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ABSTRACT

Efficient Extended Kalman Filter Learning for

Feedforward Layered Neural Networks

By

Saida Benromdhane

The thesis focuses on the computationally efficient convergence to satisfactory

local minima of the Extended Kalman Filter Algorithm (EKF) when it is used in the

supervised learning of Artificial Feedforward Neural Networks. There are two stages

to our research work.

In the first stage, the effect of different choices of the energy parameter or weighting

factor A on the convergence of the EKF algorithm is investigated. We limit our

attention to problems related to the supervised learning of Feedforward Artificial

Neural Networks. Through the simulation of two region classification problems and

the analysis of the results, we demonstrate that when /\ is chosen slightly smaller than

1, the algorithm experiences explosive divergence : The Least Square Error (LSE)

grows indefinitely. However, for a choice of A slightly greater than 1, the algorithm

is stable but often converges to unsatisfactory local minima, from the point-of-view

of performance and computation time.

The second stage of our work is where we propose several modifications of the



algorithm. These modifications are aimed at improving the efficiency of the algorithm

both in terms of performance and speed of convergence. One modification in the

algorithm is the development of an update mechanism for the exponential weighting

factor /\ which self—adjusts to the (LSE). The second modification is an augmentation

of the recursion formulae of the algorithm. Both of these modifications result in a

significant improvement in performance as well as marked decrease in convergence

time when compared with the original EKF algorithm.
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CHAPTER 1

Introduction

Even though Artificial Neural Networks may be limited and imperfect, they are still

one of the few paradigms, if not the only ones, that seek to mimic natural intelligence

at an architectural level. They have performed impressively in some limited applica-

tions. The success and failure of Neural Networks can only suggest that research will

ultimately give rise to artificial systems that can perform the same tasks that only

the humans are currently able to perform. That is what constitutes the major drive

behind the exponential growth of Neural Networks research.

An outcome of the renewed interest in Neural networks is their use in numerous

applications ranging from pattern classification and completion to automatic control.

The network paradigms used in these applications can be very distinct each carrying

their own name. They are made of a large number of processing elements operating

in parallel. The topology that connects these processing elements is what determines

the distinction between two or more network paradigms.

Given that the main goal for Artificial Neural Networks is to possess human intel-

ligence, the inspiration for research had to come from more specifically from neuro-

biology. Neuro-biology offers a cellular formulation of the principles of intelligent

behavior which inspire researchers to construct better intelligent systems known as

“Artificial Neural Networks”.



1.1 Inherent Properties of Neural Networks

This new hope finds its origins in all the inherent properties of Neural Networks,

but more so in these four particularly important ones: (1)generalization (2) graceful

degradation (3)adaptivity and learning and (4)parallelism [1, 2]. A focus on these

properties will be sufficient to illustrate the importance of Neural Networks for related

fields.

Given that Neural Networks emulate continuous activation units, they provide a

continuous representation and inference system with similarity metrics such that when

similar real-world data inputs are presented, outputs or inferences are also similar. A

smooth generalization from stored cases to new ones is then expected.

The generalization performance of logic-based systems deteriorates considerably

when the data available is inaccurate or incomplete. In contrast, the generalization

performance of Neural Networks deteriorates proportionally to the degree of inac-

curacy or incompleteness of the data, which is usually small. However, what really

makes Neural Networks distinct from other expert systems are the two last charac-

teristics mentioned above. The first one manifests itself in the way Neural Networks

learn and adapt. Neural networks are taught by presentation of examples. They

also adapt very easily to changing conditions. This issue is still an unsolved problem

with other expert systems. The second characteristic is present in the architecture

of Neural Networks adaptation and learning which are conducted totally in a parallel

structure. There are other parallel reasoning models that have been developed and

implemented, but in most cases they have to be supported by the user. By contrast,

in Neural Networks, units in the same layer can be updated simultaneously. In this

way, computationally expensive tasks can be performed efficiently.



1.2 Why a Different Training Approach?

For several years the back propagation algorithm (BP) which is based on the gra-

dient descent algorithm has been widely used to train Multi-Layered Neural Net-

works(MNNs) to perform a desired task. The common use of the back propagation

algorithm is attributed to its strengths which include a generalization ability from

a modest number of training patterns, an acquiring of arbitrarily complex nonlinear

mappings, all within a parallel structure of computation. However, like any other

algorithm, the back propagation algorithm has limitations that are easily recognized

during its use. The first noticeable one is the slow convergence time. The second

limitation is an off-line encoding requirement which makes it unsuitable for certain

applications, especially when dealing with temporal signals.

In order to improve the speed of convergence of the (BP) algorithm, numerous

schemes have been suggested, for example [3, 4, 5]. One of these schemes [5] used

different energy functions to achieve faster convergence of the (BP)algorithm. All of

these enhancements are computationally inexpensive, but they often require tunable

parameters, thereby adding cumbersome guesswork.

Given that the enhanced backpropagation algorithm, like the standard one, may

not adequately handle temporal signals, it would not be suitable for some specific

applications, for instance, the identification of temporal signals. In the face of this

limitation, the problem that poses itself is how to formulate a Feedforward Artificial

Neural Networks algorithm that possesses the temporal capability and is also efficient

in terms of convergence time, guesswork and computation. In the last few years much

interest focused on training algorithms[6, 7] that are faster than the back-propagation

algorithm or are capable of solving more complex problems. A class of alternative

algorithms that have been used in different applications is based on the Extended

Kalman Filter algorithm. The Kalman algorithm, in contrast to gradient techniques,



computes the optimum value of the network parameters each time a new data point

is presented, therefore it is well suited for temporal signal processing.

1.3 The Contribution of the Thesis

The main topic of this thesis is concerned with the Extended Kalman Filter Approach

for training Feedforward Artificial Neural Networks FFANN. This is a supervised

learning which is different from the backpropagation.

Motivated by the help of previous and current analysis [8], a framework supported

by computer simulations is developed to improve the supervised learning of FFANN

using the Kalman Filter approach. The framework encompasses modifications of the

Extended Kalman Filter algorithm including the development of an update mecha-

nism for the exponential weighting factor A [8]. This mechanism self-adj usts according

to the mean square error LSE. The weighting factor is also implemented as a function

of the error. The update is aimed to speed up and enable convergence to minima

that are satisfactory from the point-of—view of performance. A different computation

of the gain matrix is also pursued.

A final and important added feature to the algorithm is the augmentation of its

recursion formulas. A recursion formula for the slope of the sigmoid nonlinearity

is developed where the update is based on the gradient descent rule. The gradient

descent rule is known to decrease the MSE without adding any oscillations.



CHAPTER 2

Background

The inspiration for Neural Networks structures is mainly based on our present under-

standing of the nervous biological system. To completely specify a Neural Network

model, its physical parts have to be defined along with the required algorithms. Sim-

ilar to any other network a Neural Network is comprised of nodes we call neurons as

its processing units, and edges connecting the neurons therefore defining the topol-

ogy of the network. Once a network’s topology is defined, this Neural Network is

classified in one of several Neural Networks models. These models include the feed-

forward neuron-model, the feedback neuron-model and a completely interconnected

neuron-model. Our primary interest in this work is in the feedforward neuron-model

and the topology that defines the connection between its neurons. In the following

two sections the feedforward neuron model and its topology will be discussed in de-

tail. The resulting network will be referred to as the Feedforward Artificial Neural

Network(FFANN)

In the design of a Neural Network model, defining the topology between the

neurons is only the first step. Devising the learning rule for this network is the

most challenging part in the design. The learning rule is the core constituent of

the algorithm necessary for the operation of the neurons. It consists of changing the

state of individual neurons using inputs from neighboring neurons. This rule can take



various particular forms, therefore we will only emphasize the forms that have been

used in (FFANN). We should also mention the one feature that is common to many

models: most learning rules can be viewed as modifications of the stochastic gradient

optimization of a certain objective function or performance criterion. An algorithm

where this feature is very well known is the error backpropagation algorithm. Our

primary interest in this thesis is another model that also has this feature and is a

(FFANN) where the learning is based on the Kalman optimal filtering technique. This

model will be introduced in the fourth section of this chapter and discussed more in

detail in the remaining chapters. The first four sections of this chapter are aimed

at describing Neural Networks in a broader context, they prepare for a complete

understanding of the sections that follow.

2.1 Basic Components of Neural Network Mod-

els

A Neural Network is specified completely by the definition of its physical parts and the

algorithms that are applied to it. Like any other network or graph, a Neural Network

consists of processing units that are physically called nodes and serve as the artificial

counterpart of neurons in the brain. It also consists of edges defining its topology or

connectivity. In the succeeding material, the information-processing algorithm within

a Neural Network is completely specified by defining the three following components

: the functionality of processing units, topology, propagation and learning rules. with

the learning rule being the key to the processing algorithm. Another algorithm, which

may require some programming, is also required for any processing system. In Neural

Networks, this task is summarized into a simple learning rule.



2.1 .1 Processing units

The processing units in a Neural Network mimic the function of neurons in the brain.

Therefore, information processed in them is determined by how the input of each

node relates to its own output and also how each processing unit connects to others

or the environment. This is described completely in these terms [1] by

Input into the unit from other units or the environment.

Output sent to other units or the environment.

The unit’s internal state, also referred to as the unit’s activation.

e The rule for computing the next state of the unit also called the activation rule

or activation function

The rule for computing the output from the current state. This is defined by

the output function.

Biological neurons are complicated physical systems. Their dynamics, if realistically

modeled would involve a large number of differential equations. This feature of bio-

logical neurons is the origin of a strong motivation toward simplifying the neuronal

model. A common means of simplification is to have two separate models each describ-

ing a functional mode of the neuron. The two functional modes are l)the processing

mode, and 2)the learning mode.

The dynamics of the processing state are described by a single differential equation.

Widespread models such as perceptrons own processing units with no genuine state.

Their output is a simple function of the input. This function is based primarily on

the simplified neuron model of Pitts [9]. The simplest version is a step function of

the weighted sum of individual inputs. This function is described in the following

equation :



1 if a: > o

f(:r,0) = (2.1)

0 otherwise

An attempt to make the activation function differentiable resulted in the following

so—called logistic function.

1

f($,0)=W (2.2)

The processing state is described as combining inputs into a weighted sum, then

passing them by the help of a so-called activation function such as the step or sigmoid

function.

