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ABSTRACT

COMPLEXES OF CURVES

AND

MAPPING CLASS GROUPS

By

Mustafa Korkmaz

This thesis is composed of two parts.

In the first part of this thesis, we study the complexes of curves on orientable

surfaces of small genus in order to better understand the mapping class groups of

such surfaces. Our main result is that the group of automorphisms of the complex of

curves of a surface is isomorphic to the extended mapping class group of the surface,

if the surface is a sphere with at least five punctures or is a tori with at least three

punctures. As an application we prove that any isomorphism between two finite index

subgroups of the extended mapping class group is induced by an inner automorphism

of the extended mapping class group. We conclude that the outer automorphism

group of a finite index subgroup of the extended mapping class group is finite.

The second part concerns closed nonorientable surfaces. Namely, we compute the

first homology of the mapping class group of such a surface. It turns out that this

group is cyclic of order two if the genus of the surface is at least seven. We also

show that in this case the the subgroup of the mapping class group generated by

Dehn twists is perfect. As an algebraic application, we conclude that the group of

isometries of a vector space of dimension n 2 7 over the finite field of order two

equipped with the symmetric bilinear form ( ,) defined by (v;,vj) = 6,-1- on a basis

{221, 122,. . . , vn} is perfect.



To my parents, brothers, sisters and to my wife

iii



ACKNOWLEDGMENTS

First, I must thank my advisor, Dr. Nikolai V. Ivanov for his excellent guidance,

help and encouragement throughout all of my study at Michigan State University, and

bringing to my attention various mathematical research problems, including those

addressed in this thesis.

I am very grateful for Dr. John D. McCarthy, who always made for me, answering

all of my questions with great patience.

Many thanks to the members of my advisory committee Dr. Selman Akbulut, Dr.

Ronald Fintushel, and Dr. Jon G. Wolfson for their many helpful conversations with

me and their review of my work.

I also would like to thank Belgin Korkmaz and Bill Vautaw for reading my work

carefully and pointing out some grammatical errors.

Finally, I would like to thank The Turkish Ministry of Education for their support

during my study at Middle East Technical University and at Michigan State Univer-fi

sity, and Dr. Hatice Kandamar of Adnan Menderes University, Dr. Nursevin Oztop

and Dr. Muharrem Soytiirk of Cumhuriyet University, Turkey, for their help to go to

study abroad.

iv



Contents

0 Introduction 1

1 Complexes of Curves and Extended Mapping Class Groups 3

1.1 Introduction and Preliminaries ...................... 3

1.1.1 Circles on surfaces ........................ 3

1.1.2 The complex C(S) ........................ 4

1.2 The complex B(S) and ideal triangulations ............... 6

1.3 The extended mapping class group and its actions ........... 9

2 Automorphisms of 0(3) and Mg 14

2.1 Introduction ................................ 14

2.2 Punctured Spheres ............................ 15

2.2.1 Simple pairs in C(S) ....................... 16

2.2.2 The map Aut C(S) —> Aut 8(5) ................ 22

2.2.3 Automorphisms of C(S) and Mg ................ 29

2.3 Punctured Tori .............................. 32

2.3.1 Automorphisms of C(S) and M3 ................ 32



2.3.2 Proof of Theorem 2.16 for punctured tori ............ 40

2.4 Subgroups of Mg ............................. 48

First Homology Groups of Mapping Class Groups of Nonorientable

Surfaces 52

3.1 Introduction ................................ 52

3.2 Mapping Class Groups of Nonorientable Surfaces ........... 53

3.3 Groups of isometries of vector spaces over the field of order 2 ..... 59

3.4 The first homology groups ........................ 64

vi



List of Figures

1.1 A simple pair and a chain. ........................ 8

1.2 Triangles in an ideal triangulation .................... 9

1.3 Various configurations. .......................... 12

2.1 A configuration of circles on a punctured sphere............. 18

2.2 The disc D with four punctures...................... 20

2.3 Construction of d’ if i = 0. ........................ 24

2.4 Construction of d’ if 2' > 0. ........................ 24

2.5 Seven possible cases for a’ and b’. .................... 26

2.6 Case (vi). ................................. 28

2.7 Case (vii).................................. 29

2.8 A pentagon in C(S'). ................f ........... 33

2.9 The surface S... .............................. 34

2.10 A nonseparating and an n-separating circle. .............. 35

2.11 Some configurations of circles and arcs. .................. 41

2.12 Existence of various configurations. ................... 43

2.13 Two possible cases for (v)......................... 46

vii



2.14 The arcs a’ and b’. ............................ 47

3.1 A Y-homeomorphism. .......................... 55

3.2 Models for nonorientable surfaces..................... 57

3.3 Another model if g is even......................... 57

3.4 The circles el,f1 and f2. ......................... 57

3.5 Sphere with four holes 50 and torus with two holes. .......... 58

3.6 Surface S(g). ............................... 59

3.7 Circles ql , Q2, . . . , q,............................. 66

3.8 Embedding of So.............................. 67

3.9 Embedding of So.............................. 71

3.10 Orientable surfaces of genus one and two................. 73

viii



Chapter 0

Introduction

The complex of curves was introduced by Harvey [11] to define a certain boundary

to the Teichmiiller space. Later, this complex is used for many authors in the study

of the algebraic structures of the (extended) mapping class groups of surfaces. In

particular, Ivanov [16] proved that the canonical map from the extended mapping

class group M; of a surface S to the group of automorphisms of the complex of

curves C(S) is onto, provided the genus of the surface S is at least two. In fact, this

natural map is an isomorphism if in addition, the surface S is not a closed surface

of genus two. Using this result, he proved that any isomorphism between two finite

index subgroups of the (extended) mapping class group is induced by some inner

automorphism of Mg, concluding that the outer automorphism group of a subgroup

of M; of finite index is finite. This is a generalization of the fact that the outer

automorphism group of the (extended) mapping class group is finite (cf. [15], [22]).

He also gave a new proof of Royden’s Theorem saying that the isometries of the

Teichmiiller space are all induced by diffeomorphisms of the surface.

In this work, we prove that for a surface S the natural map from M; to the group

of automorphisms of the complex of curves C(S) is an isomorphism if S is either a

sphere with at least five punctures or a torus with at least three punctures. After



proving this result, the result of Ivanov about the finite index subgroups of mapping

class groups follows for the surfaces we consider. Since this proof has not been written

yet, we give it here. We also prove that (with one exception) the topological type of

the surfaces of genus at most one are determined by their complexes of curves.

In Chapter 1, we give the relevant definitions and preliminary information on

orientable surfaces. It is well-known to the experts that the map Mfg —) Aut C(S) is

injective if S is not a torus with two punctures or a closed surface of genus two. We

give a proof of this fact in this section.

We prove our main results about the mapping class group and the automorphisms

of the complex of curves in Chapter 2. The proofs for the case of the punctured sphere

and for torus are given separately. Although the main ideas of our proofs are the same

as that of Ivanov’s, the proof in the punctured sphere case differs substantially from

the other cases.

We prove our results on nonorientable surfaces in Chapter 3. In this chapter,

we first give the necessary background on the mapping class groups of nonorientable

surfaces and the vector spaces over the finite field of order two. Relationship between

these two concepts comes from a theorem of McCarthy and Pinkall [23], Theorem 2.

Then, we compute the first homology group of the mapping class group of a nonori-

entable surface. It turns out that if the genus of the surface is at least seven, then

the first homology group of the mapping class group is cyclic of order two. Another

result in this chapter is that the subgroup of the mapping class group generated by

the Dehn twists about 2-sided simple closed curves is perfect. We then conclude that

the group of isometries of a vector space V over the finite field F2 with a symmetric

bilinear form (,) defined on a basis {121,122, . . . ,vn} by (vhvj) = 6,5 is perfect if the

dimension of V is at least seven.



Chapter 1

Complexes of Curves and

Extended Mapping Class Groups

In this chapter, we study the complex of curves of an orientable surface and the action

of the extended mapping class group on this complex. The necessary definitions and

preliminary informations are given.

1.1 Introduction and Preliminaries

1.1.1 Circles on surfaces

Let S be a connected orientable surface without boundary. Although a simple closed

curve on S is an embedding S1 —> S', by a ‘simple closed curve’ on S (or ‘circle’ on

S) we will mean the image of the map under consideration.

A circle on S is said to be nontrivial if it neither bounds a disc nor bounds a disc

with one puncture. We denote by S the set of isotopy classes of nontrivial circles.

Circles will be denoted by lower-case letters a, b, c, etc., and their isotopy classes by

the Greek letters a, 6,7, etc.

Let C be a collection of pairwise disjoint circles on S. The surface obtained from

S by cutting along C is denoted by So.



A nontrivial circle a on S is called lc-separating if the surface Sa is disconnected

and one of its components is a disc with k punctures. If S, is connected we call a

a nonseparating circle. The isotopy class of a circle is called nonseparating (or k-

separating) if the circle is nonseparating (or k-separating). Note that on a sphere

with n punctures, a k-separating circle is also (n — k)-separating. In this case, we

may take k S ’21.

Two circles a,b on a surface S are called t0pologically equivalent if there exists a

homeomorphism F: S —> S such that F(a) = b. It is clear from the classification of

surfaces that two circles on a surface are topologically equivalent if and only if they

are either both nonseparating or both Ira-separating for some k.

Let a, ,6 E S. The geometric intersection number i(a, 6) of a and fl is the infimum

of the cardinality of a (1 b, where a 6 a and b E ,8. By the geometric intersection of

two circles we will mean the geometric intersection number of their classes.

1.1.2 The complex C(S)

Let V be a nonempty set. An abstract simplicial complex K with vertices V is a

collection of nonempty finite subsets of V satisfying the following two conditions:

1) If a: E V then {3:} E K.

2) If a E K and if 0’ C a is a nonempty subset of V, then 0’ E K.

In the second case, 0’ is called a face of a. The dimension dim a of a simplex o is

card a - 1, where card a is the cardinality of a. A simplex a is called a q-simplex

if dim a = q. The supremum of the dimensions of the simplices of K is called the

dimension of K, denoted by dim K.



Let K be an abstract simplicial complex and L a subcomplex of K, i.e., L is itself

a simplicial complex and L C K. L is said to be a full subcomplex if whenever a set

of vertices of L is a simplex in K, it is also a simplex in L.

The complex of curves C(S) on an orientable surface S is the abstract simplicial

complex with vertex set S such that a set of vertices {00, al, . . . , 09} forms a q-simplex

if and only if a0, (11,. . . , 01., have representatives which are pairwise disjoint.

The complex of curves can also be defined for a surface with boundary in a similar

manner. In this case a circle is nontrivial if it does not bound a disc with at most one

puncture or it is not parallel to a boundary component of S. Clearly, the complex

of curves of a surface of genus g with b boundary components and with n punctures,

and that of a surface of genus g with n + b punctures are isomorphic. Therefore, we

will consider only punctured surfaces. We will think of punctures on the surface S as

distinguished points.

An alternative definition of the complex C(S) can be given as follows. The set of

vertices is the same as before. Now {010, 011, . . . , aq} forms a q—simplex if and only if

i(a,~,aj) = 0 for all i,j.

If the Euler characteristic x(S) of S is negative, then S can be endowed with

a hyperbolic metric, and there exists a unique geodesic in the isotopy class of each

nontrivial circle (cf. [1], [4]). A simple closed geodesic is automatically nontrivial.

The geometric intersection number of two classes are realized by the unique geodesics

they contain. In this case, a third definition of C(S) can be given: the vertices are

the simple closed geodesics on S and a set of vertices forms a simplex if and only if

the geodesics in the set are pairwise disjoint. This definition of the complex of curves

is independent of the choice of the metric chosen in the sense that different metrics

give rise to isomorphic complexes.



If S is a sphere with at most three punctures, then there are no nontrivial circles

on S. Hence C(S) = 0. If S is a closed torus and a is a nontrivial circle on S, then

the surface 5., is an annulus. Therefore, any nontrivial circle on S other than a either

is isotopic to a or intersect a. If S is not a sphere with at most three punctures

or a closed torus, then the Euler characteristic of S is negative and the number of

nontrivial simple closed curves on S is 39 — 3 + n, where g is the genus of S and n is

the number of punctures on S. Hence the dimension of C(S) is 39 — 4 + 12.

Suppose that dim C(S) __>_' 1. A pentagon in the complex C(S) is an ordered 5-

tuple (a1, 02, 03,04,a5), defined up to cyclic permutations, of vertices of C(S) such

that i(aj,aj+1) = 0 for j = 1,2,3,4,5 and i(a,-,ak) 7é 0 otherwise (as = (11).

Let a be a vertex of C(S) The link L(a) of a is the full subcomplex of C(S )

whose vertex set is the set of vertices of C(S) which form an edge together with a,

i.e., the vertex set of L(a) is

{[3 = fl e a and new) = 0}.

Given a subcomplex L of C(S), we define the dual link Ld of L to be the graph

whose vertices are the vertices of L, and whose edges are those pairs of vertices which

do not form an edge in L. We denote the dual link of L(oz) by Ld(a).

1.2 The complex B(S) and ideal triangulations

Let S be a surface with n 2 1 punctures. The simplicial complex B(S) is defined as

follows. The vertices of B(S) are the isotopy classes of nontrivial embedded arcs on S

joining punctures. (By definition, an arc is called nontrivial if it is not deformable to

a puncture.) A set of vertices forms a simplex if and only if the vertices in the set have

representatives which are pairwise disjoint. A simple Euler characteristic argument



shows that dim B(S) is finite and all maximal simplices have the same dimension.

As in the definition of a circle, by an are we mean the image of (0,1) under a map

9: [0,1] -) S such that g(0) and g(1) are punctures of S (thinking the punctures on

S as distinguished points). Therefore we do not include endpoints into arcs. We will

denote arcs by the letters a’, b’, c’ etc, and their isotopy class by a’, (3’, 7’ etc.

The geometric intersection number of isotopy classes of two arcs is defined similarly

to that of circles: if a’, ,B’ are two vertices of B(S), then i(a’, ,B’) is the infimum of the

cardinality of a’ n b’, where a' E a’,b’ E ,8’. Then an alternative definition of B(S)

can be given. The vertex set is the same and a set of vertices form a simplex if and

only if any two classes of arcs in the set have geometric intersection number zero.

Similarly, for a vertex 0: of C(S) and a vertex ,6’ of B(S), we can define the

geometric intersection number i(a,fl’) as the infimum of the cardinality of a n b’,

where a 6 a and b’ E ,B’. We define the geometric intersection number of two arcs or

an arc and a circle in the obvious way, similar to that of two circles.

The following lemma is proved in [10], Expose 2, III, and it will be used throughout

this work.

Lemma 1.1 Let S be sphere with three punctures. Then

(i) up to isotopy there exists a unique nontrivial embedded are joining a puncture

P to itself, or P to another puncture Q.

(ii) any circle on S can be deformed to a puncture.

Now suppose that S is a sphere with at least five punctures or a torus with at

least three punctures for the next three paragraphs. If a is 2-separating circle on

S, by Lemma 1.1 there exists up to isotopy a unique nontrivial embedded are a’

on the twice-punctured disc component of Sn joining two punctures. Conversely, an



arc a’ joining two different punctures of S determines uniquely a 2—separating circle

up to isotopy, namely the boundary of a regular neighborhood of the arc and its

endpoints (as punctures). This gives a one-to-one correspondence between the set

of 2-separating isotopy classes in S and the set of isotopy classes of embedded arcs

joining different punctures.

