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ABSTRACT

MAXIMAL COMMUTATIVE SUBALGEBRAS OF 11 BY n MATRICES OVER A

FIELD

BY

Young Kwon Song

The existence of R.C. Courter’s counterexample to M. Gerstenhaber’s conjecture

suggests some interesting questions about the isomorphism classes of local algebras

in the ring of 14 by 14 matrices. It was conjectured for a long time that Courter’s

example is unique up to isomorphism.

In Chapter 2, we will show that the class of maximal, local, commutative algebras

which are isomorphic to 8KN2 has only one isomorphism class. Next, we will show

the class of pairs (R, V) which are (a, T)-isomorphic to (3 IX N2, 82 EB N) has only one

isomorphism class.

In Chapter 3, we will construct a new algebra S which is maximal, local, commuta-

tive, index of Jacobson radical 3, and dimension 13. We will use 8 to show the (B, N)-

construction depends on the field It. The algebra S is not a (B, N)-construction if k

is the real numbers and is a (B, N)-construction if k is an algebraically closed field.

Finally, we will answer the above conjecture by showing the algebra S is not isomor-

phic to the Courter’s algebra.
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Chapter 1

Notation and History

In this thesis, I: will denote an arbitrary field. We will let N denote the natural

numbers, i.e. N = {1,2, 3, . . ..} If m,n E N, then men(k) will denote the set of all

m x n matrices with entries in k.

If m = n, then we will abbreviate menUc) by T". We will assume n 2 2

throughout this thesis. An associative ring R will be called a k-algebra if R is a

k-vector space and a(rr’) = (ar)r’ = r(ar’) for all a E k and r, r’ E R. In this

thesis, all k-algebras will be assumed to contain a (multiplicative) identity 1 7e 0. In

particular, if R is a k-algebra, then dimk(R) Z 1. Tn is an example of k-algebra.

A k-subspace R0 of a k-algebra R will be called a k-subalgebra of R if R0 is closed

under multiplication from R and R0 contains the identity of R. We will assume all

k-algebra homomorphisms take the identity to identity.

Let R be a commutative, k-subalgebra of Tn. Thus, my = yr for all 2:,y E R.

R is called a maximal, commutative, k-subalgebra of Tn if R satisfies the following

property : If R’ is a commutative, k-subalgebra of Tu and R _C_ R’, then R = R’. Thus,

a maximal, commutative, k-subalgebra of Tn is a maximal element with respect to

inclusion in the set of all maximal, commutative, k-subalgebras of Tu. We will let

Mn(k) denote the set of all maximal, commutative, k-subalgebras of Tn.

1



Thus, if CTn(S) = {A 6 Tu I As = 3A, for all s E S} is the centralizer of a

set S in Tn, then a commutative, k—subalgebra R of Tn is maximal if and only if

Cum) = R.

Maximal, commutative, k-subalgebras of Tn come in many different shapes and

sizes. Here are a few examples.

Example 1: Let p,q E N such that |p— q |g 1. Set n =p+q. Let

_ 31,, Z
(1) R_{(Oq)<p qu)eTn|xek,ZeMpxq(k)}.

In Equation (1), 1,, denotes the identity matrix of size p by p and qup denotes

the zero matrix of size q by p. Then, R is a commutative, k-subalgebra of Tu and it

is easy to check that CTn(R) = R. Thus, R 6 Mn(k). We will call R a Schur algebra

of size n.

Throughout this thesis, we will denote the Schur algebra of size 4 by B. Thus,

|$,a,b,c,d€ 1:

C
O
O
H

O
O
H
O

c
a
n
:

H
O
Q
.
.
c
-

Cl

Example 2: Let R = k[D], where D 6 Tu is a nonderogatory matrix. Since D

is nonderogatory, the characteristic polynomial CD of D and the minimal polynomial

mg of D are the same. Consequently, dimk(k[D]) = deg(mp) = deg(cD) = n.

Suppose D’ E CTn(R). Then, DD’ = D’D and by [7: Theorem 2], n = dimk(k[D]) g

Idimk(k[D, 17]) g n. Thus, k[D,D’] = k[D] and in particular, D’ e k[D] = R. We

conclude R e M,(k). [:1



Example 3: Let

0.1 O 0

a2 a1 O .

(3) R= : : ,o : ETnlaiek,z=1,2,...,n

an 0 a1

Then, R is clearly a commutative k-subalgebra of Tn, and 07;,(R) = R. Thus,

R e Mn(k). Cl

Example 4 (R.C. Courter): Let C = 1:114 @J g T14, where J is the set of all

matrices of the following form:

{ 02x2 02x10 02x2 \

$11 0

0 $11

$12 0

0 $12

0

(4) $021 $21 010x 10 010X2

 

$22 0

0 $22

211 212

221 222

3111 3112 2n 212 221 222 0 0 0 0 $11 $12

K 02x2

3121 3122 0 0 0 0 211 212 221 222 $21 $22 /

 

    
In Equation (4), :c,,-,y,-j, and Zij E k. In [6], R.C.Courter showed CE M14(k).

Notice dim;c (C) = 13. We will call C Courter’s algebra. [:1

Recall that a commutative ring R is called a local ring if R has precisely one

maximal ideal. If R is a local ring, then the Jacobson radical J(R) of R is the unique

maximal of R. R/J(R) is called the residue class field of R. We shall use the notation

(R, J, k) to indicate that R is a local ring with maximal ideal J and residue class field

It. For example, the Schur algebras discussed in Example 2 are all local rings with

maximal ideal J = {( 0”” Z | Z G Mpquc) and residue class field k.

qup 0qu



If M is a module over a commutative ring R, then M is called a faithful, R—module

if AnnR(M) = (0). Here, AnnR(M) = {r E R I rM = (0)} is the annihilator of M.

For example, k4 = M1x4(k) is a faithful, B-module via right multiplication.

Let X denote the category whose objects are ordered pairs (G, H), where G is

a finite dimensional, local, commutative, k-algebra and H is a finitely generated,

faithful, G-module. If (G, H), (G’, H’) are two objects in X, then a morphism from

(G, H) to (G’,H’) is an ordered pair (0,1'), where a : G —> G’ is a k-algebra

homomorphism, r : H —-+ H’ is a k-vector space homomorphism and T(hg) =

r(h)a(g) for all h E H and g E G. We will use the notation (0,7) : (G, H) ——r

(G’, H’) to indicate the morphism (0,?) from (G, H) to (G’, H’). We call a morphism

(0,7) : (G, H) ——r (G’, H’) an isomorphism if a is a k-algebra isomorphism and r

is a k-vector space isomorphism. In this case we will use the notation (G, H) gum)

(G’, H’). The reader can easily check that (a, r) is an isomorphism if and only if (a, r)

is an isomorphism in the category X.

Let (G, H) E X. We denote the set of G-module homomorphisms from H to

H by HomG(H, H) Since G is a commutative ring, each 9 E G determines a G-

module endomorphism pg of H given by pg(h) = hg for h E H. We then have

a map cp : G —’ HomG(H, H) given by <p(g) = ,ug. Note that cp is a k-algebra

homomorphism. The map (,0 is called the regular representation of G given by H.

We say the G—module has a small endomorphism ring if HomG(H, H) “=“ G via the

regular representation. Let MX denote the full subcategory of X whose objects are

those (G, H) E X for which the G—module H has a small endomorphism ring. If

(G, H) E X, then (G, H) E MX if and only if HomG(H, H) g G via the regular

representation. Consider the following examples.

Example 5: Let G be a local, commutative, k-algebra with dimk(G) = n.



Then, G is a finitely generated, faithful, G-module. Notice that Hode, G) ’5 G

via the regular representation. Thus, G has a small endomorphism ring G, and

(G, G) e MX. Cl

Example 6: If R is a commutative, k-subalgebra of Tn, then V = k" = Mlxn(k)

is a finitely generated, faithful, (right) R—module via the usual matrix multiplication.

In particular, if V = k” and R = C, Courter’s algebra described in Example 4, then

(C,V) E X. Since CE M14(k), it follows from [4, Proposition 1] that (C,V) E MX.

El

In Example 6, we begin to see the connection between algebras in MnUc) and

objects in MX. Let R be a k—subalgebra of Tu and set V = k". Then, V is

a finitely generated, faithful, R-module with scalar multiplication given by vr for

v E V,r 6 R. Set ’H = Homk(V, V). Let u : Tn —> ’H be the representation given

by u(A)('u) = 12A. Notice that u is an anti k—algebra isomorphism of Tn onto ’H. For

each i = 1,2,...,n, set 5,- = (0,...,1,...,0) E V. We will callg= {el,...,e,,} the

canonical basis of V. Let I‘ : ’H ——» Tn denote the matrix representation of elements

of H via g. Thus, if f E ’H and f(e.-) = Z?=Ia,-jej,i = 1,...,n, then I‘(f) = (a,,-).

1" is an anti k-algebra isomorphism of ‘H onto Tn. The reader can easily check that

I‘p = 1T", the identity map of Tn. We have now constructed the following sequence

of k-algebras and anti k-algebra isomorphisms.

(5) Tn i) H L Tn with 1“,. = 1T".

For any commutative, k-subalgebra R Q Tn, u(CTn(R)) = CH(M(R)). Here,

CH(,u(R)) is the centralizer in 'H of [J(R). Likewise, I‘(Gu(p(R))) = CTn(P/J(R)) =

GTn(R). Now, suppose R E MnUc). Then, R = GTn(R) and Cn(u(R)) = HomR(V, V).

Since R is commutative, p : R —> u(R) is a homomorphism. Hence, the map

(6) R = CT..(R) A #(R) = u(CT,.(R)) = Cu(u(R)) = H077mm V)



given in Equation (6) is a k-algebra isomorphism. This map is just the regular

representation of R afforded by V. Therefore, VR (the right R-module V) has a small

endomorphism ring. Thus, if R is local and R E Mn(k), then (R, V) E MX.

Conversely, suppose R is a commutative, k-subalgebra of Tn such that VR has a

small endomorphism ring. Then, CH(u(R)) = u(R) and CTn(R) = I‘(Gn(u(R))) =

I‘u(R) = R. Thus, R E Mn(k). Hence, if (R, V) E MX, then R is a local and

R E Mn(k). In summary, if R is a local, k-subalgebra of Tn, then R E Mn(k) if and

only if (R, V) E MX.

Isomorphism classes in the category MX correspond to isomorphism classes of

local, k-algebras in Mn(k). Local algebras in Mp(k) with p S n are the fundamental

building blocks of algebras in general in Mn(k). To see this, let

R E Mn(k). Since dimk(R) < 00, R is an artinian ring. It follows from [9:

Theorem 3, p205] that R = 69.2134, a finite direct sum of artinian, local rings R,,

i = 1,. . . ,6. Since R contains the identity, V = VR = EBf=1VR,-. Set V, = VR,,i =

1,. . . ,6. Then, V = 635:114. and each V,- is a finitely generated, faithful, R,-module.

Notice R 9-5 HomR(V, V) g Hf’j=1HomR(V,-,Vj) = f=1HomR,-(V,-,V,-). It follows

that R,- E HomR,(V,-,V,-). Hence, R,- E Mn,(k), where n,- = dimk(V,-), i = 1,...,€.

Thus, R,- E Mn(k) can be decomposed into local, maximal, commutative subalgebras

of smaller dimensions. Thus, it suffices to study maximal, commutative subalgebras

which are local to understand the structure of maximal, commutative subalgebras in

general. We will use the notation (R, J(R), k) E Mn(k) to denote a local, commu-

tative, k-algebra R E Mn(k) which has J(R) as its Jacobson radical and k as its

residue class field. If R is clear, then we will use J instead of J(R)

In [7], M.Gerstenhaber conjectured that dimk(R) Z n for any R E Mn(k). In [6],

RC. Courter constructed an algebra C E M1406) which is’local, dimk(C) = 13, and



i(J(C)) = 3. Here, i(J(C)) is the index of nilpotency of the ideal J(C) Courter’s

counterexample to Gerstenhaber’s conjecture is minimal with respect to both n and

i(= i(J(R))). In [8], T.J. Laffey showed that dimk(R) Z n for R E Mn(k) if n S 13.

Thus, n = 14 is the smallest integer for which dimk(R) can be less than n. In [6],

RC. Courter showed that i(J(R)) S 2 implies that dimk(R) 2 n for any R 6 Mn(k).

Thus, i = 3 is the smallest index of nilpotency for which dimk(R) can be less than

n for R E Mn(k). The existence of Courter’s example in M14(k) suggests some

interesting questions about the isomorphism classes of local algebras in M14(k). For

example, one could ask if Courter’s example is unique up to isomorphism. To be

more specific, is (C, V) unique up to (a, T)-isomorphism in MX? It turns out the

Courter’s example is not unique and we will construct another example in this thesis.

Let B be a commutative ring and M a right B-module. The direct sum B EBM of the

B-modules B and M can be given the structure of a commutative ring by defining

multiplication in the following way.

(7) (b1,m1)(b2,m2) = (0102,771201 + mlbg),b,- E B,m,~ E M,i = 1,2.

The commutative ring thus defined is called the idealization of M and will be denoted

byBxM.

Suppose R E Mn(k). We say R is a (B, N)-construction if R is k-isomorphic to

B o< N’ for some (B, N) E X and 8 E N. Here, Nt denotes the direct sum of 3 copies

of B-module N. The B-module B‘ EBN is a B x N’-module with'scalar multiplication

defined as follows.

I

(8) (b1, . . . ,bg,n)(b,n1, . . . ,n()=(b1b, . . . , bgb,nb + Zn,b,).

t=l

It is easy to check that 8‘ EB N is a finitely generated, faithful, B x N‘-module. In

[3: Theorem 2], WC. Brown and F.W. Call showed that the B x N‘-module 8’ 69 N



has a small endomorphism ring. Thus, (B IX N‘, B‘ 69 N) E MX for all (B, N) E X.

We call (G, H) E X a Cl-construction if (G, H) Em.) (B x N‘,B’ 69 N) for some

(B,N) E X and K E N. In [3], W.C.Brown and F.W.Call showed that Courter’s

algebra C is a (B,N)-construction. In [4], W.C.Brown proved that (C,V) is a Cl-

construction. In fact, (C,V) ’="(m) (B D<N2, 82 619 N), where B is the Schur algebra of

size 4, N = k4, and V = k”.

Let Q = {(R, J, k) E M14(k) | dimk(R) = 13,i(J) = 3}. Example 4 shows that

CE Q. We are interested in how many algebras in Q are (B, N)-constructions. To be

more specific, we are interested in how many algebras in Q are (B,N)-constructions,

where B is the Schur algebra of size 4 defined in Equation (2). To this end, let

M13(4) denote the class of all faithful, B-modules of vector space dimension 4. Let

98: {(R, J, k) E Q | R E BKN2 for some N E MB(4) }. We have noted that C6 08.

Let 901 = {(R, V) 6 MXI (R, V) EMT) (B I><N2,32 63 N) for some N E MB(4) }.

We have noted that (C,k14) E 901.

In Chapter 2, we will prove that if R, R’ 6 9,, then R E R’ 9-1 C as k-algebras.

Thus, QB has only one k-algebra isomorphism class [C]. If (R, V), (R’,V) E {201,

then we will show that (R, V) gm?) (R’, V) Em“) (C, k”). Thus, 9G1 has only one

(a, r)-isomorphism class [(C,k14)].

In Chapter 3, we will study the following question: If (R, J, k) E Q, is R a (B, N)-

construction and is (R, k“) a Cl-construction? If k = R, the real numbers, then we

will construct a k-algebra (S, J, k) E 52 that is not a (B, N)-construction. Further-

more, we will prove that (S, k“) is not a (II-construction in Chapter 3. Finally, we

will prove that S is not k-algebra isomorphic to C. and conclude that Q has at least

two k-algebra isomorphism classes [8] and [C].



Chapter 2

Uniqueness of Algebras in Q); and S201

2.1 Algebras in $2

In this section, we will prove two important theorems about the algebras in set 9.

Let R E (I. By replacing R with a suitable k-algebra isomorphic copy, we can assume

the elements in J have a particularly simple form. Let R1 and R2 be k-algebras in

Tn. If R1 = P'leP for some P E GL(n, k), then we say R1 and R2 are conjugate.

Lemma 2.1: Let R1 6 Mn(k) and let R2 be a commutative, k-subalgebra of Tn.

If R1 and R2 are conjugate, then R2 6 Mn(k).

Proof: Since R2 is commutative, it is enough to show that C1,,(R2) E R2. Let

r E CTn(R2). Since R2 is conjugate to R1, R2 = P’lRlP for some P E GL(n,k).

Hence, r(P'1r1P) E (P‘lrlP)r for all r1 6 R1. Therefore, (PrP‘1)r1 = r1(PrP‘1).

Thus, PrP‘l E CTn(R1) = R1. Hence, r E P‘IRIP = R2. Cl

Lemma 2.2: Let R1 6 Mn(k) and let R2 be a commutative, k-subalgebm of T".

If R2 = R? (transpose of R1), then R2 6 Mn(k).

Proof: Again it is enough to show that C1,,(R2) E R2. Let r 6 CT” (R2). since

’ R2 = {, rr'ir = rfr for all r1 6 R1. Then, rer = rTrl and hence rT E C7,,(R1) = R1.

’ Thus, r 6 RT = R2. [:1



10

Theorem 2.3: Let (R, J, k) E 52. Then, there exists (R1, J(Rl), k) E 9 such that

R and R1 are conjugate and each element r E J(R1) is a matrix of the following form

02 0 O

(9) A 010 0 .

C B 02

Here, 0,, denotes the zero matrix of size n by n, A E M10x2(k),B E M2x10(k), and

C 6 T2.

