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ABSTRACT

ESSAYS ON HETEROGENEITY IN ECONOMETRIC MODELS

By

Shengwu Shang

The dissertation consists of three parts and the theme is to deal with heterogeneity in

econometrics models for positive response variables. The first part studies the models with

multiplicative heterogeneity for cross sectional data; the multiplicative heterogeneity can

be transformed from the log linear model with additive heterogeneity. We introduce the

notion of Average Partial Effect (APE) and Conditional APE (CAPE); the estimators and

their asymptotic distribution are proposed. In order to catch the positivity of the unknown

conditional expectation function of the unobserved heterogeneity, we borrow the idea of

power series approximation of unknown function in Newey (1993, 1994) and develop an

“exponential sieves” estimator for CAPE suggested in Wooldridge (1992a).

The second part of the dissertation pertains to extending results for CAPE in chapter 1

for panel data sets. First, Using the models in Wooldridge (1999), We compare three main

estimation methods for positive response variable– FE method for log linear model (LFE),

Poisson Quasi-Maximum Likelihood (PQML) and Generalized Method of Moment (GMM)

– by Monte Carlo Simulation and real life data set. It is not surprising that LFE estimator

is not consistent when PQML is; however, we do find circumstance where both LFE and

PQML estimators are consistent plus LFE is more efficient. With this regard, we introduce

GMM to improve the efficiency of PQML estimator as well as keeping the consistency; this

way also finds a solution to the problem raised in Wooldridge (1999). From the simulation

results, we find that GMM can reduce the standard error of PQML estimator by almost

a half. Second, an “exponential sieves” estimator for CAPE is proposed under panel data

setting; the result automatically extends the results in Ai and Norton (2008) from cross

sectional setting to panel data models. Third, We also apply the GMM to a US domestic



airlines data set and the result shows that GMM improves the efficiency by 10% compared

with PQML.

The third part investigates the effect of spatial correlation for fractional response variable.

By a MEAP data of Michigan in 2009/2010 school year, we investigate again the effect of

school financing reform on school performance which is studied by Papke (2005, 2008), Pake

and Wooldridge (2008); we use both level math test pass rate (linear case)and its log odds

ratio (nonlinear) as dependent variable to run OLS and GLS regression; Conley (1999)’s

spatial dependence corrected standard errors are calculated and find that the statistical

significance for some regressors hinges on the choice of cut off points ; however there do exist

other factors whose statistical significance is robust to the choice. This way we shed some

light on how to pick the right window size. Moreover, by transforming LOR back to level

rate, we find the spending effect estimated from linear model is about 4 ∼ 6% higher than

from nonlinear one.
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Chapter 1

ON ESTIMATING PARTIAL EFFECTS AFTER RETRANSFORMATION

1.1 Introduction

Strictly positive response variables are very common in economics and other social sciences.

Just a few examples include prices, populations, and firm sales. If Y > 0 is the response

that we would like to explain, the most common approach for modeling Y is to use a linear

model for its natural log, log(Y ), and then estimate the linear model using an appropriate

technique – usually ordinary least squares (OLS) or instrumental variables (IV).

There are at least two reasons modeling log(Y ) may not be sufficient. First, one might

wish to predict Y , not log(Y ). When the prediction of Y is based on its expected value

conditional on a vector of covariates – say, X – in general there is no way to recover E(Y |X)

from E[log(Y )|X]. The difficulty in predicting Y given a model for log(Y ) has long been

recognized, and solutions are available under varying levels of assumptions. Duan (1983)

covers the case where an additive error in the model for log(Y ) is assumed independent of

X, and this method is covered even in some introductory econometrics texts [for example,

Wooldridge (2009, Chapter 6)]. Under distributional assumptions, such as assuming Y given

X follows a lognormal distribution, parametric heteroskedasticity in Var[log(Y )|X] is easily

allowed.

More recently, Ai and Norton (2008) provide a semiparametric approach that produces

consistent predictions under weak assumptions, although the approach they use allows the

possibility that predictions of Y can be negative. Wooldridge (1992) proposes direct esti-

mation of E(Y |X) via quasi-likelihood methods using flexible functional forms that ensure

nonnegative predictions. Of course, nonparametric methods, of the type covered in Li and

Racine (2007), can be used, too.
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Related to the prediction issue is the calculation of partial effects. Wooldridge (1992)

makes a case for basing partial effects on E(Y |X) (in cases where the elements of X are

appropriately “exogenous”). Such an approach underlies the work by Ai and Norton (2008),

who begin with a linear model for log(Y ) but then employ nonparametric methods to re-

cover an estimate E(Y |X) – without placing further restrictions on D(Y |X), the conditional

distribution of Y given X. But basing partial effects on E(Y |X) (or even some other feature

of the conditional distribution, such as the median) is not the only possibility. Lately, the

notion of an average partial effect (APE) has become important in applied econometrics;

see, for example, Wooldridge (2005, 2010). The APE is closely tied to Blundell and Powell’s

(2003) average structural function (ASF), which is defined by averaging out unobservables

from a “structural” model. One potentially important implication of the ASF approach has

largely gone unnoticed: the ASF approach can provide very different partial effects than

that based on E(Y |X). A heteroskedastic probit example is provided by Wooldridge (2005):

the partial effects based on E(Y |X) = P (Y = 1|X) and those based on the ASF need not

even have the same sign, let alone similar magnitudes.

One reason the APE/ASF concept is appealing is because it can be easily applied to

cases where explanatory variables should be treated as endogenous. Consequently, the focus

on the ASF has led to a widely applicable class of control function estimators in nonlinear

models – see Blundell and Powell (2003, 2004). Further, in a broad class of models, the sign

of an APE and an underlying parameter on the covariate of interest are the same. In this

paper we highlight another useful feature of the APE approach: it provides justification for

Duan-type retransformation estimators even when Duan’s key assumption – independence

between the underlying error U and the covariates X – is violated.

We also consider the notion of a “conditional” average partial effect (CAPE) (for ex-

ample, Wooldridge, 2004, 2005), which is considered more generally as the “local average

response” in Altonji and Matzkin (2005). Interestingly, general consideration of CAPEs

leads to essentially the same estimation problem described in Ai and Norton (2008), except

2



that our approach here allows for endogenous explanatory variables. Plus, when on restricts

the nature of the condititioning set, then simple strategies are available that do not require

complicated nonparametric estimation.

After presenting the model and definitions of partial effects in Section 2, Section 3 dis-

cusses estimation of APEs – which, in the current seeting, turns out to be nothing more

than extending Duan’s (1983) “smearing” estimate to more general settings. We consider

the estimation of CAPEs in Section 4, and Section 5 contains a brief conclusion. Technical

derivations are contained in an appendix.

1.2 The Model and Partial Effects

The setup we consider is a standard linear model with log(Y ) as the dependent variable.

Initially assume that, in the population,

log(Y ) = Xβ + U (1.2.1)

E(U |X) = 0, (1.2.2)

where X is a 1 × K vector of covariates with first element X unity. We could consider

nonlinear regression functions in place of Xβ, but retransformation methods are almost

always applied when the transformed variable follows a linear-in-parameters model. As in

Duan (1983), we could also consider other strictly monotonic transformations of Y but the

natural logarithm is by far the most popular.

Given equation (1.2.1), we can write

Y = exp(Xβ + U) = exp(Xβ) exp(U). (1.2.3)

Following the discussion in the introduction, we base the partial effects of interest on this

equation because we are interested in how the Xj affect Y , not log(Y ).
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Ai and Norton (2008) focus on the conditional mean E(Y |X), which can be written

generally as

E(Y |X) = exp(Xβ)E[exp(U)|X] ≡ exp(Xβ)r(X) (1.2.4)

where r(X) ≡ E[exp(U)|X]. If Xj is a continuous variable then the partial effect on µ(x) ≡

E(Y |X = x) is

∂µ(x)

∂xj
=
∂E(Y |X = x)

∂xj
= βj exp(xβ)r(x) + exp(xβ)

∂r(x)

∂xj
. (1.2.5)

To estimate this partial effect we need to estimate r(·) in addition to β – the problem

considered by Ai and Norton (2008). We reconsider this problem from a different perspective

in Section 4.

Equation (1.2.5) clearly shows that the partial effect of xj on E(Y |X = x) need not even

have the same sign as βj , and the magnitude of the partial effect can depend on r(·) in a rather

complicated way. In the special case E[exp(U)|X] = exp(Xδ), E(Y |X) = exp[X(β + δ)],

and so the partial effects of xj on E(Y |X = x) is the same sign as βj + δj .

There is another definition of partial effects that is easier to summarize and, as it turns

out, also easier to estimate. Following Blundell and Powell (2003), the average structural

function (ASF) is defined as

ASF (x) = E[exp(xβ) exp(U)] = exp(xβ)E[exp(U)] ≡ η exp(xβ), (1.2.6)

where

η ≡ E[exp(U)].

The definition of the ASF is related to the notion of a “Marshallian structural function”

defined in Heckman (2001). In defining the ASF it is important to see that the covariates

are held fixed at specified values, with U averaged out. Once the ASF is obtained, we can see
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how this function changes as the xj change. As discussed in Wooldridge (2005), the ASF is

closely tied to the notion of an average partial effect (APE). From (1.2.3), the partial effect

of Xj on Y is

∂Y

∂Xj
= βj exp(Xβ) exp(U).

To get the APE we average U out of the partial effect for given covariate values x. In other

words, the APE at x is

APEj(x) = E
[
βj exp(xβ) exp(U)

]
= η[βj exp(xβ)],

and this is easily seen to be the partial derivative of the ASF. A similar argument works if

we use discrete changes in xj rather than a calculus approximation.

An attractive feature of the ASF is that its definition does not require us to take a stand

on possible dependence between U and X. The definition is unchanged even if U and X are

correlated. When U and X are independent, µ(x) = ASF (x), but generally these quantities

differ when D(U |X) depends on X – even if X is exogenous in the sense of assumption

(1.2.2). The potential difference between average partial effects and partial effects based

on E(Y |X = x) has been pointed out by Wooldridge (2005), who uses a probit model with

heteroskedasticity to illustrate that when U and X are not independent, the APEs and partial

effects based on E(Y |X) will be different – perhaps very different. Unfortunately, it does

not seem possible to resolve the issue of how one should compute partial effects. The choice

between E(Y |X = x) and ASF (x) is essentially one of preference. The main contribution

of the current paper is to show that it is easy to estimate the ASF in the retransformation

context without taking a stand on D(U |X).

One shortcoming with APEs is that the heterogeneity is averaged across the entire pop-

ulation whereas the covariates are set at specific values. Altonji and Matzkin (2005) argue

that finding partial effects conditional on specific outcomes x is generally more useful – what
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they call a “local average response” (LAR). Wooldridge (2005) also discusses partial effects

average over a subset of the population, based on observable characteristics.

As a general statement, suppose

Y = g(X, U),

so that, for a continuous covariate, the partial effect at X = x is ∂g(x, U)/∂xj . Now suppose

we wish to compute the expected value of this partial effect not across the entire distribution

of U , but for the subset of the population with X = x. Then we can define a conditional

average partial effect (CAPE) as

CAPEj(x) = E

[
∂g(x, U)

∂xj

∣∣∣∣X = x

]
In the exponential case, the CAPE can be expressed as

CAPEj(x) = βj exp(xβ)E[exp(U)|X = x]

≡ βj exp(xβ)r(x)

Note that this is different than basing partial effects on E(Y |X = x), yet we need to estimate

the same function, r(x). From an interpretation standpoint CAPE has the convenient feature

that it is the same sign as βj ; we simply need to compute the scale factor, r(x), that multiplies

βj exp(xβ). The function APEj(x) replaces r(x) with the mean value η = E[r(X)] =

E[exp(U)].

As with the APE, the CAPE makes sense even if X includes endogenous elements. In

fact, the CAPE includes as a special case average treatment effects for various subpopulations

when treatment assignment is endogenous. (With binary treatments we would use changes,

not derivatives.)
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1.3 Estimating the APEs

The expression for ASF (x) makes it clear that a
√
N -consistent estimator of ASF (x) is

available if
√
N -consistent estimators of β and η are available. By contrast, the dependence

of µ(x) on the nonparametric function r(x) means that partial effects based on E(Y |X = x)

are not generally estimable at the
√
N -rate (because nonparametric rates of convergence

are slower – often much slower – than
√
N). Thus, we can estimate the ASF much more

precisely than E(Y |X = x).

Because µ(x) and ASF (x) both depend on β, we first need to consistently estimate β. It

is very common to use OLS as the estimator of β, even though it may not be asymptotically

efficient under E(U |X) = 0. (For example, a weighted least squares estimator that attempts

to exploit nonconstant Var(U |X) could be more efficient.)

As is well known, the assumption E(U |X) = 0 does not substantively restrict r(x) ≡

E[exp(U)|X = x]: it can be virtually any positive function of x. Of course, if we suitably

restrict D(U |X) then we can usually find r(x). A useful assumption is that U and X are

independent, a case considered by Duan (1983); see also Wooldridge (2009, Section 6.4).

Then

r(X) = E[exp(U)|X] = E[exp(U)] = η, (1.3.1)

and it follows that

E(Y |X = x) = η exp(xβ) = ASF (x). (1.3.2)

[If we specify the distribution of U , then we can sometimes write η in terms of higher moments

of U . For example, if U ∼ Normal(0, σ2) then η = exp(σ2/2); see Wooldridge (2009, Section

6.4).]

In the case considered by Duan (1983) – where U and X are assumed to be independent

– estimation of η is straightforward. First, by the law of large numbers,
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N−1
N∑
i=1

exp(Ui)
p→ η. (1.3.3)

The average is not an estimator because we do not observe the Ui. Instead, given a random

sample {(Xi, Yi) : i = 1, ..., N}, obtain β̂ from the OLS regression

log(Yi) on Xi, i = 1, ..., N (1.3.4)

and then let Ûi = log(Yi) −Xiβ̂ be the OLS residuals. Because β̂
p→ β it is not suprising

that

η̂ = N−1
N∑
i=1

exp(Ûi) (1.3.5)

is generally consistent for η. Wooldridge (2010, Lemma 12.1) contains a general result that

implies consistency under weak regularity conditions. Because U and X are independent,

we estimate µ(x) and ASF (x) in exactly the same way:

µ̂(x) = η̂ exp(xβ̂) = ÂSF (x). (1.3.6)

Wooldridge (2010, Problem 12.17) can be used to show
√
N(η̂ − η) has a limiting normal

distribution and to find its asymptotic variance. Below we consider the problem of estimating

the joint asymptotic variance under very weak assumptions.

For estimating the ASF, there is an important point about Duan’s estimator in (1.3.6):

it is a consistent estimator of η = E[exp(U)] even when U and X are dependent. In fact,

the most we need to assume is

E(X′U) = 0 (1.3.7)

as this is sufficient for OLS to consistently estimate β. Duan (1983) was interested in recov-

ering E(Y |X), which is why he assumed independence between U and X; see also Abrevaya
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(2002), who obtained the asymptotic variance of the predictions under the assumption of in-

dependence. But when we view Duan’s estimator as estimating the scale factor that appears

in the ASF, the estimator is generally consistent provided β̂ is consistent for β. In settings

where we intend X to be exogenous in (1.2.1), it suffices to assume (1.3.7) – in which case

the OLS estimator from (1.3.3) is consistent but not necessarily unbiased.

In Section 2 we mentioned how the definition of the ASF is unchanged regardless of

dependence between U and X. As can be seen from equation (1.2.6), we consistently esimate

ASF (x) = η exp(xβ) provided we have consistent estimators of η and β, and (1.3.5) shows

we just need a consistent estimator of β to consisently estimate η. Having some elements of

X endogenous in (1.2.1) in the sense that Cov(X, U) 6= 0 causes no problems for estimating

ASF (x) provided we have suitable instrumental variables. In particular, suppose we have a

1× L vector satisfying

E(Z′U) = 0

rank E(Z′X) = K (1.3.8)

rank E(Z′Z) = L

Under these assumptions, the 2SLS estimator (as well as other generalized method of mo-

ments estimators) is consistent for β; see, for example, Wooldridge (2010, Chapter 5). Then,

we can let β̂ be the 2SLS estimator from

log(Yi) = Xiβ + Ui (1.3.9)

using IVs Zi. The Ûi are now the 2SLS residuals, and η̂ is still computed from (1.3.5).

Notice that it would be meaningless in this context to base partial effects on E(Y |X) or

E(Y |X,Z), whereas the ASF can have a causal interpretation. We summarize the above as

the following theorem.

Theorem 1.3.1. As assumptions in equation (1.3.8) and Cov(X, U) 6= 0, β̂ be the 2SLS
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estimator from equation (1.3.9) using IVs Zi and η̂ is defined in equation (1.3.5), then

√
N

β̂ − β
η̂ − η

 d→ N(0,Ω)

Where Ω ≡ E

Si

Qi

 ∗ (S′i Q′i

)

PROOF: See the appendix.

1.4 Estimating Conditional APEs

Estimation of CAPEs is more difficult due to the need to estimate the function r(x), which is

the same problem faced by Ai and Norton (2008). The motivation for their general approach

is straightforward. If we could observe the Ui then we could use nonparametric regression

of exp(Ui) on Xi. Because we do not know β we replace Ui with the OLS residuals Ûi and

use exp(Ûi) as the dependent variable in a nonparametric regression.

Because of technical complications, Ai and Norton propose linear series estimation, where

exp(Ûi) is regressed on various functions of Xi. As in all nonparametric contexts, the rate

of convergence of r̂(·) to r(·) is slower than
√
N , and much slower when the dimension of X

is large. See Ai and Norton (2008) for details.

From equation (1.2.4), we have:

r(x) ≡ E

(
Y

exp(Xβ)

∣∣∣∣X = x

)
(1.4.1)

From now on, the focus is how to estimate r(x). In the literature, we do have at

least two ways to estimate r(x): one way is the traditional parametric method; we as-

sume r(x) = g(xα), where g(.) is a real function satisfying certain conditions. The remained

work is to estimate the parameter α. If we assume g(.) is a linear function of xα, α can

be estimated by the classic ordinary least square; if g(.) is nonlinear, then nonlinear least
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r(x)

r∗(x) r̂(x)

111

2

3

Figure 1.1: Picture of Sieve Estimator: For interpretation of the references to color in this
and all other figures, the reader is referred to the electronic version of this dissertation.

squared can be applied. Details can be referred to Wooldridge (2010). The other way is

noparametric method which does not impose any parametric assumptions on r(x). As for

the comparison of those two methods, refer to a recent paper by Ackerberg et al. (2011).

Here the nonparametric assumption is used, and we will propose a sieve estimator for r(x);

the idea of sieves can be vividly explained by the above picture Figure1.1.

In Figure1.1, r(x) is unknown and is our target, we approximate it with r∗(x); we know

more terms, the number of which is denoted as M , can lead to more close approximations.

However,with more terms to approximate, the estimating bias from r(x) to r̂(x) is increasing.

The triangle picture shows that we need to choose a balanced M . This can also be seen from

the order of the mean square error in theorem 2. Theoretically, as long as r(x) is smooth

enough, we can always find a reasonable M . Newey (1994) and Ai and Norton (2008) suggest

a sample based method to decide M -cross validation.

Note that r(x) > 0, we cannot guarantee it if we follow the method in Ai and Norton

(2008). At the end of his paper, Wooldridge (1992a) suggests “exponential sieves”to replace

linear ones to span the unknown space composed of positive functions. Similarly, Hirano

et al.(2003) propose a “logit series” estimator for the probability distribution functions.

Inspired by previous work, we develop an “exponential sieve” estimator.
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Let ‖B‖ = [trace(B′B)]1/2 be the Euclidian norm of a matrix B; ζ(M) = sup
x∈Ξ
‖GM (x)‖;

the power series GM (x) we use here are the same as in Hirano et al (2003).First, we list

some assumptions:

Assumption 1: (Y1,X1), . . . , (YN ,XN ) are i.i.d and Var(Y |X) is bounded and bounded

away from zero; Var
(

Y
exp(Xβ)

− r(X)
)4

is bounded.

Assumption 2:(i) the smallest eigenvalue of E[GM (X)′GM (X)] is bounded away from

zero uniformly inM ;(ii) there is a sequence of constants ζ(M) andM(N) such that ζ(M)2M/N −→

0 as N −→∞

These assumptions are as usual as in the literature; since we use power series here,ζ0(M) =

CM , later on we use this equivalence lots of times in the derivation.

Assumption 3: If f : RK −→ R is s times continuously differentiable and gM (x) =

[1,x, ...,xn]′,M = (n + 1), Note that gM (x) has powers in x at least up to n; there is a

M-vector γM such that for GM (x) = AMgM (x), and on the compact set Ξ ⊆ RK ,

sup
x∈Ξ

∣∣∣f(x)−GM (x)γM

∣∣∣ < C1n
−s ≤ C2M

−s, (1.4.2)

This assumption is used as a fact in Hirano et al (2003), while Newey (1997) puts it as

assumption. To ensure that the approximation of r(x) is positive, we first approximate the

log of r(x):

sup
x∈Ξ

∣∣∣log(r(x))−GM (x)πM

∣∣∣ < CM−s, (1.4.3)

So the exponential sieves estimator of r(x) is r̂(x) = exp(GM (x)π̂M ), where M is fixed

and

π̂M = arg min
π

N∑
i=1

(
Yi

exp(Xiβ̂)
− exp(GM (Xi)π)

)2

(1.4.4)

For N −→∞, we have ‖π̂M − π∗M‖
p−→ 0, where

π∗M = arg min
π

E

(
Yi

exp(Xiβ)
− exp(GM (Xi)π)

)2

(1.4.5)
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Lemma 1: Suppose that:

1. the support Ξ of x is a compact set of RK

2. r(x) is s times continuously differentiable, that is, r(x) ∈ Cs,with s ≥ 4

3. r(x) is bounded away from zero

4. the density of X is bounded away from zero on Ξ

Then: ∣∣r(x)− exp(GM (x)π∗M )
∣∣ = O(CM−s),

PROOF: See appendix.

