrations (1.0 M to 2.0
M) required to stabilize some thermophilic enzymes [306]. It also agrees with the reduced
polar uncharged residue content in some thermophilic enzymes, when compared to their
mesophilic counterparts [85,230]. At high temperatures, the system's higher kinetic
energy increases the potential for exposing buried surfaces to the solvent. Salt interactions
with the less polar residues in the partially unfolded thermophilic enzyme are less favorable
than the interactions with the more polar mesophilic enzyme residues. Furthermore, this
theory predicts that greater solvent ionic character will stabilize folded proteins relative to
their partially unfolded forms.

Other chemical effectors - Breitung er al. (1992) [164] found that the
differences between M. kandleri, M. thermoautotrophicum, Archaeoglobus fulgidus, and
Methanosarcina barkeri CHO-H4MPT formyltransferase activation by salts were directly
correlated to the intracellular 2,3-diphosphoglycerate concentration in the different
organisms. Polyalcohols such as glycerol, sorbitol, mannitol, sucrose, and starch and are
known to stabilize proteins [306]. Hyperthermophilic bacterial cytoplasms contain
thermamines (polyamines) that have been shown to thermostabilize nucleic acids and
proteins [307]. Organic polymers such as polyethylene glycol (PEG) also stabilize folded

proteins. However, they can also induce precipitation and even inactivation.
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Pressure effects - The ability of high pressure to stabilize proteins has been

reported [308,309]. The observation that folded proteins have densities similar to
crystalline solids is the theoretical basis for pressure as a general stabilizing force.
Unfolding a protein would increase its volume, making a partially unfolded protein less
stable than the folded protein at increased pressures. Thus, at higher pressures, the
compact , folded protein form is more stable. Hei and Clark [308] have studied the effect
pressure has on enzymes from barophilic organisms. They showed that some barophilic
thermophiles have enzymes which are also barophilic (i.e., optimal activity at pressures
from 200 to 400 atm) [308]. Hei and Clark also characterized barophilic enzymes isolated
from organisms that were not, themselves, barophilic [308]. Since numerous chemical
reactions are performed at high temperatures and pressures, demonstrating enzyme stability
at high pressures is potentially important for enzyme biotechnological applications [309].

Molecular mechanisms of protein thermophilicity

The molecular basis for enzyme thermophilicity is not well understood, and the
literature on this subject is limited. Linear Arrhenius plots for numerous enzymes indicate
that if there are structural changes in the catalyst throughout the active temperature range,
they are either not catalytically significant or they are offsetting. The discontinuous
Arrhenius curves observed for catalysis by some enzymes [82,145,190] indicate that, in
these specific cases, temperature dependent, functionally significant structural changes may
occur. These discontinuous Arrhenius curves were believed to be characteristic of
thermophilic enzymes, but, as mentioned previously, not all thermophilic enzyme
Arrhenius plots are discontinuous and some mesophilic enzyme Arrhenius plots are also
discontinuous [92]. Explanations for Arrhenius discontinuities have been proposed that do
not involve altering the catalyst’s structure (e.g., change in the slow step of the reaction)
[207,208]. Generally, enzyme activity in its active temperature range is well described by
the Arrhenius equation, and can be derived from the temperature for maximal activity,
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magnitude of maximal activity, and the activation energy for the reaction. The Arrhenius

equation, however, cannot predict the optimal temperature for an enzymatic reaction.
Thus, an enzyme’s active temperature range appears to be determined at the lower end by
the theoretical limitation on activity determined by the Arrhenius relationship. Partial
protein unfolding or covalent chemical modifications appear to determine the upper limit,
independently from the Arrhenius equation.