Proof: Let V = k”, V1 = (0) :V J = {v E V | vJ = (0)},V2 = (0) 1v J2,

p = dimk(V1),q = dimk(V2/V1), and E = 14 — p — q. Since i(J) = 3, VJ2 (_2 V1 g V2.

Suppose p = 0. Then, V1 = (0) and consequently, VJ2 = (0). Since V is a faithful,

R-module, J2 = (0). This is impossible since i(J) = 3. Thus, p Z 1. Suppose q = 0.

Then, VJ g V2 = V1 and again VJ" = (0). This is a contradiction. Hence, q _>_ 1. In

[8: p 203], T.J . Laffey showed that

>q®+l)
(10) dimk(R) _ l +p€ + 1 +193.

Let

dp+0

1+p€

 

14(p + K) + (p2 -1)(€2 — 1)

1 E:

+ +1) 1+p€
OD fwmuh=

Since dimk(R) = 13, f(8, p, q) S 13. An easy computation shows (3 = p = 2 and q = 10

are the only positive integers satisfying the inequality in (10). Since dimk(V1) =

p = 2, V = L(al,a2), i.e. V is a linear span of two linearly independent vectors

011,02. Similarly, V2 = L(al, . . . ,(112) and V = L(a1, . . . ,014) for some k—basis A =

{(11, . . . ,a14} of V. Then, for any a E V,a = ofilaix, for some x.- E k,i = 1,. . . , 14.

Ifr E J, then air = 0 for i = 1,2,a,-r E V1 for i = 1,...,12, and air E V2 for

i = 13, 14. Thus, each r E J has the following matrix representation with respect to

the basis A.

02 O O

(12) FA(R) = ( AH) 010 0 ) -

C(r) B(r) 02
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Here, A(7’) E M10x2(k), B(T) E M2x10(k), and C(T) 6 T2.

Let R1 = I‘A(R). The matrix representation of each r E R with respect to

g is r and with respect to A is I‘A(R). Hence, there exists P E GL(14,k) such

that P‘er = I‘A(r) for all r E R. Thus, P'IRP = R1. Since R E R; as k-

algebras, dimk(R1) = 13 and i(J(R1)) = 3. By Lemma 2.1, R1 E M14(k). Thus,

(R1, J(R1), k) E Q and the elements in J(R1) have the form given in (9). E]

For an algebra R E (2, Theorem 2.3 has the following. interpretation. Any algebra

conjugate to R lies in the isomorphism class [R] of R. Hence, in studying [R], we

can assume the elements in J(R) are described as in Equation (9). We will use those

ideas to study the socle of an algebra R in 9.

Let R be a commutative, k-algebra with Jacobson radical J and dimk(R) < 00.

The socle of R, Soc(R), is the annihilator of J. Thus, Soc(R) = AnnR(J) = {r E R |

rJ = (0)}. The following Lemma is obvious from the definition.

Lemma 2.4: Let R and R1 be finite dimensional, commutative, k-algebras. If

R E R1 as k-algebras, then Soc(R) E Soc(Rl). El

Theorem 2.5: Suppose (R, J, k) E 9. Then, dimk(Soc(R)) = 4. Furthermore,

R is conjugate to an (R1, J(R1), k) E 9 such that each element of Soc(Rl) has the

following form.

02 O 0

(13) 7": 0 010 0 .

C(T) 0 02

Proof: Using Theorem 2.3, we may assume that each r E J has the form in

Equation (9). Let V = k”. Since i(J) = 3, we have the following strict containments.

(14) (O)<(0).VJJ<VJ<V
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Let W1 = (0) :w J, W2 = VJ, u = dimk(W1), A = dimk(W2/W1), and

u = dimk(V/W2). Then, u+ z\+u = 14. Let

- 02 O O

(15) E,,-= 0 010 0 ,1Si,jS2.

Eu‘ 0 02

In (15), Eij is the i, j-th matrix unit of T2. Equation (9) implies Bar = 0 = rE,j

for all r e J(R) and 1 g 7;, j g 2. Thus, 177,-,- e R. Clearly, 173,-,- e Soc(R) for

l S i,j S 2 and hence, dimk(Soc(R)) 2 4.

Since 81 = 51313311 and 52 = 51417312, 5,- E W2 for i = 1,2. Since elJ = 82.] = (0),

e,- E W1,i = 1,2. Thus, u 2 2. We had seen from Theorem 2.3 that dimk((0) iv

J) = 2. Since W1 (_2 (0) :V J,u S 2. Therefore, a = 2. The strict inclusions in

Equation (14) imply that A 2 1,12 2 1. Since {51,52} is a k-vector space basis of

W1, we can extend it to bases of W2 and V. Let {61, . . . ,BA,61,E2} be a basis of W2

and A = {1th...,*y,,,51,...,fi,\,el,eg} be a basis of V. If r E J, then 5,-r = 0 for

i = 1,. . . , ll. Thus, we have the following matrix representation of r E J with respect

to the basis A.

( 0,, A(r) C(r) )

(16) FACT) = 0 O), B(T) .

0 0 02

Let R1 = I‘A(r). Since R1 = P‘IRP for some P E GL(14, k), R1 E R as k-algebras.

Thus, by Lemma 2.1, R1 E 52. Let R2 = RIT, the transpose of R2. Then, each element

r E J(R2) is of the form

0,, 0 0

(17) T‘ = ( A1(T) 03 0 ).

01 (r) Bl (r) 02

Here, 'A1(r) = A(r)T, Bl(r) = B(r)T, and 01 (r) = C(r)T. Since R1 is commutative,

R1 E R2 as k-algebras. By Lemma 2.2, (R2, J(R2), k) E Q.
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Let r E SOC(R2). Ptom (17), e,- E (0) Iv J(R2) fori = 1,...,u. Thus,

dimk((0) Iv J(R2)) 2 u. Since (R2,J(R2),k) E S), the proof of Theorem 2.3 im-

plies that dimk((0) Iv J(R2)) = 2. Thus, V S 2.

Let r E Soc(R). Then, e,r = 0 for i = 1,2,fi,r = O for i = 1,...,A and 7,-r E W1

for i = 1, . . . , 11. Thus, we have the following matrix representation of r E Soc(R)

with respect to the basis A

D
O
C
) 0

(18) I‘A(r) = ( 0A

0

By Lemma 2.4, 4 S dimk(Soc(R)) = dimk(Soc(R1)) S 21/ S 4.. Therefore,

dimk(Soc(R)) = 4 and each element r E J has the form in Equation (13). Cl

Putting Theorem 2.3 and 2.5 together, we can always assume that a specific

representative R of an isomorphism class [R] has the following form. Every element

r E J(R) can be written in the form

02 0 O

(19) 1': A 010 0 .

CBC;

Furthermore, the socle of R is the set of all matrices of the form

02 O 0

(20) SOC(R) = {( 0 010 0 ) [C E T2} .

C O 02

2.2 Classification of isomorphism classes in $23 and

9C1

The reader will recall that 93: {(R, J, k) E Q | R E BKN2 for some N E MB(4)},

where B is the Schur algebra defined in Equation (2). We had noticed that the
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Courter’s example (C,J(C),k) E {23. In [3: Example 5], Brown and Call showed

that CE Bl><(k4)2. This leads to a natural question about the role 1:4 is playing

in this example. One can ask whether other finitely generated, faithful, B-modules

N E M8(4) give algebras BxN2 which determine other isomorphism classes in $23?

In this section, we will show QB has only one isomorphism class [C]. Thus, varing N

in MB(4) yields no new isomorphism classes in Q.

The reader will also recall that $201 = {(R, V) E MXI (R, V) Em.) (Bl><N2,13’2 69

N) for some N E M8(4) }. In this section, we will show that the set 0C1 has only

one (a, r)-isomorphism class [(C, 1:14)].

The questions above make sense because MB(4) has at least two isomorphism

classes. To see this, we first need a B—module presentation of k4. We will denote the

i,j-th matrix unit of T, by E,,. Notice that Eij E B ifi = 1, 2,j = 3, 4.

Lemma 2.6: Let

_ E23 E24 E13 E14 0 0

(21) A—(—E13 —E14 0 0 E... E2.)EMM(B)'

Then, B2/CS(A) E MB(4).

Proof: Obviously, 82/CS(A) is a finitely generated, B—module. Since dimk(B2) =

10 and dimk(CS(A)) = 6, dimk(Bz/CS(A)) = 4. Suppose r E Ann3(Bz/CS(A)).

Then, r I" ,r 0 E CS(A). Thus, r , O E CS(A) which implies

0 I4 0 1‘

that for some x,,y,- E B, 1 S i,j S 6

T = $1E23 + $2E24 + $3E13 + $4E14

(2 ) 0 = —$1E13 - $2E14 + $5E23 + $6E24

2

0 = ylEza + y2E24 + y3E13 + 314E”

7‘ = "ylEls — yaEm + 951323 + 3165324
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Since J(B)2 = (0), we can assume x,,yj E k = k1,, for 1 S i,j S 6. The sec-

ond and third equations in (22) imply x1,x2,x5,x6,y1,y2,y3,y4 are all zero. Thus,

r = x3E13+x4E14 = y5E23+y6E24. Therefore, r = 0. Hence, Ann3(82/CS(A)) = (O)

and Z32/CS(A) is a faithful, B-module. C]

Lemma 2.7: Let A be the matrix in Equation {21). Then B2/CS(A) is B-module

isomorphic to k4.

Proof: Let f : 82 ——> k4 be the map defined by f ( :5 ) = 5225 + 81y. Here,

81 = (1,0,0, 0) and 52 = (0,1,0,0). Then, f is a surjective, B—module homomor-

phism. If ( i: ) E ker f, then 2 = alI4 + a2E13 + a3E14 + a4E23 + a5E24 and

w = b114 + b2E13 + b3E14 + b4E23 + b5E24 for some a,,b,- E k,i = 1,. ..,5. Since

(C(17) ) =egz+51w= 0,a1 = b, = 0,b2=—a4, and b3: —a5.

Thus,

(23)

Hence, ( 1: ) E CS(A). It is easy to check that CS(A) Q kerf. Therefore, CS(A) =

kerf. Hence, B2/CS(A) E k4 as B—modules. D

We can now construct a faithful, B-module of dimension 4 which is not isomorphic

to k4 as B-modules.

Theorem 2.8: Let

(24) C: ( E13 E14 E23 E24 0 0
Mx 8.

E24 E23 0 0 E13 E14)€ ”M

Then, Bz/CS(C) E M8(4) and Bz/CS(C) is not B-module isomorphic to 16‘.
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Proof: Obviously, 82/CS(C) is a finitely generated, B—module. Since

dimk(82) = 10 and dimk(CS(C)) = 6, dimk(82/CS(C)) = 4. Suppose

r e AnnB(B2/CS(C)). Then, ( 8 ) ,( 0r ) E CS(C) which implies that for some

xilyj 68,132,]. S 6

7" = $1E13 + 11321314 + $3E23 + $4E24

(2 ) 0 = $1E24 + $2E23 + $5E13 + $6E14

5

0 = ylEl3 + 2125714 + yaEza + 314E211

7’ = 91324 + 925323 + y5E13 + yoEm

Since J(B)2 = (0), we can assume x,,yj E k = 1:14 for 1 S i,j S 6. The sec-

ond and third equations in (25) imply x1,x2,x5,x6,yl,y2,y3,y4 are all zero. Thus,

r = x3E23+x4E24 = y5E13+y5E14. Therefore, r = 0. Hence, Ann3(32/CS(C)) = (0)

and B2/CS(C) E MB(4).

Suppose 82/CS(C) is B—module isomorphic to 16‘. Then, there exists a B—module

isomorphism g : Bz/CS(C) ——r 16‘. Let ,61 = (8) = (g) + CS(C) E

0

I4

523,9(51) = 812:1 + 621:1 and 9(fl2) = 613:2 + 62312 for some may. 6 B. i = 1,2.

Bz/CS(C). and 62 = ( > . Then, B2/CS(C) = fl13+£328. Since k4 = 518 +

Notice that x1 or yl is unit. To see this, suppose x1,y1 E J(B). Then, gwl) =

51x1 + 52y} E k4J(B). The inclusions

(26) k4 = 9(fll)l3 + 9(fi2)3 E k4J(B) + 9(fi2)J(B) 9 k4

imply k4 = k4J(B) + g(flg)J(B). By Nakayama’s Lemma, k4 = g(flg)J(B). This

implies B is isomorphic to k4 as B-modules and hence dim,c(B): 4. Since dimk(l3)= 5,

' this is impossible. Hence, x1 or yl is unit in 8. Similarly, 3:2 or yg is unit.

Let A be the matrix given in Equation (21) and let f be the B—module homomor-
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phism given in the proof of Lemma 2.7. If ( j} ) E CS(C), then

4311:3215, ) = 510512 + a32w) + 62(y1z + yzw)

= (515151 + 823/1lz + (51132 + 52312)“)

(27) = 9(fillz +9(fl2)w

= 9(512 + 5210)

= 9(0) = 0-

Thus,

3/1 92 Z _ 3112 + 29210 _
(28) ($1 x2)(w)_(xlz+x2w)€keT

f—CS(A)'

Now, there are two cases to consider.

Case 1: Suppose x1 is a unit. Since ( E13 ) e CS(C), ( yl 3’2 ) ( E13 )

E CS(C) by the Equation (28). Hence,

311 312 E13 _ E23 E24 E13

($1.2)(a) _.(_,3)..(_,,)..( )
(29)

for some a, E k,1 S i S 6 (See the comments after Equation (22)). Thus,

y1E13 + y2E24 = a1E23 + a2E24 + a3E13 + 04E”

(30)

$1E13 + $2E24 = “015313 — 02E14 + 05E23 + (165724-

Let x1 = t114 + 31 with t1 E k and 31 E J(B). The first equation in (30) then

implies a1 = a4 = 0. The second equation in (30) then implies t1 = 0. Thus,

x1 E J(8) Since we are assuming x1 is a unit, this is impossible.
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Case 2: Suppose yl is a unit. Since ( £3023

v

m 0 £
2

£
3

A

E
S

a
s
v A

a
s
V

E CS(C) by the Equation (28). Hence,

311 92 E23 _ E23 E24 E13

(.,.,_)(0)-b1(_a,)+b2(_,,)+ba(a)
(31)

for some b,- E k, 1 S i S 6. Thus,

3115723 = b1E23 + sz24 + b3El3 + b4E14

(32)

$1E23 = -blE13 - b2El4 + bsEza + b6E24-

The second equation in (32) implies bl = 0 and the first equation in (32) implies

y; E J(B) This is impossible. We conclude there is no B—module isomorphism 9

between [SQ/CS(C) and k“. C]

Thus, M8(4) has at least two isomorphism classes [Ba/CS(A)] and [B2/CS(C)]

But as we will see, the idealizations of these modules are k-algebra isomorphic.

To classify the isomorphism classes in the sets OB and QC], we need Theorem 2.9.

We will denote the minimal number of generators of B-module N by u3(N).

Theorem 2.9: Let N E MB(4). Then, u3(N) = 2.

Proof : Since dimk(N) = 4,1 S uB(N) S 4. Suppose u3(N) = 1. Then, N = 018

for somea E N. Letf : B—r Nbeamap defined byf(b) = ab for b E B. Then,f isa

B-module epimorphism. If b E kerf, then ab = 0. Thus, b E Ann3(a) = Ann3(aB).

Since N is a faithful, B-module, Ann3(aB) = (0). Therefore, b = 0 and hence f is

a B-module isomorphism. Thus, 5 = dimk(B) = dimk(aB) = 4. This is impossible.

Hence, 2 S uB(N) S 4.

Suppose uB(N) = 4. By Nakayama’s Lemma, u3(N) = dimk(N/NJ(8)). There-

fore, dimk(NJ(13)) = 0. Thus, NJ(B) = (0). Since N is a faithful, B-module, we
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conclude J(B) = (0). This is impossible.

Suppose uB(N) = 3. Then, N = alB+agB + (138 for some a,,i = 1, 2,3. After

relabeling the a,’s if need be, we can assume (11,02, 03 satisfy precisely one of the

following four conditions :

Case 1: a,J(B) = (O) for i = 1,2,3.

Case 2: a,J(B) = (0) for i = 1,2 and a3J(B) 75 (0).

Case 3: a,J(B) = (0) and a,J(B) # (0) for i = 2, 3.

Case 4: a,J(B) 75 (0) for i = 1, 2, 3.

We will show all four cases lead to a contradiction.

Case 1: Suppose a,J(B) = (0) for all i = 1, 2, 3. Then, NJ(B) = (0). Since N is

a faithful, B—module, J(B) = (0). This is impossible.

Case 2: Suppose a,J(B) = (0) for alli = 1, 2 and 03.](3) 79 (0). Suppose aab = 0

for some b E B. If b is a unit, then 013 = 0. This is impossible. Thus, b E J(3)

Hence, b E Ann3(N). Since N is a faithful, B—module, we conclude b = 0. Thus,

Ann3(ag) = (0) and hence B E 0:389 N as B-modules. Since dimk(B) = 5, this is

impossible.

Case 3: Suppose alJ(B) = (0) and a,J(B) aé (0) fori = 2,3. Since

I4 0 0

61 = O , B2 = I4 ,,B3 = 0 is a free B—module basis of B3, the map

0 0 I4

cp : B3 -—> N defined by MEL, ,bi) = L, a,b,-,b,- E B,i = 1, 2, 3 is a well defined

B-module epimorphism. Thus, B3/kercp E N as B—modules. Since dimk(l33) = 15

and dimk(N) = 4, dimk(ker<p) = 11. Hence, kercp has the following form.