As described above, the processing state is the equivalent to the state of activation

of a simplified artificial neuron. However, the learning state is characterized by a

vector of parameters of the activation function. These parameters are to be changed

according to a desired performance criteria of a Neural Network. The parameters of

an activation function consist of

e Weights of individual inputs, with the help of which the weighted sum is com-

puted.

e A threshold of the step or sigmoid function.



2.1.2 Topology

If a system made of the processing units that are described in the previous section is

capable of solving complex tasks in a way reminiscent of human cognitive capabilities,

its sophistication is attributed to the processing units themselves and more impor-

tantly to the way they interact. The topology of the network is what determines the

interactions and thus is of crucial importance for the performance of the network.

There are various cases of interconnected networks. The simplest one is a com-

pletely interconnected network. This topology allows for arbitrarily complex feedback

structures. Although feedback extends the class of possible behaviors immensely, in

some cases and for reasons not mentioned, it may be desirable to exclude the pos-

sibility of feedback in the topology level. The way to achieve feedback exclusion is

simply to make it impossible, following any path along directed connections, to enter

a unit once left. Such a network, is called a feedforward network.

Since a feedforward network has the properties of a directed graph, each unit in

the network can be assigned a rank giving the number of units on the longest path

between it and some input unit. It is then easily understood that, for any pair of

interconnected units, the rank of the unit the connection leaves is lower than the rank

of the unit the connection enters.

The scheme for iterative evaluation according to the rank of individual units sug-

gests for collecting units into subsets of equal rank. Adding the restriction that the

rank difference between interconnected units is 1, we obtain a feedforward layered

network.

The evaluation of this network is done in a number of iterations that equals the

number of interconnection layers. The kth layer consists of the connections between

the units with ranks k and k - 1. This evaluation can be viewed as a sequence of

vector operators. A simple case of this evaluation is that of a single-layer feedforward
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network, which is the topology used for one of the first Neural Networks models, the

perceptron of Rosenblatt [10].

We should also mention the other networks that are layered. These are the feedback

layered networks with some examples like the Adaptive Resonance Theory(ART) of

Grossberg [11] and the Bidirectional Associative Memory of Kosko [12].
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2.1 .3 Propagation rule

After a thorough description of the Neural Network in terms of its processing units

and topology, what now remains is to describe the propagation rule for information

processing. This rule will specify the time at which, and the order in which, the unit

activations are to be updated. The approach that is closest to the biological system

is a simultaneous and asynchronous update of all units.

Since the asynchronous approach does not seem to have any clear advantages,

most existing propagation rules are synchronous and vary accordingly with the Neural

Network model type. The variation of the propagation rule from a network type to

the other is manifested in the two algorithms that we are to describe next.

The first one is for feedforward layered Neural Networks and is a modification of

the algorithm used for (FFANN). The algorithm is described in these basic steps:

e The input units are set equal to the input pattern.

e In the kth step, the activation of units of the kth layer are computed using the

activations of the (k - l)th layer.

e After a number of steps equal to the number of layers, the state of the output

units corresponds to the output pattern.

The processing in this FFANN is viewed as the evaluation of a nested non—recursive

function. The situation is different for feedback networks. A detailed discussion of the

propagation rule including the steps of the algorithm to be followed in the processing

of information in a FFANN are found in [1].
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2.1 .4 Learning rule

The learning rule is the most difficult constituent of a Neural Network. Formally, it

resembles the propagation rule since it also operates on a network of interconnected

units. The learning rule consists of changing the state of individual units (the state of

activation function parameters) using inputs from the neighboring units. Given the

existence of variations of the particular form of this rule, we will limit our discussion

of this rule to a feature that is common to many models. This feature is observed in

the fact that most'learning rules are modifications of stochastic gradient optimization

of a certain objective function or performance criterion.

Models that have this feature include the following:

e The error backpropagation algorithm of Rumelhart, Hinton, and Williams [13]

e The perceptron of Rosenblatt [10], minimizing a differentiable modification of

the Bayesian misclassification rate.

e The unsupervised learning rule of Oja[14], minimizing the difference between the

original pattern and the pattern reconstructed from its feature representation.

Other aspects of learning rules with a classification according to learning types are

discussed in the next section.

2.2 Learning Types

The current interest in Artificial Neural Networks methods is mainly attributed to

their ability to learn from experience. This ability to learn offers a powerful alternative

to programming.

Learning types or methods can be classified as supervised and unsupervised, with

a great many paradigms implementing each type.
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2.2.1 Supervised learning

Examples of supervised learning paradigms are the original perceptron, and more

recently backpropagation. Supervised learning involves the training of the network

on a training set consisting of vector pairs. One vector is applied to the input of the

network; the other is used as a “target” which represents the desired output.

Training is performed by an adjustment of the network weights so as to minimize

the difference between the desired and actual output. This process can either be

achieved in an iterative procedure, or the weights can be computed by closed form

equations. The latter form of training may fail to qualify the system as a Neural

Network since its method is so far from the biological method. However, such methods

are useful, and provide a broader definition of Artificial Neural Networks.

We can describe iterative training in the following statements:

e Apply an input vector to the network.

e Compare the output produced to the target vector.

e Use the error signal obtained from the above comparison to modify the network

weights.

The modification of the weights which we can describe as the correction of the weights

can be general, equally applied as a reinforcement to all parts or it may be specific,

with each weight receiving an appropriate adjustment. The intention behind adjusting

the weights at each step is to reduce the difference between the output and target

vectors. Vectors from the training set are applied to the network repeatedly until the

error is at an acceptably low value. The training process is successful if the network

is capable of performing the desired mapping.
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2.2.2 Unsupervised learning

This type of learning, in contrast with supervised learning, requires no information

and only needs the input vectors to train the network. Unsupervised learning is

also called self-organization [15]. In the course of training, the network weights are

adjusted so that similar inputs produce similar outputs. The training algorithm

accomplishes this by extracting statistical regularities from the training set, repre-

senting them as the values of network weights. As Wasserman phrased it in [2];“self-

organization is reminiscent of the manner in which, in some cases, the human brain

modifies its structure under the influence of its experiences without a ‘teacher’ ”.

Although applications of unsupervised learning are not as frequent as for super-

vised learning, they have been used in combination with other paradigms and have

produced useful results. An example of these applications is the counterpropagation

method[16] .

2.3 Computational Features of Neural Networks

Neural networks research is directed toward finding models that can accomplish useful

tasks such as association, pattern recognition etc. The most important classes Of

application tasks that Neural Networks are able to perform will be identified in this

section.

2.3.1 Function approximation

A deterministic feedforward network represents a mapping between the input layer

units and the output layer units. The evaluation of the mapping is achieved by

propagating the activations from the input layer to the output layer.

The network topology and activation functions are what determine the class of



15

functions that can be represented by a network. For instance, a single-layer perceptron

output results from the input in the following way:

y = Z wixi (2.3)

It is then clear that the class of linear mappings can be represented by the linear

perceptron. However, a broader range of function classes, usually nonlinear map-

pings, have been represented by multi-layer perceptrons. In addition to single-layer

and multi-layer perceptrons, layered feedforward Neural Networks with radial basis

activation functions seem to perform especially well for general functional approxi-

mation tasks. One of the functional approximation tasks that is of great application

importance is classification. Even though any network model could be used for classi-

fication, specific properties of this application require particular activation functions

and learning rules.

The classification task is characterized in the following way:

e A set of objects that are each characterized by a fixed-length vector of numeric

or Boolean features is supplied. A set of classes is also given, such that each

object is only assigned to one class.

e A subset is then selected and called a training set, for which the class assignment

is explicitly known.

e The Neural Network can be trained to estimate the class of objects that did not

belong to the training set.

e The performance of a neural classifier is measured by the proportion of objects

for which their class assignment estimate (recognition rate) is correct.

The feature vector describing the objects is frequently referred to as a pattern and

the entire task as pattern recognition.
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2.3.2 Data compression

The task of a Neural Network model applied to data compression is to find a mapping

that reduces the original pattern to a compressed pattern, usually of a substantially

lower dimension. The learning rule of Oja[l4] is a Neural Network model for linear

data compression. However, for nonlinear data compression, multilayer perceptrons

in an autoassociative mode can be used: The desired output of the perceptron is

set equal to the input. If an autoassociative perceptron with a hidden layer that is

narrower than the input is used (and output) layer is trained to produce outputs that

are very close to the inputs, the hidden layer constitutes a nonlinear compression of

input patterns. The inverse mapping of compressed patterns to the original ones is

given by the output layer.

2.3.3 Optimization

The class of optimization tasks that can be solved by Neural Networks are of the

type that can be solved by relaxation of annealing and can be characterized by the

following properties:

e A neighborhood system must be defined on the variables of the optimization

task.

e The objective function to be maximized has to be additive in terms of cliques,

groups of variables within which each variable is a neighbor of every other

variable.

As in the case of functional approximation, optimization consists of a number of

subclasses which can also be viewed as task classes. One of the subclasses that is

frequently tackled by Neural Networks approaches is associative memory.
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2.4 Examples of Models of Feedforward Neural

Networks

Given that the proposed research in this document will be restricted to FFANN in a

supervised learning framework, only the models that belong to the same setting will

be reviewed in this section. The discussion of additional models can be found in [1].

2.4.1 Perceptron and adaline

The perceptron model proposed by Rosenblatt [10] is one of the first models ever pro-

posed and is still important to current research. The classification of visual patterns

was one of its primary goals. Widrow [17, 18] also has pursed a similar approach.

The perceptron is the simplest version of a (FFANN). It consists of a single layer for

input units and a single output unit. The one layer inputs are weighed by vector of

connection strengths then fed into a step function. The activation function of the

output unit is described as follows:

2 = 6(2 war,- — a) (2.4)

1 for a: > 0

6(ar) = (2.5)

0 otherwise.

with 9:.- being the ith element of input patterns, 2 the output, to, the connection weight

of the ith input, and a the output unit’s threshold. The output unit activation can

assume two values, zero and 1. Each value corresponds to one of two pattern classes

that have to be separated.

The learning rule of the perceptron is supervised . It consists of a very simple

strategy of changing the weights only if the pattern x is misclassified, that is, if the

activation of the output unit for this pattern is not equal to the correct class of the

pattern. The amount of change is
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x,- if class =1

Aw,- = (2.6)

—a:.- if class = 0.

This simple learning rule has an important property. If both classes are linearly

separable, the weights will converge to the values that materialize the separation.

