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ABSTRACT

HOW DO BEES COMPUTE THE POSITION OF THE SUN?

ALTERNATIVE REPRESENTATIONS

By

Jeffrey A. Dickinson

To use the sun as a compass, animals must compensate for its apparent movement. This is

complicated by the fact that the rate of change ofthe horizontal component ofthe sun's

position, or azimuth, which provides the directional information, varies over the course of

the day. Additionally, the daily pattern of change varies with season and latitude. It has

long been known that bees learn the local pattern ofmovement, and that they can estimate

the position of the sun at times of day when they have never seen it. However, the

mechanism has remained a mystery. When bees are restricted to fly only in the afiemoon,

thereby limiting the information available for learning, they nonetheless have a relatively

accurate estimate the position of the sun in the morning, indicating a position for the

azimuth in the morning about 180° from the position experienced in the afternoon. These

results contradicted the predictions of all previous computational models of sun-compass

learning, which all assumed that the insects' neural computations rely on linear estimates of

azimuthal rate. However, these results suggest that they include aspects ofthe

nonlinearity ofthe natural pattern in their computations. In this dissertation, I present two

new methods of modeling the sun-compass-learning process. Both classes of models

incorporate the nonlinear aspects of the problem; one class of models is symbolic (it



maintains a symbolic representation of azimuth position and time) while the other is

nonsymbolic (it does not maintain a symbolic representation of azimuth position and time).

The nonsymbolic models are connectionist neural networks. The symbolic model attempts

to take into account the varying rate of change ofthe azimuth over the course ofthe day.

It is based on the geometry of an ellipse. In the nonsymbolic connectionist model, the

connection weights of the network are assumed to be preconfigured in such a way that a

bee is able to quickly recognize or quickly learn the course of the sun. Neural processes

that roughly correspond to either of these broad classes of models could account for the

bees’ behavior.
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between the patterns. For comparison the data from Figure 5.6 are

included (open circles).
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Diagram of simple connectionist network used for the interpolation

network. 1: input unit. H: hidden unit. 0: output unit. B: bias unit. w:

modifiable connection weights.
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Response of interpolation network to three different training regimes for

learning the same specific azimuth function. The azimuth fimction

corresponds to 25° N on April 22 (solar declination 12°). A. Response of

a network over 24 hours at half-hour intervals for a training set of hourly

azimuth angles between sunrise (~06200) and sunset (~18:00) (local solar

time). B. 24 hour response of a network trained only on hourly positions

in the late aftemoon and evening (15:00 to 18:00). C. Response of a

network trained on afiemoon positions in B but with additional constraints

(Azimuthnm = Azimuth”,00 - 90°; Azimuthmoo = Azimuth”,00 - 180°).



Chapter 1

OVERVIEW

The natural world is full of regularities. Life itself depends on the regularities of the

world, and has evolved to take advantage ofthem. Many ofthe regularities are

incorporated into the genetic code. Others are learned and remembered by animals. The

distribution of resources in the environment is one factor that has led organisms to adopt

both ofthese strategies. In the short run resources may be distributed unequally through

the environment, and this makes certain locations more important than others for the

survival ofthe animal. The environment also varies over generations as conditions

fluctuate and populations migrate into new areas. This requires an animal to learn the

local conditions or evolve to take advantage ofthe new conditions. It may be

advantageous to move between regular locations in the environment. This in turn may

lead to the evolution of orientation mechanisms and memory for places.

Learning has evolved to help maximize the performance of an animal in a world of

unpredictable predictabilities. These are events that occur with regularity and can be

predicted but are not regular enough to engender a specific response. Events of this type

cannot be genetically hard-wired into the behavior of an animal because the exact nature



ofthe events varies, yet there is a regularity that allows predictions to be made based on

previous experience.

The brain is the organ of learning. Recent theories in psychology have suggested that

there is a close correspondence between the regularities ofthe world and those ofthe

brain (Shepard, 1987). The brain is an immensely complicated computational system

(Churchland & Sejnowski, 1989) that evolved over millennia in the context offluctuating

yet regular environments. One approach to understanding the function ofthe brain

involves understanding the environmental pressures that lead to its evolution. A

fundamental view ofthe brain is that it consists of a number ofmodules with specific

computational characteristics (Gallistel, 1990). These may have evolved as solutions to

very specific problems presented by the environment. In order to understand the

fiinctioning ofthe brain as a whole it is important to understand the firnctioning of its

parts. The properties ofthe brain that seem unified in experience may in fact be a

haphazard conglomeration ofmodules that evolved to solve very specific yet different

environmental problems. The human brain is particularly complex and it is quite difiicult

to decipher individual computational modules with the exception ofthe those involved in

the most basic levels of sensory processing. Therefore, to understand the fimctioning of

individual specialized modules it is fruitful to look at animals that have much smaller brains

and have very specific environmental problems to solve.



Gallistel (1990) has focused considerable attention on such animals as a means of

understanding the organization of learning and ofthe brain. Gallistel has championed a

computational-representational approach to animal learning. In this framework important

elements of the animal's external world are represented in the animal's internal world.

Gallistel maintains that these representations are firnctionally isomorphic with the entities

in the real world. He uses isomorphism in the formal mathematical sense, in which one set

of entities can be mapped onto another, such as the relationship between geometry and

algebra (Gallistel, 1990). Thus, for Gallistel, there is a one-to-one relationship maintained

between the parameters ofthe natural world and the parameters ofthe representations. In

Gallistel's view, computations can be performed on the representations to yield new forms

ofthe representations needed to guide behavior. He calls these derived representations.

For example, a representation of quantity can be combined with a representation oftime to

yield a new representation of rate. This general scheme is diagrammed in Figure 1. For

comparison, the computational-representational approach contrasts with the traditional

behaviorist approach (Watson, 1925), which posits that only behavior can be studied

experimentally and not the internal structures that determine behavior. Although this

approach is essentially dead, it has left an indelible mark on American psychology and the

study of learning (e.g. Macphail, 1987). By contrast, the computational-representational

approach maintains that behavioral experiments can be used to distinguish between

alternative internal processing mechanisms. Thus it basically opens the black box of the

behaviorist approach. In addition, black boxes remain within the former boundaries of the

stimulus-response box. These new boxes contain specific neural computations. The goal



of research in this paradigm is to decipher the nature of the representations and the

computations involved in specific information-processing problems. A significant part of

Gallistel's motivation is to guide neurophysiological research to the right questions based

on the contents of computational boxes. That is, what types of neural processes are

necessary to perform these specific computations.

Gallistel (1990) highlights navigation as a subject to explore the computational solutions

to specific environmental problems. The ability to remember locations in the environment

and to navigate between known locations is fiindamental for the competitive ability of

many animals. This ability is ubiquitous in the animal kingdom. To navigate accurately

the animal must be able to solve certain computational problems. Understanding the types

of problems that need to be solved and the ways that animals solve them sheds

considerable light on cognitive processes and the neural mechanisms that underlie them.

Navigation is one realm of learning that may have very specific information-processing

requirements. By understanding the specific requirements and the particular solutions to

navigational problems, we may gain insight into the range of information-processing

capabilities that animals have. Additionally, we can see how those capabilities may be

shaped by evolution to solve very specific problems.
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In this dissertation, I will show how an environmental regularity has been encoded in the

brain of an animal to facilitate the rapid learning of a pattern that forms a critical reference

point for effective navigation. The environmental regularity I consider is the sun and the

animal is Apis mellifera, the common honey bee.

For aeons the earth has alternatively been shrouded in darkness and bathed in the light of

the sun. During the day, the sun appears to make a circuit across the sky. This forms a

regular pattern, yet the exact pattern depends on the vantage point on the earth and the

time of the season.

The sun is a dominant reference point for orientation in many species (reviewed in Able,

1980). As a compass mechanism it is pervasive in the animal kingdom (see Table 2.1).

Yet using the sun as a compass poses very specific information-processing problems that

must be solved. Since the sun appears to move over the course of a day, an animal that

uses it as a compass reference point must account for that movement. This is a significant

problem that has attracted the attention of researchers for most ofthis century, but it has

yet to be explained.

The problem emerges because the directional reference ofthe sun compass, the azimuth,

changes at a varying rate over the course ofthe day. In addition the daily pattern of

movement varies with season and with latitude, so an animal must be able to use the



correct local pattern. A wide range of animals are able to deal with the special

requirements ofusing the sun as a compass. Throughout the dissertation, I will focus on

honey bees as a model system for understanding this problem.

In Chapter 2, I discuss the nature of the sun as a directional reference. In particular, its

apparent movement defines a complex pattern that has certain regular features but is not

completely predictable because the pattern varies with season and with latitude. I review

the distribution and use ofthe sun compass in the animal kingdom. I consider the

information that is available from the sun, and the ways in which animals use this

information.

The major portion of this dissertation is concerned with how insects learn about the course

ofthe sun for use as a sun compass. Chapter 3 describes the previous computational

models that have attempted to explain this process, and it introduces a series of

experiments that were designed to distinguish among the previous models. The results

were surprising and suggested that none ofthe previous models could account for the

behavior ofthe bees. In particular they suggested that the bees may have some sort of

innate template that is modified with experience. Specifically, their representation of the

sun's course includes aspects that they could not have observed. These include

nonlinearities in the natural pattern that were not incorporated into the previous

computational models.



In Chapters 4 and 5, I explore alternative ways of modeling the sun compass learning

problem. Chapter 4 extends the previous models to deal with the additional information

that the insects appear to possess. The previous models were of a symbolic algebraic

nature. The predictions that they produced emerged from the algebraic manipulation of

information available to the insects in their experience: the position ofthe sun at particular

times of day. The models assume that a neural process carries out the equivalent ofthe

algebraic manipulation of the experienced information about the sun. In the new model,

the symbolic nature ofthe process is retained. Information about solar position and time

are used to form estimates of sun's position at new times of day. Unlike the previous

models, there is additional information included in the process about the general pattern of

movement ofthe sun. In particular, whereas previous computational models assumed that

insects relied on linear estimates ofthe rate of change ofthe sun's azimuth, the new

symbolic model accounts for the new evidence that insects are informed ofthe non-linear

relationship between azimuth and time. This new model utilizes the geometry of an ellipse

to express the pattern ofmovement ofthe sun.

In Chapter 5, I present an alternative method of modeling the sun compass learning

problem. This is a connectionist neural network model (Feldman & Ballard, 1982). This

contrasts with all of the previous computational models that were of a symbolic nature,

including the new model presented in Chapter 4. A connectionist neural network is a

nonsymbolic model (Rumelhart & McClelland, 1986; Smolensky, 1988). In contrast with

the symbolic models, the representations in connectionist neural network models consist of





the distributed pattern of connections between neural elements. In the case ofthe sun

compass learning problem, a connectionist representation does not encode an explicit

algebraic equation describing the position ofthe sun at different times of day.