3i11

(33) kergo=2(y,-)B, x,,y,-,z,-EB,i=1,...,11.

i=1

Zi
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x

Furthermore, if ( y ) E kercp, then x, y, z are not units in B. For example, suppose

z

x

x is a unit in 8. Since y E kercp, a1 = (—1/x)(a2y + 0132). Thus, u3(N) < 3

2

which is impossible.

Since J(B)2 = (0), kercp can be written in the following form.

171'

(34) kew = @3111: [ y.- ) .

21'

Here, x,-,y,-,z,- E J(B),i = 1,...,11. Since alJ(B) = (0)1(fi1 + kerlp)J(B) = (O) in

J(B)

B3/kercp. Thus, ( 0 ). Since a,J(B) 79 (0) for i = 2,3, 1 S dimk(Ann3(a,-)) <

0

4 for i = 2, 3. Therefore, we have the following six subcases to consider.

Subcase 1: dimk(Ann3(a,-)) = 1 for i = 2, 3

Subcase 2: dimk(Ann5(a2)) = 2 and dimk(Ann3(a3)) = 1

Subcase 3: dimk(Ann3(a,~)) = 2 for i = 2, 3

Subcase 4: dimk(Ann3(ag)) = 3 and dimk(AnnB(a3)) = 1

Subcase 5: dimk(Ann3(a2)) = 3 and dimk(AnnB(a3)) = 2

Subcase 6: dimk(Ann3(a,~)) = 3 for i = 2, 3

We will show all six subcases lead to a contradiction.

Subcase 1: Suppose dimk(Ann3(a,-)) = 1 for i = 2, 3. Let Ann3(a,-) = k5,, s, E

0 0 J(B)

J(B),i = 2, 3. Then, 32 , 0 E kergo. Since a1_J(B) = (O), 0 g

0 S3 0
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E13 E14 E23 E24 0

0 , 0 , 0 1 0 1 S2 1 1

0 0 0 0 0 33

x1 x2 $3 $4 1'5

311 l 312 1 313 1 94 1 95

z, 22 23 24 25

be a basis of kercp. Since dimk(J(B)) = 4 and x,- E J(B) for i = 1,...,5,x,- E

L(E13, E14, E23, E24) for ’l = I, . . . , 5. Thus,

E13 E14 E23 E24

61: O ,62= 0 ,63= 0 ,64= O ,

0 0 0 0

0 O 0 O

(36) 65 = 32 , 66 = 0 a 67 = y]. 1 68 = y? 1

0 83 21 22

O 0 0

59 = 93 1 510 = 314 .511 = 95

23 Z4 Z5

is a basis of kerlp. Therefore, kercp can be written in the following form

‘ J 0 0 5 0

(37) hemp:(O)$k(sz)®k(0)$zk(yi).

0 0 S3 i=1 Z,‘

Since dimk(J(B) = 4, (32,311,. . . , y5} is a linearly dependent set. Thus, there exist

kercp. Let

0
0

(35)

d,c1,...,c5 E It not all zero such that ds2+c1y1+---+csy5 = 0. lie, = 0 for

all i = 1,. . . ,5, then d 76 0 and d52 = 0. This implies 32 = 0. This is impossible

0

0

since .92 is a basis vector of kergo. Hence, some c,- is not zero. We can assume

c5 75 0. Thus, y5 E L(32,y1,...,y4). We can repeat this proof on 32,y1,...,y4

and assume in E L(82,yl.vz.y3)- Hence. we may assume 94,95 6 Meal/1.112.313).
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Therefore, y4 = dsz + clyl + c2y2 + c3y3 for some d,c1,02,c3 E k. If d65 + c167 +

c263 + c369 — 610 = 0, then {65, 67, 68, 69, 610} is linearly dependent which is impossible.

0

Thus, (165 + c167 + c268 + c369 — 610 = ( 0 ) with z 7e 0 in J(B). If 2 = t83 for

Z

some t E k, then (165 + C167 + C268 + C369 '- 610 — 1566 = 0 and {65,66,67, 63,69,610}

0

is linearly dependent which is impossible. Thus, ( 0 ) E kercp\k66. Therefore,

2

dimk(Ann3(a3)) Z 2. This is a contradiction.

Subcase 2: Suppose dimk(Ann3(a2)) = 2 and dimk(Ann3(a3)) = 1. Then,

Ann3(a2) = 1:31 + ksz and Ann3(a3) = k33 for some 3,- E J(B),i = 1, 2, 3. Let

E13 E14 E23 E24 0 0

0 , 0 , O , O a 51 a 82 1

O 0 0 0 0 0

0 $1 _ $2 $3 $4

0 . yl , v2 . vs . :14

$3 , 21 Z2 23 24

be a basis of kercp. Since dimk(J(B)) = 4 and x,- E J(B) for i = 1,...,4,x,~ E

(38)

L(E13, E14, E23, E24) for 1:: 1, . . . ,4. Thus,

E13 E14 E2

61 = 0 ,62 = 0 , (53 = 0

0 0 O

0 0 0 0

(39) 55: 51 :66: 32 .57: 0 168: 311 ,

0 0 S3 21

0 0 0

59 = y2 14510 = y3 .511 = 314

Z2 Z3 Z4

is a basis of kercp Since dimk(J(B)) = 4, {33,21, . . . , 24} is a linearly dependent set.



23

Thus, there exist d, c1, . . . ,c4 E k not all zero such that (183 + c121 + - ~- + 6424 = 0.

If e,- = 0 for all i = 1,. . . ,4, then at 75 0 and (133 = 0. This implies 33 = 0. This is

0

impossible since ( 0 ) is a basis vector of harm. Hence, some c,- is not zero. We

33

can assume c4 74 0. Thus, 24 = dsa + c121 + c222 + 0323 for some d,c1,c2,03 E k. If

d67 + c168 + 0269 + c3610 — 611 = 0, then {67, 68, 69, 610, 611} is linearly dependent which

0

is impossible. Thus, d67 + c168 + c269 + c3610 — 611 = ( y ) with y E O in J(B). If

0

y = t181+t282 for some t1. t2 6 k, then d57+6163+c269+636m—611—t165—t265 = 0 and

0

{65, 66,67,63, 69, 610,611} is linearly dependent which is impossible. Thus, y E

O

kercp\k65 + 1:66. Therefore, dimk(Ann3(ag)) 2 3. This is a contradiction.

Subcase 3: Suppose dimk(Ann3(a,-)) = 2 for i = 2,3- Then, A77,7115(C¥2) =

ksl + 1932 and Ann3(a3) == ksg + £3.94 for some 8,- E J(B),i = 1, 2, 3, 4. Let

be a basis of kerlp. Since dimk(J(B)) = 4 and x,- E J(B) for i = 1,2,3, :17,- E

L(E13, E14, E23, E24) for i = 1, 2, 3. Thus,



24

is a basis of kercp. Since dimk(J(B)) = 4, {31, sg,y1,y2,y3} is a linearly dependent

set. Thus, there exist d1,d2, c1, c2,c3 E It not all zero such that (1131 + d2S2 + clyl +

c2y2 + 03y3 = 0. If e,- = 0 for all i = 1,2, 3, then dlsl + d232 = 0. Since s1,32 are

linearly independent vectors in J(8), d1 = d2 = 0. This is impossible. Thus, c,- ¢ 0

for some 1 S i S 3. We can assume c3 74 0. Hence, ya = (1131 + d282 + clyl + C2y2 for

some (11, (12, C1, 02 E k. If d165+d266 +C169 +626“) “-611 = 0, then {(55, 66, 69, (510, 611} is

0

linearly dependent which is impossible. Thus, (1165 + d266 + c169 + c2610 — 611 = ( O )

z

with z ¢ 0 in J(B). Ifz = t333+t4s4 for some t3, t4 E k, then d165+d265+c169+c2610—

611 — t367 - t468 = 0. This is a contradiction since the vectors in Equation (41) form

0

a basis of kercp. Thus, ( 0 ) E ker<p\k67 + [$68. Therefore, dimk(AnnB(a3)) Z 3

Z

and this is a contradiction.

Subcase 4: Suppose dimk(Anng(a2)) = 3 and dimk(Ann3(a3)) = 1. Then,

Ann5(aQ) = ksl + ksz + 198;; and Ann3(ozg) = 1:34 for some 3,- E J(B),i = 1,2, 3, 4.
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{lill’illilli‘Hills?)

(il’lillilléllill

be a basis of kercp. Since dimk(J(B)) = 4 and x,- E J(B),x,- E L(E13, E14, E23, E24)

Let

(42)

for i = 1, 2, 3. Thus,

E13 E14 323 E24

61: 0 :62: 0 :63: 164: 0 1

0 O 0

0 0 0

(43) (55 = 31 , 65 = 82 ,67 = 0

0 0

0 0 0 -

59 = 91 510 = 312 1511 = 93

21 Z2 Z3

is a basis of kercp. Since dimk(J(B)) = 4, {81, 32, 33,y1, y2, y;} is a linearly dependent

set. Thus, there exist d1,d2,d3,c1,02,c3 E It: not all zero such that dlsl + d282 +

dgsg + clyl + C2y2 + c3y3 = 0. If e,- = 0 for all i = 1, 2, 3, then dlsl + (1232 + d333 = 0

Since 31,32,33 are linearly independent vectors in J(B),d1 = d2 = d3 = 0. This

is impossible. Thus, 0,- E 0 for some i. We can assume 0;, E 0. Hence, y3 =

d181+d232+d333+01y1+C2y2 for some d1, d2, d3, c1, 62 E k. If d165+d265+d367+0169+

c2610 — 611 = 0, then {65, 66, 67, 69, 610, 611} is linearly dependent which is impossible.

0

Thus, d165 + d266 + d367 + 0169 + c2610 —- 611 = ( O ) with z E 0 in J(B). If 2 = ta,

2

for some t E k, then d165, + (1265 + (1367 + c169 + c2610 — 611 — tbs = 0. This is impossible
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0

since {65,65,67,68,69,610,611} is linearly independent. Thus, ( 0 ) E kercp\k63.

2

Therefore, dimk(AnnB(a3)) Z 2 and this is a contradiction.

Subcase 5: Suppose dimk(Ann3(ag)) = 3 and dimk(Ann3(a3)) = 2. Then,

Ann3(ag) = ksl + k82 + ks3 and Ann3(a3) = ks4 + [935 for some 3,- E J(B),

i =1,2,3,4,5. Let

{Willilltllilléllél

(illéllillilltll
be a basis of kercp. Since J(B) = L(E13,E14,E23,E24) and x1,x2 E J(B),x1,x2 E

L(£313,514, E231E24)— Thus,

E24

0 ,

0

0

0

(44)

E13 E14 E23,

{.-(.),,=(.),=(.a,=)0 0 0

O 0

(4., .().().(). [. )
0 0 0

' 0 0 0

59=(0)1510=(3/1)1511=(92)}

is a basis of kercp. Since dimk(J(B)) = 4, {31, 32,33,y1,y2} is a linearly dependent

set. Thus, there exist (11, d2, d3,c1, c2 E It not all zero such that (1131 + 61282 + (1333 +

clyl +c2y2—— 0. If c1 = c2: 0, then dlsl +d232 +d383-— 0. Since 31,32, 33 are linearly

independent vectors in J(B),d1 = d2 = d3 = O. This is impossible. Thus, c,- E 0

for some i. We can assume c2 E 0. Hence, y2 = dlsl + (1282 + d333, + clyl for some

d1,d2,d3,C1 E k.1fd165 + (1265 + (1367 + 01610 — 611 = 0, then {65,65,67,610,511} lS
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0

linearly dependent which is impossible. Thus, d165 + (1266 + (1367 + c1610 — 611 = ( 0 )

z

with z E 0 in J(B). If 2 = t4s4+t5s5 for some t4, t5 E k, then d165+d266+d367+c1610-

611 — t468 — t569 = 0. This is again impossible since {65, 66, 67, 68, 69, 610, 611} is linearly

0

independent. Thus, ( O ) E ker<p\k68+k69. Therefore, dimk(Ann3(ag)) 2 3 which

2

is a contradiction.

Subcase 6: Suppose dimk(Ann3(a,-)) = 3 for i = 2, 3. Note that

(46) dimk(AnnB(ag)) + dimkk(Ann3(a3)) = dimk(Ann3(ag) + Ann3(ag))

+dimk(Ann3(az) fl Ann3(a3)).

Since dimk(AnnB(a2) + Ann3(a3)) S dimk(J(B)) = 4, Equation (46) implies

dimk(AnnB(ag) fl Ann3(a3)) Z 2 Thus, there is 0 E b E Ann5(ag) fl Ann5(a3).

This is a contradiction. We have now shown any of the subcases in Case 3 lead to a

contradiction. Hence, Case 3 is impossible.

Case 4: Suppose a,J(B) E (0) for i = 1,2, 3. Let n,- = dimk(Ann3(a,-)). By

relabeling the (123 if need be, there are ten subcases to consider.

Subcase 1: Suppose n,- = 1 for i = 1, 2, 3

Subcase 2: Suppose n1 = 2, n2 = n;, = ,1

Subcase 3: Suppose n1 = n2 = 2, n3 = 1

Subcase 4: Suppose n,- = 2 for i = 1, 2, 3

Subcase 5: Suppose ii, = 3, 712 = n3 = 1

Subcase 6: Suppose n1 = 3, 712 = 2, n3 = 1

Subcase 7: Suppose n1 = 3, n2 = 723 = 2

Subcase 8: Suppose n1 = n2 = 3, n3 = 1
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Subcase 9: Suppose n1 = n2 = 3, 723 = 2

Subcase 10: Suppose n,- = 3 for i = 1, 2, 3.

A proof similar to that given in Case 3 will show that Subcase 1 through Subcase 9

are impossible. The reader can consult the Appendix for the details. Subcase 10 is

also impossible. To see this, let V be a vector space and suppose W,-,i = 1, 2, 3 are

subspaces of V. Suppose dimk(V) = n. Then, we have the following equation which

can be found in [2 : Cor.2.15, p13].

( ) dimk(W1 0 W2 fl W3) = n — f=1(n — dimk(W,-)) + {(n — dimk(W1+ W2))

47

+(n — dimk((W1 0 W2) + W3))}.

Suppose V = B and W,- = Ann3(a,-),i = 1,2, 3. Then, Equation (47) implies

dimk(WlflW2rIW3) = 9—dimk(W1+W2)—dimk((WlflW2)+W3). Since dimk(W1+

W2) S 4 and dimk((W1 (1 W2) + W3) S 4, we have dimk(W1 0 W2 (1 W3) 2 1. Thus,

there exists 0 E b E W1 0 W2 (1 W3. Since W,- = Ann3(a,-),i = 1,2, 3, crib = 0 for

i = 1, 2, 3. Thus, b E Ann3(N) = (0) which is a contradiction.

Therefore, all four cases are impossible. Hence, we conclude u3(N) = 2. El

We can now show that there is only one isomorphism class in SIB.

Theorem 2.10: Let A be the matrix in Equation (21) and let Q = BQ/CS(A)

Then, 8x622 E leN2 as k-algebras for any N E MB(4).

Proof: Let N E M8(4). Then, uB(N) = 2 by Theorem 2.9. Thus, N = alB+agB

for some a, E N,i = 1,2. Since {71 = ( g ),’72 = ( IO )} is afree B-module basis

4

of 82, the map 1b : 32 —r N (defined by w(2?=,'y,-b,-) = ?=,a,b,-,b,- E B,i = 1,2)

is a well defined surjective, B-module homomorphism. Hence, Bz/kerr/J E N as

B—modules. Since dimk(B2) = 10 and dimk(N) = 4, dimk(kerw) = 6. Thus, kerw
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has the following form.

6

(48) kerw = Z: ( 3’ ) 8.

Here, x,-,y,- E B,i = 1, . . . ,6. Furthermore, if ( 1: ) E ken/2, then 2 and w are not

units in B. For example, if z is a unit, then alz + agw = 0 implies that N = (128.

Thus, u3(N) = 1 and this is impossible. Therefore, kerw has the following form.

6 1131'

Here, x,,y,- E J(B),i = 1,...,6. To exhibit an isomorphism between 3th2 and

BKN2, we need to choose a good basis of kerw. We may assume keT’t/J has the

following form.

(50) kerw=k( E" )ek( Em )EBk( Em“ )$k( Eu” )ek( 0 )eak( 0 )
91 92 93 94 95 96

Here, y,- E J(B),1 S i S 6 and the ordered pairs (i,j), (p, q), (m, n), and (u, v) are

just (1,3), (1,4), (2,3), (2,4) in some order. To see this, we proceed as follows. Since

dimk(B) = 4, {x1, . . . ,x6} in Equation (49) is a linearly dependent set. Thus, by

551

replacing the ( )’s, i = 1,. . . ,6 by suitable linear combination if need be, we

i

may assume x5 = x5 = 0. It now follows that {x1, x2, x3, x4} is a linearly independent

set. For, if {x1,x2,x3, x4} is a linearly dependent, then by the same argument, we

may assume x4 = O in (49). Then, kerw has the following form.

Wm:MM:waives)-
Since dimk(J(B)) = 4, {y1,. . . ,ye} is a linearly dependent set. Thus, by the same

argument above, we may assume y1 = y2 = (0). Therefore, we have

(52) ker¢=k<3)$k($02)eak(::)eak(z)esk(:5)eak(y06).
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Now, let W1 = kxl + 163:2 and let W2 = 19314 + 16315 + kys. Then,

dimk(W1) = 2, dimk(W2) = 3, and dimk(W1 + W2) 3 4. Notice that

(53) dimk(W1 + W2) + dimk(W1 0 W2) = dzmk(W1) + dzmk(W2).