2.4.2 Multilayer perceptron

The fact that single-layer perceptrons can only separate linearly separable classes was

pointed out by Minsky and Papert [110] at the end of the 1960’s, and this led to a

substantial decrease in interest in Neural Networks research.

Rumelhart along with Hinton and Williams [13] formulated the backpropagation

learning rule. The backpropagation model is based on two principles:

e 1. To overcome the limitations of the single-layer perceptron, all that is neces-

sary is to insert one or more additional layers between input and output. These

layers consist of processing units with nonlinear activation functions, typically

sigmoid functions (3). Arbitrary convex classes can be separated by a network

with one such hidden layer (a two-layer network), and arbitrary non convex

classes by a network with two hidden layers (a three-layer network);

e 2. The delta rule (8) can be used to learn output layer weights. Remaining

weights can be learned by recursive application of the chain rule for computing

derivatives. For a two-layer network with cc.- representing input unit activations,

yj hidden-unit activations, 2;, output unit activations, ij output layer weights,

and v].- hidden-layer weights, the rule is the following:

—0E :23 2.£?_21_E:_3y1__‘L”1““

avji k Jazk8y16 ‘vfix, 8ng

= Z]. 2,-(21. - down-yin — yj):z:.- (2.7)
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The related recursive formulas are given in [13]

A large number of applications are based on the model constituted by the simple

principles described above.

2.5 The Optimal Filtering Technique

The computation of the weights of a FFANN in order to achieve an input/ output

mapping is a problem that could be classified as a parameter estimation problem or

a high dimensional nonlinear system identification problem. Nonlinear optimization

techniques are well suited to solve the problem. The only disadvantage of these

techniques is their computational cost especially if the problem is attacked globally

instead of being divided into a set of manageable subproblems. The problem of

estimating the weights in a (FFANN) is nonlinear due to the sigmoidal activation

function, but it is smooth. Therefore methods of linear estimation theory could be

applied to such a nonlinear problem by linear approximation of the effects of small

perturbations in the state of the nonlinear system from a “nominal” value. Since the

state variables are not known beforehand the nominal trajectory has to be defined

“on the fly”[19] as the current best estimate of the actual trajectory. The approach

used here is called extended kalman filtering. The advantage in this approach is

that the perturbations include only the state estimation errors which are usually

smaller than perturbations from any predefined nominal trajectory and therefore

better conditioned for linear approximation.

2.6 Thesis Problem Description

During the investigation of the work done so far in using the kalman filter algorithm

in the supervised training of the (FFANN), the major problem that attracted our
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attention is that several trials and simulations had to be done before the performance

was satisfactory. The need for several trials, as we understand from the work previ-

ously reported, is that for certain initial conditions the algorithm was trapped in local

minima that were not acceptable in terms of performance. The only way to escape

the problem that has been adopted so far is to run the algorithm with different initial

conditions. No major work has been done to make the algorithm escape the local

minima once it is trapped. Even though the algorithm has the advantage of being

stable under certain conditions, it does not always converge to a satisfactory solution.

Our main goal in this thesis is to develop solutions for the problem outlined above.

2.7 The Objectives and the Outline of the Thesis

Having highlighted the problems that are of interest to us in the previous section, we

now, address these problems by stating the goals that we plan to achieve. A research

plan is then developed that includes the tasks to be accomplished.

As mentioned earlier in this document, guesswork due to tunable parameters,

etc. can hurt the efficiency of training a Neural Network to perform a desired task.

This is one of the factors that has motivated researchers to focus their efforts on

seeking algorithms that are more suitable, easily comprehended and also theoretically

supported. It is believed that better understanding of an algorithm and the main

theory behind it, is the basis for efficient training of (FFANN). The goal of two

planned research tasks in this work is to improve the efficiency of a. newly introduced

feedforward training algorithm without a degradation of its performance.
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2.7.1 Outline of the thesis

Since the research goals have already been determined, the research plan will be

organized in a manner as to achieve these goals and arrive at a stage of subsequent

developmental research. The tasks to be accomplished in the proposed work include

the following main ones:

Task No 1: Characterize the essential features of the learning algorithms based on

Kalman filters.

Objective: Through an investigation of the theory behind the algorithm and com-

puter simulations to observe the behavior, point out the problems that this

algorithm faces in terms of how the convergence is affected with different initial

conditions. It is also beneficial to be aware of the assumptions made, if any,

while designing this algorithm or any post-improvement of it.

Significance: The simulation of algorithms that are theoretically comprehended

and convergent will be meaningful in two ways. On one hand, it will help identify

any problems with the algorithm that were or were not theoretically anticipated.

On the other hand, it will provide insight or how to modify the algorithm to

work better in terms of computation and convergence time efficiency.

Approach: We start with a careful review of the work that was done on the sub-

ject until present. This is accomplished by gathering most of the literature

published. The theoretical understanding of the work that was previously pub-

lished is the only way to discover any discrepancies or neglected issues in the

problem. The next step is to check the accuracy of the results by a careful sim-

ulation. Also, a verification of any claims that are not theoretically supported

will be conducted during the computer simulation. This way we can discover
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all the weaknesses of the method or the algorithm, and by further investigation,

a modification will be developed for future improvements.

Task No 2: Develop a modification of the learning algorithm aimed at its improve-

ment.

Objective: To overcome the identified problems of the previously proposed algo-

rithm(see appendix); the major ones being convergence to none satisfactory

solutions and the high load of computation.

Significance: Once the modification is successful, this algorithm will be very com-

petitive with the backpropagation algorithm, especially in terms of the compu-

tational efficiency.

Approach: Having identified the problems with the previous approach to the prob-

lem at hand, a modification is suggested based on the following two criteria:

e The modification should avoid any approximations or assumptions that

were not theoretically justified.

e The modification is aimed toward enabling the algorithm to converge to

satisfactory solutions regardless of the choice of initial conditions and in

an adequate amount of time.

After the development of the modification that is based on theoretical under-

standing and aims toward an improvement of the algorithm , simulations on

different examples are conducted. The results are then compared with the pre-

viously reported ones. The simulation results are expected to support what was

anticipated from the modification theoretically.



CHAPTER 3

The Extended Kalman Filter

Algorithm

3.1 Motivation

The classical (discrete-time) backpropagation algorithm, although widely used, has

numerous disadvantages. One of them is an extreme sensitivity to the initial choice

of the set of weights: There are many choices of weights for which the algorithm

will not converge and finally when it does converge for some set of weights, the error

diminishes only after a great number of iterations. There is also another problem

with the backpropagation algorithm exhibited as an inconsistency in training. This

means, the mean squared error could remain the unchanged for many iterations then

suddenly decrease to a lower value.

The Extended Kalman Filter algorithm, presented here, does not suffer from such

problems, it is not extremely sensitive to the initial choice of weights and it converges

comparatively faster.

23
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3.2 The Learning Dynamics

The task of finding weights, which would achieve a specific input/output mapping, is

viewed as a parameter estimation problem. The network we use is a fully connected

Feedforward Artificial Neural Network or (FFANN) which is multi-dimensional and

nonlinear. The parameters to be estimated are the weights [20, 21, 8, 22, 23, 24].

An arbitrary FFANN which depends on the application is considered. It consists of

a large T dimensional weight vector 0 made up of all the synaptic connections with

sigmoidal nonlinearities. The objective in training the (FFANN) is to determine the

weight values producing the L dimensional output vectors g(n) which are the closest

possible to the desired output values d(n). The input sequence i(n) is made up of N

dimensional vectors.

Here, we consider searching for the weights on-line with patterns presented in

sequence at the input of the network and with updates made recursively. The synaptic

weight vector 0 is viewed as the state of a static nonlinear dynamical system described

by the equations

an =aj—n =4

d(i) = h(90,i(j))+e(j),

where j is the time index, h(t9o, I(]) is the time varying function describing the net-

work and e(j ) is the multidimensinal sequence of modeling errors[21]. To obtain the

dynamic estimates d(n) of do, a traditional approach is adopted based on a deter-

ministic formulation, in which (1(j), d(J)) is a sequence of non-random input/output

pairs and the cost to be minimized at time n is

ewon=$§nan—hvommnntvv. e1)
i=1
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Here e(j ) is the deterministic sequence of the modelling errors, and An'j (0 < A < 1)

is a forgetting function which exponentially discounts the examples presented in the

past. This is the so—called weighted recursive least squares approach(WRLS). In the

case of h being linear, the solution could be obtained using the classical RLS algorithm

[8]-

3.2.1 The global extended Kalman filter algorithm

The extended Kalman filter(EKF) equations are derived by expanding the nonlinear

function h(0,i(n)) around the current estimate parameter vector d(n - 1)(estimated

from all the data up to time (n - 1)). Namely, the state model is rewritten as

d(n) = h(é(n—1),i(n))+HT(n)(09—o‘(n—1))+p(n)+e(n), (3.2)

where H(n) is the T matrix given by

8h(0, i(n))

H(n) = —5,—— I9=9,,_, (3.3)

and p(n) is the residual in the Taylor expansion of h.

The state model becomes

H(n) = 0(n — 1) 2 do

d(n) = HT(99)90 +509) + e(n), (3-4)

with {(n) = h(0(n —1)), i(n)) - HT(n)é(n — 1) + p(n).
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Both, in the deterministic and in the stochastic formulations the estimate d(n) is

obtained as the optimal regression of do in (3.2). We concentrate on the deterministic

formulation, for which the estimates are obtained from the minimization of

4n) = >_: ll 9o) ”2 W. (3.5)

The solution is derived from the normal equation

V6960?) = 2Z?=1H(j)(d(j) — HT(j)00 — {OD/V” = 0. (3-6)

which gives

i(n) = o-1(n)r(n), (3.7)

with

<I>(n) = Z) H(j)HT(j)A""' , (3-8)

r(n) = : v-‘J'Hoxdm — 5(1)) (39)

The key assumption here is that that the residual sequence {(72) does not depend on

do.

The EKF recursions for the network are

G(n) = A’1P(n —1)H(n) [1+ A—IHT(n)P(n —1)H(n)]'1, (3.10)

i(n) = to. — 1) + G(n)(d(n) — h(é(n —1),i(n)), (3.11)

P(n) = A'1P(n — 1) —- A—1G(n)HT(n)P(n — 1). (3.12)

G is a T matrix (the so called Kalman gain) and P(n) = <I>‘1(n) is a T matrix.

To initialize the algorithm, the covariance matrix is chosen as P(O) = 6'11, with 6
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greater than zero, a small arbitrary value and weights 8(0) to some nonzero random

values.