Lemma 1 is corresponding to the step 1 in the picture; as long as the M is large enough,

the deviation term will vanish. With a higher M , the converge rate is faster.

Lemma 2: Suppose that same four conditions as in Lemma 1 hold. In addition, suppose

that: (5) M(N) is a sequence of values of M satisfying M(N)→∞, and ζ(M(N))4/N → 0.

Then

‖π̂M(N) − π
∗
M(N)‖ = Op

(√
M(N)

N

)
PROOF: See appendix.

Theorem 1.4.1. Given all the assumptions in Lemma 1 and 2, then

∫
[r(x)− r̂(x)]2dF (x) = O(M/N +M−2s)
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PROOF: Note that,∫
[r(x)− r̂(x)]2dF (x)

=

∫
[r(x)− exp(GM (xi)π

∗
M ) + exp(GM (xi)π

∗
M )− exp(GM (xi)π̂M )]2dF (x)

≤
∫

[r(x)− exp(GM (xi)π
∗
M )]2 + [exp(GM (xi)π

∗
M )− exp(GM (xi)π̂M )]2dF (x)

= O(M/N +M−2s)

The last equality follows from Lemma 1 and 2. From this theorem, we can see the two

steps in the picture and the tradeoff of increase the M

Let

ΣM ≡ E[GM (Xi)
′GM (Xi)

(
Yi

exp(Xiβ)
− r(Xi)

)2

exp(2GM (Xi)π
∗
M )],

QM ≡ E[GM (Xi)
′GM (Xi) exp(2GM (Xi)π

∗
M )],

VM (x) ≡ GM (x)Q−1
M ΣMQ−1

M (x)GM (x)′ exp(2GM (x)π∗M ).

Lemma 3: Suppose that the same four conditions as in Lemma 1 hold, then

√
NV

−1/2
M (x)

(
r̂(x)− r(x)

)
d→ N(0, 1) (1.4.6)

Note that V
−1/2
M (x) ≤ O(M−1/2), so this result gives an upper bound Op((M/N)1/2)

converge rate, which is lower than Op((1/N)1/2); Ai and Norton (2008) find the similar result

for linear case. This result also coincides many other results in semi/no parametric literature.

The structure of the APE estimator is interesting: it is a scale factor times the estimator

of the parameter of interest. The ideal is originally from the so-called average structure

function in Blundell and Powell (1994), and Papke and Wooldridge (2008) advance further

to estimate APE of parameter of interest in a panel data probit model with and without
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endogenous explanatory variables.

From section 2, the CAPE can be expressed as

CAPEj(x) = βj exp(xβ)E[exp(U)|X = x]

≡ βj exp(xβ)r(x)

So the estimator of CAPE follows as :

̂CAPEj(x) = β̂j exp(xβ̂)r̂(x) = β̂j exp(xβ̂) exp(GM (x)π̂M )

Theorem 1.4.2. Given N (1/2)M−(s+1) → 0 as N →∞ and βj 6= 0, Assumptions 1-3 and

all the assumptions in Lemma 1 and 2, then

√
NV

−1/2
M (x)

(
̂CAPEj(x)− CAPEj(x)

)
d→ N(0, V )

Where V = β2
j exp(2xβ)

PROOF: See appendix.

Note that, theorem 3 requires that at least one element of β is not zero: if β is zero

completely, the model does not make any practical use; but it is possible that some elements

of β are zero. If there is some element in β is zero, without loss of generality, let’s put it as

βj=0, then:

Corollary: Given all the assumptions in theorem 3 except βj=0, then

√
N
(

̂CAPEj(x)− CAPEj(x)
)

d→ N(0,W )

Where CAPEj(x) ≡ βj exp(xβ)r(x); as for the detailed form of W , refer to proof in ap-

pendix.

PROOF: See appendix.
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This is an interesting result: if some element of β is zero, then the estimator for the

corresponding CAPE is
√
N consistent, which is faster than the rates of other CAPEs of

nozero β. From theorem 3, we can see that under
√
NV

−1/2
M (x), ̂CAPEj(x) degenerates to

zero when βj = 0; so it is not surprising that we need faster rate to get a non-degenerating

asymptotic distribution. There are several such examples in Ferguson (1996), e.g., refer to

example 3 in Chapter 7; also, theorem 5.4 in Lee (2004).

1.5 Application to Treatment Effects

As an example of where we might want to apply retransformation after IV estimation,

consider the modern treatment effect literature. Let D denote a binary treatment and

denote the strictly positive countfactual outcomes as Y (0) and Y (1). We observe D and

Y = (1−D)Y (0) +DY (1).

Assume we have covariates W such that

Y (0) = exp(α0 + Wβ0 + U)

Y (1) = exp(α1 + Wβ1 + U)

where, for simplicity, we assume only one source of heterogeneity, U , and E(U) = 0. Also,

assume that U and W are independent. then the average treatment effect, as a function of

w, defined by

τate(w) = E[Y (1)− Y (0)|W = w],

is easily seen to be

τate(w) = η[exp(α1 + wβ1)− exp(α0 + wβ0)]
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where η = E[exp(U)]. Furthermore, in terms of the observed outcome Y , τate(w) can be

written in terms of its ASF, ASF (d,w). To see how, write

Y = Y (0)(1−D)Y (1)D

and so

Y = exp(α0 + γD + Wβ0 +D ·Wδ + U),

where γ = α1 − α0 and δ = β1 − β0. So the ASF for Y is

ASF (d,w) = exp(α0 + γd+ wβ0 + d ·wδ)E[exp(U)]

= η exp(α0 + γd+ wβ0 + d ·wδ)

If we evaluate the ASF at d = 1 and d = 0 and difference we get

ASF (1,w)− ASF (0,w) = η[exp(α0 + γ + wβ0 + wδ)− exp(α0 + wβ0)]

= η[exp(α1 + wβ1)− exp(α0 + wβ0)]

= τate(w)

We can now apply a simple 2SLS strategy if we assume

E(U |Z) = 0

for IVs Z that include W and at least one element not in W that predicts treatment status,

D. Write

log(Yi) = α0 + γDi + Wiβ0 +Di ·Wiδ + Ui

and use instruments, say, (1,Zi,Zi⊗Wi), or one can be selective with the interactions. Or,

as described by Wooldridge (2010, Chapter 21), probit or logit fitted values can be used as

IVs, in which case the list would look like
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(1, Ĝi,Wi, Ĝi ·Wi),

where the Ĝi are the fitted probabilities from a binary response model of Di on Zi.

Given the 2SLS residuals Ûi we compute η̂ exactly as in equation (1.3.5), and then the

estimated ASF is

ÂSF (d,w) = η̂ exp(α̂0 + γ̂d+ wβ̂0 + d ·wδ̂)

For any w we estimate τ̂ate(w) = ÂSF (1,w) − ÂSF (0,w), and the unconditional average

treatment effect, τate = E[Y (1)− Y (0)], is consistently estimated as

τ̂ate = N−1
N∑
i=1

[ÂSF (1,Wi)− ÂSF (0,Wi)]

= N−1
N∑
i=1

η̂[exp(α̂1 + Wiβ̂1)− exp(α̂0 + Wiβ̂0)]

The average treatment effect on the treated is

τatt(w) = E[Y (1)− Y (0)|D = 1,W = w]

= [exp(α1 + wβ1)− exp(α0 + wβ0)]E[exp(U)|D = 1,W = w]

≡ [exp(α1 + wβ1)− exp(α0 + wβ0)]r(1,w),

where

r(d,w) = E[exp(U)|D = d,W = w].

Now we use nonparametrics of exp(Ûi) on Wi for Di = 1.

τ̂att(w) = [exp(α̂1 + wβ̂1)− exp(α̂0 + wβ̂0)]r̂(1,w)

Often reported is
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τatt = E[Y (1)− Y (0)|D = 1]

and a consistent estimator is

N−1
1

N∑
i=1

Di[exp(α̂1 + Wiβ̂1)− exp(α̂0 + Wiβ̂0)]r̂(1,Wi).

1.6 Concluding Remarks

We have shown that a common retransformation method due to Duan (1983) can be used

generally to estimate the parameters in the average structural function under weak assump-

tions on the dependence between the error and the covariates. In a standard regression

setting, even a zero correlation assumption suffices. Further, the method easily applies when

instrumental variables are needed to consistently estimate the coefficients in the log-linear

model.

Our derivation of the joint asymptotic distribution of the parameters indexing the ASF

holds under weak assumptions – much weaker than the independence assumption used in

the standard Duan (1983) setting where errors and explanatory variables are independent.

In the case where X does not contain what we traditionally think of as endogenous

variables – so that the dependence of D(U |X) comes through moments other than E(U |X)

– one might question whether partial effects defined through the ASF are more useful than

those obtained from E(Y |X = x). After all, for prediction purposes we prefer E(Y |X = x)

to ASF (x) because the former is the minimum mean square predictor of Y . But if we are

interested in getting the best predictor of Y then we might just model E(Y |X) – such as

a flexible exponential function – and estimate it directly. Of course, we would get partial

effects directly, too.

We also considered estimation of conditional APEs, which generally differ from the APEs

when U and X are dependent (even though they may be mean independent). Here, we are
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led to an estimation problem essentially the same as Ai and Norton (2008). However, the

calculation of partial effects differs, and the CAPEs have the same signs is the coefficients

on the log-linear model. Some of this extends immediately to other transformations, such

as log[Y/(1− Y )] when 0 < Y < 1. More work is needed in treatment effect examples with

more than one unobservable. Heckman switching regression. “Simple” solution is to make

distributional assumptions.
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Chapter 2

ON THE USE OF EXPONENTIAL VERSUS LOG-LINEAR MODELS FOR
PANEL DATA

2.1 Introduction

As we all know, more and more data are collected over time for the same cross section units

with the advance of technology; a big chunk of them are to deal with positive response

variables, just name a few, the observed wage rate for workers over 5 years, number of

patents applied for the firms in the last several years and etc. The immediate extension

of the results in chapter one to the panel data setting would be that model the logarithm

transformation of positive response variable in linear functional form of covariates still and

assume, at a minimum, the error in each time period was assumed to be uncorrelated with

the explanatory variables in the same time period. Basically, we just stack the observations

of all time periods for each cross section unit and repeat the analysis in chapter one again; as

we can see, everything just follows with a bigger sample size in terms of application. However,

we know that assumption is too strong for certain panel data applications.In fact, a primary

motivation for using panel data is to solve the omitted variables problem, and error terms in

each time period are hardly uncorrelated most of the time. So a more interesting extension

would be modeling logarithm transformation of positive response variable in a “modern”

panel data setting, which explicitly contain a time-constant unobserved effect and treat

it as random variable, drawn from the population along with the observed explained and

explanatory variables. We can refer to the “linear panel data model (LPD)” in Wooldridge

(2010) for more details.

While, the problem of modeling the logarithm transformation of positive response variable

in a LPD still exists and it can become even much worse because that unobserved time

invariant heterogeneity can either cause sever correlation among the error terms, or itself
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is correlated with covariates; even with it removed as in the standard Fixed Effect (FE)

transformation, the problem can hardly be solved. For example, Blackbrun (2007) compares

Poisson Quasi-Maximum Likelihood (PQML) method to wage equation and first difference

to log wage equation; he finds that the latter overestimates the union coverage effect on

wage by almost 14% using panel data of 1989 and 1993 NLSY. We will also see this from

an analysis of a data set about the American domestic airline market from year 1997 to

2000. The results of usual FE method estimation are in Table B.1. Based on the results, we

would say the price elasticity of demand of the market is over one in magnitude. We know

this number is way too big and does not make any sense intuitively. For example, Park et.

al.(2007) finds that most city pairs airline routes for 12 main US carriers are inelastic in short

run. We will say more about it in the application section. This prompts our question of the

estimation method itself. Considering the retransformation problem we have done in chapter

1, it is natural to ask the question: Why should we use the logarithmic transformation of

the response variables instead of modeling them directly?

Several attempts are made in the literature. Most of the work uses nonlinear panel data

models and relies on the method of conditional maximum likelihood (CML) , where a suf-

ficient statistic (the sum of the explained variable across time) is conditioned on to remove

the unobserved effect. Examples include Chamberlain (1980, 1984) for binary responses and

Hausman et al.(1984) for count data. Wooldridge (1999) investigates robustness proper-

ties of these CMLEs to misspecification of the initially specified joint distribution and has

shown CMLEs to be consistent when only the conditional mean in the unobserved effects

multiplicative panel data model is correctly specified, which means that the consistency is

robust to arbitrary patterns of serial correlation. Moreover, the results hold not only for

binary or count variables, but also for any nonnegative variables. So it is not surprising

that the estimation method is widely used in empirical applications, especially after Sim-

coe (2008) writes a STATA code titled “xtpqml ”1. It sheds new light on how to estimate

1the code is updated to xtpoisson in STATA12
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the conditional mean parameters consistently for positive response variable without taking

logarithmic transformation in panel data models.

So, this chapter starts with Wooldridge (1999). First, we maintain the conditional mean

specification condition (equation (3.1) in Wooldridge (1999)) and show what consequence

of logarithm transformation can cause for the usual FE estimation in LPM by Mont Carlo

simulation; Second, we extend the “exponential sieve” estimator in chapter 1 to the panel

data model- estimate the average partial effect (APE) of the respective interesting explana-

tory variables; Third, we use “exponential sieve” estimator to construct the optimal IV as

in Newey (1993, 1994) to improve the the efficiency for the GMM estimator suggested in

Wooldridge (1999). Section 2 introduces model; under which the simulations are constructed

to compare PQML and LFE estimators in section 3. A “exponential sieve” estimator of APE

in the panel data model is formulated in section 4 .Section 5 discusses the GMM method

for models with conditional mean and variance functions specified. The GMM can be un-

derstood as double PQML: one is for original scale of dependent variable; the other is for

squared scale. We also propose the optimal instrument variables (OIV) estimator used in

Newey (1993, 1994). An empirical application to airfare data is provided in section 6, and

some remarks are contained in section 7.

2.2 Model 1

The model we are considering is the following:

Yit = exp(Xitβ)CiVit, (2.2.1)

where Ci is the unobserved heterogeneity and Vit is the multiplicative idiosyncratic error

term; we assume both Ci and Vit are positive. The immediate question is how to estimate

β. It is tempting to take log transformation for both sides of equation (2.2.1):

log(Yit) = Xitβ + log(Ci) + log(Vit), (2.2.2)
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This is typical linear panel data model as in Wooldridge (2010) if the relevant assumptions

are made. Justifications for this log transformation include to deal with a dependent variable

badly skewed to the right, and to interpret β as semi elasticity of Y with respect to X, for

example in Manning (1998), Ai and Norton (2000). As suggested in Wooldridge (2010), it

is natural to do the usual FE transformation to remove the heterogeneity:

¨log(Yit) = Ẍitβ + ¨log(Vit), (2.2.3)

Where, Ẍit = Xit − T−1∑T
t=1 Xit, similarly for ¨log(Yit) and ¨log(Vit). So pooled ordinary

least square can be used to estimate β, which is exactly the FE method in Wooldridge

(2010); we denote this method as LFE. Whether LFE is consistent or not depends on the

assumptions, one of which is that Ẍit and ¨log(Vit) are uncorrelated. Instead, we assume:

E(Vit|Xi, Ci) = 1, (2.2.4)

Note that, we can easily get:

E(Yit|Xi, Ci) = exp(Xitβ + log(Ci)), (2.2.5)

So the correct conditional mean specification condition as in Wooldridge (1999) is satisfied;

We can use Poission Qausi Maximum Likelihood (PQML) to estimate β consistently. It

interesting to compare LFE estimator of β with PQML under equation (2.2.1) and (2.2.4).

It is not difficult to know that LFE estimator of β is not consistent since equation (2.2.4)

can not guarantee that error terms in equation (2.2.3), ¨log(Vit), are uncorrelated to the

covariates, Ẍit. Simulations to compare LFE with PQML are in the following section.

2.3 PQML VS. LFE: a Simulation Approach

In this section, we compare PQML with LFE by 2 Monte Carlo Simulations. The key point

here is how to generate Vit which are positive and satisfy equation (2.2.4). In the first

simulation, we specify that Vit has Gamma distribution and find that PQML estimator is
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consistent while LFE is not; while in the second simulation, we specify that Vit has log

normal distribution; we find both are consistent and LFE is more efficient than PQML.

2.3.1 Simulation 1

We follow the model in section 2, i. e., equation (2.2.3). The data generating process is

specified as the following:

• i = 1, 2, ..., N ; t = 1, 2, ..., T ,

• Xit
i.i.d∼ N(0, 1),

• Ci = exp(Xi + N(0, 1)), where Xi = T−1∑T
t=1 Xit

• β = .1,

• Vit
i.i.d∼ Gamma(α, γ),where γ = 1/α = exp(a ∗X2

it + b ∗Xit),

• T = 5, N =500 if it is not specified,

• Number of simulations =1000.

We have two reasons to specify the Gamma distribution of Vit that way: 1. it guaran-

tees V ′its are positive; 2. It makes that the condition of equation (2.2.4) is satisfied since

E(Vit|Xi, Ci) = α ∗ γ = 1, ∀a, b. As for the values of a and b, they will be specified in the

specific setting.

Table B.2 and Table B.3 show the results for PQML and LFE methods; Note the true

value of β is .1. The PQML estimates are very close to it for all the values of a and b.

However, for LFE, the bias is big; such as a = .01, b = .1, a = .05, b = .1, and a = .1, b = .1.

These strengthen the findings in Blackburn (2007); they tell us that we should be very careful

to use LFE to deal with positive response variables. On the other hand, as we can see from

equation (2.2.3) that the correlation between Ẍ and ¨log(Vit) biases the LFE estimator; so

whenever the value of b is relatively high compared to a, the correlation between X and
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log(Vit), which is denoted as ρx, lv, is high, and forces the LFE away from its target. We

consider an extreme case here: let a = .1, b = 0 and do the simulations for three different

N values: 500, 1000 and 2000; and the results are in table titled “special case”. We can see

that all three LFE estimates beat PQML in terms of bias and efficiency. The bias of PQML

decreases with creasing of sample size, but for small sample, it may not perform as well as

LFE does.

2.3.2 Simulation 2

Compared with simulation 1, simulation 2 is the same as simulation 1 except for the dis-

tribution of Vit. Here, Vit has a log-normal distribution. The data generating process is

specified as the following:

• i = 1, 2, ..., N ; t = 1, 2, ..., T ,

• Xit
i.i.d∼ N(0, 1),

• Ci = exp(Xi + N(0, 1)),

• β = .1,

• Vit = exp(a ∗X2
it + b ∗Xit ∗ zit), where zit

i.i.d∼ N(0, 1) if not specified.

• T = 5, N =500 or 1000,

• Number of simulations =1000.

For the distribution of Vit, the positive issue is obviously satisfied; but the values of a

and b cannot be arbitrary since equation (2.2.4) is required to be satisfied. By algebra, we

need have b2 = −2a.

Table B.4 shows that LFE estimator is as good as PQML in terms of consistency; more-

over, PQML estimator is more sensitive to the values of a and b. On the other hand, the
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standard errors of LFE estimator is only half of PQML. This result is very interesting since

this adds one more advantage to the log transformation-more efficient.

2.3.3 Simulation 3

Compared with simulation 1, simulation 2 is the same as simulation 1 except for the dis-

tribution of Vit. Here, Vit has a log-normal distribution. The data generating process is

specified as the following:

• i = 1, 2, ..., N ; t = 1, 2, ..., T ,

• Xit
i.i.d∼ N(0, 1),

• Ci = exp(Xi + N(0, 1)),

• β = .1,

• Vit = exp(a∗X2
it+b∗Xit∗zit), where Z =



zi1

zi2

zi3

zi4

zi5


∼N(0, Σ), Σ =



1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1


.

• T = 5, N =500 and ρ = {−.95, −.5, −.1, .1, .5, .95},

• Number of simulations =1000.

The focus of this simulation is setting of Vit: note that equation (2.2.4) only specifies

relationship between Vit, Xi and ci, it does not exclude any correlation among error terms

of all the time periods for a certain cross section unit. The variance covariance matrix of Z,

Σ is the popular exchangeable working matrix in generalized estimating equation literature.

The reason that name is called is every observation in an individual is equally correlated
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with every other observation in that individual. The degree of correlation is measured by the

intraclass correlation coefficient. Here we can understand that Corr(zit, zit+j) = ρj , j = 0,

1, 2, · · · , T−1 and |ρ| < 1. All the estimation results are in Table B.6; overall, both methods

perform well in terms of bias and efficiency. However, we do see some fluctuation when ρ

varies in its ranges: from Figure B.3, we can see that the biases of LFE are fluctuating

around zero while all PQML estimators display downward bias; but there is no monotonic

relationship between the bias and the ρ. When it comes to standard errors, the story is

different: Figure B.4 shows that the standard errors of both estimators are increasing with

crease of ρ; and LFE always beats PQML. We repeat the analysis for N = 1000, and similar

patterns apply. So the serial correlation can cause problem to PQML, especially when sample

size is not that big.