Therefore, dimk(W1 0 W2) 2 1. This implies that there exists 0 74 b E J(B) such that

b E WlflW2. Thus, (8),(?) E ken/1. Since 10(8) = mb and

b

This is impossible. Thus, {2:1, 2:2, 3:3, 1:4} is a linearly independent set in J(8) Since

11)( 0 ) = 02b, Gib = 02b = 0. Since N = alB+agB, b E AnnB(N) = (O).

dimk(J(B)) = 4, we may assume {$1,$2,$3,$4} = {E13, E14, E23, E24}. Hence, kerw

can be written as Equation (50).

We next show we can rearrange the six basis vectors given in (50) so that

(54) ker¢=k(25)®k(zfi)$k(E“b)€Bk(E°d)€Bk(0)®k(0).
21 22 Z3 Z4 25 26

Here, zl,...,26 E J(B),(a,b),(c,d) are distinct ordered pairs in {(1,3),(1,4),

(2,3), (2,4)}. To see this, we proceed as follows. In Equation (50), 315,316 E J(B)

ThUS, .115 = alE13 + 02E14 + 031323 + 04E24 and ya = blEl3 + 521314 + 53323 + 54324

for some a,,b,- E 16,1 3 i S 4. Since 3);, 74 O,a,- # 0 for some i. We can assume

a1 aé 0. By replacing ( 0 ) by ( 0

316 316

bl = 0. Hence, ya = b2E14 + b3E23 + b4E24. Since ya 76 0, some (2,- 9é 0 for z' = 2, 3, 4.

We can assume b2 75 0. By replacing (yO) by (0) —a2b§1(y0) 76 O, we

5 6315

) — blal‘l ( yo ) if need be, we can assume

5

can assume y5 = 01E13 + a3E23 + a4E24. Thus, y5 = 01E13 + a3E23 + a4E24 and

ya = b2E14 + b3E23 + b4E24 with al 7e 0 and b2 91$ 0. The ordered pair (1,3) is one of

four ordered pairs appearing in (50). We can assume (1, 3) = (i, j). Since a1 75 0, we

can write ken/z as follows.

55>55=5<::>55<2:>55<z:">5k(::v>55<z>55<:.>-
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Here, 317 = mm + a3y3 + (14314. The ordered pair (1,4) is one of three ordered pairs

appearing in (55). We can assume (1, 4) = (p, q). Since b2 75 O, we can write ken!) as

follows.

WM“)55(“)55(E”)5k(’”‘wWMO)-y7 ya 313 314 y5 y6

Here, ya = b2y2 + b3y3 + b4y4. Setting 21 = y7,22 = y8,23 = y3,z4 = y4,z5 =

315,26 = ya, (a, b) = (m,n), and (c,d) = (u,v), we have (54). Note that, 21 75 0.

For, if not, then ( 38 ) , ( Z ) E ken/J. This implies 315 E Ann3(N) = (0) which

is impossible. By the same argument, 22 759 0. Furthermore, {z1, 22, 25, 26} is linearly

independent. For, if not, then there exist t, E k,z’ = 1, 2, 3, 4, not all zero such that

tlzl + t222 + t3Z5 + t425 = 0. Thus,

t125+t225 _ Z5 25 O 0

(57) ( 0 )—t1(zl)+t2(z2)+t3(z5)+t4(z6)Eker‘w.

Suppose t1 = t2 = 0. Then, (57) implies t3 = t4 = 0. This is impossible. Thus, t1 # 0

or t2 aé 0 and hence t125+t226 75 0. Equation (57) implies t125+t2z5 E Ann3(N) = (0)

which is impossible. Therefore, {21, 22, 25, 26} is linearly independent. Thus, a basis

for kerw can be given as in (54) with {21, 22, 25, 26} is linearly independent.

Now, we are ready to define an isomorphism between 8x622 and Bx (13’2 /ker11))2.

For simplicity, we will denote cosets ( f: ) + OS(A) in Q by ( : )—. We will write

elements in thQ2 as orders triples (b, q1,q2). Here, b E B,q1,q2 E Q. It is easy to

check that the following 13 elements form a k-vector space basis of 8x622.
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:61 = (14,030)MB2 = (El3a03 0))fi3 = (E1430! 0)

54 = (E23,0,0)555 = (1324,05 0),fi6 = (0, ( g ) ,0)

(58) fi7=(0,(104) ,0),fis=(0,(%3) ,0),69=(0,(%4 )-,0)

I - 0 - E23 .—

510 =(0v0a(04) )afill=(0,0s(l4) )afil2=(0,0a( 0 ) )

E24 _-

513 —(0v02( 0 ) )

We will denote cosets ( Z ) + ken/1 in Bz/kerz/J by ( j: ) . It is easy to check that

the following 13 elements form a k-vector space basis of Bx (15'2/ken/2)?

61 = (I4) 0, 0), 62 = (_zla010)a63 = (—22a0a0)

0

5H5:6 )5 WM
510 =(0,0,(8)_),6u= (0,0, (104)),612=(0, o, (0 ))

613 =(o,0,(206)-).

Define a map a : 8x622 —-> B l>< (Hz/ken”2 by

64 = (25,0,0),65= (26,0, 0), 66 = (0, (I46) ,0)

13 13

(60) 012%): Zia-6,5, t,- e In = 1,. . . ,13.

i=1 i=1

Then, obviously, a is a k-vector space isomorphism. Notice that

[Bifij =0=6,-6_,- for 232'35, j=2,3,4,5,8,9,12,13

(61) flifij = O = 6‘65; for 6 _<_ Z,j S 13

fl? =0=¢§,52 for 232'313.
I.
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Furthermore, owl/6,) = 0(fl,) = 6,- = 616,- : 0(fil)a(fi,) for z' = 1, . . . , 13. Thus, to

show 0 is a k-algebra isomorphism it remains to show the following.

0(fiifi6) = 0(fli)0(fl6), 0(5ifl7) = 0(fli)0(fl7)

0(fii1610) = 0(fii)0(fi10), 0(55'511) = 0(fli)0(511) for i: 2,3,4,5-

(62)

Notice that the third and fourth equations in (62) are actually the same as the first

and second equations in (62) but in the third slot. Thus, we will finish the proof by

verifying the first and second equations in (62).

50257) = 5(0, ( b5; )—,0) =50 ( ”233 )-.0) = (0, ( 0 )-.0)

0

(0, ( —z. ) ,0) = <—zl.o,0><o, ( f3 ) .0) = 5.5, = 5025(5)

E14 _ -21 -

0(fi3fl6) =0(0’( 0 ) ’0)=0(0’0,0)=(0a050)=(0’( 0 ) v0)

= (—22,0,O)(0, ( g ) ,0) = 6366 = 0(,83)0'(fi5)

0 - E24 - 26 _

50355) = 5(0. ( E14 ) ,0) =a(0.( 0 ) ,0) = (0.( 0) .0)

= (O, ( _022 ) ,0) = (—Zg,0,0)(0, ( [04 ) ,0) = (5367 = 0(fl3)0’(,37)

E23 - 25 -

0(fl4fi6) = 0(0’ ( 0 ) ’0) = (0’ ( 0 ) :0)

= (25,050)(05 ( g ) ,0) = 5456 = 0(34)0(56)

0(fi4fi7) = 0(0,( E33 >10): 0(0,0,0) = (0,0,0) = (0, ( Z )_ ,0)

= (Z5,0,0)(0, ( [04 )- ,0) = (5467 = 0'(,84)0'(fi7)
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(63)

26E24 - _

arms/36> =5<0,( ) .0)=<0.(0) ,0)

= (25,0,0)(0,( 0 )— ,0) = 6566 = 0(fl5)0(fl6)

Q
0(5557) =0(0,< £4 >10) =0(0,0,0) = (0,0,0) = (0, ( Z )-,0)

0
= (26) 010)(0a ( I4 ) ,0) = 5557 = “500(57)-

Thus, 0(fi,~flj) = 0(fi,)0(fij), 1 S 2', j S 13 and hence a is a k-algebra isomorphism.

Therefore, B [X Q2 g B x (BQ/kerw)2.

Notice that BQ/kerz/J E N as B-modules. Let f : Bz/kerd) —> N be a B-

module isomorphism. Then, the map 0’ : l3 o< (Ba/ken”2 ——5 B x N2 defined by

0’(b,n1,n2) = (b,f(n1), f('n.2)) is a k-algebra isomorphism. Thus, 8x622 ’5 Bt><N2 as

k-algebras. C]

In [3], Brown and Call showed that C E Bx(k4)2. Thus, by Theorem 2.10,

C E’ 8 IX N2 for any N E M8(4). This implies there is only one isomorphism class [C]

in 93.

Recall (B,N) E X implies (BKN‘,B’€BN) E MX. To classify the isomorphism

classes in QC), we need the following lemma.

Lemma 2.11: Let (B,N), (B,M) E X. Suppose N E M as B-modules. Then,

(B [X N‘, B‘ 69 N) and (B x M‘,B’ 69 M) are (0, T)-z’somorphic.

Proof: Let f : N -—> M be a B-module isomorphism. Define amap 0‘ : BxN‘ —>

B D< M‘ by 0(b,n1,...,n¢) = (b,f(n1),...,f(m)) for b E B,n,- E N,i = 1,...,2. It

is easy to show 0 is a k-vector space isomorphism. If (b, 72.1, . . . ,ng), (b’, n’l, . . . ,n}) E
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B x N‘, then

(64)

0((b,n1,...,ng)(b’,n’1,...,n})) = o(bb’,n’1b + nlb’, . . . ,ngb + ngb’)

= (bb’,f(n§ b + n, b’), . . . ,f(n;b + ngb’))

= (bb’,f(ni)b +f(n1)b’,5-5,f(n2)b+f(nz)b’)

= (b,f(n1),--5,f(ne))(b’,f(ni),~<,f(n2))

= 0(b,n1,.. .,ng)0(b’,n’1,...,n2).

Thus, a is a k-algebra isomorphism. If we define a map 1' : 3‘ EB N -—> B‘ 69 M

by T(b1,...,bg,n) = (b1,...,bg,f(n)). Then, T is a k-vector space isomorphism.

Obviously,

(65) T((b1, . . .,bg,n)(b,n1, . . .,Tlg» = T(b1, . . . ,b¢,n)0(b, n1, . . . ,ng).

Thus, (B x N’,B‘ 69 N) EMT) (B l>< M‘,B‘ 69 M). [I]

Now, we are ready to classify the isomorphism classes in QC).

Theorem 2.12: Let Q and N be as in Theorem 2.10. Then, (8x622, 826962) 9.7”)

(B x N2,B2 as N).

Proof: Let

£1 = (14,090), {2 = (E13,0’0)) £3 = (E14a0’0)

£4 = (E23, 0,0), 65 = (E241010)3 £6 = (031430)

E7 = (09E1310)3 £8 = (01E14)O)a £9 = (0,E23,0)

(65)

£10 =(09E24)0)a £11=(0303( 8 ) )3612 = (0,0, ( IO) )

4

513 = (050: ( L33 )3) 514 = (0:0, ( £84 )3
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Then, {51, . . . ,{14} is a k-vector space basis of 82 EB Q and let

771 = (14,030)? 772 = (—Z11010)3 773 = (—22’ 0’ O)

774 = (Z5: 0, O), 775 = (z6a0)0)1 776 = (091430)

777 = (0a —Zl) 0), 778 = (07 -22a 0)) 779 = (0, 25) O)

I - 0 -

7’10 = (0) 26,0), 7711 = (010’ 4 )1 7712 = (0,01 )

0 I4

7713 = (0.0, ( f; )3. m4= (00(3)).

Then, {171, . . . ,n14} is a k-vector space basis of 82 EB (BZ/kerzb), where 1b is a map in

Theorem 2.10. Let 7' : 32 EB Q -—+ B2 EB (132 /ker11)) be the map defined by

14 14

(68) T(Z tifi) = Ztifli, ti 6 k, 1 S 2 S 14.

i=1 i=1

Then, T is a k-vector space isomorphism.

Let 0 be the k-algebra isomorphism in Theorem 2.10. Let b,-, n, E B for

2': 1,2,3,j = 1,2, 3,4, 5, 6. Then,

bi = “14 + aiEl3 + biEM + CiE23 + diE24

(69)

”j = 33'14 + PjEls + qu14 + qu23 + vjE24

for some 13,045,b,-,c,-,d,-,sj,pj,qj,uj,vj E k,z'=1,2,3,j = 1,2,3, 4,5,6. Since ( E13 ),

0

(E54),(E2,),(E3,)ecm

n1 - = 8114 + P1E13 + 91E14 + 111323 + 711E251 - = 3114 + U1E23 + 111324 -

8214 + P2313 + 921314 + 71521323 + 7121324 8214 + P2E13 + (12314



37

Since E23 , E24 E CS(A), Equation (70) becomes

-Eis _E14

(71) 3214
(nl )— = ( 8114 + (U1 +p2)E23 + (’01 + Q2)E24 )— .

(72) n3 _ = 8314 + (U3 + p4)E23 + (113 + Q4)E24 —

m 3414 °

and

(73) n5 — = 3514 + (“5 +p6)E23 + (””5 + QG)E24 _

”6 8614 '

Notice that

7(1),,62, ( Z; ) ) = T(b,,0,0) +T(o,bg,0) +5r(0,0, ( Z; > )

= (T114 — 0.121 - (9122 + C125 + d125, 0, 0)

(74) +(0, T214 — 0.221 — (2222 + C225 + d226, 0)

+(0, 0,( 8114 + (U1 +p2)z5 + ('01 + Q2)Ze )-).

8214

Let

L1 = T114 — (1121 — b122 + 6125 + (1125

, L =rI—az—bz+cz+dz(75) 2 2 4 2 l 2 2 2 5 2 6

L = 8114 + (U1 +p2)25 + (’01 + Q2)25 -

3 S214 .
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Then, T(b1,b2, ( :1 ) ) = (L1, L2, L3). Notice that

2

(76)

0'(b3, ( :3 )1 ( Z: )) = 0(b3,0,0) +0(0, ( Z: )-,0) +0(0,0, ( Z: ))

= (7.314 _ aazl — b322 + 6325 + (1326, 0a 0)

+(O, ( 3314 + (“3 +P4)25 + (”3 + Q4)26 )- ,0)

S414

+(0 0 8514 + (“'5 +p6)25 + (715 + gs)26 -)

a a 8614 -

Let

M1 = T314 — (1321 — b322 + C325 + d325

_ .3314 + (113 + p4)z5 + (2);; + q,)z, ‘

(77) M2 — ( 8414

M = 8514 + (“as + P6)25 + (’05 + QG)ZG _

3 8514

Then, 0(b3, ( :3 ) , ( n5 ) ) = (M1,M2,M3). Thus,

4 ”6

(78) r(b1,b2, ( Z; ) )0(b3, ( Z: ) , ( :1: ) )= (L1,L2,L3)(M1,M2,M3)

=(L1M19 L2M1aL3M1+
M2111 + M3112),

Since y,- E J(B) for i = 5,6, 7, 8, we have
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(79)

LlMl = T1(T3I4 — (1321 — b322 + C325 + d326) — r3(a121 + b1z2 — C125 — (1126)

= r1r3I4 - (T103 + r3a1)zl — (rlb3 + r3b1)22 + (r1c3 + r301)z5 + (T1d3 + r3d1)26

Lng = T2(T3I4 — 0.321 — b322 + C325 + d326) —- T3((1221 + b222 — €225 — (12.26)

= T2T3I4 — (T203 + r3a2)zl — (T2b3 + T3b2)22 + (T263 + T3C2)Z5 + (T2613 + T3d2)26

_ 31(T314 - 0321 — 19322 + 0325 + daze) + r3((u1 +P2)25 + (’01 + €12)26) —
L3M1 —

82(T3I4 — 0.321 — b322 + C325 + (1326)

81T3I4 +(r3u1+ T3172 + 3103 + 8203)Z5 + (T301 + T3Q2 + 81d3 + 82b3)26

32r31;

M L r1(s3I4 + (U3 + p4)25 + ('03 + q4)26) — 33(a121 + b122 — c125 — dlzs) _

2 1 84(TII4 — 0.121 — blzz + 0125 + dlza)

713314 + (71713 + T1194 + 8301+ 840025 + (71113 + 7194 + 83611 + 34bl)zfi _

347114

M L T2(S5I4 + (115 + p5)z5 + (115 + q6)26) — 85(0221 + b222 — €225 — (1225) _-

3 2 86(T2I4 — 0221 - b222 + 6225 + (1226)

:( T285141 + (T2115 + Tgpfi + 8502 + 860.2)Z5++(T2’05 + T2q6 + S5d2 + 86b2)2'6 )—

36T21h

On the other hand,

(80)

n1 - n3 - n5 _ _ n1b3 _ n3b1 '— n5b2 _

(bl:b2, ( n2) )(b3a ( n4) ’(n6) )— (biba,b2b3, ( 71253) +( n4b1) +( 71652) )

Equation (71),(72),(73) imply that

(81)

blba = 7‘1(T314 + a3E13 + b31314 + 031323 + (13324) + 73011513 + 51314 + 611323 + 611524)

= 1‘17‘314 + (T103 + T301)E13 + (le3 + T3b1)E14 + (T1C3 + T301)E23 + (T1d3 + T3d1)E24

5253 = 72(7314 + 03313 + 531314 + 631323 + 6131324) + T3(02313 + 521314 + 62323 + d2E24)

= 1'21'314 + (T203 + r3a2)E13 + (Tgba + T3b2)E14 + (T263 + T3C2)E23 + (T2d3 + r3d2)E24
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81(7‘314 + 03313 + b3E14 + 631323 + 613324) + r3((u1 + P2)E23 + (v1 + 92)Ez4) )—

82(7‘3I4 + a3E13 + b3E14 + C3E23 + d3E24)

817‘314 + (8103 + T3111 + T3192 + 3203)E23 + (31d3 + T‘31)1 + 7'302 + 82b3)E24 )-

32T31h

84(7'114 + a1313 + 1711314 + 011323 + 611324)

331‘114 + (3361 + Tlua + T1114 + 3401)E23 + (33d1 + T103 + T194 + 8450324 )—

84T114

85(7‘214 + 02313 + 52514 + 62523 + d2E24) + 72((1‘5 + P6)E23 + (“Us + (16)Ez4) )-

86(7‘214 + 02E13 + b21314 + 62323 + (12324)

857'214 + (3502 + T2115 + T2136 + 8602)E23 + (85612 + T205 + 7206 + 36b2)E24 )—

n3b1 _- _ 33(7'114 + 01513 + b1E14 + C11323 + d1E24)+ T1((u3 +104)E23 + (2);, + Q4)E24) —

n4b1 —

( 861’214

Horn Equation (80), we have

(82)

7((b1,b2, ( 2: )-)(b3, ( ”'3 )1 ( ”5 )3) = T(b1b3,0,0) +T(0,b2b3,0)

nlbs — n3bl _
+r(o,o, ( ”2,3 ) )+T(o,o, ( "4,1 ) )

n5b2 _—

+T(0,0, ( nebz) ).