3.2.2 Computation of the gradient matrix

In this section we take a closer look to the gradient matrix HT(n) Given the archi-

tecture of the (FFANN), the elements of the weight vector 0 are arranged so that the

rows of H(n) contain the derivatives of the global outputs with respect to all the T

synaptic weights for 0 = d(n — 1). The neurons are numbered from 1 to 7),, so that 9

= (w1, w2, ..., wm). The equation describing the desired output can then be rewritten

        

(d1) ((58%? (53%)T (fill—Fl (ml) (61)

3 T 32 T 3 T 102 62

d2 <n>= $53) 155’?) . Iii) >< . + . (n)

(99) NM (3.1% <§a>T1 (9,) in)

Where w; is the vector containing the synaptic weights of neuron i, and e(n) =

C(n)+e(n). The computation of the derivatives in the matrix H(n) is achieved via a

back propagation of the output values g(n) through the network.

In order to illustrate how these derivatives are obtained, we first need to describe

the structure of the (FFANN) used. The description included in this section is iden-

tical to the one given in [25] since their description of the structure was clear and

complete.

Let M be the total number of layers in the (FFANN) with the input and output

layers included. The i — th neuron in the s — th layer is denoted by neuron (s,i),

and 1), denotes the total number of neurons in the s — th layer. 2:, is the input of the

neuron (1,i), x: is the output of the neuron (s,i), wfik is the linkweight coefficient
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from the neuron (s, k) to neuron (3 +1, i), and 113;? is the threshold of the neuron (s, i).

Usually, the thresholds are treated as weights that connect an input unit, which 03

always on, i.e. its value is always one, to the neuron, then

1 1 u}: if 2 < s < M
517:9;14-1 = 1, 2333M and 11vath =

0 ifs = M

Further, let

T
3 ,3 8-1 s—1

21 $1 wi,1 wl )

23: 11": awf-l— aws—l:

T
8 8 3‘1 8-1

2m $773+1 wink—1+1 w": )

where wf’l is a (773.1 + 1) x 1 weight vector of the neur0n(s,i), u)”-1 is a 17, x

(1),-1 + 1) weight matrix of the s — th layer, and x" is a n, x 1 output vector of the

s — th layer. Then, the operation equation of the network can be expressed in the

following vector form

a: ifs=1 2’ ifszlorM

2‘: anda"=

w"_1:r"1 if 2 $33M h(w3‘1x“1) if 2533M -l

where the function h(.) may be chosen as the hyperbolic tangent function h(x) =

tanh(.r) and

h((wi“)Tx“‘)

h(ws—lxs—l) =

The weight training algorithm requires the computation of the partial deriva-

tives of the output mM of the (FFANN) with respect to the weight vectors. These

derivatives may be derived from the operation equation stated above. A computation

procedure for partial derivatives from layer (M — 1) to layer (M — 2),- - -, until the

layer 2 of the (FFANN) is considered. These derivatives are given as follows
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l o i

0

M

“a?” = (xM-IT

awfi "1

0

l 0 l

where find: are (nM_1+1)ng matrices. For 2 S i 3 M—1, [3 = 1,2, - - - JIM-:41;

B

one can obtain

an!" _ BxM axM‘l 0xM"+2 BxM‘H’l __ ‘4 BrM’j 62:114-,“

awgl—i _ 81,114-] axM-2 --- axM—H-l 61034-1 _ ( OOTM-j-l) 81024—3.

J:

Also for 2 S i S M — 1, fl = 1, 2, - - - ,17M_,-+1, the following relations are obtained

from the operation equation

axM—j hl((w]W-J'-l)TxM—j—1)w[W—j-l

WIT—1 2 if #0

wag-3,4rad-1199.91.73



axM—i-i-l

 

M—i _

aUJfi

where h’(:r) = 1/cosh2(:r).
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3.2.3 The local appraches and the (NDEKF)

Due to the high computational load of the EKF algorithm, researches thought to

simplify the global approach by partitioning the global problem into a set of man-

ageable subproblems. In the case of (FFANN), the partition of the problem may

be down to a group of neurons, to the layer level, to the level of the single neuron,

or, ultimately down to the level of a single synaptic weight. In this work, we are

interested in partitioning the problem down to the neuron level and solve the global

problem(minimizing the cost) by independently updating the weights each neuron at

each step.

The effect of the neuron i in the global output of the network is locally described

by the gradient matrix H,T(n) [26]which is the i — th column of the HT(n).

((31% (4%)“

HT“): (353:)T = (43??

((2%? ($31? )  

Since the gradient matrix is now decomposed into a set of smaller gradient matrices,

we can also think abot decomposing the weight vector into few subvectors each one

associated with the corresponding gradient matrix.

The decomposed parameter estimation problem is described by the following equa-

tion:

g(k) = f(waxlkll : f(wi, " awylna' ' ' twill-19' ° ' wM-l $06))7 "M 3

where y(k) is a 17M x 1 vector of output of the network at time k, 103, 1 S )6 S 1104.1,

1 S a S M — 1 are 170, x 1 weight vectors to be estimated, :r(k) is a 171 x 1 vector of

the input of the network at time k, f() is a 17M X 1 smooth vector function.

We now introduce the new parameter vectors 0;, 1 S i S n, n = X1127” that
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represent the weight vectors wg, let 0,- : wg, then the scripts i and 01, 3 are related by

015:1, fl(i) = i, ifi S 712 and a(i)=1+max{j:(i— {_2 m) > 0}, fl(i) = i—Ef’le m,

if i > 1);. Consequently the 0.- are (71a(i)+1) x 1) vectors, and the nonlinear euation is

rewritten as y(k) = f(01,- - - ,0mr(k)). Given that p(k) is the input pattern, 314(k)

is a 11M x 1 vector of desired output pattern of the (FFANN), and 0,- at time k. The

weight training oof the (FFANN) is aimed toward estimating the weight vectors 0,-

such that the output y(k) of the FFANN tracks the desired output yd(k) with an

error that the algorithm can make converge to zero as k —+ inf.

In order to decouple the global problem acuretly, we can only use the (M544 x

Mg“) diagonal blocks of the error covariance matrix. Neglecting the error covariance

matrices p;,-(k) of the estimations 9,-(k) in the recursive estimation procedure is based

on the assumption that the error covariance matrix P(n) normally contains most of

its energy around its diagonal blocks. [27]. It also results in obtaining an approximate

neuron-decoupled extended kalman filter equations or NDEKF formulations from the

standard extended kalman filter (EKF) formulations [25] as follows:

 

A(n) = [I + A“ ,2: ij,(n —1)Hf(n)]"‘, (3.13)

0,-(99) = A‘lp,-(n — 1)H,-T(n)A(n), (3.14)

Mn) = A“(1 - Ge(n))H9(n)p9-(n -1)9 (3-15)

0.0.) = 0,-(n — 1) + G.-(n)e(n), (3.16)

H9(n) = 6f(91(n — 2%; 3'41”) _ 1)’ 3:02)). (3.17)

e(n) = yd(n) — f(61(n —1),...,9,,(n —1),:v(n)), (3.18)

where A(k) is a 17M x 17M matrix, G;(k) are (770(i)+1) x anatrices of the filtering

gain, and p,(k) = p,T( k) are (”01(2)“) x ("e(i)+1) matrices of the error covariance matrix

of the estimation 0,-(k). The procedure of recursive training described in the above
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equations can be explained as follows.The NDEKF uses the old and the new outputs

to recursively train the weights. In every iteration, the NDEKF predicts the network

output y(k) based on the previous estimated weight vectors and the new input. It

then compares the difference between the predicted output y(k) and the new desired

output yd(k), the prediction error e(k) can be obtained. Based on this prediction error

and the information of the entire history of the input, desired output pair, which is

stored in the covariance matrices p;(k -— 1), a set of modification coefficients, gain

matrices G,(k) corresponding to the weight vectors 6,- of the neuron(a(i) + l,fl(i)),

can be calculated. The new trained set of the weight vectors 0,-(k) is then determined

by the sum of the last trained weight vectors 0,-(k — 1) and the innovation term which

is a multiplication of the gain matrices G;(k) and the prediction error e(k). At last,

the information of the new input and desired output is stored in the error covariance

matrices p,(k) to be used in the next iteration.
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3.3 Simulation Examples

Simulations, were conducted to compare the performance of the NDEKF to the

proposed modifications. In this chapter, we report the performance of the original

NDEKF on two continuous 2-dimensional patterns. The XOR problem is described

as a 2-region classification problem and is performed on a one of the 2-dimensional

patterns. A 4-region classification problem is performed on the second 2-dimensional

pattern. The network architecture consists of two inputs followed by two hidden lay-

ers. The size of the output layer we use is 2 or 4 depending on the problem. The

size of the hidden layers is 10. The network size is thus (2-10-10-2) for the 2-region

classification problem and (2-10-10-4) for the 4-region classification problem. This

network size has a weight vector, including the bias weights, of 162(respectively 184)

elements including the bias weights.

The input pattern was the uniformly distributed random points in the region

[0, 1]”. The function to be approximated or the desired output values for the network

are set to 1 and 0 inside and outside the regions depicted in the figures below. If

a point falls into a region of a certain color, shade or class, it is assigned a target

output vector for that class. The target output vectors are the two columns of the

2 x 2 matrix for the 2—region classification problem and the four columns of the

4 x 4 identity matrix for the four region classification problem. The inputs were not

presented in sweeps but obtained continuously by a random number generator. The

initial weights were randomly selected and also uniformly distributed between -0.5

and 0.5. The P matrices were initialized to 1000 times the identity matrix. The

adaptation of the weights is done as follows:

1. Pick a random point and propagate forward to the output layer.

2. backpropagate the error values (error is computed as the difference between

the target output value and the actual computed output) through the whole

1
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network.

3. Simultaneously update all the network weights and matrices.

The mean squared error is averaged every 250 iterations (We call this average: an

interval average error).

Simulations for the original (NDEKF) were performed on 5 different initial condi-

tions. The training is completed when a stoppage criterion is achieved. The stoppage

criterion is described by a threshold of the interval average error or a maximum num-

ber of iterations set by the user. In our simulations we chose a threshold error(0.05,

0.3) respectively. The maximum number of iterations was set to 50,000 for the 4-

region classification problem and 25000 for the 2—region classification problem. The

performance results are described in the following table and figures. These include re-

sults for both the XOR 2-region classification problem and the 4-region classification

problem.