If a and b are two 2-separating circles on S, and a and S are their isotopy classes,

such that the corresponding arcs a’ and b’ can be chosen disjoint with exactly one

common endpoint P (see Figure 1.1 (a)), then we say that a and b constitute a simple

pair of circles and denote it by (a; b). Similarly, (a’; b’) is called a simple pair of arcs.

We call P the center of the simple pair. We also call (0:; fl) and (a’; 6’) simple pairs.

Let a’1,a’2, . . . ,a]c be embedded pairwise disjoint arcs, P-._1 and H the endpoints

of a], with P,- 76 P,- for i 75 j, 0 S i,j S k. Thus (af;a$+l) is a simple pair of arcs

with center P,- for each 1 S i S k — 1. Let a1,a2, . . . ,ak be the corresponding circles.

These circles are well—defined up to isotopy by Lemma 1.1. We call a’1,a’2,...,a[c

(respectively, a1, a2, . . . , ak) a chain of arcs (respectively, a chain of circles) and denote

it by (a’1;a’2;.. .;ak))(respectively, (a1;a2;.. .;ak)) (see Figure 1.1 (b)).

A
Figure 1.1: A simple pair and a chain.

A   

   
(b)

If the Euler characteristic x(S) of S is at most —2, then it follows from Theorem

3.3 of [14] that the geometric realization [B(S)] of B(S) is connected.

An ideal triangulation of S is a triangulation whose vertex set is the set of punc—

tures of S, in the sense that vertices of a triangle can coincide, as can a pair of

edges. The importance of B(S) comes from its close connection with ideal triangu-
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lations of the surface S. Note that the set of isotopy classes of the edges of an ideal

triangulation form a codimension-zero simplex in B(S). Conversely, a set of nonin-

tersecting (embedded) representatives of a codimension—zero simplex determines an

ideal triangulation of S.

A ‘good’ ideal triangle is by definition a set {a’,b’,c’} of nontrivial embedded

disjoint arcs such that

(i) a' , b’ and c’ join, say, P1 to P2, P2 to P3 and P3 to P1, respectively, for three

different punctures P1, P2 and P3,

(ii) a’ U U U c’ bound a disc in S.

A
A good triangle Not a good triangle

Figure 1.2: Triangles in an ideal triangulation

The following theorem is proved by Hatcher [11].

Theorem 1.2 Let S be a connected orientable surface with at least one puncture.

Then for any two codimension-zero simplices 0’ and 0’ of B(S) there exists a se-

quence of codimension-zero simplices a = 00,01, . . . ,0]. = 0' such that 0,-_1 fl 0.- is a

codimension-one simpler for each i, 1 S i S k.

1.3 The extended mapping class group and its ac-

tions

Let S be an orientable surface. Let Diff S be the group of self-diffeomorphisms of

S and Difi'o S the normal subgroup of Diff S consisting of diffeomorphisms isotopic
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to the identity. The extended mapping class group of S is the group Diff S/Diffo S

and we denote it by M3. Alternatively, one can define the extended mapping class

group as the quotient Homeo S by the normal subgroup Homeoo S, where Homeo S

is the group of homeomorphisms of S and Homeoo S is the subgroup consisting of

homeomorphisms isotopic to the identity. It is well-known that these two definitions

agree.

In the above definition, if we take only orientation preserving diffeomorphisms

or homeomorphisms, the group obtained is called the mapping class group of S and

usually denoted by M5.

We define an action of M; on C(S) as follows. For a mapping class f and an

0: E 8, choose representatives F 6 f and a E 0. Define f(a) to be the class of the

circle F(a). If F and G are two isotopic diffeomorphisms of S, then F(a) is isotopic

to 0(a). If a and b are two isotopic circles, F(a) and F(b) are isotopic. It follows that

M; has a well-defined action on 5. Let 01,3 6 S be such that i(a,fl) = 0. Choose

a E a, b E ,3 with aflb = (0.1ff 6 Mg and ifF E f, then F(a) and F(b) are

disjoint. Therefore i(f(a), f(fl)) = 0. This implies that f is, in fact, a simplicial map

C(S) —-) C(S) Clearly, it is injective, and surjective. Hence it is an automorphism

of C(S) Therefore, there exists a natural map M; —> Aut C(S)

Now suppose that S has at least one puncture. For f 6 Mg and a' 6 B(S), choose

F E f and a’ E 0’. Define f(a’) to be the class of the arc F(a’). Again, it is easy to

see that this gives a well-defined action and MI“; acts on B(S) by automorphisms.

Theorem 1.3 Let S be a connected oriented surface. If S is not a sphere with at

most four punctures or a torus with at most two punctures or a closed surface of

genus two, then the natural map M; —> Aut C(S) is injective.

Proof: Suppose that a is a 2-separating circle on S with the isotopy class a. Denote
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by D the twice-punctured disc component of Sa. By interchanging two punctures on

D leaving the boundary component pointwise fixed, we get a homeomorphism of D.

Extension of this homeomorphism to S\D by the identity gives a homeomorphism

of S. Let té be the isotopy class of this homeomorphism. Note that we can choose

the twisting of the punctures on D so that (ti)2 = to, where to is the right Dehn

twist about a. It seems right to call t: a ‘half twist’ about o. It is clear from the

definition that f t3!- f‘1 = tic) if f is orientation preserving and f ti”- f’1 = (tied-l

if f is orientation reversing.

We claim that an orientation reversing mapping class cannot act as the identity

on the complex 0(S) Suppose on the contrary that f 6 Mg is orientation reversing

and f(a) = a for all vertices a of C(S) First, suppose that S is a punctured sphere.

By hypothesis, S has at least five punctures. Let 7 be a 2-separating vertex of C(S),

c E 7 and F 6 f such that F(c) = c. Orient c arbitrarily. Since the components of S;

are not homeomorphic to each other, F preserves each component of SC and reverses

the orientation of c. Thus F permutes the punctures on the twice-punctured disc

component of Sc. Considering another circle d such that (c; d) is a simple pair, we

see that F, in fact, fixes each puncture. Now let a and b be two 2-separating circles

intersecting as in Figure 1.3 (a). Clearly, we can choose an F E f such that F(a) = a

and F(b) = b. Let us orient a and b arbitrarily. Then F(a) = a'1 and F(b) = b"1 as

oriented circles. Since F fixes each puncture, it follows that F(“IX,y]) = “DCXI’ where

“[X,Y] represent the segment of the oriented circle a from X to Y by following the

orientation of a. In particular, F(X) = Y. On the other hand, F(b[X,Z]) = b[z,x], and

hence F(X) = Z. By this contradiction f cannot be orientation reversing.

Suppose now that the genus of S is at least one. We can consider S in R3 in such

a way that it is invariant under the reflection p across XY plane (see Figure 1.3 (b),

(c)). Let us denote the isotopy class of p by 9. Then h = p f is orientation preserving.
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 C 29 \C’)

Figure 1.3: Various configurations.

For any vertex 0: of C(S), we have

Ma) = e(f(a)) = 9(0)-

Consider the circles a, b, d1, d2 (and c if the genus of S is greater than one) illustrated

in the figure. Let P denote the once-punctured annulus bounded by a and (11 if S is

a punctured torus or the sphere with three holes bounded by a, c and d1 otherwise.

Since S is not a torus with at most two punctures or a closed surface of genus two, d1 '

and at; are not isotopic to each other. Let Q denote p(P). It is clear that there exists

a homeomorphism H E h such that H(a) = p(a) = a, H(dl) 2 d2 (and H(c) = c

if the genus of S is greater than one) as unoriented circles. Then H(P) = Q. Since

H is orientation reversing, H reverses the orientation of a, i.e., H(a) = a'l. Again

since H is orientation reversing, we must have H(b) = b‘". Then H..([a]) = —[a] and

H..([b]) = —[b], where H... is the automorphism of H1(S,Z) induced by H and [a] is

the homology class of a. It follows that

[H(ta(b))] = H.([ta(b)l) = H-(lal + M) = —[al — [b]-

On the other hand

[p(ta(b))l = p-([ta(b)]) = p.([a] + [b]) = [a] - [5]-

Note that ta(b) is a circle. If two oriented circles c1 and C; are isotopic as unoriented

circles, then [c1] = :t[c2]. Therefore, H(ta(b)) is not isotopic to p(ta(b)) or p((ta(b))'1).
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As a consequence, if a and ,8 denote the isotopy classes of a and b, respectively, then

tow) is, of course, a vertex of C(S) and h(ta(fl)) 75 g(ta(fl)). This contradiction

proves the claim.

Suppose now that the mapping class f acts trivially on C(S), i.e., f(a) = a for

all 0. Then f 6 M5. Hence fté f“’ = tic) = t: if a is a 2-separating vertex

of C(S) and ftgf-l = tf(fi) = t3 for any vertex B of C(S). That is, ftci = téf

and f t3 = t3 f. If S is a punctured sphere, since the mapping class group M5 is

generated by the ‘half twists’ for a number of 2-separating vertices [2], Theorem 4.5,

we conclude that f E C(Ms), where C(Ms) is the center of M5. On the other

hand, C(Ms) is trivial [17]. Hence f = 1. It is well-known that if if the genus of

S is positive, the subgroup of Ms fixing each puncture is generated by the Dehn

twists about (nonseparating) vertices of C(S) (a proof of this may be found in [17]). '

From this it is not difficult to conclude that M5 is generated by the Dehn twists

about vertices of C(S) and the ‘half twists’ about 2-separating vertices. Therefore

f 6 C(Ms). But C(Ms) is trivial [17]. Hence f = 1. The proof of the theorem is

now, complete. C1



Chapter 2

Automorphisms of C(S) and Mfg

2.1 Introduction

The main purpose of this chapter is to prove that if S is a sphere with at least five

punctures or a torus with at least three punctures, then the natural map M; —>

Aut C(S), described in Section 1.3, is an isomorphism. They are stated as Theorem

2.12 and Theorem 2.18. We have already proved in Chapter 1 that this map is

injective.

Section 2.2 discusses the proof of Theorem 2.12. Clearly, every mapping class takes

a simple pair of circles to a simple pair of circles. So, if automorphisms of C(S) are

induced by mapping classes, then the image of any simple pair under an automorphism

must be a simple pair. This is the starting point. We first prove Theorem 2.2, which

enables us to recognize simple pairs of circles in the complex C(S) After proving

that Aut C(S) preserves the topological type of vertices of C(S), we conclude that

simple pairs are preserved under the action of Aut C(S) Next, we define actions of

Aut C(S) on the punctures of S and on the set of vertices of B(S). This gives rise

to a natural injective homomorphism Aut C(S) -> Aut B(S). Then, we show that

any element of Aut B(S) induced by an element of Aut C(S) agrees with a mapping

class on a codimension-zero simplex, and then on all of B(S). Finally, this mapping

14



15

class agrees with the original element of Aut C(S) on C(S)

The main results of Section 2.3 are Theorem 2.18 and Theorem 2.19. Instead

of simple pairs, we work with the pairs of circles intersecting transversally at one

point. The first step is to recognize these configurations in the complex C(S) The

difficulty here is to show that the group Aut C(S) preserves the topological type of

vertices of C(S) We are able to overcome this difficulty when S has three punctures.

Then induction on the number of punctures proves Theorem 2.18. In the proof we

use Theorem 2.16, which Ivanov proved, but unfortunately, has not been published

yet. We give our own proof of it in the case of a torus with at least three punctures.

This proof is basically the same as that given in Section 2.2; we only point out

the differences. Theorem 2.19 asserts that the surfaces of genus at most one are

determined by their complexes of curves.

In Section 2.4, we give an application of the main results of Section 2.2 and Section

2.3. Namely, we prove that if S is a sphere with at least five punctures or a torus

with at least three punctures, then any isomorphism between two subgroups of M;

of finite index is the restriction of an inner automorphism of Mg. This implies that

two subgroups of finite index are isomorphic if and only if they are conjugate, and

that the outer automorphism group of a subgroup of finite index is finite.

2.2 Punctured Spheres

In this section S will, unless otherwise stated, denote a sphere with n punctures, and

n will be greater than or equal to five.



16

2.2.1 Simple pairs in C(S)

Lemma 2.1 Let S be a sphere with n _>_ 5 punctures and a be a codimension-zero

simpler of C(S). Then at least two vertices of a are 2-separating.

Proof: Recall that if R is a sphere with four punctures, then dim C(R) = 0. Also

note that any nontrivial circle on R is 2—separating.

We now prove the lemma by induction on 12. If S is a sphere with five punctures,

then since dim C(S) = 1, (hence card a = 2) and since every nontrivial circle on S is

2-separating, we are done.

Let n 2 6. If all vertices in a are 2-separating, then we are done since card a Z 3.

So suppose 0 contains a k-separating vertex (1 for some 3 S k S g. Choose a circle

a E (1. Then the surface 3,. is a disjoint union of S,’,, a disc with k punctures, and

S;’, a disc with n - k punctures. Note that C(53) and C(S:) are isomorphic to the

complexes of curves of spheres with k + 1 and n — k + 1 punctures, respectively. Also

a — {a} is the union of two simplices o’ and a”, where o’ and a” are codimension-zero

simplices of the complexes C(5;) and C(S:), respectively.

If k = 3 and n = 6 then C(5;) and C(S:) are isomorphic to the complex of curves

of a sphere with four punctures. Hence dim 0’ = dim a” = 0. Then the vertex of a’

and that of o” are 2-separating on S.

If k = 3 and n 2 7 then the only vertex of a’ is 2-separating on S. Also, since

dim C(Sf:) = n—k+1 Z 5, by the induction hypothesis there exist at least two vertices

in a” which are 2-separating on 55;. Then one of these vertices is 2—separating on S.

Iflc Z 4 then dimC(S,’,) = k+12 5 and dimC(S;') = n—k+1 Z 5. By

induction hypothesis, 0" contains at least two vertices which are 2-separating on S,’,.

One of these vertices must be 2-separating on S. Similarly, one of the vertices of a”
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must be 2—separating on S. Therefore, we are done. El

Since any diffeomorphism of S takes a simple pair of circles to a simple pair of

circles, any automorphism of C(S) must take a simple pair of vertices to a simple

pair in order to have a hope that it is induced by some diffeomorphism of S. The

following theorem enables us to recognize simple pairs in the complex C(S)

Theorem 2.2 Let a and S be two 2-separating vertices of C(S). Then (a;,8) is a

simple pair if and only if there exist vertices 71,72,73, . . . ,7n_2 of C(S) satisfying the

following conditions.

(i) (7137290173,:B) is a pentagon in C(S))

(ii) ’71 and 7n_2 are 2-separating, 72 is 3-separating, and 7;, and 7,,4, are k-

separating for 3 S k S 121,

(iii) {0373:74375w-‘a7n-2}: {0,72,74,75an'37n-2}: {(6,73a74375w'w7n-2} and

{71, 72, 74, 75, . . . ,7n_2} are codimension-zero simplices.

Proof: The ‘only if’ part of the proof is very easy. Let a E a and b 6 S such that

(a; b) is a simple pair. It is clear that any two simple pairs of circles are topologically

equivalent, i.e., if (a1; b1) is any other simple pair, then there exists a homeomorphism

F : S ——) S such that (F(al); F(b1)) = (a;b). Hence we can assume that a and b are

the circles illustrated in Figure 2.1. The figure represents the case n = 8. In the

figure, we think of the sphere as the one point compactification of the plane. Then

the isotopy classes 7,- of the circles c,- satisfy (i)-(iii).

