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ABSTRACT

MAXIMAL COMMUTATIVE SUBALGEBRAS OF n BY n MATRICES OVER A
FIELD

BY

Young Kwon Song

The existence of R.C. Courter’s counterexample to M. Gerstenhaber’s conjecture
suggests some interesting questions about the isomorphism classes of local algebras
in the ring of 14 by 14 matrices. It was conjectured for a long time that Courter’s

example is unique up to isomorphism.

In Chapter 2, we will show that the class of maximal, local, commutative algebras
which are isomorphic to Bx N2 has only one isomorphism class. Next, we will show
the class of pairs (R, V') which are (o, 7)-isomorphic to (Bx N2, B2® N) has only one

isomorphism class.

In Chapter 3, we will construct a new algebra S which is maximal, local, commuta-
tive, index of Jacobson radical 3, and dimension 13. We will use S to show the (B, N)-
construction depends on the field k. The algebra S is not a (B, N)-construction if k
is the real numbers and is a (B, N)-construction if k is an algebraically closed field.
Finally, we will answer the above conjecture by showing the algebra S is not isomor-

phic to the Courter’s algebra.
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Chapter 1

Notation and History

In this thesis, k will denote an arbitrary field. We will let N denote the natural
numbers, i.e. N={1,2,3,...}. If m,n € N, then M,,x»(k) will denote the set of all

m X n matrices with entries in k.

If m = n, then we will abbreviate Mpyxn(k) by T,. We will assume n > 2
throughout this thesis. An associative ring R will be called a k-algebra if R is a
k-vector space and a(rr’) = (ar)r' = r(ar’) for all @ € k and 7,7 € R. In this
thesis, all k-algebras will be assumed to contain a (multiplicative) identity 1 # 0. In
particular, if R is a k-algebra, then dimi(R) > 1. T, is an example of k-algebra.
A k-subspace Ry of a k-algebra R will be called a k-subalgebra of R if Ry is closed
under multiplication from R and R, contains the identity of R. We will assume all

k-algebra homomorphisms take the identity to identity.

Let R be a commutative, k-subalgebra of T,,. Thus, zy = yz for all z,y € R.
R is called a maximal, commutative, k-subalgebra of T, if R satisfies the following
property : If R’ is a commutative, k-subalgebra of T, and R C R/, then R = R'. Thus,
a maximal, commutative, k-subalgebra of T;, is a maximal element with respect to
inclusion in the set of all maximal, commutative, k-subalgebras of T,,. We will let

M, (k) denote the set of all maximal, commutative, k-subalgebras of T,,.

1



Thus, if Cr,,(S) = {A € T,, | As = sA, forall s € S} is the centralizer of a
set S in T,, then a commutative, k-subalgebra R of T,, is maximal if and only if

Cr.(R)=R.

Maximal, commutative, k-subalgebras of 7;,, come in many different shapes and

sizes. Here are a few examples.

Example 1: Let p,q € N such that | p—¢|< 1. Set n=p+q. Let
_ zl, Z
(1) R—{(qu,, qu)eT,,u:ek,ZeM,,xq(k)}.

In Equation (1), I, denotes the identity matrix of size p by p and O,x, denotes
the zero matrix of size g by p. Then, R is a commutative, k-subalgebra of T,, and it

is easy to check that Cr, (R) = R. Thus, R € M,(k). We will call R a Schur algebra

of size n.

Throughout this thesis, we will denote the Schur algebra of size 4 by B. Thus,

z 0 a b
(2) B= g :): : g | z,a,b,c,d € k
000TC<

a

Example 2: Let R = k[D], where D € T, is a nonderogatory matrix. Since D
is nonderogatory, the characteristic polynomial cp of D and the minimal polynomial
mp of D are the same. Consequently, dimi(k[D]) = deg(mp) = deg(cp) = n.
Suppose D’ € Cr,(R). Then, DD’ = D'D and by [7: Theorem 2], n = dim(k[D]) <
dimy(k[D, D'])) < n. Thus, k[D, D] = k|[D] and in particular, D’ € k[D] = R. We
conclude R € My (k). O



Example 3: Let

a) 0 --- 0
a a o 0

(3) rR={l 2T |eTulaeki=12...n
a, o --- a;

Then, R is clearly a commutative k-subalgebra of T;,, and Cr,(R) = R. Thus,
R € M, (k). o

Example 4 (R.C. Courter): Let C = kI, @ J C T4, where J is the set of all

matrices of the following form:

/ O2x2 O2x10 02x2 \

I o
O zp
T2 (0
O 1z

o
(4) 151 Zqy O10x10 Orox2

%) O
0 T2
211 212
221 222
Yu %2 2n 212 221 22 O O O O 1z =y

02x2
\ Y21 Y22 O O O O 2z11 219 21 2 To I }

In Equation (4), zij,¥ij, and z;; € k. In [6], R.C.Courter showed Ce€ M,(k).
Notice dim;(C) = 13. We will call C Courter’s algebra. O

Recall that a commutative ring R is called a local ring if R has precisely one
maximal ideal. If R is a local ring, then the Jacobson radical J(R) of R is the unique
maximal of R. R/J(R) is called the residue class field of R. We shall use the notation
(R, J, k) to indicate that R is a local ring with maximal ideal J and residue class field
k. For example, the Schur algebras discussed in Example 2 are all local rings with

maximal ideal J = Opxp Z | Z € Mpxq(k) ¢ and residue class field k.
Ogxp Ogxq



If M is a module over a commutative ring R, then M is called a faithful, R-module
if Anng(M) = (0). Here, Anng(M) = {r € R|rM = (0)} is the annihilator of M.

For example, k* = M)x4(k) is a faithful, B-module via right multiplication.

Let X denote the category whose objects are ordered pairs (G, H), where G is
a finite dimensional, local, commutative, k-algebra and H is a finitely generated,
faithful, G-module. If (G, H), (G’, H') are two objects in X, then a morphism from
(G,H) to (G',H') is an ordered pair (0,7), where 0 : G — G’ is a k-algebra
homomorphism, 7 : H — H' is a k-vector space homomorphism and 7(hg) =
7(h)o(g) for all h € H and g € G. We will use the notation (o,7) : (G, H) —
(G', H') to indicate the morphism (o, 7) from (G, H) to (G', H'). We call a morphism
(o,7) : (G,H) — (G', H') an isomorphism if o is a k-algebra isomorphism and 7
is a k-vector space isomorphism. In this case we will use the notation (G, H) =)
(G, H'). The reader can easily check that (o, 7) is an isomorphism if and only if (o, 7)

is an isomorphism in the category X.

Let (G,H) € X. We denote the set of G-module homomorphisms from H to
H by Homg(H, H). Since G is a commutative ring, each ¢ € G determines a G-
module endomorphism pu, of H given by p4(h) = hg for h € H. We then have
amap ¢ : G — Homg(H, H) given by ¢(g9) = p,. Note that ¢ is a k-algebra
homomorphism. The map ¢ is called the regular representation of G given by H.
We say the G-module has a small endomorphism ring if Homg(H, H) & G via the
regular representation. Let MX denote the full subcategory of X whose objects are
those (G, H) € X for which the G-module H has a small endomorphism ring. If
(G,H) € X, then (G,H) € MX if and only if Homg(H, H) = G via the regular

representation. Consider the following examples.

Example 5: Let G be a local, commutative, k-algebra with dim,(G) = n.



Then, G is a finitely generated, faithful, G-module. Notice that Homg(G,G) = G
via the regular representation. Thus, G has a small endomorphism ring G, and

(G,G) € MX. O

Example 6: If R is a commutative, k-subalgebra of T, then V = k™ = My, (k)
is a finitely generated, faithful, (right) R-module via the usual matrix multiplication.
In particular, if V = k'* and R = C, Courter’s algebra described in Example 4, then
(C,V) € X. Since Ce Myy(k), it follows from [4, Proposition 1] that (C,V) € MX.

0

In Example 6, we begin to see the connection between algebras in M, (k) and
objects in MX. Let R be a k-subalgebra of T,, and set V = k™. Then, V is
a finitely generated, faithful, R-module with scalar multiplication given by wvr for
v € V,r € R. Set H = Hom,(V,V). Let p: T, — H be the representation given
by u(A)(v) = vA. Notice that p is an anti k-algebra isomorphism of T, onto H. For
eachi=1,2,...,n,sete; =(0,...,1,...,0) € V. We will call ¢ = {e},...,€,} the
canonical basis of V. Let I' : H — T,, denote the matrix representation of elements
of H via g. Thus, if f € H and f(e;) = T}, aij€5,i = 1,...,n, then ['(f) = (ay;).
I' is an anti k-algebra isomorphism of H onto T;,. The reader can easily check that
'y = 11, the identity map of 7,,. We have now constructed the following sequence

of k-algebras and anti k-algebra isomorphisms.

(5) T, % H -5 T, with Tu=1r,.

For any commutative, k-subalgebra R C T,, u(Cr,(R)) = Cx(u(R)). Here,
Cx(u(R)) is the centralizer in H of u(R). Likewise, I'(Cx(u(R))) = Cra(Tu(R)) =
Cr,(R). Now, suppose R € Mu(k). Then, R = Cr,(R) and Cx(u(R)) = Homg(V,V).

Since R is commutative, p : R — p(R) is a homomorphism. Hence, the map

(6) R = Cr,(R) = u(R) = p(Cr, (R)) = Cu(u(R)) = Homg(V, V)



given in Equation (6) is a k-algebra isomorphism. This map is just the regular
representation of R afforded by V. Therefore, Vg (the right R-module V') has a small
endomorphism ring. Thus, if R is local and R € M, (k), then (R,V) € MX.

Conversely, suppose R is a commutative, k-subalgebra of T;, such that Vz has a
small endomorphism ring. Then, Cx(u(R)) = u(R) and Cr, (R) = I'(Cx(u(R))) =
Fu(R) = R. Thus, R € M,(k). Hence, if (R,V) € MX, then R is a local and
R € M, (k). In summary, if R is a local, k-subalgebra of T,, then R € M, (k) if and
only if (R,V) € MX.

Isomorphism classes in the category MX correspond to isomorphism classes of
local, k-algebras in My, (k). Local algebras in M,(k) with p < n are the fundamental
building blocks of algebras in general in M,(k). To see this, let
R € M,(k). Since dimi(R) < oo, R is an artinian ring. It follows from [9:
Theorem 3, p205] that R = &!_, R;, a finite direct sum of artinian, local rings R;,
i=1,...,¢ Since R contains the identity, V = VR = &{_,VR;. Set V; = VR;,i =
1,...,£. Then, V = @._,V;. and each V; is a finitely generated, faithful, R;-module.
Notice R = Hompgp(V,V) = [If,., Homgp(V;,V;) = [Ii-; Hompi(V;, V;). 1t follows
that R; = Hompg;(V;,V;). Hence, R; € M, (k), where n; = dim,(V;), i = 1,...,¢.
Thus, R; € M, (k) can be decomposed into local, maximal, commutative subalgebras
of smaller dimensions. Thus, it suffices to study maximal, commutative subalgebras
which are local to understand the structure of maximal, commutative subalgebras in
general. We will use the notation (R, J(R),k) € M,(k) to denote a local, commu-
tative, k-algebra R € M, (k) which has J(R) as its Jacobson radical and k as its

residue class field. If R is clear, then we will use J instead of J(R).

In [7], M.Gerstenhaber conjectured that dim(R) > n for any R € M, (k). In [6],
R.C. Courter constructed an algebra C € M4(k) which is local, dimy(C) = 13, and



i(J(C)) = 3. Here, i(J(C)) is the index of nilpotency of the ideal J(C). Courter’s
counterexample to Gerstenhaber’s conjecture is minimal with respect to both n and
i(=i(J(R))). In [8], T.J. Laffey showed that dim,(R) > n for R € M,(k) if n < 13.
Thus, n = 14 is the smallest integer for which dim,(R) can be less than n. In [6],
R.C. Courter showed that i(J(R)) < 2 implies that dim,(R) > n for any R € M,(k).
Thus, 7 = 3 is the smallest index of nilpotency for which dim,(R) can be less than
n for R € M, (k). The existence of Courter’s example in Mj4(k) suggests some
interesting questions about the isomorphism classes of local algebras in Mj4(k). For
example, one could ask if Courter’s example is unique up to isomorphism. To be
more specific, is (C,V) unique up to (o, 7)-isomorphism in MX? It turns out the
Courter’s example is not unique and we will construct another example in this thesis.
Let B be a commutative ring and M a right B-module. The direct sum B & M of the
B-modules B and M can be given the structure of a commutative ring by defining

multiplication in the following way.
(7) (bl,ml)(bg,mg) = (blbg,mzbl + mlbg),b,‘ € Bm;e M,i=1,2.

The commutative ring thus defined is called the idealization of M and will be denoted

by Bx M.

Suppose R € M, (k). We say R is a (B, N)-construction if R is k-isomorphic to
B x N* for some (B, N) € X and £ € N. Here, N¢ denotes the direct sum of £ copies
of B-module N. The B-module B‘® N is a B x N -module with scalar multiplication
defined as follows.

¢
(8) (bl, ce ,b,,n)(b,nl, e ,n,) = (blb, . ,b(b, nb+ Zn,-b,-).

i=1

It is easy to check that B‘@ N is a finitely generated, faithful, B x N¢-module. In
[3: Theorem 2], W.C. Brown and F.W. Call showed that the B x N‘-module B! ® N



has a small endomorphism ring. Thus, (B x N¢ B*® N) € MX for all (B, N) € X.
We call (G, H) € X a Cj-construction if (G, H) =) (B x N, B*® N) for some
(B,N) € X and £ € N. In [3], W.C.Brown and F.W.Call showed that Courter’s
algebra C is a (B, N)-construction. In [4], W.C.Brown proved that (C,V) is a C-
construction. In fact, (C,V) =) (B xN?,B2 @ N), where B is the Schur algebra of
size 4, N = k*, and V = k.

Let Q = {(R, J, k) € Myy(k) | dimx(R) = 13,i(J) = 3}. Example 4 shows that
Ce Q. We are interested in how many algebras in Q are (B, N)-constructions. To be
more specific, we are interested in how many algebras in Q are (B,N)-constructions,
where B is the Schur algebra of size 4 defined in Equation (2). To this end, let
MB(4) denote the class of all faithful, B-modules of vector space dimension 4. Let
Q.= {(R, J,k) € Q| R= BxN? for some N € MB(4) }. We have noted that C€ Q,.
Let QC, = {(R,V) € MX| (R,V) ¥(.r) (B xN?,B2® N) for some N € MB(4) }.
We have noted that (C,k') € QC,.

In Chapter 2, we will prove that if R, R' € Q,, then R = R’ = C as k-algebras.
Thus, Qs has only one k-algebra isomorphism class [C]. If (R,V),(R,V) € QC,,
then we will show that (R,V) &, (R,V) =, ) (C, k). Thus, QC) has only one

(o, T)-isomorphism class [(C,k)].

In Chapter 3, we will study the following question: If (R, J, k) € 2, is R a (B, N)-
construction and is (R, k™) a Cj-construction? If k = R, the real numbers, then we
will construct a k-algebra (S, J, k) € Q that is not a (B, N)-construction. Further-
more, we will prove that (S, k'*) is not a C;-construction in Chapter 3. Finally, we
will prove that S is not k-algebra isomorphic to C. and conclude that 2 has at least

two k-algebra isomorphism classes [S] and [C].



Chapter 2

Uniqueness of Algebras in (23 and QC;

2.1 Algebras in (2

In this section, we will prove two important theorems about the algebras in set §2.
Let R € ). By replacing R with a suitable k-algebra isomorphic copy, we can assume
the elements in J have a particularly simple form. Let R; and R, be k-algebras in

T,. If Ry = P71R,P for some P € GL(n, k), then we say R, and R, are conjugate.

Lemma 2.1: Let R; € M,(k) and let R, be a commutative, k-subalgebra of T,,.

If Ry and R, are conjugate, then Ry € My(k).

Proof: Since R, is commutative, it is enough to show that Cr, (R;) C R,. Let
r € Cr,(Ry). Since R, is conjugate to R;, R; = P~!R, P for some P € GL(n,k).
Hence, r(P~'r,P) € (P~'r,P)r for all 7y € R;. Therefore, (PrP~)r, = r (PrP™!).
Thus, PrP~! € Cr,(R,) = R,. Hence, r € P"!R,P = R,. ]

Lemma 2.2: Let R, € M,(k) and let Ry be a commutative, k-subalgebra of T,,.

If R, = RT (transpose of R,), then Ry € M, (k).

Proof: Again it is enough to show that Cr,(R;) C R,. Let r € Cr, (R;). since
'R, = RT, rrT =rTrforallr, € Ry. Then, r7T = rTr; and hence rT € Cr, (R,) = R,.

'Thus, r € RT = R,. ]
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Theorem 2.3: Let (R, J, k) € Q. Then, there exists (Ry, J(R:), k) € 2 such that

R and R, are conjugate and each element r € J(R;) is a matriz of the following form
( O, O O )
(9) A Oy O |.
C B O

Here, O, denotes the zero matriz of size n by n, A € Miox2(k), B € Max10(k), and
CeTs.