2.4 Estimating APE: Exponential Sieve Estimator

After Wooldridge (1999) proves that PQML is appropriate for any non-negative dependent

variable-not just count data that follow a Poisson distribution and the estimator is robust

to arbitrary patterns of serial correlation, the method is widely used in all kinds of empirical

works, especially after Simcoe (2008) writes a STATA command xtpqml. However, since most

of the time, the model is nonlinear in observed explanatory variables with multiplicative

unobserved heterogeneity, it is difficulty to interpret the estimates of parameters, which are

the popular so called semi-elasticities in log linear models; this is one of the key drawbacks

of the method compared with OLS/IV to the log linear models. Inspired by what we have

done in chapter 1, we propose a nonparametric estimation method for APE in model as in

equation (2.2.1). This way, we extend the analysis in chapter 1 from cross section to panel

data settings.
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2.4.1 Estimating APE

Refer to equation (2.2.1), let Uit=CiVit be the whole error term. For the simplicity of

denotation, we drop i for the time being. Similarly to what we have done in Chapter One,

we define APE as follows:

APEj(xt) = E
[
βj exp(xtβ)Ut

]
= η[βj exp(xtβ)], (2.4.1)

Here the idea is the same as in Chapter One: the expectation in equation (2.4.1) is taken

only with respect to Ut. In order to estimate APEj(xt), the key is to estimate η; from

equation (2.2.5), we have,

E

(
Yit

exp(Xitβ)

∣∣∣∣Xi

)
= E(Uit|Xi), (2.4.2)

So,

η ≡ E(Uit) = E

(
Yit

exp(Xitβ)

)
,

Then the straight forward estimator for η is:

η̂ =
1

NT

N∑
i=1

T∑
t=1

Yit

exp(Xitβ̂)
, (2.4.3)

Where β̂ is the PQML estimator of β in equation (2.2.1). Similarly to Theorem 1 in Chapter

one, we have the following:

Theorem 2.4.1. Let β̂ be the PQML estimator from equation (2.2.1) with condition in

equation (2.2.5)and η̂ is defined in equation (2.4.3), then

√
N

β̂ − β
η̂ − η

 d→ N(0,Ω)

Where Ω ≡ E

Si

Qi

× (S′i Q′i

)
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PROOF: See appendix.

With delta method, it is natural to have the asymptotic result for the device in equation

(2.4.1):

Corollary 2.4.2.

√
N
(
ÂPEj(xt)− APEj(xt)

)
d→ N(0,Θ′ΩΘ)

Where

ÂPEj(xt) = η̂β̂j exp(Xitβ̂)

Θ = ∇θ{η[βj exp(xtβ)}, θ =
(
β′, η

)′
2.4.2 Estimating CAPE

First, we assume:

D(Ci|Xi) = D(Ci|Xi), (2.4.4)

where Xi = T−1∑T
t=1 Xit, which is the same as in the simulations in the previous section,

represents the time-averaged Xit over the various panel periods. This assumption can date

back to Mundlak (1978) and Chamberlain (1980, 1982, 1984), and more recently appears in

Papke and Wooldridge (2008). Of course, we don’t need the normal distribution assumption

as they do.

Combine equations (2.2.1), (2.2.4) and (2.4.4), and we get the following by iterated condi-

tional expectation:

E(Yit|Xi) = E[(Yit|Xi, Ci)|Xi]

= exp(Xitβ)E(Ci|Xi)

= exp(Xitβ)E(Ci|Xi) (2.4.5)
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So, we define:

E

(
Yit

exp(Xitβ)

∣∣∣∣Xi

)
= E(Ci|Xi) ≡ r(Xi), (2.4.6)

Here, the r(Xi) is our target to estimate and assume it has the same properties as in chapter

1. The only difference is that the independent variable is Xi instead of Xi, and variables in

the left hand side of above equation has one more layer of subscript, t, other than i. So the

exponential sieves estimator of r(Xi) is r̂(Xi) = exp(GM (Xi)π̂M ), where

π̂M = arg min
π

N∑
i=1

T∑
t=1

(
Yit

exp(Xitβ̂)
− exp(GM (Xi)π)

)2

(2.4.7)

For N −→∞, we have ‖π̂M − π∗M‖
p−→ 0, where

π∗M = arg min
π

E
T∑
t=1

(
Yit

exp(Xitβ)
− exp(GM (Xi)π)

)2

(2.4.8)

Lemma 2.4.3. Suppose that:

1. the support Ξ of X is a compact set of RJ

2. r(X) is s times continuously differentiable, that is, r(X) ∈ Cs, with s ≥ 4

3. r(X) is bounded away from zero

4. the density of X is bounded away from zero on Ξ

Then: ∣∣r(X)− exp(GM (X)π∗M )
∣∣ = Op(CM

−s), (2.4.9)

PROOF: See appendix.

Lemma 2.4.4. Suppose that same three conditions as in Lemma 1 hold. In addition, suppose

that: (iv) M(N) is a sequence of values of M satisfying M(N)→∞, and ζ(M(N))4/N → 0.

Then
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‖π̂M(N) − π
∗
M(N)‖ = Op

(√
M(N)

N

)
(2.4.10)

PROOF: See appendix.

These two lemmas are almost the same as lemma 1 and 2 in chapter 1 expect here is for Xi.

Theorem 2.4.5. Given all the assumptions in Lemma 2.4.3 and Lemma 2.4.4, then

∫
[r(X)− r̂(X)]2dF (X) = O(M/N +M−2s) (2.4.11)

PROOF: the proof is the same as Theorem 2 in chapter 1.

From this theorem, we can see that the same kind of trade off argument as in chapter 1

happens here: we know more terms, which means higher value of M , can lead to more close

approximations. However, with more terms to approximate, the estimating bias from r(X)

to r̂(X) is increasing. Refer to chapter 1 for detailed illustration.

The next question is how to estimate the CAPE. First, we need to define the CAPE in

the new device; usually, we need to find the functional form of E(Yit|Xit). From equation

(2.2.1):

∂Yit
∂xij

= βj exp(Xitβ)CiVit,

By iterated expectation and combine equation (2.4.5) and equation (2.4.6)

E

(
∂Yit
∂xij

∣∣∣∣Xi

)
= βj exp(Xitβ)r(Xi)

So

CAPEj(x) ≡ E

(
∂Yit
∂xij

∣∣∣∣Xi = x

)
= βj exp(xtβ)r(x),
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Where, x = (x1, · · · , xT ), x = T−1∑T
t=1 xt. The natural estimator for CAPE is:

ĈAPEj(x) = β̂j exp(xtβ̂)r̂(x),

Since β̂ can be easily obtained from PQML method, the next will focus on how to estimate

r(x).

Let

ΣM ≡ E

 T∑
t=1

GM (Xi)
′GM (Xi)

(
Yit

exp(Xitβ)
− r(Xi)

)2

exp(2GM (Xi)π
∗
M )

 ,
QM ≡ E[GM (Xi)

′GM (Xi)exp(2GM (Xi)π
∗
M )],

VM (x̄) ≡ GM (x̄)Q−1
M ΣMQ−1

M (x̄)GM (x̄)′exp(2GM (x̄)π∗M ).

Lemma 2.4.6. Suppose that the same four conditions as in Lemma 2.4.3 hold, then

√
NV

−1/2
M (x) (r̂(x)− r(x))

d→ N(0, 1)

Theorem 2.4.7. Given N (1/2)M−(s+1) → 0 as N →∞ and βj 6= 0 , assumptions 1-3 and

all the assumptions in Lemma 2.4.3 and Lemma 2.4.4, then

√
NV

−1/2
M (x)

(
ĈAPEj(x)− CAPEj(x)

)
d→ N(0, V )

Where V = β2
j exp(2xβ)

PROOF: See appendix.

Note that, theorem 2.4.7 requires that at least one element of β is not zero: if β is zero

completely, the model does not make any practical use; but it is possible that some elements

of β are zero. If there is some element in β is zero, without loss of generality, let’s put it as

βj=0, then:
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Corollary 2.4.8. Given all the assumptions in theorem 2.4.7 except βj=0, then

√
N
(
ĈAPEj(x)− CAPEj(x)

)
d→ N(0,W )

Where CAPEj(x) ≡ βj exp(xβ)r(x) as in equation ; as for the detailed form of W , refer to

proof in appendix.

PROOF: See appendix.

The above results are the analog extensions as in Chapter 1. But we do have a special

result for panel data case. From equation (2.4.5), we know that E(Yit|Xi) only depends on

Xit and Xi with assumption of equation (2.4.4); so we do the following manipulation:

E(Yit|Xit,Xi) = E[E(Yit|Xi)|Xit,Xi]

= E[exp(Xitβ)r(Xi)|Xit,Xi]

= exp(Xitβ)r(Xi) (2.4.12)

Following the same derivation as in Blundell and Powell (2003), we have:

ASF (Xt) =

∫
E(Yit|Xit = Xt,Xi)dFXi

= exp(Xtβ)

∫
r(Xi)dFXi

(2.4.13)

If we let E(Yit|Xit,Xi) = H(Xit,Xi), then the RHS of equation (2.4.13) is
∫
H(Xit,Xi)dFXi

,

which is exactly the so called average structural function in Blundell and Powell (2003); as

in chapter 1, we define APE basing on ASF. Denote the average partial effect with respect

to Xt as:

λ ≡ ∂ASF (Xt)

∂Xt

=
∂exp(Xtβ)

∂Xt

∫
r(Xi)dFXi

= β exp(Xtβ)

∫
r(Xi)dFXi

(2.4.14)
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The corresponding estimator is:

λ̂ = β̂pqml exp(Xtβ̂pqml)

N−1
N∑
i=1

exp(GM (Xi)π̂M )

 (2.4.15)

The structure of λ is interesting: it only depends on Xt; the effect of cross sectional het-

erogeneity is coorperated as a scalar factor. Note that it is between APE and CAPE(x) :

the former measures the overall effect of covariates and heterogeneity; the latter considers

both cross section and time dimensions. While λ considers the effect of covariates on both

dimensions, but only overall effect of heterogeneity. Papke and Wooldridge (2008) get a sim-

ilar device in a panel data probit model with and without endogenous explanatory variables.

To obtain asymptotic result for λ̂, we go further following Papke and Wooldridge (2008):

τ̂ = β̂pqml

(NT )−1
N∑
i=1

T∑
t=1

exp(Xitβ̂pqml + GM (Xi)π̂M )


Note that λ̂ can be considered as a special case of τ̂ :

β̂pqml

(NT )−1
N∑
i=1

T∑
t=1

exp(Xitβ̂pqml + GM (Xi)π̂M )


= β̂pqml exp(Xtβ̂pqml)

N−1
N∑
i=1

exp(GM (Xi)π̂M )


Where Xit = (Xt, 0, · · · , 0︸ ︷︷ ︸

T−1

). So as long as we obtain asymptotic results for τ̂ , the result

for λ̂ can be easily achieved:

Theorem 2.4.9. Given N (1/2)M−s → 0 as N → ∞, and all the assumptions in Lemma

2.4.3 and 2.4.4 , then
√
N(τ̂ − τ )

d→ N(0,V) (2.4.16)

PROOF: See appendix.
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The structure of the variance is a little complicated, the derivations and estimation are

in the appendix.

Note that, it follows from equation (2.4.6):

E
(
r(Xi)

)
≡ E

(
E(Ci|Xi)

)
= E

[
E

(
Yit

exp(Xitβ)

∣∣∣∣Xi

)]
= E

(
Yit

exp(Xitβ)

)
Then there is an “naive” estimator of APE automatically:

β̂pqml exp(Xtβ̂pqml)
1

NT

N∑
i=1

T∑
t=1

Yit

exp(Xitβ̂pqml)

With all these solved, we can propose the following estimating procedure:

Step 1: do the PQMLE of Yit on Xit, and denote the estimator of β as β̂pqml;

Step 2: use power series to approximate r(Xi), denote as r̂(Xi);

Step 3: estimate the APE (or CAPE) of parameter of interest and corresponding standard

error.

2.5 More Efficient Estimator: GMM

As we find that in simulation 2 in section 3, when both PQML and LFE estimators are

consistent, the latter is more efficient than the former. Wooldridge (1999) suggests GMM

method to improve the efficiency of PQML estimator. The key step of GMM is to derive a

moment condition from equation (2.2.3).

2.5.1 Model 2

As we all known, we need a class to compare efficiency; the model we are considering here

as follows:

E(Yit|Xi, φi, ψi) = φiµ(Xit,β0), (2.5.1)

Var(Yit|Xi, φi, ψi) = ψ2
i [E(Yit|Xi, φi, ψi)]

2 = ψ2
i [φiµ(Xit,β0)]2 (2.5.2)
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Cov(Yit, Yir|Xi, φi, ψi) = 0, t 6= r (2.5.3)

This model is initiated in Wooldridge (1999) who put it as a question. As we can see

that the function µ(., .) can be any positive functional form, such as exponential in section

2. Compared with model 1, we have one more equation to specify the relationship between

the conditional variance and the square of conditional mean. Note that ψi is also a random

variable, so it is the extension of constant coefficient of variation model.

2.5.2 GMM

From the above two equations, we can easily get the following equation:

E(Y 2
it |Xi, φi, ψi) = (1 + ψ2

i )[E(Yit|Xi, φi)]
2 = (1 + ψ2

i )φ
2
i [µ(Xit,β0)]2 (2.5.4)

if we put the Y 2
it as the the Yit, (1+ψ2

i )φ
2
i as the exp(Ci) and [µ(Xit, β0)]2 as exp(Xitβ)

in the equation (2.2.5), we can apply the PQML method to Y 2
it . From here, we can derive

the moment conditions. We define:

T∑
t=1

(Yit)
j = nji, j = 1, 2

pjt(Xi, β0) ≡ µj(Xit,β0)∑T
r=1 µ

j(Xir,β0)
, j = 1, 2

uji(β) ≡ (Yi)
j − pj(Xi,β)njt, j = 1, 2

where, pj(Xi, β) ≡ [pj1(Xi, β), ..., pjT (Xi, β)]′, Yi = [Yi1, ..., YiT ]′

By iterated expectation, we have:

E(uji(β0)|Xi, φi, ψi) = E((Yi)
j |Xi, φi, ψi)− pj(Xi, β)E(nji|Xi, φi, ψi) =0, j = 1, 2

(2.5.5)

So,

E(Dj(Xi, β)′uji(β0)) = 0, j = 1, 2 (2.5.6)
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Where Dj(Xi, β) is any appropriate function of Xi.

Wooldridge (1999) suggests the following:

Dj(Xi,β) = [Wj(Xi,β)∇βpj(Xi,β)|∇βpj(Xi,β)]. (2.5.7)

where, Wj(Xi, β) ≡ [diag{pj1(Xi, β), ..., pjT (Xi, β)}]−1

If we define:

D(Xi,β) =

 D1(Xi,β) 0

0 D2(Xi,β)



ui(β) =

 u1i(β)

u2i(β)


the two moment conditions can be combined as:

E(D(Xi)
′ui(β0)) = 0 (2.5.8)

GMM follows easily:

β̂gmm = arg min

 N∑
i=1

D̃′iui(β)

′ N∑
i=1

D̃′iũiũ
′
iD̃i

−1 N∑
i=1

D̃′iui(β)

 (2.5.9)

Where D̃i = D(Xi, β̂pqml), ũi = ui(β̂pqml).

As pointed out by Wooldridge (1999), GMM with only D1(Xi, β) and u1i(β) is identical

to the PQML.

Theorem 2.5.1. As consistent estimators for β0 in model 2, GMM is more efficient than

PQML.

PROOF: From Wooldridge (2002, section 8.3.3), we know:

AVar(β̂gmm) = C′−1C
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AVar(β̂pqml) = C′1Λ−1
1 C1

Where,

Λ = E
(
D′iuiu

′
iDi
)

C = E
(
D′i∇βui(β)

)
Λ1 and C1 are similar to Λ and C with Di and ui replaced by D1i and u1i respec-

tively. From White (1984), the matrix C′1Λ−1
1 C1 −C′−1C is p.s.d.; then the result follows

immediately.

2.5.3 Simulation 3

The data generating process is specified as the following:

• Xit
i.i.d∼ N(0, 1),

• Ci = Xi + N(0, 1),

• β = .1,

• Vit = exp(−.125 ∗X
2
i + .5 ∗Xi ∗ zit), where zit

i.i.d∼ N(0, 1).

• Yit = exp(Xitβ + Ci)Vit,

• T=5, Number of simulations =5000 .

Here, Vit has the similar form as in simulation 1 and 2; however, since Vit has to satisfy

equation (2.2.2), we use Xi instead of Xit. We only use a = −.125, b = .5 here since other

values have the similar results.

Table B.8 has the results for all the three methods. All the three estimators are consistent.

But the differences of standard errors are big. Compared with PQML with GMM, standard

error of the latter is about a half of the former; so the extra moment condition does matter

here and GMM is the right direction to improve the efficiency. However, the standard errors
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of LFE are smaller than GMM. Theoretically, there are cases where LFE is not consistent

while GMM and PQML are; but we fail to find a simulation .

2.5.4 Optimal IV Estimator

Considering Model 2, we can derive the so-called optimal instrumental variables (OIV) es-

timator in Newey (1990, 1993) to improve efficiency. For the moment condition, u1i(β) ≡

Yi − p1(Xi, β)n1i, we first need to find its variance structure. By the conditions equations

(2.5.1)-(2.5.3)from model 2, we can get:

Var(u1i|Xi) = E(u1i ∗ u′1i|Xi) = E[ψ2
iφ

2
i |Xi] ∗Ωi (2.5.10)

Where,

Ωi(r, s) =



[
1− 2∗µ(Xis,β)∑T

t=1 µ(Xit,β)
+

∑T
t=1 µ(Xit,β)2

(
∑T
t=1 µ(Xit,β))2

]
µ(Xis,β)2, if r = s;

[ ∑T
t=1 µ(Xit,β)2

(
∑T
t=1 µ(Xit,β))

2 −
µ(Xis,β)+µ(Xir,β)∑T

t=1 µ(Xit,β)

]
µ(Xis,β)µ(Xir,β), if r 6= s.

In fact, if we use matrix algebra, we can do the following:

u1i(β) =


IT −



pi1 pi1 · · · pi1

pi2 pi2 · · · pi2
...

... · · · ...

piT piT · · · piT







Yi1

Yi2
...

YiT


so,we can get the following:

Var(u1i(β)|Xi, φi, ψi) = A Var



Yi1

Yi2
...

YiT

Xi, φi, ψi


A′ = ψ2

iφ
2
iABA′
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where,

A =


IT −



pi1 pi1 · · · pi1

pi2 pi2 · · · pi2
...

... · · · ...

piT piT · · · piT





B =



µ(Xi1,β)2 0 · · · 0

0 µ(Xi2,β)2 · · · 0

0 0
. . . 0

0 0 · · · µ(XiT ,β)2


So,

Var(u1i(β)|Xi) = E(ψ2
iφ

2
i |Xi)ABA′

Note that,

Ωi= ABA′

The remained part is to find E(ψ2
iφ

2
i |Xi); note that:

Var(u1it|Xi) = E[ψ2
iφ

2
i |Xi]

[
1− 2 ∗ µ(Xit,β)∑T

t=1 µ(Xit,β)
+

∑T
t=1 µ(Xit,β)2

(
∑T
t=1 µ(Xit,β))2

]
µ(Xit,β)2,

So,

E[ψ2
iφ

2
i |Xi] = E

 u2
1it[

1− 2∗µ(Xit,β)∑T
t=1 µ(Xit,β)

+

∑T
t=1 µ(Xit,β)2

(
∑T
t=1 µ(Xit,β))2

]
µ(Xit,β)2

Xi

 ,

If we assume that:

E[ψ2
iφ

2
i |Xi] = E[(1 + ψ2

i )φ
2
i |Xi] = h(Xi) (2.5.11)

Here, function h(.) is a unknown function. As we know that h(.) is the conditional

expectation of positive random variables, so it is positive. Hence the main problem is still

how to catch the positivity. Newey (1994) uses the truncation, which works in the large
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sample case. Since the truncation threshold is very arbitrary, then it may not work well in

finite sample case. Next, we try to find the D(Xi) as in Newey (1990, 1993):

D(Xi) ≡ E(∇βu1i(β)|Xi)

= E(∇β[Yi − p1(Xi,β)n1i]|Xi)

= −∇β[p1(Xi,β)]E(n1i|Xi)

= −∇β[p1(Xi,β)]
T∑
t=1

µ(Xit,β)E(φi|Xi)

= −∇β [p1(Xi,β)]
T∑
t=1

µ(Xit,β)r(Xi)

Here again we will use “exponential sieve” to estimate h(Xi) and r(Xi) as in section 3; note

that the method shows up two times for OIV estimator. We use cross validation as in Newey

(1993) to choose the number of terms M .

We propose the following estimating method:

Step 1: do the PQML of Yit on Xit, and denote the estimator of β as β̂pqml; also define,

û1it = Yit − n1ipit(β̂pqml) ;

Step 2: use power series to approximate h(Xi), denote as ĥ(Xi); define B̃(Xi) = D̂(Xi)∗

(Ω̂i)
−1/ĥ(Xi);

Step 3: do the following GMM,

β̂gmm = arg min

 N∑
i=1

B̃′iu1i(β)

′ N∑
i=1

B̃′iB̃i

−1 N∑
i=1

B̃′iu1i(β)

 (2.5.12)

We use a simulation to end this section:

Simulation 4

We follow the model 2 in section 5, i.e, equations (2.5.1)-(2.5.3). The data generating

process is specified as the following:

• i = 1, 2, ..., N ; t = 1, 2, ..., T ,
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• Xit
i.i.d∼ N(0, 1),

• Ci = exp(Xi + N(0, 1)), where Xi = T−1∑T
t=1 Xit

• β = .1,

• Vit
i.i.d∼ Gamma(α, γ),where γ = 1/α = exp(−.125 ∗X

2
i + .5 ∗Xi ∗ zit), where zit

i.i.d∼

N(0, 1),

• T = 5, N =500 if it is not specified,

• Yit = exp(Xitβ)CiVit,

• T=5, Number of simulations =5000 .

