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ABSTRACT 
 

DOES LOOKING MEAN LIKING?  
A COMPARISON OF DECISION PROCESSES ACROSS  

PERCEPTUAL AND PREFERENTIAL CHOICE 
 

By 
 

Shuli Yu 
 

While both perceptual and preferential decision-making share the underlying iterative 

process of sampling and integrating information, it is difficult to make direct comparisons 

between these two types of decisions because they have been studied under separate disciplines, 

each with its own distinctive techniques. Research in perceptual decisions has highlighted how 

covert attention improves behavioral performance in a variety of sensory tasks, from contrast 

sensitivity and orientation discrimination (Liu, Abrams, & Carrasco, 2009) to motion coherence 

(Liu, Fuller, & Carrasco, 2006), as it enhances the processing of early visual information. Yet it 

has also been established that overt, relative attention, as measured by gaze exposure, is highly 

correlated with preferential choice in value-based decision making (Bird, Lauwereyns, & 

Crawford, 2012; Krajbich, Armel, & Rangel, 2010; Krajbich & Rangel, 2011; Shimojo, Simion, 

Shimojo, & Scheier, 2003). 

How do our higher-level intentions of being objective in perceptual choice versus being 

subjective in preference choice differentially impact choice formation? In this dissertation, I 

investigate how downstream decision processes, from information acquisition and evaluation to 

the eventual choice outcome, may be modulated by different task goals. In doing so, I explicate 

the role of selective attention in information search strategy, as it appears to have biasing effect 

in preferential but not perceptual choice. To compare choice formation in perceptual and 

preferential tasks, I used an experience-based paradigm that involved monitoring participants’ 



 
 

eye movements as they chose between two rapidly updating options (fishing ponds). 

Specifically, participants were asked to look at the two ponds and choose the pond they would 

rather fish from (preference frame), or choose the pond which had more fish surfacing on 

average (perceptual frame).  

Results indicate that participants’ eye gaze shifts toward the more favored option just 

before choice. However, this gaze bias was reduced in the perceptual frame. Moreover, 

perceptual participants maintained good discrimination accuracy even when they acquired less 

information. In contrast, preference participants were more likely to pick the option viewed for a 

relatively longer time, especially when less information was obtained. Data from both tasks are 

well described by a diffusion model of evidence accumulation which compares and integrates 

stimulus information based on eye gaze location, indicating a qualitatively similar choice process 

even when the higher-order tasks goals were different. However, consistent with behavioral 

results, the modeling reveals that distinction between task goals lies in quantitative differences 

across cognitive parameters as perceptual choice was associated with a lower gaze bias and 

greater information valuation than preferential choice.  

As it is expected that higher-order intentions are reflected in downstream choice 

processes, I sought to test if this differential impact of task goals depended on the ability to 

actively control information uptake. This was done by conducting a second study that directly 

manipulated stimulus exposure by presenting samples of information in a single continuous 

stream. Results indicate that perceptual and preference participants were equally susceptible to 

the gaze bias when they passively viewed the options. Together, these results highlight the 

importance of agency and voluntary control of relative attention during the processes of 

information search and valuation across perceptual and preferential choice.
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CHAPTER 1: PERCEPTUAL VS. PREFERENTIAL CHOICE 

 

LADY CAPULET.  Speak briefly, can you like of Paris’ love? 

JULIET.   I'll look to like, if looking liking move 

but no more deep will I endart mine eye 

than your consent gives strength to make it fly.  

- Shakespeare, 1853, 1.3.100-103 

 

In Romeo and Juliet (Shakespeare, 1853), Lady Capulet encourages Juliet to gaze at her 

potential suitor’s face, take delight in his beauty, and in doing so, hopefully grow to like him and 

accept his love. Juliet, however, is skeptical. Ever cautious, she agrees to take a chance and look 

at her suitor, Paris, but in the same breath, vows to exercise restraint knowing that looking too 

deeply could render her vulnerable to a torrent of unchecked emotions.  

In her statement, Juliet acknowledges that looking could lead to liking. Yet she also states 

that she will not easily succumb to the temptation of liking Paris by indulging in excessive 

looking. Instead, she is keenly aware that she is an autonomous being who can exert control over 

her own behavior in order to achieve the most desirable outcome for herself and her family. 

Thus, Juliet attempts to shield herself by wearing a cape of rationality while looking into the 

mesmerizing gaze of Paris’ eyes. Can she maintain her original intention to resist being overly 

attracted, or is the alluring pull of the looking-liking bias too great?  

More broadly, when we make decisions, how do our higher-level intentions hold up once 

we are thrown into a biased environment? The process of decision making involves the 

intermediate steps of devising a strategy to search and evaluate task-relevant information before 
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making a final choice. How then, do our specific intentions pass on to downstream choice 

processes?  In light of these questions, this dissertation aims to: 

(1) Explore the generality of the overall choice formation process across different higher 

order intentions; 

(2) Determine how diverging intentions are expressed in the information search and 

valuation stages as well as the eventual choice outcome; and 

(3) Investigate how externalities in the environment that bias the choice landscape are 

accommodated by the original intention and its accompanying decision strategy.  

The higher-order goals of being objective in perceptual choice versus being subjective in 

preferential choice provide a good example of diverging intentions that have been widely studied 

using different approaches across a variety of disciplines. Perceptual choice has been examined 

extensively in experimental psychology and the cognitive neurosciences using rigorous 

psychophysical tasks that require people to objectively discern the true state of the world by 

discriminating between sensory information. Conversely, preferential choice has been 

investigated in the social and decision sciences, with the focus on how people construct 

preferences depending on how they subjectively value specific attributes across several decision 

alternatives. While both perceptual and preferential decision-making share the underlying 

iterative process of sampling and integrating information, it is difficult to make direct 

comparisons between these two types of decisions because they have been studied under separate 

disciplines, each with their own distinctive techniques. 

In this dissertation, I use an experience-based paradigm to study the three aims mentioned 

above by comparing processes across perceptual versus preferential choice. In doing so, I 
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explicate the role of selective attention in information search strategy, as it appears to have 

biasing effect in preferential but not perceptual choice.    

Perceptual decision making utilizes classical psychophysical methods that examine how 

people detect and discriminate noisy sensory information via measures of choice accuracy and 

response latencies. A common paradigm in perceptual decision making involves instructing 

participants to categorize noisy stimuli presented in series, for example, determining the overall 

motion direction of mixture of randomly and coherently moving field of dots (Gold & Shadlen, 

2007; Kiani, Hanks, & Shadlen, 2008). It is assumed that participants arrive at a decision by 

serially sampling the evidence from the stimuli and averaging out the noise-driven fluctuations 

over time (Summerfield & Tsetsos, 2012). Hence, the extent to which noise is present in the 

stimulus provides a direct source of information that drives choice, and this relationship between 

stimulus discriminability and performance can be mapped using a psychophysical function.   

In contrast to the focus on objective choice, preferential decision making investigates 

how people construct preferences depending on how they subjectively value the available 

decision options (Kahneman & Tversky, 1984; Usher, Elhalal, & McClelland, 2008; Warren, 

McGraw, & Van Boven, 2011). Stimuli tend to be static and perceptually unambiguous and 

uncertainty is not derived directly from external stimulus noise. For instance, in economic 

decision making tasks, participants typically choose between gambles with clearly labeled 

consequences such as the choice between  a sure gain of $240 or a 25% to gain $1000 and a 75% 

chance to gain nothing; or choosing between two medical treatments where either 400 people 

would die or there is a 1/3 probability and a 2/3 probability that 600 people would die 

(Kahneman & Tversky, 1979). Here, uncertainty is derived from variability in the self-referential 

uncertainty about the expected value of each option. The focus on internal representations of 
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value also extends to other types of preferential choice studies that are completely subjective: 

physical attractiveness, where participants typically view images of faces (Shimojo et al., 2003) 

or shapes (Isham & Geng, 2013) and food preferences (Armel, Beaumel, & Rangel, 2008; 

Schonberg et al., 2014).  

Even though both tracks share similar goals of understanding the mechanisms of 

decision-making, researchers in both streams have been reluctant to import concepts or 

approaches from each other. As a result, it has been difficult to discern how people approach 

perceptual and preference choice differently because it is difficult to equate the methods used 

across the two disciplines. Do people intentionally pick a decision strategy leading to a more 

rational, objective answer when they are instructed to strive for perceptual accuracy? 

Furthermore, do people gravitate to other strategies when there is no objectively true answer in 

choices of preference?  These questions bring up the distinction between choice outcomes and 

decision strategy. While an eventual choice may be compared against a benchmark optimal 

answer that maximizes accuracy in perceptual tasks or subjective utility in preference tasks, 

defining an optimal decision strategy is much less straightforward and less understood. How then 

do differences in higher-order intentions influence the specific strategies used? Given that how 

we allocate attention to the options in a choice set can be reflective of decision strategy, it is 

worthwhile to investigate if specific task goals impact how we control attention during 

information search and subsequently leads to potential differences in the eventual choice. 

Role of Selective Attention in Decision-making 

Selective attention impacts decision-making because it modulates the extent to which 

incoming decision information is processed. This is important because we have a finite amount 

of cognitive resources but are often immersed in a plethora of sensory stimuli. By enabling us to 
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selectively prioritize certain aspects for further processing (Driver, 2001), attention governs how 

early perceptual processes can shape higher order cognitive demands like decision making.  

What is not so straightforward is that the extent to which attention influences choice 

appears to be contingent on the nature of the decision task. For instance, in perceptual decision 

making tasks, selective spatial and feature based attention have been found to improve 

performance by enhancing the processing of early visual information processing (Carrasco, Ling, 

& Read, 2004; Liu et al., 2009, 2006; Pestilli & Carrasco, 2005) . However, it has also been 

established that attention, as measured by eye gaze exposure, is highly correlated with value-

based decision making tasks which rely on participants’ subjective preferences (Bird et al., 2012; 

Isham & Geng, 2013; Krajbich et al., 2010; Shimojo et al., 2003). 

Attention in perceptual decisions. Attention is integral to perception as it is the “glue” 

that binds simple visual features into an object – a process necessary for effortful visual 

processing. Posner, Snyder, and Davidson (1980) systematically studied the effects of attention 

using their now famous spatial cuing paradigm. In their study, a cue is first presented to draw 

attention to a particular location in the visual field. The stimulus of interest is then presented 

after a short delay, which may appear with some probability at either the cued location or at 

some other location. Consequently, they found that people could more quickly detect a bright 

spot of light that was positioned in a cued location while maintaining accuracy. In a similar 

study, Bashinski and Bacharach (1980) found that attention is critical for detecting near-

threshold stimuli as they show that people were more sensitive to a backward masked luminance 

stimulus when attention had been drawn to it by a cue.  

This set of pioneering work on attention led to research on attention in perceptual 

decision making that identified the conditions where visual detection performance is enhanced 
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by attention. It has been established that covert, voluntary attention improves behavioral 

performance in a variety of sensory detection tasks. Covert attention refers to attention that is 

deployed to a location in the absence of eye movements, and voluntary attention refers to 

endogenous attention that takes about 300 ms to be deployed, and can be sustained (Carrasco et 

al., 2004). The tasks include contrast sensitivity (Cameron, Tai, & Carrasco, 2002; Lee, Koch, & 

Braun, 1997; Pestilli & Carrasco, 2005),  orientation discrimination (Carrasco et al., 2004; Liu et 

al., 2009), motion coherence (Liu et al., 2006) and spatial resolution (Yeshurun & Carrasco, 

1999). Although most research has focused on visual attention, there is also evidence that tones 

are more easily detected when they are similar to an expected frequency (Scharf, Quigley, Aoki, 

Peachey, & Reeves, 1987), which illustrates that selective attention can also occur in the auditory 

domain.  

In general, there is an extensive amount of empirical research highlighting that the 

orienting role of attention is necessary because it selectively prioritizes processing in the primary 

sensory cortices. According to Lu and Dosher (1998), attention to an object can lead to improved 

performance because external noise from distractors are selectively excluded from further 

processing, or because the signal-to-noise ratio increases within the attended stimulus. An 

increase in the signal-to-noise ratio can occur when attention enhances signal strength or when it 

reduces internal noise associated with processing the stimulus itself. Such increased stimulus 

sensitivity is considered a perceptual-level phenomenon that results from more efficient visual 

short term memory encoding. This can result from a gain in processing by increasing the rate of 

memory trace formation or from faster orienting, which reduces the delay before trace formation 

begins so that encoding occurs more quickly (Smith & Ratcliff, 2009).  
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Attention in preferential decisions. While much of the work in perception has focused 

on covert attention where participants are instructed to keep fixating on a central point in their 

visual field across an entire trial, researchers studying preferential decision making have focused 

on the overt orienting of attention instead. Overt orienting is the act of selectively attending to a 

spatial location over others by moving the eyes to point in that direction (Posner, 1980). The fact 

that eye fixations are easily tracked and considered as a good proxy for spatial attention has led 

to the well-known idea in preferential decision making that looking means liking. As such, 

researchers have sought to use eye movements to investigate the role of attention in preference 

construction.  

The notion that eye movements are a passive index of personal preference is not new. 

Preferential looking has been used as a technique in developmental research to assess visual 

capacities and habituation in infants, with the assumption that infants prefer to look directly at 

stimuli that are visible and attractive to them (Birch, Shimojo, & Held, 1985; Fantz, 1965; Teller, 

1979).  

In studies of preference, options are presented at different locations and decision makers 

are allowed to freely view the images until they respond by indicating the option they think is the 

most attractive to them. The main empirical finding in these studies is that increased attention as 

measured by eye fixations on a particular stimulus image is correlated with a greater probability 

of subsequently choosing it. That is, if people fixate longer on a food item (Krajbich et al., 2010), 

novel black and white patterns (Isham & Geng, 2013), or faces (Shimojo et al., 2003), they are 

more likely to prefer the object and select it over another similar object. More specifically, 

people tend to start off by alternating looking at each option at the beginning with a roughly 
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equal gaze distribution, before gradually shifting their gaze toward their favored option (Shimojo 

et al., 2003).  