Proof: Let V. =k" Vi = (0) :v J = {v eV | vJ = (0)},Vze = (0) :v J?
p = dimg(V}), ¢ = dimy(Va/V}), and € = 14 — p — q. Since i(J) = 3, VJ2 C V; C V,.
Suppose p = 0. Then, V; = (0) and consequently, VJ? = (0). Since V is a faithful,
R-module, J? = (0). This is impossible since i(J) = 3. Thus, p > 1. Suppose ¢ = 0.
Then, VJ C V; = V; and again VJ? = (0). This is a contradiction. Hence, ¢ > 1. In

[8: p 203], T.J. Laffey showed that
5 P+9

(10) dimg(R) > 1+ 50 +1+pt.
Let

_q(p+9) _l4p+0)+ (P -1)(2-1)
(11) f(f,p,Q)——1+pe +1+4+pl = T+t -

Since dim,(R) = 13, f(¢,p,q) < 13. An easy computation shows¢ =p =2and g = 10
are the only positive integers satisfying the inequality in (10). Since dim,(V}) =
p =2,V = L(ay,a3), i.e. V is a linear span of two linearly independent vectors
oy, . Similarly, V; = L(ay,...,a12) and V = L(ay,...,a;4) for some k-basis A =
{a1,...,014} of V. Then, for any a € V,a = 0}4,0,z; for some z; € k,i =1,...,14.
Ifr € J, then osr = 0 fori = 1,2,47 € V} fori = 1,...,12, and ay7 € V; for
i = 13, 14. Thus, each r € J has the following matrix representation with respect to

the basis A.
O, O (0]
(12) Ta(R)= ( A(r) Op O )
C(r) B(r) O,
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Here, A(r) € Myoxa(k), B(r) € Max10(k), and C(r) € Ts.

Let Ry = T'a(R). The matrix representation of each r € R with respect to
€ is r and with respect to A is [a(R). Hence, there exists P € GL(14,k) such
that P~'rP = [a(r) for all 7 € R. Thus, P"'RP = R;. Since R = R, as k-
algebras, dimy(R;) = 13 and i(J(R;)) = 3. By Lemma 2.1, Ry € My,(k). Thus,
(Ry1, J(Ry), k) € Q and the elements in J(R;) have the form given in (9). o

For an algebra R € 2, Theorem 2.3 has the following interpretation. Any algebra
conjugate to R lies in the isomorphism class [R] of R. Hence, in studying [R], we
can assume the elements in J(R) are described as in Equation (9). We will use those

ideas to study the socle of an algebra R in Q.

Let R be a commutative, k-algebra with Jacobson radical J and dim;(R) < oc.
The socle of R, Soc(R), is the annihilator of J. Thus, Soc(R) = Anng(J) = {r € R |

rJ = (0)}. The following Lemma is obvious from the definition.

Lemma 2.4: Let R and R, be finite dimensional, commutative, k-algebras. If

R = R, as k-algebras, then Soc(R) = Soc(R,). o

Theorem 2.5: Suppose (R,J,k) € Q. Then, dimi(Soc(R)) = 4. Furthermore,

R is conjugate to an (R, J(R,),k) € Q such that each element of Soc(R;) has the

following form.
O, O O
(13) r= O 010 (0
C(r) O O,

Proof: Using Theorem 2.3, we may assume that each 7 € J has the form in

Equation (9). Let V = k. Since i(J) = 3, we have the following strict containments.

(14) 0)<(0):vs J<VJI<V.
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Let W1 == (0) wvJ J, W2 = VJ, H = dimk(Wl), A= d’imk(Wg/Wl), and
v = dimy(V/W,). Then, p+ A+ v = 14. Let

(0,0 O
(15) Ej=| 0 0w O |, 1<4,j<2.
E;, O O

In (15), E;; is the 4, j-th matrix unit of T;. Equation (9) implies Ejjr = 0 = rE};
for all 7 € J(R) and 1 < 4,j < 2. Thus, E;; € R. Clearly, E;; € Soc(R) for

1 <14,j <2 and hence, dimi(Soc(R)) > 4.

Since €; = €13E1; and €3 = €14F12, &; € Wy for i = 1,2. Since ,J = €2 = (0),
g; € Wi,1 = 1,2. Thus, p > 2. We had seen from Theorem 2.3 that dim((0) :v
J) = 2. Since W; C (0) :y J,u < 2. Therefore, p = 2. The strict inclusions in
Equation (14) imply that A > 1,» > 1. Since {e,&;} is a k-vector space basis of
W, we can extend it to bases of W, and V. Let {8,..., B\, €1,€2} be a basis of W,
and A = {7,.. %, B1,..-,0r 1,62} be a basis of V. If r € J, then g;r = 0 for
i =1,...,v. Thus, we have the following matrix representation of » € J with respect
to the basis A.

O, A(r) C(r)

(16) TCa(r) = ( O O, B(r) ) .

o O 0O,

Let Ry = Ca(r). Since R, = P~!'RP for some P € GL(14,k), R, = R as k-algebras.
Thus, by Lemma 2.1, R; € §). Let Ry = R{, the transpose of R;. Then, each element
r € J(Ry) is of the form

o, O o
(17) r=| Ai(r) O, (0]

Cl (7‘) BI(T) 02
Here, A,(r) = A(r)T, By(r) = B(r)7, and C(r) = C(r)T. Since R, is commutative,

R, = R, as k-algebras. By Lemma 2.2, (Ry, J(R2), k) € Q.
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Let r € Soc(R;). From (17), i € (0) :v J(Ry) for i« = 1,...,v. Thus,
dim((0) :v J(Ry)) > v. Since (R,, J(Ry),k) € Q, the proof of Theorem 2.3 im-
plies that dim((0) :v J(Rz)) = 2. Thus, v < 2.

Let r € Soc(R). Then, e;r =0fori=1,2,8r =0fori=1,...,) and v;r € W)
for i = 1,...,v. Thus, we have the following matrix representation of r € Soc(R)

with respect to the basis A

0, 0 C(r)
(18) I‘A(r)=(0 Oy O )

O 0 O
By Lemma 2.4, 4 < dimi(Soc(R)) = dimg(Soc(R;)) < 2v < 4.. Therefore,
dim(Soc(R)) = 4 and each element r € J has the form in Equation (13). O

Putting Theorem 2.3 and 2.5 together, we can always assume that a specific
representative R of an isomorphism class [R] has the following form. Every element

r € J(R) can be written in the form

O, O O
(19) r= A 010 o .

C B O,

Furthermore, the socle of R is the set of all matrices of the form

0, 0O O
(20) Soc(R)={(O Ow O )ICGTQ}.
C 0 O

2.2 Classification of isomorphism classes in {2z and
QC,

The reader will recall that Q= {(R, J, k) € 2 | R = Bx N2 for some N € MB(4)},
where B is the Schur algebra defined in Equation (2). We had noticed that the
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Courter’s example (C,J(C),k) € Q. In [3: Example 5], Brown and Call showed
that C= Bix(k*)2. This leads to a natural question about the role k* is playing
in this example. One can ask whether other finitely generated, faithful, B-modules
N € MB(4) give algebras Bx N? which determine other isomorphism classes in Qg?
In this section, we will show Qg has only one isomorphism class [C]. Thus, varing N

in MB(4) yields no new isomorphism classes in Q.

The reader will also recall that QC) = {(R,V) € MX| (R,V) Z(5.r) (BxN?, B2
N) for some N € MB(4) }. In this section, we will show that the set QC; has only

one (o, 7)-isomorphism class [(C, k)]

The questions above make sense because MB(4) has at least two isomorphism
classes. To see this, we first need a B-module presentation of k*. We will denote the

i, j-th matrix unit of T; by E;;. Notice that E;; € Bifi=1,2,j = 3,4.

Lemma 2.6: Let

( En Eu Ey Ew O O
(21) A—(—Ela “Eu O O Eg Eu)EMM(B)'

Then, B*/CS(A) € MB(4).

Proof: Obviously, B2/CS(A) is a finitely generated, B-module. Since dim;(B?) =

10 and dim(CS(A)) = 6,dimi(B%/CS(A)) = 4. Suppose r € Anng(B%/CS(A)).
I 0] o C .

Then, r( 04 ),r( I ) € CS(A). Thus, ( 6 ) ,( , ) € CS(A) which implies

that for some z;,y;, € B,1<14,j <6

r= 1‘1E'23 + $2E24 + 1‘3E13 + $4E14
(22) 0= —$1E13 - $2El4 + $5E23 + I5E24
0 =y1Ey3 + y2E2 + y3Er3 + ys Erg

T = =1 Ei3 — Y2 B + ys B3 + ys Eos
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Since J(B)?> = (0), we can assume z;,y; € k = kly for 1 < 4,5 < 6. The sec-
ond and third equations in (22) imply z,, z3, s, Zs, Y1, ¥2, ¥3, Y4 are all zero. Thus,
r = 13E 3+ T4F14 = ysE23+ysEos. Therefore, r = 0. Hence, Anng(B?/CS(A)) = (0)
and B?/CS(A) is a faithful, B-module. w

Lemma 2.7: Let A be the matriz in Equation (21). Then B2/CS(A) is B-module
isomorphic to k*.

Proof: Let f : B2 — k* be the map defined by f( :; ) = €92 + €,y. Here,
e; = (1,0,0,0) and e; = (0,1,0,0). Then, f is a surjective, B-module homomor-
phism. If ( ; ) € ker f, then z = a,I; + aE\3 + a3E14 + a4F23 + asFo4 and
w = bly + byFE\3 + b3E 4 + byEo3 + bsFy4 for some a;,b; € k,i = 1,...,5. Since
f( : ) =¢epz+e,w=20,a;, =b; =0,by =—ay, and b3 = —as.

Thus,

(23)

Hence, ( ;} ) € CS(A). It is easy to check that CS(A) C kerf. Therefore, CS(A) =
kerf. Hence, B?2/CS(A) = k* as B-modules. m]

We can now construct a faithful, B-module of dimension 4 which is not isomorphic

to k* as B-modules.

Theorem 2.8: Let

(24) C=(El3 Ey Eyp Ey O O

Ey En O O Ey EM)EM““(B)'

Then, B2/CS(C) € MB(4) and B?/CS(C) is not B-module isomorphic to k*.
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Proof: Obviously, B?/CS(C) is a finitely generated, B-module.  Since
dimy(B?) = 10 and dimi(CS(C)) = 6, dimi(B?/CS(C)) = 4. Suppose
r € Anng(B?/CS(C)). Then, ( 8 ) ,( 0

, ) € CS(C) which implies that for some
Zi, Y GB, 1 S 7’).7 S 6

T =21E13 + 2oF 14 + T3FE93 + T4 Fy
(25) 0 =1z,Ey + z2FE03 + z5E13 + T6 By
0=wy1E13+y2F14 +ysEas + yaFEoy

T = Y1 Eo + y2E23 + ysEr13 + ys B4

Since J(B)? = (0), we can assume z;,y; € k = kIy for 1 < i,j < 6. The sec-
ond and third equations in (25) imply z;,z2, s, Ts, Y1, Y2, Y3, Ya are all zero. Thus,
r = 23F53+14Fo4 = ysE13+ysE14. Therefore, r = 0. Hence, Anng(B%/CS(C)) = (0)
and B%/CS(C) € MB(4).

Suppose B%/CS(C) is B-module isomorphic to k*. Then, there exists a B-module

isomorphism g : B?/CS(C) — k% Let B, = (g) = (g) + CS(C) €

(0
I

e2B,g(01) = e1z1 + €ay1 and g(B2) = €172 + €2y2 for some z;,y; € B, i = 1,2.

B2/CS(C). and B, = ( ) . Then, B?/CS(C) = B1B+0B;B. Since k* = ;B +

Notice that z; or y; is unit. To see this, suppose z;,y; € J(B). Then, g(8) =

€171 + e2y1 € k*J(B). The inclusions
(26) k* = g(1)B + g(B2)B C k*J(B) + g(52)J(B) C k*

imply k* = k*J(B) + g(B2)J(B). By Nakayama’s Lemma, k* = g(8¢)J(B). This
implies B is isomorphic to k* as B-modules and hence dim,(B)= 4. Since dim;(B)= 5,

" this is impossible. Hence, z; or y; is unit in B. Similarly, z, or y» is unit.

Let A be the matrix given in Equation (21) and let f be the B-module homomor-
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phism given in the proof of Lemma 2.7. If ( :'; ) € CS(C), then

= (6171 + €291)z + (6122 + £252)w
(27) = g(b1)z + g(B2)w
= g(f1z + Bow) |
Thus,
Yo 2\ _ [ nzt+ypw =
(28) (xl $2) ('UJ)_— (xlz+x2w)€kerf_CS(A).

Now, there are two cases to consider.

Case 1: Suppose r; is a unit. Since ( g“’ ) e CS(C), ( B Y2 ) ( Ei3 )
24 I I

€ CS(C) by the Equation (28). Hence,

Y1 Y2 Ey3 _ Eqy; Eoq Es
(n5)(8) —=( B )r=(5)r=(7)

(29)

for some a; € k,1 < i < 6 (See the comments after Equation (22)). Thus,

Y1E13 + yoEyy = a1Eg3 + agEoy + a3 Ey3 + a4 By
(30)
T1E13 + 22FEy = —a1E3 — a2E14 + asEg3 + agEoy.

Let z; = ;14 + s; with t; € k and s, € J(B). The first equation in (30) then
implies a; = a4 = 0. The second equation in (30) then implies ¢;, = 0. Thus,

z, € J(B). Since we are assuming z; is a unit, this is impossible.
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Case 2: Suppose y; is a unit. Since ( Ex ) € CS(C), ( 1 W2 ) ( Ex )
€ CS(C) by the Equation (28). Hence,

1 Y2 Exn ) _ Es E Ey3
(5 5)(%) = (5) () =(7)

(31)

for some b; € k,1 <1 < 6. Thus,

Y1E93 = b1 Eg3 + by Eyy + b3 Ey3 + by Eyy
(32)
T1Eo = —b1Ei3 — by Er4 + bs Eg3 + bg Eyy.

The second equation in (32) implies b; = 0 and the first equation in (32) implies
y1 € J(B). This is impossible. We conclude there is no B-module isomorphism g
between B2/CS(C) and k*. ]

Thus, MB(4) has at least two isomorphism classes [B2/CS(A)] and [B%/CS(C)).

But as we will see, the idealizations of these modules are k-algebra isomorphic.

To classify the isomorphism classes in the sets {25 and §2C;, we need Theorem 2.9.

We will denote the minimal number of generators of B-module N by ug(N).
Theorem 2.9: Let N € MB(4). Then, ug(N) = 2.

Proof : Since dimy(N) = 4,1 < ug(N) < 4. Suppose ug(N) = 1. Then, N = aBB
for somea € N. Let f : B— N be a map defined by f(b) = abfor b € B. Then, f isa
B-module epimorphism. If b € kerf, then ab = 0. Thus, b € Anng(a) = Anng(aB).
Since N is a faithful, B-module, Anng(aB) = (0). Therefore, b = 0 and hence f is
a B-module isomorphism. Thus, 5 = dimy(B) = dim,(aB) = 4. This is impossible.

Hence, 2 < ug(N) < 4.

Suppose ug(N) = 4. By Nakayama’s Lemma, pg(N) = dim,(N/NJ(B)). There-
fore, dimi(NJ(B)) = 0. Thus, NJ(B) = (0). Since N is a faithful, B-module, we
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conclude J(B) = (0). This is impossible.

Suppose pg(N) = 3. Then, N = a;B+ayB + a3B for some a;,i = 1,2,3. After
relabeling the o;’s if need be, we can assume o, as, a3 satisfy precisely one of the
following four conditions :

Case 1: o;J(B) = (0) for i = 1,2,3.

Case 2: o;J(B) = (0) for ¢ = 1,2 and a3J(B) # (0).

Case 3: o;J(B) = (0) and a;J(B) # (0) for i = 2,3.

Case 4: o;J(B) # (0) for i = 1,2, 3.

We will show all four cases lead to a contradiction.

Case 1: Suppose a;J(B) = (0) for all i = 1,2,3. Then, NJ(B) = (0). Since N is
a faithful, B-module, J(B) = (0). This is impossible.

Case 2: Suppose a;J(B) = (0) for all i = 1,2 and a3 J(B) # (0). Suppose azb =0
for some b € B. If b is a unit, then a3 = 0. This is impossible. Thus, b € J(B).
Hence, b € Anng(N). Since N is a faithful, B-module, we conclude b = 0. Thus,
Anng(as) = (0) and hence B = a3BC N as B-modules. Since dim,(B) = 5, this is

impossible.

Case 3: Suppose oy J(B) = (0) and oyJ(B) # (0) for i« = 2,3. Since

I, (0] (0]
Bi=1 0O |,Bo=| 14 |,3=]| O is a free B-module basis of B3, the map
(0] (0] I,

@ : B3 — N defined by (32, Bibs) = T2, aib, b € B,i = 1,2,3 is a well defined
B-module epimorphism. Thus, B3/kerp & N as B-modules. Since dim(B3) = 15

and dimg(N) = 4, dim(kery) = 11. Hence, kery has the following form.

11 I
(33) ker<p=z:(y,-)3, T, ¥,z € B,i=1,...,1L
i=1

25
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z
Furthermore, if ( Y ) € keryp, then z,y, z are not units in B. For example, suppose
z
z
z is a unit in B. Since | y | € kery, a; = (—1/z)(apy + a32). Thus, ug(N) < 3
z

which is impossible.

Since J(B)? = (0), kery can be written in the following form.