Now we prove the converse. Assume that conditions (i)-(iii) above hold. For a

k—separating circle c on S with 2 S k S %, let S", and S2’ denote the connected

71

components of Sc having k and n — lc punctures, respectively. In the case of k = E
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Figure 2.1: A configuration of circles on a punctured sphere.

k

either of them may represent either component. Let a, b and c, be the representatives

of a, fl and 7;, respectively, intersecting each other minimally.

We claim that a and b lie on a thrice-punctured disc bounded by c3. By (i),

a and b intersect transversally at least once, because the number of points in the

intersection a n b is the geometric intersection number i(oz, B) of a and )8, which is

nonzero. Also a U b does not intersect c3. Hence they lie on the same component of

Scs. For n = 5 or n = 6 since c3 is 3-separating, each component of Sc3 is either a

disc with two punctures or a disc with three punctures. Since there is no nontrivial

circle on a disc with two punctures, the claim is obvious. So suppose that n 2 7. Let

C = c3 U c; U. . . U cn_3 and consider the surface Sc. We first prove that So is a union

of two discs with three punctures, whose boundaries are c3 and cn_3, and a number

of annuli with one puncture. Since every circle on S is separating, the number of

components of Sc is n — 4. Also, for any circle d on S, x(S) = x(S,’,) + x(SQ’). From

this it follows that

2-n =X(5) =ZX(R)

where R runs over the components of Sc. Since all c,- are non-isotopic, x(R) is

negative for all R. Hence either there is only one R with x(R) = —3, or there are
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precisely two components with x(R) = —2, and the rest of the components have Euler

characteristic —1. If there exists a component R with x(R) = —3, then R is a disc

with a number of holes and punctures, the total number of holes and punctures on

the disc R being four. We then can find two circles d1 and (12 on R such that at most

one of d1 and d2 is 2-separating on S. Then {61,62,73,'y4, . . . ,7n-3} is a maximal

simplex of C(S) containing at most one 2-separating vertex, where 6,; is the class of

d.- for i = 1,2. This is a contradiction to Lemma 2.1. Thus So has two components

with Euler characteristic —2, namely S; and Saks.

Since a 0 b is nonempty and since {0,73, . . . , 7n..3} and {fl,73, . . . , 7,,_3} are sim-

plices of C(S), a U b lies either on S23 or on Sén—E}, both of which are discs with three

punctures. Now let 6 be the boundary of the thrice-punctured disc on which a and b

lie. Since c2 is a 3-separating circle intersecting b and is not isotopic to 0, it follows

that C; and 8 intersect nontrivially. As i(72,7n_3) = 0, we must have 0 = c3. This

proves the claim.

The condition (iii) implies that the circles a,b, c1, c2 and c3 all lie on SCI, where

C" = c., U c5 U .. . U c,,_2. (If n = 5 then c2 and c3 are 2-separating circles disjoint

from a. Hence the corresponding arcs c’2 and c3 have a common endpoint. In this

case, we take 0’ to be a trivial simple closed curve deformable to this puncture.) By

arguing as above, one can see that the surface So: is the disjoint union of a number of

surfaces of Euler characteristic -1 and a disc D with four punctures, with boundary

c4, after changing the roles of c4 and cn_4 if necessary (see Figure 2.2).

Keeping the correspondence between 2-separating vertices and the arcs in mind,

suppose that the endpoints of a’ are P and Q. Then c3 separates P, Q and another

puncture, say, R from the forth puncture T on D. Up to a homeomorphism of S, the

picture of a’, c3 and c4 are as illustrated Figure 2.2 (a).
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 (a)
Figure 2.2: The disc D with four punctures.

Since i(a, '72) = 0 and i(72, 73) 75 0, each component of car‘lSé3 is an arc connecting

two points on c3, and isotopic to each other by an isotopy of SL3 leaving the endpoints

of the are on c3 by Lemma 1.1. (Here 523 denotes the thrice-punctured disc component

of S which does not contain the circle c4). Let A be one of these arcs and let A 0 c3 =

{X, Y}. Then a component u of c3—{X, Y} and A bound a disc D’ with two punctures

P and Q. Note that P and Q are on $22, which is a thrice—punctured disc.

Since b’ is on S23 , its endpoints are among P, Q and R. So one of them must be P,

by changing the roles of P and Q if necessary. If the other endpoint of b’ is Q, then

the endpoints of c’l must be T and R since c; is disjoint from b. This and c1 0 c2 = 0

imply that R and T are on S22, too, since at least one of R and T is on 522. This is

a contradiction because the four punctures P, Q, R, T cannot be on S22 all together.

By this contradiction the endpoints of b’ are P and R, and that of c’l are Q and T.

Since c1 0 62 = 0, c’1 does not intersect A and hence it intersects p. Let Z be the

first point where c’l meets u starting from Q. Denote the segment of c’l between Q

and Z by (f). Up to an isotopy of D’ leaving the endpoint at Q fixed and keeping the

other endpoint on A U u, such an arc is unique by Lemma 1.1. So 43 can be chosen so
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that it does not intersect a’.

Finally, by cutting Séa along a regular neighborhood of ¢U {Q} we get a disc with

two punctures P and R. The arc b’ must lie on this disc since it meets neither c’l nor

c3. Again, up to an isotopy of this disc there is only one arc joining the punctures P

and R, which can be chosen disjoint from a’. This finishes the proof. Cl

Lemma 2.3 The group Aut C(S) preserves the topological type of the vertices of

C(S)

Proof: Note that all vertices of C(S) are separating. For a vertex a of C(S), the

dual link L"(oz) is connected if and only if a is 2-separating. This implies that each

automorphism of C(S) permutes the set of 2-separating vertices.

If a is a k-separating vertex for some 2 < k S %, then the dual link L"(a) has

exactly two connected components. Let us denote these components by Lg(a) and

L‘l’(a). The vertices of these components are the isotopy classes of the circles on the

two components of S“, where a 6 01. We then define two full subcomplexes Lo(oz) and

L1(a) of the link L(a) of a as follows: The vertices of Lj(oz) are those of L‘J’(oz) for

j = 0,1. We can choose Lg(a) and Li’(a) so that Lo(a) and L1(a) are isomorphic to

the complexes of curves of, respectively, the k-punctured and the (n — k)-punctured

disc components of Sa. Hence dim Lo(a) = k — 3 and dim L1(a) = n — k — 3.

Let a be a k-separating vertex for some 2 < k S 52’- and f be an automorphism of

C(S) It is clear that f induces an isomorphism from the disjoint union Lo(a) U L1(a)

to the disjoint union Lo(f(a)) U L1(f(a)). Since dim Lo(a) S dim L1(a), it follows

that dim f(Lo(a)) S dim f(L1(a)) and hence f(Lo(a)) = Lo(f(a)). (In the case

k = g we may change the role of Lo(f(oz)) and L1(f(a)) if necessary.) Since a is

k-separating, dim Lo(a) = dim Lo(f(o)) = k — 3. Since Lo(f(a)) is isomorphic to
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the complexes of curves of one of the components of Sf(a) for f(a) E f(a), the circle

f(a) must be k-separating. D

Corollary 2.4 Let f be an automorphism of C(S). If (mfl) (and hence (a';fl')) is

a simple pair, then so is (f(a);f(fi)) (and hence (f(a’); (fl’))). Similarly, the image

of a chain in C(S) under f is also a chain.

Proof: It is clear that the conditions (i) and (iii) of Theorem 2.2 are invariant under the

automorphisms of C(S) The fact that the condition (ii) is invariant under Aut C(S)

is proved in Lemma 2.3 above.

The second part of the corollary follows easily from the first part. B

2.2.2 The map Aut C(S) —> Aut B(S)

In this subsection we show that every automorphism of C(S ) gives rise to an auto-

morphism of B(S) in a natural way. In fact, we will have an injective homomorphism

Aut C(S) —-> Aut B(S).

The first step is to define an action of Aut C(S) on the punctures of S. We

define this action as follows. For f E Aut C(S) and for a puncture P of S, take any

simple pair (a’;fl’) with center P, and define f(P) to be the center of the simple

pair (f(a’ ); f(3’)) Note that by the one-to-one correspondence between the set of

2-separating vertices of C(S ) and the set of those vertices of B(S) which join different

punctures, Aut C(S) has a well-defined action on the latter set.

Lemma 2.5 The definition of the action of Aut C(S) on the punctures ofS is in-

dependent of the choice of the simple pair.
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Proof: Let a’ 6 a’ and b’ E ,6’ be such that a’ and b’ are disjoint, i.e., (a’;b’) is a

simple pair with center P. Let f(a’) and f(b’ ) be the disjoint representatives of f(a’ )

and f(,B’), respectively, and P the center of (f(a’ ); f(b’ )) .

We show first that if c’ is an arc joining P to some other puncture, with the class

7’, and if f(c’) is a representative of f(7’) intersecting f(a’) and f(b’) minimally,

then one of the endpoints of f(c’) is P. The proof of this is by induction on i =

i(a’,7’) + i(fl’,7’). Let us denote by P1,P2 and P3 the other endpoints of a’, b’ and

c’, respectively.

As the first step of the induction, suppose that i = 0. There are two cases to

consider.

Case 1: If (a’;7’) and (fl'n’) are simple pairs also (i.e., if P3 is different from P1

and P2), then there is a fourth arc (1’ such that any two arcs in the set {a’, b’, c’, d’}

constitute a simple pair with center P (see Figure 2.3 (a)). This is because there are

at least five punctures on S. Then any two arcs in {f(a’ ), f(b’), f(c’ ), f(d’)} constitute

a simple pair, where f(d’ ) is a representative of the image of the class of d’ under f.

An easy argument shows that all four arcs f(a’), f(b’ ), f(c’ ) and f(d’ ) must have a

common endpoint, which must be P.

Case 2: If the endpoints of a’ and c’ are the same, (i.e., P1 = P3), then there

exist a puncture Q different from P, P1 and P2, and an arc d’ joining Q and P not

intersecting any of the three arcs a’ ,b’ , c’ (see Figure 2.3 (b)). By an application of

Case 1 to {a’,b’,d’} and then to {b’,d’,c’}, we see that one of the endpoints of f(c’)

is P. Notice that the center of (f(fl’); f(7’)) must be P.

For the case i > 0, let us orient all three arcs from P to P], for each j = 1,2,3.

Let X be the first point where c’ meets a’ U b’. Without loss of generality we can

assume that X is on a’. Let d’ be the arc consisting of the segment of c’ from P to X
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Figure 2.3: Construction of d’ if i = O.

and that of a’ from X to P1 (see Figure 2.4). Then i(oz’,6’) + i(fl’,5’) = 0, (6’;fl’) is a

simple pair, and i(6’,7’) + i(fl’,7') < i(a’,7’) + i(fl’,7’), where 6’ is the class of (1’. By

induction, one of the endpoints of f(c’ ) is the center of the simple pair (f(6’ ); f(fl’ )),

which is P by Case 2.

 

Figure 2.4: Construction of d’ if i > 0.

If (‘7’;6’) is another simple pair with center P, and c’ 6 7’ and d’ 6 6’ intersect

each other as well as a’ and b’ minimally, then by applying the argument above first

to {a’, b’, c’ } and then to {a’, b’, d’} we see that P is an endpoint of both f(c’ ) and

f(d’ ), which must be the center of the simple pair (f(7’ ); f(6’)) Hence the action of

Aut C(S) on the set of punctures of S is well-defined. D

For a punctured surface R, let us denote by ’P(R) the set of punctures of R.

Lemma 2.6 Let f 6 Aut C(S), a a k-separating vertex of C(S), and a E a. If S",

and Sf,’ denote the lc-punctured and (n — k)-punctured disc components of SO, then

f(P(S,’,)) = ’P( }(a)), and hence f(’P(S¢’,’)) = ’P( 320)). In the case ofk = %, we may

change the roles of S; and Sf,’ if necessary.
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Proof: Two punctures P and Q are on the same connected component of 5,, if and

only if P and Q can be joined by an arc disjoint from a, and P and Q can be joined ’

by an arc disjoint from a if and only if f(P) and f(Q) can be joined by an arc disjoint

from f(a). Now the proof of the lemma follows. D

We can now define an action of Aut C(S) on the vertices of B(S). Let f E

Aut C(S), a’ a vertex of B(S) and let a’ 6 a’. If a’ is joining two different punctures,

then f(a’ ) is already defined by the correspondence with the 2-separating vertices of

C(S) and the action of Aut C(S) on C(S). That is, f(a’) is the isotopy class of the

arc, which is unique up to isotopy, joining two punctures on the twice-punctured disc

component of Sf(a) for f(a) E f((1). Suppose now that the arc a’ is joining a puncture

P to itself. Let a1 and a2 be the boundary components of a regular neighborhood of

a' U {P} and al and (12 be their classes. Since a’ is not deformable to P, at most

one of a1 and a2 is trivial. If a1 is trivial then a2 is 2—separating, and by Lemma 2.3

f(02) is 2-separating. Hence for a (circle) representative f(a2) of f(02), one of the

components, say Sh”), of Sf(a2) is a twice-punctured disc, and one of the punctures

on Shag) is f(P) by Lemma 2.6. Define f(a’) to be the class of a nontrivial simple

arc on 551%) joining f(P) to itself. Such an arc is unique up to isotopy by Lemma

1.1.

In the case that neither a1 nor a2 is trivial, we claim that f(a1) and f(a2) bound

a once-punctured annulus with only one puncture f(P) Here f(a,-) is a represen-

tative of flu.) For the proof of this, suppose that the set of punctures on Sf,l

and S"; are P(S;l) = {P1,...,Pk} and P(S;’2) = {Q1,...,Q,,_k_1}, respectively.

Then P,- ;e Q,- for all i, j. By Lemma 3.5, r( he”) = {f(Pl),...,f(Pk)} and

’P(S}’(az)) = {f(Ql),...,f(Q,,_k_1)}. It follows that, since f(al) and f(ag) are dis-

joint and nonisotopic, they must bound an annulus with only one puncture f(P).
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Then f(a’ ) is defined to be the isotopy class of the unique arc (up to isotopy) on this

annulus joining f(P) to itself.

Lemma 2.7 Let f be an automorphism ofC(S) and a’ and ,B’ be two distinct vertices

of B(S) such that i(a’,fl’) = 0. Then i(f(a’),f(fl’)) = 0. Hence every automorphism

of C(S) induces an automorphism of B(S).

Proof: Let a’ and b’ be two disjoint representatives of a’ and B’, respectively. There

are seven cases to consider (see Figure 2.5). In the figure, we assume that the arc on

the left is a’ and the one on the right is b’.

If a’ (resp. b’) is joining two different punctures, let us denote by a (resp. S)

the 2-separating vertex of C(S) corresponding to a’ (resp. fl’), and by a (resp. b) a

representative of a (resp. S).

If a’ (resp. b’) is connecting a puncture P to itself, let us denote by a1 and a2

(resp. b1 and b2) the boundary components of a regular neighborhood of a’ U {P}

(resp. b’ U {P}). Note that we use the classes of a,- (resp. b.) to define f(a’ ) (resp.

f(fi’)). We also denote representatives of f(a), f(a’) by f(a), f(a’) etc.

If a1 or b; is trivial, we work with them by considering the trivial simple closed

curve deformable to a puncture to be that puncture.