The estimation results are in Table B.9; for the LFE, PQML and GMM, estimates are

almost the same as Table B.8: all of them are very close to the true value of parameter;

in terms of efficiency, LFE is best and PQML is the worst. Now with the new estimation

method, OIV, we can see that it performs very well considering the standard errors, which

are close to those of LFE. Finally, we do find a method that can compete with LEF.

2.6 Empirical Application

In this section we illustrate GMM estimator as well as PQML by estimating APE of price

on demand for airline market. The market is defined the same as in Park et. al. (2007),

which is a trip between origin and destination cities. For each route, i,e, an pair of cities, the

measurement is taken everyday. In order to wash out the daily fluctuations, like weekend

and holidays, the yearly average is taken from year 1997 to 2000. Of course, for some of the

routes, they do not have records for these consecutive four years and have to be dropped;

but the drop rate is less than 10%-we have over 1000 routes. So the data set is a typical

balanced panel data set. The description of the key variables as follows:
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For each route,the variable passen measures the average number of daily passengers for

the year; lfare is log transformation of average one-way fare in US dollars; concen is the

market share of the biggest carrier along the route. Refer to Table B.10 for details.

The Table B.11 shows the estimation results for the three methods. The GMM method

reduce the standard errors by about 10% compared with PQML. The estimates of PQML

and GMM are close to each other. As for the practice purpose, from equation (2.4.12) in

section 4, we know the APE for lfare

β̂j exp(xtβ̂pqml)
1

NT

N∑
i=1

T∑
t=1

Yit

exp(Xitβ̂pqml)
≈ 512 (2.6.1)

β̂j ∗N−1
N∑
i=1

exp(xtβ̂pqml + GM (Xi)π̂M ) ≈ 507 (2.6.2)

β̂j ∗ exp(xtβ̂pqml + GM (x)π̂M ) ≈ 421 (2.6.3)

Where xt is evaluated at the median values of lfare and concen and year dummy is 1998;

x is evaluated at at mean values of lfare and concen. For the interest variable lfare,

a 1% price rise in air tickets will exclude about 500 passengers overall while about 400

at the specific setting. Compare those result with LFE: a 1% price rise in air tickets will

exclude about 6 passengers overall (here we evaluate passen at its mean). By calculating the

corresponding standard errors, all the estimates are statistically significant at 5% level. From

Figure B.5, we can see that passen is skewed to the right and is not symmetric even after

taking logarithmic transformation. In terms of partial effect of airfare on market demand,

the advantage of equation 2.6.3 is that it can give arbitrary partial effect of airfare on demand

for any value of x. For example, we can consider the APE of airfare on market demand for

the route which has the highest demand of 8497: in Year 1998, a 1% price rise in air tickets

will exclude about 545 passengers from the route; this way, the price elasticity of demand is

about 6%.
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2.7 Conclusions

We summarize the three usual estimation methods for positive response variables. By sim-

ulation, we list the disadvantages and advantages for each of them-basically the trade off

between consistency and efficiency. As long as the conditional mean function is correctly

specified,the PQML is robust to any distribution of the error terms. On the other hand, it

suffers for less preciseness for error with certain distribution. If we can assume more on the

distribution, we can use GMM to reduce the standard errors of PQML estimator. By the

application of the airfare data set, we show that it works. As for the estimation of APE,

it keeps the property of distribution free and amplify the positivity of the conditional mean

function of the heterogeneity.

Many issues can be studied in the future research. For one, whether it is possible to

develop a test to distinguish PQML and LFE, like the Hausman test for RE and FE estima-

tors. Another interest problem is what the consequence if the conditional mean function is

misspecified.
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Chapter 3

A SPATIAL ANALYSIS OF SPENDING EFFECT ON MEAP

3.1 Introduction

As we all know, public schools of the K-12 educational system in the U.S. are financed

mostly by local revenue, primarily by taxes levied on property. One of the disadvantages

of this policy is that this can potentially lead to economic inequality across school districts

within a state since, as is often argued, demand for (and affordability of) a good education

increases with parental income and educational attainment. Take Michigan as an example,

in year 1992, the per pupil expenditure in a rich school district (the name is Bloomfield

Hills School District, DCODE 63080)could reach as more than 9 times as it in a poor school

district (the name is Ionia Township S/D #2, DCODE 34360).1 It is under this kind of

background, in 1994, Michigan initiated a school finance reform which is called Proposal

A, aimed at equalization of school finances among school districts within state boundaries.

A great body of research has been done for its impacts. Papke(2005, 2008)use panel data

sets, either school level or school district level, and find that there is statistically significantly

positive relationship between student performance which is measured in the pass rate of math

test for fourth graders and finance expenditure with linear regression models. Moreover, as

pointed out in Papke (2008), the magnitude of the effect of initially high-performing districts

are lower than the initially low-performing ones 2, which suggests clearly the nonlinearity

of the relationship. Under this circumstance, Papke and Wooldridge (2008) extend the

analysis further to a nonlinear model with a panel data set of school district but with less

1We get this from the data set used in Papke and Wooldridge (2008); In terms of household
income, Chakrabarti and Roy (2012) find that the median income in a rich school district is
more than three times of it in a poor one.

2and Roy (2011) even claims that the finance reform may have had negative effect on
student’s performance in the highest spending districts.
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time span compared with Papke (2008). One of the challenges in Papke and Wooldridge

(2008) is to deal with the unobserved heterogeneity in probit setting; with strictly exogenous

explanatory variables, they propose a conditional normal assumption following Mundlak

(1978) and Chamberlain (1980) device. The usual shortcoming for nonlinear models, to

make inference about the average partial effect, is elegantly overcome. More recently with

even boarder data coverage, Chakrabarti and Roy (2012) study the impact of Proposal

A on spatial segregation of housing market and find that there is continued high demand

for residence in highest-spending districts, suggesting the importance of neighborhood peer

effects (“local” social capital). However, none of them accounts for the spatial dependence

in the unobserved cross sectional fixed effect, either building level or school district level.

This is the first reason that the problem is revisited.

On the other hand, as pointed out in Papke (2008), using a data set with time span of 10

years, Papke (2008) finds that although spending inequality was reduced in the years of imme-

diately after Proposal A, equalization has slowed considerably since year 2000. Chakrabarti

and Roy (2012) also notice that there is continued high demand for residence in the highest-

spending communities, implying that even a comprehensive government aid program can fail

to make a large impact on residential segregation. So considering the data set we use is in

Year 2010, it is interesting to investigate the effect Proposal A after 15 years of implemen-

tation, especially with spatial effects controlled.

Spatial econometrics can be understood as a parallel extension of time series with time

index replaced by space. In applied literature, issues relating to geographic proximity, trans-

portation, spillover effects, etc., are important. Indeed, in recent years the spatial analysis

in economics is booming: refer to Case (1991), Anselin and Florax (1995), Kelejian and

Prucha (1999), Anselin (2010) and literatures therein. Modeling spatial interactions that

arises in spatially referenced data is traditionally done by incorporating the spatial depen-

dence into the covariance structure via an autoregressive model. For example, Wall (2004)

analyzed the SAT scores of all 48 contiguous states of America for the year of 1999 by two

47



mostly used models in spatial statistics: conditional autoregressive model (CAR) and simul-

taneously autoregressive model (SAR). Both of models cooperate spatial dependence in the

covariance structure as a function a neighbor matrix and often a fixed unknown spatial cor-

relation parameter; refer to the paper and Banerjee et.al.(2004) for more details. Obviously,

that approach is not robust to the misspecfication of the covariance functional form; what’s

more, as it states in Conley (1999), whenever there are errors in the measurement of spatial

dependence, which is happening very often in application, we cannot estimate parameters of

interest consistently without assuming distributions of the errors; as we all know, the distri-

bution assumptions are most of the time naive in reality. Conley and Molinari (2007) show

how poorly MLE could perform when the distribution is misspecified; while the method in

Conley (1999) works well. Moreover, he extends the spatial dependence to a broad economics

system, which is general dependence within a cross section and not necessarily related to

geographical features; for example, he creates a notion of “economics distance” among the

some countries in the world in Conley and Ligon (2002); the physical distance definitely will

contribute to it but it also has some type of “border effect” as in Engle and Roger (1996).

On the other hand, he also pioneers a nonparametric approach for covariance structure es-

timation; the basic idea of that estimator, as it is pointed out in Keller and Shiue (2007), it

is spatial version of Newey-West (1987) type heteroskedasticity and autocorrelation robust

covariance estimator. The method is nicely used in many areas of economics, such as devel-

opment, international economics and labor, etc; refer to Conley and Ligon (2002), Conley

and Topa (2002), Conley and Dupor (2003).

However, Conley (1999) does not elaborate about how to choose the cutoff points other

than the asymptotic condition of one third order of the sample size(or the width of sample

region). By simulation, Conley and Molinari (2007) argue that the choice is relevant; so

it might be hard for an empirical researcher to apply the method. Hence, the purpose of

this paper is twofold. First, we use the Michigan MEAP data of year 2010 to retrieve the

studies in Papke (2005, 2008) and in a nonlinear regression model; to investigate the effect of
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spatial dependence specified by Conley (1999), we propose two ways to choose cutoff points

and show how the spatial dependence corrected standard errors are related to the choice.

Second, in order to get the average partial effect (APE) as in Papke and Wooldridge (2008),

an average structure function (ASF) device in Blundell and Powell (2003) is used to get

the estimates of the spending effect as well as other ones. The remainder of this paper is

organized as follows. Section 2 introduces the linear and nonlinear models; data description

and related issues are contained in section 3. Section 4 presents the linear regression with all

kinds of standard error calculations. Section 5 provides the results of nonlinear model and

how the APE is estimated correspondingly. Conclusions and discussions are in Section 6.

3.2 Model

Let (Yi, Xi) be a sequence of observations for area Ai; first following Papke (2005, 2008),

the linear model is considered:

Yi = Xiβ + Ci, E(Ci|Xi) = 0 (3.2.1)

where Yi is scalar, Xi is 1×K vector and β is K × 1 vector of unknown parameters; for

area Ai: Yi and Xi can be understood as Y (Ai) and X(Ai) respectively; but for simpler de-

notation, we just put them as Yi and Xi. Ci or C(Ai) is the unobserved spatial heterogeneity

for each area Ai. If there are total areas of N , then i = 1, 2, · · · , N .

Under general conditions [e.g., Wooldridge (2010, Chapter 4)], the OLS estimator of β

based on N observations looks like:

β̂ = (X′X)−1X′Y, (3.2.2)

Where Y ≡ [Y1, Y2, · · · , YN ]′ is N × 1, X ≡ [X′1, X′2, · · · , X′N ]′ is N × K. With little

algebra [refer to Wooldridge (2010, Chapter 4)], we can get:

√
N(β̂ − β) =

 1

N

N∑
i=1

X′iXi

−1N−1/2
N∑
i=1

X′iCi

 , (3.2.3)
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So with general conditions, β̂ is weakly consistent for β and asymptotically normally dis-

tributed; note that the asymptotic distribution really hinges on the second term in equation

(3.2.3).

If we assume the following conditions:

V ar(Ci|Xi) = σ2, i = 1, 2, · · · , N ; (3.2.4)

{X′iCi: i = 1, 2, · · · , N} is an uncorrelated sequence. (3.2.5)

Condition (3.2.4) is the appropriate homoskedasticity assumption and (3.2.5) is no correlation

requirement for the sequence; it can be also extended to be independent. Then the covariance

matrix of β̂ is σ2(X′X)−1. Let σ̂2 = SSR/(N − K) be the usual square of the standard

error of the regression; the usual standard error of jth OLS estimator β̂j is the square root

of the jth diagonal element of σ̂2(X′X)−1. That is also the ‘standard error’ printed out by

all regression packages.

Without homoskedasticity [condition (3.2.4)] but with no correlation [condition (3.2.5)],

we can allow arbitrary heteroskedasticity of conditional variance C on X by Huber (1976)

and White (1980) robust standard errors, which are square root of diagonal terms of matrix

(X′X)−1(
∑N
i=1 X′iĈ

2
i Xi)(X

′X)−1. Note that 1
N (
∑N
i=1 X′iĈ

2
i Xi) is a consistent estimator of

V ar
(
N−1/2∑N

i=1 X′iCi
)

, the second term of equation (3.2.3). Algebra details are referred

to Wooldridge (2010, Chapter 4).

For those two types of standard errors, they allow no correlation among the sequence

{X′iCi : i = 1, 2, · · · , N}. To relax that assumption, we can try two directions. One is to

divide the whole N observations into G groups: Wg = (X′i, · · · , X′j)
′, v̂g = (Ĉi, · · · , Ĉj)′,

where g = 1, · · · , G; then the group corrected standard errors of elements of β̂ are square root

of diagonal terms of matrix
(∑G

g=1 W′
gWg

)−1 (∑N
g=1 W′

gv̂gv̂
′
gWg

)(∑G
g=1 W′

gWg

)−1
,

which allow arbitrary correlation within each group while independence is assumed across

groups; that is similar to the idea for cluster corrected robust standard errors in Wooldridge

(2010, Chapter 20); and Wang et. al (2013) also adopt that idea: split the whole sample into
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many groups, one of which has two observations with arbitrary dependence; and a bivariate

Probit method is proposed. Note that when G = 1, then the cluster corrected standard

errors are H-W standard errors.

Conley (1999) goes that way further: he divides the sequence {X′iCi : i = 1, 2, · · · , N}

into two groups with one group is lagged the other in two non-opposing directions and allow

arbitrary correlation between the two groups; with different lag, we can get two different

groups and corresponding correlation between them-that is, the sequence is regrouped with

times of the number of lags; then final estimator of V ar
(∑N

i=1 X′iCi
)

, which is denoted as

V̂, is the weighted sum of all the covariances. Let Ĉi be the OLS residual in equation (3.2.1)

, that is:

V̂ =

L1(N)∑
i=0

L2(N)∑
j=0

W (i, j)
N∑

s=i+1

N∑
t=j+1

(X′s−iĈs−iĈt−jXt−j + X′t−jĈt−jĈs−iXs−i)

−
N∑
s=1

N∑
t=1

(X′sĈsĈtXt) (3.2.6)

Where W (i, j) are the weights for covariance with one direction lagged of i and the other

j; Without lags, that is i = j = 0, then W (i, j) = 1. L1(N) and L2(N) are the cutoff

points of the two direction and both of them converge to ∞ with order of L1(N) = o(N1/3)

and L2(N) = o(N1/3) as N −→ ∞. Intuitively, V̂ can be understood as the Newey and

West (1987) estimator of V ar
(∑N

i=1 X′iCi
)

in two non-opposing directions summed up with

proper weights; so it is basically a nonparametric estimator. Hence, Conley’s estimator of

variance-covariance matrix of β̂ is (X′X)−1V̂(X′X)−1.

As for the nonlinear model, we follow Papke and Wooldridge (1996):

Yi = G(Xiβ + Ci), (3.2.7)

Where G(·) is any continuous function with range of (0, 1) in the real line; for example, we

can have G(x) =
exp(x)

1+exp(x)
or G(x) = Φ(x), where Φ(x) =

∫ x
−∞

1
2π exp(−t2/2)dt. So it is

natural to have:

G−1(Yi) = Xiβ + Ci, (3.2.8)
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The equation (3.2.8) is very appealing since its right hand side has the linear form as

equation (3.2.1) does. For example, if G(·) takes the logistic function form, then equation

(3.2.8) turns into:

log

(
Yi

1− Yi

)
= Xiβ + Ci, (3.2.9)

This is the popular linear model for log-odds ratio. As in Papke and Wooldridge (1996),

with usual assumption like, E(Ci|Xi) = 0, we can get E
[
log
(

Yi
1−Yi

)∣∣∣Xi

]
= Xiβ. So we

can model transformed response variable instead of original one. This is the advantage of

equation (3.2.7); but we know the responses should be strictly in the interval of (0, 1) since

0 and 1 will explode the transform. Note that the model in 3.2.9 is different from the model

specification E(Yi|Xi, Ci) =
exp(Xiβ+Ci)

1+exp(Xiβ+Ci)
, in which case the responses can be 0 and 1.

Another issue is the average partial effect, which is hard to be estimated in most nonlinear

models. But since we have equation (3.2.7), from which we can get:

∂Yi
∂xij

= g(Xiβ + Ci)βj , (3.2.10)

where g(x) =
∂G(x)
∂x . The rest of the paper will keep models (3.2.1) and (3.2.8), and

assume E(Ci|Xi) = 0 and necessary rank condition, then OLS estimators of β in both

models are consistent, we will check standard errors under different conditional covariance

structures of β̂ in (3.2.2) and the corresponding APE estimates.

3.3 Data

3.3.1 Data Characteristics and Sources

All the data are from Michigan Department of Education: expenditure data are from Bulletin

1014 ; enrollment and free and reduced price lunch data are from the Center for Educational

Performance and Information (CEPI); the test results data are from Michigan Educational

Assessment Program (MEAP). The data resource is the same as in Papke (2005, 2008)

and Papke and Wooldridge (2008), but there is some change for the name of the program

since we use the data of Year 2010. Papke (2005) uses building level data but we use
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school district level ones, which are the same as in Papke (2008). Other than the reasons

explained in Papke and Wooldridge (2008), we pick the school districts for the convenience

of spatial analysis. As for the dependent variable, math4, the pass rate of math test for

forth graders in each school district of year 2010, which is defined the same in Papke (2005,

2008). The variable of interest, average expenditure per pupil in each school district, is

collected differently than in Papke (2005, 2008); instead, we follow the definition in Papke

and Wooldridge (2008)-take the average per pupil real expenditure in the last four years:

avgexp = (avgexp+avgexp−1 +avgexp−2 +avgexp−3)/4. Since both papers find significant

effect of the previous expending on school performance, it is meaningful to collect expenditure

variables this way-the reason we take last 4 years is that we are considering the test pass

rates for forth graders. The real dollars are calculated in the price of year 2010 Midwest

Urban Price index from Bureau of Labor Statistics. For the purpose of comparison, we also

use the average per pupil expenditure of year 2010. Two other explanatory variables are

the same in previous papers except in year 2010: enroll is the student enrollment for each

school district in academic year 2009/10 and lunch is percentage of students who are eligible

for free lunch or reduced price lunch program. scdist is the distance in kilometers for each

school district to its nearest 2-year or 4-year college. Inspired by Kane and Rouse (1995),

we are trying to investigate the effect the higher education has on the K-12 system, which

is not done in previous studies. Intuitively, the schools in a school district which is closer

to a college should have a higher chance to perform well, like it is easier for a forth grader

to find a tutor since the college students are around; or the students can take advantages of

the facilities in the colleges. On the other hand, most locations of colleges are in the areas

with higher social economic status, which has positive externality to public schools. The

summary statistics for these variables are in Table C.1.

There are 551 school districts in shape file which is from Michigan Geographic Data

Library. Combined with MEAP data, there are only 518 school districts because of data

missing. With help of ArcMAP, we plot the the map of the all the school districts in Figure
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C.1. As for the colleges in Michigan, I download all the 131 Michigan 2-year and 4-year

colleges from National Center for Education Statistics website, and plot into the map(Figure

C.2). If we plot the test pass rates into the map (Figure C.3), we can find some areas are

clustered with high rates while others with low; that is, the there is possibility that high

rates are congested together; so do the lower rates. That is the what the spatial dependence

stems from. When add college data in and get Figure C.4, we do find that some colleges

are in or close to the areas with high math test pass rates; while other colleges are in the

areas with low test rates. How to measure the spatial dependence among those 518 school

districts is the main part of application. Since the shape of each district is not regular, and

the area sizes of them vary from 3.7km2 to 3317.7km2, we should treat them as area data

instead of point ones. The next subsection will explain how to set up the spatial dependence

among these available 518 school districts.

3.3.2 Spatial Dependence Measurement

Since we treat each school district as an irregular lattice, the physical distance between

the centroids of any two districts cannot be a perfect measure for spatial dependence among

them; for example, for some districts, their centroids are outside of the polygons. So distance

based spatial weighting matrix, which is perfect for points data, is not that appropriate here;

on the other hand, the dependence which is measured only by contiguity for any two areas

ignores the size variations among those school districts. Keller and Shiue (2007) apply

both methods and have excellent descriptions about them. Since Conley (1999) initiates a

measurement for spatial dependence, which is robust to measurement error (Conley, 2007),

we will adopt their method. First, we get the projected latitude and longitude coordinates for

the centroid of each school districts3; then we use the smallest distance among all those 518

centroids to construct little squares in the whole state; whenever a centroid is in a square, the

3the reason we use projected lattitude/longitude instead of original ones is that we want
to use coordinates in a plane rather a sphere
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coordinates of the upright corner the lattice are the new coordinates for each school district.