Z;
(34) kerp = @1,k ( Yi ) :

2

Here, z;,vi,2; € J(B),i = 1,...,11. Since ayJ(B) = (0), (61 + kery)J(B) = (0) in

J(B)
B3/kery. Thus, ( o ) Since a;J(B) # (0) for i = 2,3, 1 < dimy(Anng(a;)) <
0

4 for i = 2,3. Therefore, we have the following six subcases to consider.
Subcase 1: dim;(Anng(o;)) =1 for i =2,3
Subcase 2: dimy(Anng(az)) = 2 and dimi(Anng(a;)) =1
Subcase 3: dim(Anng(a;)) =2 fori=2,3
Subcase 4: dim;(Anng(az)) = 3 and dim,(Anng(az)) =1
Subcase 5: dim,(Anng(az)) = 3 and dimy(Anng(as)) = 2

Subcase 6: dim,(Anng(a;)) =3 for i =2,3

We will show all six subcases lead to a contradiction.

Subcase 1: Suppose dimi(Anng(a;)) =1 for i = 2,3. Let Anng(;) = ks, s; €

(0] (0] J(B)
J(B),i = 2,3. Then, | s2 |,| O | € kery. Since a;J(B) = (0), (0] -
O S3 O
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Es\ [ Eu Ey Eo 0 0
0 1 O 1, o |,| O 1 s2 |,] O |,
0g)(5)(5) () (5)(2)
) ) ) E))
n Y2 || Y3 | Y4 || Us
21 ) \ z z3 2z z5

be a basis of kery. Since dimy(J(B)) = 4 and z; € J(B) for i = 1,...,5,z; €

keryp. Let

(35)

-

L(E13, E14, E23, E24) for i = 1, ey 5. ThUS,

Ei3 Ey Ey; Ey
6]= 0 ,52= O ,(53= O ,64= 0 y
(0] (0] 0] (0]
([ O (0] 0 (0]
(36) bs=| 82 |, 06=| O |.b7=| 0 |.6s=] %2 |,
\ O S3 2 2
(O 0 0
bo=1\|ys |,60=| w4 |, ou=| ¥
\ 23 24 25

is a basis of kery. Therefore, kery can be written in the following form

| J 0 0\ s (O
(37) ker<p=(0)®k(sz)®k(O)@}:k(y,-).
(0] (0] S3 i=1 2

Since dimy(J(B)) = 4,{s2,v1,--.,¥s} is a linearly dependent set. Thus, there exist

d,cy,...,cs € k not all zero such that dss + ;3 + -+ ¢csys = 0. If ¢; = 0 for

alli =1,...,5, then d # 0 and ds; = 0. This implies s, = 0. This is impossible
0

since | s | is a basis vector of kery. Hence, some ¢; is not zero. We can assume
0

cs # 0. Thus, ys € L(s2,¥1,.-.,¥s)- We can repeat this proof on s,¥1,...,ys

and assume y; € L(S2,y1,%2,Yy3)- Hence, we may assume y;,ys € L(S2,Y1,¥2,Y3)-
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Therefore, y4 = dss + c1y1 + co2y2 + c3ys for some d, ¢y, co,c3 € k. If dbs + 167 +
cobs + 389 — 610 = 0, then {65, 67, b5, 89, 610} is linearly dependent which is impossible.

(0]
Thus, dbs + ¢167 + c20g + c389 — 810 = ( 0 ) with 2 # 0 in J(B). If z = ts; for
z

some t € k, then d65 + 6167 + 62(58 + 0369 - 610 - t(Ss = 0 and {55,56,67, 63,(59,610}

(0]
is linearly dependent which is impossible. Thus, ( (0] ) € keryp\kés. Therefore,
z

dim,(Anng(asz)) > 2. This is a contradiction.

Subcase 2: Suppose dimi(Anng(az)) = 2 and dimy(Anng(as)) = 1. Then,

Anng(as) = ks; + ks, and Anng(a3) = ks3 for some s; € J(B),i =1,2,3. Let
Eys\ ( Eu Ea Ey4 0 o
(0] , (0] ’ 0 ) 0] | S | 2 |,
o) \o 0 ) (0] (0] (0]
o\ (= T2\ [ 7s T4
O . lwm |s| v |:| v ]| va
s3) \ 2 23 \ 23 24

be a basis of kery. Since dimy(J(B)) = 4 and z; € J(B) for i = 1,...,4,z; €

(38)

L(Elg, E14, E23, E24) for i = 1, ey 4. Thus,

Ey3 Ey4 Eg; Ey
61= O ,62= 0 ,63= O ,54= 0 y
0 0 0 0
[ O 0 0 (0
(39) bs=1 8 |,66=| 52 |,6r=| O |,88=| n |,
\ (0 (0 S3 21
(0 0 0
=1 v |,60=1] ys |,ou=| v
\ 22 23 24

is a basis of kery Since dimy(J(B)) = 4, {s3,21,...,24} is a linearly dependent set.

&
|
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Thus, there exist d,c;,...,c4 € k not all zero such that ds3 + c;2; +--- + c424 = 0.
Ifc;=0foralli=1,...,4, then d # 0 and ds; = 0. This implies s3 = 0. This is
(0]

impossible since ( O ) is a basis vector of kery. Hence, some ¢; is not zero. We
S3

can assume ¢4 # 0. Thus, 24 = ds3 + ¢12; + co22 + c323 for some d, ¢y, co,c3 € k. If
db7 + c16 + €269 + c3610 — 611 = 0, then {87, b5, 89, 610, 611} is linearly dependent which

o

Y ) with y # 0 in J(B). If

is impossible. Thus, dé7 + ¢18g + ca8g + c3610 — 611 = (
(0]

Y= t151+1289 for some t1, i € k, then d57+C163+6269+C3610—511 —t]65—t256 = (0 and
(0]
{65, b, 67, 68, b9, 610, 611} is linearly dependent which is impossible. Thus, | y | €

)

keryp\kés + kbs. Therefore, dim,(Anng(ay)) > 3. This is a contradiction.

Subcase 3: Suppose dim;(Anng(a;)) = 2 for ¢ = 2,3. Then, Anng(az) =

ks) + ksy and Anng(a3) = ks3 + ksg for some s; € J(B),i=1,2,3,4. Let

%)

'S
~—
VS
Q* O
N—
T
Q% O
N~

$HE)3
GG

be & basis of kerp. Since dim(J(B)) = 4 and z; € J(B) for i = 1,2,3, T; €
L(E\3, Er4, Eg3, Eoy) for i = 1,2,3. Thus,
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E,
=| O
(0]
0 \ 0 0
(41) 65 = S1 , 66 = So ,67 = 0] , 68 = y
0] } (0] S3 S4
(0]

is a basis of kery. Since dimy(J(B)) = 4,{s1, S2,¥1,¥2,¥3} is a linearly dependent
set. Thus, there exist d;, ds, ¢1, c2,c3 € k not all zero such that dys; + dass + cyyy +
cya +c3y3 = 0. If ¢ = 0 for all © = 1,2,3, then d;s; + das; = 0. Since s;, s, are
linearly independent vectors in J(B),d; = d2 = 0. This is impossible. Thus, ¢; # 0
for some 1 < i < 3. We can assume c3 # 0. Hence, y3 = d;s; + d2s; + c1y1 + coys for

some dl, d2, Ci1,C2 € k. If d165 + d266 +0169 +02610 - 511 = 0, then {65, 66, 69, 610, 611} is

o
linearly dependent which is impossible. Thus, d,85 +d26e + 189 + 2610 — 611 = ( (0] )
z

with z # 0in J(B). If z = t3s3+1t454 for some t3,t4 € k, then d)85+d266+c189+Cab10—
611 — t367 — t46s = 0. This is a contradiction since the vectors in Equation (41) form

(0]
a basis of keryp. Thus, ( (0] ) € keryp\kd; + kbs. Therefore, dimi(Anng(asz)) > 3
z

and this is a contradiction.

Subcase 4: Suppose dimi(Anng(a;)) = 3 and dimi(Anng(az)) = 1. Then,

Anng(ap) = ks, + ksp + ks3 and Anng(az) = ks, for some s; € J(B),i = 1,2,3,4.
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Ey3 Ey Ex; Ea 0 0
O |, O |, O |,] O |,]| s1 |,| s2},
(9 )5)(8)(5) () (5)
O\ (0] ) ([ T2 I3
GGG
O} 84 F4l \22 23

be a basis of keryp. Since dim,(J(B)) = 4 and z; € J(B),z; € L(E\3, E\4, Ea3, E34)

Let

for i =1,2,3. Thus,

Eq3 Ey
=] O ,62=(0 (0]
o (5o (8) - (8
o [0 0
(43) 55=(81),56= 32),57=(3),58=( ),
0 \ 0 0 5a
(0 [0 0\ -
b9 = y1)610=\y2),611=(y3)}

is a basis of kery. Since dimy(J(B)) = 4, {s1, 52, 53, Y1, Y2, Y3} is a linearly dependent

set. Thus, there exist d;,d,,d3,c;,co,c3 € k not all zero such that d;s; + dasy +
d3sz+c1yy +cya +c3y3 =0. If ¢; =0 for all i = 1,2, 3, then d;s; + dasy; + d3sz3 =0
Since s, Sz, 83 are linearly independent vectors in J(B),d, = d; = d3 = 0. This
is impossible. Thus, ¢; # 0 for some i. We can assume c; # 0. Hence, y; =
d, s, +das2+d3s3+c1y1 +coys for some dy, da, d3, ¢y, ¢ € k. If dy65+d266+d367+c109+
c2610 — 611 = 0, then {65, 8, 87, 69, 610, 611} is linearly dependent which is impossible.

(0]
Thus, d,85 + dobs + d3d7 + ¢109 + C2610 — 611 = ( (0] ) with 2 # 0 in J(B). If z = ts4
z

for some t € k, then d,0s5 + d20g + d367 + €109 + c2610 — 611 — tdg = 0. This is impossible
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0]
since {&s, 8, 67, 8s, b9, 610,611} is linearly independent. Thus, ( 0] ) € kery\kébs.
z

Therefore, dim;(Anng(as)) > 2 and this is a contradiction.

Subcase 5: Suppose dimi(Anng(az)) = 3 and dimi(Anng(az)) = 2. Then,
Anng(az) = ks; + ksy + ks3 and Anng(as) = ksq + kss for some s; € J(B),
1=1,2,3,4,5. Let

Els\ (Eu Ey;3 Eg 0 0
O , O , O , O ’ 51 , S92
50505 ) 05 )(5)-5)
(5)}2)(2)(2) (2}
s3], O 1,10 [|,lwnl]| »
0) \ S4 Ss 2 29

be a basis of kery. Since J(B) = L(E\3, E\4, Eo3, E94) and z,,z9 € J(B), 1,22 €

(44)

L(E13, Er4, Eas, E24)- Thus,
Ey3 Ey4 Ey; E4
(51 = O ,(52 = 0 ,63 = O O )
(0] o (0] o
0 ) 0 o
(45) 65 = S1 , 65 = S2 ,67 = 0
0 / 0 0
0 ) 0 0
bg = O |,bwo=| n |.6u= Y2
Ss / 2 22

is a basis of kery. Since dimi(J(B)) = 4, {s1, S2, 83,¥1, Y2} is a linearly dependent

set. Thus, there exist d;, ds,ds, c1,c2 € k not all zero such that d;s; + dysy + d3sz +
ayi+coys = 0. If ¢y = cg =0, then d; sy + d2s; +d3s3 = 0. Since sy, 89, s3 are linearly
independent vectors in J(B),d; = d; = d3 = 0. This is impossible. Thus, ¢; # 0
for some i. We can assume c; # 0. Hence, y, = dy51 + d383 + d3s3 + ¢, for some

dl,dg,d;;,c] € k. If d155 + d265 + d357 + 01610 - 611 = 0, then {55,66,67,510, 611} is



27

o
linearly dependent which is impossible. Thus, d,85+d86 +d367+¢1610— 611 = ( (0] )
z

with z # 0in J(B). If 2 = t454+1s55 for some t4,ts € k, then dy65+da66+d3b7+c1610—
811 — 468 — ts69 = 0. This is again impossible since {6s, 8, 67, b5, 89, 810, 611 } is linearly

0]
independent. Thus, ( 0] ) € keryp\kég+kbg. Therefore, dimy(Anng(asz)) > 3 which
z

is a contradiction.

Subcase 6: Suppose dim,(Anng(a;)) = 3 for i = 2,3. Note that

dimi(Anng(az)) + dimgk(Anng(as)) = dimi(Anng(ag) + Anng(as))

(46) .
+dim,(Anng(az) N Anng(as)).

Since dimi(Anng(a;) + Anng(as)) < dimi(J(B)) = 4, Equation (46) implies
dimi(Anng(az) N Anng(as)) > 2 Thus, there is 0 # b € Anng(az) N Anng(as).
This is a contradiction. We have now shown any of the subcases in Case 3 lead to a

contradiction. Hence, Case 3 is impossible.

Case 4: Suppose a;J(B) # (0) for i = 1,2,3. Let n; = dimy(Anng(e;)). By

relabeling the o;s if need be, there are ten subcases to consider.
Subcase 1: Supposen; =1fori=1,2,3
Subcase 2: Suppose ny, =2,n, =n3 =1
Subcase 3: Suppose ny =ny =2,n3 =1
Subcase 4: Suppose n; =2 fori=1,2,3
Subcase 5: Suppose n; =3,n; =n3 =1
Subcase 6: Suppose ny, = 3,n, =2,n3 =1
Subcase 7: Suppose n; = 3,n; =nz =2

Subcase 8: Suppose n; =ny; =3,n3 =1
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Subcase 9: Suppose n; =ny = 3,n3 =2
Subcase 10: Suppose n; =3 fori =1,2,3.

A proof similar to that given in Case 3 will show that Subcase 1 through Subcase 9
are impossible. The reader can consult the Appendix for the details. Subcase 10 is
also impossible. To see this, let V be a vector space and suppose W;,i = 1,2, 3 are
subspaces of V. Suppose dim, (V) = n. Then, we have the following equation which

can be found in [2 : Cor.2.15, p13].

dimy(Wy N WoNW3) =n— 32 (n — dime(W))) + {(n — dimp (W, + W2))
47
( ) +(n - dzmk((Wl N WQ) + W3))}

Suppose V = B and W; = Anng(a;),i = 1,2,3. Then, Equation (47) implies
dimy, (W) NWoNW3) = 9—dimy (W) + Ws) — dimy (W) NW2) + W3). Since dimg (W) +
W,) < 4 and dimi (W) N W2) + W3) < 4, we have dim,(W; N Wy, N W3) > 1. Thus,
there exists 0 # b € Wy N W, N Ws. Since W; = Anng(a;),7 = 1,2,3,a;b = 0 for

i =1,2,3. Thus, b € Anng(N) = (0) which is a contradiction.
Therefore, all four cases are impossible. Hence, we conclude ug(N) = 2. a
We can now show that there is only one isomorphism class in €2z.

Theorem 2.10: Let A be the matriz in Equation (21) and let Q = B2/CS(A).
Then, BxQ? = Bx N? as k-algebras for any N € MB(4).

Proof: Let N € MB(4). Then, ug(N) = 2 by Theorem 2.9. Thus, N = a;B+a;B

for some a; € N,i = 1,2. Since {'yl = ( g ) yY2 = ( ? )} is a free B-module basis
4

of B?, the map 1 : B> — N (defined by ¥(T%, 1:ib) = T2, aibi, b € B,i = 1,2)

is a well defined surjective, B-module homomorphism. Hence, B?/kery = N as

B-modules. Since dimi(B?) = 10 and dimi(N) = 4,dimy(kery) = 6. Thus, kery
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has the following form.

(48) kery = 2; ( ; ) B.

Here, z;,y; € B,i = 1,...,6. Furthermore, if ( 5] ) € keriy, then 2 and w are not
units in B. For example, if z is a unit, then a;z + asw = 0 implies that N = a,B.
Thus, ug(N) = 1 and this is impossible. Therefore, kery has the following form.

6 Zi
Here, z;,v; € J(B),i = 1,...,6. To exhibit an isomorphism between BxQ? and
Bx N2, we need to choose a good basis of keryp. We may assume keriy has the

following form.

(50) kerzp=k( Ey )eak( Esq )@k( Emn )eak( Euw )eak( 0 )@k( 0 )
n Y2 Y3 Ya Ys Ye

Here, y; € J(B),1 < i < 6 and the ordered pairs (¢, j), (p, q), (m,n), and (u,v) are
just (1,3),(1,4),(2,3),(2,4) in some order. To see this, we proceed as follows. Since
dimi(B) = 4,{zi,...,z6} in Equation (49) is a linearly dependent set. Thus, by

T

replacing the ( )’s, i = 1,...,6 by suitable linear combination if need be, we

i
may assume z5 = g = 0. It now follows that {z,, z, 23,24} is a linearly independent
set. For, if {z,,z2,23,24} is a linearly dependent, then by the same argument, we

may assume z4 = 0 in (49). Then, kery has the following form.

(51) ker¢=k(;:)ek(::)eak(;':)@k(z)@k(z)@k(;).