Connectionist neural networks are loosely inspired by the structure of real biological

neural networks (McCulloch & Pitts, 1943). They consist of a large number of simple

processing elements operating in parallel (Feldman & Ballard, 1982). A representation in

a connectionist neural network is distributed across the connection weights between the

neural elements (Hinton et al., 1986). This contrasts with the structure of a representation

in a symbolic model in which the representation consists of symbols manipulated by logical

operations (Feldman & Ballard, 1982). In the connectionist framework, the operations on

the neural elements are numerical and can be considered subsymbolic (Smolensky, 1988)

because they operate on a level below the traditional symbol. A symbol ofthe traditional

artificial intelligence fiamework may be distributed across hundreds of neural elements in

the connectionist framework. The elements independently perform numerical operations

on their component of the higher level symbol. Thus, the computations on the symbols

are not isomorphic to the higher level logical operations. For example, in a connectionist

model of stereopsis, there is no unit that computes depth (Boden, 1991). Rather the

computation of depth is distributed across numerous simple elements that each respond to

local inputs, computing some microfeature ofthe overall pattern. The representation of

depth emerges from the activity pattern ofthe network as a whole.
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In the symbolic representation of the sun compass learning problem, input symbols

corresponding to azimuth position and time of day are manipulated by an explicit algebraic

function to yield output symbols also corresponding to azimuth position and time of day.

Since there is no explicit algebraic function that computes outputs fi'om inputs in the

connectionist framework, the representation ofthe sun's course emerges from the activity

pattern of an entire network. It is computed from the numerous independent numerical

computations of the units in the network. This is a new way of looking at the sun

compass learning problem.

One problem with the approach advocated by Gallistel is that it focuses extensively on the

symbolic aspects of computation to the point of excluding a priori nonsymbolic solutions

to certain computational problems. Connectionist neural networks (Feldman & Ballard,

1982) may form just such a solution to some of the computational problems that Gallistel

(1990) presents. Gallistel (in press) has argued strongly that certain processes in insect

navigation cannot be implemented in a nonsymbolic (connectionist) fi'amework. He

singles out the sun compass learning problem as one such process. This issue will

comprise a central focus of this dissertation.

Yet Gallistel (1990) deserves credit for focusing attention on the information-processing

problems of navigation. This presents clear computational problems that must be solved,

even in the brains of some of the smallest animals. Connectionism has often focused on
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much larger and more intractable problems such as language (e. g. Sejnowski &

Rosenberg, 1986).

The content of Chapters 4 and 5 sets up a dichotomy between symbolic and nonsymbolic

models. Some would argue that this is a false dichotomy (see Boden, 1991). Boden

argues that the two approaches are not as different as they might seem. In fact, both can

trace their heritage to the seminal work ofMcCulloch and Pitts (1943). The differences

between the approaches may reduce to differences in focus: while the symbolic approach

focuses on what is being computed, the connectionist approach focuses on how it is being

computed. It may in fact be more fi'uitful to use Marr's (1982) framework, which divides

information-processing problems into three levels: computation, algorithm, and

implementation. The question of what is being computed lies at the first level. The

second level consists of the specific algorithm used to perform the computation. There are

potentially multiple algorithms for any given computation. Finally, there is the level ofthe

hardware implementation. Likewise, the same algorithm may be implemented on different

hardware. The traditional symbolic approach is top-down, starting with the computational

level and proceeding to the algorithmic level. In contrast, the connectionist approach is

essentially bottom-up, although it does not start with a specific neural implementation but

a generalized one. Nevertheless, it is not easy to integrate the approaches, because they

meet on uneasy ground at the level ofthe algorithm and do not flow smoothly together

(Clark, 1990). With this in mind, I will follow the distinction that has been maintained

from both sides of the issue (Smolensky, 1988; Gallistel, in press).
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In Chapter 6, I present a general discussion of the issues raised in the previous five

chapters. I will focus on comparing the assumptions and predictions of the models

presented in Chapters 4 and 5. Although this entire project was based on behavioral

experiments and modeling, it attempts to describe something about the neural

computations that are occurring in the brain of the bee. From the data presented in

Chapter 3, it is clear that insects account for the nonlinear pattern of the movement ofthe

sun's azimuth in order to use it as a compass reference. It is still unclear exactly how they

do this. Through the construction of models presented in Chapters 4 and 5, I have

explored the domains in which this behavioral problem must be solved in the brain. There

is no question that this a computational problem that an animal with a relatively small brain

can solve. There is considerable debate about the nature of representations in the brain

and the types of computational process that exist (Smolensky, 1988; Gallistel, in press).

The symbolic-nonsymbolic dichotomy is a major question in this debate. The sun compass

problem may be able to shed some light on this issue. In Chapters 4 and 5, I show that the

neural processes necessary for sun-azimuth estimation could exist in either a symbolic or a

nonsymbolic form. Although there may be an infinite number of computational models

that could approximate the behavior of the bees in sun compass learning, the modeling

effort yields testable predictions about the behavior that may be able to guide

neurophysiological research. Thus behavioral experiments combined with modeling can

be a powerful tool to help decipher the nature of neural computations on a complex

spatiotemporal representation.



Chapter 2

SUN COMPASS ORIENTATION

Compasses are mechanisms for determining direction. For most people, the most familiar

compass measures directions relative to the earth's magnetic field. The needle on the

compass points to the geomagnetic pole. Many animals have a compass sense (reviewed

in Able, 1980). The most common ofthese are magnetic and celestial. I will focus on the

latter, and I will be specifically concerned with the use ofthe sun as a celestial compass.

A compass can be used in combination with other mechanisms to determine position, but a

compass itself only provides directional information. In this dissertation, I will be

concerned solely with the determination of direction. I will not be concerned about

determinations of position or distance, thought they are essential aspects ofthe navigation

process. These are interesting problems in their own right, but they are independent from

questions about the sun compass that I will be considering. Two animals could have

entirely different representations of position or distance, including none at all, and still use

the same compass mechanism for determining direction.

13
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2.1 The Solar Reference

The sun is by far the most prominent object in the daytime sky, and it provides a usefiil

compass reference for diurnal animals. However, unlike the geomagnetic poles, the sun is

not a fixed geographic point. Rather the sun appears to move during the day because of

the rotation ofthe earth. Any animal that uses the sun as a compass must account for this

apparent movement.

The pattern of solar movement is consistent and predictable--it always rises in the eastern

part ofthe sky and sets in the western part ofthe sky--but the precise pattern of

movement varies with season and with latitude. During the northern summer, the sun rises

in the northeast and sets in the northwest, while during the northern winter, it rises in the

southeast and sets in the southwest. In the northern temperate regions, the sun always

passes to the south at local noon, while in the southern temperate regions it always passes

to the north at local noon. In the tropics at noon, it passes either north, south or directly

overhead depending on the season.

The general features of solar movement are conveyed in Figure 2.1 which shows the

pattern of solar movement for 40°, 25° and 5° north latitude at the equinox and at the

northern summer solstice. The figure represents a projection ofthe sun onto the celestial

hemisphere. The center points correspond to the zenith, which is the point directly

overhead ofthe observer. The outer circles correspond to the horizon line. The sun's

hourly position is plotted by the dark circles. The distance from the horizon line to the sun
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corresponds to the sun's elevation in the sky. The distance from the zenith point to the

sun is the zenith distance.

The figure illustrates an important element of solar movement that complicates its use a

compass. This emerges from the fact that the directional information is given by the sun's

position along the horizon. In the figure, the angle on the polar plots corresponds to

direction, which is measured clockwise fiom north (0°). This angle is the sun's azimuth.

The pattern of movement ofthe azimuth is more complex than the pattern of movement of

the sun itself. The azimuth does not change at a constant rate throughout the day. During

an hour the sun moves 15° along its are, but the distance traveled along the horizon varies

with time of day, season and latitude. Extending arcs from the zenith through the sun's

hourly position to the horizon illustrates this point (see example for 40° N at the equinox

in Figure 2.1). The angular change in the sun's hourly position around the horizon is

relatively small during the early and late parts of the day as the sun is rising and setting,

but is much larger during the middle of the day. This pattern of variation is slightly

different for different seasons and latitudes. At high latitudes the variation in the rates of

change of the azimuth is much less than it is in low latitudes.
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Figure 2.1 Pattern of solar movement for different seasons and latitudes.

The figure represents a projection of the sun onto the celestial hemisphere.

The center points correspond to the zenith, which is the point directly

overhead of the observer. The outer circles correspond to the horizon line.

The sun's hourly position is plotted by the dark circles. The distance from

the horizon line to the sun corresponds to the sun's elevation in the sky.

The distance from the zenith point to the sun is the zenith distance.

Extending an imaginary line from the zenith through the sun's position to

the horizon reveals the position of the sun's azimuth which provides the

directional information for sun compass orientation. See example for 40°

N equinox. The rate of change ofthe azimuth varies over the course ofthe

day and with season and latitude. This can be seen in the comparison of

the change in azimuth between 7:00 and 9:00 vs. 11:00 and 13:00 (drawn

for 40° N).
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Figure 2.2 Seasonal and latitudinal variation ofthe ephemeris function. A.

Ephemeris functions for 5°, 25° and 40° North latitude for the equinox. B.

Ephemeris functions for 5°, 25° and 40° North latitude for the solstice.

Solar azimuth is plotted against local sun time. The two panels show the

considerable variation in the rate of change ofthe azimuth over the course

of the day and with season and latitude.
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The variation in the rate of change of the azimuth, with respect to time of day, season and

latitude, is more easily analyzed when the azimuth angle is plotted against time as in

Figure 4.2. Figure 4.2 presents the "azimuth curves" for the same six season-latitude

combinations illustrated in Figure 4.1. In general, the graphs of azimuth position against

time take the form of S-shaped curves. The curves are steepest during the middle ofthe

day when the azimuth is changing most rapidly and flatter in the early and late portions of

the day when the sun moves more slowly along the horizon. Azimuth curves fiom tropical

regions show a more extreme variation in slope (or rate of change ofthe azimuth) between

the middle and ends of the day than curves from temperate regions. A negative slope at

lower latitudes indicates that the azimuth is moving counter-clockwise around the horizon

and passing to the north ofthe observer at noon rather than to the south as is typical of

northern latitudes.

The shapes of the azimuth curves reveal that there are considerable nonlinearities in the

rate of change of the azimuth. To obtain directional information from the sun, an animal

must be able to account for the nonlinear relationship between the sun's azimuth and time

of day. Furthermore, since the pattern of change varies with season and latitude, the

animal must be able to utilize the appropriate local pattern of change. It has long been

known that animals are able to do this. Such an animal is said to have a time-compensated

sun compass. There are several possible mechanisms that could accomplish time

compensation.
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The mechanisms can be grouped in two main categories. First, information about the

position of the sun's azimuth at a particular time of day could be extracted from a look-up

table (Churchland & Sejnowski, 1989) (analogous to an ephemeris table, e.g. Whiting,

1669). Such a look-up table could conceivably be genetically hard-wired. Second, the

azimuth could be computed fi'om the relevant information, which could include time of

day, season and latitude. This second class of solutions corresponds to Gallistel's (1990)

computational-representational framework. Both these methods could be used to obtain

either the actual azimuth angle for a specific time of day or they could be used to obtain

approximate or estimated azimuth angles for specific times of day.