Given that most of this work is correlational, this brings up the question of causation: 

does overt attention guide the process of decision making in value based choice, or do we simply 

attend to items we already have a preference for? A recent paper suggests that eye fixations 

might do more than just reflect the output of an internal preference. Armel, Beaumel and Rangel 

(2008) manipulated attention by varying the relative visual attention across images of two junk 

food items (e.g. Snickers bar vs M&Ms) and asked hungry participants to choose which item 

they preferred, with the knowledge that they would receive the food item of a randomly selected 

trial. During a trial, the two food items were presented one at a time, on the right and left visual 

field, in an alternating sequence: one was presented for 300 ms, and the other for 900 ms on each 

alternation. This continued for six alternations so that the items were presented for a total of 

7200ms. This pattern of alternations mimicked the process of alternating eye fixations in 

naturalistic settings and enabled Armel et. al. to manipulate the extent to which participants 

attended to each option. They found that junk food items were more likely to be chosen in the 

long fixation condition, and in a variant of this study, replicated their results with posters of art, 

suggesting that it is possible to bias preferences by manipulating the relative amount of stimulus 

exposure time across two options. 

Overall, research specifically on attention has progressed along these respective tracks 

(Table 1): Work in perceptual decision making has focused on manipulating the locations of a 

pre-cue that orients attention in the absence of eye movements and examining how this impacts 

discrimination performance; conversely, research on preferential decision making has taken a 

more correlational approach in how the value of decision options that arise from internal 
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preferences can be linked to overt attention placed on them during the deliberation process, as 

measured by the extent of eye movements and fixations. These differences in approaches make it 

hard to draw conclusions across both tracks, and determine if the role of attention really differs 

based on decision domain. 

 

Table 1. Comparison between preference and perceptual tasks 

 Preference  Perceptual  
Task • Subjective value 

o Face attractiveness, abstract art 
o Snack preferences 

• Objective answer 
o Sensory detection (contrast, motion, 

orientation discrimination) 
 • Relative choice between 2 options  • Categorize a single option  
Models • Behavioral decision theory, 

experimental economics, neuro-
economics, using mainly reports of 
choice preference (Huber, Payne, & 
Puto, 1982; Johnson & Busemeyer, 
2005; Kahneman & Tversky, 1984; 
Zeigenfuse, Pleskac, & Liu, 2014)   

• Experimental psychology and 
neuroscience, using rigorous 
psychophysical methods that examine 
behavioral accuracy, response 
latencies and neurophysiological data 
(Bogacz, Brown, Moehlis, Holmes, & 
Cohen, 2006; Laming, 1968; Ratcliff 
& Smith, 2004; Usher & McClelland, 
2001; Vickers, 1979). 

Attention • Focus on overt attention. 
Manipulate the duration of stimulus 
presentation. 

• Focus on covert voluntary attention, 
manipulated by an orienting pre-cue. 

Fixations • Free viewing paradigm • Fixate on specific location (center) 
 • Eye fixations: passive measure of 

preference and attention 
• Eye tracking to make sure that 

attention is covert (in the absence of 
eye movements)  

Prediction • Attention leads to greater 
likelihood of choice (biased 
choice). 

• Attention results in more accurate 
choice (better discriminability).  

 

Common Ground with the Flash Fishing Paradigm 

Yet despite these differences, there remains a common structure to most of the decision 

making tasks implemented in both fields: people are instructed to observe and attend to one or 

more stimuli in a given sensory modality, integrate the  information and then select a response 
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which will maximize the probability of positive feedback or reward (Summerfield & Tsetsos, 

2012).  

Taking advantage of these commonalities, I sought to compare the processes underlying 

choice formation across perceptual and preferential choice by focusing on two broad stages: how 

people search and acquire information, as well as subsequently value and integrate the 

information. To do so requires an empirical paradigm that controls for the details across the two 

approaches beyond higher-level task goals. In order to accomplish this, I drew inspiration from 

the characteristics that differentiated the two approaches and developed a rapid, experience-

based paradigm by combining their most distinctive features (Cheadle et al., 2014; Zeigenfuse et 

al., 2014). The resulting task used dynamic sensory stimuli and an attention cueing paradigm 

often found in rigorous psychophysical studies of perception, but, in the vein of subjective 

preference, does not place any restrictions on how participants sampled information by allowing 

them to freely view stimuli until they made up their mind. This is particularly advantageous as it 

provides a single experiment in which we can investigate what decision strategies people 

naturally use to fulfill the different goals of perceptual versus preferential choice. 

In the Flash Fishing Task, participants chose between a left and right option consisting of 

a circular field of rapidly changing dots (updated every 50ms) sampled from an underlying 

distribution. They were told that each dot represented a fish on the surface of a circular pond, and 

they should look at the two ponds and choose the pond they would rather fish from (preference 

frame), or the pond which had more fish surfacing on average (perceptual frame). This allowed 

me to equate for expected value across frames. I also exogenously manipulated participants’ 

initial attention with a neutral or peripheral pre-cue. Participants were shown the number of fish 

caught after each choice. In the preference frame, this was the next sample of fish that would 
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surface in the chosen pond; and in the perceptual frame, the average number of fish present in the 

chosen pond. The number of fish caught was aggregated over trials and converted into a 

monetary bonus.  

Such a design has several benefits: 

(1) Free viewing paradigm. Unlike typical perceptual tasks that tightly control 

participants’ eye movements, participants are allowed to look freely at the two options, which 

remain onscreen up till the point they make their choice, so that I can obtain their naturalistic 

viewing patterns and obtain top-down strategies of how people actively attempt to acquire 

information. 

(2) Exogenous cue to draw attention. All of the studies reporting the link between 

fixations and subsequent choice were correlational, with the exception of a single study by 

Shimojo et. al. (2003) who directly controlled gaze duration by presenting two options 

sequentially, in an alternating fashion. They then directly manipulated the duration of stimulus 

presentation (long vs short presentations). In order to describe participants natural information 

search behavior, while striving to achieve a causal explanation of the gaze bias, I took a more 

moderate approach by leaving both stimuli onscreen, and presenting an exogenous pre-cue either 

in the center (neutral cue) or on the periphery (left or right), to draw participants’ attention to a 

particular spatial location corresponding to the choice options at the start of each trial. This 

enabled me to see how a short burst of attention in the beginning affects subsequent search 

behavior.   

(3) Option attractiveness is manipulated dynamically. Eye tracking studies of preference 

often display two static images that represent the choice options (e.g. picture of snack, faces from 

the Ekman database, abstract art) as part of the choice process. As these options are completely 
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subjective, preference is usually measured using self-report, by individually presenting the 

options to participants beforehand and asking them to rate the attractiveness of each item on a 

Likert scale. Instead of using static image representations, the options in the task consist of a 

dynamically updating image, whose value is represented by the number of dots. The dynamic 

and purely visual nature of the stimulus means that participants have to actively acquire 

information about the value of the options by looking and paying attention to the options. This 

means that tracking participants’ eye movements opens a direct window into the process of 

information search, compared to when fixations in a task with static images like snacks and faces 

which carry comparatively less unique information and lead to information search focusing on 

the associated memories of the options the images represent.  

Furthermore, this enables me to directly manipulate option attractiveness than relying on 

completely subjective self-reports of preference. Assuming that participants derive utility from 

option attractiveness (based on the mean number of dots in each option), I can determine how 

participants subjectively value each option by comparing their data with that of a perfectly 

rational agent who relies on expected utility as a benchmark. 
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CHAPTER 2: FLASH FISHING EYE TRACKING STUDY 

The first study has several goals. A primary aim is to compare the process of choice 

formation – specifically, the stages of information search and integration – across perceptual and 

preference tasks. In doing so, I seek to replicate previous research by establishing that increased 

attention, as measured by mean amount of eye fixations, is correlated with choice in the Flash 

Fishing Task when participants are allowed to freely look between two stimuli options. In 

addition, this study examined how manipulating initial spatial attention using an orienting pre-

cue can lead to differences in gaze duration across the two options, and subsequently choice. I 

expect that when the Flash Task is framed as a gambling or preferential choice, participants 

would be more likely to choose the attended option at the expense of accuracy (as measured by 

expected value) due to having a higher gaze bias. Conversely, in the perceptual condition, 

participants would be less likely to exhibit a gaze bias, and instead, would be more likely to 

choose the objectively correct option as participants would be more likely to ascertain the true 

value of the of the attended stimuli. Thus, I hypothesize that the correlation between looking at 

an option and eventually choosing it is stronger in the preference as compared to the perceptual 

task frame. 

Method 

Design. The study used a 2 × 2 × 5 mixed design: The task type (gambling vs perceptual) 

varied between subjects; an attention manipulation (neutral cue vs peripheral cue) varied within 

subjects across trials, and there were 5 levels of discriminability between options, which varied 

within subjects across trials. Discriminability between options was operationalized as the 

difference in the number of dots between options (mean number of dots in the right minus the 

left option: -40, -20, 0, 20, 40) made up from six combinations of option pairs.  
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Participants. A total of 61 participants (31 for the preference and 30 for the perceptual 

condition) were recruited from the Michigan State University community. They were paid $12 

and a $1-5 performance bonus to take part in a single 1.5 hour session of the study.  

Flash Stimulus. The stimuli were generated in MATLAB using Psychophysics Toolbox 

Version 3 (http://psychtoolbox.org/). Participants viewed two circular display options on an LCD 

monitor (Figure 5). Each display contained two fields of dynamically updating white dots on a 

black background with a diameter of 6.1° visual angle, with one located 6.75° to the left of a red 

central fixation and the other 6.75° to the right.  

The dot display changed every 50 ms (20 Hz), and at each update, a new sample of dots 

was drawn from an underlying distribution and positioned at randomly generated locations 

within the circular field. There were four different display options to manipulate the number of 

dots shown in each sample: One option always had  a fixed number of 130 dots while the other 

options had 110, 130, or 150 dots on average, and a standard deviation of 45 dots. These four 

options were factorially combined to yield six unique pairs of options, resulting in 5 difference 

levels in the mean number of dots between options that were randomly presented across trials. 

This will produce 3 levels of stimulus differences in the mean number of dots (0, 20 or 40 dots) 

presented. The location (left/right) of each option will also be randomly determined.    

Procedure. Participants were assigned to either the gambling or perceptual condition 

when they arrived in a counterbalanced fashion. In the gambling condition, they were told to 

look at the two ponds and choose the pond from which they would rather fish from, or in the 

perceptual frame, they were to choose the pond that has more fish surfacing on average (full 

instructions in Appendix A).  
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Figure 1. Stimulus presentation procedure in Study 1.  

Participants first saw a central fixation point for 500 ms, followed by a larger exogenous cue for 67 ms which was designed to draw 

their attention to either the center or the periphery. After a short inter-stimulus-interval of 53 ms where the central fixation point was 

presented again, the two main stimuli appeared, and participants were free to look at the stimulus until they indicated which option 

they preferred via a key press. They then received feedback on how many fish they caught for that trial. 
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Participants then completed eight blocks of 90 trials (total 720 trials) of the Flash Task. 

During the task, the position of participants’ right eye was recorded with the Eyelink 1000 

system (SR Research, Ontario, Canada) at 500 Hz.  

In each trial, participants start off by viewing a fixation dot for 500 ms in the center of the 

screen (Figure 1). Then an exogenous cue in the form of a red dot of 0.75° appeared either in the 

center (neutral cue: on 33% of the trials) or periphery (9° to the left on 33% of trials; 9° to the 

left on 33% of trials) of the screen for 67 ms. The cue was randomly located and had the purpose 

of either drawing attention to the center (neutral cue) or orienting participants’ attention toward a 

particular option (peripheral cue). After a second fixation in the center for 53 ms, the two Flash 

stimuli will appear on the left and right. The stimuli were left onscreen until participants 

responded by indicating their choice by pressing a key (left option: “1” on number pad; right 

option: “2” on number pad) with their right hand.  

They then received feedback about their choices. The number of dots in the option they 

chose at the time of the decision was displayed in white, at the center of the screen for 1000 ms. 

This was the number of dots that would have appeared in the next frame in the chosen option 

(gambling frame), or the mean number of dots in the chosen option (perceptual frame). The total 

number of dots was added across all the trials and scaled to give a bonus payout from $1-5 at the 

end of the session. 

Pre-processing of Eyetracking Data. The raw eyetracking data (horizontal and vertical 

positions, and their respective times) was resampled every 25 ms (40 Hz) to produce two sets of 

eye movement trajectories over time: one was timelocked to stimulus onset and the other to the 

time of response.  
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The raw eyetracking data was grouped into saccades, where each saccade indicates a 

rapid eye movement between two fixation points. The saccades were detected using the 

“saccades” R-package (Malsburg, 2015), which relied on a velocity-based algorithm proposed by 

Engbert and Kliegl (2003). This enabled analysis of saccade-level details, including the number 

of saccades in each choice, as well as the dwell time and location of each saccade. 

 

Figure 2. Sample plot of fixations in Study 1 for participant 105 on trial 17.  

Each dot represents a fixation made every 25ms for a single trial. The red lines indicate the 

boundaries of location classification: left (<-2°), center (-2° to 2°) and right (>2°) on the 

horizontal axis. 

 

The horizontal positions of the trajectory and saccade data were classified along 3 

categories based on where they fell in relative to the center of the screen: the center, when the 

horizontal position was between -2 to 2 degrees; left, when the horizontal position was less than -

2 degrees, and right, when the horizontal position was above 2 degrees. Figure 2 illustrates the 
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categorization using the eye fixations in a single trial (participant 105, trial 17). It is worth noting 

that a significant proportion of fixations (M = 39.1%; SD = 12.0%, range of 8.72 – 75.3% across 

participants) did not fall directly on the two stimuli, especially at the beginning of the trial. In 

fact, a few participants had the predominant strategy of looking in the center. Hence, unlike other 

studies that omitted all fixations outside of the stimuli (Shimojo et al., 2003), I took a looser but 

more inclusive approach by using three broad categories: left, right, and center.  

Relative gaze duration was then calculated as the proportion of time spent in each 

location by summing dwell times for each location across all the saccades in each trial, and 

dividing this by the total dwell time of identifiable saccades within the trial. On average, 

participants looked left 35.4% of the time, center 29.5% of the time, and right 39.2% of the time 

in each trial. The trials were also categorized based on the location of where people looked at the 

longest.   

Analysis  

 The main analysis is divided into two portions. First I focus on describing how 

participants search for information by examining where people look, from when the two stimuli 

appear onscreen until the time they enter their choice response. Specifically, I focus on the 

choice reaction times which quantify the absolute stimulus gaze duration, as well as patterns of 

gaze behavior from eye tracking data, which measure relative spatial attention between the two 

options. After which, I show how both these measures of information search – the absolute and 

relative measures of gaze – affect subsequent choice.   

Overall quantity of information acquired. To investigate how extent of information 

acquisition duration differed across manipulations, I ran a hierarchical general linear model with 

the overall speed of choice (1/RT) as the criterion, absolute task discriminability (coded as the 
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absolute difference between the mean number of dots across options: 0, 20, or 40 dots) and task 

frame (perceptual coded as 1, gambling as 0) as fixed factors, and subjects as random factors. 