Since

(83)

1'(b1b3, 0,0) - = (r1r314 — (r103 + r3a1)zl — (r1b3 + r3b1)22 + (T103 + r3cl)zs + (r1d3 + r3d1)26,0,0)

T(0, b2b3,0) = (0, 7'21'3I4 — (T203 + r3a2)zl - (T2123 + 7‘3b2)22 + (T263 + T362)25 + (nga + T3d2)zs, 0)

710,0, n1b3 _) = (0,0, 811314 + (8163 + mm + T3172 + 8203)25 + (sld3 + r3121 + r3q2 + 321,3)36 ')

MI)"
827314

710,0, n3b1 -) ___ (0, O, 331‘114 + (3361 + r1113 + T1124 + 8401)25 + (33d1 + 1‘1'03 + 7104 + 84b1)zs -)

71451
847‘114

n5b2 _) ___ (0 0 351'214 + (8562 + rzus + 1‘ng + 36a2)25 + (85612 + T2115 + Tzqe + 361,2)“ -)

n6b2 , , 867214
'

710,0, (
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Therefore, from Equation (78) to (83),

(84)

T((b1,b2,(,’;;) )(b3,(::j) ,(Zg) ))=T(b1,b2,(:;) )o(b3,(::) ,(Zg) ).

Thus,

(85) (B o< Q2, 132 ea Q) 2,0,) (B v< (Bz/kerw, 132 as (B2/ker¢)).

Since B2/ker2/z ’5 N as B-modules, (B [X (l3""'/lce1'¢)2,l3’2 EB (B2/ker¢)) EWJI)

(BKN2,B2$N) by Lemma 2.11. Therefore, (BxQ2,B2€BQ) $701.71) (BxN2,Bz®N),

where 01 = 0’0 and 7'1 = 7’7. [:1

We have now proven the following assertion. If N E M8(4), then

(B x N2,l32 GB N) E1“) (8 IX (k4)2,82 EB 16“) $0,571) (C, k”). Thus, 901 has exactly

one (a, T)-isomorphism class [(C, k14)].



Chapter 3

Nonuniqueness of Algebras in 9

3.1 Construction of New Algebra 8 in Q

It has been conjectured for a long time that the set 9 = {(R, J, k) E

M14(k)| dimkR = 13 and i(J) = 3} has only one isomorphism class [C]. It turns

out the isomorphism class [C] is not unique. In this section, we will construct a new

k-algebra (8, J, k) E 52 such that [S] sé [C].

If (R, J, k) E Q, then by Theorem 2.3, we may assume every 1" E J has the form

in (9). From Theorem 2.5, we may assume every 1" E Soc(R) has the form in (13).

We can then write R = k[)\1, . . . , A8, E11, E12, E21, E22], where

02 0 0

(86) Xi: Ai 010 0 , Z=1,....,8

Conversely, suppose R is a commutative, k-subalgebra of T14 of the form

R = k[)\1, . . . , A3, E11, E12, E21, E22], where dimkR = 13 and A1, . . . , A8 have the form

given in Equation (86). (We are not assuming R is maximal). Then, R is a local ring

with Jacobson radical given by J = (A1, . . . , A3, E11, E12, E21, E22) and residue class

field It. We will give a necessary and sufficient condition on the A,’s and B,’s which

will imply R E Q.

42
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For a matrix A 6 menUc), we will let her A = {u E Mlxm(k)|uA = 0} and

NS(A) = {v E Mnx1(k)|Av = 0}.

Theorem 3.1: Let R = k[/\1,...,/\8,E11,E12,E21,E22] be a commutative,

k-subalgebra of T14. We assume dimkR = 13 and each A,- has the form given in

Equation (86). Suppose {)le ker(A,-) = (0) and (18:1 NS(B,-) = (0). If r E 07,,(R),

then 1' has the following form.

02 0 0

(87) 1‘ = P 010 O + a114, a E k.

( Z Q 02 )

X1 X2 X3

Proof: Let r = X4 X5 X6 6 CT,,(R). Here, X1,X9 6 T2 and X5 6 T10.

( X7 X8 X9 )

Then, TEL-J- = Eij r and

X1X2 X3 020 O 020 O X1X2 X3

(88) X4 X5 X6 A5 010 0 = Ai 010 0 X4 X5 X6

X7 X8 X9 W B; 02 W Bi 02 X7 X8 X9

for all i = 1,. . . ,8. Thus, we have the following equations.

(a) XgAi + X3W = 0 (8) AiX3 = 0

(89) (b) X38, = 0 (f) XgAi + XgW = WX1 + BiX4

(C) XSAi + XGW = AiXI (g) X9Bi = WX2 + BiXS

(d) XGB, = A,-X2 (h) WX3 + B,X6 = 0.

These equations hold for all i = 1, . . . ,8 and all W 6 T2. We also have the equations

obtained by replacing A,- and B,- in (a) through (h) with the zero matrix. Since

X3W = 0 for all W 6 T2, we have X3 = 0. Then, (a) implies XgA, = 0 for all

i = 1,. . . ,8. Thus, X2 6 “i=1 ker(A,~) = (0). Hence, X2 = 0. Equation (h) implies

13,-Xe = O for all i = 1,. . .,8. Thus, X5 6 (19:1 NS(B,) = (0). Hence, X5 = 0. Since

X9W = WX1 for all W 6 T2, we have the following equations.
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X9E11 = E11X1 X91312 = E12X1

X91321 = E21X1 X9E22 = E22X1-

(121 (1.22 b2l (’22

Then, (90) implies an = an = bu = by and an = 0.21 = b12 = b2} = 0. Thus,

Let X1 = (all a”) and X9 = (bll b” ). Here, a,,-,b,-, e k, i,j = 1,2.

X1 = X9 = 0.1112. In (C), 1813 W = 0. Then, X5145 = AiXI = Ai(0.1112) = allA,.

Hence, (X5—auIlo)Ai = 0, for alli = 1, . . . ,8. Thus, X5—011110 E 018:1 k€T(Ai) = (0)

which implies X5 = anI10. Therefore, 1' has the form in (86). [I]

Let R = k[)\1, . . . , A8, Eu, E12, [3321, E22] be as in Theorem 3.1. Theorem 3.1 implies

any 7‘ e CT,,(R) has the form given in (87). Notice that all matrices of the form

02 0 0

(91) O 010 O and a1”

are elements in CT,,(R). In the next theorem, we characterize those P’s and Q’s for

which 1' E CT,4(R).

Theorem 3.2: Let R = k[/\1,...,A8,E11,E12,E21,Ezg] be the k-subalgebra in

02 0 0

Theorem 3.1. Let r = P 010 0 + a1” 6 T14. Then, 1' E CT,,(R) if and

Z Q 02

(RolelT

only if (RODESV E NS(A). Here, Rom-Q is the i-th row of Q, Col,P is the i-th

I COIQP

column of P, and A E M32x4o(k) is the following matrix.
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(COI1A1)T —R0’LU1B1 0 O

(00l2A1)T 0 0 —Row1B1

O "RO’LUQB1 (COI1A1)T 0

O 0 (0012241)T —ROIU2.B1

(92) A:

((0011A8)T —R0’UJ1BS 0 0 \

(00l2A3)T 0 0 —R0wlBg

0 —R0’U)2B8 (COI1A3)T 0

_ \ O 0 (0012A8)T —R0’LU233) ‘
 

Proof: Suppose r e CT,4(R). Then, for all i = 1, . . . , 8,

02 0 0 02 0 0 02 O O 02 0 0

(93) P 010 O A.- 010 0 = A,- 010 O P 010 O .

Z Q 02 W B,- 02 W B,- 02 Z Q 02

Therefore, QA, = B,P for i = 1,... ,8. Let

(i) a“)

011012 bu) . . . b6)

A,= ' 3‘ Bi=(b(lil) b(1‘1)0),f0ri=1,...,8

.51. an 21
(94)

P11 P12 q g

P = : : = 11 ° " 110 .

' ° Q ( 921 ° " (1210

P101 P102

Here, a111,, bmn, pm", q"m E 19. Since QA, = B,P for all i = 1,. . . ,8, we have

j:-—l QIJaj1L“ZI'01b(13')Pj1=0,.
1941 quaJa-(B) —21-0=1b(13)pj2= O

(95)
21-0 1 qzja-(i) _2101 b91931: O 2101 (1210(1) :101b(i)pj2__ 0.



46

It is easy to check (95) is equivalent to

(Role)T

0,01113

(96) A (Row2Q)T

. COIQP

=0.

Conversely, if P and Q satisfy Equation (96), then QA, = B,~P for all i = 1,. . . ,8.

Hence, by Equation (93), r E 07,,(R).

Theorem 3.3: Let R = k[/\1, . . . , A3, 1311,5312, 321, E22] be a commutative,

k-subalgebra of T14. We assume dimkR = 13 and each A,- has the form given in

(86). Then, the following two statements are equivalent.

(a) R E M14(k)

(b) [:1 ker(A,-) = (0), L1 NS(B,) = (O), and rank(A) = 32.

In Theorem 3.3, A is the 32 x 40 matrix given in (92).

Proof: (a) => (b) Let u = (111,. . . ,ulo) 6 {18:1 ker(A,-). Then,

02 0 0

(97) 0 010 0 6 Soc(R).

o (.., 020

Theorem 2.5 implies dim,c Soc(R) = 4. The elements Eu, i, j = 1, 2 are clearly in

Soc(R). Hence, Soc(R) = L(E11,E12,E21,E22). Thus, it = 0 and hence

13:1 Iced/4:) = (0).

Let U = ('01,...,v10)T E 0:; NS(Bi). Then,

02 0 0

( (v0) 010 0 ESoc(R).

0 O 02
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Since Soc(R) = L(E11,E12,E21,E22), v = 0. Therefore, 0le NS(B,) = (0).

Let

(R01111Bi)T

__ COI1A,‘ . __

(99) oz,— (W213i? , i—1,...,8.

COZQAi

Since A,- E R = CT,,(R), oz,- 6 NS(A) by Theorem 3.2. Since A1, . . . , A8 are linearly

independent, a1, . . . ,as are linearly independent. Hence, dimkNS(A) Z 8. Let

w E NS(A). Since w E M40x1(k), we can write w as follows;

(RolelT

COllp

(R0102QlT

COIzP

(100) w =

for some P E M10x2(k) and Q E M2x10(k). Let

02 O 0

(101) T: P 010 0 .

OQ02

Then, by Theorem 3.2, r E CT,,(R) = R. Thus, r = clAl + + CgAg for some

6,- E k, i = 1,. . .,8. Hence, w = 01011 + ---+ C8/\3. Therefore, dimkNS(A) S 8 and

hence dimkNS(A) = 8. We conclude rk(A) = 32.

(b) => (a) Since rank(A) = 32, dimkNS(A) = 8. Let 01,-, i = 1,...,8 be the

vectors defined by (99). Since dimkR = 13, A1, . . . , A8 are linearly independent over

1:. It easily follows that al, . . . ,as are linearly independent over 11:. Thus, {ab . . . , a8}

is a basis of NS(A) If r 6 07,,(R), then Theorem 3.1 implies r has the form given

in (87). Thus, by Theorem 3.2,

(RowinT

(102) (12311201215?
COZQP

e NS(A).
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This implies

02 O O

(103) P 010 0 E L()\1, . . . , A3).

0 Q 02

Therefore, r E R and hence 07,,(R) = R. We conclude R 6 M1409). E]

Thus, we can easily check whether a k—subalgebra R = k[)\1, . . . , A8,

E11, E12, E21, 322] of the type given in Theorem 3.3 is in 9.

Now, we will construct a new k-algebra (S, J, k) E Q with the following matrices.

Let

  

  

02 0 0

(104) 5,:(10, 010 o ), i=1,...,8.

0 Q1 02

Here,

I2 02 02 ) 02 )

02 I2 02 2

P1: 02 1 P2: O2 1 P3“ I2 ) P4: 02 1

Q2 02 02 I2

02 02 02 j 02 f

02 02 \ 02 \ 02

02 02 02 02

P5 = 02 , P6 = Q2 , P7 — 02 , Pa = 02 ,

02 Q2 02 02

E11 E12 f E21 f E22

and

Q1 = (12 02 02 02 Eu), Q2 = (02 I2 02 02 En)

Q3 = (Q2 Q2 [2 02 E21), Q4 = (Q2 02 02 I2 E22)

Q5 = (E11 02 E21 02 02), Q6 = (E12 02 E22 02 02)

Q, = (02 E11 02 E21 02), Q8 = (02 E12 02 E22 02).
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Throughout the rest of this thesis, we will let S = k[61, . . . , 63, E11, E12, E21, E22] with

61, . . . , 68 given by (104). Notice that S is a k-subalgebra of T14. The multiplication

table for J(S) is as follows:

Table 1: Multiplications of 635

 

 

 

 

 

 

 

 

 

51 62 (53 54 65 (55 67 68

(51 E11 + E22 0 O 0 E11 E12 0 O

62 0 E11 '1' E22 0 O O 0 E11 E12

(53 O 0 E11 '1' E22 0 E21 E22 0 O

64 O O 0 E11 + E22 0 0 E21 E22

55 Eu 0 in o o o o o

56 E12 0 E22 0 o o o o

6-, 0 Eu 0 E21 0 o o o

53 0 E12 0 E22 0 O O O          
 

We don’t include the multiplications for Eij’s since E,jJ(S) = (O) for all i, j = 1, 2.

Theorem 3.4: Let S = k[61, . . . ,63, E11, E12, E21, E22] be the k—subalgebra of TM

defined by the equations in (104). Then,

(a) S E M1406)

(b) (S, J, k) e 52

Proof: (a) It is easy to check that S is a local, commutative, k—subalgebra of T14

with dimkS = 13. Obviously, {P1, . . . , P3} is linearly independent. Furthermore,

8 kerm) = (0) and 0.5:. NS(Q.) = (0). Leti=1
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(0011P1)T —R0’CU1Q1 0 0 q

(COI2P1)T 0 0 —R0’UI1Q1

0 —Row2Q1 (C'ollPl)T 0

O 0 (0012P1)T —Row2Q1

(105) A =

(COZ1P8)T —R0’lU1Q8 0 0

(0012P8)T o 0 4202121628

0 —R0’U)2Q8 (COl1P8)T 0

0 0 (COl2P8)T -R0’w2Q8 -  
Then, A E M32x4o(k) and rank(A) = 32. Thus, by Theorem 3.3, 8 E M1406).

(b) We can easily check that dimkS = 13 and i(J) = 3. Thus, (8, J, k) E Q by

(a). C]

In Theorem 3.4, we constructed a new k-algebra (S, J, k) E Q. In the next section,

we will show [8] 75 [C]. Hence, 8 determines a new isomorphism class in 9.

3.2 The Algebra 5

In this section, we will prove the k-algebra S constructed in Theorem 3.4 is not

a (B, N)-construction if k = R and is a (B, N)-construction if k is an algebraically

closed field. We will prove that 8 is not k-algebra isomorphic to C. Therefore, we can

conclude that Q has at least two k—algebra isomorphism classes [8] and [C]. It also

follows that (S, k”) is not (a, T)-isomorphic to (C, k“). Furthermore, we will prove

(S, k“) is not a (II-construction.

Theorem 3.5: Suppose k = IR. Then, S is not a (B, N)-construction.
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Proof: Suppose S is a (B, N)-construction. Then, by [3: Theorem 4], 8 contains

an ideal I which satisfies the following two properties.

(106)

(a) Ann5(I) = I

(b) O —» I ——+ S .L, 8/I —2 0 splits as k-algebras, i.e., there exists a k-algebra

homomorphism V6 = 15/].

Since 13,-I = 0 for i, j = 1,2, 1.53,,- e I, i, j = 1,2 by (a). Notice that a, e 1.

Otherwise, 6? = 0 by (a). Since 6? = E11 + E22, this is impossible. Thus, 61 ¢ I. Let

6 : S/I —» S be a splitting map. Then, 0(61+ I) = 61+ r, where r E I. Since 0 is a

k-algebra homomorphism, we have

6% + 261r = 6% + 2617' + r2

= (61 +1")2 = (0051+ 1))2

= 6((61 + 1)?) = 0(En + E22 + I)

= 9(0 + I) = 0.