We define the Total Average Error (TAE) as

C(71) = (E II e(j) ||2)/n9 (3-19)

1:1

and the Interval Average Error (IAE) as

k+L

61901) = (2 ll 9(3) ll'zl/La (3-20)

1:}:

where k = j/L when j is a multiple of L.
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Figure 3.2. The 4-region classification pattern
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Table 3.1. The 2-region classification problem

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

lambda choices ICl 1C2 IC3 1C4 IC5 IC6

A = 1 TAE 0.1095 0.1255 0.1102 0.1326 0.1136 0.1348

IAE 0.0823 0.1069 0.1022 0.1061 0.1006 0.1176

class % 97.2 96.2 97.0 96.2 97.0 95.8

#iterations 25000 25000 25000 25000 25000 25000

A = 0.99 TAE 0.7845 1605 0.6530 0.9377 0.7760 0.7759

IAE 0.9467 17.6 0.5663 1.0554 0.5952 0.9878

class % 37.3 25.4 80.5 20.2 54 36.9

#iterations 25000 25000 25000 25000 25000 25000

A = 0.98 TAE NAN NAN NAN NAN NAN NAN

IAE NAN NAN NAN NAN NAN NAN

class % 0 0 0 0 0 0

#iterations 5000 5500 3250 3000 3750 2500

A = 1.01 TAE 0.2384 0.2597 0.3620 0.3551 0.2706 0.3480

IAE 0.2452 0.2721 0.3595 0.3614 0.2812 0.3458

class % 85.7 86.1 77.4 80.0 85.1 79.9

#iterations 25000 25000 25000 25000 25000 25000

A = 1.02 TAE 0.3801 0.5089 0.4659 0.4324 0.5248 0.3724

IAE 0.3824 0.5565 0.4950 0.4150 0.5255 0.3950

class % 76.6 69.2 74.1 73.8 65.8 78.1

#iterations 25000 25000 25000 25000 25000 25000       
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Table 3.2. The 4-region classification problem

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

lambda choices ICl IC2 IC3 1C4 IC5 IC6

A = 1 TAE 0.5757 0.5885 0.5718 0.5357 0.5596 0.5624

IAE 0.5736 0.5416 0.5295 0.4916 0.5145 0.5210

class ‘70 76.9 75.1 77.7 77.1 78.2 78.4

#iterations 50000 50000 50000 50000 50000 50000

A = 0.99 TAE 0.7604 4.7649136 0.6638E3 NAN NAN NAN

IAE 0.7936 0.0179136 1.5E3 NAN NAN NAN

class ‘70 44.7 22.5 23.3 0 0 0

#iterations 50000 50000 50000 46750

A = 0.98 TAE NAN NAN NAN NAN NAN NAN

IAE NAN NAN NAN NAN NAN NAN

class 70 0 0 0 0 0 0

#iterations 36260 36500 22750 11000 17500 24000

A = 1.01 TAE 0.7167 0.7223 0.7002 0.6387 0.7160 0.6636

IAE 0.7199 0.7030 0.6786 0.6165 0.6958 0.6416

class % 51.4 51.12 52.5 66.8 51.0 54.0

#iterations 50000 50000 50000 50000 50000 50000

A = 1.02 TAE 0.7375 0.7206 0.7331 0.7046 0.7493 0.6933

IAE 0.7392 0.6993 0.7331 0.7046 0.7337 0.6687

class % 49.5 54.2 51.3 54.5 50.4 54.8

#iterations 50000 50000 50000 50000 50000 50000       
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2—mglon original problem IC2
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2—raglon problam wllh lnvama lambda —0.99 ICZ
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Figure 3.8. The IAE with A’1 = 0.99
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4—roglon problam wlth Invor'aa lambda—1 .01 lC2
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4—roglon orlglnal problem ICO

V *7 f 

d I 1

9 O I 1

T
a
i
w
a
n

9 0

  
 

 

 

  
 

 

 

  
 

0.4 - -4

0-2 - .4

o .

O 1 2 3 4 5 0

numbar ol ltaratlona x .‘ 0‘

Figure 3.21. The TAE with A‘1 = 1

1 4 4—roglon problam with lnvaraa lambda—1 .01 ICO

1 .2 v-
..

‘
1

E... _ ..

g 0.6 r- -‘

o 4 +— J

0.2 ’- .4

0 .

0 0.5 1 1 .6 2 2 5

number of ltaratlona x 1 0‘

Figure 3.22. The TAE with A"1 = 1.01

‘ 4 4—raglon pmblam wlth lnvaraa lambda—0.00 Ice

1 .2 '- -4

1 -l

5.0.0 -‘

g 0.6 r— -*

0.4 r- -*

0.2 >-
_.

0 A . .

0 1 2 3 4 5 0

numbar ot ltaratlona x 1 04
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3.4 Discussion and Analysis of Results

The results of the simulations summarized in the above tables and figures suggest that

the convergence and the stability of the Kalman filter algorithm are not very sensitive

to the choice of the initial conditions. However, for different exponential weighting

factors A ’s, the algorithm exhibits different behaviors. When A = 1, the algorithm

shows a stable behavior but does not converge to an acceptable local minimum. In fact

the IAE as defined in the previous section, stalls for a large number of iterations. If we

then choose A slightly greater than 1, which is not in accordance with the forgetting

factor definition, the algorithm is still stable but the same stalling phenomenon occurs.

Note that A grater than 1 guarantees the stability of the discrete recursion equations

that include the update of the covariance matrix described in equation (3-12). A

slightly less than 1 however is a value that fits the definition of the forgetting factor

and it has previously been used in other applications of the Kalman filter approach

where it has performed satisfactorily. Though, in our application of the Kalman

filter algorithm to supervised learning, the behavior of the algorithm under A slightly

less than 1 shows a divergence phenomenon that will be given the name “explosive

divergence” in the next chapter. This behavior can be expected if we carefully observe

the recursion equations of the algorithm. Equations (3-10) through (3-12) show that

when A < 1, A’1 > 1 is expected to drive both the covariance matrix elements and the

weight parameters to higher and higher values as the number of iterations increases.

The reason that this divergence problem occurs in this application (Supervised

learning) of the algorithm and not in so many others may be due to the characteristics

of the nonlinear model. The sigmoidal nonlinearity present in the (FFANN) model

is the only nonlinearity present in the network. And its shape and the shape of its

derivative could be at the origin of the poor performance of the algorithm. However,

as described earlier in the section, divergence problems could be easily predicted from



50

the recursion formulas described in equations (3-10) through (3-12).

in the above conclusions the following conjecture is formulated :

3.4.1 Conjecture 1

Let ((601)) be the Least Square Error defined as :

«an» = Z u do) - h(é(n),i(j)> ”2 WI (3.21)

we conjecture that the following statements are true :

o If A is < 1 then the EKF algorithm exhibits an unstable behavior described by

an explosive divergence.

o If A is 2 1 then the EKF algorithm is stable but often converges to unsatisfactory

local minima.

Now that the simulations performed in the previous section identified some weak-

nesses of the Extended Kalman filter approach to supervised learning, we propose to

search for solutions for the following problem :

o How can one make it possible for the algorithm to converge to satisfactory local

minima regardless of the complexity of the problem and its initial conditions.

and,

o How can one improve the computational efficiency of the algorithm in cases

where the performance is satisfactory but the convergence time is not adequate.



CHAPTER 4

Convergence to Satisfactory Local

Minima

4.1 Motivation

The literature review done on the subject of kalman filters as an approach to super-

vised learning suggests that convergence to satisfactory local minima is not guaran-

teed and is very sensitive to the choice of initial conditions. This conclusion is drawn

from the results reported in several papers [26, 25, 21]. The authors on these papers

had to conduct several trials with different initial conditions then average the results.

Seldom did they report all the trials with their individual results. In a practical

situation, however, the averaging of the results does not give a solution to the prob-

lem. The solution is usually chosen after several trials are performed to give the best

performance. The need to try different initial conditions presents an inconvenience

because of the extra time and resources used to arrive to a satisfactory solution. This

drawback of the algorithm has motivated the research in this chapter. The analy-

sis of the problem begins by investigating the reasons behind the divergence of the

algorithm and categorizing them. The investigation is expected to outline the steps

toward a solution of the problem and is done in the second section of this chapter.

51
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The last two sections in the chapter are designated to the proposed solutions followed

by simulations on two region classification problems.

4.2 Divergence Phenomena

The kalman filter algorithm as with the special case of the recursive least squares(RLS)

algorithm may exhibit two forms of divergence.

o explosive divergence

o lock-up divergence

The first form of divergence described as explosive is due to the covariance matrix

P(n) losing its positive definiteness which means that it becomes singular. However

this kind of divergence could also occur due to roundoff errors and it is usually ob-

served when the forgetting factor A is less than 1. When A is equal to 1 and the

algorithm is left updating for a large number of iterations, the roundoff errors can

become large and cause the algorithm to diverge.

The second form of divergence called lock-up divergence usually occurs when A

is equal to 1. This divergence shows up when the algorithm stalls. This stalling

phenomena occurs when the algorithm stops updating which means that the filter

weights stop changing in value. It was mentioned in [28] that The experience with

this divergence may be temporary or permanent but in our own experience it was

permanent. When the gain matrix which is used to update the weights becomes

very small the filter weights will stop changing. However to compute the gain matrix

the covariance matrix is used. If we look at the computation of the gain matrix we

conclude that if the covariance matrix P(n) becomes very small the gain matrix G(n)

also becomes small. We can then assert that the stalling phenomena is due to the

covariance matrix becoming small. If the elements of the covariance matrix are near
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zero the lock-up divergence is permanent.

4.3 Proposed Solutions

After having defined the two forms of divergence that are frequently present in the

Extended Kalman filter algorithm, we now proceed to summarize the previous at-

tempts from several researchers to solve such problems with divergence. We will then

propose and implement our own solutions to the same problem.

The problems of divergence especially the lock—up divergence form described as

the algorithm getting trapped in local minima that are often undesirable, is not only

a characteristic of the extended Kalman filter algorithm. In fact the backpropagation

algorithm in its original version, although guaranteed convergence, often converges to

unsatisfactory local minima. Several approaches have been tried to escape these local

minima. One approach was to add a momentum term to the update of the weights.

Another approach which proved to be successful is the use of different energy functions

or cost functions.