// /<) OO /\ C3. ——0 (>0

0) (ii) (iii) (W) (V) (vi) (vii)

Figure 2.5: Seven possible cases for a’ and b’.

We examine each of the seven cases illustrated above.

(i) Here a and b are disjoint, so i(a, fl) = 0. Since f is an automorphism of C(S),

this implies that i(f(a), f(fl)) = 0. Another way of saying this is that f(a) and f(,6)

have distinct disjoint representatives f(a) and f(b). Hence a’ and b’ are disjoint.
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(ii) On the annulus determined by f(b1) and f(b2) there is only one puncture.

Since f is an automorphism of C(S), the 2—separating circles f(a), f(b1) and f(b2)

are all distinct and no two are isotopic. Therefore f(a) cannot lie on this annulus.

Since f(b’ ) is on the annulus, we are done.

(iii) The once-punctured annuli determined by a1 and a2, and b1 and b; are disjoint.

Since a1, a2,b1 and by are pairwise disjoint, so are f(al), f(ag),f(b1) and f(bg). So the

annuli determined by f(a1) and f(a2), and f(b1) and f(bg) are disjoint.

(iv) Corollary 2.4.

(v) Suppose the endpoints of a’ and b’ are P and Q. Let R be any puncture other

than P and Q. Then there exist arcs c’ and d’ and a 3—separating circle e satisfying

the following conditions:

(1) c’ and d’ are disjoint from a’ U b’,

(2) c’ joins P and R and d’ joins Q and R,

(3) b’ U c’ U (1’ bounds a disc on S, and

(4) b’, c’ and b’ lie on a thrice-punctured disc component of 5,.

Note that any are joining P and Q which is disjoint from c’ and d’ is isotopic to

an arc disjoint from b’. (Note that any are isotopic to b’ can be isotoped to an arc

disjoint from b’) Then f(b’ ) U f(c’ ) U f(d’ ) lies on a thrice-punctured disc component

of 51(5) and bounds a disc on S. The latter follows from a similar argument given in

the first step of the induction in the proof of Lemma 2.5. Since (a’; c’) and (b’; c’) are

simple pairs, so are (f(a’); f(c’)) and (f(b’); f(c’)). In particular, f(a’) can be chosen

disjoint from f(c’ ) and f(d’) Hence it can also be chosen disjoint from f(b’).

(vi) Suppose that a’ is connecting P to Q and that b’ is connecting P to itself.

We can assume that b; is disjoint from a’. Clearly, there exists an are c’ not meeting
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a’, b’ and b1, joining P to some other puncture, say, R (see Figure 2.6).

f(b1 )

f(b'

 

f(Q) f(P)

 

Figure 2.6: Case (vi).

Then f(c’) connects f(P) to f(R) and meets f(bz), but not f(bl) or f(a’). Let

A be the segment of f(c’ ) lying on the once-punctured annulus determined by f(b1)

and f(b2), and connecting f(P) to f(bl). Note that the intersection of f(a’ ) with the

this annulus is a collection of arcs joining a point on f(b1) either with another point

on f(b1) or with f(P) Since f(a’) is disjoint from A, the intersection of f(a’) and

this annulus consists of only one arc connecting f(P) to some point on f(b1). Then

f(b’ ), which is an arc on this annulus joining f(P) to itself, can be chosen so that it

does not intersect f(a’)

(vii) Let P be the common endpoints of a’ and b’. We can assume that al does

not meet b1 and b2. Let P1, . . . , Pk be the punctures on the component of So, which

does not contain a’ Ub’. Choose k arcs do, c’1,. . . , CL, such that c: joins P,- to Pg.“ for

i = 0,1,. . . ,k -1, where P0 = P, and {a’,B’,7(’,,7{,. . .,7,"_1} is a simplex of B(S).

Then the are f(e) joins f(a) and f(Pa+1)a and {f(a’),f(76),f('vi)e---,f(75.-1)} and

{f(fl’). ms), f(vi), . . . , f(7£-1)} ere simplices of B(S) by (i), (ii). (iv) and (vi). Since

any arc joining P to itself which is disjoint from cfi,c’l, . . . , cf“, is isotopic to an arc

disjoint from a’, any arc joining f(P) to itself disjoint from f(cg),f(c’l), . . . ,f(cj,_1)

is isotopic to an arc disjoint from f(a’) Therefore, f(b’) can be chosen disjoint from

f(a’) This completes the proof. 0
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Figure 2.7: Case (vii).

Proposition 2.8 The group Aut C(S) is naturally isomorphic to a subgroup of the

group Aut B(S).

Proof: By Lemma 2.7 every element of Aut C(S) induces an element of Aut B(S)

Clearly, the map taking an element of Aut C(S) to the induced element of Aut B(S)

is a homomorphism. It is not very difficult to show that if an automorphism of C(S)

induces the identity automorphism of B(S), then it is, in fact, the identity. Cl

2.2.3 Automorphisms of C(S) and Mg

In this subsection, S will denote a sphere with at least five punctures.

Lemma 2.9 Let f and g be two automorphisms ofB(S) If they agree on a codimension-

zero simplex, then they agree on all of B(S).

Proof: Let a be a codimension-zero simplex of B(S). Suppose that f is equal to

g on a. If 0’ is another codimension—zero simplex, then by Theorem 1.2 there exist

codimension-zero simplices a = 0’0, 01, . . . , 0‘;‘ = 0’ such that 0,400,- is a codimension-

one simplex for each i. Since any codimension-one simplex is a face of either one or

two codimension—zero simplices, if two automorphisms B(S) agree on 0,-_1 then they
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agree on 0,. Clearly, this implies that f must be equal to g on 0’. Since every simplex

of B(S) is a face of a codimension—zero simplex, we are done. D

Recall the correspondence between the codimension-zero simplices of B(S) and

the isotopy classes of ideal triangulations of S. Since all maximal simplices in B(S)

have the same dimension, we have a well-defined action of the group Aut B(S) on

the codimension-zero simplices.

Lemma 2.10 Let f 6 Aut C(S), A = {a’, b’, c’} be a ‘good’ ideal triangle on S and

let a’, ,B’ and 7’ be the isotopy classes of a’, b’ and c’, respectively. Then {a’, fi’, 7’}, and

hence 0130{f(a'),f(fl'),f(7')}, is a 242'"!le in B(S)~ 1ff(A) = {f(a’), f(b'), f(C')}

is a realization of the latter simplex, then it is a ‘good’ ideal triangle on S.

Proof: Recall that a ‘good’ ideal triangle has three different vertices and (a’; ,B’),

(fl’n’) and (01’ ;7’) are simple pairs. It follows that f(A) is an ideal triangle all of

whose vertices are different. Let P and Q be any two punctures different from the

vertices of f(A) Since f"(P) and f”1(Q) can be joined by an are d’ not intersecting

any of the edges of A, P and Q can be joined by an arc f(d’). Since f(d’) has the

geometric intersection number zero with each arc in f(A), it can be chosen so that it

does not intersect any of them. Thus the proof of the lemma is complete. D

Lemma 2.11 Let f E Aut C(S). Suppose that there exists a homeomorphism F :

S -+ S such that [F] and f are equal as automorphisms of B(S), where [F] denotes

the isotopy class of F. Then [F] = f as automorphisms of C(S).

Proof: Let a be a k-separating vertex of C(S), a E a and let ’P(S,’,) = {P1, . . . , Pk},

’P(S,’,’) = {Q1, . . . , Qn_k}. Choose two arbitrary chains (b’l; . . .; [_1) and (Ci; . . . ; 4,4,4)

such that b:- and c’ are disjoint from a for i and 3'. Then (f(b’l); . ..;f(b’_1)) and
J
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(f(c’l); . . . ; f(cfi,_,,_1)) are two chains such that f(bfi) and f(cg) are disjoint from f(a)

for all i, j. Since [F](,B,’) = f(3f), [F](7;-) = f(7;) by assumption, and since there is

only one (kt-separating) circle up to isotopy disjoint from the chains (f(b’1 ); . . . ; f( [_1 ))

and (f(Ci);---;f(ct-k-1))e namely f(a) E f(a), we must have WHO!) = f(a) This

proves the lemma. D

We are now ready to prove the main result of Section 2.2.

Theorem 2.12 Let S be a sphere with at least five punctures. Then the natural map

Mg —> Aut C(S) is an isomorphism.

Proof: Injectiveness of the map Mg —-> Aut C(S) was proved in Theorem 1.3. Let

us now show that it is onto. Let f E Aut C(S) and let 0’ be an arbitrary ideal

triangulation of S such that each triangle has three different vertices, i.e., a ‘good’

triangulation. Existence of such a triangulation is clear. Let a be the isotopy class

of 0'. Then a is a codimension—zero simplex of B(S). By Lemma 2.10, ‘good’ ideal

triangles are mapped to ‘good’ ideal triangles by f, and it is a well-known fact that f

can be realized by a homeomorphism on each such triangle. Since each edge of C’ is

an edge of exactly two ‘good’ ideal triangles, the homeomorphisms of these triangles

give rise to a homeomorphism F of S. If [F] denotes the isotopy class of F, then f

agrees with [F] on a. By Lemma 2.9, they agree on B(S). Finally, by Lemma 2.11,

[F] is equal to f on C(S). Cl
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2.3 Punctured Tori

In this section, unless otherwise stated, S denotes a torus with n punctures.

2.3.1 Automorphisms of C(S) and Mg

The following theorem enables us to recognize whether or not two vertices of C(S)

have geometric intersection number one, by looking at the complex C(S)

Theorem 2.13 Let S be a torus with at least two punctures, and let a and ,8 be two

vertices of C(S). Then the geometric intersection number i(a,,8) = 1 if and only if

there exist three vertices 71,72 and 73 of C(S) such that

(i) (7190,72ifli73) is a pentagon in C(S)) and

(ii) 0,,6 and 73 are nonseparating, and 71 and 72 are n-separating.

Proof: Let us first prove the ‘only if’ clause of the theorem. Clearly, i(a,,8) = 1

implies that a and ,8 are both nonseparating. Thus there exist a E a and b E H

such that a and b intersect transversally at only one point. It is well known that if c

and d are any other pair of circles intersecting transversally at only one point, then

there exists a homeomorphism F:S —+ S such that F(a) = F(c) and F(b) = F(d)

Hence we can assume that a and b are the standard circles in Figure 2.8 (a). The

existence of the other circles whose isotopy classes satisfy (i) and (ii) is now obvious

from Figure 2.8 (b).

For the converse, let a 6 a,b E B and c,- 6 '7,- intersect each other minimally

pairwise. Since a is nonseparating, the surface 5,, is an annulus with n punctures

and two boundary components q] and q2. Then S is a quotient space of So. Let

p : S,, —> S be the quotient map, so p(q1) = p(q2) = a. Up to a homeomorphism of SO
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© sets!
(a) (b)

Figure 2.8: A pentagon in C(S).

preserving ql and q;, we can assume that the picture of p‘1(c2) in So is as in Figure

2.9 (a). In the figures, c, represents p‘1(c,).

Let i(a, ,6) = m, which is the cardinality of aflb. Since a and 6 are not connected

by an edge in the pentagon (and hence in C(S)), this geometric intersection number

m must be positive.

We now consider the components of the preimage p‘1(b) of b, which is a collection

of arcs. Since i(fl,72) = 0, the components of p”(b) lie on a disc with two holes

whose boundary components are q1, q; and c2, and they do not intersect c2. Thus

it follows from Lemma 1.1 that each arc in p”(b) joins either a point on ql to a

point on q;, or, two points on (11, or, two points on Q2. Let mm, mm mm be the

number of these components joining ql to q1, q; to Q2 and q1 to Q2, respectively. Then

m = m12 + 2m“ = 77112 + 2m22 and hence mu = m22. On the other hand, if A is

an embedded arc on 5,, connecting two points on ql such that A is not isotopic to

a segment of ql and does not intersect c2, then every embedded arc connecting two

points on q; which is disjoint from A must be trivial, i.e., isotopic to a segment of Q2.

Therefore mm and m2; must be zero, so each component of p"(b) connects a point

on ql to a point on qg. Therefore the picture of these arcs on S. is as in Figure 2.9

(b).

Let us now orient ql and q; so that the induced orientations of p(q1) and p(q2)

agree in S, and let X1, X2, . . . , Xm and Y1, Y2, . . . , Ym be the consecutive intersection
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(c) ((9

Figure 2.9: The surface Sa.

points of p"(b) with q; and Q2, respectively, such that X,- is joined with Y,- by some

arc in p"(b) for each i = 1,2,...,m. It is clear that there exists a k, 0 S k < m,

such that p(X,) = p(Y,+k) for each i. By convention we set Ym+,- = Y,.

Since i(fl, 71) aé 0 and i(a, 71) = 0, the preimage of Cl, also denoted by CI in the fig-

ure, intersects every component of p‘1(b) (see Figure 2.9 (c)). As i (73, 71) = i(73, fl) =

0, each component of p‘1(c3), intersects ql only in the open interval [Xm X1] and q;

in ]Ym,Y1[. Therefore p(]Xm,X1[) = p([Ymal/ll) in S, i.e., p(X1) = p(Yl) and hence

k = 0. Finally, p(b) is a connected curve only if m is equal to 1. This finishes the

proof of the theorem. Cl

Lemma 2.14 Let n 2 3. Let (1,3 and ’7 be distinct vertices of C(S). [fa is non-

separating, ,8 is n-separating and '7 is separating, and i(a,,8) = i(fl,7) = 0, then

i(a,7) = 0.
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Proof: Let a,b and c be representatives of a,fl and 7 in minimal position. The

nonseparating circle a and the separating circle c are, respectively, nonseparating and

separating on the surface Sb, the surface obtained from S by cutting along b. But

nonseparating and separating circles on 5;, lie on different components (see Figure

2.10). [:1

 

 

Figure 2.10: A nonseparating and an n-separating circle.

Lemma 2.15 Let n 2 2 and let S and 5’ denote a torus with n punctures and

a sphere with n + 3 punctures, respectively. If every automorphism of the complex

C(S) is induced by some self-homeomorphism of S, then C(S) and C(S’) are not

isomorphic.

Proof: Suppose that p is an isomorphism from C(S) to C(S’) Then cp induces a

group isomorphism go. : Aut C(S) —-> Aut C(S’), defined by cp...(f) = cpfcp'l for each

f E Aut C(S) This implies that

Aut C(S’) = {cpfcp'l : f 6 Aut C(S)}.

We now show that this is impossible. Note that for a vertex oz of C(S), the dual

link L"(a) of a is connected if and only if a is either nonseparating or 2-separating,

and for a vertex [3 of C(S’), the dual link L"(fl) of S is connected if and only if

B is 2—separating. From this it follows that the image of the union of the set of

nonseparating vertices and the set of 2-separating vertices of C(S) is precisely the set

of 2—separating vertices of C(S’)
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Let a be a nonseparating vertex of C(S), and choose a 2-separating vertex 3 of

C(S) such that i(a,fl) = 0, i.e., a and S are joined by an edge in C(S). Then 90(0)

and (p(fi) are two 2-separating vertices of C(S’) and are joined by an edge in C(S’).

Let c and d be representatives of 90(0) and (p(fl), respectively. Then c and d are

two disjoint 2-separating circles on S’. By the classification of surfaces there exists

a homeomorphism C of S’ such that C(c) = C(d). Hence g(cp(a)) = (p(fi), where g

is the isotopy class of G'. Then the automorphism cp:1(g) = go'lgcp of C(S) takes

the nonseparating vertex 0: to the separating vertex ,6. This is impossible since every

automorphism of C(S) is induced by a homeomorphism of S, by hypothesis. Hence

we have the lemma. C]

We need the following theorem of Ivanov [16]. The proof has not been published

yet, so for completeness we give a proof of it in the next section for tori with at

least three punctures. The proof we give is basically the same as the one we give for

punctured spheres.