There are three further subdivisions based on the amount ofinformation about the

movement patterns of the sun that is encoded in the animal's genes. First, the animal could

have a complete innate ephemeris firnction. This would be a universal emphemeris that

would be good any time of day and season, anywhere on the planet. To account for

seasonal and geographic variability, the animal would need to have some way ofusing the

appropriate innate ephemeris function. This is true regardless ofwhether the animal is

using a look-up table or computing the function. In order to access the true ephemeris

fiinction, the animal would have to assess time of day, time ofyear (solar declination, the

angle of latitude at which the sun is directly overhead at noon) and latitude. The true solar

ephemeris is a function of these three variables. To compute the position of the azimuth

with these parameters, the following equations are used (Brines, 1978):
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cos(ZS) = sin(D)sin(L) + cos(D)cos(L)cos(T) (2_ 1)

sin (D) — cos(ZS)sin(L)

sin(ZS)cos (L)

 sin(A) = (2-2)

where A is azimuth, ZS is solar zenith distance, D is solar declination, L is the latitude of

the observer, and T is time degrees from local noon. The solar zenith distance (ZS) can

be determined from equation 2.1 and substituted into equation 2.2 to obtain azimuth.

The main problem for an animal using these equations to compute the azimuth angle is in

obtaining information about the latitude and the declination of the sun. Both ofthese

variables are confounded in the zenith distance of the sun (equation 2.1), so it would be

difficult to assess them independently.

Second, the animal could have an innately determined ephemeris that is not universal, but

is adapted to the local geographic range of the animal. This eliminates the need to assess

latitude. This function could vary with season, or, if the animal is particularly short-lived,

and lives at a certain time ofyear, a single genetically determined ephemeris function may

be suitable for the animal's entire life. Again, this could be implemented with either a

look-up table or an explicit fiinction. In this case, some ofthe variables in equations 2.1

and 2.2 would be constants.
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Third, the animal could learn the local pattern of movement with respect to local

geographic features. This could be done by filling a look-up table with time-linked

azimuth positions. This would be a form of associative learning. Alternatively, the animal

could use observable quantities such as time of day and position ofthe azimuth to

calculate the position of the azimuth. Such a calculation would not depend on the latitude

or declination of the sun. This calculation could be an approximation ofthe true azimuth

function. If the animal is long-lived and/or travels long distances latitudinally the animal

would have to update its representation ofthe sun's course.

Many experimental studies have implicated this third solution to the problem of accurately

compensating for the changing azimuth over the course of the day (see below for details).

Different animals may use different solutions to the problem, but the main emphasis of this

dissertation will be on the animals that rely on the third alternative. Ofthose animals, I

will be primarily concerned with how insects (particularly honey bees) solve this problem.

2.2 Discovery of the Sun Compass

Suggested as early as 1911 by Santschi (Santschi, 1911, discussed by Wehner, 1990), the

use of a time-compensated sun compass for orientation was first demonstrated for both

birds (Kramer, 1950) and bees (Frisch, 1950) in 1950. The sun compass has subsequently

been demonstrated in a wide range ofvertebrates and invertebrates.
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In order to conclude that an animal is using a sun compass, its effect on the homing ability

of an animal must be dissociated from other possible compass mechanisms such as a

magnetic compass or other cues such as landmarks. If an animal orients accurately on a

sunny day, but is disoriented on a completely overcast day, that is strong evidence that the

sun is necessary for orientation. Note that even if the sun is obscured by clouds, but blue

sky is visible, a sun compass may be used, since the position of the sun can be determined

from the polarization patterns of skylight. Many animals effectively use these cues for

orientation (Adler & Phillips, 1985; Fent, 1986; Rossel & Wehner, 1986; Phillips &

Moore, 1992).

Evidence that an animal orients correctly on a completely overcast day does not rule out

the possibility that it can use the sun as a compass on a sunny day. Most orientation

mechanisms have multiple redundant systems (Able, 1980). The animal may simply use an

alternative compass mechanism or landmarks if the sky is cloudy. To distinguish between

the possible roles of different orientation cues, the cues need to be put in opposition.

Many animals will favor the sun compass when it is in opposition with other cues. One

method of accomplishing this is to clockshift the animal (Hoffmann, 1960), by putting it

on a light-dark cycle that is shifted in phase relative to the actual light-dark cycle. In these

circumstances an animal will orient in a predictable wrong direction, since the actual

position of the sun is different from the predicted position based on the animal's internal

sense of time. Another method of dissociating the direction indicated by the sun compass

from alternative compass mechanisms is to transport the study animal to a new longitude
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where the animal's internal clock is out of phase with the local time (Papi, 1955; Renner,

1959). Again, if the animal is relying on the sun compass it will orient in a predictable

wrong direction. Longitudinal translocations also prove that the temporal information is

endogenous and independent fiom the position of the sun itself.

2.3 Distribution in the Animal Kingdom

A wide range of animals can use the sun for orientation. Table 2.1 provides a

compendium ofthe animals in which a sun compass has been strongly implicated. Time

compensation is suggested (though not definitively proved) in all ofthe cases in the table.

Historical precedence has been implemented throughout the table. In many cases, later

studies provided additional (sometimes critical) evidence, but they have not been included.

The list of references for each species is not exhaustive.

Much of the work on the sun compass in animals has focused on birds and arthropods.

Nevertheless, the assortment ofwork in other groups reveals the widespread use ofthe

sun compass. One is present for example in nearly all groups of extant vertebrates.

Intriguingly, our own group, the mammals, may be the least likely to use this mechanism.

This probably stems from the nocturnal activity patterns of most mammals (Bovet, 1992).

But there are nevertheless several examples of sun compass orientation in mammals.

Among the invertebrates, numerous arthropods have been shown to use the sun as a

compass. Other groups have been investigated much less, but the sun compass has been
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implicated in mollusks (Warburton, 1973; Hamilton & Russel, 1982) and even in a

cnidarian (Scyphozoa) (Hamner et al., 1994). This latter fact is particularly intriguing

since jellyfish do not have a centralized nervous system.

The variety of animals that exhibit sun compass orientation is impressive, and one could

potentially draw some conclusions regarding the evolution of the trait. But when

considering the evolutionary implications of this list, it is important to distinguish between

species that have not been tested and those that have been tested, and no evidence of

sun-compass orientation was found. It is much harder to isolate examples ofthis latter

type from those in which the sun compass has been verified. It is less clear which groups

specifically do not have the ability to use the sun as a navigational compass. This problem

could stem in part from non-publication of negative results, or even more significantly,

from the lack of study of groups assumed not to have complex orientation mechanisms.

The context in which definitive negative results are likely to be published are in

comparative studies among groups of species, some ofwhich use the sun as a compass

and some ofwhich do not. Unfortunately, there are very few comparative studies ofthis

type. In the cases where this has been studied, some interesting patterns ofthe presence

and absence of a sun compass emerge. This is particularly true in the Coleoptera, where

some families have sun-compass orientation (e.g. Frantsevish, 1977) and others do not

(Scapini et al., 1993). A similar pattern appears to exist within the isopod genus Tylos

(Hamner et al., 1968; Ugolini et al., 1995). Further investigation of cases of this type

would be of considerable interest in an evolutionary analysis ofthe sun compass.
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Table 2.1 Distribution of the Sun Compass in the Animal Kingdom

 

Phylum Class Genus species Reference

(Order: Family)
 

Cnidaria

Scyphozoa

Aurelia aurita Hamner et al., 1994

(Semaeostomae)

(jellyfish)
 

Mollusca

Gastropoda

Nerita plicata Warburton, 1973

(Prosobranchia:

Neritidae)

(snail)

Aplysia brasiliana Hamilton & Russel, 1982

(Opisthobranchia:

Anaspidea)

(sea hare)
 

Arthropoda

Chelicerata

Arctosa perita Papi, 1955a

(Araneae: Lycosidae)

(wolf spider)

Lycosafluviatilis Papi & Syrjamaki, 1963

(Araneae: Lycosidae)

(wolf spider)
 

(Crustacea)

Malacostraca

Amphipoda

Talitrus saltator Pardi & Papi, 1952

(Amphipoda:

Talitridae)

(sandhopper)

Talorchestia spp. Pardi & Grassi, 195 5

(Amphipoda:

Talitridae)

(sandhopper)
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Table 2.1 (cont'd)

 

Orchestia

mediterranea

(Amphipoda:

Talitridae)

(sandhopper)

Orchestoidea spp.

(Amphipoda:

Talitridae)

(sandhopper)

Pardi, 1960

cited in Herrnkind, 1972

 

Decapoda

Goniopsis cruentata

(Decapoda:

Grapsidae)

(mangrove crab)

Ocypode

ceratophthalma

(Decapoda:

Ocypodidae)

(ghost crab)

Uca tangeri

(Decapoda:

Ocypodidae)

(fiddler crab)

Pagurus longicarpus

(Decapoda:

Paguridae)

(hermit crab)

Callinectes sapidus

(Decapoda:

Portunidae)

(blue crab)

Palaemonetes

antennarius

(Decapoda:

Palaemonidae)

(freshwater shrimp)

Schone,1963

Daumer et al., 1963

Altevogt & von Hagen,

1964

Rebach, 1978

Nishimoto & Hermkind,

l 982

Ugolini et al., 1989
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Table 2.1 (cont'd)

 

Isopoda

Tylos latreilli Pardi, 1954

(Isopoda: Tylidae)

(littoral isopod)

Idotea baltica Ugolini & Messana, 1988

(Isopoda: Idoteidae)

(marine isopod)
 

Insecta

Collembola

Hypogastrura socialis Hagvar, 1992

(Collembola:

Hypogastruridae)

(springtail)
 

Orthoptera

Nemobius sylvestris Beugnon, 1983

(Orthoptera: Gryllidae)

(wood cricket)

Pteronemobius Beugnon, 1987

lineolatus

(Orthoptera: Gryllidae)

(swimming cricket)

Gryllotalpa Ugolini & Felicioni, 1991

gryllotalpa

(Orthoptera:

Gryllotalpidae)

(mole cricket)
 

Derrnaptera

Labidura riparia Ugolini & Chiussi, 1996

(Dermaptera:

Labiduridae)

(earwig)
 

Hemiptera

Velia currens Birukow, 1956

(Hemiptera: Veliidae) (but of Heran (1962) and

(waterstrider) Schmidt-Koenig (1975))
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Table 2.1 (cont'd)

 

Coleoptera

Scarites terricola

(Coleoptera:

Carabidae)

(ground beetle)

Omophron Iimbatum

(Coleoptera:

Carabidae)

(ground beetle)

Dyschirus numidicus

(Coleoptera:

Carabidae)

(ground beetle)

Phaleria provincialis

(Coleoptera:

Tenebrionidae)

(darkling beetle)

Paederus

rubrothoracicus

(Coleoptera:

Staphylinidae)

(rove beetle)

Stenus bipunctatus

(Coleoptera:

Staphylinidae)

(rove beetle)

Lethrus spp.