In the Kalman filter algorithm one technique has been used to enable escaping

local minima. This technique entails the addition of an artificial process noise in the

update equation of the covariance matrix. This technique was mainly used to render

the covariance matrix positive definite [27]. This was the only technique that we can

find in the literature that was claimed to help with the lock-up divergence. The lack

of any extensive research aimed toward a solution to the two forms of divergence

described in the previous section is what motivated our research in this chapter. We

will now begin outlining our own strategy for finding a solution to this problem.

The Kalman filter algorithm as applied to supervised learning has been derived

by considering a specific energy function for which the goal is to find a set of optimal

parameters that will minimize it. The energy function is usually defined as a mean
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square error between a desired output or target and the actual output given by the

network. This (LSE) could also be weighted by a suitable function or coefficient [29].

This weight factor has proven to be beneficial in terms of improving the convergence.

In our work we investigate the influence of the weighting factor A on the convergence

of the algorithm. Even though A was always present in the recursion formulas of the

algorithm in the earlier work [26] it was kept fixed at A equal to 1. Based on the

theoretical analysis of the stability and the convergence problems the algorithm can

exhibit [8], it would be safe to keep A fixed at 1. However this is a very conserva-

tive choice and consequently the algorithm can present a stalling phenomena that is

usually observed around an unsatisfactory local minimum.

We concentrate on the deterministic formulation, for which the estimates are

obtained from the minimization of

e(n) = _§_: n e(j) n: W: (4.1)

We propose an adaptation scheme for A which depends on how fast the error is

decreasing and whether a stalling phenomena is present or not. We keep A smaller or

equal to 1 as necessary. Preliminary results on two classical classification problems

are very promising. Varying A has enabled the network to automatically escape from

the local minimum and decrease the error to a better minimum. A comparison of

the algorithm with or without fixing A using the same set of initial conditions will be

given.

4.3.1 A Modified update procedure

The original (NDEKF) used a forgetting factor that was fixed at 1. This value of A

guarantees stability without always guaranteeing a good performance. To solve this

problem we propose the following modified updates based on varying A. After the
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mean squared error is averaged every 250 iterations (We call this average: an interval

average error), this error is then compared to the previous error. If the difference

is smaller than a certain threshold, it is decided that the network is stalling. At

that moment A is changed to a value that is smaller but still very close to 1. If

this new value is kept unchanged for a large number of iterations, the network shows

some instability behavior. This phenomenon is justifiable if we examine the update

formulas. In order to guarantee the stability a mechanism that will switch A back to

1 had to be incorporated in the algorithm. Three different ways were considered :

1. One choice is to change A for only a few iterations.

2. A second choice is to change A until the total average error shows some increase

over the previous average error.

3. A third choice is to change A until the instantaneous error increases as compared

to the one computed 1000 iterations before.

4.3.2 The forgetting factor as a function of error

Since the mechanism of switching A back and forth between 1 and less than 1 depends

on how the so called IAE behaves (whether it is decreasing or stalling), it would be

convenient to model A as a function of this IAE. The inconvenience of the other choices

is manifested in one of them at least. The time to switch A back to 1 was done by

trial and error and that could take few trials. However from the few experimental

trials we could conclude that as long as we only switch A for less than 50 iterations

the stability is preserved. A suitable function that would model the behavior of A as a

function of the error has to satisfy at least these two conditions in order to guarantee

stability.

0 A is slightly < 1 when the difference between two consecutive interval average

errors is less than a certain threshold.
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o A is 1 when the difference defined above exceeds the same threshold chosen

above.

Several functions were picked but the one that was closest in satisfying the conditions

is the following:

tanh(a*6) if 6 > 7

A = (4.2)

0.98 otherwise

where 6 is defined

k+1+L k+L

6 = ( 2 ll e(y) ||2)/L — ()3 II e(j) ||2)/L- (4.3)
j=k+l j=k

7 is a difference of error threshold chosen as 0.0025 in our simulations. It could

be changed accordingly with the problem. and k = i/L and i is the number of

iterations that is a multiple of L. In our simulations L was chosen as the value 250 for

comparison purposes. a is decided accordingly with the desired behavior of A. In our

simulations 0 = 1000 fits best with the desired conditions for the chosen function.
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Figure 4.1. A = tanh(a*6) with a = 1000 and 6 is the IAE difference
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Table 4.1. The 2-region classification problem

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

update choices ICl 1C2 IC3 1C4 IC5 IC6

= 1 TAE 0.1095 0.1255 0.1102 0.1326 0.1136 0.1348

IAE 0.0823 0.1069 0.1022 0.1061 0.1006 0.1176

class % 97.2 96.2 97.0 96.2 97.0 95.8

#iterations 25000 25000 25000 25000 25000 25000

choicel TAE 0.1550 0.1452 0.1275 0.1240 0.1136 0.1447

IAE 0.0409 0.0413 0.0468 0.0493 0.1006 0.0500

class % 96.6 98.2 98 98 97 96.9

#iterations 6500 9750 10250 19500 25000 19000

choice2 TAE 0.2052 0.2419 0.1864 0.2157 0.2047 0.2502

IAE 0.0427 0.1236 0.0329 0.0987 0.0756 0.0839

class % 97.6 95.6 97.5 96.0 96.4 96.2

#iterations 4750 3500 4750 6500 4750 3500

choice3 TAE 0.1165 0.12 0.1128 0.1291 0.1319 0.1399

IAE 0.0374 0.0687 0.0459 0.0780 0.0693 0.0818

class % 97.0 98.0 97.2 97.1 96.4 96.4

#iterations 19750 25000 22000 25000 14500 21000

choice4 TAE 0.1250 0.2667 0.1179 0.1503 0.1998 0.1602

IAE 0.0450 0.1388 0.1084 0.0661 0.0660 0.0573

class % 98.6 95.6 97.5 96.7 96.8 97.2

#iterations 12000 25000 25000 13750 4750 11750       
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Table 4.2. The 4-region classification problem

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

update choices 1C1 1C2 IC3 1C4 IC5 IC6

A = 1 TAE 0.5757 0.5885 0.5718 0.5357 0.5596 0.5624

IAE 0.5736 0.5416 0.5295 0.4916 0.5145 0.5210

class ‘70 76.9 75.1 77.7 77.1 78.2 78.4

#iterations 50000 50000 50000 50000 50000 50000

choicel TAE 0.4355 0.4741 0.4356 0.4537 0.4917 0.4983

IAE 0.2892 0.29 0.2811 0.27 0.2822 0.2851

class % 93.1 93.6 91.7 95.3 95.5 94.8

#iterations 22250 50000 23000 41750 29750 30500

choice2 TAE 0.5229 0.5197 0.3027 0.4869 0.4413 0.4851

IAE 0.2966 0.2973 0.2673 0.2899 0.2893 0.2976

class ‘70 91.9 92.6 93.9 93.1 95.6 92.7

#iterations 16250 20750 26750 25250 26750 24000

choice3 TAE 0.4370 0.5146 0.4632 0.4555 0.4700 0.5137

IAE 0.3483 0.4260 0.3648 0.3566 0.3868 0.4282

class ‘70 93.5 87.1 87.5 90.1 90.0 89.9

#iterations 50000 50000 50000 50000 50000 50000

choice4 TAE 0.5288 0.5132 0.4696 0.4862 0.4676 0.4534

IAE 0.2891 0.3430 0.3859 0.2639 0.2764 0.2794

class % 93.9 92.1 87.3 92.1 93.06 94.0

#iterations 23750 22500 50000 26750 50000 37250       
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Figure 4.2. The TAE for A = 1

2—reglon problem 60 lCZ

2 V7 T Y V V Y

1 .0 t- .1

1 .6 >- -i

1 .4 ~ -‘

AB 1 .2 - -1

g ‘ d

3 o a - q
.—

0.0 - -i

0.4 .— -1

0.2 D— ‘7

00 1 000 2000 3000 4000 5000 0000 7000 8000 0000 1 0000

 
number of lteratlone

Figure 4.3. The TAE for update choicel



T
r
u
m
a
n

9
.
0
.
0
0

2—reglon problem 24 lC2
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2—reglon orlglnal problem lC2
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2—reglon problem 24 :02
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2—reglon orlglnel problem IC6
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2—reglon orlglnel problem Ice
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2—reglon problem 24 I00
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4—reglon orlglnel problem lC2
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4—realon rnodlfled problem 24 lC2
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4—reglon origin-l problem lC2
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4—reglon rnodll'led problem 24 lC2

 

  
 

0.4 >- -

0.3 I— —l

0.2 A A A A A A A

O 1 O 20 30 60 70 BO 9040 50

number of lteretlone

Figure 4.29. The IAE for update choice2

4—reglon modlfled problern 200 I02

 

 

  
 

O 20 4O 60 80 1 OO 1 20 1 40 1 60 1 GO 200

number of "eretlone

Figure 4.30. The IAE for update choice3

4—reglon modlllecl problem verleble lernbde lC2

W V V U V 1 T r Y Y

 

  
 

0.2 — d

O. 1 >— —1

o A A A A A A A A A

O 1 0 2O 30 70 BO 90 1 004O 60 60

number of ltereuone

Figure 4.31. The IAE for update choice4



72

 "1"I 31-: .“ 1.1-- I

{'l.:; I; :x 33"}:1“ II.“- F I: 1

1.I#~i “1}:   
   

 1' “In: .I" :5. n ‘l-ig .I' “f

”1.5? kit'flw‘w'h git-‘5‘“

“I {Di-IF“ I em'ow , I‘?' “

”n?;:$°i~§°° 5 35"".

u.. ,3’3‘ '- '1
% .-' .7

”w my: "- *-

°‘i.‘": coax: .‘ j '4

u 1" 0 "I . x. .l '3'

“u Ill-l" -::“,-,;- I :A I

II... f:‘ll ‘ . II I

on I .. . I. I. . _ .

:.'i‘ "' '- $339954”
M 05 0‘    

Figure 4.33. Classification Performance for A'1 = 1

 

 

Figure 4.34. Classification Performance for update choicel



73

 

_Ilh.ll

07 u  

 

 

  

 

 

Figure 4.36. Classification Performance for update choice3

wept-emu

m" I I "I .i

all f‘m5~;‘ x'xl,'1:

'' ‘5fish-I r‘h‘ “-

 

   

 

Figure 4.37. Classification Performance for update choice4



74

4—reglon orlglnel problem too

 

d

W
W
W O b

 

  
 

 

 

  
 

0.6 r- .1

0.4 F —1

0.2 ’— d

O L A .