Theorem 2.16 Let S be an orientable surface of genus at least one. Suppose that

f E Aut C(S) and a and ,8 two vertices of C(S) with i(a,,6) = 1 imply that

i(f(a),f(fi)) = 1. Then every element of Aut C(S) is induced by some homeo-

morphism of S.

Lemma 2.17 Let n 2 3. If S is a torus with n punctures and S’ is a sphere with

n + 3 punctures, then C(S) and C(S’) are not isomorphic.

We prove this lemma together with the main theorem of this section.

Theorem 2.18 Let S be a torus with n 2 3 punctures. Then the natural map Mg —)

Aut C(S) is an isomorphism.
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Proofs of Lemma 2.17 and Theorem 2.18: As we have mentioned in the proof of

Lemma 2.15, for a vertex a of C(S), L"(oz) is connected if and only if 01 is either

nonseparating or 2-separating. Hence every element of the group Aut C(S) maps a

nonseparating vertex either to a nonseparating vertex or to a 2-separating one, and

a k-separating vertex to a k’-separating one for k, k’ 2 3.

Let a be a k-separating vertex of C(S) with k 2 3 and let a E a. Let us denote

by S50) and S5,” the components of S“ of genus zero and of genus one, respectively.

The graph L"(a) has exactly two connected components, say, Lg(oz) and L‘i‘(a). The

vertices of these components correspond to the isotopy classes of circles on the con-

nected components of So. We can choose Lg(a) and Li’(oz) so that the vertices of

Lfi’(oz) are the isotopy classes of circles on 35:). We then define two full subcomplexes

Lo(a) and L1(a) of C(S) as follows. The set of vertices of L,-(a) are those of L§’(a).

Then L,(a) is isomorphic to C(5,9)).

If f is an automorphism of 0(5) and a is a k-separating vertex with k 2 3,

then f restricts to an isomorphism from L"(a) = Lg(a) u L‘,’(a) to L"(f(a)) =

Lg(f(a)) u L‘1’(f(a)). Since Lj(a) and Lj(f(a)) are connected components, we get

f(L3(a)) = L3(f(a)) and f(Li‘(a)) = Li-.(f(a)) for some 1‘ = 0 or r = 1. Then

f(Lo(a)) = L..(f(a)) and f(L1(a)) = L1_.-(f(a))- Since dim Lo(a) = dim C(59)) =

k — 3 and dim L1(a) = dim C(59)) = n — k, dim L,.(a) = lc — 3 and dim L,_,(o)

n — k. From this it is easy to conclude that if r = 0 (resp. r=1), then f(a) is k-

separating (resp. (n — k + 3)-separating). The proofs now proceed simultaneously by

induction on n.

Suppose that n = 3. Let f 6 Aut C(S) and let a and ,3 be two vertices of

C(S) with i(a,fl) = 1. By Theorem 2.13, there exist vertices 71,72 and 73 of C(S)

such that (71,01,73,fl,73) is a pentagon, 71 and 73 are 3—separating, and 73 is 2-
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separating. Then (f(71),f(a),f(72),f(8),f(73)) is a pentagon in C(S). From the

discussion given in the preceeding paragraph, it follows that f(71) and f(72) are 3-

separating. Note that any two distinct nonisotopic 3-separating circles on S, a torus

with three punctures, must intersect. Therefore none of the vertices f(a), f(8) and

f(73) can be 3-separating. By the same argument, any two distinct nonisotopic 2-

separating circles on S must intersect. We conclude that one of the vertices f(,8 ) and

f(73), say f(8), is nonseparating. By applying Lemma 2.14 twice to the pentagon

(f(71)tf(a),f(72)tf(fl),f(73))t we see first that f(a), and then f(73), is nonsep-

arating, i.e., f(a),f(8),f(71),f(72) and f(73) satisfy the conditions (i) and (ii) of

Theorem 2.13. Hence i(f(a),f(,8)) = 1. This is true for any automorphism of C(S).

Therefore, by Theorem 2.16 every automorphism of C(S) is induced by some home—

omorphism of S. Using this and Lemma 2.15, we see that C(S) and C(S’) are not

isomorphic if S’ is a sphere with six punctures.

Now suppose that n 2 4. Let a and 8 be nonseparating and 2-separating vertices

of C(S) and let a E a and b E ,8. Then L(oz) is isomorphic to the complex of curves on

Sa, a sphere with n + 2 punctures, and L(8) is isomorphic to the complex of curves on

Sf”, a torus with n — 1 punctures. By the induction hypothesis, every automorphism

of C(5,) is induced by a self-homeomorphism of 50. Then by Lemma 2.15, C(SQ) is

not isomorphic to C(Sgl’) = C(Sb), i.e., L(a) is not isomorphic to L(,8). It follows

that if f E Aut C(S) then f(a) cannot be 2-separating, i.e., nonseparating vertices

are preserved under the action of Aut C(S)

To show that n-separating vertices are also preserved under the action of Aut C(S),

we assume the converse. Suppose that there exist f 6 Aut C(S) and an n-separating

vertex 0: of C(S) such that f(a) = 8 is not n-separating. Then 8 is 3-separating by

the discussion given above. The automorphism f restricts to an isomorphism from

the disjoint union Lo(a) U L1(a) to the disjoint union Lo(,8) U L1(8). Since L1(a)
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and Lo(8) are discrete, and since Lo(oz) and L1(8) are, for instance, connected, we

must have f(L1(a)) = Lo(,8). But this means that f takes the nonseparating vertices

in the link of a to separating vertices, a contradiction. Thus the automorphisms of

C(S) preserve the set of n-separating vertices as well.

Now it follows from Theorem 2.13 that if f 6 Aut C(S) and if i(a,8) = 1, then

i(f(a), f(8)) = 1. Then Theorem 2.16 implies that automorphisms of C(S) are

induced by self-homeomorphisms of S. This completes the proof of Theorem 2.18.

Again, that C(S) and C(S’) are not isomorphic if S’ is a sphere with n + 3 punctures

follows from Lemma 2.15. So the proof of Lemma 2.17 is complete, too. D

As a corollary to Lemma 2.17 we can state the following theorem.

Theorem 2.19 Let S be a sphere with at least five punctures, or a torus with at least

three punctures. Let S’ be a connected orientable surface of genus at most one. In

the case that S is a sphere with five punctures, suppose, in addition, that S’ is not

a torus with two punctures. If C(S) and C(S’) are isomorphic, then S and S’ are

homeomorphic.

Proof: If S and S’ are either both punctured spheres or both punctured tori, and if

C(S) and C(S’) are isomorphic, then their dimensions, hence the number of punctures

on S and S’, are equal. By the classification of surfaces, these two surfaces are

diffeomorphic.

Let S be a sphere with at least five punctures and let S’ be torus with at least

three punctures. Certainly, if the dimensions of C(S) and C(S’) are not equal, then

S and S’ are not homeomorphic. But if their dimensions are the same, then S has

three more punctures than S’. In this case C(S) and C(S’) are not isomorphic by

Lemma 2.17. D
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2.3.2 Proof of Theorem 2.16 for punctured tori

The purpose of this section is to give a proof of Theorem 2.16 for tori with n 2 3

punctures. So let S be a torus with at least three punctures, and assume that f is

an automorphism of C(S) and 0 and 8 two vertices of C(S) with i(0,8) = 1 imply

that i(f(0), f(8)) = 1. The idea of the proof is that of Section 2.2. Recall that for a

2-separating vertex 0 of C(S), the corresponding vertex of B(S) is denoted by 0’.

Lemma 2.20 (i) Let f be an automorphism of C(S) and let 01 and 03 be two non-

separating vertices of C(S) such that al and a3 bound an annulus with one puncture

for a,- E 0,. Then f(al) 6 f(01) and f(ag) 6 f(02) bound an annulus with one

puncture.

(ii) Let f be an automorphism of C(S) and let 0 and 8 be nonseparating and

2-separating vertices of C(S). Ifi(0,8’) = 1, then i(f(0),f(8’)) = 1.

(iii) The group Aut C(S) preserves the topological type of the vertices of C(S).

Proof: (i) Note that for a nonseparating vertex 0 of C(S), there exists a vertex 8

such that i(0,8) = 1. By assumption, i(g(0),g(8)) = 1 for g E Aut C(S). Hence

9(a) is nonseparating. Therefore Aut C(S) preserves nonseparating vertices.

Now let 0 and 8 be two nonseparating vertices of C(S) such that {0,8} is a

l-simplex of C(S) We define the link L(0, 8) of {0, 8} to be the full subcomplex of

C(S) with the vertex set

{7 E 0(5) = 7 # an 9‘ 8,217,631) = i(mfl) = 0}-

In fact, L(0,8) = L(0) fl L(8) and L"(0,8) = L"(0) fl L"(8).

Let a E 0 and b E 8 be disjoint representatives. Then the surface Saul, has two

connected components. The vertices of L(0,8) is the isotopy classes of nontrivial
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circles on these two components. That is, L(0,8) is isomorphic to the complex of

curves C(Snub).

Since the circles on different components do not intersect, if two vertices of L"(0, 8)

form an edge then their representatives can be isotoped to circles on the same con-

nected components of Snub. It follows that L"(0, 8) is connected if and only if the

complex of curves of one of the connected components of Saul, is empty. That is,

L“(0, 8) is connected if and only if one of the components of Snub is a once-punctured

annulus.

Since g(L"(0, 8)) = L"(g(0), g(8)) for any automorphism g of C(S), the proof of

(i) follows.

(ii) We can find nonseparating vertices 00,01,...,0,, of C(S) such that 01 =

0, i(01,8’) = i(0o,0,-) = 1, 1 S i S n, and all of the unmentioned intersection

numbers are zero (see Figure 2.11 (a)). Then by using the assumption of Theorem

2.16, and part (i), we see that the configuration formed by minimally intersecting

representatives f(a,) of f(01-) is homeomorphic to the one formed by a,. (Such a

homeomorphism is constructed in [15] and [22].) Hence we can assume that f(0,) =

0,- for all j. Then up to isotopy there exists a unique 2-separating circle, which must

be b, disjoint from every a,- for j 79 1. Hence the conclusion follows.

 

(a) (b)

Figure 2.11: Some configurations of circles and arcs.
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(iii) The fact that Aut C(S) preserves the nonseparating vertices is proved in (i).

Let 0 be a k-separating vertex of C(S) with 2 S k S n. We complete the proof by

induction on k.

Let lc = 2. The dual link of a vertex of C(S) is connected if and only if the vertex

is either nonseparating or 2-separating. Since Aut C(S) preserves the nonseparating

vertices, it must preserve the 2-separating ones as well.

Suppose now that k 2 3 and that the assertion is true for all l—separating ver-

tices with l < k. This implies that f(0) is at least k-separating. Note that there

exist nonseparating vertices 01, 03, . . . , 0,,_k+1 such that {0, 01, 03, . . . , 0,,_k+1} is a

simplex of C(S), and that a,- and aj+1 bound an annulus with one puncture for each

1 S j S n — k, where a, E 0,- (see Figure 2.11 (b)). By part (i), f(aj) and f(aJ-H)

bound an annulus with one puncture. It follows that the surface obtained by cutting S C

along the circles f(a1), f(a3), . . . , f(an_k+1) is a disjoint union of n—k once—punctured

annuli and an annulus A with k punctures. Since the circle f(a) is on the annulus A,

it can be at most k-separating. D

By the correspondence between the set of 2-separating vertices of C(S ) and the

set of isotopy classes of arcs joining different punctures on S, there is a well-defined

action of Aut C(S) on the latter set.

The next step is to prove that Aut C(S) takes simple pair of circles to simple pair

of circles.

Lemma 2.21 [f(0; 8) is a simple pair, then so isi(f(0); f(8)) for any automorphism

f 0f 0(3)-

Proof: Note that any simple pair (0; 8) is determined uniquely by the existence of

vertices 70,71, . . . ,7" such that
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(a) each 7,- is nonseparating, 0 S i S n,

(b) i(7o,7,-)=1 and i(7,-,7,-) = 0, l S i,j S n,

(C) i(a’a’h) = i(fl'flz) = 1, 311d

((1) all the other unmentioned intersection numbers of 0, and 0, or 8 are zero (see

Figure 2.12 (a)).

Since Aut C(S) preserves the conditions (a)-(d) and 2-separating circles, the sim-

ple pairs are preserved by Aut C(S) U I

92$ v
«Q .

a?»
(a) (b)

Figure 2.12: Existence of various configurations.

By the correspondence with 2-separating circles and the arcs connecting different

punctures, the group Aut C(S) preserves the simple pairs of arcs, too.

The action of Aut C(S) on the punctures of S is defined in the same way as before.

For f E Aut C(S) and a puncture P on S, choose a simple pair (0’; 8’) with center

P and define f(P) to be the center of the simple pair (f(0’ ); f(8’))

Lemma 2.22 The definition of the action of Aut C(S) on the set of punctures of S

is independent of the choice of the simple pair.

Proof: We use the technique and the notation of Lemma 2.5. We induct on i =

1i(a’fl') + i(fi’, 7’)-
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If S has at least five punctures, the proof of Lemma 2.5 works here, too. Hence

we may assume that S is a torus with three or four punctures.

Suppose that i = 0. There are two cases to consider.

Case 1: If P1,P3 and P3 are all different, then S has four punctures and any

two circles in the set {a’ , b’, c’} constitute a simple pair. Let d be the boundary of

a regular neighborhood of the union a’ U b’ U c’ U {P,P1,P3,P3}. Clearly, d is 4-

separating. There exists a nonseparating circle, say, 6 such that i(e, a’) = i(e, b’) = 0

and i(e,c’) = 1. Then f(d) is 4-separating and the arcs f(a’),f(b’) and f(c’) lie on

the four-punctured disc component of Sf(d). Let us denote the endpoints of f(a’) and

f(b’) by P, P1, P3. Since any two circles in the set {f(a’), f(b’),f(c’)} form a simple

pair, either one of the endpoints of f(c’) is P, or else the endpoints of f(c’ ) are P1

and P2. Since there exists a nonseparating circle, namely f(e), intersecting f(c’ ) and

not intersecting f(a’ ) U f(b’ ), the latter case cannot hold.

Case 2: Suppose that P3 is one of P1 and P3. Without loss of generality we may

assume that P3 = P1. Now the proof splits into two subcases.

Subcase 1: First suppose that the boundaries of a regular neighborhood of a’ U

c’ U {P, P1} are nonseparating. If S has three (resp. four) punctures, then there exist

two (resp. three) nonseparating circles a1,a3 (resp. a1,a2,a3) disjoint from a’ and c’

such that Sawa, (resp. Smuuma) is a disjoint union of an annulus with two punctures

P, P1, and one (resp. two) once-punctured annulus (resp. annuli) (see Figure 2.12

(b)). Then only one of the components of Sf(a,)uf(a,) (resp. Sj(al)uf(a2)uf(aa)) is a

twice-punctured annulus, on which the arcs f(a’), f(c’ ) lie. Hence the endpoints of

f(c’) are those of f(a’).