Participants made their choices more quickly (b = 0.00907, p < 0.001) as the absolute difference 

between option attractiveness increased, but did not have significantly different speeds between 

the gambling (M = 1.41 s, SD = 0.66 s) and perceptual frames (M = 1.56 s, SD = 0.74 s; b = -

0.261, p = 0.173).   

 

Figure 3. Mean number of saccades by option attractiveness discriminability in Study 1.  

Relative option attractiveness reflects task discriminability, as measured by the difference in 

mean number of dots between the 2 options) and task, with standard errors between participants. 

 

A similar model was run with the total number of saccades in each trial as the predictor. 

Consistent with the results on reaction time, participants made fewer saccades as task 

discriminability increased (Figure 3, b = -0.0128, p < 0.001). This main effect, however, was 

also qualified by an interaction between discriminability and task frame (b = -0.00326, p = 
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0.007), indicating that the participants tended to make more saccades in the perceptual (M = 

3.33, SD = 1.15) compared to the gambling (M = 3.09, SD = 1.11) frame when option 

discriminability was low, but this difference between the perceptual (M = 2.69, SD = 0.79) and 

gambling (M = 2.57, SD = 0.77) frames was attenuated when the options were highly 

discriminable. 

 

Figure 4. Joint probabilities of the first and second saccade.  

Each point indicates the joint probability of making a saccade in two particular locations 

conditioned on each level of discriminability. The sum of the probabilities across the vertical 

panels within each discriminability level equals to 1, so each point depicts the relative 

probability of making one out of nine location combinations. 
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Patterns of information search. To get a better understanding of the information search 

stage in the decision process, I analyzed the gaze patterns of participants based on their eye 

tracking data.  

As a first step to describe where people look, I calculated the probabilities of the first and 

second saccade made once the two stimuli appeared, that is, the joint probability of making a 

saccade in two particular locations conditioned on each level of discriminability (Figure 4). For 

example, the leftmost blue point in the top-middle panel indicates that the probability of making 

a center saccade followed by a left saccade in the gambling frame was 33.4% (standard error = 

3.7%), given that the right option was extremely attractive when it had 40 more dots on average 

than the left option. The sum of the joint probabilities across the vertical panels within each 

discriminability level (the x-axis) adds up to 1, so each point depicts the relative probability of 

making one out of nine location combinations. 

Overall, the analysis shows that participants exhibit two possible gaze patterns. 

Participants either start off attending to both options by looking in the center before gravitating 

toward the more attractive option, or they begin by looking directly at one option and then 

switching to the other.  

The probabilities across the middle panels are highest across all three lines, implying that 

people are more likely to look at the center in the first saccade. Specifically, the probability of 

looking in the center is 13.6% higher than looking at the left option, p < .001, and 17.3% higher 

than the right option, p < .001. Then, they tend to look at the option that is more attractive in the 

second saccade. Within the center panels, the blue lines have a positive slope (b = 0.0020, p < 

.001), which indicates that participants are more likely to look from the center (first saccade) to 

the right (second saccade) as the right option becomes more attractive. The opposite occurs in the 
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red lines, which have a negative slope (b = -0.0016, p = .001), indicating that participants look 

from the center (first saccade) to the left (second saccade) option when the left option is 

increasingly more attractive. Comparatively, people are less likely to make two consecutive 

saccades in the center (green lines; no effec3t of discriminability, b = -0.0003, p = 0.580), 

especially in the gambling condition (4.96% more likely to make two center saccades in the 

gambling than in the perceptual frame).  

In the left panels, the relatively high but flat blue line highlights that people often look 

right after having already looked left. The red line is lower and has a negative slope (b = -

0.00056, p = .0058), suggesting that people are less likely to make two consecutive left saccades 

unless the left option is highly attractive. Participants are unlikely to make a center saccade if 

they have already looked directly at one of the options. These patterns are mirrored in the right 

panels, implying that participants have an overall pattern of looking at the options in an 

alternating fashion, at least in the beginning.  

The alternating pattern is corroborated in the Figure 5A, which plots the horizontal 

trajectory of eye gaze across the first 1.5s timelocked to the onset of the two flash fishing 

options. The trajectories are divided by the cue location, task frame and eventual choice, and 

illustrate how manipulating the location of an initial exogenous cue impacts the path of eye gaze. 

In the baseline condition when the neutral cue is presented in the center (green line), participants 

are most likely to start off by looking in the center, followed by making alternating eye 

movements first to the left and then to the right. The directional pattern could be indicative of the 

general familiarity from reading from left to right in most western written languages.  

.  
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Figure 5. Mean horizontal gaze trajectories over time aggregated across participants.  

The trajectories are for (A) the first 1.5s of the trial beginning from stimuli onset, or (B) the last 

1.5s of the trial timelocked to the choice response. The colors indicate different cue locations. 
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Participants generally continue to follow this pattern when the left cue (red line) is 

presented, although they are more likely to make a leftward gaze at the start. The gaze pattern, 

however, differs slightly when the cue is presented on the right (blue line). Participants are much 

more likely to make a definite gaze toward the right in beginning of the trial when they 

eventually choose the right rather than the left option. This implies that the efficacy of the right 

cue, which goes against standard reading conventions, could be dependent on other factors like 

the attractiveness of the right option. 

The mean inflection points in the paths tend to be more peripheral in the perceptual 

compared to the gambling frame across all the cueing locations, suggesting that participants are 

more likely to look at the options directly. 

Moreover, the gaze trajectories show how people gravitate toward looking toward their 

chosen option. Such a gaze bias becomes even more apparent in Figure 5B, which depicts the 

same trajectories timelocked to the response. Similar to previous findings (Isham & Geng, 2013; 

Shimojo et al., 2003), participants seem to begin having a better than chance probability of 

looking at the option they subsequently choose about 0.5 s before the actual choice. The cues do 

not affect where participants look at the end of the trial. 

To understand how the task frames directly impacts the extent of the gaze bias, I 

collapsed data across cues and calculated the overall likelihood of choosing the option 

participants currently fixated on (Figure 6). A hierarchical linear regression of choice likelihood 

on task type on the last 200 ms (last 8 time points, random effects across subjects) shows that 

participants have a 4.57% higher probability of looking at the eventually chosen option in the 

gambling rather than the perceptual frame (p < .001). This indicates that people in the perceptual 
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frame are less likely to choose the option they are looking at just before they enter their choice 

response, implying that they viewed both items more equally.  

 

 

Figure 6. Mean likelihood of choosing the fixated option over time.  

Data is aggregated across participants for the last 1.5s of the trial. 

 

Impact of search patterns on choice. The first set of analyses – using eye gaze 

trajectories to reveal participants’ information search procedures – was heavily influenced by 

previous studies of preference (Isham & Geng, 2013; Krajbich et al., 2010; Shimojo et al., 2003), 

and showed that their eye patterns of eye gaze seem to differ across task frames. Specifically, 

people made more saccades in the perceptual condition when it was difficult to discriminate 

between the two options, and also were less likely to look at their chosen option before choice. 

How then, do these key differences in absolute and relative gaze duration interact with the other 

manipulated variables like option attractiveness to lead to differences in choice? To further 
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investigate their impact, I turned towards studies of perception for inspiration (Carrasco et al., 

2004; Liu et al., 2009, 2006; Yeshurun & Carrasco, 1999), and examined the psychometric 

function of choice behavior. 

Psychometric functions show the relationship of how a physical stimulus parameter, like 

the difference in the mean number of dots between options, affects the probability of a choice 

outcome, like choosing the right as opposed to the left option. I found that participants were 

more likely to choose the option that had, on average, a greater number of dots (Figure 7). The 

probability of participants choosing the option on the right against the mean difference in the 

number of dots between the two options was fit with a four-parameter Weibull function, 

Pr(Choose Right) = γ +   ( 1 –  γ –  λ ) � 1 – exp(−
𝑥
𝛼

)𝛽�, 

where α is the location parameter that identifies the point of subjective equality (PSE), β is the 

slope that characterizes the ability to discriminate between the two options from the steepness of 

the curve, γ is the upper asymptote and  λ the lower asymptote.  

Figure 7 investigates the effects of discriminability in option attractiveness, task frame, as 

well as the location of the option looked at the longest and the number of saccades made on 

choice. The addition of the last two factors was motivated by an attempt to quantify two 

variables that stood out in the earlier analyses of gaze patterns and choice reaction times: (1) the 

relative attention to the information across the two options (location of longest gaze) and (2) the 

absolute quantity of information acquired (number of saccades). To test specific characteristics 

of the curves, the choice data was fit using a hierarchical Bayesian model between subjects with 

these four factors. All the parameters described subsequently are group level estimates. 
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Figure 7. Psychometric curves describing the probability of choosing right in Study 1. 

The probability of choosing the right option is plot against the difference in option attractiveness 

as characterized by the difference in the mean number of dots between the two options. The data 

was conditioned by the location of the option looked at for longest as a measure of relative gaze 

(color and shape) number of saccades as a measure of absolute gaze duration (vertical columns) 

and the task frame (horizontal rows). The error regions indicate the 95% HDI of the fitted model, 

and the error bars indicate the average within-subject standard errors. 

 

On the whole, Figure 7 highlights the importance of relative attention on choice, 

especially in gambling trials with only one or two saccades.  Each curve shows how the 

probability of choosing the right option increases as attractiveness of the right option increases. 

The bottom panels depict the psychometrics curves from the perpetual task frame. In all the three 
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bottom panels, the three curves are mostly overlapping, indicating that gaze duration has little 

effect on choice regardless of the number of saccades made. To more accurately quantify the 

effect of disproportionately looking at one option over the other, I obtained the differences in the 

point of subjective equality (PSE) of the two curves when participants looked the longest at one 

option, compared to when participants looked in the center the longest. The PSEs indicate the 

value of relative option attractiveness when participants are equally likely to choose between the 

two options, that is, have a 50% chance of choosing the option on the right.   

These contrasts (left minus central condition vs right minus central condition) are plot in 

Figure 8. Notice that all the black bars, illustrating the contrasts for the perceptual frame, are 

closer to zero than the grey bars, which correspond to the gambling frame. For instance, in the 

left minus center contrast in the 1 saccade condition (rightmost panel), the PSE difference in the 

perceptual frame (black bar) is 9.61 with 95% highest density intervals (HDI) ranging including 

0 (HDILOW = -3.38 and HDIHIGH = 22.6) dots depicted as error margins in the figure. This 

indicates that a single saccade made to the left option does not significantly affect the eventual 

choice in the perceptual frame.  

This non-credible effect of gaze duration on choice is consistent across all but two of the 

other conditions in the perceptual frame: people were slightly more likely to pick the right option 

when they look at it the longest when they make two saccades, and people were slightly more 

likely to pick the left option when they look at it the longest when they make three or more 

saccades. On the whole, this pattern implies that the effect of relative gaze duration on choice is 

minimal in the perceptual frame. 
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Figure 8. Point of subjective equality (PSE) contrasts in Study 1.  

This plots the difference in PSEs between the curves when participants looked longest at the 

periphery (left minus central option vs right minus central option). The error bars show the upper 

and lower bound s the 95% HDIs. A contrast is considered credible when the HDI does not 

overlap with zero (red line). 

  

On the other hand, the effect of relative gaze has a larger biasing effect on choice in the 

gambling condition, although the effect is attenuated by the overall gaze duration. In Figure 7, 

the blue and red curves are shifted to the left and right of the green central curve in the first two 

panels, suggesting that the people are more likely to pick the option they look at the longest 

when they make fewer saccades, but not when they made three or more saccades. The large 

horizontal shift in the curves led to large PSE differences, as shown by the longer grey bars in 

the first two panels of  Figure 8. All four of these gambling contrasts in the first two panels were 

significant, but the two gambling contrasts in the last panel were not credibly different from zero. 
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To compare the effect of relative gaze duration on an option between task frames, I 

calculated the contrast between their corresponding PSE differences (grey minus black bars at 

each option location for each number of saccades in Figure 8. This quantified the extent to which 

the curves shifted to the left and right due to disproportionate viewing conditions, and in doing 

so, revealed that effect of task frame on relative gaze was mitigated by the absolute gaze amount. 

Specifically, the mean absolute difference in PSEs was 20.1 dots (HDILOW = 3.06 and HDIHIGH = 

43.7) when only a single saccade was made, the mean absolute difference was 14.4 dots 

(HDILOW = 0.39 and HDIHIGH = 23.4) when two saccades were made, and the mean absolute 

difference was 7.3 dots (HDILOW = -6.64 and HDIHIGH = 21.9) when three or more saccades were 

made. As such, the greatest difference between the perceptual and gambling frames occurred 

when only a few saccades were made, and participants’ choice processes seemed to converge 

across tasks as they take more time.  

Finally, I examined how the slope, which measures the ability to discriminate between 

the two options, changed between the two task frames. Figure 9 displays the difference in slopes 

(perceptual minus gambling) of the curves in Figure 7, by gaze location and number of saccades. 

Although there was no overall main effect of task frame on slope (Mean slope difference = 0.32, 

HDILOW = -7.16 and HDIHIGH = 4.53), there was a slight trend of better discrimination in the 

perceptual condition in certain cases. In some of the first and second saccade conditions, people 

were better able to discriminate between the attractiveness of the two options in the perceptual 

than in the gambling task, as seen in the positive green and blue bars representing the center 

(Mean slope difference = 1.64, HDILOW = 0.30 and HDIHIGH = 3.04) and right locations 

respectively (Mean slope difference = 3.26, HDILOW = 1.04 and HDIHIGH = 5.90) when 1 saccade 

was made, and the positive green bar representing the center (Mean slope difference = 1.71, 



31 
 

HDILOW = 0.38 and HDIHIGH = 3.23) when 2 saccades were made. All other contrasts did not 

differ significantly from zero, except in the left location when 1 saccade was made (Mean slope 

difference = -6.14, HDILOW = -10.4 and HDIHIGH = -1.51). This last, negative difference is an 

anomaly, which could be due to a poor fit of the left gaze (red curve) in the single saccade, 

gambling condition (top-left panel in Figure 7). 

 

 

Figure 9. Slope differences between the task frames. 

This plots the difference in slopes between the perceptual and gambling conditions at each 

location, conditioned on the number of saccades made per trial. The error bars show the upper 

and lower bound s the 95% HDIs. A contrast is considered credible when the HDI does not 

overlap with zero (red line). 
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 Conclusions 

To summarize, analyses of eye tracking data reveals that participants usually start by 

fixating in the center before looking at the choice options in an alternating fashion (Figure 4). 