(Coleoptera:

Scarabaeidae)

Eurynebria

complanata

(Coleoptera:

Carabidae)

(ground beetle)

Papi, 1955b

Papi, 1955b

Papi, 1955b

Pardi, 1956

Ercolini & Badino, 1961

Ercolini & Scapini, 1976

Frantsevish et al., 1977

Colombini et al., 1994
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Table 2.1 (cont'd)

 

Hymenoptera

Apis mellifera

(Hymenoptera:

Apidae)

(honey bee)

Formica rufa

(Hymenoptera:

Formicidae)

(wood ant)

Lasius niger

(Hymenoptera:

Formicidae)

Cataglyphis spp.

(Hymenoptera:

Formicidae)

(desert ant)

Frisch, 1950

Jander, 1957

Jander, 1957

Wehner, 1972

 

Diptera

Diamesa spp.

(Diptera:

Chironomidae)

(Wingless glacier

nudge)

Kohshima, 1985

 

Chordata

(Pisces)

Osteichthyes

Lepomis spp.

(Perciforrnes:

Centrachidae)

(sunfish)

Roccus (Alorone)

chrysops

(Perciforrnes:

Centrachidae)

(white bass)

Aequidens

portalegrensis

(Perciformes:

Cichlidae)

(port-cichlid)

Hasler et al., 1958

Hasler et al., 1958

Braemer, 1959
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Table 2.1 (cont'd)

 

Cichlaurus severus

(Perciformes:

Cichlidae)

(South American

cichlid)

Uaru

amphiacanthoides

(Perciformes:

Cichlidae)

(South American

cichlid)

Scarus spp.

(Perciformes:

Scaridae)

(parrot fish)

Oncorhynchus nerka

(Salmoniforrnes:

Salrnonidae)

(sockeye salmon)

Anableps spp.

(Cyprinodontiformes:

Anablepidae)

(four-eyed fish)

Anguilla rostrata

(Anguilliforrnes:

Anguillidae)

(American eel)

Gambusia aflinis

(Cyprinodontiformes:

Poeciliidae)

(mosquito fish)

Fundulus notti

(Cyprinodontiformes:

Poeciliidae)

(starhead topminnow)

Zenarchopterus dispar

(Cyprinodontiformes:

Hemiramphidae)

(halfbeak)

Schwassmann & Hasler,

1 964

Schwassmann & Hasler,

1 964

Winn et al. 1964

Groot, 1965

Schwassmann, 1967

Miles, 1968

Goodyear & Ferguson,

1969

Goodyear, 1970

Forward, et al., 1972
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Table 2.1 (cont'd)

 

Micropterus salmoides Loyacano et al., 1977

(Perciformes:

Centrachidae)

(largemouth bass)

Cheirodon pulcher Levin et al., 1992

(Characifonnes:

Microcharacidae)

(tetra)
 

Amphibia

Acris spp. Ferguson 1963

(Anura: Hylidae)

(cricket frog)

Bufofowleri Ferguson & Landreth,

(Anura: Bufonidae) 1966

(Fowler's toad)

Pseudacris triseriata Landreth & Ferguson,

(Anura: Hylidae) 1966

(chorus fi'og)

Ascaphus truei Landreth & Ferguson,

(Anura: Ascaphidae) 1967a

(tailed frog)

Taricha granulosa Landreth & Ferguson,

(Caudata: 1967b

Salamandridae)

(rough-skinned newt)

Rana catesbeiana Ferguson et al., 1968

(Anura: Ranidae)

(bullfrog)

Ranapipiens Jordan et al., 1968

(Anura: Ranidae)

(southern leopard frog)

Bufo boreas Gorman & Ferguson,

(Anura: Bufonidae) 1970

(western toad)

Ambystoma tigrinum Taylor, 1972

(Caudata:

Ambystomatidae)

(tiger salamander)



33

 

Table 2.1 (cont'd)

 

Reptilia

Terrapene c. carolina Gould, 1957

(Testudinata:

Testudinidae)

(box turtle)

Chrysemyspicta Gould, 1959

(Testudinata:

Testudinidae)

(painted turtle)

Lacerta viridis Fisher & Birukow, 1960

(Squamata:

Lacertidae)

(emerald lizard)

Crotalus atrox Landreth, 1973

(Squamata: Viperidae)

(rattlesnake)

Natrix sipedon Newcomer et al., 1974

(water snake)

(Squamata:

Colubridae)

Regina septemvittata Newcomer et al., 1974

(water snake)

(Squamata:

Colubridae)

Trionyx spinifer DeRosa & Taylor, 1980

(Testudinata:

Trionychidae)

(softshell turtle)

Alligator Murphy, 1981

mississippiensis

(Crocodylia:

Alligatoridae)

(American alligator)

Uma notata Adler & Phillips, 1985

(Squamata: Iguanidae)

(fringe-toed lizard)
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Table 2.1 (cont'd)

 

Sceloporusjarrovi Ellis-Quinn & Simon,

(Squamata: Iguanidae) 1991

(desert lizard)

Thamnophis spp. Lawson, 1994

(Squamata:

Colubridae)

(garter snake)
 

Aves

Sturnus vulgaris Kramer, 1950

(Passeriformes:

Sturnidae)

(Starling)

Columba livia Matthews, 1953

(Columbiformes:

Columbidae)

(pigeon)

Lanius collurio von St. Paul, 1953

(Passeriformes:

Laniidae)

(red-backed shrike)

Sylvia nisoria von St. Paul, 1953

(Passeriformes:

Sylviidae)

(three barred warbler)

Sturnella neglecta von St. Paul, 1956

(Passeriformes:

Icteridae)

(western meadowlark)

Anasplaiyrhynchos Matthews, 1963

(Anseriforrnes:

Anatidae)

(mallard)

Pygoscelis adeliae Emlen & Penney, 1964

(Sphenisciformes:

Spheniscidae)

(Adelie penguin)
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Table 2.1 (cont'd)

 

Zonotrichia albicollis Able & Dillon, 1977

(Passeriformes:

Emberizidae)

(white-throated

sparrow)

Aphelocoma Wiltschko & Balda, 1989

coerulescens

(Passeriformes:

Corvidae)

(scrub jay)

Erilhacus rubecula Helbig, 1991

(Passeriformes:

Turdidae)

(European robin)
 

Mammalia

Apodemus agrarius Li'iters & Birukow, 1963

(field mouse)

(Rodentia: Muridae)

Delphinus delphis Pilleri & Knuckey, 1969

(Cetacea:

Delphinidae)

(common dolphin)

Microlus Fluharty et al., 1976

pennsylvanicus

(Rodentia: Cricetidae)

(meadow vole)

Spermophilus Haigh, 1979

tridecemlineatus

(Rodentia: Sciuridae)

(thirteen-lined ground

squirrel)

Eptesicusfiiscus

(Chiroptera)

(big brown bat)

Buchler & Childs, 1982
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2.4 Directional Information from the Sun

The sun can provide a directional reference for many different types of oriented activity.

These range from relatively simple directional movements to true navigation over long

distances. In this section, these categories are introduced. The next section provides a

detailed account of sun compass orientation in a particular animal.

2.4.1 The Sun as a Point Source

The simplest form of directional orientation takes the form of a taxis in which the

organism makes directed movements toward or away from a particular cue (see Schone,

1984). Phototaxis is a common type of this movement. Since the sun is the strongest

point source of light on the planet, many organisms make directed movements toward it.

This would not be classified as sun compass orientation, even though it can lead to

oriented behavior. Organisms that exhibit merely a phototactic response rather than

time-compensated sun compass orientation are not included in Table 2.1.

When an animal moves at a fixed angle relative to a directional point source, it exhibits a

form of orientation termed menotaxis (see Schone, 1984). This mechanism can be relative

to the sun or other celestial bodies and involve time compensation: chronometric

astromenotaxis. For many animals that use this orientation mechanism, the sun defines a

locally important direction.
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2.4.2 The Sun Defines a Local Direction

Many animals live in environments with important directions defined only in one

dimension. This occurs for species that live along an ecotone, such as the shore of a

ocean, lake or river. Many ofthe species that live in such areas have orientation

mechanisms that allow them to detemrine the local direction perpendicular to the ecotone.

This form of orientation has been termed y-axis orientation (Ferguson, 1967) to

distinguish it from orientation along the x-axis: the shore or ecotone. This mechanism has

also been called zonal orientation (Jander, 1975) and it has received considerable attention

(see Hermkind, 1983; Pardi & Ercolini, 1986). The sun compass is a dominant orientation

reference that is used in these circumstances, although it is one ofmany possible

mechanisms (Hartwick, 1976). In these cases, the sun defines a locally important direction

for species that move efficiently to safety zones that are in one particular direction. The

directed movements occur irrespective oftime of day, so this compass mechanism is time

compensated. An example of this type ofmovement is between the edge and the middle

of a lake. This mechanism is used by many fishes (Goodyear, 1970; Goodyear & Bennett,

1979) and amphibians (Ferguson & Landreth, 1966; Ferguson, 1967; Landreth &

Ferguson, 1967; Ferguson et al., 1968; Jordan et al., 1968) in addition to some insects and

crustaceans. An analogous situation occurs on beaches where the y-axis direction is

perpendicular to the beach. Many littoral zone animals use this mechanism as an escape

response (reviewed in Hermkind, 1972, 1983). This orientation system has been

extensively studied in the amphipod crustacean Talilrus saltator, which has revealed
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genetic and learned components of the behavior (Pardi & Papi, 1952; Pardi, 1960; Pardi &

Scapini, 1983; Ugolini & Macchi, 1988; Scapini & Fasinella, 1990).

2.4.3 The Sun Defines a Global Direction

Y-axis orientation can be thought of as a mechanism of local direction-finding.

Specifically, the local direction is the direction toward or away from a shoreline. The sun

can also define a global direction. Thus the local environment can be linked with a global

geocentric reference frame. This is particularly important for long distance migrants.

Migrating birds for example must fly in a particular geocentric direction (e.g. north).