Subcase 2: Now suppose that the boundaries of a regular neighborhood of a’ U c’ U

{P, P1} are separating. It is clear that there exists an arc d’ joining P to P1 disjoint
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from a’ Ub’ U c’ such that the components of the boundaries of a regular neighborhood

of a’ U (1’ U {P, P1} are nonseparating. Now we apply Subcase 1 to {a’, d’, b’} to see

that one of the endpoints of f(d’) is the center of the simple pair (f(a’ ); f(b’)) Note

that (f(d’ ); f(b’)) is a simple pair with center that of (f(a’ ); f(b’)) We apply Subcase

1 to {d’, c’, b’} again to conclude that one of the endpoints of f(c’ ) is the center of the

simple pair (f(d’); f(5’))-

The proof now proceeds as the proof of Lemma 2.5. D

We now define an action of Aut C(S) on the vertices of the complex B(S), as

in the punctured sphere case in Section 2. This action of Aut C(S) on the isotopy

classes of arcs joining different punctures is defined by the correspondence with the

isotopy classes of 2-separating circles.

Let us define the action on the classes of arcs joining a puncture to itself. For

this purpose let f 6 Aut C(S) and let 0’ be a vertex of B(S) such that a’ E 0’

is connecting a puncture P to itself. Consider the circles a1 and a2 which are the

components of the boundary of a regular neighborhood of a’ U {P}. Then either both

of a,- are nonseparating, or al is k-separating and a2 is (k + 1)-separating for some

k 2 1. (By convention, a l-separating circle is the puncture to which the trivial simple

closed curve is deformable.) If a1 and a2 are both nonseparating, then they bound an

annulus with one puncture. By Lemma 2.20, f(a1) and f(a2) are nonseparating and

bound an annulus with one puncture. Clearly, this puncture must be f(P) We define

f(0’) to be the isotopy class of the unique (up to isotopy) nontrivial embedded arc on

this annulus joining f(P) to itself. If a1 is k-separating and a2 is (k + 1)-separating,

then f(al) is k-separating and f(ag) is (k + 1)-separating. Using the technique of

Lemma 2.20 (iii), it is not hard to see that f(a1) and f(a3) bound an annulus with one

puncture, f(P) Then f(0’ ) is defined as the isotopy class of any nontrivial embedded
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arc on this annulus joining f(P) to itself.

Lemma 2.23 Every automorphism of the complex C(S) induces an automorphism

of B(S).

Proof: Let f E Aut C(S) and let 0’ and 8’ be two distinct vertices of B(S) with

i(0’,8’) = 0. It suffices to show that i(f(0’),f(8’)) = 0. As in the proof of Lemma

2.7, there are seven cases to consider (see Figure 2.5). If a’ (resp. b’) joins a puncture

to itself, let a1,a2 (resp. b1, b3) be the circles used to define f(0’) (resp. f(8’)).

(i),(ii),(iii) The proof is the same as that of Lemma 2.7 (i),(ii),(iii).

(iv) Lemma 2.21.

(v) Let P and Q be the endpoints of a’ and b’. There are two possible cases. The

boundary components a, b of a regular neighborhood of a’ Ub’ U {P, Q} are either both

nonseparating or both separating (see Figure 2.13). In either case, a and b bound an

annulus with two punctures on which a’ and b’ lie. Moreover, there exists a circle c

such that i(7,0’) at 0 and i(7,8’) = 0, where 7 is the isotopy class of c. Let 0 and

8 be the isotopy classes a and b respectively. By looking at the link and the dual

link of {0,8} as in the proof of Lemma 2.20 (i), it is easy to see that f(a) and f(b)

bound an annulus with two punctures, where f(a) 6 f(0) and f(b) E f(8) Clearly,

the arcs f(a’) and f(b’) lie on this annulus. Since i(f(7),f(0’)) 75 O, a segment of

f(c) connects f(a) to f(b) Then any arc disjoint from this segment can be isotoped

to an arc disjoint from f(a’)

(vi) The argument in the proof of Lemma 2.7 works when b1 and b2 are nonsepa-

rating circles as well.

(vii) Suppose that a’ and b’ join the puncture P to itself. If a1 and a3, or b1

and b2 are separating, then the arguments given in the proof of part (vii) of Lemma
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(a) (b)

Figure 2.13: Two possible cases for (v).

2.7 finish the proof. So suppose that a1,a3,b1 and b3 are all nonseparating. Then

i(8’, 01) = i(8’,03) = 1, or i(8’, 01) = 0 and i(8’,03) = 2 (by changing the roles of

a1 and a; if necessary). By composing f with a mapping class we can assume that

f(01)—— 01,f(03) = 03 and hence f(0’)—— 0’.

Figure 2.14: The arcs a’ and b’.

If i(8’, 01) = i(8’,03) = 1 (see Figure 2.14 (a)), then by Lemma 2.20 (ii) we have

i(f(fl'LGI) = z'(f(fl’)tf(or1)) = 1 and i(f(fi’LCIz) = z'(f(fl’),f(012)) = 1- Choose

f(b’ ) E f(8’) so that it intersects a1 and a3 only once. The intersection of f(b’ ) with

the once-punctured annulus determined by a; and a2 has two components, one joining

P to al and the other joining P to a2. Now it is obvious that these components can

be isotoped so that they do not intersect a’. Therefore, i(f(0’), f(8’)) = 0.

Suppose now that i(8',01) = 0 and i(8’,02) = 2 (see Figure 2.14 (b)). Clearly,

there exists a nontrivial embedded are c’ joining P with itself such that it is disjoint

from a’ and b’, and i(7’,01) = i(7’,03) = 1 and i(8’,71) = i(fl’flz) = 1, where 7’
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is the isotopy class of d. Then i(f(i’),f(a’)) = i(f(v’La’) = 0. i(f(7’),f(fi’)) = 0

and i(f(7’ ), 01) = i(f(7’ ), 02) = 1. Choose a representative f(c’) of f(7’ ) intersecting

a’, a1 and a2 minimally. A representative f(b’ ) of f(8’) can be chosen so that it is

disjoint from a1 (as i(f(8’),01) = 0) and f(c’). But then f(b’) can be isotoped to a

curve disjoint from a’. This completes the proof of the lemma. Cl

Corollary 2.24 Aut C(S) is naturally isomorphic to a subgroup of Aut B(S).

The proof of Theorem 2.16 for tori with n 2 3 punctures proceeds now as in

Section 2.2.3. In fact, Lemmas 2.9, 2.10 and 2.11 hold for punctured tori, too. Then

the proof of Theorem 2.12 finishes the proof of Theorem 2.16.

2.4 Subgroups of Mg

In this section, S denotes an oriented surface. The purpose of this section is to prove

Theorem 2.28 as an application of our main results in Sections 2.2 and 2.3.

If 0 is a vertex of C(S), we denote by to, the right Dehn twist about 0. It is well-

known that for f 6 Mg, f to, f’1 = tf(a) if f is orientation preserving and f to, f'1 =

tile) if f is orientation reversing. An immediate consequence of the definition of Dehn

twists is

Theorem 2.25 Let 0 and 8 be two vertices of C(S) and let N, M be two nonzero

integers. Then t5 = tg’ if and only if0 = 8 and'N = M.

The following relations between Dehn twists are well known. We will use this

theorem to prove our results in this section and in the next chapter. A proof of the

theorem may be found in [15] or [22].
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Theorem 2.26 Let 0 and 8 be two vertices of C(S) and let N,M be two nonzero

integers. Then

(i) i(0,8) = 0 if and only if t? ti,” = tg’ t5.

(ii) (braid relations) i(0,8) = 1 if and only if ta, ta to = t3 ta, ta.

Let G be a group and let f E C. We denote by Cc;(f) the centralizer of f in G,

i.e.,

CCU) = {96 G=9f=f9l

We denote the center of G by C(G)

Let m 2 3 be an integer. Let F be a subgroup of finite index of the kernel of the

natural homomorphism Mg —> Aut H1(S,Zm). Then clearly I‘ is of finite index in

Mg.

Theorem 2.27 Let S be a sphere with at least five punctures or a torus with at least

three punctures. An element f E I‘ is a power ofa Dehn twist if and only if

(i) C(Cp(f)) is isomorphic to Z, and

(ii) C(Cr(f)) is not isomorphic to Cr(f).

This theorem is proved in the same manner as Theorem (2.3) of [15]. We now

ready to prove

Theorem 2.28 Let S be a sphere with at least five punctures or a torus with at least

three punctures. Let GI and 02 be two subgroups of Mg of finite index. Then any

isomorphism G1 —) G2 is induced by some inner automorphism of Mg. In particular,

two subgroups ofMg offinite index are isomorphic if and only if they are conjugate.

Also, if G is a subgroup of Mg of finite index, then the outer automorphism group

Out G ofG is finite.
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Proof: Let (I) : C1 ——> G'3 be an isomorphism. Consider the subgroup (1)-1(Cgfll‘)flf‘ of

Mg of finite index. Let [‘1 be a finite index subgroup of <I>"1(Cg 0 F) D F and let F3 =

<I>(F1). Then, F1 and F3 are of finite index in Mg and (I) restricts to an isomorphism

from 1‘1 to 1‘2. Clearly. ‘1’(C(Cr,(f))) = C(Ca(<l>(f))) and <1>(Cr.(f)) = chum».

It follows from Theorem 2.27 that (I) takes sufficiently high powers of Dehn twists to

powers of Dehn twists. More precisely, for a vertex 0 of C(S), since the index of F1 is

finite, there exists a nonzero integer N such that t3,” 6 F1. If t3,” 6 F; then (Mtg) = tg’

for some vertex 8. If t”1 t”’2 6 F1 and <I>(t(’,”‘) = tgf‘, then
0’0

tg’lez : Q(t2rl)N2 = @0552)!“ =tg2N1°

It follows from Theorem 2.25 that 81 = 83. That is, we have a well-defined map 90 from

the vertex set of C(S) to itself, defined by the equation @(tév) = ting), independent

of the choice of the powers involved.

Next, we show that 90 is an automorphism C(S) —> C(S) Obviously, we also have

a map 90'1 from the vertex set of C(S) to itself induced by Q”. Now for any 0 of

C(S)

t” = <I>“(<I>(tf,v)) = (1)-10M ) = iii-Mal)0
90(0)

and

t” = <Ii(<1>"(tf)) = Mtg-1(a)) = tine-1(a))0

for some appropriate integers N, M, T, K, L. Then again by Theorem 2.25, we have

90"(90(0)) = 0 and 90(90”(0)) = 0, so 90 is a bijection.

Let 0, 8 be two vertices of C(S) with i(0, 8) = 0, then t2" commutes with tgv’, and

M
hence td; ) commutes with tib’l’fi)’ It follows from Theorem 2.26 that i(cp(0), <p(8)) = O,

i.e., 90 is an automorphism of the complex of curves C(S)

Now, the automorphism 9p : C(S) -> C(S) is induced by a mapping class f of S,

(i.e., 90(0) = f(a)), by Theorem 2.12 if S is a punctured sphere, or by Theorem 2.18
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if S is a punctured torus. Then

is?) = iii.) 741,70, = its“ r1.

Let g E G1. If 0 is a vertex of C(S), then for appropriate integers N, M and K,

9(th g“) = <I>(g)<1>(t§’) My") = <1>(g)t.,’5’(a)<I>(g)‘1 = motif.) (F(a)-1 = tilg‘man

and

that? g“) = 44651)) = tiles» = lilac»-

Then @(g)(f(a)) = f(9(0)), or, equivalently, (@(g)f)(a) = (fg)(a), and thus (fg)"<1>(g)f

is in the kernel of the map Mg —> Aut C(S), which is trivial by Theorem 1.3. So

<I>(g)f = f9, i-es, M9) = fgf".

The second conclusion follows easily from the first.

Let G be a subgroup of Mg of finite index. Let us denote by NM§(C) the

normalizer of C in Mg. That is,

NM°5(G) = {f e M; : fo-l c G}.

For each f E NMoS(G), the inner automorphism If of Mg maps G to itself. This gives

a homomorphism w : NM's(G) —> Aut G defined by 9b(f) = If. This homomorphism

is surjective by the first part of the theorem. Hence we have a surjective homomor-

phism 1,7; : NM‘s(G) —> Out G. Clearly, G is in the kernel of J. Consequently, the

order of Out G is

[Out G : 1] = [NM;(G') :kerE] S [NM33(G) : C] S [Mg : G]

which is finite by assumption. U

Remark Except, possibly, for closed surfaces of genus two, the conclusion of Theo—

rem 2.28 is, in fact, true for all surfaces of genus 2 2. A sketch of this is given in [16],

and the proof of Theorem 2.28 above is almost identical to that in [16].



Chapter 3

First Homology Groups of

Mapping Class Groups of

Nonorientable Surfaces

3.1 Introduction

In this chapter, we calculate the first homology groups of the mapping class groups of

closed nonorientable surfaces. It turns out that they are isomorphic to Z2 if the genus

of the surface is at least seven. Another result is that the subgroup of the mapping

class group generated by Dehn twists about 2-sided circles has trivial first homology

group, again, if the genus of the surface is at least seven. As an algebraic application,

we deduce Corollary 3.15.

The first homology groups of the mapping class groups of closed orientable surfaces

are well-known. Let F be a closed orientable surface of genus g. If F is a sphere

(g = 0) then Mp is trivial, and hence H1(Mp) = O. Ifg Z 3 then H1(Mp) is again

trivial. This result is due to Powell [26]. The group H1(Mp) is Z10 if g = 2, proved

by Mumford [24], and Z12 if g = 1.

If g = 0 or g 2 3, then it follows from H1(Mp) = 0 and the fact that Mp is

of index two in M} that the first homology group H1(Mg) is Z3. Also, H1(M;.~)
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is Z2 EB Z3 if g = 1,2. Since this is not so well-known as the other results stated

above, we give a proof at the end of the present chapter. The case g = 1 is, probably,

well-known to algebraists. The case -g = 2 is proved at the end of (5.5) in [15].

In Section 3.2, we give the preliminary information on nonorientable surfaces. We

state various results regarding the mapping class groups of nonorientable surfaces,

and prove some lemmas which will be used in the proofs of the main results.

In Section 3.3, we discuss vector spaces over the finite field F2 of order 2. We are

mainly interested in the group of isometries of such a vector space with a symmetric

bilinear form. This subject is related to the mapping class group of nonorientable

surfaces via a theorem of McCarthy and Pinkall.

We prove our main results of this chapter in the last section, Section 3.4. In

the proofs, we use known relations between Dehn twists to get an upper bound

on the order of the first homology groups. A lower bound is obtained by finding

homomorphisms onto abelian groups.

3.2 Mapping Class Groups of Nonorientable Sur-

faces

Let S be a closed connected nonorientable surface of genus g. For nonorientable

surfaces, the genus is defined to be the number of real projective planes in a connected

sum decomposition. The mapping class group Mg is defined as the group of isotopy

classes of self-homeomorphisms of S. Let Ms be the subgroup of Mg generated by

twists about 2-sided circles. It turns out that this subgroup is the analogue of Mp

in the orientable case.

It is known that the mapping class group of a projective plane is trivial and that

of a Klein bottle is Z3 EB Z2 (cf. [19]). In addition, the subgroup of the mapping
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class group of a Klein bottle generated by the Dehn twists about 2-sided circles is Z3.

Therefore, in the rest of the chapter we restrict ourself to surfaces of genus at least

three.