The cue served to orient participants’ attention and influence where they looked in the first two 

saccades (Figure 5). Although eye gaze was initially distributed evenly across the two options, 

participants’ gaze subsequently shifted toward the more favored option, especially just before 

choice (Figure 6). This biased gazed pattern is consistent with previous findings in preference 

research (Isham & Geng, 2013; Krajbich et al., 2010; Shimojo et al., 2003). The bias was found 

not just the preference frame, but also in the perceptual frame, albeit to a weaker extent. Even 

though choice reaction times did not differ significantly between the gambling and perceptual 

conditions, participants were found to make more saccades in the perceptual rather than the 

preference frame when it was difficult to discriminate between the attractiveness of the two 

options. Together, these results suggest that different task goals prompt people to actively 

modulate their search strategy by adjusting the relative and total quantity of information 

acquired.  

Further analyses revealed that the effect of relative gaze duration on choice was 

moderated by the total gaze duration as measured by the absolute number of saccades made 

(Figure 7). Behavioral findings highlight that participants were equally sensitive to the difference 

in expected reward between the options when we varied the mean difference in number of dots 

across perceptual and preference tasks; however, participants were heavily biased to choose what 

they were looking at in the preference condition. The strong effect of relative gaze was 

attenuated when more saccades were made in the gambling task, suggesting that participants are 

prone to like what they look when they make quick decisions with comparatively less 
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information, but exhibit less of this gaze bias when they take more time to acquire additional 

information.  

What then, is the underlying process that drives differences in the gaze bias? As a next 

step, I model the choice formation process formally to investigate if a single overarching 

framework may describe the general process of information search and deliberation, and how 

more fine-grained distinctions across the perceptual and gambling frames, like the gaze bias, 

may be manifested as differences in the specific cognitive parameters that lie within the 

framework.  
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CHAPTER 3: A COGNITIVE MODEL OF RELATIVE ATTENTION 

The empirical findings in this study emphasize the importance of information search, a 

crucial part of the choice formation process that is often overlooked by many process models of 

cognition. For example, the well known Prospect Theory (Kahneman & Tversky, 1979) in 

behavioral economics focuses on how people first organize and reformulate existing prospects 

before subsequently evaluating them. Similarly, the Fast and Frugal Heuristics program and its 

associated Probabilistic Mental Model framework (Gigerenzer, Hoffrage, & Kleinbölting, 1991) 

highlights the mechanics of how people prioritize and draw inferences from a pool of cues that 

are already stored in their memory. 

This assumption also forms the basis of many sequential sampling models, which have 

ignored aspects of information search in favor of describing how existing information is 

integrated over time. In general, sequential sampling models assume people accumulate 

information in support of the choice alternatives stochastically over time until a choice is made 

once the accumulated information passes a decision threshold (Figure 10). Where these models 

differ across perceptual and preference tasks is in the specific nature of the accumulation process 

– what type of information is processed, how the information is represented, and how the 

boundary is defined – depending on the domain of interest (Summerfield & Tsetsos, 2012). 

Sequential Sampling Models in Perception vs Preference 

Sequential sampling models have traditionally been shown to accurately predict choice 

and reaction time data in perceptual tasks, which involves making a statistical interference about 

the true state of the world from noisy sensory information (Gold & Shadlen, 2007; Liu & 

Pleskac, 2011; Smith & Ratcliff, 2009; Usher & McClelland, 2001).  
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In perceptual tasks, decision performance depends on the quality and quantity of 

information derived from stimulus processing (Ratcliff & Smith, 2004). Information quality is 

based on the objective properties of the stimulus and on the inherent variability of stimulus 

processing mechanisms in the central nervous system, while the quantity of information required 

before a response is based on the decision threshold set by the decision maker.  

 

 

Figure 10. Drift diffusion model as adapted from Wabersich & Vandekerckhove (2014).  

This shows the stochastic process of evidence accumulation toward threshold α, beginning at 

starting point bias β, with drift rate   δ and non-decision time τ.   

 

More recently, sequential sampling models have also been used to describe preferential 

tasks (Busemeyer & Townsend, 1993; Krajbich et al., 2010; Krajbich & Rangel, 2011; Litt, 

Plassmann, Shiv, & Rangel, 2011; Zeigenfuse et al., 2014). While models of perceptual decision-

making emphasize that decisions are made in a strictly optimal fashion, sequential sampling 

models of preference assume that people accumulate internal information about the subjective 

value of the decision alternatives. Uncertainty is derived from variability from these subjective 
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values rather than from stimulus noise. These values are sampled stochastically from internal 

processes like memory, and may be actively constructed during the deliberation process based on 

long-term memory traces from past experiences (Sigman & Dehaene, 2005) or newly sampled 

outcomes from a recently attended option (Busemeyer & Townsend, 1993; Diederich & 

Busemeyer, 1999). 

Models of preferential choice also highlight capacity limitations within the deliberation 

process and show how the role of attention places constraints on evidence accumulation. 

Decision Field Theory (Busemeyer & Townsend, 1993; Roe, Busemeyer, & Townsend, 2001) 

proposes that evidence across options are sampled in parallel, but only from the attended 

attribute. Attention might be oriented stochastically, or directed preferentially to a subset of the 

information provided, such as the most valuable attribute. By addressing how attention impacts 

choice, Decision Field Theory is able to account for phenomena like preference reversals, such 

as the Allais paradox (Johnson & Busemeyer, 2005), and contextual effects in multi-attribute 

choice (Roe et al., 2001).  

Where most sequential sampling models fall short, however, is that they do not consider 

how information is sampled across the decision options. Hence, these models are unable to 

account for choice biases due to differences in the relative duration of eye gaze between options. 

To address this, Krajbich and colleagues (Krajbich et al., 2010; Krajbich & Rangel, 2011) 

proposed a model which incorporates eye gaze as a direct measure of attention. Unlike Decision 

Field Theory, where sampling occurs in parallel across options even when attention is directed 

only toward a particular attribute, this model assumes that decision makers accumulate a relative 

decision value across objects over time based on the option that a decision maker’s eyes are 

fixated on. Specifically, the rate of evidence accumulated in favor of one option (drift rate) at any 
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given instance is proportional to the weighted difference between the values of the fixated and 

unfixated items, where the weight discounts the value of the unfixated item relative to the fixated 

one. Indeed, they showed that this model well accounted for eye tracking data from a food 

preference task where participants were allowed to look freely between two food images, 

providing further support that overt attention, as measured by eye fixations, contributes directly 

to the evidence accumulation process during deliberation in value-based choice. 

Drift Diffusion Model with Relative Gaze 

Thus, the ability of sequential sampling models to accurately describe the cognitive 

processes of choice formation in perceptual and preference tasks reinforces the idea that these 

two types of choices are structurally similar because they share an underlying evidence 

accumulation process. This is advantageous as the deliberation process of choice may now be 

distilled into several cognitively meaningful parameters, including payoff sensitivity as measured 

by the drift rate, response caution as measured by the decision threshold, and an initial bias 

toward one option over the other.  

However, despite these similarities, the models have been conceptualized and studied 

under separate experiments in previous research. This makes the current empirical study 

especially interesting because it provides a basis for quantifying commonalities and differences 

across data across perceptual and preference tasks. In particular, I examine whether the two tasks 

are indeed structurally equivalent by investigating if the data may be modeled via a single 

sequential sampling model, and how more quantitative differences across tasks may be revealed 

by the specific parameter estimates across tasks, but within the same overarching model.  

One main question of interest here concerns the underlying mechanism in how the main 

attention manipulation, the initial exogenous cue, affects choice.  To put it more succinctly: how 
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does the cue work? One possibility is that the cue directly leads people to choose the cued option 

– a simple priming effect. Another plausible explanation, consistent with the empirical finding 

that the lateral shift in PSE when choice is conditioned on the most viewed option, is that the cue 

only influences where people look at initially. In doing so, the cue makes people 

disproportionately view the options when they quickly make a decision, and it is this 

disproportionate viewing process that leads to the ultimate effect on choice behavior, especially 

in the gambling fame.   

Parameters. Testing these hypotheses requires a model that can quantifies both the effect 

of a simple, initial bias toward the cued option, as well as the relative gaze duration between the 

choice options. Thus, I took inspiration from Krajbich et. al., and modified the classical drift 

diffusion model by incorporating data from eye-gaze into the drift rate. The resulting model of 

attention contained the following parameters:  

• Non-decision time τ, the time where participants are not deliberating between the two 

options (e.g. time used for motor activity, inattention), ranging from 0.1 to 1.0 s. 

• Threshold α, a measure of response caution as it is an index of the amount of evidence 

necessary to make a choice, ranging from 0.1 to 5. 

• Bias β, the initial propensity to choose the option on the right side of the screen. This 

ranges from 0.1 (strong bias for the left option) to 0.9 (strong bias for the right option), so 

0.50 indicates that people are unbiased. 

• Drift rate, δ, the rate of evidence accumulates in favor of the right option in each trial,  

𝛿 =  𝑠 [gRIGHT (vRIGHT  −  𝜃 ∙ vLEFT)  

 + gCENTER(vRIGHT  −  vLEFT)  

    + gLEFT(𝜃 ∙  vRIGHT  −  vLEFT) ], 
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where g is the gaze proportion of looking at a particular location (right, center or left) across an 

entire trial, v is the value of the left or right option as measured by its mean number of dots, s is a 

multiplying parameter from -5 to 5that scales the overall drift, and θ is the fixation weighting 

parameter from 0 to 1 indicating the extent to which the fixated option contributes to evidence 

accumulation. When θ is 0, evidence is accumulated from the fixated option only (gaze bias), but 

when θ is 1, both options contribute equally to the evidence accumulation process (classical drift 

diffusion model). 

This model is a simplification of that proposed by Krajbich and colleagues, as this is 

order invariant and only requires the gaze proportions and option values to be aggregated across 

each trial, rather than requiring the moment-to-moment gaze locations and option values at each 

time point. In addition, it incorporates central fixations by making the assumption that people 

attend to both options such that they equally contribute to evidence accumulation. This is unlike 

the model by Krajbich et. al., which relied on eye fixation data that corresponded to the left and 

right option locations only.  

Moreover, the model by Krajbich et. al. was only applied to studies of preferential 

decision making. By extending this model to both task frames, I make the claim that the process 

of perceptual choice formation is in essence, based on the same principles as preferential choice. 

This makes the crucial assumption that main source of evidence in preferential choice, the 

subjective valuation of option attractiveness, has a direct relationship to the more objective 

information about the sensory characteristics (the average number of dots onscreen) in perceptual 

choice. The difference in how people value each piece of evidence is quantified by the drift 

scaling parameter, and now can be compared across perceptual and preferential choice. 
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Moreover, this model was developed as a hierarchical Bayesian model with participant-

level and group-level estimates. This in contrast to the model by Krajbich et. al. who relied on 

simulation to fit and evaluate it. Such a hierarchical instantiation of the model is particularly 

advantageous as it allows for error variance to be pooled across participants to yield group-level 

estimates which can be more directly quantified and tested across conditions. It also produces 

participant-level estimates similar to the model by Krajbich et. al., which can then be used for 

further investigation of individual differences across participants. 

All of the parameters except non-decision time (single value only throughout all 

conditions) were allowed to vary across the initial cue location, as well as the task frame 

(perceptual vs preference) conditions. The parameters were estimated using the JAGS Wiener 

module (Wabersich & Vandekerckhove, 2014), an extension for the Just-Another-Gibbs-Sampler 

(JAGS) in R.  

Hypotheses. Given that there was no difference in the choice reaction times across tasks 

frames and cueing conditions, I anticipate that the estimated values of the threshold and non-

decision time to remain similar over all the conditions, suggesting that people, on average, 

accumulate similar amounts of information before making their choice. 

How the bias and fixation weighting parameters vary across conditions is more of an 

open question, as these are not directly addressed from the empirical results. Recall that people 

were more likely to choose the cued option. If this phenomena is due to a simple priming effect 

of the peripheral cue, it is expected that there would be no initial bias when the neutral cue was 

positioned in the center, but there would be a positive bias when the cue drew attention to the 

right option and a negative bias when the cue drew attention to the left option. Moreover, if the 
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effect of the cue was stronger in the gambling frame, then the absolute value of bias would be 

higher in the gambling compared to the perceptual condition.  

However, if the differential effect is of the cue is actually driven by the relative gaze, the 

underlying process would be reflected in the fixation weighting parameters of the drift rate. The 

minimal effect of relative gaze duration in the perceptual condition could be due to a fixation 

weight of close to 1.0, which would imply that people weight both the left and right options 

equally regardless of where they look such that their process of evidence accumulation 

approximates the classical drift diffusion model.  In contrast, the fixation weight would be lower 

in the gambling condition, suggesting that people tend to discount the information from the non-

attended option when they are instructed to choose the option they prefer.  

Finally, the drift scaling parameter indexes the overall rate of evidence accumulation. 

Consistent with the finding that the slope of the psychometric function was generally higher in 

the perceptual frame across most of the conditions, the drift scale is likely to also have a higher 

value in the perceptual rather than the gambling condition. If this is the case, it means that people 

place a greater value on each piece of information in the perceptual compared to the gambling 

condition.  

Classical Drift Diffusion Model  

To test contribution of accounting for relative gaze duration, the attention model was 

pitted against the classical drift diffusion model, which was also modeled hierarchically in a 

similar fashion. Likewise, the classical model included similar bias, threshold, and non-decision 

time parameters. However, unlike the attention model, the drift rate was not based on eye 

movement and option attractiveness. Instead, two drift parameters were estimated, the: 
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• Baseline drift rate, the rate at which evidence accumulates in favor of the right relative to 

left option over time when both options are at the same level of attractiveness; and 

• Drift sensitivity, the rate of increase in drift rate per level of increase in the mean number 

of dots in the right option. This is an index of sensitivity to the mean difference in 

number of dots between the two options.  

Modeling Results  

Model fits. The Deviance Information Criterion (DIC) was used to compare the two 

models. As a hierarchical modeling generalization of the Akaike Information Criterion (AIC) 

and Bayesian Information Criterion (BIC), it shares their characteristics of considering goodness-

of-fit and penalizing for model complexity. The attention drift diffusion model (DIC = 145456) 

was found to provide a superior fit to the data than the classical drift diffusion model (DIC = 

150289). This highlights the importance of accounting for attention based on where participants 

are looking onscreen, a consideration that many cognitive models, like the classical drift 

diffusion model, neglect even though the models deal with incoming evidence in the visual 

domain.   