Many birds use the sun or the pattern of skylight polarization to determine their

migrational direction and/or calibrate their magnetic compass (reviewed in Wiltschko, &

Wiltschko, 1991). In some cases there is no evidence oftime compensation (or it has not

been examined) (Moore, 1980) while in others there is (Helbig, 1991). Thus the sun or

skylight polarization patterns can be used to define a geocentric coordinate without

necessarily being used as a time-compensated compass. Since the sun always sets in the

western half ofthe sky if restricted to a particular time of year, the sunset defines a static

direction. Sunset calibration could thus occur without a true time-compensating sun

compass. In Table 2.1 I have attempted to restrict the cases to species in which time

compensation is likely.
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2.4.4 The Sun Defines Any Flexible Direction

In many cases, the sun compass can be used to obtain directional information about any

flexible local direction. An example ofthis type of orientation is seen in the decapod

crustacean Ocypode ceratophthalma (Daumer et al., 1963). This crab provides a contrast

to the many beach-dwelling crustaceans and insects that merely exhibit y-axis orientation.

The crab maintains a burrow in the sand, the entrance ofwhich is not demarcated by

landmarks. After moving about the beach in search of food, if this crab encounters a

potential predator it will run directly to its burrow instead of adopting a stereotyped

response direction toward or away from the water. The escape run is oriented by the sun

and the skylight polarization patterns and its use ofthe sun compass is time-compensated.

This suggests a flexible system that is capable of learning any direction with respect to the

sun. Such a system is constantly updated as the position ofthe animal and the position of

the sun change. This system, known as path integration, has been extensively studied in

desert ants (Wehner & Wehner, 1986; Muller & Wehner, 1988) and it appears to exist in

beetles (Frantsevish et al., 1977) and bees (Frisch, 1950, 1967) among other arthropods.

Many vertebrates have the ability to use the sun to define flexible directions. It has been

particularly well studied in homing pigeons (e.g. Matthews, 1953; Keeton, 1969;

Wiltschko, et al., 1976, 1984; Wiltschko, & Wiltschko, 1981).

2.5 Honey Bees as a Model System

It is clear that numerous animals may use the sun as a compass. In this dissertation, I am

mainly concerned with how the sun compass is learned and how animals are able to
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estimate the position of the sun at times of day when they have never seen it. (I will

describe this phenomenon in detail in the next chapter). The data that I rely most heavily

on come from insects, particularly honey bees. This section examines the role ofthe sun

compass in the life ofthe bee.

2.5.1 Long Distance Orientation

The sun compass provides directional information for orientation over long distances. It is

by no means the only source of such information. Other potential compass mechanisms

such as a magnetic compass could play a role, and landmarks play a prominent role in

orientation. It is unclear exactly what mechanisms freely flying bees use most often to

navigate, but it is safe to assume that the sun compass and landmarks play the dominant

roles (Dyer, 1996). This information has been gained through displacement experiments.

In the most common type, bees are trained to obtain a sucrose solution from an artificial

feeding station a particular distance and direction from the hive in one landscape.

Subsequently, overnight, the hive is moved to a new landscape and when the hive is

opened during the day, the landings ofbees are recorded at identical feeders placed at

various directions from the hive (Frisch, 1967). Alternatively, bees are captured at the

feeding station and subsequently released in a novel location. The new environment in

either ofthese cases may have landmarks that resemble the site from which they originally

experienced, or the site may have no prominent landmarks or landmarks that do not

resemble the ones from the original feeding site. Hives can also be moved over much
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greater distances longitudinally (Renner, 1959) or latitudinally (Lindauer, 1957) to

distinguish the role of the celestial compass from a magnetic compass.

It is clear that when there are no landmarks present, the bees use the sun to navigate

(Frisch, 1967). When landmarks are present that mimic the landmarks from the training

site, the bees generally use the landmarks (Frisch & Lindauer, 1954). However, the

landmarks must be very prominent to overrule the sun compass. In some cases, bees will

ignore even very large landmarks and follow the direction indicated by the sun (Menzel et

31,1990)

2.5.2 Short Distance Orientation

In addition to determining a directional heading for long distance orientation, the sun

compass can play a role in short-distance orientation. In this context, the sun compass can

be used to resolve ambiguous landmarks (Dickinson, 1994).

It has long been known that insects use landmarks to guide their approach to a goal

(Tinbergen, 193 8). Recent studies have suggested that the insects move to a position to

match a stored retinal image ofthe landmarks (Wehner, 1972; Collett & Land, 1975;

Wehner & Raber, 1979; Cartwright & Collett, 1983; Dill et al., 1993). This poses a

problem for a fi'ee flying insect that might encounter a landmark from any number of

angles. Many potential landmarks such as trees and shrubs have radial symmetry which

would render them directionally ambiguous. Because they look the same fiom all
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directions, an insect trying to match a retinal image would search in an annulus. To

resolve this ambiguity an external direction reference is required.

Lindauer (1960) first suggested that the sun might provide such a reference. He trained

bees to obtain food fiom one comer of a symmetrical table. The rewarded comer was

consistently in a particular compass direction. Subsequently, he moved the hive to a new

location and placed the feeding table in a new direction. Nonetheless the bees

predominantly visited the original position on the feeder. Lindauer concluded that the

bees were using a time-compensated celestial compass mechanism in this task. However,

other potential directional references could not be ruled out, such as the earth's magnetic

field.

To determine if bees were using the sun compass to resolve ambiguous landmarks on this

small of a scale, I trained bees to obtain food in an arena at one of four identical feeders

placed in the cardinal compass directions from a prominent cylindrical landmark

(Dickinson, 1994). Walls around the arena excluded panoramic landmarks and the

cylinder was symmetrical so any directional information the bees used would have to come

from an external reference. Bees were trained individually to find food at one ofthe

feeders. In the test, there was no food present, and the number of landings on each feeder

(out ofthe first 10) were scored. Bees learn this task very rapidly; on a sunny day they

search in the appropriate direction after only two visits to the correct feeder. Figure 2.3
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(A) shows the proportion of visits to the correct feeder on their fifth return to the arena.

Clearly they are able to resolve the ambiguous landmark.

To determine what directional reference the bees were using, I tested them under three

additional conditions. Figure 2.3 (B) shows the responses under partly cloudy sky with

the sun obscured but with polarization cues available; Figure 2.3 (C) shows the responses

ofthe bees on completely overcast days; and Figure 2.3 (D) shows the responses ofbees

that were subjected to a delay ofthree to four hours (90° of azimuthal arc) between the

last training trial and the test trial. The bees were significantly oriented under all

conditions except those of complete overcast. This suggests that they were using a

time-compensated celestial compass to resolve the ambiguity ofthe landmarks as Lindauer

(1960) originally suggested.

These results are somewhat puzzling in light of some recent results obtained by Collett

and Baron (1994). In a similar study to the one described above, they found that bees

adopt a stereotypic viewing angle of the landmarks near a goal. The viewing angle is

maintained with respect to the earth's magnetic field. Adopting such a consistent viewing

angle is an alternative means of resolving the ambiguity of landmarks (Collett, 1992).

In additional studies using a large screen to exclude polarization patterns, I replicated my

original findings and found no evidence that the bees could use a magnetic compass to

choose the appropriate direction (Dickinson, unpublished data). However, it appears that
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the bees may simply take much longer to learn to rely on magnetic cues in these

circumstances. In Collett and Baron's (1994) experiments, the bees had a much longer

training period, amounting to more than a day. This contrasts considerably with the five

visits that the bees had in my experiments.

Nevertheless, whether or not the bees are capable ofusing a magnetic compass under

certain circumstances, it is clear that bees are able to use the sun as a directional reference

for orientation over short distances.
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Figure 2.3 Proportion of choices to each of four directions with respect to

the training direction. A. Sunny. B. Partly cloudy C. Completely

overcast. D. Delay. The probabilities presented are the binomial

probabilities that the pattern of choices occurred by chance (25% correct

choice; 75% incorrect).
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2.5.3 The Dance Language

In addition to using the sun as a navigational compass, the sun's azimuth plays a prominent

role in the communicative dance language ofhoney bees (Frisch, 1967). Honey bees

direct colony mates to profitable food sources by means of a symbolic waggle dance. The

dance is so named because the prominent feature of the dance involves the bee vigorously

shaking her abdomen. In the process, she completes a number of circuits in which she

waggles in a straight line at a particular angle on the vertical comb. Between waggle runs,

the bee turns alternatively to the left or right and returns to the starting position where she

commences another waggle run.

The dance communicates the distance and direction to a food source. Distance is

determined by the duration of the waggle run. Direction is determined by the angle of the

waggle run with respect to vertical. The angle of deviation fi'om vertical corresponds to

the angle of deviation of the direction of the food from the sun's azimuth. For example, a

bee dancing 75° to the left of vertical is indicating direction 75° to the left of the sun's

azimuth (see Figure 2.4).

Over the course of a day, a bee visiting the same food source will change her angle of

dance as the sun's azimuth changes position. On a cloudy day, when the bee cannot see

the sun, she orients her dance to a memory ofthe sun with respect to landmarks (Dyer &

Gould, 1981). Over an entire day, her dances changes orientation to reflect the changing
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position of the sun (Dyer, 1987). This provides an essential tool for studying the bee's

representation ofthe sun's course (Lindauer, 1957; New & New, 1962; Wehner, 1972;

Wehner & Raber, 1979; Dyer, 1985, 1987; Dyer & Dickinson, 1994).
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Figure 2.4 The dance language of the honey bee. The communicative

waggle dance indicates the distance and direction to the food. A. The

angle indicated by the waggle run (or) with respect to vertical corresponds

to the angle ofthe food with respect to the sun's azimuth. B. The flight

path from the hive (H) to a food source (F) relative to the sun's azimuth the

angle or is the same as in (A). Over the course of the day, the dance angle

changes as the solar azimuth moves along the horizon. Distance is

indicated by the length of the waggle run.
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2.6 Other Celestial Compass Mechanisms

Besides the sun, there are other celestial bodies that can contribute to orientation. In

principle they have similar requirements to the sun compass, and they may reveal similar

learning mechanisms.

2.6.1 The Lunar Compass

The lunar compass has been implicated in at least two species of amphipod crustaceans:

Taliirus saltator (Papi, 1960) and Orchestoidea corniculata (Enright, 1961).

Compensating for the change in lunar azimuth is considerably more difficult than

compensating for the change in solar azimuth, because the pattern of lunar azimuthal

change differs nightly.

The Asian honey bee Apis dorsata flies by the light ofthe moon at night (Dyer, 1985), but

it does not use the moon in place ofthe sun to orient its dances at night. Instead, it

continues to use the sun as a reference in the communicative waggle dance. It appears to

extrapolate the position ofthe sun after sunset (see Chapter 3). Diurnal insects may orient

to the moon if they are forced to be active at night, but they appear to use it as the sun

(Jander, 1957; Wehner, 1982).

2.6.2 The Stellar Compass

Just as ancient sailors did, animals that are active during the night have the opportunity to

use the stars as a navigational guide. For some birds that migrate at night, this seems to
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be the case (Sauer & Sauer, 1960). In the case that has been most thoroughly studied, the

birds obtain global directional information from the stars. This information comes from

the overall pattern of rotation (Emlen, 1967a, b). The center point ofthe rotation defines

true geographic north (or south). This orientation mechanism is not affected by clock

shifting the birds (Emlen, 1967b), so with respect to time compensation the system is

distinct from the sun compass.