Recall that for a simple closed curve (a circle) a on a surface S we denote by 5,, the

surface obtained from S by cutting along a. Two circles a and b on S are topologically

equivalent if there exists a homeomorphism H : S -> S such that H(a) = b.

Lickorish [19] proved that the group Mg is generated by the isotopy classes of

Dehn twists about two-sided nontrivial circles and that of so—called Y-homeomorphisms

(crosscap slides). He also showed that the isotopy classes of Dehn twists about two-

sided nontrivial circles do not generate Mg. In fact, the subgroup M8 generated

by the isotopy classes of Dehn twists about 2-sided circles is of index 2 in Mg (cf.

[21]). Later, Chillingworth [8] found a finite set of generators. Using the results of

Humphries [13], one can eliminate some of Chillingworth’s generators of Mg.

Let us describe the Y-homeomorphisms of nonorientable surfaces. Consider a

Mbbius band M with one hole. Let us attach a M6bius band M’ to M along the

boundary of the hole. The resulting surface K is a Klein bottle with one hole. By

moving M’ once along the core of M we get a homeomorphism of K which is the

identity on the boundary of K (see Figure 3.1). If K is embedded in a surface S,

we can extend this homeomorphism by the identity to a homeomorphism of S. This

homeomorphism is called a Y-homeomorphism or a crosscap slide. It is clear from the

definition that the square of a Y-homeomorphism is a Dehn twist about the boundary

of the Klein bottle K with hole. We note that Y-homeomorphisms act as the identity

on the Zg-homology.

Let S be a closed connected nonorientable surface of genus g. In the rest of this

chapter, we will mainly use the models given in Figure 3.2. If g is even, we will also

 “Nflv
c
n
n
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.
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Figure 3.1: A Y-homeomorphism.

use the model for S given in Figure 3.3. In the figures, the interiors of the shaded discs

are to be removed and the antipodal points on each boundary component identified.

For a 2-sided circle a on the nonorientable surface S, let us denote by ta one of the

two Dehn twists about a. Consider the models in Figure 3.2. Let d be the boundary

of the shaded part if g is odd and d = b,“ if g is even. Clearly, 5.1 is orientable. After

orienting Sd arbitrarily, we can assume that the twists to are actually the right twists

on S1 for a = a,,b,-,c,-.

Theorem 3.1 (Chillingworth, [8]) Let S be a closed connected nonorientable sur-

face of genus g. Then Mg is generated by

{tantbntcflz : 1 S i S r,l Sj S r— l} ifg: 2r+1,

{to.«,tb,,to.~,tb,+l,2 : 1 S i S r} ifg = 2r +2,

where z is the isotopy class of a Y-homeomorphism such that 22 is a twist about 6 if

g is odd and about f ifg is even.

Theorem 3.2 (Chillingworth, [8]) Let S be a closed connected nonorientable sur-

face of genus g. Then M5 is generated by

{ta,.,tg,,.,t¢j,tc,tcl :1 SiSr,1 Sj S r—l} ifg: 2r+1,

and

{tagatbi3tCiatbr+1atfytfl$tf2 : l S i _<_ T} if g = 2T+2
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where el,f1, f2 are the circles in Figure 3.4.

The generators of M5 can also be described by using the oriented double cover

of S (cf. [4]).

Theorem 3.3 (McCarthy-Pinkall, [23]) Let S be a closed nonorientable surface.

If L is an automorphism of H1(S, Z2) which preserves the Zz-valued intersection pair-

ing, then L is induced by a difleomorphism which is a product of Dehn twists.

In other words the natural map

M3 —i ISO H1(S,Zz)

is onto, where Iso H1(S, Z3) is the group of isomorphisms of H1(S, 22) preserving the

Zg-valued intersection pairing.

Let us recall the lantern relation discovered by Dehn [9] and rediscovered by

Johnson [18]. Let So be a sphere with four holes with boundary components do, d1, d2

and d3. For 1 S i < j S 3, let dij denote a circle encircling d,- and dj as in Figure

3.5 (a). If we consider the diffeomorphisms of So fixing BSD, and if we embed So

in a surface R, then we can consider the right twists t3, and t3”. as twists in R by

extending them by the identity to the complement of So. Then we have

Lemma 3.4 In this situation tdotd1td2td3 = td12td13td23 .

Lemma 3.5 Consider the torus with two holes in Figure 3.5(b) as embedded in a

surface. Then

tqltq, = (talctb)2 (tbtatc)2 = (tatctb)".
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Figure 3.4: The circles e1, f1 and f2.
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(a) (b)

Figure 3.5: Sphere with four holes So and torus with two holes.

Proof: By Lemma3 of [20], tmtq, = (tatct(,)2 (tbtatc)2. The equality (tbtatc)2 = (tatctbl2

follows from Theorem 2.26:

(tbtatc)2 = tbtatctbtatc = tbtatctbtcta = tbtatbtctbta = tatbtatctbta

= tatbtctatbta = tatbtctbtatb = tatctbtctatb = tatctbtatctb = (tatctb)2. Cl

Lemma 3.6 Let S be a closed connected nonorientable surface. Then there exists a

mapping class 9 such that gtahg"l = tgl’.

Proof: Consider the models given in Figure 3.3. Let d be the boundary of the shaded

part if g is odd and d = br+1 if g is even. Then S is a quotient of the surface 53.

Let us embed S3 in R3 in such a way that it is invariant under the reflection )5 across

the XY-plane and [f(d) = d. Then ,5 induces a homeomorphism p of S. Let p be the

isotopy class of p. Since p"(a1) = a1 and since 8 is orientation reversing, it follows that

ptmp‘1 =t;11. Cl

Lemma 3.7 Let S be a closed connected nonorientable surface of even genus g 2 4.

Suppose that a is a separating circle on S such that one of the components of 5., is

a Klein bottle with one hole, and the other component is also nonorientable. Then

there exists a mapping class 9 such that ptag‘l = t;’.
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Proof: Let g = 2r. Consider the sphere 82 as the one point compactification of R2.

Remove from S2 the interiors of 9 discs of radius % with centers (:l:1, 0), (i2, 0),... ,

(:tr, 0). Let S(g) be the resulting surface. Let it be the circle of radius % with center

(0,0) and p be the reflection across Y-axis. Then p(&) = ii. Let us realize S as

the quotient of S(g) obtained by identifying the antipodal points on each boundary

component. We may assume that a is the image of ii. The homeomorphism p descends

to a homeomorphism of S. Denote the isotopy class of this homeomorphism of S by

9. Since p is orientation reversing, we have ptap‘l = ta‘l. D

“Y

 
Figure 3.6: Surface S(g).

Lemma 3.8 Let C be a group and H a normal subgroup of G'. Then [H, H] is a

normal subgroup of G

Proof: The proof of the lemma follows immediately from the following fact:

g"[h1,h3]g = lg—lhlg, 94/129]. 0

3.3 Groups of isometries of vector spaces over the

field of order 2

Let V be a vector space space of dimension m over F3, the finite field of order 2,

let {v1, v3, . . . , vm} be a basis of V, and let (,) be the symmetric bilinear form on V

defined by (v,, v,) = 6.3. Let us denote by 130 V the group of isometries of V.
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If m is odd, say m = 2n + 1, then the restriction of (,) to the 2n-dimensional

subspace

W={vEV:(v,v)=0}

is nondegenerate, and hence it is a symplectic form. Recall that a symmetric bilinear

form (,) on a vector space W over a field of characteristic 2 is called symplectic if

it is nondegenerate and (w, w) = 0 for all w E W. Any isometry of V induces an

isometry of the symplectic space (W, ( , )), and any isometry h of W can be extended

uniquely to an isometry of V by requiring that

2n+l 2n+l

h( 2 vi) = 2 v,.

i=1 i=1

From this observation it follows easily that there is an isomorphism between Iso V and

Iso W. The group 180 W is called the symplectic group and is denoted by Sp(2n, 2).

It is known that Sp(2n,2) is perfect for n 2 3 (see, for instance, [27]).

A proof of the next lemma may be found in [25], Chapter 3, or in [27], Chapter 8.

Lemma 3.9 The order of Sp(2n,2) is 2"2 ?=1(22’ — 1).

Lemma 3.10 The group Sp(4,2) is isomorphic to E6, and Sp(2,2) is isomorphic to

23, where E, is the symmetric group on r letters.

Proof: A proof of the first assertion may be found in [25], Chapter 3, or in [27],

Chapter 8, so let us prove the second. Let W be a vector space over F; of dimension

2 with a basis {101,102} and let (,) be defined by.(w,-,w,-) = 1+ 5.5. Then (W, ( , )) is

a symplectic space and hence 130 W is isomorphic to Sp(2, 2). Since any permutation

of {w1,w3, wl + 102} induces an isometry, E3 is isomorphic to a subgroup of I30 W.

Also, since the orders of 23 and 130 W are both 6, they are isomorphic. Cl
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Lemma 3.11 Suppose that m = 2n. Let us consider V as a subspace of a vector

space V’ over F3 of dimension 2n + 1 with a basis {v1,. . . ,vgn,v3,,+1}. Extend the

form (,) to V’ by (v;,v3,,+1) = 6.93"“. Then Iso V is isomorphic to the stabilizer of

v3n+1 in Iso V’ and the order [Iso V : 1] of I80 V is

n-l

[Iso V: 1] = 2”2 H(22’ — 1).

1i:

Proof: We define a map

9b: Iso V —> Stabl,o v:(v2,,+1)

by

h(v) if v E V

¢(h)(v) = { 1,2,,“ if v = vzn+1

for h E 180 V, where Stabl,o Vl(v3,,+1) is the stabilizer of v2n+1 under the canonical

action of Iso V’. If v E V then

(i/J(h)(v),w(h)(v2n+1)> = (h(v),v2,,+1) = 0 = (vsvzn+l)-

As a consequence of this, l/JUI), the extension of h to V’, is an isometry fixing Ugn+1.

Also, for any h E Stabl,o Vt(v3,,+1)

W) = h({vaniil = {seam = v.

Therefore the map if) is onto. The injectiveness of 9b is clear. Hence, the first assertion

follows.

Now we calculate card Orb(v3,,+1), the cardinality of the orbit of v3n+1 under

the canonical action of Iso V’. We claim that Orb(v3n+1) is the set of sums of odd

2n+l

numbers of basis elements, except for 2-:21 v,-. It is obvious that for any k < n

there exists an h E 130 V’ such that h(:§:'[lv{1) = 23:,” v,- if i,- 5£ ijl for j at j’.
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Therefore we only need to show that for any k < n there exists an h E Iso V’ such

that h(v2n+1)—— 23"“ v,-. This13 true if and only if 22"? v,- can be completed to an

orthonormal basis of V’. For this purpose let I: < n, and let

2k+l

vza+1=Z v,-

and

v,_ v.-+vok+o+v;,,+1 ifl Sig2k+1

“ v,+1 if2k+2§iS2n.

It is easy to check that {v[,v§, . . . ,vgn+1} is an orthonormal basis of V’. Since

(v,v) = 1 if and only if v is an odd number of sums of basis elements and since

h(Z?"1"lv.-)= 2,2"? v,- for all h E Iso V’, the claim follows.

Now it follows that card Orb(van) = 22" —- 1.

Recall that for any finite group C acting on a finite set X,

[G2 1] = [Staba(x) : 1] card Orb(x)

for x E X, where [G' : 1] is the order of G. Hence we have

[180 V’: 1]: [I30 V. 11(22" — 1).

Now, since Iso V’ is isomorphic to Sp(2n, 2), the conclusion follows from Lemma 3.9.

E]

The next lemma is stated in [27] as Exercise 1 on page 174.

Lemma 3.12 Suppose that m = 2n. Then there is a surjective homomorphism from

Iso V to Sp(2n — 2,2).

Proof: Let W = {v E V: (v,v) = 0}. If w,- = v1+ 1).-+1 then {w1,w3, . . . ,w2n_1} is a

basis of W. Clearly, W’" = {0,v1 + v; + . . . + 02"} and W’- C W. Then W/WJ' with
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the induced form is a symplectic space of dimension 2n — 2. Clearly, Iso W/Wi is

isomorphic to Sp(2n — 2, 2).

Let h E Iso V. Then h(W) = W. That is, h induces an isometry of W, and

h(W'L) = W". This implies that h induces an isometry of W/Wi. It follows that

there is a homomorphism from 150 V to I80 W/Wl. We show that this homomor-

phism is surjective.

Let h be an isometry of W/Wi. Then

h(w, + W") = w; + W”

for some w: E W. If w’1 + w; + + w’2n_1 = 0 then by replacing w2n—1 with

w§n_1+ v1 + v2 + ...+ v3“ we may assume that w’1 + w; + . . . + w§n_1 # 0. The set

{w’1,w§, . . . ,w§n_1} is a basis of W and

<w2,w3-> = <w£+W*,w;-+W*>

= (F(w,+Wi),E(w,-+W*))

= (w,+WL,w,-+W‘L)

= (w,,wj).

Then h(w,) = w: defines an isometry of W which induces h on W/Wi.

It remains to prove that isometries of W can be extended to V. So let h be an

isometry of W. Consider the subspace U of W generated by {w1,w2,...,w2,,-3}.

Then

U'L ={0,v2mv1+v2+...+v2,,_1,,v1+v2+...+v3n}.

Hence the restriction of (,) to U is nondegenerate. Since h is an isometry between

U and h(U), the restriction of (,) to h(U) is also nondegenerate. This implies that

V = h(U) EB h(U)". In particular, h(U)J‘ is not a subspace of W. Let us choose
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v E h(U)i\W. Then (v,v) = 1 and (v,h(v1+ v,)) = 0 for 1 S i S 2n — 1. If

(v,h(v,~ + v3")) = 0 for some 1 S i S 2n — 1, we would conclude, since W is also

generated by

{h(v1+ 02), h(v1+ Us), - - - 7 h(v1'l' v2n—l)a h(vi + vzn)},

that v E W* C W, a contradiction. Therefore, (v,h(v,- + Uzn» = 1 for all 1 S i S

2n — 1. Hence (v,h(v,- + vzn)) = 1 + 62",;. Now define k : V —> V by the formula

k(v,) = v + h(v; + v2"). Then

(Hwhfimh==<v+Mw+eahe+Mw+eah

= (v.12) + (h(vs + van), v) + (v, h(va + Uzn» + (h(vt + van), h(va- + 222..»

= 1+1 + 62...,- +1 + 6m.- + (vs + vomv, + van)

= claw-+1 + 62a,.-+ (vavj) + (vi1v2n>+ (vzn,vj) + (v2nav2n>

= 6a,,- + 1 + 62....- + 6:,- + 62....- + 62..., + 1

= 5,,

Clearly, k defines an isometry of V which is an extension of h. D

3.4 The first homology groups

We are now ready to prove the main results of this chapter. Recall that for a group G,

H1(G) = G/[G, G]. We will use multiplicative notation for the operation in H1(G).

Theorem 3.13 Let S be a closed connected nonorientable surface of genus g. Then

H1(Mg) is equal to

(0089=L

(ii) 22 ea z2 ifg = 2,3,5,6,
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(iii) z, e Z: e Z: ifg = 4,

Proof: If g 2 2, then the subgroup M5 is of index 2 in Mg (cf. [21]). Hence, it is

a normal subgroup. Then the quotient Mg/Ms is of order 2, and hence is abelian.

Clearly, this implies that the index of the commutator subgroup [Mg, Mg] is at least

2 in Mg, i.e., the order of H1(Mg) is at least 2. It is well—known that if a group G is

generated by X, then G/[G, C] is generated by X = {x[G', C] : x E X}. For h E Mg

let us denote by h the class of h in Mg/[Mg, Mg].