Parameter estimates. The estimated group-level parameters of the classical and 

attention drift diffusion models are presented in Figure 20 (more details in Appendix C) and 

Figure 11 respectively. In the attention drift diffusion model, the fixation weighting parameter 

was uniformly high in the perceptual frame varied (Figure 11A, Mean = 0.931,HDILOW = 0.838 

and HDIHIGH = 0.990) across all the cueing conditions, indicating that the effect of relative gaze 

duration on choice was minimal. As expected, the fixation weighting parameter was lower in the 

gambling condition, and the values were also more varied (Mean = 0. 749,HDILOW = 0.584 and 

HDIHIGH = 0.922). Thus, there was general trend of a slightly higher weighting parameter in the 
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perceptual compared to the gambling condition, but the main contrast effect did not reach a point 

of credibility (Mean slope difference = 0.18, HDILOW = -0.012 and HDIHIGH = 0.371), possibly 

due to the large variance in the gambling frame. The pairwise contrast between the task frames 

was credible in one (the left) out of the three cueing conditions (Mean left slope difference = 

0.20, HDILOW = 0.017 and HDIHIGH = 0.383).  

 

    
 
Figure 11. Parameter estimates of the attention drift diffusion model for Study 1. 

 

There was a main effect of the drift scale in the attention model (Figure 11B, Mean drift 

difference = 0.0084, HDILOW = 0.0003 and HDIHIGH = 0.0159), indicating that participants 

generally accumulated evidence faster in the perceptual compared to the gambling condition. 

The thresholds remained equal across all conditions (Figure 11C). Finally, the estimates of bias 

yielded similar results to that of the classical model: the peripheral cues significantly biased 

choice in the left and right gambling condition, and in the right preference condition. 
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Conclusions 

In summary, computational modeling of the difference in option attractiveness, 

eyetracking gaze durations, choice reaction times, and choice outcomes, reveals the importance 

of accounting for patterns of relative attention, as measured by the location of eye fixations. The 

attention drift diffusion model provides a more comprehensive picture of the choice formation 

process: by linking patterns of information search to the subsequent process of information 

valuation, as reflected by the drift scaling parameter. These findings are consistent with previous 

research (Zeigenfuse et al., 2014), and suggest that people may differentially value information 

from the choice options depending on the specific, higher level instructions. 

More generally, the modeling shows that perceptual and preferential decision making 

share the same general process of evidence accumulation. But, it also demonstrates some critical 

differences across the two higher-order task frames: the effect of the cue biasing choice 

corroborates with the shift in PSE due to relative gaze in the empirical results, and suggests that 

the biasing effect of the cue appears to have less of an effect in the perceptual compared to the 

preference condition.  

The presence of the gaze bias in a naturalistic paradigm highlights how voluntary, 

relative spatial attention to an option is correlated with choice. Modeling also explains the 

underlying basis of the gaze bias as it reveals that participants disproportionately weight option 

information based on their fixations such that information derived from an attended option has a 

greater contribution toward choice.  

As a next step, I developed an empirical study to examine if there is causal link between 

gaze and choice. Does directly controlling attention to each option lead to similar biases in both 

tasks? The process of doing so would also change the type of attention involved – from 
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voluntary, relative attention across two options presented simultaneous at different locations, to 

non-voluntary, dedicated attention when the options are presented one at a time– would this 

largely wipe out the differences between perceptual and gambling task frames? 
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CHAPTER 4: DIRECT MAINPULATION OF RELATIVE GAZE  

It is expected that higher-order intentions are reflected in downstream choice processes. 

This was shown to be the case in the first study, as the instructions to pick the option with the 

most dots on average in the perceptual condition, or to pick the option they preferred in the 

gambling condition, induced differences in how participants actively searched for information, as 

well as how they valued the contents of the information acquired.  

This active, voluntary nature of taking action to meeting a goal is typical in many aspects 

of behavior. We often consciously and actively strategize how to carry out certain action with the 

purpose of fulfilling a higher-level need of some sort (Aarts & Elliot, 2012; Duncan, Emslie, 

Williams, Johnson, & Freer, 1996; Rotter, 1960). Yet what happens when we are no longer able 

to plan out a strategy for achieving a goal, but instead, have to contend with passively absorbing 

a stream of goal-relevant information? This is very much akin to having to look up and list out 

pros and cons of a particular course of action, compared to watching a video that presents all the 

arguments of interest. 

Given that research in learning and problem solving has emphasized benefits and 

contributions of an active approach toward the pursuit of academic goals, for example, 

performance in a test to demonstrate mastery and comprehension of the material learned (Benek-

Rivera & Mathews, 2004; DeNeve & Heppner, 1997; Haidet, Morgan, O’Malley, Moran, & 

Richards, 2004; James et al., 2002), I sought to test if this differential impact of task goals 

depends on the ability to actively and voluntarily control information uptake.  

Apart from directly addressing the above question, the second study has the additional 

purpose of controlling for several limitations in the first study. Firstly, the first experiment aimed 

to provide a comprehensive investigation on how attention affects perceptual and preferential 
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choice in a free viewing paradigm. However, opting for a more naturalistic study duration led to 

several trade-offs: gaze duration was only indirectly manipulated with an initial exogenous cue, 

eye gaze was always accompanied by a movement (saccade), and gaze duration was also 

conflated with the quantity of information sampled.  

An initial concern was that the optional stopping paradigm, while serving as a good 

baseline to describe how participants naturally behave, could have weakened the attention cuing 

manipulation. Previous studies in perceptual decision making show that covert attention drawn 

by a peripheral cue lasts for approximately 150 ms (Carrasco et al., 2004). This duration was 

considered relatively short given that participants determined the overall gaze duration and 

choice time. Indeed, we find that the cue impacts gaze location in the first two saccades, but its 

effect on the overall gaze duration weakens as information search lengthens. This is because 

people make tend to look at both options in an alternating fashion so the relative gaze duration 

across options evens out when they make more saccades. This leads me to believe that the 

influence of the initial orienteering cue on choice was largely mediated by relative gaze duration.  

Hence, I directly manipulate relative gaze by presenting stimuli in varying durations in 

the next study. The variables chosen in the main four-way interaction (between tasks, option 

attractiveness discriminability, relative gaze via the option viewed the longest and absolute gaze 

duration via the total number of saccades) was not a set of analyses I predicted a priori, and 

instead, was informed by the patterns of information search. As I did not anticipate conditioning 

the data on so many variables where two of which were intermediate outcome variables, that set 

of analysis was definitely underpowered. Thus, as a next step, it is prudent to directly manipulate 

relative gaze in place of using an intermediate measure of gaze proportion, which would vary 

across trials and participants. Making this change would lead to greater experimental power, and 
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should result in a stronger effect that occurs even when the total information search process is 

lengthened. 

Directly manipulating relative stimulus exposure would also give me grounds for making 

the causal claim that relative gaze can impact choice, which goes beyond the correlational 

relationship found in the first study. Recall that the first study utilized a free-viewing paradigm 

where I did not impose any restrictions on how participants looked at the two stimuli options. 

This led to the finding that people acquired and integrated information differently across 

perceptual and preference tasks. What then happens when attention is no longer relative and 

voluntary? In the second study, the options are presented one at the time, so participants are 

expected devote their full attention to the single dynamically updating option onscreen.  Thus, 

the study has the additional purpose of examining if differences in higher order goals replicated 

even when participants’ do not have the ability to control the process of information search 

across competing options. 

Another issue in the first study is that both options were presented simultaneously on the 

left and right, so participants were likely to make a saccade every time they shift their attention 

from one stimulus to another. Research in embodied cognition suggests that cognition is situated 

in activity (Anderson, 2003; Wilson, 2002), such that the act of making an eye movement is also 

a factor that could influence choice. The study by Shimojo and colleagues (2003) supports this 

view, as they find that faces presented for a longer duration were more likely to be judged as 

more attractive only occurred when an eye movement was made towards the faces when they 

were presented on the left and right, but not when the faces were centrally presented. In a 

different paradigm, Schonberg and colleages (2014) found that the value of food items can be 

manipulated by instructing participants to view a stream of food images and asking them to make 
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a simple motor response when they hear an irrelevant tone. Subsequently, participants were more 

likely to prefer items that were presented concurrent with the motor response, implying that 

motor actions have an underlying influence on preferential decision making.  

To test if the motor action of making a saccade was the underlying factor that impacted 

choice in the first study, I used centrally presented stimuli in the study and instruct participants to 

keep their eyes fixated on a fixation point in the middle of the stimuli throughout each trial. This 

enables me to see if the effect of manipulating gaze remains effective without any lateral eye 

movements. 

Thus, unlike the first study, which was more free-form as it aimed to describe how people 

searched and valued information in a naturalistic setting; the second study has the goal of being a 

more controlled attempt to examine how exposure duration can cause a bias across perceptual 

and preferential choice. It address alternative explanations like motor movements, and 

investigates how people respond to the different task frames when they are unable to voluntarily 

control information search.  

 

Method 

Design. The study had a 2 × 5 × 5 mixed design: the task framing manipulation 

(gambling vs perceptual) varied across participants; 5 levels of difference in mean attractiveness 

across options similar to study 1, and 5 stimulus duration levels (33%, 50%, 67%, and 75%) over 

8 unique combinations of conditions outlined in Table 2.  

Stimuli of the two options were similar to that of the first study in all aspects except for 

the color and location. The stimuli were presented sequentially in the center of a computer 

screen. One option consisted of blue dots and the other red dots so participants could easily 
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distinguish between the options. The brightness of the colored dots was roughly equated in a 

short pilot test by taking the average values of four test participants that completed a luminance 

equalization routine using a staircase procedure.  

 

 
Table 2. Stimulus duration levels in the second study. 

ID 
Number of 

switches 

Number of Frames 
Duration of 

First Option Total 
Set 

1 

Set 

2 

Set 

3 

1 1 16 8 8 0 50% 

2 1 24 8 16 0 33% 

3 1 24 16 8 0 67% 

4 1 32 16 16 0 50% 

5 2 24 8 8 8 67% 

6 2 32 8 8 16 75% 

7 2 32 8 16 8 50% 

8 2 32 16 8 8 75% 

 
  

 

The 8 option combinations enabled me to control for several other factors across the 

levels of gaze duration. Thus, the number of options switches varied between 1 (e.g. red, then 

blue option or vice versa) and 2 (e.g. red, blue, then red option again) and the number of frames 

during each presentation was set to either 8 or 16. These two factors meant that the total number 
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of frames in each trial was also manipulated (16, 24 or 32 frames).  Finally, the order of colors 

(blue or red option first) was counterbalanced across trials.  

Participants. In total, 63 (31 gambling and 32 perceptual) undergraduate participants 

from MSU psychology subject pool took part in the study. In addition to receiving course credit 

for participating, they also earned a $1-5 bonus based on their task performance. 

Procedure. The study was held over a single 2-hour session. Similar to the first session, 

participants were randomly assigned to either the gambling or perceptual condition and received 

instructions for the actual flash task with two central stimuli: a red pond and a blue pond.  

The instructions were similar to that outlined in the first study (Appendix A). In the 

perceptual frame, participants were asked to choose if the red or blue pond had more fish on 

average, while in the preference or gambling frame, participants were asked to choose if they 

preferred the red or blue pond.   

In a trial (Figure 12), after displaying a central fixation dot for 500 ms, the flash stimuli 

(the two colored ponds) appeared in the center of the screen. The two options were presented in a 

sequential, alternating fashion, for example, participants would first view a stream of blue dots 

updated every 50ms, followed by a stream of red dots at the same speed, and on occasion, a 

second stream of blue dots. They were told that the dots represented blue or red fish from only 

two ponds, so they could consider all blue fish, even if they appeared later, to be from the same 

pond. Participants were also instructed to wait until all the fish were presented, and that they 

should immediately make their choice once the fish disappeared and were replaced by a central 

fixation point. The fixation point remained onscreen until participants pressed a key (labeled in 

red or blue) to indicate their choice, which was recorded, along with the reaction time. 
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Figure 12. Stimulus presentation procedure in Study 2. 

After a central fixation for 500 ms, the two stimuli were presented in an alternating sequence. Participants then made their response 

immediately after the sequence ended and saw a central fixation point again until they made their response. They then received 

feedback in terms of the number of fish caught in that trial. 
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Similar to the first study, participants earned points by catching fish, which was displayed 

as feedback at the end of the trial. The points were aggregated and scaled to generate a $1-5 

performance bonus paid at the end of the session. 

Analysis 

Overall quantity of information acquired. I examined if participants followed the 

instructions to respond immediately after the stimulus stream ends (Figure 13).  

 

Figure 13. Choice RTs in Study 2. 

Offset RTs, the duration between stimuli offset and the time of response, are conditioned by the 

total number of frames displayed and task (panels). 
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To do so, I calculated the time between stimulus offset and the response time (offset RT) 

and ran a hierarchical general linear model with the speed to respond (1/Offset RT) as the 

predictor, with the total number of dot samples (16, 24 or 32 frames) and task frame (perceptual 

coded as 1, gambling as 0) as fixed factors, and subjects as random factors. Participants made 

their choices faster when more samples of the stimulus were displayed (b = 0. 0289, p < 0.001). 

This is consistent with and is explained by previous findings in temporal preparation that 

demonstrate increased processing readiness during longer foreperiods, as people are better able 

to predict when the stimulus stream is likely to end as time passes (Schröter, Birngruber, 

Bratzke, Miller, & Ulrich, 2014). Participants did not have significantly different speeds between 

the two task frames (b = -0. 0347, p = 0.771).   

Choice formation. To investigate the experimental manipulations on choice, I plot the 

group level estimates of the Bayesian hierarchical model of the psychometric function 

conditioned on task frame and gaze duration as illustrated in Figure 14. Choice was the 

proportion of choosing the first option, relative option attractiveness was the difference in mean 

number of dots between the two options, and gaze duration was measured by the relative 

duration of the first option as a proportion of the total duration across both options. 

Indeed, relative gaze duration was found to impact choice. The fitted psychometric 

curves were shifted to the left in Figure 14 as the stimulus presentation duration of the first 

option increased, supporting the idea that people are biased to choose the option they look at the 

longest. The lateral shift between the curves may be quantified by the difference in the PSEs 

across two curves. Figure 15 depicts this difference between adjacent curves, and indicates that 

the shift is significant between all levels of relative duration.  
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The slope was unaffected by relative duration, and rather surprisingly; there were no 

differences across the gambling and perceptual task frames in any of the estimated parameters. 