2.7 Summary

Numerous animals use the sun compass for orientation in many different circumstances.

Animals that use a time-compensated sun compass for orientation must account for a

nonlinear change in direction indicated by the sun's azimuth with respect to time of day.

Further complicating the matter is the fact that the nonlinear pattern of change varies with

season and latitude. Yet the animals that use the sun compass for orientation are able to

solve these problems. The mechanisms that could account for this ability are considered in

the subsequent chapters.



Chapter 3

THE REPRESENTATION OF THE SUN'S COURSE

The complex pattern of movement ofthe sun's azimuth (described and illustrated in the

previous chapter) presents a problem to all animals that use the sun as a compass. Since

the pattern of movement ofthe azimuth varies with time of day, season and latitude, the

animal must somehow be informed ofthe correct local pattern of movement. As

discussed in the previous chapter, there are several possible types of solutions to this

problem, which vary in the degree of learned versus innate information about the sun's

course included in the model. In this chapter I will discuss recent experiments with honey

bees that suggest that the sun compass is neither exclusively innate nor learned.

These studies suggest that honey bees employ a computational solution to the problem of

compensating for the sun's apparent movement. First I will describe the previous studies

that set the stage for a thorough investigation into the nature of the computations and

representations involved. In the main body ofthis chapter, I will present the data from

recent experiments by Dyer and Dickinson (1994) that provided critical new insights into

the nature of the computations and representations. In addition to presenting the original

data from Dyer and Dickinson (1994), I present two other data sets, and I provide new

51
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analyses of all of the data to further illuminate the nature ofthe computations involved. In

Chapters 4 and 5, I present new models ofthe computational processes of sun compass

learning that may shed light on the underlying mechanisms.

3.1 Previous Studies

For honey bees it has long been known not only that bees learn the course ofthe sun, but

that they can estimate the position ofthe sun at times of day when they had never seen it

(Lindauer, 1957, 1959). Behavioral experiments over the nearly 40 intervening years have

elucidated to a considerable degree the nature ofthe honey bee's representation ofthe

sun's course.

Some ofthe earliest evidence about the nature of the bee's representation came from the

observation ofbees dancing within a colony during the night (Lindauer, 1954). These

"marathon" dances occur for considerable lengths oftime without the dancing bee leaving

the colony. Over time the dance angles change in correspondence with the change in the

sun's azimuth. While "marathon" dances can occur during the day or the night, the

nocturnal dances are particularly striking because the bees would have never had an

opportunity to observe the position ofthe sun during the night.

The use ofthe sun compass during an animal's physiological night has been reported for

several other species including sandhoppers (Pardi, 1958b) spiders (Tongiorgi, 1959; Papi

& Syrjamaki, 1963), beetles (Pardi, 1958a), water striders (Birukow, 1956; Birukow &
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Busch, 1957) (but cf. Heran (1962) and Schmidt-Koenig (1975)), ants (Wehner, 1982),

fish (Braemer, 1959) and birds (Hoffrnann, 1959; Schmidt-Koenig, 1961, 1963). These

studies have relied on three types ofmethods: shifting the phase of the animal's internal

clock (Birukow & Busch, 1957; Pardi, 1958b; Braemer, 1959; Tongiorgi, 1959;

Schmidt-Koenig, 1961; Papi & Syrjamaki, 1963), presenting an artificial light source

(Birukow, 1956; Pardi, 1958a; Braemer, 1959), and transporting the animal north ofthe

Arctic Circle to expose it to the midnight sun (I-Ioflinann, 1959; Papi & Syrjamaki, 1963;

Schmidt-Koenig, 1963).

Bees can also estimate the position of the sun during the day at times when they have

never seen it (Lindauer, 1959). When honey bees are restricted to view the path of the

sun during a portion of the whole day, they nonetheless can estimate the position of the

sun during other times of the day. In Lindauer's (1959) experiments, be restricted the

experience ofbees by raising brood in an incubator and establishing a colony of which he

could completely control the experience. He only opened the colony and allowed the bees

to acquire information about the sun during a limited portion ofthe day.

Lindauer (1957) trained the bees in the afternoon to find food in the south. Subsequently,

the hive was moved to a new location (so the bees could not rely on landmarks), and the

bees were allowed to fly for the first time in the morning. Four feeding stations were set

up in the cardinal compass directions and the number ofbees arriving were recorded. The

bees flew predominantly to the south in search of food if they had seen the afternoon sun
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for five days. With only three days of experience, the bees failed to choose the correct

feeding station.

This was the first indication that the course ofthe sun was learned by the bees. Indeed, it

also showed that bees do not simply remember observed positions of the sun at various

times ofthe day, but that they can compute the position of the sun at times of day when

they had never seen it. The nocturnal dances and the behavior of Lindauer's (1959) bees

in the morning support the conclusion that bees can generalize their experience to other

times of day. In other words, the bees appear to form a representation of the sun's course

that consists of a complete ftmction, even though they may have experience with only a

portion ofthe fiinction.

Unfortunately, Lindauer's (1959) data were not accurate enough to determine the

computational methods the bees used to fill in the gaps in their experience with the sun.

This is because in the experiments in which be restricted the bees' experience, he only

measured their response to the nearest 90° (since the feeders were placed in four

directions). However, subsequent studies have provided potential answers to this question

and have revealed more ofthe details of the insect's representation ofthe sun's course.

Some ofthe most illuminating data come fiom studies conducted in the tropics. As

illustrated in the previous chapter, the pattern of change in the solar azimuth is most

variable in the tropics. The most extreme variation in the pattern of solar movement in the
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tropics occurs when the azimuth abruptly switches from passing to the south at noon to

passing to the north (or vice versa). New and New (1962) studied this transition period in

colonies ofbees in the tropics. They used the honey bees' dance language (Frisch, 1967)

(see section 2.5.3) to investigate the bees' representation of the sun's course during the

transition time. They trained bees to an artificial food source and recorded the dance

angles of the bees visiting the food source as they changed from indicating the position of

the food relative to an eastern azimuth and indicating the position ofthe food relative to a

western azimuth. They found that the bees had consistently oriented dances even when

the sun passed very close to the zenith. However, the bees' representation of the sun

differed from the actual sun's course in systematic ways (see Figure 3.1). During the

transition phase, the rate of change ofthe sun's azimuth indicated in the bees' dances was

less rapid than the actual change in the sun's azimuth. Perhaps more striking is the fact

that the bees anticipated the transition fi'om a southern to a northern noon position before

it actually occurred. Some individual bees (not shown in Figure 3.1) differed from each

other in the pattern of azimuthal movement they indicated. New and New (1962)

concluded that the bees were interpolating between known positions ofthe sun. That is,

the bees behaved as if they were shifting their dance angles at a constant rate between

memorized positions ofthe sun. New and New suggested that the interpolation occurred

during the noon transition because the actual changes in the azimuth were below the visual

acuity threshold of the bees. A similar mechanism could be used to fill other gaps in

experience, such as during the night or during long periods oftime during the day that the

bees do not experience the pattern of azimuthal movement.
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Figure 3.1 Solar azimuths inferred from the dances ofthe bees in New and

New's (1962) experiments. Data are from colony 1 in Trinidad (10°3 8') on

(A) April 15, (B) April 16, (C) April 17, (D) April 18, (E) April 20, and (F)

April 21. Data were obtained from New and New's (1962) Figure 3 and

replotted to correspond to solar azimuths rather than dance angles.
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The interpolation hypothesis ofNew and New (1962) is one of four distinct

computational strategies that have been proposed to explain how insects can fill in the

gaps of their experience with the sun's course. Three ofthe mechanisms assume that

observed positions ofthe sun at specific times of day are used to calculate the position of

the sun at other times ofthe day. The fourth mechanism assumes that the insects rely on

the average rate of movement ofthe sun (15° per hour). Once a rate is obtained, all ofthe

models assume that the position ofthe sun's azimuth could be determined by a neural

implementation of an equation equivalent to the following:

At+ngt+rt (3.1)

where Am is the unknown azimuth; A, is the observed azimuth; t is the time of

observation; t is the time interval between the observed and estimated azimuths; and r is

the rate of change of the azimuth. The computational models differ in how the rate of

change of the azimuth (r) is determined.

First, in the average rate hypothesis, r is simply 15° per hour. This is distinct from the

other three methods which imply that the bees measure or calculate a rate of compensation

but that they differ in the method of calculation.

Second, in the interpolation hypothesis, r is determined by computing the rate of change of

the azimuth between two observed positions of the sun. This assumes a neural

implementation ofthe standard rate equation:
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_A2-A1
— 12;“ (3.2)

where Al and A2 are two observations of azimuth position at two specific times of day (t]

and 122).

Third, an alternative mechanism of computing r for use in equation 3.1 that has been

proposed relies on the extrapolation of a single observed rate of change ofthe azimuth

(Gould, 1980). This single value ofr could be used to determine the position ofthe sun's

azimuth later in the day (forward extrapolation).

Fourth, in a variation of the extrapolation hypothesis, a single value ofr could be used to

determine the position ofthe sun's azimuth earlier in the day (backward extrapolation)

(Dyer, 1985).

Until recently, the experimental results were ambiguous regarding which method of

computing the rate of change ofthe azimuth was used to fill in the gaps of an insect's

experience with the pattern of change ofthe sun's azimuth. None ofthe data supports the

conclusion that the average rate ofmovement is used. Several studies with honey bees

(New & New, 1962; Dyer, 1987) and desert ants (Wehner & Lanfranconi, 1981; Wehner,

1982) support the interpolation hypothesis. On the other hand other studies with bees

have been more consistent with the forward (Gould, 1980; Dyer, 1985) or backward
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(Dyer, 1985) extrapolation hypotheses. Lindauer's (1959) data are consistent with all of

these mechanisms because of the 90° separation between the test feeding stations.

Recent data (Wehner & Muller, 1993; Dyer & Dickinson, 1994) have suggested a new

way ofthinking about how insects fill the gaps in their experience. When bees and ants

were confronted with large gaps in their experience of solar movement they nevertheless

form a representation ofthe sun's course that approximated its actual course during the

entire day. None of the previous computational mechanisms could account for this

performance. The results ofthese experiments suggest that the insects have a certain

amount of innate structure in their representation about the sun's course. Presumably the

innate structure could be modified with experience. The previously hypothesized

computational mechanisms may still play some role in the process (Dyer, 1987), but they

are not used to estimate the position ofthe sun's azimuth during large gaps in experience.