A picture is worth one thousand words: we choose part of the 518 school districts and make

a picture to explain the process: as in figure C.5, we have 96 school districts and we plot

the 96 centroids into the map (Figure C.6); then we divide the whole area into 70× 70 little

squares in Figure C.7 with unit of about 2.5 kilometers, which is about the smallest distance

among those 96 points. Now, we know the new coordinates for each centroid are decided by

the little square where it lies and those are called Conley coordinates for each school district

in Figure C.8. From there, we can see that one of the advantage of this measurement is that

as long as a centroid is in a square, it will have the same coordinates no matter where it stay

in the square; this way, it can cover the damage of measurement error while the traditional

ways cannot. Thereafter, we define the spatial weighting matrix, W = (wij), this way:

wij =

 (1− |i|L1
)(1− |j|L2

), for |i| < L1, |j| < L2

0, else

We can see that the weight function is a Barlett window in each direction. The choice of

L1 and L2 is based on theory and practice: In theory, it should not be bigger than 1/3

root of the sample region; among those 518 school districts, the sample region is about 1000

horizontally and vertically; so we can take as about 10, which is about 10 kilometers since

we know each unit of the coordinate is about one kilometer. While from practice, we know

we should have a distance longer than that. We will explain more about that in the analysis.

For the coordinates beyond L1 and L2, we would not consider the dependence any more. Of

course, we can set L1 and L2 as very large and so that we will include all the sample districts.

the The missing data definitely will not cause big problems for the matrix defined this way,

while the 0− 1 measure of spatial dependence based on contiguity will: some element would

be one were data for all 551 districts available. This is another advantage compared with

conventional method. With this spatial weighting matrix, we will use the Conley (1999)

estimator described in section 2 to account for dependence among school districts.
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3.4 Linear Model

As in Papke (2005, 2008), we run the following regression:

math4i = β0 + β1 log(avgexp)i + β2 log(enroll)i + β3lunchi + β4 log(scdist)i + Ci,

math4i = β0 + β1 log(exp10)i + β2 log(enroll)i + β3lunchi + β4 log(scdist)i + Ci,

(4.1a, 4.1b)

The only difference of those two models [equations (4.1a, 4.1b)] is the first explanatory

variable: we replace avgexp in the first regression with exp10. From the description, we know

that some differences do exist between them and we wonder how those difference matter for

the test rate. The reason we take logarithms transformation for explanatory variables avgexp

and scdist is that their distributions are skewed: It can be easily seen from the histograms

(Figure C.9); and Manning (1998) claims that logarithms transformation is a good way to

model those kinds of variables. Such analysis also applies to enroll.

3.4.1 Ordinary Least Square (OLS)

Here, we first assume that usual assumptions of linear regression as in Wooldrdige (2010,

Chapter4) hold; the OLS results are in the first two columns of Table C.2. Note that the

usual standard errors are calculated under assumption of homoskedasticity as well as other

assumptions for consistency. As we all know, the magnitudes of standard errors are crucial to

the inference: they will decide whether the estimates of parameters are significant or not at a

given significance level. From Table C.2, we can see that all the explanatory variables except

scdist are significant at 5% level: the effect of student expenditure as well as enrollment on

school performance is positive and lunch program is negative; interestingly, the effect of a

school district’s distance to its nearest college is positive which means the longer the better

and it is against usual intuition. Fortunately, the effect is not significant at 5% level or even

at 10%; and we see the same pattern for the second regression and the size of the effect of the
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last four years’ expenditure on school performance is slightly bigger than year 2010. However,

if we abandon the homoskedasticity assumption and allow arbitrary functional form of the

conditional variance of the error term Ci on explanatory variables and we will get the the

White standard errors; then the positive effective of student enrollment is not significant at

5% level any more; so does for the second regression. Further, if we calculate the robust

standard errors corrected for the intermediate school districts (ISD), even the positive effect

of year 2010’s expenditure is not significant at 5% level. Considering Michigan geographical

feature, we divide the whole sample into two clusters: the Upper peninsula and lower; if we

correct for the peninsula clusters, neither the last four years’ average expenditure nor year

2010’s expenditure has the significant positive effect on school performance. Now, we know

it is important to have a reasonable method to calculate standard errors.

Now we calculate Conley (1999) standard errors; Based on the description in section 2

and 3, we can get the coordinates for each centroid of 518 school districts. The key step is

how to choose the cutoff points. Since the coordinates range from 0 to 758 horizontally, and

from 0 to 880 vertically, from theory the cutoff points should not bigger than 10; while we

think the number should be larger; we will design two schemes to see how the significance

level changes with respect to its corresponding cutoff points. First, we have 11 pairs of the

cutoff points, which increases by 50 or 100 by each step; and results are in Table C.3 and

C.4. We can see that the overall trend of the standard error magnitudes is decreasing with

increasing of the window size; but we do see some local fluctuations: for example in Table

C.3, for the variable exp10, the Conley standard errors of the estimator of its parameter

are increasing for the first three pairs of cutoff points. At 5% level, the estimators of β1

and β3 are all statistically significant under all the cutoff points; but for β2, its estimator

is not significant at 5% level if the first three pairs are chosen. In Table C.4, the similar

pattern holds for the regression with exp10 replaced by avgexp, while the corresponding

errors are a little inflated. Secondly, we have 7 pairs of points, which are the the 5%, 15%,

25%, 50%, 75%, 95% and 100% percentiles of the coordinates respectively; and results are
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in Table C.5 and C.6. Note that, with each of the pair, we can make that many of the 518

sample covered in the weight calculation. Surprisingly, the similar story happens as the first

scheme; and there is no difference of signifiance between only 5% samples are considered for

positive weights and all samples are included for β1 and β3 at 5% level; while we do see the

difference for β2: more sample considered for positive weights more significant. Considering

each unit of the coordinates is equal to about 2 kilometers, it is not that hard to have a

reasonable choice; there is a catch here: if the decreasing trend of the Conley standard errors

holds, we make them as small as possible: for example, I make a pair of 106, even the β4 can

be statistically significant at 5% level; but we know that number does not make any sense

considering none of the coordinates is greater than 900.

3.4.2 Generalized Least Square (GLS)

The matrix form of equation (3.2.1) [or equations (4.1a, 4.1b)]:

Y = Xβ + C (3.4.1)

Where Y and X are as in equation (3.2.2), C = [C1, C2, · · · , CN ]′.

If we assume the Spatial Autoregressive (SAR) structure in the error term C:

C = ρWC + ε, ε ∼ N(0, INσ
2) (3.4.2)

Where ρ is the unknown spatial correlation parameter and W is the weighting matrix; that

is a conventional assumption in the spatial econometrics literature. Based on theoretical

results of maximum likelihood estimator (MLE) and QMLE in Lee (2004), STATA has the

build-in function of “spreg ml” to implement MLE or QMLE given a weighting matrix.

The first interesting result is that estimates of covariate parameters β are close while the

estimates of spatial correlation parameter ρ are different for different weighting matrix. From

Table C.17 and Table C.18, we can see that the magnitude of ρ estimates under weighting

matrix of contiguity is only one third of it under weighting matrix of inverse distance; if we

investigate the weighting matrix further, we find that contiguity weighting matrix is much
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smaller than the inverse distance weighting matrix element by element; the usual summary

statistics of the correlation matrix of error terms are in Table C.19 and Table C.20.

One strong assumption of MLE or QMLE for SAR model is the homoskedasticity; without

it, MLE (or QMLE) are not consistent. That result has been explored thoroughly in the

literature , such as Arraiz at. el. (2010), Kelejian and Prucha (2010), Lin and Lee (2010).

They all come up with some new methods to cover heteroskedasticity. On the other hand,

the SAR structure might be misspecified. Here we combine the idea of SAR structure and

Conley standard errors, and a new form of standard errors is introduced. From equation

(3.4.2):

C = (IN − ρW)−1 ε

Plug into queation (3.4.1) :

Y = Xβ+ (IN − ρW)−1 ε (3.4.3)

With the homoskedasticity, GLS in euqation (3.4.3) is the same as MLE with ε ∼ N(0,

INσ
2) (or QMLE without normality asumption); that is aslo what “spreg ml” reports in

STATA. Moreover, GLS is also equivalent to the OLS in the following model:

(IN − ρW) Y = (IN − ρW) Xβ+ε (3.4.4)

Since ρ is unkown, by the idea of quasi-GLS, we can replace ρ with its GLS estimator,

ρ̂, in equation (3.4.3). Then we apply Conley’s method to the following model:

Y∗= X∗β+ε (3.4.5)

Where Y∗ = (IN − ρ̂W) Y, X∗ = (IN − ρ̂W) X∗.

Note that OLS in equation (3.4.5) wtih Conley standard errors has at least two advan-

tanges: first, it allows hetroskedastictiy by H-W standard errors and robust to condition in
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equation (3.2.5); second, it is robust to the misspecification of SAR struction. Note that even

if the SAR structure is wrong, this transformation adds one more possible structure for the

error terms; and we know that Quasi-GLS is still consistent as long as E (ε | X) = 0, which

means strictly exogenous covariates. From the results in Table C.13, the heteroskedasticity

does make a difference for magnitude of standard errors of expenditure and enrollment; the

similar patterns for the Conley standard errors as in OLS case. Since the efficiency gain

from Conley’s method only works for high cutoff points in which case correlation is weak,

we can see that the SAR structure is not a good choice for error term.

3.5 Nonlinear Model

3.5.1 Regression of Log Odds Ratio

We follow the model in equation (3.2.7) with the following form :

Yi =
exp(Xiα+ ei)

1 + exp(Xiα+ ei)
, (3.5.1)

One of the advantages of the above equation (3.5.1), compared with equation (3.2.1), is

that logistic function of its right hand side is strictly in the range of (0,1), which will make

prediction in the interval; however, it comes at the expense of the difficulty of estimating

parameters and causal effect. Fortunately, the equation (3.5.1) can be easily transformed as

follows:

log

(
math4

1−math4

)
= α0 + α1 log(avgexp)i + α2 log(enroll)i + α3lunchi + α4 log(scdist)i + ei,

log

(
math4

1−math4

)
= α0 + α1 log(exp10)i + α2 log(enroll)i + α3lunchi + α4 log(scdist)i + ei,

(4.5.1a, 4.5.1b)

The left hand side of the above two equations (4.5.1a, b) are the logarithm transformation

of relative risk of passing the MEAP math test for each school district; it is popularly called as

“log odds ratio” in literature. The right hand sides are exactly the same as in equations (4.1a,
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b). Avoiding abusing of notation, we use α for the parameters of interests; more important

is that interpretations of the parameters of interest are different: the β in equations (4.1a, b)

are the average partial effect (APE) of covariates on pass rate, while α’s in equations (5.1a,

b) are APE of covariates on log ratio of each school’s pass rate to its failure rate. Of course,

we can retrieve the first APE and it is in the next subsection.

First, we regress the log odds ratio under four types of assumptions for the conditional

covariance of ei on the regressors and the estimates are in the first column of Table C.7; as

in previous section, we consider two sets of expenditure variable: avgexp and exp10. The

signs of the estimates are as expected: the effect of expenditure and enroll on the odds ratio

is positive; although the lscdist shows some positive effect, it is not statistically significant

at even 10% level, let alone 5%. we remember those results show up in the level pass rate

regression in the previous section. However, the significance picture is different. Under iid

assumption, increasing avgexp by 1% will increase the odds ratio by about 5% and about 4%

for exp10; and the effects are statistically significant at 5% level. If we correct for arbitrary

correlation among eis or between eis and explanatory variables, the significance claim does

not hold any more; nor do the corrected clusters of ISD and peninsula cases. That gives

us motivation to investigate further about the assumptions for the conditional covariance

structure. On the contrary, the effect of enrollment on pass rate ratio is robust to the

assumptions: if we increase the enrollment by 5%, then the odds ratio will increase by 9%

with either avgexp or exp10 controlled; and the effect is statistically significant at 5% level.

The same pattern holds for lunch: every 1% point increase in the percentage of students in

free lunch or reduced price lunch for a school district, it will lead to reduce the odds ratio

by almost 3%; and the effect is statistically significant at 5% level.

Then, we consider the Conley (1999) standard errors. As in the level pass rate case, it

is important to find an appropriate window size for the weights; we apply the same scheme.

For the first 11 pairs of cutoff points and corresponding results are in Table C.8 and C.9, the

global trend of the magnitude of standard errors for each variable is decreasing with increase
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of cutoff points; while for some variable, like log(exp10), there is some local distortion, and

for other variables, like lunch and log(enroll), the decreasing trend is strict. Given at 5%

level, the statistical significance of OLS estimators of lunch and log(enroll) is robust to the

choice of cutoff points: all of them are significant; while for log(scdist), the OLS estimator

of its parameter is never significant at 5% level even at 1000 of the window size. So we are

very confident to say that there positive effect of enroll on the odds ratio of math test pass

rate, while negative for lunch at 5% significant level; and scdist is not significant factor to

explain the ratio. As for log(exp10), its effect only becomes statistically significant at 5%

level when we set the window at size of 1000; the similar story is told when log(exp10) is

replaced by log(avgexp), whose positive effect on the odds ratio is changed to be significant

at the cutoff points of 600 and 700 and over. When the percentiles are specified for the cutoff

points, judging from the results in Table C.10 and C.11 the same thing happens for lunch,

log(enroll) and log(scdist): the statistical significance of their effects on the odds ratio at

5% level holds the same situation as first scheme of cutoff points. For log(exp10), it effect is

not statistically significant at 5% level even though all the points are included in the weights

to correct for spatial dependence; the case of log(avgexp) is slightly different: when 95% or

above of the sample are included for weights, its effect is significant. The same comment

shows up as for the level test pass rate: as long as we keep the cutoff size large enough, all the

variables are statistically significant factors to explain the ratio although the magnitude of

the window does not make any practical sense. In a word, if we try to explain the odds ratio

of the test instead of rates themselves, only two factors are statistically significant at 5%

level: lunch and log(enroll); the former keeps its significance while the latter is changed-it

replace the expenditure variables as in level pass rates case.

3.5.2 Estimate the APE for Level Rates

As we all know, economists are interested in what a model would suggest for a policy as well

as estimating parameters in the model itself. After we go to the estimation of parameters,
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we notice that one of disadvantages for the nonlinear model as in equation (3.5.1) is that

we cannot estimate APE as smoothly as in linear case, where the estimates of parameters

themselves speak everything; Plus, there is another issue-the difference between APE and

PAE, refer to Wooldridge (2005, 2010) for more detailed discussion about this. In this paper,

we define the APE with respect to xj evaluated at X as follows:

APEj (X) = αj

∫ +∞

−∞

exp(Xα+ e)

(1 + exp(Xα+ e))2
f(e)de, (3.5.2)

Note that equation (3.5.2) follows the idea of average structure function(ASF) in Blundell

and Powell (2003); one of the advantages of ASF is that it can specify partial effect with

respect to individual change of X, not just average. Refer to equations (5.1a, b), Xα =

α0 + α1 log(avgexp) + α2 log(enroll) + α3lunch+ α4 log(scdist); for example, if we want to

know the expenditure effects on school performance, then APE with respect to log(avgexp) is

of our interest; by equation (3.5.2), APE1 (X) = α1
∫ +∞
−∞

exp(Xα+e)

(1+exp(Xα+e))2
f(e)de. The notion

of that is the partial effect defined in equation (3.2.10) with the heterogeneity averaged out

over its whole population. Let α̂ be parameter estimator and êi be the residuals from log

odds ratio OLS regression, it is straight forward to estimate the APE this way:

ÂPEj (X) = α̂j
1

N

N∑
i=1

exp(Xα̂+ êi)

(1 + exp(Xα̂+ êi))
2
, (3.5.3)

The idea behind this method is the method of moment; it can also be understood as

Duan’s(1983) swearing estimator. But we know, we do not need to assume the independence

of Xi and ei, which can be an attractive feature. As for the asymptotic variance of ÂPEj (X),

it can be obtained by delta method, which is conveniently implemented using the method

of moments approach in Newey and McFadden (1994). Bootstrapping methods can also be

readily applied.

Continuing the avgexp example, we can estimate the APE at the mean value of all X

as .1151 with standard error of .0663. The results for other explanatory variables evaluated

at mean and 25%, 50%, 75%, 95% percentiles are in Table C.12. We can see that the

magnitudes of the APEs do correlate to the values at which the X are evaluated; take the
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avgexp example, the trend of its APE is decreasing with higher percentile of X and the

difference of APE between 95% and 25% is about 2%: the average expenditure in the lower

end of school districts kicks in at a higher rate than in the higher ones. This coincides the

results in Papke (2008) who divides the sample into two groups by the median of average

expenditure; thanks to the nonlinear model, we do not need to split the data and we can

investigate it in an even finer setting: technically, we can get the APE for any value of X,

which definitely is attractive to the practitioners. We can also find the similar trend for

APEs of lunch program and enrollment albeit the change is smaller. As for inference, the

APEs of enrollment and lunch are statistically significant at 5% level when avgexp is used to

control for expenditure, whose significance level is 10%; when the expenditure of year 2010

is used, the significance story for enrollment and lunch is the same while the expenditure is

not statistically significant at 10% level any longer. This is another difference compared with

line model: if there is a temporally lagged effect for the expenditure, the linear model cannot

catch it while nonlinear does. To dig into the question deeper, we compare the estimates of

linear and nonlinear models and put the results in figure C.10-C.12. First, for the average

expenditure, the linear estimate is about 4 ∼ 6% higher than nonlinear ones, with the gap

wider for the higher spending school districts. But for enrollment, the trend is reversed:

the effect of enrollment estimated in the nonlinear model is higher than in the linear one,

although the difference is about half percentage and the gap shrinks with more students

enrolled. Positive effect of enrollment coincides with the “peer effect” in Lin (2010). And

for free lunch program, its effects on school performance both in linear model and nonlinear

are almost the same.

3.6 Conclusions

We have investigated the effects of Proposal A in Michigan on school performance in a broader

setting compared with the previous literature, such as the nonlinear model, the interaction

between K12 public schools and colleges; To control the spatial dependence among all school
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districts, we adopt the method in Conley (1999) and explore the effect of different cutoff

points. Considering the statistical significance varies with standard errors, we find that the

OLS estimates in the linear level test rates are statistically significant at 5% level given a

reasonable window size; however, the picture is different for the nonlinear model, which is

the linear in the log odds ratio of the level test rates: even for a very large cutoff points,

the spending effect is not statistically significant at 5% level any more. What’s more, after

transformed back from log odds ratio into level rates, both the magnitudes and statistical

significance of APEs are changed; one of the advantages of the nonlinear model is that it

can catch the effect variation with specific part of population. Also, the difference between

some estimates from the linear and nonlinear models is not negligible, this raises a question

about issues of specifications of regression functional form.

As for the future work, the interaction between public schools and charter schools, as

in Imberman(2011), is an interesting extension. Also, to make use of panel data is also a

promising direction.
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Appendix A

PROOF OF THEOREM 1: Note that here we prove the 2SLS case; and OLS is special

case. Abrevaya (2002) mentions how the delta method can be used for the Duan estimator,

but considers the case where U , X are independent, which is not necessarily in our case

Let

θ = (β′, η)′, θ̂ = (β̂
′
, η̂)′.