Most studies on enzyme thermostabilization do not comment on the enzyme
thermophilicity. Only a few reports [250,310] describe mutations that altered both enzyme
thermostability and thermophilicity. Kuroki et al. [250] demonstrated that adding a Ca2+
binding site in human lysozyme by site directed mutagenesis both stabilized the protein and
increased its thermophilicity from 70°C (native enzyme) to 80°C (mutant holoenzyme). In
the absence of Ca2*, the mutant enzyme thermophilicity was reduced to 65°C. The native
and mutant enzyme catalytic rates were superimposable up to the temperature for maximal
activity of the wild-type enzyme (~70°C). Above that temperature the mutant enzyme
activity continued to increase, with the same apparent Arrhenius behavior, until it reached
its own temperature for maximal activity. The mutant behavior suggests that the wild-type
enzyme thermophilicity was limited by its thermostability, and that the higher
thermophilicity of the mutant was due to an increase in its thermostability. In one study,
insertion of 2 to 4 amino acids into Caldicellulosiruptor saccharolyticus xylanase generated
stability-only mutants and stability-plus-optimal temperature-altering mutants [310].
Insertion of a single Pro-Arg sequence reduced the enzyme's specific activity more than 2-
fold, the thermostability 4-fold, and the optimal temperature by 20°C. These mutations
support the hypothesis that, in this case, thermophilicity was also limited by folded protein
stability. Other C. saccharolyticus xylanase mutants, displayed reduced activity and
reduced stability (similar to the Pro-Arg mutant) while retaining native-like thermophilicity
(70°C), suggested that the molecular bases for protein thermostability and thermophilicity
can be structurally distinct. The Tomazic and Klibanov thermostability model (scheme (1),
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and [197]) can potentially explain the observed difference between the two classes of C.

saccharolyticum xylanase mutants. The mutations which only reduce enzyme
thermostability would increase the rate of scrambled structure formation from the enzyme
non-native state, while the mutations that reduce both thermophilicity and thermostability
would result from the shift of native to nonnative enzyme at lower temperatures. This
analysis predicts that a class of thermophilicity-reducing mutants that do not alter
thermostability could be generated if the nonnative state (resulting from reversible
unfolding) were stabilized with respect to the scrambled structure (the enzymes would only
reversibly inactivate).

While the relationship between enzyme kinetics and protein thermophilicity/
thermostability remains unclear, it has been proposed that the poor activity of thermozymes
at low temperatures is the result of excessive rigidity. This rigidity is believed to be
necessary to maintain active enzyme architecture at high temperatures [198,203,215]. Data
from crystallography, deuterium exchange, proteolytic susceptibility, and other
experimental approaches have demonstrated that folded thermozymes are indeed more rigid
at low temperatures than their mesophilic counterparts [198,203,215]. Tchernajenko et al.
[206], however, reported linear Arrhenius plots for the four xylose isomerases they
studied. Since these plots were perfectly fit by the Arrhenius equation, increased low-
temperature protein rigidity was not required to explain the poor low-temperature activity of
thermophilic enzymes [206]. The temperature dependence of thermophilic enzyme activity
might, instead, only be determined by temperature-dependent substrate kinetic energy
variations. Therefore, determining the importance of protein flexibility to thermophilic
enzyme activity will require comparisons of corresponding thermophilic and mesophilic
enzyme flexibilities and activities throughout their active temperature ranges.
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Genetic engineering of thermozymes

Modification of enzyme catalytic properties

The accumulating protein structural data justifies the use of enzyme engineering as a
rational research approach to make enzyme catalytic properties fit industrial processes.
Knowing the L-lactate dehydrogenase structure and catalytic mechanism, Holbrook and
colleagues attempted to systematically modify the B. stearothermophilus L-lactate
dehydrogenas into a malate dehydrogenase by a point mutation proposed to better
accommodate oxaloacetate in the substrate pocket [311], then to design a non-specific o-
hydroxy acid dehydrogenase from the lactate dehydrogenase [312]. This non-specific o-
hydroxy acid dehydrogenase mutant enzyme remained thermostable, and could be used for
various chemical syntheses. A similar approach was used by Meng et al. [313] to switch
the substrate preference of T. thermosulfurigenes xylose isomerase from xylose to
glucose. Amold and colleagues used PCR-mediated random mutagenesis to enhance
subtilisin E activity in polar organic solvents [313a,313b]. Using several screening steps,
they eventually selected a multiple mutant that was 256 times more efficient than the wild-
type enzyme in 60% dimethylformamide. A similar PCR based technique, was
successfully employed to enhance the Z. mobilis 1° ADH thermostability [217]. These
studies provide proof of principle for the general application of directed enzyme design

strategies using mutagenesis.