This lack of difference is inconsistent with the finding in the first study that people were less 

biased in the perceptual task frame. Instead, this highlights that people may be particularly 

susceptible to biases when they are unable to control the information search process.  

 

 

 
Figure 14. Psychometric curves in Study 2. 

Data and corresponding psychometric curve describing the probability of choosing the first 

option against the difference in option attractiveness in Study 2. The data was conditioned by the 

relative duration of the first option (line colors and shape) and the task frame (vertical panels). 

The error regions indicate the 95% HDI of the fitted model, and the error bars indicate the 

average within-subject standard errors. 
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Finally, it is worth noting that the curves were shifted to the left, for example, the PSE 

was clearly positive and not zero when participants saw both options for an equal amount of time 

in the 50% relative gaze condition (green line in Figure 15). The lateral shift in PSE means that 

people require more dots in the first option for them to choose it, and suggests that people might 

have an overall preference to pick the second option over the first. There was no difference in 

PSEs between the perceptual and gambling conditions. 

 

 
Figure 15. Point of subjective equality (PSE) contrasts. 

This plots the difference between adjacent curves (difference between the levels relative 

duration). The PSEs were different across the levels of relative gaze duration, but not across the 

perceptual vs gambling task frames. 
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 Model description and hypotheses. What is the underlying process that leads to the shift 

in PSE? To further investigate this, participants’ choice and reaction time data were fit to the 

interrogation version of the classical drift diffusion model. This model is similar to the classical 

model outlined in the first study; however, instead of assuming that participants accumulate 

evidence up till they reach a threshold, the model assumes time-based stopping criteria which are 

more consistent with this study. Specifically, it assumes that participants accumulate information 

up till the time when the two dot stimuli disappear. At this point, participants choose the most 

favored option based on the information collected up till that time. Hence, only four parameters 

are estimated (no threshold): 

• Bias β, the initial propensity to choose the first option, ranging from (-7 to 7, where 0 is 

the neutral point, a positive value means a bias toward choosing the first option, and a 

negative values means a bias toward choosing the second option). 

• Non-decision time τ, ranging from 0.50 s to 1.0s. 

• Baseline drift rate, the rate at which evidence accumulates in favor of the first relative to 

second option over time when both options equally attractive, which ranges from -3 to 3; 

and 

• Drift sensitivity, the rate of increase in drift rate per level of attractiveness in the first 

option, ranging from -6 to 6. 

I ran a hierarchical Bayesian interrogation model with group-level and subjective level 

parameter estimates. The parameters were allowed to vary across the two task frames and the 

four levels of relative duration. The attention model was also fitted (DIC: 63764; details in 

Appendix D) and compared with this classical model, and was found to have a poorer fit than 

this classical model (DIC:  62693).  
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The PSE could be manifested from two processes: an increase in the baseline drift rate of 

evidence accumulation with longer relative gaze durations, or a simple shift in bias toward the 

option as relative gaze duration increased. Both of these explanations are consistent with the 

modeling findings in the first study, which showed evidence of the drift rate changing in the gaze 

bias parameter and the initial bias across cueing conditions.  

 In this study, the value of the baseline drift must take into consideration that participants 

are assumed to pay full attention to the single option presented onscreen. As a result, the 

estimated drift values could increase with relative gaze, especially in the gambling condition. To 

elaborate, if participants have a gaze bias, information from the option they currently view will 

have a greater contribution to how the option is valued. So if the first option was presented 75% 

of the time, participants are likely to disproportionately weight the evidence of the first 

alternative, which results in a drift rate that is higher in the option viewed for the longest 

duration.  

How a direct manipulation of stimulus exposure affects the start bias is more of an open 

question. While the location of an initial, peripheral cue was found to bias the starting point of 

evidence accumulation in the first study, varying stimulus viewing time is a fairly different 

manipulation that may not results in similar consequences.   

 Moreover, based on findings from the first study, I also expected to see greater drift 

sensitivity, the ability to discriminate the attractiveness of the two options, in the perceptual 

compared to the gambling condition and a constant threshold, the quantity of information 

accumulated, across all conditions.  
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Figure 16. Parameter estimates of the classical drift diffusion model for Study 2. 
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Modeling results. The group-level estimates of baseline drift, drift sensitivity, and 

starting bias are presented in Figure 16. Mean non-decision time was estimated to be 0.0519s 

(HDILOW = 0.500 s and HDIHIGH = 0.0553 s). Unlike the first study, the baseline drift rate, which 

describes the rate of evidence accumulation toward the first option when both options are equally 

attractive, remained no different from zero across all the relative gaze proportion and task 

conditions (Figure 16A).  Likewise, drift sensitivity did not credibly differ across any of the 

manipulated conditions (Figure 16B), although there did seem to be a slight trend to be lower as 

the gaze proportion increased. 

Drift sensitivity was overall positive, for both the gambling (Mean = 3.20, HDILOW = 

2.24 and HDIHIGH = 4.20) and perceptual (Mean = 3.47, HDILOW = 2.44 and HDIHIGH = 4.46) 

conditions.  

One particular condition of note, however, is when the relative duration was 75%. This 

was the only condition where the baseline drift and the drift sensitive seemed to be particularly 

low. Whether this condition is special or if this merely occurred by chance is up for speculation. 

Unlike drift parameters which were relatively similar, the starting bias was found to 

increase as the relative proportion of exposure to the first option increased (Figure 16C). This is 

illustrated by the pairwise comparisons across the levels of relative exposure duration in Figure 

17, which are mostly credibly different from zero. Surprisingly, participants were found to be 

generally biased away from the first option, with 50% gambling (Mean = -3.78, HDILOW = -5.09 

and HDIHIGH = -2.40) and perceptual (Mean = -2.03, HDILOW = -3.36and HDIHIGH = -0.83) 

conditions being credibly below zero. Instead, it was the level above, the 67% gambling (Mean = 

0.08, HDILOW =-1.42 and HDIHIGH = -1.50) and perceptual (Mean = 0.54, HDILOW = -0.66 and 

HDIHIGH =1.95) conditions, which were right at zero. These lower than expected bias values are 
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consistent with the PSE fits and imply that people might tend to favor later rather than earlier 

options.  

Moreover, pairwise comparisons across task type suggest that effect of relative gaze 

duration was higher in the gambling compared to the perceptual frame. While the bias across 

both tasks was at zero in the 67%, the bias value for the 75% was higher in the gambling than the 

perceptual frame, but in the 50% condition (Mean difference = 2.38, HDILOW =0.24 and HDIHIGH 

= 4.39)., and was also lower in the gambling than the perceptual frame (Mean difference = -1.76, 

HDILOW = -3.49 and HDIHIGH =0.24).  

 

 

Figure 17. Bias contrasts in Study 2. 

 

Discussion 

 The purpose of this second study was twofold: (1) To examine the robustness of the gaze 

bias under a more controlled environment, specifically, when exposure duration was directly 

manipulated and when the stimuli were presented centrally in an alternating sequence; and (2) to 
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investigate the difference between actively engaging in information search in the first study 

compared to passively observing a stream of stimulus relevant information in the second study. 

In light of this, the findings were consistent with, but not identical to that of the first study. 

Firstly, perceptual and preference participants were equally susceptible the effect of 

manipulating the relative proportion of stimulus exposure, as shown by the shift in the PSE in the 

empirical results and the initial bias in the modeling results. The fact that people were influenced 

by the stimulus exposure duration in spite of the central stimulus location, attests to the strength 

of the phenomenon, even when no lateral saccades were required.  

However, as mentioned, there were no differences between the perceptual and gambling 

frames, both in the empirical and modeling results. This means that the subjective value 

accumulated in the preference tasks may be considered as interchangeable with the sensory 

evidence accumulated in the perceptual task. That is, both tasks seem to share the same 

underlying evidence currency when participants were no longer able to voluntarily allocate 

relative attention across the two choice options.  

This lack of difference may be contrasted with findings from the first study, which 

demonstrated that people were more likely to choose the item they viewed the longest in the 

gambling but not in the perceptual frame. Instead of affecting the information valuation process, 

the direct gaze manipulation appears to translate into an overall predisposition to favor the item 

with the greatest stimulus exposure duration. In other words, looking simply induces liking 

without actually affecting the mechanics of information valuation. I will elaborate on these 

differences between the studies in the general discussion section. 

Moreover, the baseline drift rate and the drift sensitivity parameters did not vary across 

any of the conditions. The drift sensitivity also had the slight, overall non-credible, trend of being 
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lower as the viewing duration became more disproportionate, especially in the 75% relative 

proportion condition. This suggests that people might value each piece of information less in the 

option they viewed for a relatively longer time, and could be because the relative exposure 

duration manipulation was fairly obvious to participants. In turn, the more salient proportion 

could have led participants to be more cautious of simply picking the one that seemed most 

prominent to them.  

 

 

Figure 18. Psychometric function based on last option in Study 2. 

This describes the probability of choosing the last option against the difference in option 

attractiveness in Study 2. The data was conditioned by (A) the number of frames in the last 

option viewed, and (B) the number of switches made, where 1 switch indicates the last option 

was the second option seen, and 2 switches indicates that the last option was also the first option 
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presented twice. Note that the curves in the 1 switch and the long (18) frame conditions are 

shifted vertically upward.  

 

Such a phenomenon is supported by the examining choice data conditioned on the 

number of switches made across the options. Figure 18A shows the percentage of choosing the 

last option seen, where 1 switch indicates that the last option was the second option seen, and 2 

switches means that the last option was also the first option presented twice. The double 

presentation of an option in the 2 switch condition makes that option particularly salient to 

participants. As a result, this could have promoted discerning participants to be suspicious and 

more careful about picking the most “obvious” option. Thus, the option presented twice was 

associated with a decreased likelihood of choice, especially when the difference in attractiveness 

between options was less discriminable. This explanation is somewhat akin to how consumers 

are known to reject products that in advertisements that explicitly tell them what to buy or how 

to behave because they find these sort of marketing campaigns overly pushy (Bhattacharjee, 

Berger, & Menon, 2014), and highlights the significance of the perception of autonomy in 

choice. 

Consider this with respect to the condition where participants only made a single switch. 

In this case, participants were more likely to choose the second option, which was the last thing 

they saw (red line in Figure 18A). The finding that participants tended to pick the last option they 

viewed lends indirect support to the finding in the first study that people have an inclination to 

look at the option they eventually pick just before choice, particularly when the extent of 

stimulus exposure is perceived to be equal when both options were presented once. The 

preference for the last option seen is further strengthened when the last option is presented for a 
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longer duration (red line in Figure 18B). This goes against research proposing that people have 

an implicit preference for the first option they encounter (Carney & Banaji, 2012), and instead, 

implies that the option currently viewed and attended to is likely to contribute more evidence to 

the choice formation process. 

Taken together, these results suggest that externally controlling stimulus presentation 

such that participants’ passively observe information rather than actively and voluntarily seeking 

out relevant information leads to little differences across task frames. The study also illustrates 

the negative consequence of passive information uptake: people become much more susceptible 

to external, extraneous biases once they are no longer actively engaged in information search 

process.  
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CHAPTER 5: GENERAL DISCUSSION 

Although there has been some discussion on the differences between perceptual and 

preference choice (Shadlen, Kiani, Hanks, & Churchland, 2008; Summerfield & Tsetsos, 2012), 

there has been relatively little progress on this front because of the methodological hurdles 

involved in equating the two paradigms in an empirical experiment. Hence, this dissertation 

makes the novel contribution of directly comparing the process of choice formation across 

preference and perceptual tasks in an empirical experiment.  

Summary of the Studies 

The first study took on a more exploratory approach in order to characterize how people 

naturally search for and value information. Results demonstrate that different higher-order task 

goals motivate people to adjust their search strategy in terms of the relative and total quantity of 

information they gather. To elaborate, participants obtained more information in the perceptual 

condition when it was difficult to discriminate between the attractiveness of the two options. In 

general, they also shift toward looking at the more favored option just before choice. However, 

this gaze bias was reduced in the perceptual frame, as perceptual participants maintained good 

discrimination accuracy even when they acquired less information. Data from both tasks were 

well described by a diffusion model of evidence accumulation which values and integrates 

stimulus information based on eye gaze location. Consistent with behavioral results, the 

modeling reveals that distinction between task goals lies in quantitative differences across 

cognitive parameters: perceptual choice was associated with a lower gaze bias and greater 

information valuation than preferential choice.  

To test the role of active and voluntary engagement in the information search process, I 

ran a second study where participants passively viewed a stream of information samples and 
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directly manipulated stimulus exposure duration to the information samples in each option. The 

results only partially replicate the first study: perceptual and preference participants were equally 

affected by the relative stimulus exposure duration manipulation as they had the tendency to pick 

the item presented for the longer duration. Thus, in contrast to the first study, participants in the 

perception condition in the second study were found to be just as susceptible to the gaze bias 

when they could not control the relative acquisition of information between choice options.   

 

Table 3. Comparison of the first and second studies 

 First study  Second study 
Voluntary 
Control 

• Free viewing paradigm 
• Active information search 
• Optional stopping 

• Fixed viewing (on central point) 
• Passive information viewing 
• Interrogation stopping rule 

 
Relative 
gaze  

• Options presented at the same time  
• Relative attention between options 
• Fixation duration measured at each 

location over the entire trial 

• Options presented sequentially  
• Full attention at each time point 
• Stimulus exposure duration 

manipulated over the entire trial 
 

Results • Perceptual choice is associated with 
greater valuation and a lower gaze 
bias than preferential choice 

• Gaze bias reflected in valuation: 
information from fixated item is 
discounted.  

• Perceptual and preferential choices 
were equally affected by relative gaze 
duration.  

• Gaze bias reflected in the initial bias 
rather than in the information 
valuation process 

 

Passive vs Active Task Engagement 

Why were participants in the perceptual condition in the study unable to better modulate 

their gaze biases? The answer probably lies in the difference in how the options were presented 

across the two experiments (Table 3). Recall that in the first study, both options were displayed 

at the same time so participants had to form a strategy about how best to acquire information 

from the options. As a result, participants were forced to divide their attention at each moment as 



68 
 

they had to pick which option to allocate their attention to, or, in some cases, decide if they 

would rather attempt to attend to both options at the same time. 

Conversely, in the second study, participants passively viewed the options which were 

presented in an alternating sequence. This meant that stimulus exposure, and in consequence, 

gaze duration was relative at the aggregate level across the entire trial duration but not at the 

momentary time-by-time level. Moreover, it was much easier for participants to simply sit back 

and observe the single stream of information available as they did not have to actively select 

what information to attend to.  