Since dimy(J(B)) = 4,{v1,-..,¥e} is a linearly dependent set. Thus, by the same

argument above, we may assume y; = y, = (0). Therefore, we have

(52) kemp:k(f)‘)eak(3)@k(2§)@k(£)@k(i)@k(i).
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Now, let W1 = kx, + kzx, and let Wy, = kys + kys + kys. Then,
dim, (W) = 2, dimi(W;) = 3, and dim, (W, + W3) < 4. Notice that

(53) dimk(Wl + W2) + dimk(Wl N WQ) = dimk(Wl) + dzmk(Wg)
Therefore, dim,(W; NW;) > 1. This implies that there exists 0 # b € J(B) such that

b € Wy, nW, Thus, (g),(?) € kery. Since 1/1(3) = ab and

b
This is impossible. Thus, {z;, Z, z3, 4} is a linearly independent set in J(B). Since

d)( % ) = apb, a1b = azb = 0. Since N = a;B+a,B, b € Anng(N) = (0).

dimy(J(B)) = 4, we may assume {z,, T2, 23,74} = {E13, E14, Eo3, E24}. Hence, kery

can be written as Equation (50).

We next show we can rearrange the six basis vectors given in (50) so that

(54) kew:k(:)@k(i‘;)@k(i‘:’)@k(%‘)@k(205)eak(zoﬁ).

Here, 21,...,26 € J(B),(a,b),(c,d) are distinct ordered pairs in {(1,3),(1,4),
(2,3),(2,4)}. To see this, we proceed as follows. In Equation (50), ys,ys € J(B).
Thus, ys = a1 E13 + a2 E14 + azEa3 + agEyq and ys = b1 Ey3 + byEyg + b3 Eas + byEag
for some a;,b; € k,1 < i < 4. Since ys # 0,a; # 0 for some i. We can assume

a; # 0. By replacing ( 0 ) by ( 0
Ye Ye

b, = 0. Hence, yg = boE14 + b3Eq3 + by E94. Since yg # 0, some b; # 0 for i = 2,3, 4.
We can assume by, # 0. By replacing ( 0 ) by ( 0 ) — agb;! ( 0 ) # 0, we
Ys Ys Ye

can assume ys = a1F3 + a3Eo3 + agFa. Thus, Ys = a1E 3 + azFa3 + a4F94 and

) — bya;! ( yO ) if need be, we can assume
5

ye = baE14 + b3Eq3 + by Eoq with a; # 0 and by # 0. The ordered pair (1,3) is one of
four ordered pairs appearing in (50). We can assume (1,3) = (4, j). Since a; # 0, we

can write kery as follows.

o peea (3 )or( 5 o (5 Yo (5 Yo (2)e8(2):



31

Here, y; = a1y1 + a3ys + a4ys. The ordered pair (1,4) is one of three ordered pairs
appearing in (55). We can assume (1,4) = (p, q). Since b, # 0, we can write kery as

follows.

o sev=a (3 )ou(2) x5 Jor 5 o (2)4(2):

Here, ys = bayz + bsys + baya. Setting z: = y7,22 = ys, 23 = Y3, 24 = Ys, 25 =
Ys, 26 = Ve, (a,b) = (m,n), and (¢,d) = (u,v), we have (54). Note that, z; # 0.
For, if not, then ( % ) , ( 55 ) € kery. This implies y5 € Anng(N) = (0) which
is impossible. By the same argument, 2, # 0. Furthermore, {z, 22, 25, 2} is linearly
independent. For, if not, then there exist ¢t; € k,7 = 1,2, 3,4, not all zero such that

t121 + tozo + t3z5 + t42¢ = 0. Thus,

tizs + 1226 | _ 25 2 0] o
(57) ( 0 )—tl(zl)+t2(z2)+t3(z5)+t4<zG)erT'l/).

Suppose t; = t; = 0. Then, (57) implies t3 = t; = 0. This is impossible. Thus, t, # 0
or t; # 0 and hence t,25+t226 # 0. Equation (57) implies ¢, 25+t226 € Anng(N) = (0)
which is impossible. Therefore, {21, 2o, 25, 26} is linearly independent. Thus, a basis
for kery can be given as in (54) with {2, 22, 25, 26} is linearly independent.

Now, we are ready to define an isomorphism between Bx Q? and Bix (B?/kery)2.
For simplicity, we will denote cosets ( ; ) + CS(A) in Q by ( ; )—. We will write
elements in BxQ? as orders triples (b, q;,q;). Here, b € B,q;,q2 € Q. It is easy to

check that the following 13 elements form a k-vector space basis of Bx Q2.
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,Bl = (I4’ O’ O))ﬂ? = (El3)0a O))ﬁ3 = (El4’010)

We will denote cosets ( : ) + kery in B%/kery by ( ; ) . It is easy to check that

the following 13 elements form a k-vector space basis of Bix (B2/keri)?.

61 = (14, Oa 0))62 = (—21)01 0))63 = (—22107 0)

6 = (25,0,0),85 = (26,0,0),8 = (O, (g) ,0)

(59) & =(0,(IO4)_,0),58=(o,(25)',0)’59=(0,(26
610 =(0,o,(f4) ), 611 = (0,0,(2)—),512#0,0,(3)‘)

813 = (0,0, ( o )_).

Define a map o : BxQ? — B x (B?/kery)? by

)
~—
I
S

13 13
(60) 0'(2 tiﬂ,‘) = Eti&', t;€k,i=1,...,13.
=1

1=1

Then, obviously, o is a k-vector space isomorphism. Notice that
ﬂ,’ﬂj =0= 6.-6j for 2 < i < 5, _7 = 2, 3, 4, 5, 8, 9, 12, 13
(61) ﬂiﬂj =0= 6,‘6]’ for 6 S i,] S 13

B =0=462 for 2<i<13.

1



33
Furthermore, o(5,6;) = o(6;) = 6 = 6,6; = o(61)o(6;) for i = 1,...,13. Thus, to

show o is a k-algebra isomorphism it remains to show the following.

o(BiBs) = o(Bi)o(Bs), o(BiBr) = o(B;)o(Br)
o(Bibr) = a(Bi)o(Bi), o(Bifn) = o(Bi)o(Bn) for i=2,3,4,5.

(62)

Notice that the third and fourth equations in (62) are actually the same as the first
and second equations in (62) but in the third slot. Thus, we will finish the proof by

verifying the first and second equations in (62).

(63
o(0ai) =a(0,( %) 0)=40,0,0)=10,0,0)=0.( ') 0
= (-2,0,0)(0, ( g )— ,O) = 6266 = 0(B2)a(B)
o) =o0.( g ) 0 =e0.( ) 0-0(5) 0
_ (0,( _Ozl ) ,0) = (—21,0,0)(0,( 2 ) ,0) = 6,6, = o(B2)o (Br)

o(BsBs) = o(0, ( E014 )_ »O) =0(0,0, 0) = (O’O’O) = (0, ( _OZI )_ ,0)

,0) = 6366 = 0(B3)0(B6)

I
T
&
o
S
S

Q=
|

0. 9,) 0= =0.000.( ) 01=88 =00
oot =a0,( B ) 0=0.(5) 0
=000 ) 10 =8d = aBe()
o(Bur) = 0(O, ( ke )_,0) = 5(0,0,0) = (0,0,0) = (0, ( o )— ,0)

= (25,0,0)(0, ( 2 ) vO) = 0407 = U(ﬂ4)a(ﬂ7)
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(63)

o) =o0,( 3 ) 0=0.(%) 0

I,

= .0,0)0,( ) 10)= 8 = oGl

o (BsBr) =0(O,(£g4 )-,0)=a(o,o,0)= (0,0,0)=(0,( 0 )_,0)

26
= (26,0, 0)(0, ( 104 ) ,0) = 6567 = a(Bs)o(0r).

Thus, o(8:i8;) = 0(Bi)o(B;),1 < i,j < 13 and hence o is a k-algebra isomorphism.

Therefore, B x Q? = B x (B?/kery)?.

Notice that B?/kery = N as B-modules. Let f : B*/keryy — N be a B-
module isomorphism. Then, the map o’ : B x (B%/kery)? — B x N? defined by
o’(b,ny,ng) = (b, f(n1), f(nz)) is a k-algebra isomorphism. Thus, BxQ? = Bx N? as
k-algebras. ]

In [3], Brown and Call showed that C = Bx(k*)2. Thus, by Theorem 2.10,
C = BxN? for any N € MB(4). This implies there is only one isomorphism class [C]
in Qg.

Recall (B, N) € X implies (Bx N¢, B:®N) € MX. To classify the isomorphism

classes in Q2C), we need the following lemma.

Lemma 2.11: Let (B,N),(B,M) € X. Suppose N = M as B-modules. Then,
(B x N, B® N) and (B x M*, B* ® M) are (o, T)-isomorphic.

Proof: Let f : N — M be a B-module isomorphism. Define a map o : Bx N¢ —
B x Mt by o(b,ni,...,ne) = (b,f(ng),...,f(n)) forbe Byn; € Nyi=1,...,0 It

is easy to show o is a k-vector space isomorphism. If (b, nl‘, ooy ng), (Vyny, ..o np) €
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B x N, then
(64)
o((byny, ... ne) V. ml)) = o(bY, nib + myb, ..., b + neb')
= (bY, f(n} b+ ngb), ..., F(nib + b))
= (b0, f(n7)b + f(ne)b', ..., f(ng)b + f(ne) ')
= (b, f(n1),..., f(ne)) (¥, f(ni), ..., f(mg))

=o(b,ny,...,ng)ot/,n,...,nyp).

Thus, o is a k-algebra isomorphism. If we define a map 7 : BE® N — B‘o M

by 7(b1,...,b,,n) = (by,...,bs, f(n)). Then, 7 is a k-vector space isomorphism.

Obviously,
(65) 7((b1y...,be, n)(byny, ..., np)) =7(b1,...,be,n)o(b,ny,...,m).
Thus, (B x N, B*® N) X (B x M:, B'o M). O

Now, we are ready to classify the isomorphism classes in QC,.

Theorem 2.12: Let Q and N be as in Theorem 2.10. Then, (BxQ?, B*®Q) =(,1
(Bx N?2,B2® N).

Proof: Let

El = (I41 0, 0)’ 62 = (El3, Oa O)’ E3 = (El41 Os O)
£4 = (E23» 01 O)v ES = (E24)0) 0)1 66 = (Os 147 O)

&7 = (O’ El3a0), 68 = (Ov El410)’ 59 = (01 E23,O)
(66)

&0 = (0, E,0), &1 = (0,0, ( g ) ), &2 = (0,0, ( 104 ) )

6 = 0.0, 7 ) ) au=0.0.( )
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Then, {&,...,£14} is a k-vector space basis of B? @ Q and let

m = (I4a O) O)) e = (—21, O’ 0)» = (_ZZa 01 O)
Ny = (251 Oa O)) s = (26’01 O)a Ne = (Oa 1430)

T = (01 _zl’O)v Mg = (01 —22,0), Mg = (O, 25,0)
I\ o\
mo = (0, 2,0), M1 = (0,0,< 04 ) ), m2= (0,0, ( I, ) )

m =003 ) 1m=00(5))

Then, {71, ..., M4} is a k-vector space basis of B> @ (B%/kery), where 9 is a map in
Theorem 2.10. Let 7: B2® Q — B? & (B%/keri)) be the map defined by

14 14
(68) T(Zt,fi) = Eti'ﬂi, t; € k, 1 < 1 < 14.
i=1 i=1

Then, 7 is a k-vector space isomorphism.

Let o be the k-algebra isomorphism in Theorem 2.10. Let b;,n; € B for
1=1,2,3,7=1,2,3,4,5,6. Then,

bi = rily +aiE13 + biEyy + ciEoz + diEyy
(69)
n; = SjI4 + p]'E13 + quM + qu23 + 'UjE24

for some 7, a;, b;, ci, d;, 55, pj, 95, U5, v; € k,1=1,2,3,5 =1,2,3,4,5,6. Since ( EOB ) ,
Ey4 o 0
(%) (50 ):(2) cc50

(70)

n o\ _ [ 814 +pEs+@Eus+wEs+viEy _ | sula+uwEy+vi1En -
Ny Soly + paEr3 + g2 Erg + ug B3 + va By Soly + paFEr3 + qaFyy ‘
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Since Ess , Ea € CS(A), Equation (70) becomes
—E3 —Ey

(71) sols

( ny )_ — ( 81[4 + (U1 +p2)E23 + (’U1 + q2)E24 )_ .

(72) ny \ — s3ly+ (uz +pg)Eoz + (v3+qa)Eog \
N4 Sql4 ‘

and

(73) ns \ _ ( ssla+ (us +ps)Ens + (vs + ¢6)Ena |
Ng sely '

Notice that

ot (7)) = 70,0+ 70.8,0)+ 70,0, (7 ) )
= (1‘1[4 — a2 — b122 + C125 + d126,0, 0)

(74) +(0, 7204 — agzy — bozo + 225 + da 2, 0)
+(0’ 0’ ( SII4 + (Ul +p2)z5 + ('Ul + q2)zﬁ )_)
8214
Let
Ly =rly—a12) — byzo + 125 + dy 26
, Ly =r1oly — azzy — bazg + Co25 + doz
(75) 2 24 — @22 — D227 + C225 + A226

L. — sily+ (uy +po)zs + (v1 + @2)z |
3 saly )
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Then, 7(b;, by, ( Z; ) ) = (L1, La, L3). Notice that
(76)

o (b, ( iy )-, ( e )ﬁ) = o(b3,0,0) + (0, ( iy )—,0)-{-0(0,0, ( e )—)

= (1"314 — aszz; — b322 + c325 + d325, 0, 0)

+(0, ( s3ly + (us + pa)zs + (vs + q4) 2 )— ,0)
S4I4

+(0,0 ( ssly + (us + pe)zs + (vs + gs) 26 )_)
»Yy 3614 .

Let
Ml = 1"3I4 — Q32 — b322 + c325 + d325
_ s3ly + (u3 +p4)z5 + ('U3 + d4)26 -
(77) M, = ( sals

M. = ssly + (us +pe)zs + (Us + G6)2z6 \|
3 SsI4 '

Then, o(bs, ( Z: ) ( s ) ) = (My, My, M3). Thus,

Ne

o\" - -
(78) 7 (b1, be, ( n; ) )o(bs, ( Zi ) , ( Zz ) ) = (L1, L2, L3)(My, My, M3)
= (LiMy, LoMy, LyM, + MLy + M3 Ly).

Since y; € J(B) for i = 5,6,7,8, we have
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(79)

LlMl = 1"1(7‘314 — azz) — b322 + C32s + dazs) —_ 7‘3((1121 + b122 — C125 — dIZG)
= rir3ly — (r1a3 + 1301)21 — (1103 + 73b1) 22 + (r103 + 7301 )25 + (T1d3 + r3d)) 26

LQM] = TQ(T3I4 — azz) — b322 + C3Z5 + d326) - T3((1221 + b222 — Co25 — dgzs)
= ror3ly — (T9a3 + T3a2)2) — (T2bs + T3b9) 22 + (Tac3 + T3C2) 25 + (T2d3 + T3d3) 26

LM, ( (T3]4 — a3z — bzzg + c325 + d326) + T3((’U1 + p2)25 + (’01 + (J2)Ze) )_
32(7'3[4 — azz) — b3Z2 + c325 + d326)
( 517314 + (T3u1 + 13p2 + S1C3 + $2a3)25 + (T3v1 + T3q2 + 51d3 + S2b3) 26
sar3ly
M,L, = ( T1(s3ls + (u3 + pa)zs + (v3 + q4)26) — s3(@121 + br22 — c125 — d1 26) )—
84(7'1[4 —-a1z; — b)ZQ + c125 + d126)
_ ( 18314 + (T1u3 + 11ps + 531 + 8401)25 + (T1V3 + 7194 + S3dy + 54by) 26 )—
B s41114
ML, = ( 2(8514 + (us + pe)zs + (Us + g6)26) — S5(a221 + bazo — c225 — da26) )
86(7‘214 — a2y — bozg + coz5 + d226)
< T98s514 + TQU5 + T9p6 + S5C2 + 360,2)25 + (7’2’05 + T9qe + Ssda + Ssbg) )_
SeT214

On the other hand,
(80)

(b, b, ( iy ) )(bs, ( iy ) ( o ) ) = (baba, bsbs, ( Z;ZZ ) +( Zj’;i ) +( Z:zz ) )

Equation (71),(72),(73) imply that

(81)

bibs =r1(r3ls + azEy3 + baEy4 + c3Ea3z + d3Ea4) + r3(a1 Er3 + b1 Erg + €1 Eg3 + dy Eoy)
=rirsly + (1‘103 + 1‘301)E13 + (T1b3 + 1'3b1)E14 + (1’163 + 1‘3C;)E23 + (T1d3 + 1‘3d1)E24

b2bs = ra(rals + a3Ey3 + b3Ey4 + c3Eas + d3Ea4) + r3(a2E13 + baErg + c2E23 + da E34)
= 1‘21'3[4 + (1‘203 + raag)Em + (1'263 + 1'3b2)E14 + (7‘263 + 1'362)E23 + (ngs + r3d2)E24
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81(1”314 + a3zE\ 3 + b3E4 + c3Fq3 + d3E24) + 1‘3((‘!41 + pz)Eza + (v1 + q2)E24) ) B

82(1'314 + a3zF13 + b3E14 + c3Fa3 + d3E24)
s173ly + (8163 + T3u; + T3p2 + $203) Eo3 + (81d3 + r3v; + 13g2 + S2b3) Eoq )—
Sar3ly

84(r1ly + a1 Ey3 + by E1q + 1 E23 + d1 Ea4)

s3r1ly + (s3c1 + T1u3 + r1ps + s4a1)E23 + (s3dy + r1v3 + 7194 + S4b1) E24 )_
847114

35(1‘2[4 +aoFE 13 +bF14 + coFEo3 + d2E24) + 1‘2(('(1.5 + ps)Eza + (’vs + q6)E24) )—

8g(r2l4 + a2 E13 + baE14 + c2 E23 + da E2q)

ssroly + (8502 + rous + 2P + 860.2)E23 + (35d2 + roUs + T2@Q6 + 86b2)E24 )_

ngby \~ _ [ $3(rila+a1Erz + biEvg + c1Eoa + diE2q) + 11((us + pa) Ezs + (v3 + ga) E2a)
mb, -
( 861‘214

From Equation (80), we have

(82)

7((by, b, ( o )_)(bs, ( ns )— , ( ns )_)) = 7(byb3,0,0) + 7(0, bobs, 0)
+7(0,0, ( Tbs )—) +7(0,0, ( Z:gi )_)

nabs
+7(0,0, [ ™2 _)
y Yy n6b2 .
Since
(83)
T(b1b3,0, 0) = (T11‘314 - (r103 + r3a1)zl - (T1b3 + 7‘3b1)Z2 + (T163 + Tacl)25 + (Tlda + 1‘3d1)26,0,0)
7(0, b2b3,0) = (0,ror3l4 — (r2a3 + r302)2) — (r2b3 + r3b2)22 + (T2c3 + T3C2) 25 + (r2d3 + radz)zg,0)
(0,0, ( nibs >-) = (0,0, ( s173ls + (8163 + r3u1 + T3p2 + 82a3)25 + (s1d3 + T3v1 + T3g2 + 52b3)z6 )_)
nzb3 sor3l4

(0,0, ( n3b )_) = (0,0, ( s3t1ls + (s3c1 + r1us + r1pa + 84a1)25 + (s3dy + T1v3 + T1q4 + 84b1) 26 )_)
ngb saT1l4

T(0,0, ( nsby )_) _ (0, 0, ( 8sTol4 + (85C2 + rous + T2pg + sg:::z);f + (35d2 + roUs + T2¢6 + Sebz)ZG )_)
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Therefore, from Equation (78) to (83),

(84)

ot ()0 () (e ) m=rwmn (7 ) e (7)o ()
Thus,

(85) (Bx Q*B*® Q) =) (B x (B*/ker)?, B & (B?[kery)).