(107)

Let r = [3:1 t,6,- + 232',e=13lej£: t,, 31-; 6 IR. Then, (107) implies

(108) (1 + 2t1 + 2t5)E,1+ 2t5E12 + (1 + 2m}?22 = 0.

Thus, t1 = —-.:;, t5 = t6 = 0. Hence, we have

1 2 -

(109) T = —§61 + t262 + t363 + t464 + t767 + t863 + Z Sngjg.

j,(=l

Since r E I, r2 = 0 by (a). Thus,

(1 +153 + t3 + t3 + 2t2t7)Eu + 2t2t8E12 + 2t4t7E21

.(110) _

+(fi + t3 + t3 + t3 + 2t4ts)E22 = 0.
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Therefore, we have the following four equations.

t2t8=0

t4t7=0

fi+t§+t§+ti+2t2t7=0

§+t§+t§+t§+2t4t3=0

(111)

We will show that there is no real solution of the equations given in (111). Since

t2t8 = 0, t2 = 0 or t8 = 0. Thus, we have the following two cases to consider.

Case 1: t2 = 0

Case 2: t3 = 0

We will show both cases lead to a contradiction.

Case 1: Suppose t2 = 0. Then, from the third equation in (111), we have

i + t3 + ti = 0. This is impossible since t3, t4 6 R.

Case 2: Suppose t8 = 0. Then, the fourth equation in (111) implies

% + t3 + t3 + t} = 0. This is again impossible since t2, t3, t4 6 R.

Thus, the equations in (111) have no real solutions. This implies that there is

no r E I such that 0(61 + I) = 61 + r. Thus, there is no splitting map of the exact

sequence given in (106). Therefore, 8 is not a (B, N)-construction. [I]

It was conjectured that every R E M1409) is a (B, N)-construction. Theorem 3.5

implies this conjecture depends on k. If k = R, then S is not a (B, N)-construction.

If k = C (complex numbers), then S is a (B, N)-construction. More generally, we

prove S E M14(k) is a (B, N)-construction if k is an algebraically closed field.

Theorem 3.6 Suppose k is an algebraically closed field. Then, S is a (B,N)-

construction.
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Proof: Since k is an algebraically closed field, the polynomial f(1:) = $2 + 1 E k[:r]

has a root i. Set 011 = 61 — i152, (12 = 63 — i64, a3 = 65 — i67, and a4 = 66 —

i68. Then, c1165 = E11, 0166 = E12, c1265 = E21, (1265 = E22. Thus, the ideal

I generated by a1,qg,ag,a4 contains Emu for all m,n = 1,2. It is easy to check

I = L(a1)a2’a3ia4,E119E123E21,E22)‘ Thus, dzmk(I) = 8'

Let )6 E Ann5(I). Then, 6 = 28=1tn6n + 23nm=l smnEmn for some tmsmn E k.

Since an E I for all n = 1,2, 3,4, anfl = 0 for all n = 1, 2,3,4. From alfl = c123 = 0,

we have

( ) (t1 — it) + t5 — 21:7)E'11 + (t6 — 21:8)E'12 +(t1 — 29E” = 0

112

(t3 — it4)E11 + (t5 — it7)E21 + (t3 - it; + t6 — it3)E22 = 0.

Equation ( 112) implies

tl—it2+t5—it7=0

t3—it4+t5—’lt8=0

t —it =0

(113) 6 .8
t1-‘lt2=0

t3-it4=0

t5—lt7=0

Thus, we have t1 = itg, t3 = it4, t5 = ity, and t6 = its. Hence,

,8 = ’lt261 + t262 + 11463 '1' L164 + ’lt765 + #366

(114) +t767 + t868 + Zgnm=l SmnEmn

= “201 + 71402 + “703 + ”304 + 23"":1 SmnEmn-

Therefore, B E I and hence Ann5(I) g I . Since 12 = 0, I ; Ann5(I). Thus,

Ann5(I) = I.

Notice that A = {114 + 1,61 + I, 63 + I, 65 + 1,66 + I} is a k-vector space basis of

S/I. Since dimk(I) = 8 and dimk(8) = 13, we have dimk(S/I) = 5. Since ion 6 I
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for all n = 1,2, 3,4, we have

62+I=—i61+1

64+I=—i63+1

67+I=—i65+I

68+I=—i65+l.

(115)

Let 0 be the k-vector space homomorphism from S/I to 5 defined as follows:

0(114 + I) = 1,,

6(61 + I) = 161 + 12152

(116) 0(63 + I) = §63 + 1215.,

(9(65 + I) = §65 +1257

6(66 + I) = 1,66 +1268.

Then,

9(62 + I) 6(— )= —i9(61 + I) = §62 — §t61

0(6., + I): 6(—2'63 + I): —i6(63 + I) = 164 — 3203

0(67 + I): 6(——i65 + I) —i6(65 + I) = §67 — £165

6(68 + I): 0(—456 + I) = —i6(66 + I): §68 — 12°66

—’l(51+I

(117)

Furthermore, 6 is a k-algebra homomorphism. To see this, we proceed as follows. Let

7,7’ E 8/]. Then, 7 = (tIM + a) + I and 7’ = (t’IM + a’) + I for some t,t’ 6 k and

a, a’ E J(S). Note that

9(77’) = “(@114 + a) + I)((t'114 + 0’) + 1))

= 0(tt’Il4 +ta’ +at’ + aa’ + I)

= 0(tt’Il4 + ta’ + at’ + I)

= 6(tt’Il4 + I) + 0(ta.’ + I) + 6(at’ + I)

= tt’0(Il4 + I) + t6(a’ + I) + t’0(a + I)

= tt’Iu + t0(a’ + I) + t’0(a + I).

(118)
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and

9(7)9(’Y’) =6((t114+a)+I)0((t’Il4+a’)+I)

=(0(tI14+I)+0(a+I))(0(t’I14+I)+6(a’+I))

= (tIM + 6(a + I))(t’Il4 + 0(a’ + 1))

=tt”Il4+t6(a +I)+t’0(a+I)+9(a+I)6(a’ +1).

Thus, it remains to show 6(a + I)6(a’ + I) = 0. Let a = 2:1 un6n + Zing vmnEmn

and a’ = _1 u’6,, + Zmn_lvmnEmn,un,ufi,,vmn,vfi,m E 1:. Then, we have

a + I = (U1 — 2U2)61 + (U3 — 2U4)63 '1" (U5 — 2U7)65 + (U6 — 2U3)65 + I

(119)

a’ + I= (u’l — iu2)61+(—iuf,)63 + (113 — iuf,)65 + (u;s — iu’8)65 + I

Therefore, by ( 116)

0(0 + I) ='2-(U1 — 2U2 (61 + 262)+ 3(U3 — 2U4)(63 + 264))

+3(uu5 — iu7)(65 + i67)+ 3(u6 — iu3)(65 + i68)

(120)

0(0’ + I) = 3(U’1—2U’2 (61+262)+3(U§—2U3)(63 + 264)

(+3(u’5 — iu’) 65 + i67) + 3(1‘8 — iué)(6t + i621)-

By using Table 1, we have

6(0. + [)0(a + I): 3((U1 — 2U2)(61 + 262) '1" (U3 — 2U4)(63 + 264)

(121) +(u5 — iu7)(65 + 2'67) + (06 — 2U3)(65 + i68))((u’1 — iu’2)(61 + 2'62)

+(uf3 - iug)(63 + 264) + (u;3 — iu7)(65 + i67) + (u;5 — iug)(65 + i63))

=0

Recall u : S ——> 8/I is the natural homomorphism defined by v(r) = r + I for r E S.

Then,

v0(114+I) =v(Il4)=114+I

v9(61+I) — (361+ 3i62)= 361+3i62+I

-(361+13i62)+ (-361—3i62)+1

—61+I '

(122)
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06(63 + I) = 11(363 + 3264) = 363 + 3i64 + I

= (363 + 3254) + (353 ‘325164‘ I

= 63 + I

226(65 + I) = ’U(365 + 3267) = 365 ‘l' 3267 + I

= (365 + 3267) + (365 — 3267) + I

= 65 + I

210(65 + I) = 21(366 + 3268) = 365 + 3263 + I

356 + 32258) + (356 — 3268) + I

= 66 + 1.

Thus, it is easy to check u0(r + I) = r + I for all r E S. This implies the exact

sequence

(123) O——*I—-iS-—>S/I—-+O

splits as k-algebras. Therefore, the ideal I of 8 satisfies the two conditions in

[3:Theorem 4] and S is a (B, N)-construction. C]

Theorem 3.5 and 3.6 show that the question: “When is (R, J, k) E Q a (B, N)-

construction?” depends on the field 1:. From Theorem 3.6, one could conjecture that

every (R, J, k) E Q is a (B, N)-construction if k is an algebraically closed field. At

present, this conjecture is still opened.

Next we show 5 is not k-algebra isomorphic to C. In what follows, we will need a

multiplication table for C. Let

02 o o

(124) 1,: A,- 010 o ,i=1,...,8.

O B, 02
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Here,

(In (02 on (on
02 12 02 02

A1 = 02 1 A2 "" 02 a A3 — [2 a A4 — 02 a

02 02 02 12

w.) \02 02) \02/

r02 on (02 (on
()2 ()2 ()2 ()2

A5 "' 02 , A6 = 02 3 A7 _ 02 7 A8 = 02 a

02 02 02 02

\ E11 E12 J \ E21 \ E22 )

and

Bl = (02 02 02 02 E11), B2 = (02 02 02 02 E12)

Ba = (02 02 02 02 E21), B4 = (02 02 02 02 522)

B5 = (E11 02 E21 02 02), 35 = (E12 02 E22 02 02)

B7 = (02 E11 02 E21 02), Ba = (02 E12 02 E22 02).

Then, C = k[/\1, . . . , A3, B11, B12, B21, B22] and the multiplication table for J(C) is as

follows:

Table 2: Multiplications of A,’s

 

 

 

 

 

 

 

 

 

A1 A2 /\3 A4 A5 A5 A7 A8

A1 0 O O 0 E1 B12 0 0

A2 0 O O O O 0 B11 B12

A3 0 O O 0 B21 B22 0 0

A4 0 O O O O 0 B21 B22

A5 E11 0 E21 0 O O O 0

A6 B12 0 B22 0 O O O 0

A7 0 E11 0 E21 0 O O 0

A8 0 B12 0 B22 0 O O O          
 

We don’t include the multiplications for Bij’s since EU J(C) = (O) for all i, j = 1, 2.
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We will now prove that the set 9 = {(R, J, k) E ./\/114(k)|dim;c R = 13,i(.I) = 3}

has at least two isomorphism classes [8] and [C].

Theorem 3.7: Let (S, J, k) E Q be the k-algebra given in Theorem 3.4. Then, S

is not k-algebra isomorphic to the Courter’s algebra C.

Proof: Let X, . . . ,X be indeterminates over It and set A = k[X1, . . . ,Xg]. Let I

be the following ideal (in A):

I = (X12,X§,X§,X},X52,X§,X72,X82,X1X2,X1X3,X1X4,X2X3,

X2X4,X3X4, X5X6,X5X7,X5X8,X6X7, szs, X7X8, X1X7,

X1X8,X2X5, X2X6, X3X7. X3X8,X4X5, X4X6, X1X5 — X2X7,

X1X5 — X2X3, X3X5 — X4X7, X3X6 — X4X3).

(125)

Let 1r : A ——+ C be the map defined by 7r(X,) = A, for all i = 1,. . .,8. From Table

2, it is easy to check 7r is a surjective, k-algebra homomorphism. Table 2 also implies

I g kervr. Thus, the map 7'r : A/I —, C defined by 1'r(f + I) = 7r(f) is a well-

defined k-algebra epimorphism. Let m = (X1, . . . ,Xg). Then, m3 (_I I and hence

{1 + I, X1 + I, . . . ,X8 + I, X1X5 + I,X1X6 + I,X3X5 + I, X3X6 + I} is a k-vector

space basis of A/I. Thus, dimk(A/I) = 13. Since dika = 13, 1? is a k-algebra

isomorphism. Thus, C E’ A/I as k-algebras.

Let L be the ideal of A defined as follows:

(126)

L: (X52,X62,Xg,X3,X1X2,X1X3,X1X4,X2X3,X2X4,X3X4,X5X6,

X5X7,X5X8,X6X7, X6X8,X7X8,X1X7,X1X8, X2X5,X2X6,X3X7,X3X8,

X4X5, X4X6, X? - X3, X12 — X§,Xf — X3, X1X5 — X2X7,X1X5 — X2X3,

X3X5 - X4X7, X3X5 — X4X3, X12 — X1X5 - X3X6).

'Let 7r1 : A ——» S be a map defined by 7r1(X,-) = 6,- for all i = 1,...,8. Then, 7r is

a surjective, k-algebra homomorphism. Using Table 1, L g ker7r. Hence, the map
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in : A/L —> 8 defined by 7T1 (g+L) = 7r1(g) is a well-defined k-algebra epimorphism.

Since m3 g L, {1 +L,X1+L,...,X8+L,X,2+L,X1X5 +L,X1X6+L,X3X5+L}

is a k-vector space basis of A/L. Thus, dimk(A/L) = 13. Since dimkS = 13, 7T1 is a

k-algebra isomorphism. Hence 8 g A/L as k-algebras.

Suppose 8 is k-algebra isomorphic to C. Since 8 E A/L and C E A/I, there

is a k-algebra isomorphism go : A/I —) A/L. Notice that A/I, A/L are standard

graded rings. Since J(C)3 = (0) and J(S)3 = (0), we have A/I = Co 69 C1 69 C2 =

k EBCI Elan and A/L = So €981 6982 = It €981 €982. Here, Cu and 8,, are the n—th

homogeneous components of A/I and A/L, respectively. Since C and S are local

rings, J(A/I) = m/I and J(A/L) = m/L. Since w is a k—algebra isomorphism,

cp(m/I) = <p(J(A/I)) = J(A/L) = m/L. Thus, <p((m/I)“) = (m/L)" for all n > 0.

We can now define amap zp : grm/1(A/I) —> grm/L(A/L) given by 1/)(a+(m/I)"+1) =

<p(a) + (m/L)"+1 for all a 6 (m/I)". Since <p((m/I)”) = (m/L)“ for all n > 0, d)

is well-defined, k-vector space homomorphism. Since (p is surjective, w is surjective.

Hence, 1,!) is a k-vector space isomorphism.

Next we will show 1/) is a k-algebra homomorphism. Let al 6 (m/I)" and let

(12 E (m/I)‘. Then,

(127)

112((01 +(m/1)"+‘)(a2 + (Tn/Um» = Waiaz + (m/I)"+‘+‘)

= M01102) + (m/L)"+‘“

= Mam/9&2) + (m/10W“

= (Mal) + (m/L)"+1)(<P(a2) + (Tn/LY“)

= 10(01 + (m/I)"+‘)¢(az + (Tn/IV“).

Thus, 2,!) is a k-algebra isomorphism.

Let P1 3 k @C1 6902 --* ng/1(A/I) be a map defined by p1(a,,) = a,, + (m/I)"+1

for all an 6 C", n = 0,1,2. Then, it is easy to check that p1 is a k-vector space
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isomorphism. Let an, 6,. E C... Then,

(128)

101((00 + 011+ a2)(50 + 51+ 62)) = P1(aofio + C1031 + 01150 + 0032 + 01250 + 01151)

= P1(Oofio) + P1(0051 + 0150) + 101(0052 + 0260 + 0151)

=¥ C1030 + (00131 + 01150 + (m/I)2) + (01032 + 02130 + 0151

+(m/I)3))

= (ao +(01+(m/1)2)+(02 + (m/1)3))(fio +(fl1+(m/1)2)

+(52 + (m/I)3))

= 01(010 + 011+ 02)P1(30 + 51+ 52)-

Thus, p1 is a k-algebra isomorphism.

L€t P2 1 ($6331 6352 —-* grm/L(A/L) be a map defined by p2(7,,) = 7,, + (m/L)"+1

for all 7,, 6 8n, n = 0,1,2. Then, by the same arguments above, p2 is a k-algebra

isomorphism.

Let a = p;1 oz/xopl : kEBCl €962 —» k®816952. Then, a is a k-algebra

isomorphism with (J(Cn) = 8,, for all n = O, 1, 2. Thus, a is a k-algebra isomorphism

which is homogeneous of degree 0. Therefore, we may assume (,0 : A/I —> A/L is a

k-algebra isomorphism which is homogeneous of degree 0. Since <p(C1) = 81,

<p(X,- + I) = L1 ainj + L for some (1,-,- 6 k, i,j = 1,. . . ,8. Here, det(a,-,-) 75 0. Let

77 : A —» A be a map defined by n(X,-) = 23;, (1,-ij for all i = 1,. . .,8. Then, by

[10, Corollary 2, p137], n is an automorphism.

Let Go : A —+ A/I and 91 : A —> A/L be natural homomorphisms. Then the

following diagram commutes.

A .91. A/I

(129) 771 190

A _61_, A/L
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To see this, we proceed as follows. The four maps in (129) are homogeneous of degree

0. Hence, it suffices to show that <p60(f ) = 9117(f) for any homogeneous form f in A.

Let f(:t:1, . . . ,axn) be of d-form in A. Then,

v(00(f($1, . . . .2371)»

(:1+I) "290(3371'1’1»

W(f($1+1,.. w$n+1))

(4p

(28

f

f: _1 aux, + L. ..,:ng agjxj + L)

f(2§_1a1jzj, . . . , 22:1 agjxj) + L

f

77

01

(130)

(() ---,17($e))+L

(f($1,-.$3))+L

n(f($1,-- 9311))

Thus, the diagram in (129) commutes. Hence, (p can be lifted to an automorphism n

which is homogeneous of degree 0.