Thermostability and thermophilicity engineering

Research has shown that while thermophilicity and thermostability can be altered
independently, they are often structurally related. Numerous molecular interactions might
be responsible for these properties, however, only a few are of genetic engineering value:
(i) protein sequences contain redundant information for proper folding, and protein
structures can often accommodate amino acid substitutions without significantly altering the

catalytic efficiency; (ii) a small number of amino acid substitutions throughout the protein
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can significantly alter its thermophilicity and thermostability; and (iii) certain regions in a

protein are more labile than others—stabilizing these regions (rather than the more stable
ones) is critical to improve protein thermal properties. Four general strategies for thermal
stabilization have been identified: more efficient protein core packing, a-helix stabilization,
surface loop stabilization, and prevention of chemical degradation. Recent crystallographic
analysis has indicated that more-rigid core structure (lower B-values) is a hallmark of
thermophilic proteins [124,198]. However, systematic engineering of core rigidity without
altering protein function is beyond the capabilities of current technology. Stabilizing o.-
helices by capping or by introducing alanines has had spotty success, and suffers from the
same engineering problems as do the core packing strategies. Loop engineering has
successfully stabilized proteins [233,243,248,254,258,259,272]. Sequence analysis
methods (eg. HCA) now reliably predict surface loop regions, even in the absence of 3-
dimensional structural information. Specific stabilizing amino acid substitutions have been
identified (e.g., substitution of surface lysines with arginines and introduction of prolines
in constrained loops, and salt bridges), making this approach a good engineering tool.
Preventing peptide chemical degradation is also important for very high temperature
applications (>90°C). Trends toward reduced Cys, Asn, and Gln contents in
hyperthermophilic enzymes have been identified in nature [303], and deamidation has been
shown to be a main factor responsible for irreversible enzyme inactivation [197]. The
appropriate strategy for engineering protein thermostability or thermophilicity depends on
the project goal, on the available structural information, and on the thermal mechanisms
limiting enzyme stability or activity (Fig. 3). Selecting an initial enzyme with thermal
properties as close to the target as possible clearly increases the chances of successful
engineering. The probability of engineering success is further enhanced by having the
initial enzyme's high-resolution 3-dimensional structure as well as a protein in the same
class that has thermal characteristics close to the desired protein. Comparing
thermophilicity and thermostability properties indicates whether the limiting step in protein



Figure 3. Flow chart of potential steps toward engineering enzyme

thermophilicity and thermostability.
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inactivation is the initial partial unfolding or irreversible structural changes (such as

precipitation or chemical degradation). If, in the temperature range of interest, the protein
thermostability half-life is longer than the activity half-life, the reversibly partially unfolded
protein is not immediately irreversibly inactivated. If, however, these two half-lives are
similar, irreversible inactivation follows the initial unfolding almost instantly. The protein
concentration in the target application should be estimated based on the protein function
(receptor, enzyme, antibody, etc.), to provide a concentration range for these
characterizations. Determination of the thermostability half-life at different initial protein
concentrations within this range will indicate if inactivation is intramolecular (concentration
independent) under these specific conditions.

Having increased enzyme thermostability allows applications of repeated thermal
cycling (e.g., PCR), as well as permitting pre-application high-temperature processing
steps (e.g., processing enzymes in food or feed additives). To increase enzyme
thermostability, engineering efforts should focus on preventing irreversible protein
inactivation. Strategies to prevent protein aggregation (e.g., chemical modification of
lysine residues with succinic acid [197], addition of polyalcohols to the solution [306], or
immobilization on an inert matrix) might significantly thermostabilize the protein. This
approach would need to be undertaken if (i) enzyme precipitation coincides with
inactivation and the precipitated protein does not retain complete activity, or (ii) if
aggregation is undesirable for the target application. If these measures are insufficient or
inappropriate for the design goal, then prevention of inactivating conformational changes
through peptide modifications such as intramolecular cross-linking or through system
additives (eg. salt or glycerol) that stabilize the folded protein structure should be
examined. Salts have been shown to stabilize proteins through specific binding, charge
shielding, and modification of the system entropy. The addition of organic chemicals such
as glycerol and polyethyleneglycol has also been shown to stabilize some proteins, but they
often reduce activity and can destabilize some proteins. The specificity of intramolecular
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cross-linking is difficult to control and often reduces protein activity but it covalently tethers

protein regions analogously to disulfide linkages.