Since B%/kery = N as B-modules, (B x (B*/kery)? B? @ (B?/kery)) =(orr1
(Bx N2, B’.®N) by Lemma 2.11. Therefore, (Bx Q?, B20Q) =(,, 1) (Bx N2, B2®N),
where 0, = 0’0 and 7, = 7'T. )

We have now proven the following assertion. If N € MB(4), then
(Bx N2,B*® N) =, (Bx (k*)?,B? ® k*) =, ) (C,k). Thus, QC; has exactly

one (o, 7)-isomorphism class [(C, k'4))].



Chapter 3

Nonuniqueness of Algebras in ()

3.1 Construction of New Algebra S in )

It has been conjectured for a long time that the set Q@ = {(R,J,k) €
Myy(k)| dimpR = 13 and i(J) = 3} has only one isomorphism class [C]. It turns
out the isomorphism class [C] is not unique. In this section, we will construct a new

k-algebra (S, J, k) € Q such that [S] # [C].

If (R,J,k) € 2, then by Theorem 2.3, we may assume every 7 € J has the form
in (9). From Theorem 2.5, we may assume every r € Soc(R) has the form in (13).

We can then write R = k[\y, ..., \s, B11, E12, Eg1, Ea), where

o O
(86) /\i= i 010 0 ’ 'L=1,,8
O B O

Conversely, suppose R is a commutative, k-subalgebra of Tj; of the form
R =k[A,..., s, E., Epy, Fo, Egg], where dim R = 13 and ), ..., A\s have the form
given in Equation (86). (We are not assuming R is maximal). Then, R is a local ring
with Jacobson radical given by J = (Ay,..., Ag, E\, Eya, By, Ezg) and residue class
field k. We will give a necessary and sufficient condition on the A;’s and B;’s which

will imply R € Q.
42
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For a matrix A € Mpyxn(k), we will let ker A = {u € Mixm(k)|luA = 0} and
NS(A) = {v € My (k)|Av = 0}.

Theorem 3.1: Let R = k[\y,..., s, Ei1, Erg, Egy, Epg) be a commutative,
k-subalgebra of T\4. We assume dimyR = 13 and each \; has the form given in
Equation (86). Suppose NE_, ker(A;) = (0) and N_; NS(B;) = (0). Ifr € Cr,(R),

then r has the following form.

O, O O
(87) T = ( P Oy O ) +aly, a€k.
Z Q@ O
Xl X2 X3
Proof: Let r = Xy X5 Xe € CTN(R). Here, X,, Xy € T, and X5 € T)o.
( X7 Xs Xo )

Then, rEij = E{j r and

X1 X2 X O, O O O, O O X1 X2 X3
(88) X4 X5 Xs A,’ 010 0 = A,’ 010 O X4 X5 Xs
0,

X: Xz Xo W B W B; O, X7 Xz Xo
for all 2 =1,...,8. Thus, we have the following equations.

(a) XQA,' + X3W =0 (e) A5X3 =0
(89) (b) X3B; =0 (f) XA + XoW =WX, + B; X,

(C) X5A;' + XsW = A,’Xl (g) XgBi = WX2 + B,'Xs

(d) XGB,' = A,‘XQ (h) WX3 + B,'Xs =0.

These equations hold for all i = 1,...,8 and all W € T;. We also have the equations
obtained by replacing A; and B; in (a) through (h) with the zero matrix. Since
X3W = 0 for all W € T3, we have X3 = 0. Then, (a) implies X,A4; = 0 for all
i=1,...,8. Thus, X; € N&_, ker(A;) = (0). Hence, X, = 0. Equation (h) implies
B;X¢=0foralli=1,...,8 Thus, X¢ € N._, NS(B;) = (0). Hence, Xs = 0. Since
XoW = WX, for all W € T;, we have the following equations.
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XoEn = Enun X, XoEy2 = EppX,

(90)
XoEgy = Enn Xy,  XoEqy = ExnX).

a;; a by b .
Let X; = (a; a;z) and Xy = (b; b;z ) Here, a;;,b;; € k, 4,j = 1,2.
Then, (90) implies ayy) = Q2 = bu = b22 and Qa2 = Qg1 = b12 = b21 = 0. Thus,
X1 = Xg = ang. In (C), let W = 0. Then, X5A,' = A,‘XI = A,~(anI2) = auA,'.
Hence, (X5—ayJ10)A; = 0, foralli = 1,...,8. Thus, Xs—ay, J10 € NE_; ker(4;) = (0)

which implies X5 = a;1I10. Therefore, r has the form in (86). O

Let R = k[),, ..., As, E11, E1a, Ea1, Eg) be as in Theorem 3.1. Theorem 3.1 implies

any 7 € Cr,,(R) has the form given in (87). Notice that all matrices of the form
O, O O
(91) O OlO O a.nd aI 14

are elements in Cr,,(R). In the next theorem, we characterize those P’s and @’s for

which r € Cp,,(R).

Theorem 3.2: Let R = k[A,..., s, Ell,Elz,Egl,EQQ] be the k-subalgebra in

O, O O
Theorem 3.1. Letr = | P Oy O | +aly € Tiy. Then, r € Cr, (R) if and
Z Q@ O,
(Ro‘le)T
only if (R%OHI;S)T € NS(A). Here, Row;Q is the i-th row of Q, Col; P is the i-th
. COlzP

column of P, and A € M3z540(k) is the following matriz.
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(COl]Al)T —RowlBl (0] o
(COlQAl)T 0] o —Ro'wlBl
(0] -‘RO’UIQBl (COllAl)T o
0 0] (ColyA))T  —Row, B,
(92) A=
(COllAg)T —RO’wlBg 0] 0
(COlgAg)T (0] (0] —RO’wlBg
0 —RO’LUng (COllAs)T (0
(0] (0] (COlQAg)T —RO’LUQBs

Proof: Suppose r € Cr,,(R). Then, for alli =1,...,8,
O, O O O, O O O, O O O, O O
(93) P Oy O Ai Op O =| A Op O P 0Oy O
Z Q 02 W B:' 02 w Bi 02
Therefore, QA; = B;P fori =1,...,8. Let

OO
a;; a2 b(.’) o b(i)
A = : : B,-:( 1 u°),forz’=1,...,8

(1) (1)
a(x) a(t) b2'1 b2110
(9 4) 101 Q102
Pu1 P2 7 7
pP= . . — n ottt quo }o
' ' @ ( g1 - Q210
Pior Pio2

Here, as,“)n, b(‘n, Pmns Gmn € k. Since QA; = B;P for alli =1,...,8, we have

] =1 ql:d?f - ;g b(lg)PJl =0, ;21 (111'0';2 - 2;21 bg;)pﬂ =0
(95)
] 1Q2Ja_11 210 b(‘) pji1 =0, J 1Q2Ja']2 Zm b(t) pj2 = 0.

Z Q O

) |
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It is easy to check (95) is equivalent to

(Role)T
COll P
(RowqQ )T
COlQP

(96) A =0.

Conversely, if P and Q satisfy Equation (96), then QA; = B;P foralli=1,...,8.
Hence, by Equation (93), r € Cr,,(R).

Theorem 3.3: Let R = k[\,...,As, En1, E1a, By, Eyy] be a commutative,
k-subalgebra of Ty4. We assume dimR = 13 and each A; has the form given in

(86). Then, the following two statements are equivalent.

(a) R e M14(k)

(b) NE_, ker(A;) = (0), NE_, NS(B;) = (0), and rank(A) = 32.

In Theorem 3.3, A is the 32 x 40 matrix given in (92).

Proof: (a) = (b) Let u = (uy,...,u10) € NS, ker(A;). Then,

O, O O
(97) O Ow O | € Soc(R).
o () o

o

Theorem 2.5 implies dim; Soc(R) = 4. The elements E;;, i,j = 1,2 are clearly in
Soc(R). Hence, Soc(R) = L(E,E3,Ey,Ey). Thus, u = 0 and hence
o-1 ker(A;) = (0).

Let v = (vy,...,v10)7 € N&_, NS(B;). Then,

0, O O
(98) (

(vo) Oy O | € Soc(R).
O O O,
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Since Soc(R) = L(E11, Erg, Ea1, Ex), v = 0. Therefore, N®_, NS(B;) = (0).

Let
(RO’U)IB,')T
_ COllA,' .
(99) ai_ (RO"UQB,)T ] 1«—1,...,8.
COl2Ai

Since A; € R = Cr,(R), a; € NS(A) by Theorem 3.2. Since A, ..., s are linearly
independent, a;,...,as are linearly independent. Hence, dim;NS(A) > 8. Let

w € NS(A). Since w € Myox1(k), we can write w as follows.'

(Ro’le)T
COllp
(RmﬂzQ)T
COIQP

(100) w=

for some P € meg(k) and Q € ngm(k). Let

O, O O
(101) r= P 010 o .
O @ O,
Then, by Theorem 3.2, r € Cr,(R) = R. Thus, r = ¢\ + --- + cgAg for some

ci €k, i=1,...,8 Hence, w=cjoq +---+ cgAs. Therefore, dim; NS(A) < 8 and
hence dim,NS(A) = 8. We conclude 7k(A) = 32.

(b) = (a) Since rank(A) = 32, dimNS(A) = 8. Let ¢4, i = 1,...,8 be the
vectors defined by (99). Since dimiR = 13, ),,..., \s are linearly independent over
k. It easily follows that o, ..., o are linearly independent over k. Thus, {ay,...,as}
is a basis of NS(A). If r € Cr,,(R), then Theorem 3.1 implies 7 has the form given
in (87). Thus, by Theorem 3.2,

(RO‘U&Q)T
(102) A
COl2P

€ NS(A).
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This implies

O, O O
(103) P 0Oy O € L(A,...,As).
O Q@ O
Therefore, r € R and hence Cr,,(R) = R. We conclude R € M,(k). O
Thus, we can easily check whether a k-subalgebra R = k[)\,...,As,

Ew, Eyg, Esy, Ezz] of the type given in Theorem 3.3 is in (2.

Now, we will construct a new k-algebra (S, J, k) € 2 with the following matrices.

Let
O, O O
(104) s=|P 00 o0 |, i=1...8
O Q@ O,
Here,
( I, [ O, [ O, ( O,
0, I 0, 0,
=102\, PB=|0|, B=| 1|, PB=]| 0|,
0, 0, 0, I,
\ 0, \ 0, \ 0, \ o))
( O, ( 0, [ 0, [ O,
02 02 02 02
PB=| O |, B=]| O2 |, B=]| O2 |, Bs=]| O2 |,
(o)} (03 0, 0,
\ En Ey, \ Ex \ E2
and

Q1= (I2020; 0y En1), Q2= (0212 0,0, Epr)
Q3= (0, O, I, O; Ey), Q4= (0; 02 O; I, Ey)
Qs = (Eu Oz Ey O; 03), Qs = (E12 Oz Exp O; O)
Q7= (03 E1y Oz Ey 03), Qs = (03 Era O; Ex; Oy).
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Throughout the rest of this thesis, we will let S = k[6y, ..., 8, E11, E19, Eg1, Egg] with
61,...,0s given by (104). Notice that S is a k-subalgebra of Ty4. The multiplication
table for J(S) is as follows:

Table 1: Multiplications of §;’s

o 09 03 04 05 | 6¢ | 67 | s
3} E’u + E22 O O O Eu Ei,] O O
09 O En+ Ezz 0] O 0] O | By | Erg
O3 O 0] E‘n + Foqy O Eyy | Exn| O 0]
04 O @) @) Fiiu+FEx»| O O E21 E22
05 Ey, O Es O OlO0O]|]O0|O
06 J O Es O OlO0O]|]0O0|O
o7 Q) I 0] Ey O|[O0Of(O|O
0s Q) J O Eo OlO0O]|]O|O

We don’t include the multiplications for E;;’s since Ei;J(S) = (0) for all 4,5 = 1,2.

Theorem 3.4: Let S = k[él, oo ,63, Eu, Elg, Ef_)], E22] be the k-subalgebm Of T14

defined by the equations in (104). Then,
(a) S € Myy(k)
(b) (S,J,k) € Q

Proof: (a) It is easy to check that S is a local, commutative, k-subalgebra of T4
with dim,S = 13. Obviously, {P,,..., P} is linearly independent. Furthermore,
8_, ker(P) = (0) and (., NS(Qs) = (0). Let



90

(COll.Pl)T —RO’lel O 0 ]
(COlgPl)T 0 0] —RO'lel

0 —RO’U)QQI (COZIPI)T (0]

O O (COlQPl )T —R0w2Q1

(105) A=

(C’Olng)T —RO’leg 0 0
(COlQPg)T o (0] —RO’WIQS

(0] -—RO‘U)ng (COllpg)T o

O O (COlQPg)T —Ro'w2Q3 J

Then, A € M3yx40(k) and rank(A) = 32. Thus, by Theorem 3.3, S € M4(k).

(b) We can easily check that dim,S = 13 and i(J) = 3. Thus, (S, J, k) € Q by

(a). o

In Theorem 3.4, we constructed a new k-algebra (S, J, k) € Q2. In the next section,

we will show [S] # [C]. Hence, S determines a new isomorphism class in .

3.2 The Algebra S

In this section, we will prove the k-algebra S constructed in Theorem 3.4 is not
a (B, N)-construction if k = R and is a (B, N)-construction if k is an algebraically
closed field. We will prove that S is not k-algebra isomorphic to C. Therefore, we can
conclude that Q has at least two k-algebra isomorphism classes [S] and [C]. It also
follows that (S, k%) is not (o, 7)-isomorphic to (C, k). Furthermore, we will prove

(S, k™) is not a C)-construction.

Theorem 3.5: Suppose k = R. Then, S is not a (B, N)-construction.
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Proof: Suppose S is a (B, N)-construction. Then, by [3: Theorem 4], S contains

an ideal I which satisfies the following two properties.
(106)
(a) Anns(I) =1

(b) 0 — I — & = S/I — 0 splits as k-algebras, i.e., there exists a k-algebra,

homomorphism v8 = 1g/;.

Since Ei;I = 0 for4,j = 1,2, Ej € I, i,j = 1,2 by (a). Notice that &, ¢ I.
Otherwise, 62 = 0 by (a). Since 6? = Ey; + Ej;,, this is impossible. Thus, §, ¢ I. Let
6 : S/I — S be a splitting map. Then, 6(6; + I) = 6; + r, where r € I. Since § is a

k-algebra homomorphism, we have

82+ 26r =62+26r+ 12
= (8, +7)% = (8(6; + I))?
=0((6,+ 1)) =0(Ey; + Eppo + 1)
=60(0+1)=0.

(107)

Let r = §=1 t.6; + Z?,e=1 sj,Ej,, ti, sje € R. Then, (107) implies

(108) (14 2t; + 2t5)Eyy + 2t By + (14 2t,)Eg = 0.
Thus, t; = —3, t5 =t = 0. Hence, we have
1 2 .
(109) r= —561 + t90 + t303 + 464 + t707 + tgbs + Z Sj[Ej(.
j=1

Since r € I, r?2 = 0 by (a). Thus,

(3 + 83+ 83+t + 2tat7) Eny + 2tats Erp + 2t4t7 B
(110) .
+(3 + 63+ t2 + 12 + 2t4ts) Epo = 0.
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Therefore, we have the following four equations.

totg = 0
tat7 =0
Ha 3+t +2tt,=0
LHtI 4+t 4124 2425 =0.