O 1 2 3 4 6

number 0' lleretlone 1 04

' 1
Figure 4.38. The TAE for A = 1

4—reglon modlfled problem 60 ICB

“ .4 r v v v f

1 .2 l- _.

1 ..

‘g 0.. l. —4

$0.6 "“ —4

\

0.4 *- —I

0.2 r— .J

o A A A L A

O 0.6 1 1 .5 2 2.5 3.6

number 0! "er-None x ‘04

Figure 4.39. The TAE for update choicel



75

4—reglon modlfled problem 24 ICO

 

J

L

.0 0 l 1

T
a
m
a
r
:

.0 O

  
 

 

0.4 ’- -d

0.2 r
.7

°o ois é 1T5 é 2.5
number of Her-None x 1 04

Figure 4.40. The TAE for update choice2

4—reglon modlfled problem 200 ICO

1 .4 fir T T T f

1 .2 — a

" -+

  
 

 

0.4 >- -‘

0.2 '- _.

°o 4 5 :2. i is a
number 0! Her-None x 1 0‘

Figure 4.41. The TAE for update choice3

4—reglon rnodlfled problem verleble lembde Ice

1 .4 . T T T T T T

1 .2 '- .4

1 _

  
 

0 o l- J

0.4 - -

0.2 r— q

o A A A A A J A

O 0.6 1 1 .6 2 2. 3 3.5 4

nurnber o! Ileretlone x 1 04

Figure 4.42. The TAE for update choice4



76

4—reglon orlglnel problem Ice

 

 

 

r V 1 V

 A

 

20 40 60 80 oo 1 20 1 4o 1 60 1 60 200

number 0! llerellone

Figure 4.43. The IAE for A'1 = 1

4—reglon modlfled problem 60 ICC

I fl 1 

 

f Y

 
 

60 80 1 OO 1 2O 1 40

number o! lleretlone

Figure 4.44. The IAE for update choicel



77
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4.4 Discussion and Categorization of Results

The results of the simulations summarized in the above tables and figures suggest

that using a fixed forgetting factor A is the cause of both types of divergences. The

case of /\ = 1 shows a lock-up divergence problem while the case of A < l exhibits

an explosive divergence phenomenon. Let’s now analyze the results of the different

update choices closely. In the case of the 2-region classification problem, most of the

update choices suggested decreased the number of iterations needed for an acceptable

local minimum without degrading the performance. In this case, what is gained is

the computational efficiency of the algorithm. Choice4 of the updates in this case

did not work as well as the others but can be improved if the parameters of the

suggested forgetting function are adjusted accordingly with the initial conditions. In

most methods that are suggested for improving any type of algorithm, there is always

tunable parameters that need to be dealt with.

The more complex case of the 4-region classification problem is where the proposed

update choices prove to considerably improve the algorithm. In fact, most of the

update choices escape from unsatisfactory local minima to search for more satisfactory

ones. When a stalling phenomena is observed for an interval of some number of

iterations, the algorithm reacts automatically and decides to update A accordingly.

Convergence to satisfactory local minima is then achieved at a faster rate which not

only improves the performance of the algorithm but also its computational efficiency.

Choice4 of the updates gives the algorithm more flexibility by allowing the user to

decide what parameters of the forgetting function fit best with his/her problem. One

is able to make the decision after only a single simulation trial on his/her problem.

In summary, these different choices of updates show a satisfactory performance

even though some are better than others. The advantage of having a variety of

updates to pick from is an increase of the chance of success in achieving satisfactory
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local minima for any given initial condition. Even if choicel through choice3 don’t

achieve the goal, choice4 can be made to converge by a simple adjustment of the

parameters of the forgetting function. (i.e a,L and 7)

Based in the above conclusions the following conjecture is formulated :

4.4.1 Conjecture 2

Let e(é(n)) be the Least Square Error (LSE) defined as :

«an» = 2: II do) — h(é(n), is» “2 W: (4.4)
i=1

We conjecture that the following statements are true :

0 Switching A to a value less than 1 results in escaping local minima but often

induces explosive divergence.

0 Switching A only for few iterations escapes local minima without inducing ex-

plosive divergence. The number of these iterations can be decided from one

experimental trial of the specific application at hand.

0 When A is modeled as a function of the error which satisfies these two conditions:

1. A is slightly less than 1 when the difference between two consecutive inter-

val average errors is less than a certain threshold.

2. A is 1 when the difference defined above exceeds the same threshold chosen

above.

An example function is given as follows :

tanh a =0: 6 if 6 >

,\ = ( ) 7 (4-5)

0.98 otherwise
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, then this function guarantees convergence to satisfactory local minima if

the parameters (i.e a,L and 7) are selected according to the problem at hand

after one experimental trial.



CHAPTER 5

A Different Approach to the

Computation of the Gain Matrix

5.1 Motivation

Although the Extended Kalman Filter algorithm to supervised learning is a good

alternative to the backpropagation algorithm, some of its drawbacks still make it

unattractive for some researchers in the neural network community. One major draw-

back is a high computational load which we tried to solve by decreasing the number of

iterations needed for convergence. Also if we examine the recursion equations needed

to update the weights, we note that the algorithm computes the inverse of a matrix

whose dimension depends on the dimension of the output. If the dimension of the

output is high, the computation of the inverse becomes cumbersome.

In this chapter, we propose a modification that does not require the computation

of the inverse. This modification is also aimed toward an analog implementation

83
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5.2 Recomputing the Gain Matrix

The computation of the gain matrix for the global network is equivalent to solving

the following equation:

— G(n)A-l(n) + A"1P(n —1)HT(n) = 0, (5.1)

where

A-1(n) = I + A‘IHT(n)P(n — 1)H(n), (5.2)

In this equation, we note that instead of conducting a crude computation of the

root of the equation, which will require a computation of the matrix A(n), we trans-

form the equation into a continuous time ordinary differential equation (o.d.e.). After

convergence, the o.d.e will give a stable solution for the root which can be used as

the new value of the gain matrix of each neuron. Consider the associated differential

equation for each fixed 11

3:1:(t)

— x(t)A-1(n) + A'1P(n -1)HT(n) = at , (5.3) 

Since for each fixed 11, A‘1(n) is expected to be positive definite, and hence invertible,

the differential equation is a stable linear system. Thus $.~(t) will converge to a

constant matrix which we take to be G(n). This way, we avoid the cumbersome

computation of the inverse altogether. We observe also that such an o. d. e. is

suitable for analog circuit implementation which can be incorporated as a co—processor

to a digital computer. In this chapter, our interest is mainly in the (NDEKF) since

it was proven to be more efficient than the global (EKF). However, in the NDEKF

we will have as many 0. d. e. equations to simulate as the total number of neurons

in the network not including the input-layer and this is at every update of the weight

parameters or at every iteration.
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5.3 Simulation Results

Simulations, were conducted to compare the performance of the neuron decoupled al-

gorithm to the proposed modification. In this chapter, we will report the performance

on the 4-region classification problem which we have already used on both chapters

three and four. The pattern used for this region classification problem was previously

described in the earlier chapters. We initialize all parameters including the weights

to the same values we chose in the earlier simulations for comparison purposes.

The adaptation of the weights is done as follows:

1. Pick a random point and propagate forward to the output layer.

2. backpropagate the error values (error is computed as the difference between

the target output value and the actual computed output) through the whole

network.

3. Now do one simultaneous update for all the network weights and matrices. Our

modification of the algorithm occurs at this step of the iteration. We do not do

a static computation of the gain matrices. Every computation of a gain matrix

which involves the computation of an inverse of a matrix, is now a simulation of

an o.d.e equation which converges to the gain matrix in few steps. The initial

values for the o. d. e. were chosen to be the values of the gain matrices from

the previous iteration.

The results of simulations using the same initial condition one will be given in the

following table.

The results in this table are very similar to the ones obtained previously with

the computation of the inverse. However, these simulations were left training only

for 10000 iterations but we still achieved the same performance results. The reason
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Table 5.1. The 4-region classification problem with a modified computation of the

gain matrix

 

 

 

 

 

performance parameters 1C1 1C2 IC3

TAE 0.5872 0.5891 0.5767

IAE 0.5463 0.5420 0.5216

class % 74.6 75.4 76.1

#iterations 10000 10000 10000      

behind limiting the training number of iterations is to due to the constraint of time.

The o.d.e themselves take few steps to converge inside each training iteration.

In conclusion the computation of the gain matrix using this approach is equivalent

to the earlier method that includes the computation of the inverse.



CHAPTER 6

Variable Slopes

6.1 Motivation

Given the considerable success of the linear estimation methods in solving linear

problems, researchers have extended these methods to slightly nonlinear problems and

sometimes completely nonlinear problems. The “standard” Kalman filter is linear so

in order to apply the approach of Kalman filtering to problems of nonlinear type, the

Extended Kalman filter was derived. The essential idea of the Extended kalman filter

was proposed by Stanley F.Scmidt. It was then named after him as the “Kalman-

Scmidt” filter. The Kalman filter is extended mainly by expanding the nonlinear

function h(0, z(n)) describing the model around the current estimate g(n—l) estimated

from all data up to time (n — 1). The nonlinearity present in the network is described

by the model function h(0,i(n)) which is the sigmoidal function chosen as tanh(a:)

in the (FFANN). Due to the chain rule, the derivative of the sigmoidal function

is present almost in every element of the gradient matrix H(n) The slope of the

sigmoidal function was always fixed at 1.
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Even though this function plays a big role in the Extended Kalman filter equations,

the influence of the steepness of its slopes on the behavior of the algorithm was

never investigated in previous related research. However, in the backpropagation

algorithm, the effect of these steepness parameters especially on convergence was well

investigated [30]. It was argued in their discussion that a high value of s can make

the weights update slowly thus needing a large number of iterations to converge. A

too low value of 3 according to Branko can have these two negative effects.

1. The derivative decreases even in unsaturated regions inducing slow convergence

2. The output of the linear combiner will always fall in the linear region of the sig-

moidal function thus loosing any nonlinear effect of the network and dissolving

its multilayer structure.

These observations can only suggest that the value of the slope s can not be decided

a priori. The solution that was suggested before [30] is to determine an optimum

value of 3 via adaptive means. In the backpropagation algorithm, the slopes of the

activation function were updated according to the delta rule [30].