Either random or site directed mutagenesis of the initial protein may be used to
thermostabilize proteins. Random mutagenesis has been successfully used to increase
enzyme thermostability and resistance to solvent-induced denaturation. Hageman and
colleagues [314] developed a system in which a gene encoding a mesophilic enzyme is
introduced into a thermophilic host, and variant enzymes with increased thermostability are
selected during growth at increasing temperatures. Heat-stable kanamycin
nucleotidyltransferase mutants were obtained using a B. stearothermophilus strain that
expressed a mesophilic kanamycin nucleotidyltransferase to select kanamycin resistant
variants at increasing temperatures [239]. Although attractive at first glance, this approach
is limited by the absence of genetic tools (i.e., shuttle vectors, transformation methods)
available for most thermophiles and hyperthermophiles, as well as by the limited enzymatic
activities directly selectable in B. stearothermophilus cultures. The current lack of
thermophilic cloning hosts also makes classic genetic complementation by thermophilicity
mutants a significant challenge. Practical use of random mutagenesis requires a powerful
mutant selection procedure or specific structural information (to limit the size of the target
thus, reducing the total number of possible mutants to be tested).

Site-directed mutagenesis usually requires protein structural information. Strategies
that include substitutions with residues present in structurally similar proteins with thermal
properties similar to the desired mutant require sequence information from both proteins. If
an enzyme targeted for hyperthermophilic applications (>80°C) is irreversibly inactivated,
reduction of the number of noncatalytic Gln, Asn, and Cys residues can be used to stabilize
the protein structure, using the single peptide sequence. Loop stabilization by introducing
Pro or Arg residues also requires only knowing the protein sequence. Exact structural
information from crystallography, NMR, or homology modeling allows the engineering of
multi-residue motifs such as metal binding sites or disulfide bridges (for moderate
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temperature stabilization) to stabilize the enzyme structure, and allows specifically tailored

design schemes such as cavity filling mutations, helix stabilization by alanine insertions or
capping (eg. His at the c-terminus), and alleviation of specific bond strains. Deuterium
exchange, measured by NMR, can precisely identify the more labile protein regions to
stabilize [315). Muheim et al. [316] created a dihistidine metal-chelating site on a surface
B-sheet of cytochrome c, and cross-linked it with the metal complex Rull(2,2-bipyridine).
This cross-linking increased the melting’tcmperature of the mutant enzyme by more than
23°C.

Increasing enzyme thermophilicity requires preventing thermally induced unfolding.
Since enzyme thermophilicity is often limited by thermostability, engineering
thermophilicity usually requires enzyme thermostabilization. Also note that, for an enzyme
that precipitates upon heating, if precipitation is not the first inactivation step, preventing

aggregation is unlikely to enhance thermophilicity.
THESIS OBJECTIVES AND SIGNIFICANCE

Because archaeal and bacterial thermophiles were the first organisms to have
evolved the study of these organisms and their enzymes is expected to provide insights into
the origins of biocatalysis on Earth [317]. With their remarkable thermostability and
activity, thermophilic enzymes provide a model for studying protein thermostability and
biocatalysis at high temperatures. Structurally similar to their mesophilic counterparts,
thermophilic enzymes are powerful tools for developing enzyme structural or functional
models through comparative analysis. Their high-temperature activity and high stability
make thermophilic enzymes excellent candidates for industrial enzymatic applications.
Therefore, the fundamental scientific examination of thermophilic life may also yield novel

catalysts of tremendous biotechnological value.
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Numerous highly similar thermophilic 2° ADHs have been isolated from

thermoanaerobic bacteria [7,8,15,16] but despite more that a decade of research since the
first enzymes were purified in 1981 [14,15], no report of the cloning of a gene encoding a
thermophilic 2° ADH has been published. There is also no record of either mesophilic or
thermophilic 2° ADH characterization by mutagenesis. The only thermophilic 2° ADH
peptide sequence avaliable was determined by Edman degradation [33]. Alignment of the
liver 1° ADH and the T. brockii 2° ADH peptides by Peretz and Burstein [33] suggested
that the structural Zn binding loop was absent in the 2° ADH, but they concluded that
insufficient similarity existed between the A. eutrophus, horse liver and
Thermoanaerobacterium brockii enzymes for further comparative analysis. Earlier, Lamed
and Zeikus reported that T. brockii 2° ADH activity was both cysteine and Zn dependent
[15] and Bryant and Ljungdahl measured Zn specifically bound to the T. ethanolicus
(ATCC 31550) enzyme [14]. All thermophilic 2° ADHs identified are tetrameric with
reported subunit molecular masses near 40 kDa. This coincidence of enzyme structural
properties and the similarities seen in kinetic comparisons of these NADP(H) linked 2°
ADHs led Nagata ez al. to conclude that all thermophilic 2° ADHs were extremely
structurally similar [16]. The greater than 75% sequence identity between the mesophilic
C. beijerinckii and thermophilic T. brockii peptides further argues that all catabolic 2°
ADHs may share significant 3-dimensional structural identity. These thermophilic and
mesophilic 2° ADH peptide sequences therefore, make an excellent system for
determination of protein thermostability structure-function relationships through
comparative analysis. However, reciprocal mutagenesis experiments to verify the sequence
based predictions require expressed clones of the genes encoding both proteins.