(111)

We will show that there is no real solution of the equations given in (111). Since
tots = 0, to = 0 or tg = 0. Thus, we have the following two cases to consider.

Case 1: t, =0

Case 2: tg =0
We will show both cases lead to a contradiction.

Case 1: Suppose t; = 0. Then, from the third equation in (111), we have
1 +1t2+ 12 = 0. This is impossible since t3,t4 € R.

Case 2: Suppose tg = 0. Then, the fourth equation in (111) implies
1 +t3+1t3 +t2 =0. This is again impossible since t,,t3,t; € R.

Thus, the equations in (111) have no real solutions. This implies that there is
no r € I such that (6, + I) = 8, + r. Thus, there is no splitting map of the exact

sequence given in (106). Therefore, S is not a (B, N)-construction. O

It was conjectured that every R € My4(k) is a (B, N)-construction. Theorem 3.5
implies this conjecture depends on k. If k = R, then S is not a (B, N)-construction.
If k = C (complex numbers), then S is a (B, N)-construction. More generally, we

prove S € My4(k) is a (B, N)-construction if k is an algebraically closed field.

Theorem 3.6 Suppose k is an algebraically closed field. Then, S is a (B, N)-

construction.
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Proof: Since k is an algebraically closed field, the polynomial f(z) = z2+1 € k[z]
has a root i. Set a; = 6, — 16y, @y = 83 — by, a3 = 85 — 167, and ag = 6 —
i6s. Then, a;65 = Ey1, 0106 = E\3, 0265 = Ey1, a6 = Eg. Thus, the ideal
I generated by o, 0, O3, O contains Ep, for all m,n = 1,2. It is easy to check

I= L(aly Qa, 3, 04, Ella ElZv E219 EQ?)' Thus1 dzmk(I) = 8.

Let B € AnnS(I ). Then, 8 = T5_, tnbn + T2 no1 SmnEmn for some t,, Smn € k.
Sincea, € I foralln=1,2,3,4, o, =0foralln=1,2,3,4. From a;8 = a8 =0,

we have

( ) (t1 - 'l,t2 ‘+' t5 - it7)E11 + (te - ’l:tg)Elz + (tl - itg)E'_)g = 0
112
(t3 - it4)E11 + (t5 - it7)E21 + (t3 — ity +tg — ’its)Ezz =0.

Equation (112) implies

t) —itg+ts —ity =0
t3—ity +ts —itg =0

te —itg =0
(113) o
tl—it2=0
t3 —ity =0
t5—it7=0

Thus, we have t; = ity, t3 = it4,ts = it7, and tg = itg. Hence,

B = itab; + ta6g + it483 + t464 + it705 + itgle

-

= 1lo + itgag + it7a3 + ttgay + E?Ln:l SmnEmn.
Therefore, 3 € I and hence Anngs(I) C I. Since I? = 0, I C Anns(I). Thus,
Anng(I) =1.

Notice that A = {14+ 1,6, + 1,63+ 1,65+ I,6¢ + I} is a k-vector space basis of
S/I. Since dimy(I) = 8 and dim(S) = 13, we have dim,(S/I) = 5. Since ia, € I
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for all n =1, 2, 3,4, we have

bg+1=—i6+1
b+ 1=—ib3+1
br+1=—ibs+1
0s + 1 = —ibg + 1.

(115)

Let 0 be the k-vector space homomorphism from S/I to S defined as follows:

0(Tia + 1) = I

0(6y + I) = 36, + 36,
(116) 085 + I) = 163 + 3iby

8(6s + I) = 165 + Lis,

(86 + I) = 366 + 3ids.

Then,
0(62+ I) = 0(—iby + I) = —i0(6, + I) = 362 — 36,
a17) 0(8a +I) = 6(—ib3 + I) = —iB(b3 + I) = 364 — 1163
0(87 +I) = 0(—ibs + I) = —i6(65 + I) = 367 — 3165
0(6s + I) = O(—ibs + I) = —i0(86 + I) = 165 — 1166

Furthermore, 0 is a k-algebra homomorphism. To see this, we proceed as follows. Let
7,7 € §/I. Then, v = (tIi4+a)+ I and v = (t'I;4 + a’) + I for some ¢, € k and

a,a’ € J(S). Note that

6(vY) =0(((tha+a)+I)((t'ha+a')+1))
= 0(tt' 14 + ta’ + at’ + aa’ + I)
= 0(tt' iy + ta' + at’ + I)
=0(tt'Iiy+ 1)+ 6(td' +I)+6(at’ +I)
=tt'6([14+ 1) +t0(a'+ 1)+ t0(a+1)
=tt'[14+t0(a' + 1)+ t'0(a+I).

(118)
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and
0(1)0(Y) =0((tha+a)+1)6((tTha+a') +1)
=(0tha+I)+0(a+1)O{t'[a+1I)+6(a’ + 1))
= (tha+6(a+I))(t' 4+ 60(a’ + 1))
=tt'hy+t0(a' + 1)+ t'0(a+I)+0(a+ I)8(a" + I).

Thus, it remains to show 8(a+ I)(a’+ 1) =0. Let a = 38_, u,6, + E?n,n:l Vmn Emn
and o’ = Y8 ul6n + 2, 1 Vnn Ermn, Un, Uy, Umn, Ul € k. Then, we have
a+ 1= (ul - i’u2)51 + (U3 - iU4)(53 + (U5 - i'U,7)65 + (Ue - iU3)(Ss +1

(119)
a' + I = (u] —iup)by + (uf — 1uy)d3 + (uf — 1uy)ds + (ug — tug)ds + I

Therefore, by (116)

0((1 + I) = %(ul - iUQ)(61 + 1,62) + %(U3 - iu4)(63 + i54)

( ) +%(’U,5 - iU7)(65 + i67) + %(’Uﬁ - iug)(65 + 163)
120
0(a’ +I) = 3(u) — iuh) (61 +1i62) + 3 (uf — iu}) (63 + i64)

+%(ug —1u7)(8s + i67) + %(ug — 1ug) (86 + 18g).
By using Table 1, we have

0(a + I)0(a’ + I) = %((Ul - 2’U,2)(61 + 162) + (‘U.3 - 1.’U.4)(63 + 164)
(121) +(U5 - ’iU7)(65 + i67) + (’U,e - iug)((SG + 268))((’&’1 - zu’z)(él + 1(52)
+(ug — 1uy) (63 + 164) + (ug — du7) (85 + 167) + (ug — iug) (86 + i6s))

=0

Recall v : S — S/I is the natural homomorphism defined by v(r) =r+1I forr € S.
Then,

v(ha+1I) =v(la)=ha+1

v0(6y + 1) =v(36:+3i6) = 36, + 3iba + [
= (361 + 3i63) + (361 — 316) + 1
=6 +1

(122)
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09(63 + I) = ’U(%(S;; + %i&g) = %53 + %1(54 +1
= (%(53 + %254) + (%53 - %254) +1
=63+1

1.)0((55 + I) = ‘U(%55 + %167) = %65 + %157 +1
= (305 + 3167) + (305 — 3i67) + I
=6s+1

'00(65 + I) = ‘U(%éﬁ + %263) = %65 + %263 +1
= (306 + 316) + (306 — 3i0s) + I
=8+ I.

Thus, it is easy to check v0(r + I) = r+ I for all r € S. This implies the exact

sequence
(123) 0 —I—S8—S8/I—0

splits as k-algebras. Therefore, the ideal I of S satisfies the two conditions in

[3:Theorem 4] and S is a (B, N)-construction. a

Theorem 3.5 and 3.6 show that the question: “When is (R, J,k) € Q a (B, N)-
construction?” depends on the field k. From Theorem 3.6, one could conjecture that
every (R, J,k) € Q is a (B, N)-construction if k is an algebraically closed field. At

present, this conjecture is still opened.

Next we show S is not k-algebra isomorphic to C. In what follows, we will need a

multiplication table for C. Let

0, 0O O
(124) M= A O0p O |, i=1,....8

O B O
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Here,
(L ( 0, (0, / 0,
02 Iz 02 02
Al = 02 ) A2 = 02 [} A3 = I2 [ A4 = 02 [
0, 0, 0, I
\ 0)) \ 0, \ O \ O,
( O, [ O, ( O, ( O,
02 02 02 02
As=| O |, As=]| O2 |, A7=| Oz |, Ag=]| O2 |,
02 02 02 02
\ Eu \ E12 \ E2 \ Ea2
and

B, = (03 O3 O3 O3 Eyy), B; = (03 O3 O; O; Ey5)
By =(02 02 0; O3 Ez1), By=(020; O; Oy Ex)
Bs = (Ey1 Og Ey O, O,), Bgs = (Ey13 O Egy O, O,)
Br = (02 Ey; Op Eyy O,), Bg = (02 Ey2 Oy Eyp O,).

Then, C = k[, ..., As, Fu, Eig, Eq, Ezz] and the multiplication table for J(C) is as

follows:

Table 2: Multiplications of )\;’s

)\1 Ao /\3 )\4 /\5 /\6 /\7 Ag
MO0 |10 |0 |Eng|lEf OO
M|{O[O|[O[O0O]|O0]|O|Ey|En
M O|O[O|O |Ex|Ex|O]O
M O[O[O|O|O]| O |Ey|Ex
A |En| O|Exy| O O[O0 O
dM|E2| O [Ex|[O|O|O]|O]|O
M| O [En| O |EBExq| OO0 ]O
d| O |Ep| O |Ex|O|[O]|O]|O

We don’t include the multiplications for E;;’s since E;;J(C) = (0) for all 4,j = 1,2,
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We will now prove that the set Q@ = {(R, J, k) € Myy(k)|dimx R = 13,i(J) = 3}

has at least two isomorphism classes [S] and [C].

Theorem 3.7: Let (S, J, k) € Q be the k-algebra given in Theorem 3.4. Then, S

is not k-algebra isomorphic to the Courter’s algebra C.

Proof: Let X,...,X be indeterminates over k and set A = k[X;,..., Xg]. Let I

be the following ideal (in A):

I= (X},X3, X3, X3, X3, X8, X3, X3, X1 X2, X1 X3, X1 X4, X2 X3,
X2 X4, X3 X4, X5 X6, X5 X7, X5 X3, X6 X7, X6 X3, X7.Xs, X1 X7,
X1 X3, X2 X5, X2 X6, X3 X7, X3Xs, X4 X5, X4 X6, X1 X5 — X2X7,
X1 Xe — XoXg, X3Xs — X4 X7, X3Xe — X4 Xs).

(125)

Let 7 : A — C be the map defined by 7(X;) = A; for all i = 1,...,8. From Table
2, it is easy to check = is a surjective, k-algebra homomorphism. Table 2 also implies
I C kerm. Thus, the map 7 : A/I — C defined by #(f + I) = w(f) is a well-
defined k-algebra epimorphism. Let m = (X,,...,X3s). Then, m® C I and hence
{(1+0L,X +1,.... Xe + I,X: X5+ I, X1 X6 + I, X3 X5 + I, X3X6 + I} is a k-vector
space basis of A/I. Thus, dim,(A/I) = 13. Since dim;C = 13, 7 is a k-algebra

isomorphism. Thus, C = A/I as k-algebras.

Let L be the ideal of A defined as follows:
(126)

L= (X% X2 X2 X2 X1X3, X1 X3, X1 X4, X2 X3, X2 X4, X3 X4, X5 X,
X5 X7, X5 X3, X6 X7, X6 X8, X1 X3, X1 X7, X1 X3, X2 X5, X0 X6, X3 X7, X3Xs,
XeXs, XeXe, X2 — X2, X2 — X2, X? — X2, X1 X5 — XoX7, X1 X6 — X2 X3,
X3Xs — X4 X7, X3Xe — XaXs, X2 — X1 X5 — X3Xs).

Let 1 : A — S be a map defined by m(X;) = 6; for all i = 1,...,8. Then, 7 is

.a surjective, k-algebra homomorphism. Using Table 1, L C kerw. Hence, the map
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71 : A/L — S defined by 7,(g+ L) = m;(g) is a well-defined k-algebra epimorphism.
Sincem®C L, {1+L, X\ +L,...,Xs+L, X+ L, X, Xs+ L, X, X¢+ L, X3Xs + L}
is a k-vector space basis of A/L. Thus, dim,(A/L) = 13. Since dim; S = 13, 7, is a

k-algebra isomorphism. Hence S = A/L as k-algebras.

Suppose S is k-algebra isomorphic to C. Since S = A/L and C = A/I, there
is a k-algebra isomorphism ¢ : A/I — A/L. Notice that A/I, A/L are standard
graded rings. Since J(C)® = (0) and J(S)® = (0), we have A/I = Co ®C, ®C, =
kdC,®Crand A/L=S5S5 DS, =kDS; &S, Here, C,, and S, are the n-th
homogeneous components of A/I and A/L, respectively. Since C and S are local
rings, J(A/I) = m/I and J(A/L) = m/L. Since ¢ is a k-algebra isomorphism,
o(m/I) = o(J(A/I)) = J(A/L) = m/L. Thus, o((m/I)*) = (m/L)" for all n > 0.
We can now define a map % : g7m/1(A/I) — grm/L(A/L) given by ¥(a+(m/I)**!) =
o(a) + (m/L)™*! for all @ € (m/I)*. Since p((m/I)*) = (m/L)" for all n > 0, ¥
is well-defined, k-vector space homomorphism. Since ¢ is surjective, v is surjective.

Hence, 9 is a k-vector space isomorphism.

Next we will show 9 is a k-algebra homomorphism. Let a; € (m/I)" and let
az € (m/I)%. Then,
(127)

W((er + (m/I)"* ) (ag + (m/1)HY)) = p(arag + (m/I)M+H+Y)
= p(a09) + (m/L)"+H1
= p(a1)p(az) + (m/L)**++1
= (p(a1) + (m/L)**)(p(az) + (m/L)**1)
= Y(ay + (m/I)"*)p(az + (m/I)5+1).

Thus, v is a k-algebra isomorphism.

Let p; : k®C, ®Cy — grm1(A/I) be a map defined by p1(an) = o, + (m/I)*+!

for all o, € C,, n = 0,1,2. Then, it is easy to check that p; is a k-vector space
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isomorphism. Let a,, 8, € C,. Then,
(128)
p1((ao + ay + a2)(Bo + Br + B2)) = p1(aobo + aoBr + a1fo + aofB2 + a2fo + a1 51)
= p1(aobo) + p1(coBr + a16o) + p1(aof2 + az60 + a13:)
= aofo + (a0B1 + 1o + (m/1)?) + (0B + 20 + 1By
+(m/I)%))
= (ao + (1 + (m/1)?) + (az + (m/1)*))(Bo + (By + (m/I)?)
+(B2 + (m/1)?))
= p1(ao + a1 + a2)p1(Bo + b1 + B2).

Thus, p; is a k-algebra isomorphism.

Let p2: k®S1 Sz — grm/L(A/L) be a map defined by pa(vn) = yn + (m/L)**!
for all v, € S, n = 0,1,2. Then, by the same arguments above, p, is a k-algebra

isomorphism.

Let 0 = p;'ovop : k®CLHC, — kDS, ©S,. Then, o is a k-algebra
isomorphism with o(C,) = S, for all n = 0,1,2. Thus, o is a k-algebra isomorphism
which is homogeneous of degree 0. Therefore, we may assume ¢ : A/I — A/L is a
k-algebra isomorphism which is homogeneous of degree 0. Since ¢(C,) = &,
o(Xi+ 1) =38, a;;X; + L for some a;; € k, 3,5 =1,...,8. Here, det(a;;) # 0. Let
71 : A — A be a map defined by n(X;) = ?=1 a;;X; for all i = 1,...,8. Then, by

[10, Corollary 2, p137], n is an automorphism.

Let o : A— A/I and 6, : A — A/L be natural homomorphisms. Then the

following diagram commutes.

A 2 A/l
(129) nl Ly
A 5oa/L
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To see this, we proceed as follows. The four maps in (129) are homogeneous of degree
0. Hence, it suffices to show that pfy(f) = 61n(f) for any homogeneous form f in A.
Let f(z1,...,Z,) be of d-form in A. Then,

e(6o(f(z15---,20))) =@(flma+1,...,20+ 1))
= flo(z1+1),...,0(za +1))
= f(T5=1a1;z5 + L,..., 5, ag;z; + L)
(130) = f(Z5-1015%;5, - .., Ljo1 agT;) + L
= f(n(z1),...,n(zs)) + L
=n(f(z1,...,28)) + L
= 6in(f(z1,...,2n))-

Thus, the diagram in (129) commutes. Hence, ¢ can be lifted to an automorphism 7

which is homogeneous of degree 0.

Notice A/I is an A-module via 6y, 7(a+ I) = bp(r)(a +I) =ra+ I for r,a € A.
Also, A/L is an A-module via 6,n, rb = 6,(n(r))b forr € A, be A/L. If re€ A
and a € A/I, then

(131) p(ra) = p(bo(r)a) = ¢(bo(r))e(a) = 61(n(r))p(a) = r¢(a).