These distinctions highlight the importance of being actively engaged in the intermediate 

steps necessary to achieve a higher-order goal, which channels a broad set of research concerned 

with how active exploration of the environment affects behavior, from the previously mentioned 

field of embodied cognition (Anderson, 2003; Wilson, 2002), to more applied work in 

educational research. In the latter, researchers have long debated the merits of using a teaching 

style that emphasizes active student involvement compared to passive observation in the 

classroom, with the growing consensus that students tend to do better when more interactive 

instructional techniques are used over the traditional didactic style of using lectures to 

disseminate information. For example, subjective reports and objective assessments of students 

performance improved when they engaged in role playing simulations (DeNeve & Heppner, 

1997), prepared and selected course-relevant questions in a Jeopardy game (Benek-Rivera & 

Mathews, 2004), or learned object structures by actively rotating the objects in virtual reality 

(James et al., 2002).  

Cognitive Dissonance Theory (Festinger, 1957) lends further credence to the idea that 

active engagement in a task leads to a higher likelihood of viewing it in a positive light due to 
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effort justification. More specifically, the process of being actively engaged in searching for 

information is highly effortful, suggesting that participants in the first study may attribute greater 

value to the decision task in the attempt to justify the work they put into the process of searching 

for information. Furthermore, according to Cognitive Evaluation Theory (Benware & Deci, 

1984; Ryan & Deci, 2000), people need to have a sense of autonomy, that is, have an internal 

perceived locus of causality, in order to develop of intrinsic motivation toward a task. The 

significance of autonomy as compared to control in maintaining of intrinsic motivation is also 

supported by research in education, as teachers that support autonomy in the classroom as 

opposed to being controlling are found to inspire greater intrinsic motivation and curiosity in 

student learning  (Ryan & Grolnick, 1986). Moreover, extensive control in the classroom is 

associated with loss of initiative and poorer learning in complex, problem solving tasks 

(Benware & Deci, 1984; Grolnick & Ryan, 1987).  

  The findings across the two studies may be interpreted in the context of how active, 

autonomous learning relates to intrinsic motivation. The side-by-side placement of the two 

dynamically updating options in the first study forced participants to make a conscious, 

voluntary effort to acquire information in order to achieve a higher-level goal. In doing so, 

participants had to actively engage in goal-directed behavior, which was driven by the perceptual 

or preferential framing instructions they received. Such active engagement is likely to foster a 

higher level of intrinsic motivation in participants, which could spur them to develop decision 

strategies that maximize the probability of choosing the option with the most dots on average 

(perceptual goal) or the highest subjective utility (in the preference goal). Consequently, these 

two higher-level goals could have led to a large divergence in information search strategies, 

valuation, and subsequent patterns of choice behavior across the two framing conditions.  
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In contrast, participants in the second study did not need to put in any effort to divide 

their attention and actively search for information. Instead, they simply had to fixate in the center 

of the screen and observe the stream of incoming information that appeared. Naturally, the less 

demanding but more controlling task was more likely to make participants in the second study 

feel comparatively less motivated than participants in the first study as they were stripped of 

their autonomy to engage the information search process. As the search process from the crux of 

how participants regulate behavior to meet their goal, it is not surprising that eliminating the 

voluntary search process in the second study effectively cancelled out the distinctive aspects of 

choice formation that differentiate the original intent to focus on perception or preference. As a 

result, participants across both frames behaved similarly and were equally affected by the 

relative gaze manipulation.  

It is possible to quantitatively test this explanation by equating the two experiments and 

comparing the difference in PSE of the psychometric curves across two conditions of gaze 

proportion. To do so, I obtained the ratio of looking at the right vs left option for every trial in 

the first study, and then subsequently binned the ratios into 3 conditions that indicate the 

percentage of looking at the right relative to the left option: below 33%, 33 to 66% or above 66% 

looking right. As participants only saw each option in the study once or twice in the second 

study, I determined the PSEs curves in these three conditions when participants made two 

saccades, and calculated the contrast between the below 33% and above 66% conditions.  These 

contrasts were then compared to the contrast of the 33% and 66% gaze proportions (of looking at 

the first relative to the second option) in Figure 19.  
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The results of the comparison are as expected. The difference in PSEs across the two 

gaze duration conditions in both the gambling (M = 33.3 dots) and perceptual (M = 29.0 dots) 

task frames are similarly high and comparable to that of that of the gambling condition (M = 35.1 

dots) in the first study. The red line in the figure indicates the average across these three 

conditions (32. 5 dots), and may be contrasted with the lower PSE in the perceptual frame in the 

first study (M = 18.8 dots). This supports the idea that participants in the perceptual condition in 

the second study were more affected by the gaze bias than in the first study when they passively 

viewed the stimulus stream. 

 

Figure 19. Comparing the PSE difference across the two studies. 

 

Such an explanation gels with previous work that investigated how people choose 

between a certain versus an uncertain option using the original version of the Flash paradigm 

(Zeigenfuse et al., 2014). Although the main setup and framing instructions are similar to the two 

studies presented here, the original paradigm had slightly different stimuli: the certain option 
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consisted of static display with a fixed number of dots that remained onscreen throughout the 

entire trial, while the number and location of dots in uncertain option was dynamically updated 

every 50 ms from an underlying reward distribution on the other side of the screen at the same 

time. One of the main empirical findings was that participants consistently expressed the desire 

to choose the uncertain option over the certain option when the task was framed as a gambling 

rather than a perceptual task because participants tended to weigh the evidence sampled from the 

uncertain option more optimistically in the gambling frame. 

This dissertation sheds light on the study’s findings. The static versus dynamic nature of 

the two options means that it is more beneficial for participants to attend to the dynamically 

updating uncertain option for a relatively longer duration, because all the information they can 

gather from the static fixed option may be obtained from a single quick glance. Thus, by 

encouraging a disproportionate viewing strategy, the task setup indirectly lays the foundation for 

the gaze bias, which induces participants to pick the uncertain option – the option they were 

likely to have looked at for a greater period of time. Moreover, the relatively more active and 

effortful process of eliciting information from the uncertain option compared to the quick and 

easy process in the static, certain option, further contributes to the inclination to favor the 

uncertain option. 

Methodological Advances and Extensions 

Using eye-tracking to uncover the choice processes in Flash Fishing paradigm extends 

existing research methodology in decision making along two fronts: as a new, rapid way of 

investigating experienced based decision making, and as comprehensive process tracing 

approach to uncover moment-by-moment information search processes.  
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The Flash Fishing paradigm itself is novel in that it builds on typical experience-based 

paradigms where people deliberately sample information from choice alternatives in a slow and 

controlled manner over an extended set of trials (Hertwig & Erev, 2009), and is also different 

from decisions from description paradigms that focus on static, symbolic descriptions of stimuli 

(Weber et al., 2004) which explicitly state the payoffs and probabilities of each choice 

alternative. What is interesting about the dynamic nature of the stimuli is that the rate of updating 

may be sped up to approximate decisions-from-description as participants can quickly grasp the 

entire decision space, or slowed down to be more comparable to decisions-from-experience 

paradigms. 

Additionally, this study is an example of using eye-tracking as a process-tracing 

technique, a method of tracking behavior over time so as to draw inferences about the current 

state of information accumulation in decision making. While eye-tracking is more commonly 

used as a passive measure of revealing a participants’ current state of preference, the dynamic 

stimuli present in the Flash Fishing paradigm channels more recent work  by opening a window 

into the active process of information search strategies (Franco-Watkins & Johnson, 2011; Lohse 

& Johnson, 1996; Pachur, Hertwig, Gigerenzer, & Brandstatter, 2013; Schulte-Mecklenbeck, 

Kuehberger, & Ranyard, 2010) as eye gaze reflects how participants voluntarily seek out 

information from the environment rather than simply reflect the existing levels of attraction 

toward the options.  

Although similar analyses have been used in previous eye-tracking studies of preferential 

decision-making, the studies have always made the implicit assumption that people only attend 

to a single fixated item. This leads to the analyses of either incomplete or imprecise eye fixation 

data: the fixations on regions outside the choice options are excluded (Shimojo et al., 2003), or 
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the fixations are categorized in a binary fashion depending on whether they fall on the left or 

right of the screen (Isham & Geng, 2013; Krajbich et al., 2010).  Contrary to this, the eye 

tracking data show that people not only look directly at the options, but also attempt to attend to 

both options at the same time by looking in the center. Recall that transition probabilities suggest 

the most common approach to information search occurs by looking at the center, before looking 

towards the more attractive option in the second saccade. This pattern demonstrates people can 

effectively attend to the information present in both options at the same time when they look at 

the center.  

Hence, this paradigm calls for a more nuanced approach to classifying patterns of eye 

gaze. Although I did not investigate this extensively because this was not the main purpose of the 

study, a cursory analysis of the transition probabilities across saccades reveal variability in 

participants’ preferred eye gaze patterns: apart from the above mentioned strategy of looking 

first at the center and then to the more attractive option, some people prefer to keep their eyes on 

the center through the entirety of the trial, while others systematically alternate looking between 

the left and right options immediately from the first saccade. 

These findings are promising, and illustrate how tracking eye movements in the Flash 

Fishing may reveal individual differences in how people attend to information in a choice set. 

Given that the frequency in which people oscillate between sampling from the different options 

(in a piecemeal versus a more comprehensive fashion) has been shown to impact choice (Hills & 

Hertwig, 2010), a natural line of future research would be to explore how eye tracking data 

reflects different types of information search strategies using this paradigm. 
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Gaze, Information Quantity, and Attention: Are they All the Same? 

Overall, this dissertation has cast a wide net in order to make comparisons across several 

distinct approaches of studying decision making. One challenging aspect in this endeavor is the 

need to maintain sufficient leeway and generalizability between shared constructs and measures, 

while keeping the more subtle details of each approach intact. Take for instance, the main 

phenomenon of interest, the gaze bias. Results from both studies provide evidence in support of a 

gaze bias in which choice appears to favor the item looked at for a relatively longer time. To 

express this succinctly: looking equates to liking.  Yet what lies beneath this general empirical 

finding? Or more specifically, what exactly constitutes looking? This is a critical question that 

will clarify the underlying cause of the gaze bias.  

The empirical experiments refer to looking in three different ways:    

• In the first study, looking is conceptualized as divided, voluntary and overt 

attention to the two competing options onscreen, in line with research in 

preferential decision making, and is operationalized in terms of moment-to-

moment relative gaze proportions.  

• In the second study, the sequential alternating option display means that looking 

may be construed as a form of overt attention, but not divided and voluntary 

attention. It is also operationalized in terms of relative gaze proportion aggregated 

across the entirety of each trial.  

• Across both studies, the uptake of visual information presupposes looking, so 

looking duration is also monotonically related to, and may be considered inter-

changeable with, the quantity of information acquired in the search process. 

On the other hand, cognitive modeling reveals two components of the gaze bias: 
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(1) A tendency to discount contributions from the unfixated option in the evidence 

accumulation process as manifested by the fixation weighting parameter θ, in the first 

study, and  

(2) A general predisposition to simply choose the item that is viewed for a relatively 

longer duration, as manifested by the initial bias β, in the first and second study.   

As the first component of the gaze bias concerns how relative attention is split among the 

two options at each time point, it is most likely linked to voluntary divided attention. The finding 

that voluntary, divided attention is required for perceptual participants to mitigate effect of the 

gaze bias in the first study, but does not interfere with the overall increase in choosing the option 

with a longer exposure duration in the second study, supports the notion that voluntary, divided 

attention is indeed associated with the first but not the second component of the gaze bias.  

Consequently, the second component of the gaze bias may actually be driven by overt 

attention or information quantity, that is, people could have a predisposition to choose the option 

that they view for a longer time, or to choose the option they have more information about.  

I sought to test these two explanations against each other. My first inclination was to 

manipulate gaze duration while fixing the number of samples, which effectively changes the 

speed in which information is presented (e.g. presenting 8 frames of option 1 at 20 Hz and then 

presenting another 8 frames of option 2 at 40 Hz would mean that option 1 is presented for 67% 

of the overall duration but the quantity of information across options is kept the same).  

However, pilot testing revealed that sequentially presenting two options that updated at different 

speeds led to a very jarring and unnatural viewing experience. Hence, I did not control for this 

difference in information quantity in this study, but ran an additional short experiment where 
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stimulus exposure duration and information quantity were manipulated in by repeating a 

sequence of unique samples in certain conditions (Table 4 in Appendix E).  

For example, a condition where the first option had 8 unique samples and the second had 

16 unique samples would be compared with another condition where the first option had 8 

unique samples and the second had 8 unique samples presented twice for a total of 16 samples. 

As such, the gaze proportion was equal (33% for the first option) in both these conditions, but 

the former condition carried additional unique information. The results replicate that of the 

second study: participants were more likely to choose the option presented for an overall longer 

duration, but the extent to which the samples carried unique information did not matter.  

Although this is not the most rigorous test of information quality, it supports the idea that 

it is the act of overly attending to an option, rather than the actual discrete quantities of unique 

information contained in the option, that is associated with the second component of gaze bias. 

This proposal that increasing overt attention leads to the general predisposition toward liking the 

option corroborates with the mere exposure effect, where repeated, unreinforced exposure to a 

stimulus can enhance participants’ attitude towards it (Bornstein & D’Agostino, 1992; Zajonc, 

1968, 2001). 

Thus, to summarize, the gaze bias may be qualitatively and quantitatively characterized at 

two levels: the disproportionate weighting of the fixated compared to the unfixated choice 

options resulting from having to voluntarily divide attention at each time point; and a simple 

shift toward liking the option looked at for a relatively longer duration in line with the mere 

exposure effect.  
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Conclusions 

In conclusion, this dissertation has contributed to previous research by describing the 

process of choice formation over two empirical studies in several ways. Findings from both 

studies not only attest to the overall structural generalizability of the choice formation process 

across different higher-level task goals, but also illustrate how several more quantitative details 

are task specific.  

People can effectively modulate their information search and valuation strategy by 

adjusting the relative and total quantity of information acquired in perceptual decision making, 

so as to fulfill the goal of objectively assessing sensory information. Participants in the 

perceptual frame were found to make more saccades in the perceptual rather than the preference 

frame when it was difficult to discriminate between the attractiveness of the two options, and to 

value the contribution of information from both fixated and unfixated items more equally than 

participants in the preference frame. As a result, perceptual participants were less susceptible to 

external biases, like the gaze bias, than preference participants, who were simply asked to choose 

the option they preferred.  