Notice A/I is an A-module via 60, 1‘(a + I) = 00(r)(a. + I) = ra + I for r, a E A.

Also, A/L is an A-module via 6117, Th = 61(n(r))b for r E A, b E A/L. If r E A

and a E A/I, then

(131) 90(7‘0) = <p(0o(r)a) = <p(00(r))s0(a) = 01(n(7"))<p(a) = 7Ma)-

Thus, cp is an A-module isomorphism homogeneous of degree 0.

The minimal free resolution of the A-modules A/I and A/L are as follows:

(132)

0—2A4—)A27—)A92—>A204-+A296->A266—>A136—>A32—)A—)A/I—+O

O—>A4-¥A26->A87—+A197—2A293—)A266->A136-+A32—>A—’A/L—+0.

These resolutions were computed using Macaulay. Notice the resolutions have

different betti numbers. By [5: Proposition 1.5.16], this is impossible. Thus, A/I

is not k-algebra isomorphic to A/L. We conclude that S is not k-algebra isomorphic

to C. C]
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By Theorem 3.7, we conclude that the set 0 = {(R, J, k) E M14(k)|dimkR =

13, i(J) = 3} has at least two isomorphism classes [C] and [8].

Since 8 is not k-algebra isomorphic to C, (8, V1) is not (0‘, T)-isomorphic to (C, V2)

for any finitely generated, faithful, S—module V1 and for any finitely generated, faithful

C—module V2.

In our last theorem in this thesis, we will prove that (S, k”) is not a

Cl-construction. Let B be the Schur algebra of size 4 given in (2). Let B be a

k-algebra which is k-algebra isomorphic to B. Suppose f : B —* B is a k-algebra

isomorphism. Let N be a finitely generated, faithful, B-module. Then, N is a finitely

generated, faithful, B—module via f. Hence, we can form the pairs (B x N‘, 8‘ 69 N)

and (B x N‘,B‘€BN) in MX.

Theorem 3.8: With the notation given above, suppose dimk(N) = 4. Then, f

induces a (a,T)-isom01phism(a,7') : (8 IX N‘,B‘ 63 N) -2 (B x N‘,B‘ GB N).

Proof: Recall N is a B—module via nb = nf(b). Let a : B o< N‘ —-> B l>< N‘ be the

map defined by

(133) a(b,n1,...,ng) = (f(b),n1,...,ng).

Then, it is easy to check a is a k-vector space isomorphism. Let (b, n1, . . . ,ng),

(c,m1, . . . ,mg) 6 8 IX N‘. Then,

0((b, n1, . . . ,ng) (c,m1, . . . ,mg)) = a(bc,m1b+ nlc, . . . ,mgb + 72(6)

= (f(bc),m1b+ nlc, . . . ,mgb+ 12(0)

(134) = (f(b)f(C), m1f(b) + n1f(C),- - . ,mzf(b) + nef(C))

= (f(b),n1,-..,ne)(f(C),m1, . - . ,me)

= a(b,n1, . . . ,n()a(c,m1, . . . ,mg).

Thus, a is a k-algebra isomorphism.
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Letr:B‘EBNHBZEBNbeamapdefinedby

(135) 7'(b1,...,bg,n) = (f(b1),....,f(bg),n)

Then, it can be easily checked that r is a k-vector space isomorphism. Let

(b,n1,...,ne) 68x Ne and let (b1,...,bg,n) EB‘EBN. Then,

T((b1, . . . ,63, n) (b, n1, . . . ,ng)) = r(b1b, . . . ,bgb, nb + 25:1 nibi)

= (f(b1)f(b)a - - - a f(b£)f(b), nf(b) + Zi=1nif(bi))

(136)

= (“51), ° ° - af(bl)1n)(f(b)inla ° - ° 1”!)

= T(b1,...,bg,n)a(b,n1,...,ng).

Thus, we conclude (B t>< N‘,B‘ 69 N) 20”) (B o< N‘, B‘ 69 N). D

We can now prove that (8,1914) is not Cl-construction by using the result in

Theorem 3.8.

Theorem 3.9: Let (S, J, k) 6 Q be the k-algebra constructed in Theorem 3.4.

Then, (S, k“) is not a Cl-construction.

Proof: Suppose (S, k“) is a Cl-construction. Then, (S, k”) is (a, r)-isomorphic to

(BKN‘, B‘®N) for some (B, N) E X and E E N. Let d = dimk(B) and n = dimk(N).

Since 8 is k-algebra isomorphic to B x Nt and k” is k-vector space isomorphic to

B‘ 83 N, dimk(8) = dimk(B D< Ne) and dimk(k”) = dimk(B‘ G} N). Thus, we have

13 = d + Zn

(137)

14 = Ed + n.

The only solution (d, n,€) E N3 for Equation (136) is d = 5,n = 4,2 = 2. Thus,

(5, k“) Ea”) (B x N2,B2 69 N).

Notice that J(B o< N2) = J(B) x N2. From this, it easily follows that

i(J(B x N2)) = i(J(B)) + 1. Since 8 is k-algebra isomorphic to B x N2 and
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i(J(S)) = 3,i(J(B)) = 2. Since dimk(B) = 5 and i(J(B)) = 2, B is k-algebra

isomorphic to B. Theorem 3.8 implies (B l>< N2, B2 69 N) afimm) (B o< N2,B2 EB N).

Thus, (S,k14) Em”) (B D< N2,B2 69 N), where 02 = 01 o a and 7'2 = 7'1 0 7'.

By [4, Proposition 1], (B x (lc“)2,B2 EB 16’) 910,333) (C, k”) and by Theorem 2.12,

(B x N’",B2 EB N) Em“) (B M (lc“)2,B2 EB k4). Thus, (8, k”) E’ww) (C, k”), where

0’ = 03 o 04 o 02 and r’ = 7'3 0 r4 0 r2. Therefore, 8 is k-algebra isomorphic to C. This

is impossible by Theorem 3.7. We can conclude that (S,k14) is not Cl-construction.

D

Theorem 3.9 implies that if (R, J, k) E Q, then we can not conclude (R, It”) is a

Cl-construction.  



 

Appendix
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Appendix

We will prove Subcase 1 through 9 in Case 4 of the proof of Theorem 2.9.

Subcase 1: Suppose dimk(Ann3(a,-)) = 1 for i = 1, 2, 3. Let dimk(Ann3(a,-)) =

S] O 0

ks,,s,~ E J(B),i = 1,2,3. Then, 0 , $2 , 0 e kerz/J. Let

0 0 83

$2 $3 $4 $5

(138) 55 = 92 ’66 = 213 ,57 = 314 ,58 = y5

22 Z3 Z4 Z5

be a basis of kercp. Here, z,,y,~,z,- E J(B). Since dimk(J(B)) = 4, {$1,11,$2,$3,.’II4,

x5,$6,x7,x8} is linearly dependent. Thus, there exist d,c,- E k,i = 1,...,8, not

all zero such that d31+ z§=,c,z,- = o. If c.- = 0 for all i = 1,...,8, then at 7A 0

and dsl = 0. This implies 31 = 0. This is impossible. Hence, some c,- is not

zero. We can assume cs 96 0. Thus, $3 6 L(sl,:1:1,...,:1:7). We can repeat this

argument four times and assume $4, $5,186,137,“ 6 L(sl, $1,232, 2:3). Therefore, :84 =

dsl + c1231 + 02.732 + 03233 for some d,c1,c2,c3 E 1:. Since {61,64,65,66,67} is linearly

0

independent, d61 +c164 +c265 +c366 — 67 = ( u; ) 79 0. Since {61, . . . ,67} is linearly

’01
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0

independent, ( ul ) ¢ kbg + [£63. Thus,

91

81 O 0 $1

61: 0 :62: 32 $63: 0 ’64: 3’1

0 0 83 231

- $2 $3 0 $5

(139) 55 = 92 :66 = 93 ’57 = “1 ,58 = 95

22 23 v1 25

$5 $7 $8

59 = 96 ,510 = 97 ,511 = 98

26 27 23

is a basis of kergo. We can repeat this argument four times and assume

81 0 0 $1

51: 0 ’52: S2 ’53: 0 ’54: 91

O 0 83 251

$2 $3 0 0

(140) 55 = 92 , 56 = 93 ,57 = 91 :68 = “2

2'2 Z3 ’01 ' ’02

0 0 0

59 = Us , (510 = U4 ,511 = Us

’U3 U4 U5

is a basis of kercp.

Since dimk(J(B)) = 4, {32,u1,...,u5} is linearly dependent. Thus, there exist

d,c,- E k,i = 1,. . . ,5, not all zero such that (182 + 2L1 cm,- = 0. We can assume

0

Cs 7&4 0. Since 0162 + c167 + 0268 + c369 + 04610 - 611 = ( 0 J for some d, c,- E k,i =

v

1, 2, 3, 4, v E J(B) and (62,67, 63, 69,610, 611} is linearly independent, v 75 0. If v = ts3

for some t E k, then d62 + c167 + c268 + c369 + c4610 — 611 — t6;; = O. This is impossible.

0 0

Thus, v ¢ ks3. Therefore, ( 0 ) E ker<p\k63. This implies ( 0 ) ,63 E Ann3(a3).

’U ’U
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This is a contradiction since dimk(Ann3(a3)) = 1.

Subcase 2: Suppose dimk(Ann3(a1)) = 2 and dimk(Ann3(a,-)) = 1 for i = 2, 3.

Let Ann3(al) = k51+ ksg,AnnB(a2) = ks3, and Ann3(a3) = ks4,s,- E J(B),i =

81 82 0 0

1,2,3, 4. Then, 0 , O , s3 , 0 E kergo. Let

0 0 0 84

$1 $2 $3 $4

(141) 65 = yl ’66 = y2 167 = 3’3 ’68 = 314

2'1 22 Z3 24

be a basis of kercp. Here, 23,-,y,, z,- e J(B). Since dimk(J(B)) = 4, {31, 52,2:1,2:2,a:3,

2:4, 2:5,z6,$7} is linearly dependent. Thus, there exist d1,d2,c,- E k,i = 1, . . . ,7, not

all zero such that dlsl + d232 + 23:10:93: = 0. If c,- = O for all i = 1,...,7, then

dlsl + d282 = 0. This implies d1 = d2 = 0. This is impossible. Hence, some c,- is

not zero. We can assume c7 75 0. Hence, :57 6 L(31,32,$1, . . . ,ze). We can repeat

this argument four times and assume x3,$4,2:5,:56,x7 E L(sl, 32,11,232). Therefore,

233 = dlsl + (1232 + c1221 + 021:2 for some d,,c,- 6 k,i = 1, 2. Since {61,62,65,66,67} is

0

linearly independent, dlbl + d262 + c165 + c265 — 67 = ( ul ) 74 0. Since {61, . . . ,67}

’01
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O

is linearly independent, ( ul ) ¢ 1:63 + I664. Thus,

U1

31 s2 0 0

61: 0 ,62= 0 ,63= 83 ,64= 0

0 0 0 34

2:1 2:2 0 2:4

(142) 55 = 92 , 56 = 93 ’57 U1 1 58 = 94

22 23 ’01 24

335 $6 $7

59 = 95 ,510 = 96 .511 = 97

25 26 Z7

is a basis of kercp. We can repeat this argument four times and assume

81 82 0 O

61: 0 ,62= 0 ,63= S3 ,64= 0

0 0 0 34

$1 $2 0 O

(143) 65 = 91 166 = 92 a 67 = U1 #5:; = U2

21 22 U1 U2

0 0 0

59 = Us ,510 = U4 1511 = U5

213 v4 ’05

is a basis of kergo.

Since dimk(J(B)) = 4, {s3,u1,...,u5} is linearly dependent. Thus, there exist

d,c,- E k,i = 1, . . .,5, not all zero such that d83 + 2:21 em, = 0. We may assume

0

CS 76 0. Since (163 '1' C167 + 6268 + C369 + C4610 — 611 = ( 0 ) for some d, Ci 6 [6,2 =

v

1, 2, 3, 4, v E J(B) and {63, 67, 68, 69,610, 611} is linearly independent, v 74 0. If v = ts4

for some t E k, then d63 + 0167 + 0268 + c369 + c4610 - 611 — t64 = 0. This is impossible.

0 0

Thus, v ¢ ks4. Therefore, ( O ) E ker<p\k64. This implies ( O ) ,64 E Ann3(a3).

'U ’U
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This is a contradiction since dimk(Ann3(a3)) = 1.

Subcase 3: Suppose dimk(Ann3(a,-)) = 2 for i = 1, 2 and dimk(Ann3(ag)) = 1.

Let Ann3(al) = ksl+k32,AnnB(a2) = k33+ks4, and Ann3(a3) = 1:35, 3,- E J(B),i =

31 82 0 O 0

1,2,3,4,5. Then, 0 , 0 , 33 , s4 , 0 E kergo. Let

0 0 0 0 85

$1 $2 $3

(144) 65 = $66 = 91 967 = 92 568 = 93

S5 21 22 23

be a basis of kercp. Here, z,,y,-, z,- E J(B). Since dimk(J(B)) = 4, {51, 82,$1,$2,$3,

x4,x5,xs,} is linearly dependent. Thus, there exist d1,d2,c,- E k,i = 1,...,6, not

all zero such that dlsl + d282 + z?=,c.-x.- = 0. If c,- = 0 for all i = 1,...,6, then

dlsl + d282 = 0. This implies d1 = d2 = 0. This is impossible. Thus,c,- 91$ 0 for

some i. We can assume c6 95 0. Hence, £6 E L(sl,32,x1,...,a:5). We can repeat

this argument three times and assume x3,x4,$5,$6 E L(sl,32,:1:1,:1:2). Therefore,

33 = dlsl + d232 + 611:1 + c232 for some (1,, c,- E k,i = 1, 2. Since {61,62,66,67,63} is

0

linearly independent, 61161 + (1262 + C165 '1' C267 — 63 = ( U1 ) '7'é 0. Since {61, . . . , 63}

U1
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0

is linearly independent, ( ul ) E 1963 + 1964 + 1665. Thus,

vi

0 $1 $2 0

(145) 55 = 0 ,56 = 91 ,57 = 92 168 = U1

35 21 22 '01

$4 $5 $6

59 = 94 1510 = 95 ,511 = 96

24 25 26

is a basis of kergo. We can repeat this argument three times and assume

S1 82 0 0

51: O ’52: 0 ’53: 33 154: 34

0 0 0 0

0 2:1 3:2 0

(146) 65 = O 166 = 91 a 67 = 92 168 = 221

35 21 22 U1

is a basis of kergo.

 

Since dimk(J(B)) = 4, {53, 34,111, . . . ,u4} is linearly dependent. Thus, there exist

d1,d2,c,- E k,i = 1,...,4, not all zero such that (2153 + d234 + ELIQU, = 0. We

0

may assume C4 3'5 0. Since d163, + d264 ‘1" C163 ‘1" C269 + C3610 — 611 = ( 0

'U

) for some

d1, d2, c,- E k,i = 1, 2, 3, 4, v E J(B) and {63, 64, 68, 69, 610, 611} is linearly independent,

v 79 0. If v = tss for some t E k, then d163, + d264 + c163 + 0269 + c3610 — 611 - t65 = O.

O

This is impossible. Thus, v ¢ ks5. Therefore, ( 0 ) E kercp\k65. This implies

’U
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O

( O ) ,65 E Ann3(a3). This is a contradiction since dimk(AnnB(a3)) = 1.

v .

Subcase 4: Suppose dimk(Ann3(a,)) = 2 for i = 1, 2, 3. Let Ann3(a1) = ksl +

ksg,Ann3(ag) = ksg + 1:34, and Ann3(ag) = [:35 + kss,s,- E J(B),i = 1,2,3, 4, 5, 6.

31 $2 0 0 0 0

Then, 0 , 0 , 33 , s4 , 0 , 0 E kercp. Let T

o 0 o 0 55 36 '

 

0 $1 $2

(147) 55 = 166 = 0 ’57 = 91 ’68 = 92

S5 85 21 22

$3 $4 $5

59 = 93 ,510 = 94 ,511 = 95

Z3 Z4 25

be a basis of kercp. Here, :c,,y,~,z,- E J(B). Since dimk(J(B)) = 4, {31, S2,$1,$2,$3,

$4,235} is linearly dependent. Thus, there exist d1,d2,c,- E k,i = 1,...,5, not all

zero such that (1131 + dgsg + 23.110193: = 0. If e,- = 0 for all i = 1,...,5, then

dlsl + (1232 = O. This implies d1 = (12 = O. This is impossible. Thus,c,- 79 0

sor some i. We can assume c5 79 0. Hence, 3:5 E L(sl,52,$1,...,2:4). We can

repeat this argument two times and assume $3,214,225 E L(sl, 52, 1:1, 232). Therefore,

233 = dlsl + £12.92 + 012:1 + C2$2 for some d,,c,- E k,i = 1,2. Since {61,62,67,68,69} is

' 0

linearly independent, dlbl + d262 + c167 + c268 — 69 = ( ul ) 74 0. Since {61, . . . ,69}

91
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0

is linearly independent, ( ul ) E 1563 + 1664 + 1665 + [£66. Thus,

vi

31 S2 0 0

51: 0 ’52: 0 ’53: 33 ’54: S4

0 O 0 0

l 0 0 $1 $2

(148) 65 = 0 166 = O 167 2 3’1 168 = y?