Thus, ¢ is an A-module isomorphism homogeneous of degree 0.

The minimal free resolution of the A-modules A/I and A/L are as follows:

(132)
0—*A4—DA27—>A92—»A204—’A296—-+A266—'A136—'A32—*A—vA/I—+0

O—>A4—->A26—>A87—+A197—¥A293—>A266—)A136——¥A32—>A—>A/L—»0.
These resolutions were computed using Macaulay. Notice the resolutions have
different betti numbers. By [5: Proposition 1.5.16], this is impossible. Thus, A/I
is not k-algebra isomorphic to A/L. We conclude that S is not k-algebra isomorphic

to C. O
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By Theorem 3.7, we conclude that the set Q = {(R,J, k) € M(k)|dimR =

13, i(J) = 3} has at least two isomorphism classes [C] and [S].

Since S is not k-algebra isomorphic to C, (S, V}) is not (o, 7)-isomorphic to (C, V3)
for any finitely generated, faithful, S-module V; and for any finitely generated, faithful
C-module V5.

In our last theorem in this thesis, we will prove that (S,k'*) is not a
Ci-construction. Let B be the Schur algebra of size 4 given in (2). Let B be a
k-algebra which is k-algebra isomorphic to B. Suppose f : B — B is a k-algebra
isomorphism. Let N be a finitely generated, faithful, B-module. Then, N is a finitely
generated, faithful, B-module via f. Hence, we can form the pairs (B x N¢, B & N)
and (B x N¢{, B! ® N) in MX.

Theorem 3.8: With the notation given above, suppose dimy(N) = 4. Then, f
induces a (o, T)-isomorphism (o,7) : (B x N¢{, B*® N) = (B x N, B*® N).

Proof: Recall N is a B-module via nb = nf(b). Let 0 : Bx N* — B x N¢ be the
map defined by

(133) o(b,ny,...,ng) = (f(b),ny,...,n).

Then, it is easy to check o is a k-vector space isomorphism. Let (b,ni,...,n),

(c,my,...,my) € Bx N Then,

o((b,ny,...,ne) (c,my,...,m)) = o(bc,mb+ nic,...,meb+ nyc)
= (f(bc),m1b+ nyc, ..., meb + nec)
(134) = (f(6)f(c),m1f(b) + n1f(c),...,mef(b) + nef(c))
= (f(0),n1, ..., m)(f(c)yma, ..., me)

=o(b,ny,...,n)o(c,my,...,my).

Thus, o is a k-algebra isomorphism.
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Let 7: B® N — B @ N be a map defined by
(135) (bisen bey ) = (F(B1), .., F(Be) ).

Then, it can be easily checked that 7 is a k-vector space isomorphism. Let

(b,ny,...,ne) € Bx Nt and let (by,...,b,,n) € B® N. Then,

7((byy...,beyn) (byny,...,mg)) = 7(bib, ..., beb,nb + T, nib;)
= (F(0r)f(0), ..., F(be) f(b), nf (b) + Ty maf (B3))

(136)
= (f(b1),---, f(be), n)(f (D), m1,- .., 7)
=7(by,...,be,n)o(b,ny,. .., ne).

Thus, we conclude (B x N4, B*@® N) =, (B x N¢{,B*® N). )

We can now prove that (S, k') is not Cj-construction by using the result in

Theorem 3.8.

Theorem 3.9: Let (S,J,k) € Q be the k-algebra constructed in Theorem 3.4.
Then, (S, k) is not a C,-construction.

Proof: Suppose (S, k!*) is a C)-construction. Then, (S, k') is (o, 7)-isomorphic to
(Bx N¢, B‘®N) for some (B, N) € X and £ € N. Let d = dimy(B) and n = dimy(N).
Since S is k-algebra isomorphic to B x N and kM is k-vector space isomorphic to

B! ® N, dimi(S) = dimi(B x N*%) and dim(k'*) = dim,(B¢ ® N). Thus, we have

13=d+¢n
(137)
14 = 4d + n.
The only solution (d,n,¢) € N® for Equation (136) is d = 5,n = 4,¢ = 2. Thus,
(S, k') =,. (Bx N2, B2@® N).
Notice that J(B x N?) = J(B) x N2 From this, it easily follows that

i(J(B x N?)) = i(J(B)) + 1. Since S is k-algebra isomorphic to B x N? and
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i(J(S)) = 3,i(J(B)) = 2. Since dimi(B) = 5 and i(J(B)) = 2, B is k-algebra
isomorphic to B. Theorem 3.8 implies (B x N2, B2® N) ¥, .,) (B x N%,B2& N).
Thus, (S,k") Z(,m) (B x N2,B*>@® N), where 0 = 0,00 and 7, = Ty o7,
By [4, Proposition 1], (B x (k*)%,B% @ k*) =(4,) (C,k') and by Theorem 2.12,
(Bx N2,B2® N) X5,r (B x (k*)?,B? & k*). Thus, (S, k") = (C, k™), where
o' = 03004009 and 7' = 13074 0 7. Therefore, S is k-algebra isomorphic to C. This
is impossible by Theorem 3.7. We can conclude that (S, k'*) is not C)-construction.

O

Theorem 3.9 implies that if (R, J, k) € €, then we can not conclude (R, k') is a

C,-construction.




Appendix
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Appendix

We will prove Subcase 1 through 9 in Case 4 of the proof of Theorem 2.9.

Subcase 1: Suppose dimy(Anng(e;)) =1 for i = 1,2,3. Let dimi(Anng(a;)) =

S1 0 0]
ksi,s; € J(B),i=1,2,3. Then, | O |,| s2 |,| O | € kery. Let
O O S3

S1 (0] (0] I
51=(0),52=(32),53=(0),54= n
O 0 S3 2]
(T2 ) T3 T4 Ts
(138) bs=| v |,06=]| v3 |,67=| va |, 08=| us
\ 22 / 23 24 25

(166 \ I7 Is
bo=1 v |, 600=1| v7 |, ou=1] us
\ Zg / 27 28

be a basis of kery. Here, z;,¥;, 2; € J(B). Since dimy(J(B)) = 4, {s1, 11, Z2, Z3, Z4,

Ts,ZT¢,Z7,Zg} is linearly dependent. Thus, there exist d,c; € k,i = 1,...,8, not
all zero such that ds; + Y% ¢z = 0. If ¢ = Oforalli =1,...,8, then d # 0
and ds; = 0. This implies s; = 0. This is impossible. Hence, some ¢; is not
zero. We can assume cg # 0. Thus, zg € L(s;,z;,...,27). We can repeat this
argument four times and assume z4, s, Ts, T7, s € L(s), Z1, T2, z3). Therefore, 4 =
ds, + ¢1Z) + ¢2x2 + c3z3 for some d, ¢y, ¢y, ¢3 € k. Since {61,084, 85, 8,67} is linearly

0]
independent, d§, + 164 + €265 + c366 — 67 = ( Uy ) # 0. Since {6y, ..., 067} is linearly
(5!
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(0]
independent, ( U ) ¢ kb + kbs. Thus,

v
S1 0 0 Iy
o= O |,ba=| 52 |,63=| O |,6a=| wm
(0] o S3 2
A T2 \ T3 0 Ts
(139) bs=| v | 6=| us | ,Or=| w |,08=]| ys
2y ) 23 v 25
Tg \ I7 Ig
o=\ w6 |,000=1{ vr |,bu=| us
26 ) 27 28
is a basis of keryp. We can repeat this argument four times and assume
81 (0] 0] T
61= O ,(52= S2 ,63= O ,64= n
(0] 0] S3 2
Ty \ I3 0] (0]
(140) 65 = Y2 ) 66 = Y3 ) 67 = U ’68 = U2
29 / 23 v /- (]
O (0] (0]
bg=| uz |,000=1| ug |,611=| us
V3 V4 (%

is a basis of keryp.

Since dimy(J(B)) = 4,{sa2,u1,...,us} is linearly dependent. Thus, there exist
d,c; € k,i =1,...,5, not all zero such that ds, + Ef___l cu; = 0. We can assume

(0]
cs # 0. Since db; + 167 + ¢c26s + €369 + €4610 — 611 = ( 0 ) for some d,c; € k,i =
v

1,2,3,4,v € J(B) and {82, 67, 6s, 89, 610,611} is linearly independent, v # 0. If v = ts3
for some t € k, then dd; + ¢167 + 208 + 369 + 4610 — 611 — tb3 = 0. This is impossible.

(0] (0]
Thus, v ¢ ks3. Therefore, ( (0] ) € keryp\kbé3. This implies ( (0] ) ,63 € Anng(as).
v v




67

This is a contradiction since dimi(Anng(as)) = 1.

Subcase 2: Suppose dimi(Anng(a;)) = 2 and dimi(Anng(a;)) =1 for i = 2,3.

Let Anng(a;) = ksi + ksg, Anng(a,) = ks3, and Anng(as) = ksq, s € J(B),i =

5 S92 0] (0
1,2,3,4. Then, | O |,| O |,| s3 |,| O | € kery. Let
(0] (0] (0] S4

/3?1 I I3 T4
(141) bs=1| v |,06=| v2 |:0r=]| y3 |,0s=| s
\ 2] 22 23 24
/-’05 Ze T7
bo=1| ys [,000=| ¥ |,6u=| W
\ 25 26 rad

I

be a basis of kery. Here, z;,¥;, z; € J(B). Since dimy(J(B)) = 4, {s1, s2, 71, T2, T3,

Z4,Ts, Te, T7} is linearly dependent. Thus, there exist d;,ds,¢c; € k,i = 1,...,7, not
all zero such that d;s; + das; + Z;’=lc.~xi =0. f¢g=0foralli=1,...,7, then
dy8) + d3s; = 0. This implies d; = d; = 0. This is impossible. Hence, some ¢; is
not zero. We can assume c¢; # 0. Hence, z7 € L(sy, s2,71,...,Zs). We can repeat
this argument four times and assume z3,z4, zs5,Zs, 7 € L(s1, S2, T1,Z2). Therefore,
z3 = d181 + d2sy + €171 + coz2 for some d;, ¢; € k,i = 1,2. Since {6y, 62,85, 66, 67} is

(0]
linearly independent, d,6; + d262 + ¢165 + 206 — 67 = ( u ) # 0. Since {61, ...,67}
n
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0]
is linearly independent, ( U ) ¢ kb3 + kb4. Thus,
U

S1 S2 0] 0
51= (0 ,62= 0 ,63= S3 ,(54= 0
(0 (0 0 S4
I ) O T4
(142) bs=1 y2 |,06=| y3 |07 up |,0=| va
29 23 n 24
Ts Te 7
bo=1 vs | 000=| ¥ |,0nu=| v
Zs 2 z7
is a basis of keryp. We can repeat this argument four times and assume
S1 So o) o)
61= o ,52= (0] ,63= S3 ,64= 0]
(0 (0 (0 S4
( I \ T9 O 0
(143) bs=| 1 | b6=| v2 |\br=| w1 |,08=]| u
\ 2 } 22 1 Vg
[ 0 \ 0] (0]
bg=1| us |,000=| ug |,011=| us
K U3 } (1 Vs

is a basis of kerep.

Since dimi(J(B)) = 4,{s3,u,...,us} is linearly dependent. Thus, there exist
d,c; € k,i = 1,...,5, not all zero such that ds; + 3}_, c;u; = 0. We may assume

(0]
¢cs # 0. Since db3 + 107 + c20g + €369 + c4010 — 611 = ( (0] ) for some d,c; € k,i =
v

1,2,3,4,v € J(B) and {83, 67, Js, b9, 610, 611} is linearly independent, v # 0. If v = ts,
for some t € k, then dd3 + 167 + c208 + c389 + 4610 — 611 — t64 = 0. This is impossible.

0 (0]
Thus, v ¢ ks4. Therefore, ( (0] ) € kerp\ké,. This implies ( (0] ) ,04 € Anng(as).

v v
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This is a contradiction since dim;(Anng(asz)) = 1.

Subcase 3: Suppose dimi(Anng(a;)) = 2 for i = 1,2 and dimy(Anng(asz)) = 1.

Let Anng(a;) = ks)+ksq, Anng(as) = ks3+ks,, and Anng(as) = kss, s; € J(B),i =

S1 S9 (0] (0 (0
1,2,3,4,5. Then, | O |,| O |,| s3 |,| sa |,| O | € kerp. Let
(0] (0] (0] (0] S5

( O T T T3
(144) 05 = 0),56=(3/1),57=(y2),5s=(y3)
KS5 21 29 23
/154 Is Te
bo=1 ys |, 00=| ¥ |,6u=| ¥
\ 24 25 26

be a basis of kery. Here, z;,y;, z; € J(B). Since dimy(J(B)) = 4, {s1, s2, T1, T2, Z3,

T4, Ts, T, } is linearly dependent. Thus, there exist dy,ds,¢; € k,i = 1,...,6, not
all zero such that d,s; + dass + Z?=lc‘-x,- =0. Ifc;=0forall:i =1,...,6, then
dysy + dys; = 0. This implies dy = d; = 0. This is impossible. Thus,c; # 0 for
some i. We can assume cg # 0. Hence, z¢ € L(si, S2,Z1,...,Z5). We can repeat
this argument three times and assume z3,z4,s,z¢ € L(s1,82,%1,Z2). Therefore,
Z3 = d;8; + d383 + 1T, + Coxp for some d;, ¢; € k,i = 1,2. Since {6, 62,6, 67,08} is

(0]
linearly independent, d16, + d282 + 186 + 267 — 6 = ( Uy ) # 0. Since {6y, ...,8}
(51
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(0]
is linearly independent, ( U ) ¢ kb3 + kb4 + kbs. Thus,

v
81 S2 (0] (0]
b= O |,6a=| O |,03=] s3 |,64=] 54
0 (0] (0] (0
( 0 T g (0]
(145) 65 = 0 ,65 = ) 367 = Y2 ,68 = u
\ Ss 2 2y U1
( T4 Ts Ze
bg=1 ya | 00=| v |, 6u1=] ¥
\ 24 Zs 26
is a basis of keryp. We can repeat this argument three times and assume
s1 S2 (0] (0]
=] O |,62= O |,863=| 83 |,0a=] 854
0] (0] (0] (0]
0] T Ty (0]
(146) (55 = O ,55 = mn ,(57 = Y2 ,68 = Uy
Ss 2] 22 (51

is a basis of keryp.

Since dim(J(B)) = 4, {s3, S4, U1, - .., uq} is linearly dependent. Thus, there exist

dy,dy,c; € k,i = 1,...,4, not all zero such that d;s3 + dys4 + Z;':l cu; = 0. We

o
may assume Cq4 # 0. Since d163 + d264 + 0153 + 0259 + C3510 - 611 = ( 0
v

) for some

dy,da,c; € k,i=1,2,3,4,v € J(B) and {63, 84, b8, b9, 610, 611} is linearly independent,

v # 0. If v = tss for some t € k, then d,63 + d264 + €108 + c209 + c3810 — 811 — tds = 0.

o

This is impossible. Thus, v ¢ kss. Therefore, ( (0] ) € kerp\kds. This implies

v
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0]
( o ) ,05 € Anng(as). This is a contradiction since dimi(Anng(az)) = 1.
v v

Subcase 4: Suppose dimi(Anng(a;)) = 2 for i = 1,2,3. Let Anng(a;) = ks; +

ksq, Anng(as) = ks3 + ks4, and Anng(as) = kss + kse, s; € J(B),i = 1,2,3,4,5,6.

S1 S2 (0] o (0 0]
Then, | O |,] O |,| s3 |,]| sa |,| O |,]| O | € kerp. Let
(0] (0] (0] (0] S5 S6

( (0] (0] T T
(147) bs=] 0 |, 06=]| O |,6r=| 0 |.68=]| v
\ S5 S6 2 22

be a basis of kery. Here, z;,y;, z; € J(B). Since dimy(J(B)) = 4, {s1, 82, T1, T2, Z3,

Z4,Zs5} is linearly dependent. Thus, there exist dy,ds,¢c; € k,i = 1,...,5, not all
zero such that d;s; + dzsy + E?=1c,-x,- =0 Ifc =0foralli=1,...,5 then
d1s1 + dasg = 0. This implies d; = d; = 0. This is impossible. Thus,c; # 0
sor some i. We can assume cs # 0. Hence, z5 € L(s;,s,2;,...,74). We can
repeat this argument two times and assume z3,z4,z5 € L(sy, S2, Z1,Z2). Therefore,
z3 = d18; + d28y + €171 + cox; for some d;, ¢; € k,i = 1,2. Since {61, 62,67, 68,09} is

’ (0]
linearly independent, d,6; + d262 + €167 + c208 — 89 = ( u; ) # 0. Since {6,...,60}
)1
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0]
is linearly independent, ( Uy ) ¢ kb3 + kb4 + kbs + kbg. Thus,

v
S S2 (0] (0]
6= 0 |,6a=1| O |,63=| s3 |,0a=] 34
(0] (0] (0] (0]
V (0] (0] I T2
(148) b= O |, 06=| O |,62=| n |.,686=] %2
Ss S6 2 22
(0] T4 Zs
bg=| u |,00=| v |,bu=| ¥s
(%1 24 25
is a basis of kery. We can repeat this argument two times and assume
s1 S (0] (0]
=] O |,02=| O |,83=| s3 |,6a=] 34
(0 (0] 0] o
[ O (0] T Z2
(149) bs=| O |, 06=| O |,62=| n |,68=] v2
\ S5 Se 2y 29
( O (0] (0]
bg=| u |,000=1| w2 |,b1=| us
\ ()1 V2 V3

is a basis of kery.