In the case of the Kalman filter algorithm, we propose to investigate the effect

of different slopes of the sigmoidal function on the convergence to satisfactory local

minima. We will then develop a similar update of the slopes to the one used in the

backpropagation algorithm.
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6.2 Preliminary Results

In this section of the chapter, we will illustrate via the 4—region classification problem

how using different slopes can have an effect the convergence of the algorithm to

satisfactory local minima. The results for each case are tabulated for three different

initial conditions.

Table 6.1. The 4-region classification problem with fixed slopes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

     

slope choices 1C1 1C2 IC3

s = 1 TAE 0.5757 0.5885 0.5718

IAE 0.5736 0.5416 0.5295

class % 76.9 75.1 77.7

#iterations 50000 50000 50000

.9 = 0.5 TAE 0.6097 0.6282 0.5991

IAE 0.6054 0.5663 0.5490

class % 73.5 71.3 76.6

#iterations 50000 50000 50000

3 = 1.5 TAE 0.5174 0.5636 0.3875

IAE 0.5079 0.5178 0.2961

class ‘70 83.0 79.1 88.9

#iterations 50000 50000 50000

3 = 2.0 TAE 0.4306 0.5227 0.3681

IAE 0.4074 0.4667 0.2946

class % 86.7 84.0 89.5

#iterations 50000 50000 50000
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Figure 6.21. Classification Performance for a fixed slope s = 2
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6.3 The Augmented Recursion Formulas

The (EKF) recursion equations start by a computation of the gain matrix C(n) which

is then used to update the weights. The update of the weight parameters is followed

by the update of the covariance matix P(n). To these two update equations we add

an update equation for the slopes of the sigmoidal function. These slopes are updated

at every node of all hidden layers in the network. The update is based on the gradient

descent rule. The slope of the nonlinearity 3;, where I denotes the hidden layer I and

j one of the nodes in that layer, is detemined so as to minimize a certain energy

function.

We define the energy function as follows:

E701) =1/2(|| d(n) - h(90(7"t),i(n)) ”2)-

where n is the time index and d(n) is the vector of desired outputs at time n.

h(0(n),i(n)) is the nonlinear model function which is a composition of sigmoidal

functions.

In this section, without loss of generality, we develop the update equations of

the slopes based on the same network architecture used in the 4-region classification

problem simulation example. The network is composed of a total of 4 layers including

two hidden layers.

Let us call S2 the vector of slopes for layer 2 and S3 the vector of slopes for layer

3. The following equations describe the gradients of the energy function with respect

to these vectors of slopes.

ii: = (do) — h(ém.i(j)))ah(9g’3;i(j))  
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where 2:4 is the vector of actual outputs for the output layer and x3 is the vector of

desired outputs. 1:3 and 32 are the outputs to layers 2 and 3. :1:1 is the input to layer

1.

 hI(Sfo(wf0)T$2)(wfo)T$2 }

Also h(.r) = tanh(s:c) and h'(:c) = l/cosh2(sx)

The update equations for the vector of slopes corresponding to layer 2 and 3 are

given by the following equations:

52(72) = 52(n —
BET

1)— fi+ 10(52(n - 1) - 52(n - 2))
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53(7)) = 53(n — 1) — 535% + p(53(n — 1) — 53(n — 2))

The augmented recursion formulas are then:

A(n) = [I + i 11mm — 1)Hf(n)1-‘,
A=1

e(n) = 1).-(n —1)H.T(n)A(n),
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6.4 Simulation Results

We conducted the same number of simulations as for the preliminary results. We used

the same three initial conditions but since the update of the slopes is being added,

we needed to also choose initial conditions for the slope parameters present in the

update equations of the slopes. There are four slope initial conditions for each initial

condition on the weight parameters.

The results are tabulated in the table and the figures that follow.

Table 6.2. The 4-region classification problem with variable slopes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

     

initial parameters choices 1C1 1C2 IC3

so = 16 = 0.1p = 0.001 TAE 0.5467 0.4019 0.4799

IAE 0.5013 0.2985 0.3729

class % 79.3 88.2 84.6

#iterations 50000 41250 50000

so = 0.53 = 0.1p = 0.001 TAE 0.4010 .4012 0.3265

IAE 0.2922 0.2958 0.2584

class % 92.5 86.2 89.7

#iterations 22250 15500 50000

so = 1.55 = 0.1;) = 0.001 TAE 0.4857 0.5444 0.4668

IAE 0.4692 0.4814 0.3832

class % 82.4 77.9 85.9

#iterations 50000 50000 50000

so = 2.06 = 0.1;) = 0.001 TAE 0.4617 0.4606 0.3761

IAE 0.4393 0.3970 0.2998

class ‘70 82.2 85.6 91.5

#iterations 50000 50000 6250
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Figure 6.32. Classification Performance for varying the slope with so = 0.5
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Figure 6.33. Classification Performance for varying the slope with so = 1.5

  
Figure 6.34. Classification Performance for varying the slope with so = 2
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The numbers in the table suggest that an initial choice of so = 0.5 is the best

choice amongst all since it is the more efficient in terms of both the performance and

the computation load. However, when the slopes were fixed in the previous section, a

fixed slope of s = 2 was the best especially in terms of performance. In conclusion, if

we have no knowledge of what the optimum value of s has to be, which is the case in

general, the method of varying the slopes should be used while keeping in mind that

the initial choice so should remain in the range of 0.49 < so < 1. The update of the

slopes in conjunction with the previous modifications of the algorithm including the

update of the A parameter is a tremendous improvement of the algorithm altogether.



CHAPTER 7

Summary and Conclusion

Mathematical modeling of real physical systems has been the interest of a consider-

able number of researchers in the engineering field. Artificial Neural Networks are

amongst the most attractive and challenging models these researchers have developed

over the years. The strength of these artificial models relies on their ability to mimic

natural intelligence. The two main approaches to design these artificial models are

those implemented via digital software and those manufactured via analog hardware.

This research, however, is designated to the software approach as applied to feedfor-

ward artificial neural networks(FFANN). Since supervised learning has been the main

learning type used in these networks, the work in this document addressed some of

the issues of supervised learning as applicable to FFANNs while using the Extended

Kalman Filter approach for training.
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7.1 Summary

The research in this thesis was dedicated to a recently introduced (the 1990’s) super-

vised learning algorithm called the Extended Kalman Filter EKF. The more widely

used has been the Neuron-Decoupled Extended Kalman Filter (NDEKF) due to its

tremendously lower computation load. In the previous reported work this approach

has been used in different applications ranging from system identification to nonlin-

ear control. However, the problems that would be faced while practically using the

algorithm have never been addressed in any of the previous work.

The lack of any previous discussion of the problems we experimented with while

using the algorithm ourselves, was our main motivation for the research in this work.

This research has accomplished many tasks that led to the improvement of the algo-

rithm. Starting with our analysis and understanding of how the Extended Kalman

Filter algorithm operates, we were able to point out the many problems and obstacles

that any user of the algorithm is likely to encounter while using the algorithm. We

recall such obstacles as the high computational load and the two forms of divergence

that are frequently manifested. The theory behind the algorithm supports most of

our findings about the problems and the weaknesses that are present in the algorithm.

Also with the help of theory we were able to propose the different modifications aimed

toward a more efficient kalman filter training algorithm for supervised learning. These

modifications are present in chapters four through six. They range from a suitable

update of the energy parameter()\) to an update of the nonlinearity slopes without

adding cumbersome work such as a large number of tunable parameters.

These modifications have the advantage of giving the user the flexibility of adapt-

ing the algorithm to any application at hand. Thanks to generalizing the definition of

certain functions and parameters the user is able to adjust the variables accordingly

with his or her application.
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7.2 Conclusion and Future Research

The main contribution in this research is in familiarizing any reader of this thesis with

the approach of Extended Kalman Filtering to supervised learning while enabling him

or her to decide if the approach with its all advantages and disadvantages is suitable

to achieve any research goal he or she may have. The improvements of the algorithm

present in this thesis give the user a better more efficient algorithm to work with.

The efficiency is improved in terms of both the computation and the performance of

the algorithm.

Due to the constraint of time in this research neither all aspects of the algorithm

were investigated nor all improvements strategies that were thought of could be im-

plemented. However, future research in the subject is possible and will include trying

alternative energy or cost functions that could reduce the convergence time while

keeping the performance satisfactory.
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APPENDIX A

Derivation of the Extended

Kalman Algorithm Equations

In order to keep this thesis self-contained, the standard derivations for the recursive

least squares recursions are included. They are a multidimensional extension of the

ones given in [8]

g(n) = A: An-l-J‘Homm) + H(n)HT<n) (A4)

<I>(n) = mm — 1) + H(n)HT(n). (A.2)

r<n> = Arm — 1) + H(n)(d(n) — an» (A3)

Using the matrix inversion lemma:

A = B-1 + CCT (AA)

A“ = B — BC(I + CTBC)“CTB. (A.5)

with B = 9'10: — l)/\‘1 and C = H(n), we get
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(1)402) = A-IQ-l(n — 1) — A-2@-1(n — 1)H(n)

X[I + A'IHT(n)<P‘1(n — 1)H(n)]-l

XHT(n)<I>-1(n — 1), (A.6)

Defining P(n) = tIP‘1(n — 1), and

G(n) = A—1P(n — l)H(n)[I + A‘IHT(n)P(n — 1)H(n)]‘1, (A.7)

we can rewrite eqn(A6) as

P(n) = A‘1P(n — 1) — X'1G(n)HT(n)P(n — 1). (A.8)

Equation (A7) can be rewritten as

G(n) + A‘1G(n)HT(n)P(n — 1)H(n) = A‘1P(n —1)H(n), (A.9)

01‘

G(n) = [A'1P(n — 1) — A'1G(n)HT(n)P(n —1)]H(n). (A.10)

Therefore the Kalman gain can be expressed as

G(n) = P(n)H(n), (A.ll)

The parameter estimate for the filter weight 0)(n) can then be expressed as

(i(n) = P(n)r(n) (A.12)
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g(n) = P(n)>\r(n - 1) + P(n)H(n)(d(n) - 60%))-

Substituting (A8) in the first term of (A12) we get

0(n) = P(n —1)r(n — 1) — G(n)HT(n)X

P(n —1)r(n — 1) + P(n)H(n)(d(n) —- g(n)).

From (All) we get

aim) = é<n — 1) + G(n)(d(n) — an) - HT(n)é(n —1)),

01‘

(i(n) = 1% — 1) + G(n)(d(n) — h(é(n —1),i(n))).

(A.13)

(A.14)

(A.15)

(A.16)
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