In the subsequent sections of this chapter I will describe the experiments ofDyer and

Dickinson (1994) in further detail. In addition, data from two additional colonies are

presented, and new analysis are presented for all ofthe data. In the subsequent chapters,

new computational models are presented which may shed fiirther illumination on the

process leading to the patterns observed by Dyer and Dickinson (1994) and Wehner and

Muller (1993).
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In the experiments with Fred Dyer, I utilized the technique developed by Lindauer (1959)

of establishing colony ofbees naive to a portion of the sun's course in an attempt to

distinguish between the previous computational hypotheses. Instead of relying on feeding

stations, I utilized the communicative waggle dance ofthe honey bee (Frisch, 1967) (see

section 2.5.3), which can provide a readout ofthe position of the sun. This occurs

because in the symbolic system, the distance and direction to the food is indicated with

respect to the sun. The angle of the dance on the vertical comb in the hive corresponds to

the angular deviation between the solar azimuth and the food source. This system is used

even on completely overcast days when bees do not have a view ofthe sun (Dyer &

Gould, 1981). During these times, bees rely on a memory ofthe sun's position with

respect to landmarks.

In these experiments, bees were allowed to fly only in the late afternoon, hence they had

experience only with a small portion of the sun's course (~20%). How the bees estimated

the position of the sun in the morning was determined by their dances on a completely

overcast day. Figure 3.2 shows the predictions for this experiment based on the previous

computational models. With the large size ofthe gaps in the experience in the bees in

these experiments, the predictions for the previous computational models of interpolation,

and forward and backward extrapolation were very different. For interpolation (line A), a

linear rate oftime compensation is expected between the last view ofthe sun in the

evening and the first view of the sun in the afternoon of the following day. This prediction

overestimates the movement of the sun in the morning. For forward extrapolation (line
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B), a linear rate of compensation based on the observed rate during the training period is

expected. This rate is used to extrapolate the position ofthe sun's azimuth forward,

through the night and into the morning of the following day. This prediction considerably

underestimates the movement of the sun in the intervening time period. For backward

extrapolation (line C), the same linear rate of compensation is used as in forward

extrapolation, only it is extended backward into an earlier portion ofthe day. This

prediction overestimates the position of the sun in the morning by a considerable margin.

It was our hope with this experiment that we would be able to decide among the three

hypothesized mechanisms.
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Figure 3.2 Predictions from previous computational models about how

insects fill gaps in their experience with the sun's course. The shaded

region corresponds to the time period of experience with the sun's course.

The lines represent the predictions of the position of the azimuth at other

times of day based on the various models. A. Interpolation: a constant

rate of change between the end ofthe one training period and the beginning

ofthe next on the subsequent day. B. Forward extrapolation: the rate of

change observed at the end of the training period extended forward

through the night and into the morning of the subsequent day. C.

Backward extrapolation: the rate of change of the azimuth observed at the

beginning of the training period and extended backward into earlier

portions ofthe day.
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3.2 Experimental Methods

Combs ofthe European honey bee (Apis mellifera) were hatched out in an incubator and

used to establish colonies of bees whose experience was completely known. In the four

colonies, the bees were allowed to fly only during a small fraction ofthe day. During this

time, the bees gained experience with the sun as it moved over a portion of its diurnal

course. Three of the four colonies were exposed to portions of the afternoon course of

the sun. The fourth colony experienced a portion ofthe sun's course in the morning. For

the first three colonies the technique ofmeasuring the dance angles ofthe bees on a cloudy

day was used (Dyer, 1987). For the fourth colony, the technique of measuring flight

bearings on a sunny day was used (Meder, 1958).

3.2.1 Colony 1

The first colony was established from incubator-reared bees in a two-frame observation

colony adjacent to an alfalfa field on the farms ofMichigan State University, East Lansing,

Michigan (43° 45' N). Bees were trained to find food at an artificial feeder containing

sucrose solution 350 m to the south along a prominent line of trees. Bees were

individually labeled with numbered tags. The colony was open from 15:00 until dark

(~19200) (local sun time ). Each night after dark the colony was closed and removed from

the field. Bees in the hive were exposed to diffuse light during daylight hours in an

attempt to maintain the colony's circadian cycle.
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On a cloudy day when bees cannot see the sun, the colony was opened in the morning,

The dances were recorded to the nearest 5° with a protractor referenced to gravity. The

inferred solar azimuths were calculated from the dance angles (azimuth = 180° - dance

angle). This colony corresponds to colony 1 in Dyer and Dickinson (1994).

3.2.2 Colony 2

The experiment was repeated with similar conditions for the second colony. The colony

was established in the same location and the bees received similar regime oftraining.

Again, the colony experienced the sun for about the last four hours of daylight. In

contrast to colony 1, the hive contained two groups ofbees that received different

treatments. One group was allowed to fly only during the late afternoon. The second

group, however, was able to fly during the entire day. To accomplish this, the

restricted-experience bees had small pieces of plastic glued to their thoraxes (G. E.

Robinson, personal communication). A grating over the entrance ofthe hive precluded

these bees from leaving the colony during certain times. The other bees were able to

crawl through the small openings of the grating. This colony corresponds to colony 2 in

Dyer and Dickinson (1994).

3.2.3 Colony 3

Colony 3 received a different amount of experience with the sun's course than colony 1

and colony 2. Colony 3 was established in the same location as colonies 1 and 2.
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This colony was open from noon (local sun time) onward, so they experienced a

considerably larger portion ofthe sun's course than either colony 1 or colony 2. This

amounted to 50% ofthe diurnal course ofthe sun. The bees were trained as in colonies 1

and 2, but they were only trained 150 m south along the treeline. (To separate the

potential ambiguity between an accurate representation of the sun's course and the ability

of the bees to see the sun or polarized light through the clouds, these bees were originally

intended to be tested in an alternative location, but no bees reached the feeder in several

attempts).

3.2.4 Colony 4

For this manipulation, the flight bearings of bees captured at the feeder and released in a

novel environment after a holding period were used to determined the bees' estimates of

the sun's course. This technique has been successfully used in the past as a measure ofthe

honey bee's representation ofthe sun's course (Meder, 1958). Under these circumstances,

bees orient their flights with respect to the sun compass, compensating for the change

during captivity.

Colony 4 was established in a ten-frame hive at the Inland Lakes Research Center on the

Michigan State University campus. This colony experienced the sun only during the

morning hours from dawn until 10:00 local sun time. The colony was closed at that time

by simulating rain with a garden sprinkler (G. E. Robinson, personal communication).

This stops the majority ofbees from leaving the colony. After a steady "rain" of about 30
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minutes, the colony was sealed with a screen and the entrances shaded from a view of the

sky.

The bees were trained to an artificial sucrose source 400 m west through an open field of

grass and wild flowers. A small lake was located 30 m north of the flight route and a few

scattered trees and an interstate highway was located 30 m south ofthe flight route.

Bees leaving the colony were automatically dusted with a bright fluorescent pigment

(Day-Glo Color, Cleveland, Ohio). This allowed bees visiting the feeder from other

colonies to be identified (by their lack of pigment), so that only restricted-experience bees

were used in the releases. Additionally, bees were painted at the feeder and were given a

unique color for each day they were at the feeder. After several days of foraging at the

feeder, the bees were captured individually in vials and held in a dark place before their

release time.

Subsequently, the bees were released at a new location 3.2 km from the training location.

The bees were released between an alfalfa field and an abandoned field on the Michigan

State University Farms.
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3.3 Results and Discussion

3.3.1 Colony 1

An unexpected pattern was revealed in the bees' estimates ofthe position of the solar

azimuth in the morning. Figure 3.3 shows the solar azimuths inferred from the dances of

the bees in the first experiment. In the morning, the bees danced as if they estimated the

sun to be approximately 180° from the position in the middle ofthe afternoon training

period (M = 89.5°, SD = 290°, n = 133). The colony shifted from indicating a morning

direction to indicating an afternoon position around noon. For this colony the shift

appears to occur at 10:50 rather than noon. The descriptive statistics presented here

employ the assumption that time of day distinguishes the morning and afternoon groups.

The means and standard deviations were computed using the appropriate methods for the

analysis of circularly distributed data (Batschelet, 1981).

Over the entire morning the bee's estimation ofthe sun's position did not change. A linear

regression of the morning data was not significant, (T (two-tailed) = 1.77, df= 134, p >

.025) meaning that during the morning they were not compensating for a changing solar

azimuth (i.e. the slope of the regression line was not different from zero) (see Table 3.1).

For all of the regression analyses reported, the groups were split by angle rather than time

(i.e. morning is less than 180° and afternoon is greater than 180°). I did this because I

wanted to examine the behavior of individual bees, and I assumed that individual bees

would have slightly different circadian rhythms. The individual would nonetheless shift
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from a morning angle (< 180°) to an afternoon angle (> 180°) at her individual

representation of noon.

Around noon the bees abruptly shifted as a group to indicate solar positions consistent

with the middle of the training period (M = 276.77°, SD = 240°, n = 404). By contrast,

the afternoon group did have a significant regression slope, but it was very small (1 .4°/hr,

R2 = .02, T = 2.94, df= 399, p < .005) (see also Table 3.1). The actual rate of change in

the azimuth during the middle ofthe training period was 9.5°/hr.
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Figure 3.3 Solar azimuths inferred from the dances of restricted

experienced bees from colony 1. The curved line corresponds to the actual

path of the sun on July 22. The straight lines are the predictions from the

previous computational models. A. Interpolation. B. Forward

extrapolation. C. Backward extrapolation. D. 180° step fiinction. The

open symbols correspond to two bees that differed qualitatively from the

rest.
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Table 3.1 Regression Analysis of Individual Bees' Azimuth Estimates (Colony 1)

   

 
 

Bee Morning Afternoon

Slope R2 prob. n Slope R2 prob. n

11 3.64 0.22 0.06 12

20 7.3 0.09 0.17 12 -2.79 0.53 0.03 7

22 2.76 0.12 0.15 11

23 7.23 0.56 0.04 6

32 2.19 0.04 0.18 25

48 2.46 0.06 0.29 8 -4.24 0.4 0.01 13

49 2.44 0.12 0.17 12 -3.37 0.14 0.06 12

51 -1.37 0.06 0.28 8

52 3.18 0.04 0.24 16 1.43 0.05 0.18 18

55 5.08 0.33 0.02 14

61 2.36 0.17 0.02 25

64 6.13 0.77 < 0.005 8

74 15.99 0.6 < 0.005 10 7.86 0.69 < 0.001 25

77 -4.71 0.63 0.02 7

78 -8.16 0.63 < 0.001 16

85 -1.83 0.16 0.13 10

87 13.4 0.46 < 0.01 12 3.3 0.17 0.04 19

88 -3.46 0.23 0.11 8

90 4.23 0.16 0.08 14 1.06 0.06 0.2 14

93 6.36 0.35 0.02 12

98 -0.85 0 0.43 14 -l.53 0.04 0.2 21

104 0.9 0.01 0.37 15

106 -14.06 0.86 < 0.005 6

108 -4.98 0.25 0.02 19

114 3.79 0.34 0.02 13

115 4.93 0.54 < 0.005 15

191 -0.06 < 0.001 0.49 19
 
 

Total 3.3 0.02 0.04 136 1.41 0.02 <0.005 401
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The bees' estimate ofthe position ofthe sun in the morning is almost exactly 180° from

the sun's mean position in the afternoon during the training period and the mean azimuth

indicated in the afternoon by the bees. Two bees indicated positions ofthe sun throughout

the day that were qualitatively different from the rest ofthe bees. These bees are indicated

by the open symbols in Figure 3.3 and they are not included in the calculation of the

statistics. These two bees estimate a pattern of solar movement during the day that differs

from the remainder ofthe bees in a systematic way. These bees indicate an abrupt

transition the position ofthe azimuth around noon as well, but indicate a transition from

approximately 270° to 90° instead offrom 90° to 270°.