√
N(θ̂ − θ) =

√
N

β̂ − β
η̂ − η

 =

 N−1/2∑N
i=1 A−1Z′iUi

N−1/2∑N
i=1 (PSi + exp (Ui)− η)

+ op(1)

≡ N−1/2
N∑
i=1

Si

Qi

+ op(1)

where

A ≡ (C′D−1C)−1C′D−1

C ≡ E(Z′iXi), D ≡ E(Z′iZi), P ≡ E(Xi exp(Ui))

Si ≡ A−1Z′iUi

Qi ≡ PSi + exp (Ui)− η

So by central limit theorem, this finishes the proof. The above process is similar to the

solution to question 12.17 in Wooldridge (2010). For details, refer to Wooldridge (2011).
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PROOF OF LEMMA 1: From (1.4.3), and by monotonicity of logarithmic function,

exp(−CM−s + GM (x)πM )− exp(GM (x)πM )

< r(x)− exp(GM (x)πM ) (A.1)

< exp(CM−s + GM (x)πM )− exp(GM (x)πM ),

By the mean value theorem applied to the lower and upper bound:

exp(−CM−s + GM (x)πM )− exp(GM (x)πM )

= −CM−s exp(ξ1), ξ1 ∈ [−CM−s + GM (x)πM ,GM (x)πM ]

exp(CM−s + GM (x)πM )− exp(GM (x)πM )

= CM−s exp(ξ2), ξ2 ∈ [GM (x)πM , CM−s + GM (x)πM ]

So, for the πM that satisfies (A.1), we have:

sup
x∈Ξ

∣∣∣r(x)− exp(GM (x)πM )
∣∣∣ < CM−s,

So,

E
(
r(Xi)− exp(GM (Xi)πM )

)2
≤ CM−2s

Note that:

E

(
Yi

exp(Xiβ)
− exp(GM (Xi)π)

)2

= E

[
Var

(
Yi

exp(Xiβ)

∣∣∣∣Xi

)]
+ E

(
r(Xi)− exp(GM (Xi)π)

)2

Considering equation (1.4.5) and the first term in the above equation is constant w.r.t π, we

get

π∗M = arg min
π

E
(
r(Xi)− exp(GM (Xi)π)

)2
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So,

E
(
r(Xi)− exp(GM (Xi)π

∗
M )
)2
≤ E

(
r(Xi)− exp(GM (Xi)π)

)2
≤ CM−2s

Hence, ∣∣∣r(x)− exp(GM (x)π∗M )
∣∣∣ = O(CM−s)

PROOF OF LEMMA 2:

this proof drives heavily from proof of Lemma 2 in Hirano et.al.(2003) In the sequel we

write M for M(N).By definition of GM (x),

ŜM =
1

N

N∑
i=1

GM (Xi)G
M (Xi)

′

has expecatation equal to IM .By Newey(1997), it satisfies

∥∥∥ŜM − IM∥∥∥ = Op

(
ζ(M)

√
M

N

)
,

which converges to zero in probability by condition (5). Hence the probability that the

smallest eigenvalue of ŜM is larger than 1/2 goes to one. Let

LN (π) = −
N∑
i=1

(
Yi

exp(Xiβ̂)
− exp(GM (Xi)π)

)2

Next, we will show that

1

N

∂LN
∂π

(π∗M ) = Op

(√
M

N

)
, (A.2)
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Consider

E

∥∥∥∥ 1

N

∂LN
∂π

(π∗M )

∥∥∥∥2

=
1

N
trE

( Yi

exp(Xiβ̂)
− exp(GM (Xi)π

∗
M )

)2

exp(2GM (Xi)π
∗
M )GM (Xi)

′GM (Xi))


=

1

N
trE

{[
Var

(
Yi

exp(Xiβ)

∣∣∣∣Xi

)
+
(
r(Xi)− exp(GM (Xi)π

∗
M )
)2

+ op(1)

]

exp(2GM (Xi)π
∗
M )GM (Xi)

′GM (Xi)
}

≤ C

N
trE

[
GM (Xi)

′GM (Xi)
]

≤ CM

N

and Markov inequality implies (A.2). Next, let

η = inf
x∈Ξ,M

(
2 exp(GM (x

)
π∗M )− r(x)) exp(2GM (x)π∗M ))

,which by assumptions and Lemma 1 is positive. For any ε > 0, choose C such that for N

large enough

P

(∥∥∥∥ 1

N

∂LN
∂π

(π∗M )

∥∥∥∥ < ηC

√
M

N

)
≥ 1− ε

2
(A.3)

Note that,

sup

x∈Ξ,|π−π∗|<ηC
√
M
N

∣∣∣exp(2GM (x)π)− exp(2GM (x)π∗M )
∣∣∣

≤ sup

x∈Ξ,|π−π∗|<ηC
√
M
N

|CGM (x)(π − π∗)|

≤ ζ(M)C

√
M

N

which goes to zero, so that for large enough N
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inf
x∈Ξ,‖π−π∗‖<ηC

√
M
N

(
2 exp(GM (x)π)− r(x)) exp(2GM (x)π)

)
≥ 4η

Choose N large enough so that this inequality holds. that (A.3) holds with probability

at least 1 − ε/2, and the the probability that the smallest eigenvalue of ŜM is larger than

1/2 is at least 1 − ε/2. Then the probability that both of these hold is at least 1 − ε, then

for every π with ‖π − π∗‖ =
√

M
N , a second order expansion gives

1

N
LN (π) =

1

N
LN (π∗M )+

1

N

∂LN
∂π

(π∗M )(π−π∗)+
1

2N
(π−π∗)′ ∂

2LN
∂π∂π′

(π̄)(π−π∗), (A.4)

where ‖π̄ − π∗‖ ≤ ‖π − π∗‖ =
√

M
N . We have

1

2N

∂2LN
∂π∂π′

(π̄)

= − 1

2N

N∑
i=1

(
2 exp(GM (Xi)π̄)− Yi

exp(Xiβ̂)

)
exp(GM (Xi)π̄)GM (Xi))

′GM (Xi))

= − 1

2N
E
[(

2 exp(GM (Xi)π̄)− r(Xi)
)

exp(GM (Xi)π̄)GM (Xi))
′GM (Xi))

]
+ op(1)

≤ −2ηŜM + op(1)

with its eigenvalues bounded away from zero in absolute value by η. Then, rearranging (A.4)

and using the triangle inequality, with probability greater than 1− ε, for‖π − π∗‖ =
√

M
N ,

1

N
LN (π)− 1

N
LN (π∗M ) ≤ 1

N

∂LN
∂π

(π∗M )(π − π∗)− η‖π − π∗‖2 + op(1)

≤
∥∥∥∥ 1

N

∂LN
∂π

(π∗M )

∥∥∥∥ ‖π − π∗‖ − η‖π − π∗‖2 + op(1)

=

(∥∥∥∥ 1

N

∂LN
∂π

(π∗M )

∥∥∥∥− η
√
M

N

)
‖π − π∗‖+ op(1)

< 0
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That is, we have with probability greater than 1 − ε, 1
NLN (π) < 1

NLN (π∗M ) for all π

with ‖π − π∗‖ =
√

M
N Since LN (π) is continuous, it has a maximum on the compact set

π : ‖π − π∗‖ ≤
√

M
N . By the last inequality, this maximum must occur for some π̂M with

‖π̂M − π∗‖ <
√

M
N . Hence the first order conditions are satisfied at π̂M and by concavity

of LN (π), π̂M maximize LN (π) over all of GM . Because the probability of this is greater

than 1−ε with ε arbitrary, we conclude that π̂M exists and satisfies the first order conditions

with probability approaching one, and that ‖π̂M(N) − π∗M(N)
‖ = Op

(√
M(N)
N

)
.

PROOF OF LEMMA 3:

√
NV

−1/2
M

(
r̂(x)− r(x)

)
=
√
NV

−1/2
M

(
r̂(x)− exp(GM (x)π∗M )

)
+
√
NV

−1/2
M

(
exp(GM (x)π∗M )− r(x)

)
≡ T1 + T2, (A.5)

By mean value theorem:

T1 = V
−1/2
M

√
N
(

exp(GM (x)π̂M )− exp(GM (x)π∗M )
)

= V
−1/2
M GM (x) exp(GM (x)π̌M )

√
N
(
π̂M − π∗M

)
, (A.6)

From equation (1.4.4), we know:

1

N

N∑
i=1

(
Yi

exp(Xiβ̂)
− exp(GM (Xi)π̂M )

)
GM (Xi)

′ exp(GM (Xi)π̂M ) = 0
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Taylor expansion around π∗M for the left hand side of the above equation:

1
N

∑N
i=1

(
Yi

exp(Xiβ̂)
− exp(GM (Xi)π

∗
M )

)
GM (Xi)

′ exp(GM (Xi)π
∗
M ) +

1
N

∑N
i=1

(
Yi

exp(Xiβ̂)
− 2 exp(GM (Xi)π̃M )

)
GM (Xi)

′GM (Xi) exp(GM (Xi)π̃M )
(
π̂M − π∗M

)
= 1

N

∑N
i=1

(
Yi

exp(Xiβ̂)
− Yi

exp(Xiβ)

)
GM (Xi)

′ exp(GM (Xi)π
∗
M ) +

1
N

∑N
i=1

(
Yi

exp(Xiβ)
− r(Xi)

)
GM (Xi)

′ exp(GM (Xi)π
∗
M ) +

1
N

∑N
i=1

(
r(Xi)− exp(GM (Xi)π

∗
M )
)

GM (Xi)
′ exp(GM (Xi)π

∗
M ) +

1
N

∑N
i=1

(
Yi

exp(Xiβ̂)
− exp(GM (Xi)π̃M )

)
GM (Xi)

′GM (Xi)
′ exp(GM (Xi)π̃M )

(
π̂M − π∗M

)
− 1
N

∑N
i=1 exp(GM (Xi)π̃M )GM (Xi)

′GM (Xi) exp(GM (Xi)π̃M )
(
π̂M − π∗M

)
= 0

So

√
N
(
π̂M − π∗M

)
=

{
1
N

∑N
i=1 exp(GM (Xi)π̃M )GM (Xi)

′GM (Xi) exp(GM (Xi)π̃M )−

1
N

∑N
i=1

(
Yi

exp(Xiβ̂)
− exp(GM (Xi)π̃M )

)
GM (Xi)

′GM (Xi) exp(GM (Xi)π̃M )}−1

{
1√
N

∑N
i=1

(
Yi

exp(Xiβ̂)
− Yi

exp(Xiβ)

)
GM (Xi)

′ exp(GM (Xi)π
∗
M )+

1√
N

∑N
i=1

(
Yi

exp(Xiβ)
− r(Xi)

)
GM (Xi)

′ exp(GM (Xi)π
∗
M )+

1√
N

∑N
i=1

(
r(Xi)− exp(GM (Xi)π

∗
M )
)

GM (Xi)
′ exp(GM (Xi)π

∗
M )
}

≡ {E− F}−1{G + H + J}
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So from equation (A.6),

T1 = V
−1/2
M GM (x) exp(GM (x)π̄M )

√
N
(
π̂M − π∗M

)
= GM (x) exp(GM (x)π̌M ){E− F}−1{G + H + J},

Let

ΣM ≡ E[GM (Xi)
′GM (Xi)

(
Yi

exp(Xiβ)
− r(Xi)

)2

exp(2GM (Xi)π
∗
M )],

QM ≡ E[GM (Xi)
′GM (Xi) exp(2GM (Xi)π

∗
M )],

VM (x) ≡ GM (x)Q−1
M ΣMQ−1

M (x)GM (x)′ exp(2GM (x)π∗M ).

so

T1 = V
−1/2
M GM (x) exp(GM (x)π̆M ){E− F}−1{G + H + J}

Note that

‖E‖ =

∥∥∥∥∥∥ 1

N

N∑
i=1

GM (Xi)
′GM (Xi) exp(2GM (Xi)π̃M )

∥∥∥∥∥∥ ≤ Op(M
2)

‖F‖ ≤

∥∥∥∥∥∥ 1

N

N∑
i=1

(
Yi

exp(Xiβ̂)
− exp(GM (Xi)π̃M )

)
exp(GM (Xi)π̃M )

∥∥∥∥∥∥∥∥∥∥∥∥
N∑
i=1

GM (Xi)
′GM (Xi)

∥∥∥∥∥∥ ≤ Op(M
2−s)

‖G‖ ≤

∥∥∥∥∥∥ 1√
N

N∑
i=1

(
Yi

exp(Xiβ̂)
− Yi

exp(Xiβ)

)
exp(GM (Xi)π

∗
M )

∥∥∥∥∥∥
∥∥∥∥∥∥
N∑
i=1

GM (Xi)
′

∥∥∥∥∥∥ ≤ Op(M)

‖J‖ ≤

∥∥∥∥∥∥ 1√
N

N∑
i=1

(
r(Xi)− exp(GM (Xi)π

∗
M )
)

exp(GM (Xi)π
∗
M )

∥∥∥∥∥∥
∥∥∥∥∥∥
N∑
i=1

GM (Xi)
′

∥∥∥∥∥∥
≤ Op(N

1/2M1−s)
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Since s > 2, so ‖F‖ p→ 0 as M −→∞. Hence {E−F}−1 is equivalent to E−1 as M −→∞;

while

‖E−1G‖ ≤ ‖E−1‖‖G‖ ≤ Op(M
−2)Op(M) = Op(M

−1)

‖E−1J‖ ≤ ‖E−1‖‖J‖ ≤ Op(M
−2)Op(N

1/2M−s) = Op(N
1/2M−(s+2))

Here, we assume N1/2M−(s+1) −→ 0 as N −→∞; so

T1

= V
−1/2
M GM (x) exp(GM (x)π̄M ){E}−1{H}+ op(1)

= V
−1/2
M GM (x) exp(GM (x)π̄M ) 1

N

N∑
i=1

exp(GM (Xi)π̃M )GM (Xi)
′GM (Xi) exp(GM (Xi)π̃M )


−1

 1√
N

N∑
i=1

(
Yi

exp(Xiβ)
− r(Xi)

)
GM (Xi)

′ exp(GM (Xi)π
∗
M )

+ op(1)

= V
−1/2
M GM (x) exp(GM (x)π̄M )Q−1 × 1√
N

N∑
i=1

(
Yi

exp(Xiβ)
− r(Xi)

)
GM (Xi)

′ exp(GM (Xi)π
∗
M )

+ op(1)

Next, Let

ε = [ε1, · · · , εN ]′,

εi =
Yi

exp(Xiβ)
− r(Xi),

O(π̃M ) =
1√
N

[exp(GM (X1)π̃M )GM (X1)′, . . . , exp(GM (XN )π̃M )GM (XN )′],

ZiN = V
−1/2
M GM (x) exp(GM (x)π̄M ){O(π̃M )O(π̃M )′}−1O(π∗M )iεi/

√
N

75



so that

N∑
i=1

ZiN = V
−1/2
M GM (x) exp(GM (x)π̄M ){O(π̃M )O(π̃M )′}−1O(π∗M )ε/

√
N

Note that for each N , ZiN (i = 1, · · · , N) is i.i.d. Also, E[ZiN ] = 0,
∑N
i=1E[Z2

iN ] = 1; and

∀ε > 0

NE[1(|ZiN | > ε)Z2
iN ] = Nε2E[1(|ZiN/ε| > 1)(ZiN/ε)

2]

≤ Nε2E[(ZiN/ε)
4]

≤ Nε2‖V −2
M ‖‖G

M (x) exp(GM (x)π̄M )‖2E[‖O(π∗M )‖2E[ε4i |xi]]/(N
2ε4)

≤ Cζ0(M)2M/N −→ 0

Then by Lindbergh-Feller central limit theorem,
∑N
i=1 ZiN

d→ N(0, 1),i.e.

T1
d→ N(0, 1)

As for the second term, T2, in equation(A.5)∣∣∣√NV −1/2
M

(
exp(GM (x)π∗M )− r(x)

)∣∣∣ ≤ ∣∣∣√NV −1/2
M

∣∣∣ ∣∣∣(exp(GM (x)π∗M )− r(x)
)∣∣∣

≤ O(
√
NM−(2+s)) −→ 0

So,
√
NV

−1/2
M

(
r̂(x)− r(x)

)
d→ N(0, 1)

QED.

PROOF OF THEOREM 3:
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Note that

̂CAPEj(x)− CAPEj(x)

= β̂j exp(xβ̂) exp(GM (x)π̂M )− βj exp(xβ)r(x)

= β̂j exp(xβ̂) exp(GM (x)π̂M )− β̂j exp(xβ̂)r(x)

+β̂j exp(xβ̂)r(x)− βj exp(xβ)r(x)

= β̂j exp(xβ̂)
(
r̂(x)− r(x)

)
+ r(x)

(
β̂j exp(xβ̂)− βj exp(xβ)

)
From result in theorem 1, we know

√
N(β̂j − βj) = Op(1); so by delta method

√
N
(
β̂j exp(xβ̂)− βj exp(xβ)

)
= Op(1);

so ∥∥∥√NV −1/2
M r(x)

(
β̂j exp(xβ̂)− βj exp(xβ)

)∥∥∥ ≤ C
∥∥∥V −1/2

M

∥∥∥ ≤ CM−1/2 −→ 0

While From Lemma 3 and Slutsky theorem

√
NV

−1/2
M β̂j exp(xβ̂)

(
r̂(x)− r(x)

)
d→ βj exp(xβ)N(0, 1)

Hence
√
NV

−1/2
M

(
̂CAPEj(x)− CAPEj(x)

)
d→ βj exp(xβ)N(0, 1)

QED.

PROOF OF COROLLARY: Note that,

√
N
(

̂CAPEj(x)− CAPEj(x)
)

=
√
Nβ̂j exp(xβ̂)r̂(x)

From theorem 1, we know that
√
Nβ̂j =

√
N(β̂j − βj)

d→ N(0, `Ω`′), where ` =

(0, · · · , 1, 0, · · · , 0). So:

√
N
(

̂CAPEj(x)− CAPEj(x)
)

d→ N(0, r2(x) exp(2xβ)`Ω`′)

QED.
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Appendix B

Tables and Figures

Table B.1: Estimation results: xtreg

Variable Coefficient (Std. Err.)

lfare -1.163 (0.023)

concen 0.145 (0.040)

y98 0.045 (0.006)

y99 0.104 (0.006)

y00 0.197 (0.006)

Intercept 11.769 (0.116)
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Table B.2: Simulation results where Vit has Gamma distribution

a = 0 a = .01

b = .01 b = .05 b = .1 b = .01 b = .05 b = .1

β̂lfe .0934 .0675 .0350 .0939 .0666 .0315

(.0289)* (.0283) (.0284) (.0290) (.0230) (.0294)

β̂pqml .1001 .0988 .0967 .1011 .1002 .0994

(.0415) (.0404) (.0421) (.0410) (.0411) (.0439)

se(β̂lfe) .0286 .0287 .0291 .0292 .0294 .0296

se(β̂pqml) .0388 .0388 .0397 .0390 .0393 .0405

ρX,V ∗ ∗ .0008 -.0004 -.0003 .0000 -.0004 -.0014

ρX,lv ∗ ∗ -.0057 -.0250 -.0450 -.0046 -.0263 -.0523

mean(lv) -.5781 -.5767 -.5800 -.5836 -.5855 -.5884

sd(lv) 1.2816 1.2839 1.2914 1.2919 1.2945 1.3021

* Monte Carlo Standard Deviations in parentheses

** ρX,V = Corr(X, V ), ρX,lv = Corr(X, lv),lv = log(V )

Table B.3: Simulation results where Vit has Gamma distribution(Continued)

a = .05 a = .1

b = .01 b = .05 b = .1 b = .01 b = .05 b = .1

β̂lfe .0921 .0630 .0222 .0922 .0495 .0032

(.0327) (.0319) (.0318) (.0365) (.0376) (.0373)

β̂pqml .0997 .1023 .0998 .0996 .0972 .1006

(.0449) (.0454) (.0454) (.0484) (.0471) (.0516)

se(β̂lfe) .0320 .0321 .0327 .0374 .0380 .0387

se(β̂pqml) .0414 .0421 .0427 .0448 .0453 .0467

ρX,V -.0000 .0004 .0004 -.0001 -.0011 .0002

ρX,lv -.0057 -.0277 -.0575 -.0062 -.0350 -.0672

mean(lv) -.6145 -.6138 .6169 -.6572 -.6592 -.6604

sd(lv) 1.3358 1.3398 1.3492 1.4140 1.4197 1.4309
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Table B.4: Special case

a=.1,b=0

N 500 1000 2000

β̂lfe .0997 .1004 .1006

(.0372) (.0266) (.0185)

β̂pqml .1017 .1021 .1011

(.0461) (.0334) (.0248)

se(β̂lfe) .0375 .0266 .0189

se(β̂pqml) .0445 .0329 .0240

ρx,v .0001 .0005 .0006

ρx,lv -.0003 .0009 .0004

mean(lv) -.6574 -.6558 -.6558

sd(lv) 1.4120 1.4126 1.4134

Table B.5: Simulation results where Vit has log-normal distribution

a=-.125, b=.5 a=-.5, b=1

N 500 1000 2000 500 1000 2000

β̂lfe 0.10001 0.09990 0.09991 0.09827 0.10144 0.10127

(.01998) (.01411) (.01015) (.04807) (.03315) (.02410)

β̂pqml 0.09837 0.09655 0.09834 0.07994 0.09138 0.09515

(.04476) (.03261) (.02412) (.13131) (.11863) (.09854)

se(β̂lfe) 0.01969 0.01396 0.00987 0.04838 0.03424 0.02418

se(β̂pqml) 0.03758 0.02778 0.02084 0.08555 0.07361 0.05789

ρX,V -0.0012 -0.0010 -0.0005 -0.0004 0.00025 0.00051

ρX,lv 0.00003 0.0003 -0.0003 -0.0011 0.00088 0.00074

mean(lv) -0.1249 -0.1254 -0.1251 -0.5004 -0.5001 -0.4998

sd(lv) 0.52993 0.5305 0.53047 1.2255 1.2254 1.2243
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Table B.6: Vit = exp(a ∗ x2
it + b ∗ xit ∗ zit) with N = 500

a=-.5, b=1, N=500

ρ∗ -0.95 -0.5 -0.1 0.1 0.5 0.95

β̂lfe 0.10010 0.09669 0.09978 0.10090 0.09768 0.10261

(.04456) (.04563) (.04795) (.04927) (.05510) (.06163)

β̂pqml 0.07839 0.08340 0.08476 0.08303 0.08036 0.08497

(.10740) (.13876) (.12536) (.13958) (.12433) (.13743)

se(β̂lfe) 0.04448 0.04558 0.04751 0.04909 0.05334 0.06217

se(β̂pqml) 0.06785 0.08034 0.08202 0.08652 0.08887 0.09637

ρx,v -0.00018 -0.00247 0.00054 0.00014 -0.00177 0.00190

ρx,lv -0.00005 -0.00268 -0.00007 0.00087 -0.00163 0.00235

mean(lv) -0.49941 -0.49949 -0.49859 -0.49969 -0.49972 -0.49948

sd(lv) 1.22230 1.22259 1.22251 1.22435 1.22324 1.22320

*zi ∼ N(I5,Σ), ρ = Corr(zit, zit+1)

Table B.7: Vit = exp(a ∗ x2
it + b ∗ xit ∗ zit) with N = 1000

a=-.5, b=1, N=1000

ρ -0.95 -0.5 -0.1 0.1 0.5 0.95

β̂lfe 0.09984 0.09959 0.09845 0.10023 0.10137 0.10145

0.03032 0.03281 0.03553 0.03549 0.03643 0.04594

β̂pqml 0.08465 0.08509 0.08018 0.08802 0.08665 0.08614

0.10493 0.09423 0.10190 0.12003 0.11121 0.11349

se(β̂lfe) 0.03152 0.03231 0.03370 0.03469 0.03764 0.04395

se(β̂pqml) 0.06084 0.06522 0.06652 0.07327 0.07415 0.08087

ρx,v -0.00129 0.00053 -0.00198 -0.00088 0.00101 -0.00066

ρx,lv -0.00039 -0.00024 -0.00124 0.00013 0.00090 0.00087

mean(lv) -0.50118 -0.49880 -0.49996 -0.49942 -0.49900 -0.50027

sd(lv) 1.22425 1.22294 1.22432 1.22375 1.22204 1.22413
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Table B.8: Simulation results with Vit = exp(−.125X
2
i + .5Xi ∗ zit)