However, participants need to be actively and voluntarily engaged in the information 

search stage before higher-order intentions are manifested in the choice outcome. When 

participants passively observe task-relevant information, the lack of autonomy in the choice 

formation process makes them incapable of overcoming biases even if they originally intended to 

be objective. Thus, participants in both the perceptual and gambling conditions were equally 

likely to be influenced by the gaze bias when they could not control how information was 

acquired. Together, these results highlight the importance of relative, voluntary, overt attention 
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during the processes of information search and valuation across perceptual and preferential 

choice. 

What does this all mean for Juliet? Recall that Juliet was pretty adamant about her 

intention to resist the pull of the gaze bias. Given that she has the power to decide where and 

when to look at Paris, Juliet seems to be in a strong position to keep her emotions in check. But 

what happens if Paris does not even appear, and instead, Romeo steps into view while she is 

passively waiting at the feast? Perhaps Juliet is not that infallible after all. 
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APPENDIX A: Framing Manipulation 

 
Study 1: Two options presented on the left and right 

Preference condition.  

1. This is a preference task: look at the two ponds and choose which pond you would rather fish 

from.  

2. You will see 2 fishing ponds, each represented by a circular patch of dots onscreen. The dots 

represent the number and locations of fish that are on the surface of the pond at each 

moment. Every 50 ms, the number and locations of fish surfacing will be updated.  

3. Your task is to choose the pond from which you would prefer to fish from. Press “1” to 

choose the left pond, and press “2” to choose the right pond. Once you make your pick, you 

will catch all the fish that surface in the next 50 ms in the pond you chose. After which, the 

ponds will disappear and you will see the number of fish you caught in this trial.  

4. At the end of the experiment, we will pay you a bonus based on the total number of fish you 

have caught across trials. We expect the bonuses to range between $1 and $5. 

 

Perceptual condition.  

1. This is a perceptual task: look at the two ponds and choose the pond which has more fish 

surfacing on average.  

2. You will see 2 fishing ponds, each represented by a circular patch of dots onscreen. The dots 

represent the number and locations of fish that are on the surface of the pond at each 

moment. Every 50 ms, the number and locations of fish surfacing will be updated.  

3. Your task is to choose the pond that contains more fish on average. Press “1” to choose the 

left pond, and press “2” to choose the right pond. Once you make your pick, the ponds will 
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disappear and we will tell you how many fish that surface on average in the pond you chose. 

That number will be the number of fish you caught in this trial.  

4. At the end of the experiment, we will pay you a bonus based on the total number of fish you 

have caught across trials. We expect the bonuses to range between $1 and $5. 

 

Study 2: Two options (red and blue) presented centrally and sequentially 

Preference condition.  

1. This is a preference task: look at the two ponds and choose which pond you would rather fish 

from.  

2. You will see 2 fishing ponds, each represented by a red or blue circular patch of dots 

onscreen. The dots represent the number and locations of fish that are on the surface of the 

pond at each moment. Every 50 ms, the number and locations of fish surfacing will be 

updated.  

3. Your task is to choose the pond from which you would prefer to fish from. Press “1” to 

choose the RED pond, and press “2” to choose the BLUE pond. Make your choice after the 

ponds disappear.  You will catch all the fish that surface in the next 50 ms in the pond you 

chose. After which, you will see the number of fish you caught in this trial.  

4. At the end of the experiment, we will pay you a bonus based on the total number of fish you 

have caught across trials. We expect the bonuses to range between $1 and $5. 

 

Perceptual condition.  

1. This is a perceptual task: look at the two ponds and choose the pond which has more fish 

surfacing on average.  
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2. You will see 2 fishing ponds, each represented by a red or blue circular patch of dots 

onscreen. The dots represent the number and locations of fish that are on the surface of the 

pond at each moment. Every 50 ms, the number and locations of fish surfacing will be 

updated.  

3. Your task is to choose the pond that contains more fish on average. Press “1” to choose the 

RED pond, and press “2” to choose the BLUE pond. Once you make your pick, we will tell 

you the number of fish that surface on average in the pond you chose. That number will be 

the number of fish you caught in this trial.  

4.  At the end of the experiment, we will pay you a bonus based on the total number of fish you 

have caught across trials. We expect the bonuses to range between $1 and $5. 
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APPENDIX B: The Hierarchical Bayesian Drift Diffusion Models  

 

All the diffusion models were estimated using the rjags (Plummer, Stukalov, & 

Denwood, 2015) package with the JAGS Wiener module (Wabersich & Vandekerckhove, 2014), 

an extension for the Just-Another-Gibbs-Sampler (JAGS) in R. In all the models, Markov Chain 

Monte Carlo (MCMC) methods were used to generate 3 chains of 2000 steps estimated from the 

posterior distribution of each parameter. 

The models were Bayesian hierarchical models with participant-level and group-level 

estimates. All of the parameters except non-decision time (single value only throughout all 

conditions) were allowed to vary across the conditions.  
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STUDY 1: CLASSICAL OPTIONAL STOPPING DRIFT DIFFUISION MODEL  
model { 
  for ( i in 1:Ntotal ) { 

y[i]~ dwiener(alpha[x1[i],x2[i],subj[i]],tau[subj[i]],beta[x1[i],x2[i],subj[i]],deltaEff[i]) 
     deltaEff[i]<- delta[x1[i],x2[i],subj[i]] + deltaScale[x1[i],x2[i],subj[i]]*(x3[i]-3)   
  } 
 
  for (s in 1 : Nsubj) { 
    tau[s] ~ dnorm(muTau, tauTau) T( .1 , 1 ) 
    for ( j2 in 1 : Nx2Lvl ) { 
      for ( j1 in 1 : Nx1Lvl ) {         
        alpha[j1,j2,s] ~ dnorm(muAlpha[j1,j2],tauAlpha) T(.1,5) 
        beta[j1,j2,s] ~ dnorm(muBeta[j1,j2],tauBeta) T(.1,.9) 
        deltaScale[j1,j2,s] ~ dnorm( muDeltaScale[j1,j2] , tauDeltaScale )  T(-5 , 5)  
        delta[j1,j2,s] ~ dnorm( muDelta[j1,j2] , tauDelta ) T( -2 , 2 )     
   }}} 
   
  tauTau ~ dgamma(.001, .001)  
  muTau ~ dunif(.1, 1) 
 
  for (jC2 in 1:Nx2Lvl){  
    for (jC1 in 1:Nx1Lvl){  
      muAlpha[jC1,jC2] ~ dunif(.1,5) 
      muBeta[jC1,jC2] ~ dunif(.1,.9) 
      muDeltaScale[jC1,jC2]  ~ dunif(-5,5)   
      muDelta[jC1,jC2]  ~ dunif(-2,2)     
  }} 
   
  tauAlpha ~ dgamma(.001, .001)  
  tauBeta ~ dgamma(.001, .001)  
  tauDeltaScale ~ dgamma(.001, .001)  
  tauDelta ~ dgamma(.001, .001)    
}
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STUDY 1: ATTENTION DRIFT DIFFUISON MODEL 
model { 
  for ( i in 1:Ntotal ) { 

y[i] ~ dwiener(alpha[x1[i],x2[i],subj[i]],tau[subj[i]], beta[x1[i],x2[i],subj[i]], delta[i]) 
delta[i]<- deltaScale[x1[i],x2[i],subj[i]] * ( 

pRight[i]*(vRight[i] - fixDiscount[x1[i],x2[i],subj[i]] * vLeft[i])  
+ pCenter[i]*(vRight[i] - vLeft[i])  
+ pLeft[i]*(fixDiscount[x1[i],x2[i],subj[i]]* vRight[i] - vLeft[i])) 

  } 
  for (s in 1 : Nsubj) { 
    tau[s] ~ dnorm(muTau, tauTau) T( .1 , 1 ) 
    for ( j2 in 1 : Nx2Lvl ) { 
      for ( j1 in 1 : Nx1Lvl ) {         
        alpha[j1,j2,s] ~ dnorm(muAlpha[j1,j2],tauAlpha) T(.1,5) 
        beta[j1,j2,s] ~ dnorm(muBeta[j1,j2],tauBeta) T(.1,.9) 
        deltaScale[j1,j2,s] ~ dnorm( muDeltaScale[j1,j2] , tauDeltaScale )  T(-5,5) 
        fixDiscount[j1,j2,s] ~ dnorm( muFixDiscount[j1,j2] , tauFixDiscount )  T(.1,.99)       
  }}} 
  tauTau ~ dgamma(.001, .001)  
  muTau ~ dunif(.1, 1) 
 
  for (jC2 in 1:Nx2Lvl){  
    for (jC1 in 1:Nx1Lvl){  
      muAlpha[jC1,jC2] ~ dunif(.1,5) 
      muBeta[jC1,jC2] ~ dunif(.1,.9) 
      muDeltaScale[jC1,jC2]  ~ dunif(-5,5)   
      muFixDiscount[jC1,jC2]  ~ dunif(.1,.99)     
  }} 
  tauAlpha ~ dgamma(.001, .001)  
  tauBeta ~ dgamma(.001, .001)  
  tauDeltaScale ~ dgamma(.001, .001)  
  tauFixDiscount ~ dgamma(.001, .001)    
}
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STUDY 2: CLASSICAL INTERROGATION DRIFT DIFFUISION MODEL  
model {  
  for ( i in 1:Ntotal ) { 
    y[i] ~ dbern(mu[i]) 
    mu[i] <- pnorm(ev[i],0,sigma[i]) 
    sigma[i] <- (.1)^2 * (rt[i]-tau[subj[i]]) 
    ev[i] <- beta[x1[i],x2[i],subj[i]] + deltaEff[i] * (rt[i]-tau[subj[i]]) 
    deltaEff[i]<- delta[x1[i],x2[i],subj[i]] + deltaScale[x1[i],x2[i],subj[i]]*(x3[i]-3)   
  } 
 
  for (s in 1 : Nsubj) { 
    tau[s] ~ dnorm(muTau, tauTau) T( .05 , 1 ) 
      for ( j2 in 1 : Nx2Lvl ) { 
        for ( j1 in 1 : Nx1Lvl ) {         
          beta[j1,j2,s] ~ dnorm(muBeta[j1,j2],tauBeta) T(-7,7) 
          delta[j1,j2,s] ~ dnorm( muDelta[j1,j2] , tauDelta ) T(-3,3)  
          deltaScale[j1,j2,s] ~ dnorm( muDeltaScale[j1,j2] , tauDeltaScale ) T(-6,6)  
  }}} 
   
  tauTau ~ dgamma(.001, .001)  
  muTau ~ dunif(.05, 1) 
 
  for (jC2 in 1:Nx2Lvl){  
    for (jC1 in 1:Nx1Lvl){  
        muBeta[jC1,jC2] ~ dunif(-7,7) 
        muDelta[jC1,jC2]  ~ dunif(-3,3)    
        muDeltaScale[jC1,jC2]  ~ dunif(-6,6) 
  }} 
 
  tauBeta ~ dgamma(.001, .001)  
  tauDelta ~ dgamma(.001, .001) 
  tauDeltaScale ~ dgamma(.001, .001) 
} 
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APPENDIX C: Classical Drift Diffusion Model Parameter Estimates for Study 1 

 

 
 
 
Figure 20. Parameter estimates of the classical drift diffusion model for Study 1. 

 

In the classical drift diffusion model, the baseline drift rates (Figure 20A) across all the 

conditions were, as expected, close to zero. Although the mean drift rates for the cued conditions 

shifted slightly in line with the location of the cue, the shift was not significant. Likewise, the 

sensitivity of the drift rate to the difference in option attractiveness was significantly higher in 

the perceptual frame only for the left cue (Mean slope difference = 0.11, HDILOW = 0.004 and 

HDIHIGH = 0.208) but not in the center or right cue condition (Figure 20B). As a result, there was 

no main effect of task frame on drift sensitivity. The thresholds were also similar across 

conditions (Figure 20C). People were, however, biased to choice the cued option (Figure 20D). 

In the gambling frame, the bias parameter was significantly above and below 50% (when the cue 
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was in the center) in the right and left cued condition respectively, and in the perceptual frame, 

the bias parameter was significantly above 50% in the left condition.   

Overall, the parameter estimates from the classical drift diffusion model were unable to 

capture differences in gaze exposure on the baseline drift rate across tasks. From this set of 

results, we would erroneously conclude that the cue simply has a priming effect, but does not 

affect the rate of evidence accumulation. However, the attention drift diffusion model shows that 

not only does the exogenous cue prime participants to pick the cued option, the cue also leads to 

differences in gaze patterns, which then affects the rate of information accumulated from the two 

options.   
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APPENDIX D: Attention Drift Diffusion Model Parameter Estimates for Study 2 

The interrogation version of the attention drift diffusion model was fit to study 2 and 

yielded the parameter estimates in Figure 20.  

 

Figure 21. Parameter estimates of the attention drift diffusion model for Study 2. 
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Notably, the fixation weight is close to 1 across both tasks frames, indicating that the 

process approximates the classical drift diffusion model. This is unsurprising, as the fixation 

weight parameter is meant to index moment-to-moment relative divided attention, which occurs 

in Study 1 but not in Study 2. Instead, the relative gaze duration manipulation in Study 2 is at the 

aggregate level across the entire trial, and participants are able to devote their full attention to the 

single stimulus option appearing at each time point onscreen.  
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APPENDIX E: Study with Repeated Information 

A total of 32 participants were run in the gambling condition in this study, over the 8 

conditions outlined in Table 4. The procedure was similar to the second study. However, each 

item was presented only once, and in some of the conditions (16R), a series of 8 unique dot 

frames were repeated to generate a total of 16 frames. Participants were not told of this 

manipulation, and were simply asked to decide if they preferred the red or blue option.  

 

Table 4. Stimulus duration levels in the follow-up third study. 

The repeated frames are indicated by 16R, which mean that a series of 8 unique frames were 

repeated again. The rest of the frames were unique. 

ID 
Number of 

switches 

Number and type of 

frames 

Duration of 

first option 

Total Set 1 Set 2 
 

1 1 16 8 8 50% 

2 1 24 8 16 33% 

3 1 24 8 16R 33% 

4 1 24 16 8 67% 

5 1 24 16R 8 67% 

6 1 32 16 16 50% 

7 1 32 16R 16 50% 

8 1 32 16 16R 50% 
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Repeating the stimulus frames did not have an effect on choice. The results corroborate 

the second study, and show that participants were more likely to choose the option that was 

presented for a longer time (Figure 22).  

 

 

Figure 22. Probability of choosing the first option in Study 3. 

Data and corresponding psychometric curve describing the probability of choosing the first 

option against the difference in option attractiveness in Study 3. The data was conditioned by the 

relative duration of the first option (line colors and shape).  
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