If g = 1, then Mg is trivial. Hence so is H1(Mg).

Ifg = 2, then ME = Z2 EB Zg (Cf. [19]). SO H1(Mg~) = Z2 EB Z2.

If g = 3, Birman and Chillingworth [4] proved that Mg admits the presentation:

(a,b,y : aba = bab,yay‘l = a‘1,yby—l = b'l,y2 = 1, (aba)4 = 1).

It follows that Mg/[Mg, Mg] has the presentation:

M‘s/[Mg,Ms] = (as : 62 = t2 1.6? = W)-

Therefore H1(Mg) = Z3 69 Zz. This can also be deduced from the arguments below.

We now assume that g 2 4. The rest of the proof splits into two cases.

Case 1: g is odd. Let g = 2r + 1. From the braid relations it follows that

ta. f5, = to, in H1(Mg). Hence, it follows from Theorem 3.1 that H1(Mg) is
I

generated by {fall ,3}.

Lemma 3.6 implies that 2:, = 1. We now show that 22 = 1.

Notice that e is a separating circle and one of the components of S3 is a Klein

bottle with one hole. There exist circles q1,q2, . . . , q, = e on S such that ql bounds a
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M6bius band, and that q,- and q,“ bound a torus with two holes for i = 1, 2, . . . , r — 1

(see Figure 3.7). Then by Lemma 3.5

tQit91+l = (taIthtbf)4

for some nonseparating 2-sided circles af, b1- and c:- each of whose complement is nonori—

entable. Hence, a£,b:-,c’- are topologically equivalent to al. Therefore, each of the
1

Dehn twists tahtb: and to; is conjugate to either ta, or tgll. Since the conjugate ele-

-1
we havements induces the same element in the abelianization and since L, = fa, ,

to: = {3: = to: 2 fan. This implies that

Since the Dehn twist about a 2-sided circle which bounds a Mbbius band is isotopic

to the identity, tql = 1. Now it follows that in = 1 for all i. Therefore 32 = tq, 1.

 

qu=e

  §bo
 

Figure 3.7: Circles ql, Q2, . . . , qr.

From these discussions it follows that the generators of H1(Mg) satisfy the rela-

tions f2, = 1,32 = 1 and the obvious commutation relation. Hence H1(Mg) is either

Z3 or Z3 69 Z2, as its order is at least 2.

Let g = 5. In view of Section 3.3, Iso H1(S, Z3) is isomorphic to Sp(4,2), where

H1(S, Z2) is considered with the Zg-valued intersection pairing. Let

90: Mg —> 150 H1(S,Z3) E Sp(4,2)

be the canonical map. By Theorem 3.3 the restriction of cp to M5 is onto. By

Lemma 3.10, Sp(4,2) is isomorphic to 26, the symmetric group on six letters. Since
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the commutator subgroup of 26 is of index 2 in 23, the commutator subgroup of

Sp(4, 2) is of index 2. In particular, there is a homomorphism from Sp(4, 2) onto Z2.

Composition of this homomorphism with cp gives a homomorphism a from Mg onto

Z3. Since the restriction of ¢ to M5 is also onto, ker? 0 M5 is normal of index 4

in Mg. Recall that for any prime number p, any group of order p2 is abelian. Hence

the group Mg/ker9-0' n Ms is abelian. It follows that the index of the commutator

subgroup of Mg is at least 4. Therefore H1(Mg) = Z3 EB Z2.

If g 2 7 then the sphere with four holes of Figure 3.5 (a) can be embedded in

S so that do = b1,d1 = c1,d2 = c2,d3 = b3. Then each d;,- is 2-sided nonseparating

with a nonorientable complement (see Figure 3.8). Since a1 intersects d1; and d13

only once and since a2 intersects d33 once, it follows from the braid relations that

id, = id” = in. From the lantern relation we have

{do {(11 {d2 Eds = £112 Zdlszdzs

and hence t2, = t3]. Thus ta, = 1. Therefore H1(Mg) = 22.

 
 

 

 
 

 

Figure 3.8: Embedding of So.

Case 2: g is even. Let g = 2r + 2. It follows from the braid relations that

ta. = tb. = fa, for 1 S i,j,lc S r. Hence, H1(Mg) is generated by {tanfbrflfi} by

Theorem 3.1.

By Lemma 3.6, ptmp‘1 = t: for some mapping class 9. It follows that t; = 1.

We now claim that if,“ = 1. Let us consider the model for S given in Figure 3.3.

Let p : 33 -—> 3,; be the reflection across the XY-plane, where d is a circle isotopic



 

68

to br+1. The homeomorphism p induces a homeomorphism p. Since ,5 is orientation

reversing, since fi(b,.+1) = bf.+1 on S; and since b,.+1 is isotopic to b’,+1 on S, we have

—1 _ —1 __ -1

9tbr+19 — tb’,+, - tbr+l’

where p is the isotopy class of p. The claim now follows.

The next step is to prove that t; = if: = fl = 1. Consider the generators of M3

given by Theorem 3.2. Note that f is a separating circle such that the surface SI is a

disjoint union of a Klein bottle with one hole, and a nonorientable surface. It follows

from Lemma 3.7 that t; = 1. Since f1 intersects b, at only one point, from the braid

relations we have ff, 2 fbr. That is, t}! = 1. Also, since f3 is 2-sided nonseparating

and since Sf2 is orientable, f2 is topologically equivalent to br+1. In another words,

t [2 is conjugate to ti: 1' This implies that {is = {:11 = 1.

It is clear now from Theorem 3.2 that if h E M5 then R2 = 1.

Now let q be a separating circle on S such that one of the components of 5,, is a

Klein bottle K with one hole and the other is an orientable surface. Let 20 be the

isotopy class of a Y-homeomorphism supported in K such that 23 = tq. We now show

that Z, = 1. On the orientable component of Sq, there are circles qo, q1, q3, . . . , q, = q

such that go bounds a disc, and q,-_1 and q,- bound a torus with two holes for each

i = 1, 2,. . . ,r. Then by Lemma 3.5, tq,_,tq, is the fourth power of a product of isotopy

classes of twists about circles which are topologically equivalent to al. This implies

that fq,_,fq, = 1. Since tqo 2' 1, it follows that f, = 33 = 1.

Finally, we show that E2 = 1. As indicated in [19], the automorphism of H1(S, R)

induced by zo has determinant -—1. However, Dehn twists about 2-sided circles induce

automorphisms with determinant +1. Therefore, 20 E M5. Since M5 is of index

two in Mg and since 2 9! M3, 20 = hz for some h E M5. Hence,

_. "'2_ _

1=z§=h22=22.
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By putting the results of the last six paragraphs together, we conclude that the

generators of H1(Mg) satisfy f3, = fir+1 = 'z'2 = 1 and the commutation relations.

Therefore, H1(Mg) is Z2, Z2 69 Z2, or Z; G) Z2 EB 22.

Let us consider the case g = 4 first. Consider H1(S,Z2) with the Zg-valued

intersection pairing and let

WM; —> ISO H1(S, Z2)

be the natural homomorphism. The restriction of 9p to M5 is onto by Theorem 3.3.

It follows from Lemma 3.11 that the order of Iso H1(S, Z2) is 48. Since any per-

mutation of an orthonormal basis of H1(S,Z2) induces an isometry of H1(S,Z3),

Iso H1(S, Z3) has a subgroup isomorphic to the symmetric group 24. Let us identify

this subgroup with 24. Since 24 is of index 2 in Iso H1(S,Z3), it is normal. Re-

call that the commutator subgroup [24, E4] of E4 is the alternating group, which is

of index 2 in 24, and hence of index 4 in Iso H1(S,Z3). By Lemma 3.8, [24,534]

is normal in Iso H1(S,Z2). Note that any group of order 4 is abelian. There—

fore, Iso H1(S,Zg)/[E4,E4] is abelian. It follows that the commutator subgroup

of Iso H1(S,Z2) is equal to [24,24]. In particular, there is a homomorphism from

Iso H1(S, Z2) onto an abelian group C of order 4.

Let 90’ be the composition of tp with the quotient map from Iso H1(S, Z3) to G.

Then [Mg,Mg] C kera. Since [Mg,Mg] C M5, we have [Mg,Mg] C kerfiflMs,

and since the restriction of (p? to M5 is onto, ker¢flMs is of index 8 in Mg. Therefore,

the order of H1(Mg) is at least 8. Consequently, H1(Mg) = Z2 69 Z2 EB Z2.

Suppose now that g _>_ 6. The sphere with four holes of Figure 3.5 (a) can be

embedded in S in such a way that do = b,_1,d1 = c,_1, d3 = c,,d3 = br+l~ Then each

dij is 2-sided nonseparating with a nonorientable complement. Since d1, d3, d3, dlg, c113

and d33 are all topologically equivalent to al, and L, = f: , it follows that id” = id, =
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L, for 1 S i < j S 3 and 1 S k S 3. Hence, as a consequence of the lantern relation

we have

dozdjdzfds = d122d13-{d23i

which implies that to = 1. Hence H1(Mg) is Z3 or Z2 69 Z2.r+1

Let g = 6. Consider H1(S, Z2) with the Zg-valued intersection pairing again. Since

H1(S, Z2) is isomorphic to Z3, by Lemma 3.12 we have a surjective homomorphism

from Iso H1(S, Z3) to Sp(4,2). Since Sp(4,2) is isomorphic to 26, there is a natural

map from Sp(4, 2) onto Z3. Therefore, the composition of the following natural maps

is onto:

M;- —> ISO H1(S,Z2) —'> Sp(4,2) —) Z2.

In fact, even the restriction of ¢ to Ms is onto by Theorem 3.3. Therefore keraflMs

is normal and of index 4 in Mg. Clearly, this implies that the order of H1(Mg) is at

least 4. It follows that H1(Mg) = Z2 EB Z2.

If g 2 8 then, as in the case of g odd, the lantern relation implies that ta, = 1,

because the sphere with four holes of Figure 3.5 (a) can be embedded in S such that

do = b1,d1 = c1,d2 = c2 and d3 = b3. Hence, the order of H1(Mg) is at most 2, and

thus exactly 2. The proof of Theorem 3.13 is now complete. Cl

Theorem 3.14 Let S be a closed connected nonorientable surface of genus g. Then

H1(M3) is equal to

(ii)0ifg=10rg27.

Proof: If g = 1 then M5 is trivial. If g = 2 then it is easy to conclude from

Mg = Z2 63 22 that Ms = Z3. Hence, the proof of the theorem follows in these two

cases .
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Suppose now that g 2 7. Let us denote by to the class of to in the quotient

Ms/[Ms, M5]. Consider the generators of M5 given by Theorem 3.2.

If g is odd, then for 1 S i S r the relations ta, = to, = ta, = 1 follow from the

braid relations and the lantern relations. In the proof of Theorem 3.13, to prove the

triviality of to = 32 in H1(Mg), we used only Dehn twists. The same argument shows

that to = 1 in H1(Ms). Since e1 intersects a, once, the braid relations imply that

t3, = fa, = 1. This implies the theorem for g odd.

Suppose g is even. Again, for 1 S i S r the equalities to, = to, = t3, = 1 follow

from the braid relations and lantern relation as in the proof of Theorem 3.13. The

sphere with four holes of Figure 3.5 (a) can be embedded in S so that do = b,_1, d1 =

c,-1, d3 = c,, d3 = br+1. By the lantern relation, to,“ = 1. Since Sf is a disjoint union

of a Klein bottle with one hole and a nonorientable surface of genus Z 6, the sphere

with four holes of Figure 3.5 (a) can be embedded in S in such a way that do = f

and the circles d1, d3, d3,d12, d13, d23 are all 2—sided nonseparating with nonorientable

complements (see Figure 3.9). Now by the lantern relation

tftd1td2td3 = td12 td13 tdss °

It follows that if = 1. Since f1 intersects b, once, we have if, = 1 by the braid

relations. The circle f; is nonseparating and its complement is orientable. Hence it is

topologically equivalent to b,.+1. By the same reason that to,+1 = 1, we have if, = 1.

This completes the proof of the theorem. Cl

 

1
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Figure 3.9: Embedding of So.
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Remark: If g = 3, 4, 5, 6, the problem of the computation of H1(M5) remains open.

Our theorems support a little surprising similarity between the subgroups M3 and

Mp of Mg and Mg respectively: they are both of index 2 and perfect for sufficiently

high genera.

Corollary 3.15 Let V be a vector space over the finite field F; of order 2 with a basis

{v1,v3, . . . ,vn} and let (,) be the symmetric bilinear form defined by (v,,v,-) = 6,5. If

n 2 7 then the group 180 V is perfect.

Proof: This is a consequence of Theorem 3.3 and Theorem 3.14. D

Remark: If the dimension n of V is odd, then 130 V is the symplectic group

Sp(n — 1, 2). This group is known to be perfect if n 2 7 (cf. [25], [27]).

Theorem 3.16 Let F be a closed connected orientable surface of genus g. Then

H1(Mg) is equal to

(02289-10 0r923,

(ii) Z2€BZ2 ifg=1 org=2.

Proof: Ifg = 0 then M; is equal to Z2 and hence H1(Mg) = Z3. For g 2 3, since

H1(Mp) = 0, [Mp,Mp] = Mp. Since Mp is of index 2 in M}, it follows that

[Mg,Mg] = Mp. Hence H1(M';.s) = 22. I

We now prove (ii). Let us realize F in R3 invariant under the reflections across

coordinate planes, as in Figure 3.10. Recall that Mp is generated by {tA, , tA,} if g = 1

and by {L4, , tA2, tA3, tA4 , tAs} ifg = 2 (cf. [20]). Then these generators, together with

 



 

 

  
 

 

Figure 3.10: Orientable surfaces of genus one and two.

the isotopy class of an orientation reversing homeomorphism, generate M3:. Let p be

the isotopy class of the reflection p across the XY-plane. Then, M}; is generated by

{tA,,tA,,p} ifg =1 and by {tA,,tA,,tA3,tA4,tA5,p} ifg = 2. Ifg = 1 then it follows

from Theorem 2.26 that it, = {42. Similarly, it, = {4, = {43 = i4, = {.45 if g = 2.

This implies that H1(M}‘.~) is generated by {imp}. Since p is orientation reversing

and p(Al) = A1, we have ptA,p'l =t211. Hence {:1 = 1. Also, since p2 = 1, '9'" = 1.

Since Mg has a normal subgroup of index 2, namely Mp, the first homology group

H1(M}‘.~) cannot be 0. Therefore, it is either Z2 or Z3 63 Z3.

We now prove that the order of H1(Mg) is at least 4. Consider H1(F, Z2) with

the Zg-valued intersection pairing. Note that the group 130 H1(F, Z3) is isomorphic

to Sp(2,2) ’-_‘-’ 23 ifg = 1 and Sp(4,2) ’5 23 ifg = 2, i.e., Iso H1(F,Z2) ’5 239 for

g = 1, 2. Consider the natural homomorphism

(p 2 M; —) ISO H1(F,Z2) g 239.

It is well-known that the restriction of 90 to Mp is onto. Let ¢ be the composition

of 90 with the quotient map from 23, onto 2398239, 239] ’5 Z3. Then ker'95 fl Mp is

a normal subgroup of Mg of index 4. Therefore, the order of H1(Mg) is at least 4.

This implies the theorem. CJ
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