N 2000 1000 500 250 100

β̂pqml 0.0998 0.1001 0.1001 0.0998 0.1001

( 0.0070) (0.0095) (0.0132) (0.0183) (0.0278)

β̂lfe .10004 .09997 .09989 .09995 .09991

( 0.0025) (0.0035) (0.0050) (0.0071) (0.0112)

β̂gmm 0.1001 0.1003 0.1001 0.1002 0.1003

(0.0042) ( 0.0058) (0.0079) (0.0107) (0.0168)

se(β̂pqml) 0.0074 0.0102 0.0142 0.0205 0.0384

se(β̂lfe) 0.0025 0.0035 0.0050 0.0070 0.0110

se(β̂gmm) 0.0044 0.0057 0.0073 0.0094 0.0136

Table B.9: Simulation results for four estimators

N 2000 1000 500 250 100

β̂pqml 0.0999 0.1002 0.1003 0.0995 0.999

( 0.0068) (0.0093) (0.0146) (0.0179) (0.0265)

β̂lfe .10002 .09989 .09998 .09992 .09995

( 0.0027) (0.0038) (0.0052) (0.0069) (0.0120)

β̂gmm 0.9999 0.1002 0.9998 0.1003 0.1004

(0.0044) ( 0.0055) (0.0080) (0.0110) (0.0172)

β̂oiv 0.1001 0.9999 0.1001 0.9998 0.1006

(0.0026) ( 0.0038) (0.0066) (0.0077) (0.0118)

se(β̂pqml) 0.0077 0.0110 0.0139 0.0207 0.0379

se(β̂lfe) 0.0028 0.0039 0.0052 0.0073 0.0109

se(β̂gmm) 0.0045 0.0060 0.0071 0.0090 0.0140

se(β̂oiv) 0.0024 0.0034 0.0053 0.0069 0.0106
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Table B.10: Summary statistics

Obs Mean Std. Dev. Min Max

passen 4596 636.8242 812 2 8497

lfare 4596 5.095601 0.4363999 3.610918 6.257668

concen 4596 0.6101149 0.196435 0.1605 1

Table B.11: Dependent variable, passen

lfare concen y88 y89 y00

β̂pqml -0.8658 -0.1289 0.0427 0.1093 0.1899

β̂lfe -1.1632 0.1455 0.0454 0.1038 0.1970

β̂gmm -0.8515 -0.1450 0.0431 0.1081 0.1911

se(β̂pqml) 0.0366 0.0544 0.0037 0.0054 0.0085

se(β̂lfe) 0.1101 0.0890 0.0049 0.0063 0.0101

se(β̂gmm) 0.0336 0.0538 0.0035 0.0049 0.0069
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Figure B.1: Bias of LFE and PQML with change of ρ
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Figure B.2: Std. error of LFE and PQML with change of ρ
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Figure B.3: Bias of LFE and PQML with change of ρ, N=1000
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Figure B.4: Std. error of LFE and PQML with change of ρ, N=1000
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Proofs

PROOF OF Theorem 2.4.1

√
N

(
β̂ − β
η̂ − η

)
=

(
N−1/2∑N

i=1 A−1Vi

N−1/2
∑N
i=1(PSi + Ui − η)

)
+ op(1)

≡ N−1/2
N∑
i=1

(
Si
Qi

)
+ op(1)

Where

Vi = Yi − p(Xi, β)ni

A =E(ni∇βp(Xi, β)′W(Xi, β)∇βp(X
i
, β))

p(Xi, β) =

[
exp(Xi1β)∑T
t=1 exp(Xitβ)

, · · · , exp(XiTβ)∑T
t=1 exp(Xitβ)

]′

W(Xi, β) =

[
diag

(
exp(Xi1β)∑T
t=1 exp(Xitβ)

, · · · , exp(XiTβ)∑T
t=1 exp(Xitβ)

)]−1

P =E(X
′
itUi), Qi = PSi + Ui − η

PROOF OF LEMMA 2.4.3: From equation (1.4.3), and by monotonicity of logarith-

mic function,

exp(−CK−s + GM (X)πM )− exp(GM (X)πM )

< r(X))− exp(GM (X)πM )

< exp(CK−s + GM (X)πM )− exp(GM (X)πM ),
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By the mean value theorem applied to the lower and upper bound:

exp(−CK−s + GM (X)πM )− exp(GM (X)πM )

= −CK−s exp(ξ1), ξ1 ∈ [−CK−s + GM (X), GM (X)πM ]

exp(CK−s + GM (X)πM )− exp(GM (X)πM )

= CK−s exp(ξ2), ξ2 ∈ [GM (X)πM , CK−s + GM (X)]

So, for the πM that satisfies equation (1.4.3), we have:

sup
X∈Ξ

|r(X)− exp(GM (X)πM )| < CK−s,

So,

E
(
r(Xi)− exp(GM (Xi)πM )

)2 ≤ CK−2s

Note that:

E
T∑
t=1

(
Yit

exp(xitβ)
− exp(GM (Xi)π)

)2

=
T∑
t=1

Var

(
Yit

exp(Xitβ)

∣∣∣∣Xi

)
+ TE

(
r(Xi)− exp(GM (Xi)π)

)2

So,

πM = arg min
π

E
(
r(Xi)− exp(GM (Xi)π)

)2

So,

E
(
r(Xi)− exp(GM (Xi)π

∗
M )
)2 ≤ E

(
r(Xi)− exp(GM (Xi)π)

)2 ≤ CK−2s

So, similarly, ∣∣r(Xi)− exp(GM (Xi)π
∗
M

∣∣ = Op(CK
−s)
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PROOF OF LEMMA 2.4.4: this proof drives heavily from proof of Lemma 2 in

Hirano et.al.(2003) In the sequel we write M for M(N). By definition of GM (X),

ŜM =
1

N

N∑
i=1

GM (Xi)G
M (Xi)

′

has expecatation equal to IM . By Newey (1997), it satisfies

∥∥∥ŜM − IM∥∥∥ = Op

(
ζ(M)

√
M

N

)
,

which converges to zero in probability by condition (iv). Hence the probability that the

smallest eigenvalue of ŜM is larger than 1/2 goes to one. Let

LN (π) = −
N∑
i=1

T∑
t=1

(
Yit

exp(Xitβ̂)
− exp(GM (Xi)π)

)2

Next, we will show that

1

N

∂LN
∂π

(π∗M ) = Op

(√
M

N

)
, (B.1)

Consider

E

∥∥∥∥ 1

N

∂LN
∂π

(π∗M )

∥∥∥∥2

=
1

N
tr E

 T∑
t=1

(
Yit

exp(Xitβ̂)
− exp(GM (Xi)π

∗
M )

)2

exp(2GM (Xi)π
∗
M )GM (Xi)

′GM (Xi)


=

T

N
tr E

{[
Var

(
Yit

exp(Xitβ)
|Xi

)
+
(
r(Xi)− exp(GM (Xi)π

∗
M )
)2

+ op(1)

]

exp(2GM (Xi)π
∗
M )GM (Xi)

′GM (Xi)
}

≤ C

N
tr E

[
GM (Xi)

′GM (Xi)
]

≤ CK

N
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and Markov inequality implies (B.1). Next, let

η = inf
X∈Ξ,M

(
2 exp(GM (X)π∗M )− r∗(X)) exp(2GM (X)π∗M )

)
,which by assumptions and Lemma 1 is positive. For any ε > 0, choose C such that for N

large enough

P

(∥∥∥∥ 1

N

∂LN
∂π

(π∗M )

∥∥∥∥ < ηC

√
M

N

)
≥ 1− ε

2
(B.2)

Note that,

sup

X∈Ξ,|π−π∗|<ηC
√
M
N

∣∣∣exp(2GM (X)π)− exp(2GM (X)π∗M )
∣∣∣

≤ sup

X∈Ξ,|π−π∗|<ηC
√
M
N

|CK(X)(π − π∗)|

≤ ζ(M)C

√
M

N

which goes to zero,so that for large enough N

inf
X∈Ξ,‖π−π∗‖<ηC

√
M
N

(
2 exp(GM (X)π)− r∗(X)) exp(2GM (X)π)

)
≥ 4η

Choose N large enough so that this inequality holds. that (B.2) holds with probability

at least 1 − ε/2, and the the probability that the smallest eigenvalue of ŜM is larger than

1/2 is at least 1 − ε/2. Then the probability that both of these hold is at least 1 − ε, then

for every π with ‖π − π∗‖ =
√

M
N , a second order expansion gives

1

N
LN (π) =

1

N
LN (π∗M ) +

1

N

∂LN
∂π

(π∗M )(π−π∗) +
1

2N
(π−π∗)′ ∂

2LN
∂π∂π′

(π)(π−π∗) (B.3)
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where ‖π − π∗‖ ≤ ‖π − π∗‖ =
√

M
N . We have

1

2N

∂2LN
∂π∂π′

(π)

= − 1

2N

N∑
i=1

T∑
t=1

(
2 exp(GM (Xi)π)− Yit

exp(Xitβ̂)

)
exp(GM (Xi)π)GM (Xi))

′GM (Xi))

= − 1

2N
E
[(

2 exp(GM (Xi)π)− r∗(Xi)
)

exp(GM (Xi)π)GM (Xi))
′GM (Xi))

]
+ op(1)

≤ −2ηŜM + op(1)

with its eigenvalues bounded away from zero in absolute value by η. Then, rearranging (B.3)

and using the triangle inequality, with probability greater than 1− ε, for‖π − π∗‖ =
√

M
N ,

1

N
LN (π)− 1

N
LN (π∗M ) ≤ 1

N

∂LN
∂π

(π∗M )(π − π∗)− η‖π − π∗‖2 + op(1)

≤
∥∥∥∥ 1

N

∂LN
∂π

(π∗M )

∥∥∥∥ ‖π − π∗‖ − η‖π − π∗‖2 + op(1)

=

(∥∥∥∥ 1

N

∂LN
∂π

(π∗M )

∥∥∥∥− η
√
M

N

)
‖π − π∗‖+ op(1)

< 0

That is, we have with probability greater than 1 − ε, 1
NLN (π) < 1

NLN (π∗M ) for all π

with ‖π − π∗‖ =
√

M
N Since LN (π) is continuous, it has a maximum on the compact set

π : ‖π − π∗‖ ≤
√

M
N . By the last inequality, this maximum must occur for some π̂M with

‖π̂M − π∗‖ <
√

M
N . Hence the first order conditions are satisfied at π̂M and by concavity

of LN (π), π̂M maximize LN (π) over all of GM . Because the probability of this is greater

than 1−ε with ε arbitrary, we conclude that π̂M exists and satisfies the first order conditions

with probability approaching one, and that ‖π̂M(N) − π∗M(N)
‖ = Op

(√
M(N)
N

)
.

PROOF OF THEOREM 2.4.9:
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let

ωit = (Xit,G
M (Xi)),

θ =

 β

π∗M



j(wit, θ) = T−1
T∑
t=1

exp(Xitβ + GM (Xi)π
∗
M )β

So,
√
N(τ̂ − τ) =

√
N(τ̂ − Ej(wit, θ)) +

√
N(Ej(wit, θ)− τ) ≡ T1 + T2
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Note that,

T1 =
√
N(NT )−1

N∑
i=1

T∑
t=1

(
exp

(
Xitβ̂pqml + GM (Xi)π̂M

)
β̂pqml

− exp
(
Xitβ + GM (Xi)π

∗
M

)
β
)

+
√
N(NT )−1

N∑
i=1

T∑
t=1

(
exp

(
Xitβ + GM (Xi)π

∗
M )
)
β − Ej(wit, θ)

)

=
√
N(NT )−1

N∑
i=1

T∑
t=1

(
exp(witθ̂)β̂pqml − exp(witθ)β

)

+
√
N

(N)−1
N∑
i=1

T−1
T∑
t=1

exp(witθ)− ET−1
T∑
t=1

exp(witθ)

 β

= N−1
N∑
i=1

T−1
T∑
t=1

exp(witθ)
√
N(β̂pqml − β)

+ N−1
N∑
i=1

∇θ

(T )−1
T∑
t=1

exp(witθ)

 (θ)
(
θ̂ − θ

)

+
√
N

N−1
N∑
i=1

j(wit, θ)− Ej(wit, θ)

+ op(1)

= N−1
N∑
i=1

j(wit, θ)
√
N(β̂pqml − β)

+ N−1
N∑
i=1

∇θ (j(wit, θ)) (θ)
(
θ̂ − θ

)

+
√
N

N−1
N∑
i=1

j(wit, θ)− Ej(wit, θ)

+ op(1)

While,
∥∥∥N−1∑N

i=1∇θ (j(wit, θ)) (θ)
∥∥∥ = Op (ζ(M)),

∥∥∥θ̂ − θ∥∥∥ = Op

(√
M(N)
N

)
So the
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second term of the above equation is of order Op

(
ζ(M)

√
M(N)
N

)
, which vanishes by as-

sumptions in Lemma 2.

On the other hand,

T2 ≡
√
N(Ej(wit, θ)− τ) =

√
N

T−1
T∑
t=1

E exp(Xitβ)(exp(GM (Xi)π
∗
M )− r(Xi))

 β

From Lemma 1, we know the term in the parasynthesis is of order Op(CK
−s); as long

as N (1/2)M−s → 0, it can be ignored too.

Hence,

√
N(τ̂−τ) = N−1

N∑
i=1

j(wit, θ)
√
N(β̂pqml−β)+

√
N

N−1
N∑
i=1

j(wit, θ)− Ej(wit, θ)

+op(1)

From Wooldridge (1999), the first term follows as:

√
N(β̂pqml − β) = N−1/2

N∑
i=1

∇2
βp1(Xi, β)W1(Xi, β)(Yi − p1(Xi, β)n1i)

And the second term:

√
N

N−1
N∑
i=1

j(wit, θ)− Ej(wit, θ)

 = N−1/2
N∑
i=1

(j(wit, θ)− Ej(wit, θ))

Therefore:

√
N(τ̂ − τ) = N−1/2

N∑
i=1

{Ej(wit, θ)∇2
βp1(Xi, β)W1(Xi, β)(Yi − p1(Xi, β)n1i)

+ (j(wit, θ)− Ej(wit, θ))}+ op(1)

We follow that:
√
N(τ̂ − τ)⇒ N(0, V )

Where,
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V = Var
(
Ej(wit, θ)∇2

βp1(Xi, β)W1(Xi, β)(Yi − p1(Xi, β)n1i) + (j(wit, θ)− Ej(wit, θ))
)

Q.E.D.

As for the estimation of V is straight forward:

let,

V̂i1 =

N−1
N∑
i=1

j(wit, θ̂)

∇2
βp1(Xi, β̂pqml)W1(Xi, β̂pqml)(Yi − p1(Xi, β̂pqml)n1i)

+

j(wit, θ̂)−N−1
N∑
i=1

j(wit, θ̂)



then,

V̂ = N−1
N∑
i=1

V̂i1V̂
′
i1

Note, for the denotations here, please refer to section 2 and 3.

GMM Simulation Setup:

• we do the following setting up:
T∑
t=1

yit = ni

T∑
t=1

y2
it = ni2

pt(xi, β) ≡ exp(βxit)∑T
r=1 exp(βxir)

pt2(xi, β) ≡ exp(2βxit)∑T
r=1 exp(2βxir)
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p(xi, β) ≡ [p1(xi, β), ..., pT (xi, β)]′,

p2(xi, β) ≡ [p12(xi, β), ..., pT2(xi, β)]′,

u1i(β) ≡ Yi − p(xi, β)ni, where Yi = [Yi1, · · · , YiT ]′

u2i(β) ≡ Yi2 − p2(xi, β)ni2, where, Yi2 = [Y 2
i1, · · · , Y

2
iT ]′

D1(xi, β) =

[
xi1 −

∑T
r=1 xir exp(βxir)∑T
r=1 exp(βxir)

, ..., xiT −
∑T
r=1 xir exp(βxir)∑T
r=1 exp(βxir)

]′
,

D2(xi, β) =

[
2xi1 −

∑T
r=1 2xir exp(2βxir)∑T
r=1 exp(2βxir)

, ..., 2xiT −
∑T
r=1 2xir exp(2βxir)∑T
r=1 exp(2βxir)

]′
,

D3(xi, β) = ni

[
p1(xi, β)

(
xi1 −

∑T
r=1 xir exp(βxir)∑T
r=1 exp(βxir)

)
, · · · ,

pT (xi, β)

(
xiT −

∑T
r=1 xir exp(βxir)∑T
r=1 exp(βxir)

)]

=

[
nixi1 exp(βxi1)∑T
r=1 exp(βxir)

− ni exp(βxi1)
∑T
r=1 xir exp(βxir)

(
∑T
r=1 exp(βxir))2

, · · · ,

nixiT exp(βxiT )∑T
r=1 exp(βxir)

− ni exp(βxiT )
∑T
r=1 xir exp(βxir)

(
∑T
r=1 exp(βxir))2

]

98



Di(xi, β) =

 D1(xi, β) 0

0 D2(xi, β)



ui(β) =

 u1i(β)

u2i(β)


• Step 1: PQML

β̂pqml = arg max
N∑
i=1

T∑
t=1

Yit log(pt(xi, β))

se(β̂pqml) =


 N∑
i=1

D̃3D̃1

−1 N∑
i=1

D̃′1ũi1ũ
′
1iD̃1

 N∑
i=1

D̃3D̃1

−1


1/2

Where,

D̃1 = D1(xi, β̂pqml), D̃3 = D3(xi, β̂pqml), ũ1i = u1i(β̂pqml)

• Step 2: GMM

β̂gmm = arg min

N−1
N∑
i=1

D̃′iui(β)

′N−1
N∑
i=1

D̃′iũiũ
′
iD̃i

−1N−1
N∑
i=1

D̃′iui(β)



se(β̂gmm) =


 N∑
i=1

D̃′i∇β̂ui

′ N∑
i=1

D̃′iũiũ
′
iD̃i

−1 N∑
i=1

D̃′i∇β̂ui



−1/2

Where,

D̃i = Di(xi, β̂pqml), ũi = ui(β̂pqml)
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∇
β̂
ui

=

 ∇βu1i(β̂gmm)

∇βu2i(β̂gmm)


=

[(
xi1 exp(β̂gmmxi1)∑T
r=1 exp(β̂gmmxir)

−
exp(βxi1)

∑T
r=1 xir exp(β̂gmmxir)

(
∑T
r=1 exp(β̂gmmxir))

2

)
ni,

· · · ,(
xiT exp(β̂gmmxiT )∑T
r=1 exp(β̂gmmxir)

−
exp(βxiT )

∑T
r=1 xir exp(β̂gmmxir)

(
∑T
r=1 exp(β̂gmmxir))

2

)
ni

(
2xi1 exp(2β̂gmmxi1)∑T
r=1 exp(2β̂gmm2xir)

−
exp(2β̂gmmxi1)

∑T
r=1 2xir exp(2β̂gmmxir)

(
∑T
r=1 exp(2β̂gmmxir))

2

)
n2i,

· · · ,(
2xiT exp(2β̂gmmxiT )∑T
r=1 exp(2β̂gmm2xir)

−
exp(2β̂gmmxiT )

∑T
r=1 2xir exp(2β̂gmmxir)

(
∑T
r=1 exp(2β̂gmmxir))

2

)
n2i

]

• Step 3: OIV

β̂oiv = arg min

N−1
N∑
i=1

B̃′iu1i(β)

′N−1
N∑
i=1

B̃′iB̃i

−1N−1
N∑
i=1

B̃′iu1i(β)



se(β̂gmm) =


 N∑
i=1

B̃′i∇β̂u1i

′ N∑
i=1

B̃′iB̃i

−1 N∑
i=1

B̃′i∇β̂u1i



−1/2

Where,

ũi = u1i(β̂pqml)

B̃(Xi) = D̂(Xi) ∗ (Ω̂i)
−1/ĝ(Xi)

D̂i = −∇β [p1(Xi, β̂pqml)]
T∑
t=1

exp(β̂pqmlXit)r̂(Xi)
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∇
β̂
u1i

≡ ∇βu1i(β̂oiv)

=

[(
xi1 exp(β̂oivxi1)∑T
r=1 exp(β̂oivxir)

− exp(β̂oivxi1)
∑T
r=1 xir exp(β̂oivxir)

(
∑T
r=1 exp(β̂oivxir))

2

)
exp(GM (Xi)π̂M ),

· · · ,(
xiT exp(β̂oivxiT )∑T
r=1 exp(β̂oivxir)

− exp(β̂oivxiT )
∑T
r=1 xir exp(β̂oivxir)

(
∑T
r=1 exp(β̂oivxir))

2

)
exp(GM (Xi)π̂M )

]

101



Appendix C

Tables

Table C.1: Summary Statistics

Standard Sample
Mean Median deviation Minimum Maximum size

math4 37.73 38.05 15.107 3.1 81.3 518
avgexp 9037 8646 1644.950 7258 28611 518
exp10 9251 8800 1862.571 6890 30379 518
enroll 2769.4 1596.5 4473.652 64 75263 518
lunch 39.087 37.792 16.049 5.993 87.815 518
scdist 20.303 16.935 16.250 .134 80.952 518

Table C.2: OLS Regression, dependent variable=math4

Coef. Usual H-W ISD cluster
Estimate Std. Err. Std. Err. Std. Err.