Since dim,(J(B)) = 4, {s3, S4,u1,. .., us} is linearly dependent. Thus, there exist

dy,dy,c;i € k,i = 1,2,3, not all zero such that dis3 + dpsg + 30, ciu; = 0. We

(0]
may assume c3 # 0. Since d,03 + d264 + 169 + 2610 — 011 = ( (0] ) for some
v

di,c; € k,i =1,2,v € J(B) and {63, 64, b9, 610,611} is linearly independent, v # 0. If
V= t135+t286 for some tl,tz € k, then d153+d264 +0169+C2610—611 —t165 —t256 = 0.

(0]
This is impossible. Thus, v ¢ kss + ksg. Therefore, ( (0, ) € kery\kds + kb. This
v
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@)
implies ( o ) , 05,86 € Anng(as). This is a contradiction since dim,(Anng(asz)) = 2.
v

Subcase 5: Suppose dimy(Anng(a;)) = 3 and dimy(Anng(e;)) = 1 for i = 2,3

Let Anng(a,) = ksl+k32+k33,AnnB(a2) = ksy, and Anng(az) = kss, s; € J(B),i =

' S1 S2 S3 0] o
1,2,3,4,5,. Then, | O |,] O |,| O |,| sa |,| O |,€ kerp. Let
(0] (0] (0] 0] Ss

I T I3
(150) 6 = =| n |.6r=| v2 |,0s=]| us
S5 2 22 23

be a basis of kery. Here, z;,y;, z; € J(B). Since dimy(J(B)) = 4, {s1, 52, Z1, T2, T3,

Z4,Zs,Z¢} is linearly dependent. Thus, there exist d;,ds,¢; € k,i = 1,...,6, not
all zero such that d;s; + das; + Z?=lc,-x,~ =0. If¢gg=0forali=1,...,6, then
d;81+d382+d3s3 = 0. This implies d; = dy = d3 = 0. This is impossible. Thus,¢; # 0
for some i. We can assume cg # 0. Hence, ¢ € L(s;, S2,21,...,Z5). We can repeat
this argument four times and assume z,, z3, T4, Zs, Z¢ € L(S), S2, S3,Z;). Therefore,
Ty = d)8) + da8y + d3s3 + cxy for some d;, c € k,i = 1,2,3. Since {6y, 62, 63,0, 67} is

(0]
linearly independent, d;6, + d262 + d303 + cbg — 67 = ( U ) # 0. Since {6y,...,67}

(%1
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o
is linearly independent, ( u) ) ¢ kb4 + kbs. Thus,
n

81 $2 S3 0]
51= (0] ,62= (0] ,(53= (0] ,54= S4
(0] o (0] (0]
(0] I (0 I3
(151) 5= 0 [,66=| w1 |,0r=| wm |,6s=] us
S5 21 ()1 23
T4 s Ze
o= va |,000=| ¥s |,61=1| ¥
24 25 26
_ is a basis of kerp. We can repeat this argument four times and assume
81 82 S3 (0]
61= 0] ,62= (0] ,63= (0 ,54= S4
(0, (0] (0] 0
( (0] I (0] (0]
(152) 5= 0 |,06=| th |,67=| w1 |,68=]| wa
\ S5 21 (1 V2
[ O (0] (0]
bo=| us |,010=| ws |,01=] us
\ V3 vy s

is a basis of kery.

Since dimy(J(B)) = 4,{s4,u1,...,us} is linearly dependent. Thus, there exist
di,c; € k,i=1,...,5, not all zero such that d;ss + Zf’=l ciu; = 0. We may assume

o
Cs 74 0. Since d184 + 167 + 208 + €309 + C4610 — 611 = ( 0] ) for some d;,c; € k,i =
v

1,2,3,4,v € J(B) and {44, 67, b3, b9, 610, 611 } is linearly independent, v # 0. If v = ts;
for some t € k, then d;84 + ¢167 + c28g + 369 + c4610 — 611 — tds = 0. This is impossible.

(0] (0]
Thus, v ¢ kss. Therefore, ( (0] ) € kery\kbs. This implies ( (0] ) ,05 € Anng(as).

v v
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This is a contradiction since dimy(Anng(asz)) = 1.

Subcase 6: Suppose dimi(Anng(a;)) = 3,dimi(Anng(ay)) = 2, and

dimi(Anng(as)) = 1. Let Anng(ay) = ks; + ksg + ks3, Anng(az) = ks4 + kss, and

81 S2 S3 (0] (0] (0]
Anng(az) = ksg,s; € J(B). Then, | O |, O |, O |,| sa |,| s5 |,| O | €
(0] (0] (0] (0] 0] S

kery. Let

(0] (0] I T2
(153) bs=| 85 |,06=]| O |,67=| % |,0s=| ¥
(0] Se 2 22

I3 T4 Ts

bo=| y3 |,010=1| va |,6u=| s

23 24 25

be a basis of kery. Here, z;,yi, z; € J(B). Since dim,(J(B)) = 4, {s1, s2, 83, Z1, T2,

Z3,T4,Ts} is linearly dependent. Thus, there exist d;,d;,d3,¢; € k,i = 1,...,5, not
all zero such that d;s; +dzsy +dasa+ 35, cizi =0. If ; =0foralli =1,...,5, then
d181+d289+d3s3 = 0. This implies d; = dy = d3 = 0. This is impossible. Thus,¢; # 0
sor some i. We can assume cs # 0. Hence, z5 € L(s,, 82, S3, 21, . .., Z4). We can repeat
this argument three times and assume z,,z3,z4,z5 € L(s),S9,83,Z1). Therefore,
Ty = dy8; + dasy + d3s3 + cx; for some d;, ¢ € k,i = 1,2,3. Since {6y, 8,83, 67,68} is

(0]
linearly independent, d,6, + d262 + d363 + cbé7 — 6s = ( ul') # 0. Since {61,...,6s}
v
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(0]
is linearly independent, ( u; ) ¢ kb4 + kbs + kbg. Thus,

(51
81 S2 S3 (0]
(51= (0 ,62= o ,63= 0 ,54= S4
(0] 0] (0] (0]
(0] (0] T o
(154) bs=| 8 |,06=]| O |,0r=| m |, 0s6=]| wm
0 S6 2 (51
T3 T4 Iy
o= v3 | 0100=| va |, onu=1| s
23 24 25
is a basis of keryp. We can repeat this argument three times and assume
81 S2 S3 (0]
51= (0 ,62= (0 ,(53——— 0] ,64= S4
(0] (0] o (0]
( (0 o I o
(155) bs5=1| 8 [, 06=| O |, 6r=| nn |, 6= wm
K (0 S 2 7"
[ 0, (0] o
bg=| uz |,010=1] us |,bu=| ug
\ V2 U3 Uy

is a basis of kery.

Since dimi(J(B)) = 4, {s4, 85, U1, . .., uq} is linearly dependent. Thus, there exist

di,da,c; € k,i = 1,...,4, not all zero such that d;s4 + dyss + Z?:l cu; = 0. We

(0]
may assume ¢4 # 0. Since d,04 + d26s + €108 + 269 + 3610 — 611 = ( (0]
v

) for some

dy,ds,c; € k,i =1,2,3,v € J(B) and {64, 05, I8, b9, 610, 611} is linearly independent,

v # 0. If v = tsg for some t € k, then dy84 + d265 + €168 + €209 + €3810 — 811 — tdg = 0.

0

(Y

This is impossible. Thus, v ¢ ksg. Therefore, ( (0] ) € kerp\kds. This implies
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(0]
( (0] ) ,06 € Anng(asz). This is a contradiction since dimy(Anng(asz)) = 1.
v

Subcase 7: Suppose dimi(Anng(a;)) = 3,dimi(Anng(a;)) = 2 for i = 2,3.

Let Anng(a;) = ksy + ksy + ks3, Anng(az) = ksy + kss, and Anng(az) = kss +

51 82 S3 o (0] 0] 0]
ksz,s; € J(B). Then, | O |,1 O |,| O |,| sa |,| ss |,] O |,] O | €
o (0] (0 O (0] S6 S7

keryp. Let

( O (0] I
(156) 05 = 35),56=(0),57=( ),58=(y1)
\ O Se 7 2

be a basis of kery. Here, z;,y;, 2 € J(B). Since dimy(J(B)) = 4, {s1, 52, 3, T1, T2,

T3,Z4} is linearly dependent. Thus, there exist dy,ds,d3,c; € k,i = 1,...,4, not all
zero such that d;s; + dasg + d3s; + Z;Ll ¢izi =0 Ilfc;=0foralli=1,...,4, then
dy81+d285+d3s3 = 0. This implies dy = d; = d3 = 0. This is impossible. Thus,¢; # 0
for some i. We can assume c4 # 0. Hence, z4 € L(sy, 2, S3,Z1,Z2,23). We can
repeat this argument two times and assume z3,z3,z4 € L(s), S2, 83,1). Therefore,
zy = dy8) + da82 + d3s3 + cz, for some d;,c € k,i = 1,2,3. Since {6y, 6,,83, 68,09} is

(0]
linearly independent, d,6, + dy8; + d363 + cdg — b = ( U ) # 0. Since {4;,...,6¢}
(5
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(0]
is linearly independent, ( u ) ¢ kb4 + kbs + kbg + kb7. Thus,

v
81 Sg S3 0
61= 0] ,(52= (0] ,53= 0 ,64-——' S4
(0] (0] (0] (0]
(0] (0] o I
(157) 65 = Ss ,(56 = 0 ,67 = 0 ,68 = n
(0] Se S7 21
(0] T3 T4
o= wm |,000=| ¥3 |,6u=1| vs
()] 23 24

is a basis of kery. We can repeat this argument two times and assume
$1 S2 S3 (0]
61= O ,62= 0 ,63= O ,54= S4q
(0] (0] (0] (0]
0 (0] (0] T
(158) : 65 = S5 166 = (0] 767 = o ’68 = Y
0] S6 S7 2
(0] (0] (0]
bg=| w |[,000=| u2 |,61=| us
(O () U3

is a basis of kerp.

Since dim(J(B)) = 4, {s4, S5, u1,u2,u3} is linearly dependent. Thus, there exist

dy,do,c; € k,i = 1,2,3, not all zero such that d,sq + dyss + Z?=1 cu; = 0. We

(0]
may assume c3 # 0. Since dy84 + dybs + €189 + C2610 — 611 = ( 0] ) for some
v
di,c; € k,i =1,2,v € J(B) and {64, 65, b9, 610, 611} is linearly independent, v # 0. If
v = t136+t287 for some tl, t2 € k, then d164 +d255+0169+02510—6n —t166 —t267 =0.

(0]
.This is impossible. Thus, v ¢ ksg + ks;. Therefore, ( (0] ) € keryp\kée + kb;. This
v
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(0]
implies ( (0] ) , 06,07 € Anng(as). This is a contradiction since dimy(Anng(as)) = 2.
v

Subcase 8: Suppose dim,(Anng(a;)) = 3 for i = 1,2 and dim,(Anng(a;)) = 1

. Let Anng(a;) = ks; + ksy + ks3, Anng(az) = ksq + kss + ksg, and Anng(az) =

1 S2 83 o 0 0] (0]
ks7,s; € J(B). Then, | O |,| O |,| O |,| sa || s5 |,| s6 |,] O | €
(0] (0] (0] (0] (0] (0] S7

keryp. Let

= o

(0]
(0 (0] (0] I
(159) (55 = S5 ,66 = Se ,(57 = (0] ,68 = mn
(0] (0] S7 2

be a basis of kerp. Here, z;,yi,zs € J(B),i = 1,2,3,4. Since dimy(J(B)) =
4,{s1, S2, 83, Z1, T2, T3, L4} is linearly dependent. Thus, there exist d;, ds, d3, ¢; € k,i =
1,...,4, not all zero such that d;s; + d2sy + d3s3 + ELI ¢izi =0. Ifc;=0foralli =
1,...,4, then d;s;+dys2+d3s3 = 0. This implies d; = d; = d3 = 0. This is impossible.
Thus,¢; # 0 for some i. We can assume ¢4 # 0. Hence, z4 € L(s,, s2, 83, Z1, T2, Z3). We
can repeat this argument two times and assume z,, z3,z4 € L(sy, S2, $3, ;). There-
fore, T = dys) +d3s, +d3s3 + cx; for some d;, ¢ € k,i = 1,2,3. Since {6, 62, 83, s, 69}

0
is linearly independent, d,6; + dy8; + d363 + cbg — 69 = ( Uy ) # 0. Since {61,...,00}
n
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(0]
is linearly independent, ( u; ) & kb4 + kbs + kb + kb7. Thus,
n

S1 S2 S3 0]
51= (0] ,(52= (0] ,(53= 0 ,64== S4
0] (0 (0 0
0 (0] 0 I
(160) 65 = S5 166 = Se ) 67 = O 168 = Y1
(0] 0] S7 31
(0] I3 Iy
bo=1 uw |,000=| v3 |,6uu=1| wa
() 23 24
is a basis of kery. We can repeat this argument two times and assume
S1 S92 S3 0
51“—‘ (0] ,62= (0] ,63= 0] ,64= S4
0] (0] (0] (0]
( (0] (0] (0] T
(161) bs=1| 85 |, 06=| 86 |,07=| O | ,6s=| m
\ O 0 s7 ] 21
[ 0] 0 0]
o= w |,010=1| w2 |,611=] us
\ n V2 U3

is a basis of kery.

Since dimi(J(B)) = 4, {s4, Ss, S¢, U1, Uz, u3} is linearly dependent. Thus, there

exist d;,¢; € k,i = 1,2, 3, not all zero such that d;s; + dys5+ d3se +Zf=1 cu; = 0. We

o
may assume Cz # 0. Since d154 + d2(55 + d3(56 + 0169 + 62610 - 611 = ( 0
v

) for some

d;,c1,¢c3 € k,i = 1,2,3,v € J(B) and {64, 65, 66, 09, 610,611 } is linearly independent,

v #0. If v = ts; for some t € k, then d,64 + d265 + d3b¢ + €109 + C2610 — 611 — 67 = 0.

(0

This is impossible. Thus, v ¢ ks;. Therefore, ( o ) € keryp\ké;. This implies

v
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(0]
( (0] ) ,07 € Anng(as). This is a contradiction since dim,(Anng(az)) = 1.
v

Subcase 9: Suppose dimi(Anng(a;)) = 3 for i = 1,2 and dim(Anng(az)) = 2.

Let Anng(ay) = ksy + ksa + ks3, Anng(ay) = ksq + kss + ksg, and Anng(az) =

$1 S S3 0 0] (0]
ks-,-f—kss,s,-EJ(B).Then,(O),(O),(O),(s,;),(ss), 85),
0] (0] (0] (0] (0] (0]
(0] (0]
(O),(O)Ekercp. Let
S7 Sg

(O 0 0
(162) (55= 85),66=(36),67=( ),53=(0)
\ O (0] S7 Sg

be a basis of kery. Here, z;,¥i, 2; € J(B),i = 1,2,3. Since dim,(J(B)) = 4, {s1, s2, 53,
Z),Z9,Z3} is linearly dependent. Thus, there exist d;,¢; € k,i = 1,2,3, not all
zero such that dys; + dasy + dss3 + 35 cizi = 0. If g = 0foralli = 1,...,4,
then d;s; + dyss + d3sz = 0. This implies d; = d2 = d3 = 0. This is impossible.
Thus,c; # 0 for some i. We can assume c3 # 0. Hence, z3 € L(s), s2, 83, Z1, Z3).
We can repeat this argument and assume z;,z3 € L(s), So, $3,2;). Therefore, z, =
dy 81 +das2+d3s3+cx, for some d;, ¢ € k,i =1,2,3. Since {6, 62, 63, b9, 610} is linearly

(0]
independent, d,6; + d202 +d363+cdg — 610 = ( U ) # 0. Since {6}, ..., 6o} is linearly
U1
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(0]
independent, ( uy ) ¢ kb4 + kbs + kbe + kb7 + kbg. Thus,
n
S1 So S3 (0
61= O v62= O 163= 164= S4
0] (0] (0]

0 o @)
(163) 65=(85),66=(85),67=( ),68=(0)
(0] o S7 S8

(0] (0] (0] (0]
(164) (55 = S5 ,56 = S¢ ,67 = O ,63 = 0
(0] (0] S7 Sg

is a basis of kery.

Since dim(J(B)) = 4, {sa, S5, S6, U1, uz} is linearly dependent. Thus, there exist

di,c1,c2 € k,i = 1,2,3, not all zero such that d;sq + dass + d3sg + c1u; + coug = 0.
v

(0]
We may assume c; # 0. Since dy64 + d205 + d3de + cb10 — 611 = ( o ) for some

di,c€ k,i=1,2,3,v € J(B) and {64, s, b6, 610, 611} is linearly independent, v # 0. If

v = t,87+ tysg for some ty,t; € k, then d,64 + do05 + d3be + 0610 — 611 —t167 — 65 = 0.
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(0]
This is impossible. Thus, v ¢ ks7 + kss. Therefore, ( (0] ) € kery\ké7 + kég. This
v

(0]
implies ( (0] ) ,07,68 € Anng(a3). This is a contradiction since dimy(Anng(a3)) = 2.
v
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