35 36 21 22

0 $4 $5

59 = U1 .510 = 94 ,511 = 95

v1 Z4 25

is a basis of kercp. We can repeat this argument two times and assume

S1 S2 0 O

51: 0 152: 0 ’53: 33 ’54: S4

0 0 0 0

0 0 $1 $2

(149) 65 = 0 :66 = 0 ,57 = 91 968 = 92

85 36 Z1 z?

0 0 0

59 = U1 ,610 = U2 ,511 = U3

’01 v2 ‘03

is a basis of hemp.

Since dimk(J(B)) = 4, {33, 34,111, . . . ,u3} is linearly dependent. Thus, there exist

d1,d2,c,- E k,i = 1,2, 3, not all zero such that d1s3 + d234 + Zilciu, = 0. We

0

may assume c3 # 0. Since d163 + d264 + 0169 + c2610 - 611 = ( 0 ) for some

v

d,,c.- E 12,2 = 1,2,2) 6 J(B) and {63,64,69,610, 611} is linearly independent, 'U 74 0. If

'U = 2135+t286 for some t1, 22 E k, then d163+d264+6169+02610—611—t165 —t265 = 0.

O

This is impossible. Thus, 12 E 13.95 + kss. Therefore, ( O ) E kergo\k65 + 1966. This

12
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0

implies ( 0 ) ,65, 66 E Ann3(oz3). This is acontradiction since dimk(AnnB(ag)) = 2.

v

Subcase 5: Suppose dimk(Ann3(al)) = 3 and dimk(Ann3(a,-)) = 1 for i = 2, 3

Let Ann3(al) = ksl+ks2+ks3,AnnB(a2) = 11:34, and Ann3(a3) = kss, s,- E J(B),i =

l 31 32 83 0 0

1,2,3,4,5,. Then, 0 , 0 , O , s4 , 0 ,E kercp. Let

0 0 0 0 35

$1 $2 $3

(150) 55 = ,55 = 91 ’57 = 92 :68 = 93

85 21 Z2 Z3

be a basis of kercp. Here, z,,y,-, z,- E J(B). Since dimk(J(B)) = 4, {S1, 32,x1,$2,$3,

24,35,236} is linearly dependent. Thus, there exist d1,d2,c,- E k,i = 1,...,6, not

all zero such that dlsl + (1282 + Z?=1c,-$,~ = 0. If c,- = O for all i = 1,. . . ,6, then

d181+d282+d383 = 0. This implies d1 = d2 = 42;; = 0. This is impossible. Thus,c,~ aé 0

for some i. We can assume c6 91$ 0. Hence, 2:6 E L(S1,S2,$1, . . . ,2:5). We can repeat

this argument four times and assume $2,x3,z4,:r5,a:6 E L(sl, 32, 33,11). Therefore,

2:2 = dlsl + d232 + d333, + can for some d,,c E k,i = 1, 2, 3. Since {61,62,63,66, 67} is

0

linearly independent, d161 + c1262 + d363 + C65 — 67 = ( ul ) 91$ 0. Since {61, . . . ,67}

U1
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0

is linearly independent, ( ul ) ¢ [664 + I065. Thus,

91

31 32 S3 0

61= 0 ,62= O ,63= 0 ,64= S4

0 0 0 0

0 2:1 0 2:3

(151) 65 = 0 ,66 = 311 ,67 = 221 ,63 = y3

s5 21 U1 23

$4 $5 $6

59 = 94 1510 = 95 ,511 = 96

Z4 Z5 26

_ is a basis of kergo. We can repeat this argument four times and assume

31 32 33 0

61: 0 ,62= 0 ,63= 0 ,64= S4

0 O 0 0

0 $1 0 0

(152) 55 = 0 :66 = 91 157 = U1 ~ ’68 = U2

35 zl v1 ‘02

O 0 O

59 = Us 1510 = U4 1511 = U5

v3 v4 Us

is a basis of kergo.

Since dimk(J(B)) = 4, {s4,u1,...,u5} is linearly dependent. Thus, there exist

d1,c,- E k,i = 1,. . .,5, not all zero such that d134 + 2215:1632,- = 0. We may assume

0

c5 79 0. Since c1164 + C167 + c268 + c369 + c4610 — 611 = ( 0 ) for some d1,c,- e k,i =

v

1, 2, 3, 4, v E J(B) and {64, 67, 68, 69,610, 611} is linearly independent, v 72 0. If v = tss

for some t E k, then d164 +6167+C263 +6369+C4610 — 611- t65 = 0. This is impossible.

0 0

Thus, v ¢ 1535. Therefore, ( O ) E kercp\k65. This implies ( 0 ) ,65 E Ann3(a3).

v v
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This is a contradiction since dimk(Ann3(a3)) = 1.

Subcase 6: Suppose dimk(AnnB(a1)) = 3,dimk(AnnB(a2)) = 2, and

dimk(AnnB(a3)) = 1. Let Ann3(a1) = ksl + 1632 + 1633, Ann3(a2) = 1634 + kss, and

31 32 S3 0 0 0

Ann3(a3) = 1666,55,- E J(B). Then, 0 , O , 0 , s4 , 35 , 0 E

0 0 0 O O 36

kercp. Let

0 0 $1 $2

(153) 55 = 35 :66 = 0 167 = 91 168 = 92

0 85 Z1 22

$3 $4 $5

69 = 93 1 610 = 5’4 1 611 = y5

Z3 Z4 25

be a basis of kergo. Here, x,,y,-,z,- E J(B). Since dimk(J(B)) = 4, {31,82, 33,351,32,

$3,231,235} is linearly dependent. Thus, there exist d1,d2,d3,c, E k,i = 1,. . . ,5, not

all zero such that dlsl +d2S2 +d333 +Zf=1ciazi = 0. If e,- = 0 for all i = 1, . . . , 5, then

dlsl +d232+d333 = O. This implies d1 = d2 = d3 = O. This is impossible. Thus,c,- 79 O

sor some i. We can assume as 51$ 0. Hence, 135 E L(sl, s2, 33, 2:1, . . . , 3:4). We can repeat

this argument three times and assume $2,$3,:c4,$5 E L(sl,32,33,$1). Therefore,

1:2 = dlsl + d232 + d333 + can for some d,,é E k,i = 1, 2, 3. Since {61,62,63, 67,68} is

O

linearly independent, (1161 + d262 + d363 + C67 — 68 = ( 111.) # 0. Since {61, . . . , 68}

U1
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O

is linearly independent, ( ul ) ¢ [:64 + 1665 + 1666. Thus,

111

31 32 33 0

61: 0 ,62= O ,63: 0 ,64= S4

0 0 O 0

0 0 $1 0

(154) 65 = 35 , 63 = 0 ,67 = y1 ,63 = 221

0 83 21 ”1

$3 $4 $5

59 = 93 1510 = 94 , 511 = 95

Z3 Z4 Z5

is a basis of kercp. We can repeat this argument three times and assume

31 32 33 C)

61: 0 ,62= 0 ,63: 0 ,64= S4

0 O O 0

0 0 $1 0

(155) 65 = 35 166 = 0 167 = yl 1 68 = U1

0 83 Z1 ‘01

O O 0

59 = U2 1510 = Us 1511 = U4

v2 '03 U4

is a basis of kercp.

Since dimk(J(B)) = 4, {S4, 35, 141,. . . ,u.;} is linearly dependent. Thus, there exist

d1,d2,c,- E k,i = 1,...,4, not all zero such that c2184 + d235, + 23:16:12,- = 0. We

0

may assume c4 79 0. Since d164 + (1265 + c163 + c269 + 03610 — 611 = ( 0

v

) for some

d1,d2,C{ 6 [2,2 = 1,2,3,?) 6 J(B) and {64,65,63,69,610, 611} is linearly independent,

v 7é 0. If v = tss for some t E k, then d164 + d265 + c163 + c269 + c3610 - 611 — t65 = O.

0

2)

This is impossible. Thus, v ¢ kss. Therefore, ( 0 ) E ker<p\k66. This implies
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0

( 0 ) , 66 E Ann3(a3). This is a contradiction since dimk(Ann3(ag)) = 1.

v

Subcase 7: Suppose dimk(AnnB(a1)) = 3, dimk(Ann3(a,-)) = 2 for i = 2, 3.

Let Ann3(al) = ksl + kS2 + k33,Ann3(a2) = 1934 + ks5, and Ann3(ag) = 1686 +

31 S2 33 0 0 O 0

ks7,s,- E J(B). Then, 0 , 0 , O , s4 , 35 , 0 , 0 E

C) C) C) C) C) 86 87

kercp. Let

0 0 $1

(156) 65:=: 35 166:=: C) 167:= 168:=: yl

C) 86 S7 21

be a basis of kercp. Here, 2333),, 2,- E J(B). Since dimk(J(B)) = 4, {31, S2, S3,$1,$2,

$3,234} is linearly dependent. Thus, there exist d1,d2,d3,c,- E k,i = 1,. . . ,4, not all.

zero such that dlsl + d282 + d333, + 23:1 6,25,- = 0. If e,- = O for all i = 1,. . . ,4, then

dlsl+d232+d333 = O. This implies d1 = d2 = d3 = O. This is impossible. Thus,c,- 75 0

for some i. We can assume c4 aé 0. Hence, 1:4 E L(sl,32,s3,2:1,z2,2:3). We can

repeat this argument two times and assume 32,33,224 E L(sl, $2, 83,2:1). Therefore,

2:2 = dlsl + 62282 + (1333 + cal for some d,,c E k,i = 1,2,3. Since {61,62,63, 63, 69} is

0

linearly independent, d161 + d262 + d363 + C63 — 69 = ( ul ) 51$ 0. Since {61, . . . ,69}

91
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0

is linearly independent, ( ul ) é k6,; + [:65 + [:66 + 1667. Thus,

U1

31 52 53 0

61: 0 ,62= 0 ,63: 0 ,64= S4

0 0 0 0

C) C) (9 1E1

(157) 65 = 35 ,63 = 0 ,67 = 0 ,63 = y1

0 85 S7 21

0 $3 $4

59 = U1 1510 = 93 1511 = 94

v1 23 24

is a basis of kergo. We can repeat this argument two times and assume

31 32 S3 0

61: 0 ,62= 0 ,63: 0 ,64= S4

0 0 O 0

0 0 0 $1

(158) - 65 = 35 ,63 = 0 ,67 = 0 ,63 = 12/1

0 86 S7 21

0 0 0

59 = U1 1 510 = U2 1 511 = U3

v1 02 U3

is a basis of hemp.

Since dimk(J(B)) = 4, {34, 35,211, 222, 213} is linearly dependent. Thus, there exist

d1,d2,c,- E k,i = 1,2, 3, not all zero such that d1s4 + dgss + Ella-u,- = 0. We

0

may assume c3 75 0. Since d164 + d265 + C169 + 02610 - 611 = ( 0 ) for some

v

d,», c,- E k,i = 1, 2,v E J(B) and {64,65,69,610,611} is linearly independent, v 75 0. If

'U = t1Ss+t2S7 for some 21, t2 6 k, then (L164 +d265+C169+C261o—611 —tl66 —t267 = 0.

0

.This is impossible. Thus, v é kss + ks7. Therefore, ( 0 ) E ker<p\k66 + 1667. This

v

 



 

79

0

implies ( 0 ) , 65, 67 E Anng(a3). This is a contradiction since dimk(Ann5(a3)) = 2.

v

Subcase 8: Suppose dimk(AnnB(a,-)) = 3 for i = 1, 2 and dimk(AnnB(a3)) = 1

. Let Ann3(al) = ks} + 1662 + ks3,Ann3(ag) = 168.1 + kss + kss, and Ann3(ag) =

31 82 53 0 0 0 O

ks7,s,- E J(B) Then, 0 , 0 , 0 , s4 , 35 , 36 , 0 E

0 0 0 0 0 0 s7

kergo. Let

— — o

0

0 0 0 $1

(159) 55 = 85 166 = 86 157 = 0 158 = 91

0 0 S7 21

be a basis of kercp. Here, $1,311, z,- E J(B),i = 1, 2, 3, 4. Since dimk(J(B)) =

4, {51, s2, 33, 2:1, $2,233,221} is linearly dependent. Thus, there exist d1, d2, (13,6, E k,i =

1,... ,4, not all zero such that dlsl + dgsg + d333, + 23:1 qr,- = 0. If c,- = 0 for all i =

1, . . . , 4, then d181+d232+d3s3 = O. This implies d1 = d2 = d3 = 0. This is impossible.

Thus,c,- 75 O for some i. We can assume c4 75 0. Hence, :54 E L(sl, 32, 33, 2:1, 2:2, 1:3). We

can repeat this argument two times and assume 2:2, 2:3, 2:4 E L(sl, 32, .93, 2:1). There-

fore, $2 = dlsl +d252+d333+c231 for some d,, c E k,i = 1, 2, 3. Since {61, 62, 63, 68, 69}

0

is linearly independent, c1161 +d262 +d363 +c68 — 69 = ( ul ) 91$ 0. Since {61, . . . , 69}

’01
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O

is linearly independent, ( u; ) ¢ 166.; + 1665 + 11:66 + 1667. Thus,

U1

31 32 S3 0

61: 0 ,62= 0 ,63: 0 ,64= S4

' O 0 O 0

. 0 0 0 $1

(160) 65 = 85 156 = 36 157 = 0 158 = 91

0 0 S7 21

0 $3 $4

59 = U1 1510 = 93 1 511 = 94

’01 23 24

is a basis of kercp. We can repeat this argument two times and assume

S1 S2 S3 0

61: 0 ,62= 0 ,63: 0 ,64'—'3 S4

0 0 0 0

0 0 0 $1

(161) 55 = 85 156 = 86 167 = 0 158 = 91

0 0 37 ' z1

0 0 O

59 = U1 1510 = U2 1511 = U3

'U1 ’U2 ’U3

is a basis of kergp.

 

Since dimk(J(B)) = 4, {s4,ss,ss,u1,u2,u3} is linearly dependent. Thus, there

exist d,-, c,- E k,i = 1, 2, 3, not all zero such that (1164 +d2S5 +d386 +2:le em,- = 0. We

0

may assume C3 74 0. Since (1164 + (1265 + (1365 + C169 + C2610 — 611 = ( 0

’U

) for some

di,c1,02 E k,i = 1,2,3,v E J(B) and {64,65,65,69,610,611} is linearly independent,

’0 7£ 0.1f’U = 257 for some t E k, then (1164 +d265 + 61366 + 0169 + C2610 - 611 — L67 = 0.

O

This is impossible. Thus, v ¢ 153—]. Therefore, ( O ) E kercp\k67. This implies

’U
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0

( O ) , 67 E Ann5(a3). This is a contradiction since dimk(Ann3(a3)) = 1.

v

Subcase 9: Suppose dimk(Ann3(a,)) = 3 for i = 1, 2 and dimk(Ann3(a3)) = 2.

Let Ann3(a1) = 1:31 + ksz + k33, Ann3(a2) = ks4 + ks5 + less, and Ann3(ag) =

31 S2 33 0 0 0

k37+k33,s,-EJ(B).Then,(0),(0),(0),(s4),(s5), 35),

0 O O 0 O 0

O 0

(0),(0)Ekercp.Let

S7 33

0 O 0

(162) 65=(S5),65=(83),67=( ),63=(O)

0 0 s7 83

be a basis of kercp. Here, 23,,y,, z,- E J(B),i = 1, 2, 3. Since dimk(J(B)) = 4, {31, $2, 33,

$1,232,233} is linearly dependent. Thus, there exist due, E k,i = 1,2,3, not all

zero such that dlsl + d232 + d333 + 2:101:31" = 0. If c,- = O for all i = 1,...,4,

then 4131 + dgsg + d333, = O. This implies d1 = d2 = d3 = O. This is impossible.

Thus,c,- 75 O for some i. We can assume c3 79 0. Hence, 233 E L(sl,32,s3,:z:1,$2).

We can repeat this argument and assume $2,233 E L(sl, S2, s3,$1). Therefore, 2:2 =

d181+d282+d383+6$1 for some d,,c E k,i = 1, 2, 3. Since {61,452, 63, 69, 610} is linearly

0

independent, d161+d262+d363+cc59 —610 = ( v.1 ) ¢ 0. Since {61, . . . , 69} is linearly

U1
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0

independent, ( 'ul ) E k64 + 10%, + k66 + [£67 + [668. Thus,

’01

0 0 0

(163) 65=(S5),66=(86),67=( ),63=(0)

0 0 i 87 83

2:1 0 2:3

69=(y1 ),610=(u1),611=(y3)}

Z1 ’01 23

is a basis of kercp. We can repeat this argument and assume

0 0

(164) 65 = 35 .66 = 36 ,67 =

0 0 S7

is a basis of ke'rcp.

Since dimk(J(B)) = 4, {S4, 35, 35,u1,u2} is linearly dependent. Thus, there exist

(1,, c1, c2 E k,i = 1, 2, 3, not all zero such that d134 + d235, + d335 + clul + c2212 = 0.

v

0

We may assume 02 74 0. Since d164 + d265 + (1366 + c610 — 611 = ( 0 ) for some

(1,, c E k,i = 1, 2, 3,1) E J(B) and {64,65, 66, 610, 611} is linearly independent, 1) # 0. If

’U = t187 + t283 for some t1, t2 6 k, then 61164 +d265 + d366 + 6610 - 611 — t167 — t263 = 0.
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O

This is impossible. Thus, 22 ¢ [987 + kss. Therefore, ( 0 ) E kergo\k67 + 1:68. This

22

0

implies ( 0 ) ,67, 63 E Ann3(a3). This is acontradiction since dimk(Ann3(a3)) = 2.

v
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