log(avgexp) 0.1595 0.0405* 0.0558* 0.0671*
lunch -0.0058 0.0004* 0.0004* 0.0005*
log(enroll) 0.0147 0.0068* 0.0076 0.0086
log(scdist) 0.0030 0.0068 0.0068 0.0080
constant -0.9639 0.3744* 0.4973 0.6036

log(exp10) 0.1289 0.0373* 0.0552* 0.0699
lunch -0.0058 0.0004* 0.0004* 0.0005*
log(enroll) 0.0145 0.0068* 0.0077 0.0087
log(scdist) 0.0017 0.0068 0.0068 0.0080
constant -0.6848 0.3451* 0.4895 0.6259

* Significant at 5% level
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Table C.3: OLS Regression with Conley S.E., dependent variable=math4

log(exp10) log(enroll) lunch log(scdist) constant

Coef. Estimate 0.1289 0.0145 -0.00576 0.0017 -0.6848
H-W Std. Err. 0.0552* 0.0077 0.00038 0.0068 0.4895
Conley Std. Err.
cut1 cut2
50 100 0.0606* 0.0086 0.00044* 0.0080 0.5507
100 150 0.0636* 0.0085 0.00044* 0.0079 0.5743
150 200 0.0640* 0.0077 0.00042* 0.0075 0.5737
200 250 0.0633* 0.0072* 0.00037* 0.0075 0.5696
350 400 0.0586* 0.0062* 0.00032* 0.0069 0.5322
400 500 0.0552* 0.0063* 0.00030* 0.0062 0.4981
500 600 0.0517* 0.0060* 0.00027* 0.0057 0.4682
600 700 0.0482* 0.0054* 0.00025* 0.0054 0.4366
700 800 0.0455* 0.0050* 0.00024* 0.0051 0.4134
800 900 0.0430* 0.0046* 0.00022* 0.0049 0.3926
1000 1000 0.0404* 0.0042* 0.00021* 0.0048 0.3709

Table C.4: OLS Regression with Conley S.E., dependent variable=math4

log(avgexp) log(enroll) lunch log(scdist) constant

Coef. Estimate 0.1595 0.0147 -0.00579 0.0030 -0.9639
White Std. Err. 0.0558 0.0076 0.00036 0.0068 0.4973
Conley Std. Err.
cut1 cut2
50 100 0.0616* 0.0086 0.00042* 0.0080 0.5640
100 150 0.0638* 0.0084 0.00042* 0.0080 0.5802
150 200 0.0634* 0.0076 0.00040* 0.0075 0.5710
200 250 0.0625* 0.0071* 0.00035* 0.0075 0.5655
350 400 0.0591* 0.0061* 0.00029* 0.0070 0.5412
400 500 0.0559* 0.0062* 0.00028* 0.0063 0.5112
500 600 0.0529* 0.0059* 0.00025* 0.0058 0.4856*
600 700 0.0497* 0.0053* 0.00023* 0.0055 0.4569*
700 800 0.0474* 0.0049* 0.00022* 0.0052 0.4371*
800 900 0.0452* 0.0046* 0.00021* 0.0050 0.4178*
1000 1000 0.0430* 0.0041* 0.00019* 0.0048 0.3991*
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Table C.5: OLS Regression with Conley S.E., dependent variable=math4

log(exp10) log(enroll) lunch log(scdist) constant

Coef. Estimate 0.1289 0.0145 -0.00576 0.0017 -0.6848
H-W Std. Err. 0.0552 0.0077 0.00038 0.0068 0.4895
Conley Std. Err.
cut1 cut2
242 21 0.0553* .00758 .00044* 0.0073 0.4942
364 41 0.0570* .00760 .00049* 0.0078 0.5102
435 88 0.0620* 0.0080 .00050* 0.0089 0.5602
546.5 167.5 0.0602* 0.0072* .00045* 0.0093 0.5541
649 284 0.0587* 0.0059* .00033* 0.0088 0.5454
719 637 0.0491* 0.0052* .00025* 0.0057 0.4506
758 880 0.0437* 0.0047* .00023* 0.0050 0.3976

Table C.6: OLS Regression with Conley S.E., dependent variable=math4

log(avgexp) log(enroll) lunch log(scdist) constant

Coef. Estimate 0.1595 0.0147 -0.00579 0.0030 -0.9639
H-W Std. Err. 0.0558 0.0076 0.00036 0.0068 0.4973
Conley Std. Err.
cut1 cut2
242 21 0.0561* .00755 .00042* 0.0073 0.5037
364 41 0.0578* .00760 .00046* 0.0077 0.5226
435 88 0.0629* 0.0080 .00047* 0.0089 0.5740
546.5 167.5 0.0617* 0.0072* .00042* 0.0093 0.5747
649 284 0.0609* 0.0059* .00030* 0.0089 0.5713
719 637 0.0515* 0.0051* .00023* 0.0058 0.4783*
758 880 0.0457* 0.0047* .00021* 0.0051 0.4218*
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Table C.7: OLS Regression, dependent variable=log( math4
1−math4)

Coef. usual H-W ISD cluster Peninsula
Estimate Std. Err Std. Err Std. Err. cluster S.E.

log(avgexp) 0.5277 0.1976* 0.2946 0.3505 0.0937
log(enroll) 0.0919 0.0332* 0.0387* 0.0446* 0.0021*
lunch -0.0275 0.0018* 0.0018* 0.0023* 0.0007*
log(scdist) 0.0235 0.0332 0.0328 0.0398 0.0166
constant -5.0362 1.8271* 2.6355 3.1478 0.8732

log(exp10) 0.4152 0.1815* 0.2811 0.3554 0.0631
log(enroll) 0.0911 0.0333* 0.0389* 0.0450* 0.0000*
lunch -0.0273 0.0018* 0.0019* 0.0024* 0.0007*
log(scdist) 0.0192 0.0331 0.0324 0.0396 0.0167
constant -4.0088 1.6817* 2.5017 3.1720 0.5806

Table C.8: OLS Regression with Conley S.E., dependent variable=log( math4
1−math4)

log(exp10) log(enroll) lunch log(scdist) constant

Coef. Estimate 0.4152 0.0911 -.0273 0.0192 -4.0088
H-W Std. Err. 0.2811 0.0389 .00193 0.0324 2.5017
Conley Std. Err.
cut1 cut2
50 100 0.3094 0.0432* .00224* 0.0396 2.8198
100 150 0.3235 0.0430* .00225* 0.0407 2.9325
150 200 0.3244 0.0397* .00216* 0.0397 2.9270
200 250 0.3209 0.0376* .00192* 0.0400 2.9141
350 400 0.2907 0.0331* .00159* 0.0373 2.6737
400 500 0.2737 0.0335* .00152* 0.0333 2.5026
500 600 0.2596 0.0319* .00135* 0.0309 2.3823
600 700 0.2443 0.0287* .00124* 0.0291 2.2454
700 800 0.2320 0.0263* .00116* 0.0278 2.1394
800 900 0.2208 0.0245* .00109* 0.0267 2.0409*
1000 1000 0.2079* 0.0222* .00101* 0.0257 1.9330*
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Table C.9: OLS Regression with Conley S.E., dependent variable=log( math4
1−math4)

log(avgexp) log(enroll) lunch log(scdist) constant

Coef. Estimate 0.5277 0.0919 -.0275 0.0235 -5.0362
H-W Std. Err. 0.2946 0.0387 .00187 0.0328 2.6355
Conley Std. Err.
cut1 cut2
50 100 0.3248 0.0431* .00218* 0.0401 2.9776
100 150 0.3345 0.0428* .00217* 0.0411 3.0533
150 200 0.3323 0.0394* .00208* 0.0400 3.0183
200 250 0.3292 0.0373* .00184* 0.0405 3.0113
350 400 0.3037 0.0330* .00147* 0.0381 2.8254
400 500 0.2856 0.0334* .00141* 0.0342 2.6533
500 600 0.2720 0.0319* .00125* 0.0317 2.5345*
600 700 0.2576* 0.0287* .00116* 0.0298 2.4021*
700 800 0.2468* 0.0263* .00109* 0.0285 2.3058*
800 900 0.2361* 0.0245* .00102* 0.0273 2.2103*
1000 1000 0.2250* 0.0223* .00095* 0.0263 2.1153*

Table C.10: OLS Regression with Conley S.E., dependent variable=log( math4
1−math4)

log(exp10) log(enroll) lunch log(scdist) constant

Coef. Estimate 0.4152 0.0911 -0.0273 0.0192 -4.0088
H-W Std. Err. 0.2811 0.0389 0.0019 0.0324 2.5017
Conley Std. Err.
cut1 cut2
242 21 0.2787 0.0389* 0.0022* 0.0368 2.5073
364 41 0.2855 0.0387* .00236* 0.0400 2.5739
435 88 0.3076 0.0412* .00237* 0.0473 2.8016
546.5 167.5 0.3007 0.0374* 0.0021* 0.0506 2.8079
649 284 0.3026 0.0314* 0.0016* 0.0479 2.8503
719 637 0.2478 0.0278* 0.0012* 0.0308 2.3079
758 880 0.2238 0.0250* 0.0011* 0.0268 2.0654
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Table C.11: OLS Regression with Conley S.E. in Nonlinear Model

log(avgexp) log(enroll) lunch log(scdist) constant

Coef. Estimate 0.5277 0.0919 -0.0275 0.0235 -5.0362
H-W Std. Err. 0.2946 0.0387 0.0019 0.0328 2.6355
Conley Std. Err.
cut1 cut2
242 21 0.2952 0.0389* 0.0021* 0.0369 2.6643
364 41 0.3024 0.0387* 0.0023* 0.0399 2.7459
435 88 0.3230 0.0413* 0.0022* 0.0472 2.9710
546.5 167.5 0.3192 0.0376* 0.0020* 0.0511 3.0140
649 284 0.3274 0.0317* 0.0015* 0.0487 3.1091
719 637 0.2665* 0.0279* 0.0011* 0.0315 2.5120*
758 880 0.2386* 0.0251* 0.0010* 0.0275 2.2302*
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Table C.12: APEs with Bootstrap S.E. in Nonlinear Model

APE Evaluated at
Mean 25% 50% 75% 95%

log(avgexp) 0.1151* 0.1193* 0.1156* 0.1100* 0.0982*
(.0663) (.0683) (.0663) (.0636) (.0590)

log(enroll) 0.0200** 0.0208** 0.0201** 0.0191** 0.0171**
(.0083) (.0085) (.0084) (.0082) (.0078)

lunch -0.0060** -0.0062** -0.0060** -0.0057** -0.0051**
(.0004) (.0004) (.0004) (.0004) (.0004)

log(scdist) 0.0051 0.0053 0.0052 0.0049 0.0044
(.0071) (.0073) (.0072) (.0068) (.0063)

log(exp10) 0.0905 0.0940 0.0910 0.0863 0.0767
(.0631) (.0652) (.0632) (.0603) (.0553)

log(enroll) 0.0199** 0.0206** 0.0200** 0.0189** 0.0168**
(.0084) (.0086) (.0084) (.0082) (.0077)

lunch -0.0060** -0.0062** -0.0060** -0.0057** -0.0051**
(.0004) (.0004) (.0004) (.0004) (.0004)

log(scdist) 0.0042 0.0043 0.0042 0.0040 0.0035
(.0070) (.0072) (.0070) (.0067) (.0061)

* Significant at 10% level
** Significant at 5% level
Bootstraps standard errors are in parenthesis

108



Figures

109



Ü

Legend
MI SD
N/A

Figure C.1: All school districts of Michigan in 2010: For interpretation of the references
to color in this and all other figures, the reader is referred to the electronic version of this
dissertation.
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Legend
! MI College

MI SD
N/A

Figure C.2: All Colleges of Michigan in 2010.
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Ü

math4
3.1-21.3
21.4 - 33.3
33.9- 44.4
44.6 - 57.6
58.0 - 81.3
N/A

Figure C.3: MEAP math pass rate for 4th graders of Michigan in 2010.
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math4
3.1-21.3
21.4 - 33.3
33.9- 44.4
44.6 - 57.6
58.0 - 81.3
N/A

! MI College

Figure C.4: Colleges and math pass rate for 4th graders of Michigan in 2010.
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Ü

Figure C.5: Selection of 96 School Districts.
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Ü

Figure C.6: Selection of 96 School Districts with centroids.
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Ü

Figure C.7: Selection of 96 School Districts with centroids in grids.
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Ü

Figure C.8: Conley Coordinates of 96 School Districts.
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Figure C.9: Histogram for all covariates
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Figure C.10: APE w.r.t average expenditure
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Figure C.11: APE w.r.t enroll
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Figure C.12: APE w.r.t lunch
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Table C.13: QGLS with Conley S.E., dependent variable=math4

log(avgexp) log(enroll) lunch log(scdist) constant

Coef. Estimate 0.1690 0.0171 -0.00589 0.00255 -1.0588
Usual Std. Err. 0.0416* 0.00705* 0.00038* 0.00707 0.3862*
H-W Std. Err. 0.0577* 0.00778* 0.00038* 0.00712 0.5137*
Conley Std. Err.
cut1 cut2
50 100 0.0621* 0.0083 0.00041* 0.0083 0.5669
100 150 0.0634* 0.0079 0.00040* 0.0083 0.5739
150 200 0.0626* 0.0070 0.00038* 0.0079 0.5615
200 250 0.0615* 0.0065 0.00033* 0.0079 0.5550
350 400 0.0596* 0.0058* 0.00027* 0.0077 0.5469
400 500 0.0560* 0.0056* 0.00026* 0.0067 0.5131*
500 600 0.0534* 0.0053* 0.00024* 0.0063 0.4907*
600 700 0.0502* 0.0048* 0.00022* 0.0059 0.4614*
700 800 0.0479* 0.0044* 0.00021* 0.0057 0.4405*
800 900 0.0457* 0.0041* 0.0002* 0.0055 0.4205*
1000 1000 0.0433* 0.0037* 0.00018* 0.0054 0.4007*
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Table C.14: QGLS with Conley S.E., dependent variable=math4 in Year 2010

log(exp10) log(enroll) lunch log(scdist) constant

Coef. Estimate 0.13496 0.0169 -0.00585 0.00142 -0.74907
Usual Std. Err. 0.03828 0.00708 0.00039 0.00708 0.35662
H-W Std. Err. 0.05759 0.00785 0.00039 0.00709 0.51117
Conley Std. Err.
cut1 cut2
50 100 0.0616* 0.0083* 0.00043* 0.0083 0.5580
100 150 0.0638* 0.0080* 0.00043* 0.0084 0.5729
150 200 0.0639* 0.0071* 0.0004* 0.0080 0.5696
200 250 0.0631* 0.0066* 0.00035* 0.0080 0.5648
350 400 0.0584* 0.0056* 0.00031* 0.0074 0.5295
400 500 0.0556* 0.0057* 0.00029* 0.0066 0.5010
500 600 0.0522* 0.0054* 0.00026* 0.0062 0.4724
600 700 0.0486* 0.0048* 0.00024* 0.0059 0.4395
700 800 0.0458* 0.0044* 0.00023* 0.0057 0.4149
800 900 0.0433* 0.0041* 0.00021* 0.0055 0.3929
1000 1000 0.0406* 0.0037* 0.0002* 0.0053 0.3694*

Table C.15: SAR GLS, dependent variable=math4

Weight Matrix Contiguity Weight Inverse Dist Weight

GLS Estimates Coef. Std. Err. Coef. Std. Err.

log(avgexp) 0.1602579 0.0420131* 0.1690079 0.0426937*
log(enroll) 0.015429 0.0069654* 0.0170857 0.0070499*
lunch -0.005761 0.0004002* -0.0058864 0.0003816*
log(scdist) 0.0034104 0.0072557 0.00255 0.0070406
constant -0.9785768 0.3874754 -1.058793 0.3950128

ρ 0.2677935 0.0590989* 0.8456347 0.1394274*

σ2 0.0133044 0.0008314* 0.013609 0.0008473*
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Table C.16: SAR GLS, dependent variable=math4 in Year 2010

Weight Matrix Contiguity Weight Inverse Dist Weight

GLS Estimates Coef. Std. Err. Coef. Std. Err.

log(exp10) 0.1245523 0.0387077* 0.1349613 0.0399863*
log(enroll) 0.0153031 0.0069908* 0.0168974 0.0070563*
lunch -0.0057036 0.0004028* -0.005847 0.0003847*
log(scdist) 0.0023392 0.0072584 0.0014194 0.0070466
constant -0.6548259 0.3581062 -0.7490704 0.3715918

ρ 0.2638944 0.0592924* 0.8401031 0.1468289*

σ2 0.0134163 0.0008383* 0.0137166 0.000854*

Table C.17: SAR GLS, dependent variable=math4, contiguity

math4 Coef. Std. Err. z P>z [95% Conf. Interval ]

lexp 0.1602579 0.0420131 3.81 0 0.0779136 0.2426021
lenroll 0.015429 0.0069654 2.22 0.027 0.001777 0.029081
lunch -0.005761 0.0004002 -14.4 0 -0.0065453 -0.0049766
lscdist 0.0034104 0.0072557 0.47 0.638 -0.0108106 0.0176313
cons -0.9785768 0.3874754 -2.53 0.012 -1.738015 -0.219139

rho 0.2677935 0.0590989 4.53 0 0.1519618 0.3836253

sigma2 0.0133044 0.0008314 16 0 0.0116749 0.014934
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Table C.18: SAR GLS, dependent variable=math4, inverse distance

math4 Coef. Std. Err. z P>z [95% Conf. Interval]

lexp 0.1690079 0.0426937 3.96 0 0.0853298 0.252686
lenroll 0.0170857 0.0070499 2.42 0.015 0.0032681 0.0309033
lunch -0.0058864 0.0003816 -15.43 0 -0.0066343 -0.0051385
lscdist 0.00255 0.0070406 0.36 0.717 -0.0112493 0.0163492
cons -1.058793 0.3950125 -2.68 0.007 -1.833003 -0.2845826

rho 0.8456345 0.1394278 6.07 0 0.572361 1.118908

sigma2 0.013609 0.0008473 16.06 0 0.0119483 0.0152696
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Table C.19: Summary of Correlation

Overall Max 1
Overall Min 3.33E-38
Overall mean 0.00346437
Overall variance 0.002071544

Row mean
Percentiles Smallest

1% 0.0030197 2.85E-03
5% 0.0031132 0.0028733
10% 0.0031967 0.0029348 Obs 518
25% 0.0033227 0.0029758 Sum of Wgt. 518
50% 0.0034535 Mean 0.0034644

Largest Std. Dev. 0.0002449
75% 0.0035881 0.004259
90% 0.0037387 0.0042819 Variance 6.00E-08
95% 0.0038485 0.0043556 Skewness 1.967204
99% 0.004069 0.0057957 Kurtosis 18.49351

Row min
Percentiles Smallest

1% 5.22E-38 3.33E-38
5% 1.34E-36 3.33E-38
10% 9.47E-36 4.15E-38 Obs 518
25% 9.24E-34 5.04E-38 Sum of Wgt. 518
50% 1.87E-29 Mean 1.35E-21

Largest Std. Dev. 1.11E-20
75% 1.49E-25 4.02E-20
90% 8.06E-23 4.70E-20 Variance 1.24E-40
95% 1.47E-21 1.34E-19 Skewness 13.54964
99% 3.52E-20 1.92E-19 Kurtosis 209.841

Row variance
Percentiles Smallest

1% 0.0020325 2.03E-03
5% 0.0020376 0.0020309
10% 0.0020417 0.0020312 Obs 518
25% 0.002049 0.0020322 Sum of Wgt. 518
50% 0.002062 Mean 0.0020755

Largest Std. Dev. 0.0000389
75% 0.0020927 0.0022539
90% 0.0021256 0.002289 Variance 1.51E-09
95% 0.0021453 0.0022999 Skewness 2.174566
99% 0.0022243 0.0023159 Kurtosis 10.42997
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Table C.20: Summary of Correlation(div)

Overall Max(2nd largest) 1(.266828657)
Overall Min 0.062464033
Overall mean 0.079143268
Overall variance 0.001712584

Row mean
Percentiles Smallest

1% 0.0694387 0.0692969
5% 0.0710834 0.0693381
10% 0.0731629 0.0693386 Obs 518
25% 0.0765987 0.0693432 Sum of Wgt. 518
50% 0.0794727 Mean 0.0791433

Largest Std. Dev. 0.0042475
75% 0.0817451 0.0879126
90% 0.0848623 0.0879339 Variance 0.000018
95% 0.0865209 0.0881153 Skewness -0.2346403
99% 0.087731 0.0881707 Kurtosis 2.719421

Row min
Percentiles Smallest

1% 0.0625941 0.062464
5% 0.06363 0.062464
10% 0.063966 0.0624661 Obs 518
25% 0.0647366 0.0625628 Sum of Wgt. 518
50% 0.0656149 Mean 0.0658829

Largest Std. Dev. 0.0016574
75% 0.0668986 0.070315
90% 0.0682221 0.0703266 Variance 2.75E-06
95% 0.0692942 0.070412 Skewness 0.5907457
99% 0.0701836 0.0704638 Kurtosis 2.952739

Row variance
Percentiles Smallest

1% 0.0016646 0.0016636
5% 0.0016661 0.0016644
10% 0.0016686 0.0016644 Obs 518
25% 0.0016759 0.0016645 Sum of Wgt. 518
50% 0.0016843 Mean 0.0016978

Largest Std. Dev. 0.0000361
75% 0.0017045 0.0018191
90% 0.0017555 0.0018207 Variance 1.30E-09
95% 0.0017896 0.0018216 Skewness 1.809396
99% 0.0018151 0.0018218 Kurtosis 5.520294
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