The T. brockii 2° ADH has been demonstrated to reduce aldehydes and ketones on
aliphatic molecules containing up to 10 carbons [318]). This enzyme requires ketones on
the second or third carbon, displaying higher activity toward unbranched noncyclic
molecules. The enantiospecificity was lower and (R)- specific in the reduction of very
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short ketones but greater than 90% and (S)- specific for reduction of ketones with aliphatic

chains greater than 5 carbons in length. The T. brockii 2° ADH, like the horse liver and
yeast 1° ADHs, produces (S)-alcohols using the E3 pathway [30]. For the T. brockii 2°
ADH, lower reaction temperatures also yielded higher enantiomeric excess [319].
Enantiomeric excess at equillibrium is a function of the Gibbs energy ratio between the (R)-
and (S)- specific reactions and this relationship indicated that the variation of T. brockii 2°
ADH reaction stereospecificity with temperature resulted mainly from entropy
considerations. An ordered kinetic mechanism with cofactor binding followed by substrate
binding, hydride transfer, product release, then cofactor dissociation, similar to the liver 1°
ADH mechanism, was identified for T. brockii 2° ADH catalysis [320]. The T. brockii
enzyme is both thermostable and thermophilic [15]. Its optimal temperature for activity
was reported to be above 70°C with significant inactivation rates occurring at temperatures
above 90°C. A discontinuity in the Arrhenius plot for propan-2-ol and butan-2-ol oxidation
by this enzyme was reported in the same study.

The T. brockii 2°ADH has already been used in the analytical scale production of a
chiral constituent of civet (a perfume additive) [321] and of an insect pheromone [322]. Its
potential value for other syntheses has also been examined [323]. Thermophilic 2° ADHs
have high temperature optima (80 to 95°C), high thermostability, and reduced sensitivity to
oxygen (they are only reversibly inactivated, unlike 1°ADHs) [8]. The extent of T. brockii
2°ADH stability in the presence of organic solvent is still controversial. In the original
1981 study [323] the enzyme remained 80% active after 15 min at 52°C in the presence of
40% propanol-2, whereas it was reviewed by Cowan [59] to rapidly inactivate at
temperatures above 45°C and in the presence of 10% organic solvent. T. brockii enzyme
catalysis was determined in vitro in supercritical CO; indicating that it is active in
nonaqueous conditions under high pressure [324]. The T. brockii enzyme was also active
toward both highly water soluble ketones and substrates with low water-solubility in a

range of water-oil emulsions containing either cationic or neutral surfactants [325]. A
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range of potential chiral transformations has already been demonstrated for ADHs. 2°

ADHs, optimized to interconvert ketones and 2° alcohols, are better suited to the production
of chiral alcohols that 1° ADHs, optimized to interconvert aldehydes and 1° alcohols.
Therefore, continued research into the molecular mechanisms responsible for 2° ADH
thermostability, thermophilicity, and substrate specificity will advance our understanding of
these general enzyme properties specifically using an enzyme with potential as an industrial
chiral catalyst.

The research objectives presented in this thesis advances knowledge on
thermophilic 2° ADH 2° ADH structure-function relationships in 5 ways. First, cloning and
characterizing the gene encoding the T. ethanolicus 39E 2° ADH will make mutagenic
analysis of thermophilic 2° ADH structure-function relationships possible. Second, stable
overexpression of the properly active recombinant thermophilic 2° ADH in E. coli will
provide sufficient quantities of easily purified protein for structural analysis. Third,
characterization of enzyme thermostability and thermophilicity will allow sequence
comparisons between this thermophilic enzyme and the similar mesophilic enzyme from C.
beijerinckii for identification of 2° ADH thermal property molecular determinants. Fourth,
site directed mutagenesis and biophysical analysis will test the predictions of 2° ADH
catalytic architecture based on comparison to those documented for 1° ADHs. Finally, the
biochemical mechanism of thermoinactivation and the forces stabilizing active the T.

ethanolicus 2° ADH structure will be elucidated.
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