Overall, the behavior ofthe bees is well described by a 180° step fiinction. This model

assumes that the morning angle is exactly 180° from the azimuth experienced at the middle

of the training period (270°). At midday (10:50 for this colony), the afternoon angle

abruptly replaces the angle assumed in the morning. This model explains a high

proportion of the variance in the data (R2 = .85) and the fit ofthe data to the 180° step

function is significantly better than the fit of the data to the actual ephemeris function (R2

= .59) (F3 = 2.01, df= 536,536, p < 0.001). We tested this by comparing the variances

described by each model fiinction. It is used throughout, as a means ofcomparing the fit

of data to nonlinear curves. This is of course a post hoc test, but it describes the data

well, and forms a standard and a prediction for future comparisons.
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The 180° step function raises questions about the mechanisms underlying the sun

compass. It is clear from previous data (Dyer, 1987), that the estimates ofthe sun's

position throughout the day appear to be based on a continuous function for bees with

complete experience with the sun. It is difficult to imagine what type of mechanism would

lead to a transition fiom a discrete fiinction to a continuous fiinction (this will be explored

extensively in the subsequent chapters). Preliminary evidence suggests, however, that

individual bees from colony 1 may indeed represent the sun's course as a continuous

fiinction. Although the group ofbees shifts abruptly at noon, bees that performed dances

during the transition period seemed to change their dance angles gradually. Figure 3.4

shows the solar azimuths inferred from the dances offour individual bees that danced

during the transition period. Several ofthe bees appear to indicate solar transitions that

are considerably less abrupt than the 180° fimction would suggest. One ofthe bees

indicates a solar transition to the north at noon rather than the south. This is particularly

striking since the sun never passes to the north at noon in the temperate zone. This

behavior bears a striking resemblance to the data that New and New (1962) obtained (see

Figure 3.1).
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Figure 3.4 Solar azimuths inferred from the dances of four individual bees

from colony 1 that show gradual shifts during the transition period. A.

Bee 32. B. Bee 74. C. Bee 78. D. Bee 87.
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An alternative and more quantitative way of analyzing the nature of the representation of

individual bees is by a linear regression analysis of the solar azimuths indicated in the

morning and afternoon. Although a linear model clearly cannot explain the underlying

mechanism for the entire day, by examining portions of the overall curve, it may be

possible to discern whether the underlying function is truly a 180° step function, or a more

gradual function.

The results of this analysis for colony 1 are presented in Table 3.1. Data were analyzed

for bees that had more than five dances in either the morning or the afternoon. Whether

solar azimuths were grouped with the morning data or the afternoon data depended on the

azimuth angle rather than the time. Two-tailed T tests were used to assess whether the

slopes of the regressions were significantly difi‘erent from zero. Data with significant

slopes are presented in bold typeface.

In the afternoon, there were 11 significant regression slopes out of 26 tested. Six of the

significant slopes were positive while five were negative. Some ofthe slopes are relatively

large compared to the colony as a whole. In the morning, there were fewer bees to

compare; three of nine had significant slopes. All three ofthe significant regressions had

positive slopes. The fact that there are a variety of slopes present in the data sorted by

individual bees suggest that there is more to the overall pattern than a simple step

fiinction. This is one ofthe primary concerns ofthe subsequent chapters.



75

The clearest conclusion from the data of colony 1 is that none ofthe previous

computational models are supported by the results. For all of the previous computational

models, a single constant rate oftime compensation was expected. This is clearly not

what occurred. By indicating the position ofthe sun in the morning to be approximately

180° fi'om the afternoon position, the bees incorporated some ofthe nonlinearities ofthe

rate of change ofthe azimuth into their estimates.

3.3.2 Colony 2

The data fiom colony 2 support and extend the main conclusions from colony 1. Figure

3.5 shows the inferred estimates of the sun from the dances ofthe restricted-experience

and the fiilly experienced bees of colony 2. Although not as extreme of a pattern is

produced, the restricted-experience bees of colony 2 estimated positions ofthe sun in the

morning (M = 97.8°, SD = 194°, n = 95) that were approximately 180° from the position

indicated in the afternoon (M = 257.6°, SD = 20.3, n = 85).

The step fimction provides a significantly better fit than the actual ephemeris function (R2

= .91, F3 = 2.76, df= 179, 179, p < .001). The experienced bees, by contrast, tracked the

su n's course more accurately. For these bees, the actual ephemeris fiinction provides a

better fit than the step fiinction (R2 = .85, F3 = 2.64, df= 59, 59, p < .001).

Unlike colony 1, the solar azimuths indicated in the morning and the afternoon appear to

change over time at a rate that roughly matches the rate of change of azimuth that the bees
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experienced in the afternoon. Both the morning data and the afternoon data have

significant regression slopes. In the morning the slope is 6.9° per hour (R2 = .24, T =

5.31, df= 91, p < .001) while in the afternoon, the slope is 122° per hour (R2 = .47, T =

8.63, df = 85, p < .001). These are both quite close to the actual pattern of movement of

the azimuth in the middle ofthe afternoon training pattern, which was 10.8°/hr. The

regression slopes for the moming and the afternoon are significantly different from each

other (T = -2.74, df= 176, p < .005); however, for the two bees that had significant

regression slopes for both the moming and the afternoon, the slopes did not differ

significantly from each other. All of the individual bees in colony 2 that had significant

linear regressions had positive slopes (see Table 3.2).

These results from restricted-experience bees in colony 2 contrast markedly with those

from colony 1. In particular, the representation formed by the bees in colony 2, though

still approximate, more closely matched the local emphemeris fimction than did the

representation formed by bees in colony 1. The bees in colony 2 had a more accurate

representation of the rate of change ofthe azimuth in the morning and the afternoon.

From the positive slopes ofthe regression lines, one could infer that the bees also have a

more accurate representation of the midday transition (the fact that the sun passes to the

south at noon at this latitude) than colony 1. Unfortunately, because of a period ofheavy

rain, there are too few dances during the transition to test this conclusion.
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Figure 3.5 Solar azimuths inferred from the dances of restricted

experienced bees (A) and fiilly experienced bees (B) of colony 2.
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Table 3.2 Regression Analysis of Individual Bees' Azimuth Estimates (Colony 2)

 
 

 
 

Bee Morning Afternoon

Slope R2 prob. n Slope R2 prob. n

210 1.79 0.03 0.28 16 8.18 0.81 < 0.001 12

233 8.97 0.59 < 0.005 11 17.84 0.87 < 0.005 6

235 5.57 0.33 < 0.01 18

265 31.04 0.96 < 0.001 6

270 11.34 0.74 < 0.001 11

291 5.33 0.45 0.02 9 13.86 0.78 < 0.005

311 10.68 0.32 0.07 8

3 16 6.68 0. 19 0.2

373 7.2 0.59 0.01 8 14.33 0.33 0.07 8

Total 6.94 0.24 < 0.001 93 12.22 0.47 < 0.001 87
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3.3.3 Colony 3

Since colony 3 had three additional hours of experience with the sun's course in the early

afternoon, the results were expected to differ qualitatively from those of colony 1 and

colony 2. This is because they had experience with a much larger portion ofthe sun's

course, including portions with relatively fast and relatively slow rates of change ofthe

azimuth. However, the data presented in figure 3.6 suggest that this is not the case. The

data for both the afiernoon (M = 223.7°, SD = 14.0°, n = 67) and the morning (M =

655°, SD = 166°, n = 25) are consistently below the expectations from the actual

ephemeris function. The afternoon data are puzzling because in both colony 1 and colony

2 the solar azimuths indicated in the aftemoon initially fell above the curve ofthe true

solar azimuth for the early portion of the afternoon. Like colony 1, however, the rate of

change ofthe azimuth in the afiemoon is lower than the expected rate of change (slope =

3.7°/hr, R2 = .16, T = 3.49, df= 65, p < .001). The afternoon slope is considerably less

than the morning slope (20.6°lhr, T = 3.35, df= 23, p = .001) (see Table 3.3). The two

slopes are significantly different (T = 2.71, df= 88, p < .005).

A 180° step fimction through the middle ofthe training time (azimuth = 255°) explains a

high proportion ofthe variance (R2 = .82) but the fit is not significantly better than the fit

with the true ephemeris fimction (R2 = .76) (F, = 1.11, df= 91, 91, p > .05). This result is

somewhat troublesome in light ofthe results from colonies 1 and 2. Colony 3 had a

different training regime than the two other colonies. The bees of this colony experienced
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a much larger proportion of the sun's daily course. The original prediction for the

emphemeris fimction estimated by the bees of this colony was not a step function. With

the increased experience, one ofthe predictions was that the bees would have a more

accurate representation ofthe sun's course for the entire day. In fact, the prediction

corresponded to actual emphemeris function. This presented a potential problem of

interpretation because if the bees indicated the accurate azimuth function, it would be

impossible to distinguish between whether they were relying on an accurate representation

ofthe sun's course or a view ofthe sun through the clouds. Because of this, the

experimental plan included transporting this colony to a nearby location with a similar

array of landmarks in a different orientation (this technique had been successfully used in

the past (Dyer, 1987)). Several attempts were made to complete this manipulation, but

the bees failed to visit the feeder. After an unsuccessfiil attempt to get the bees to fly in

the test location in the morning, the colony was opened in the training location in the

afiernoon and the bees immediately began to visit the feeder and dance in the hive. These

data were subsequently recorded knowing the potential ambiguities that could result. The

overcast consisted of a dense fog at times, so it seems unlikely that the bees could directly

detect the sun. Systematic errors ofthe type evident in the data of colony 3 are not

uncommon in the sun compass literature (e. g. Wehner and Lanfranconi (1981)). It is this

type of systematic error, and the error evident in the step fiinction of colonies l and 2 that

will allow different potential mechanisms to be distinguished. The following chapters will

explore the nature ofthe potential mechanisms.
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Table 3.3 Regression Analysis of Individual Bees' Azimuth Estimates (Colony 3)

  

  

Bee Morning Afternoon

Slope R2 prob. n Slope R2 prob. n

41 -1.99 0.16 0.22 6

59 6.29 0.37 0.07 7 5.11 0.71 < 0.001 22

Total 20.58 0.33 <0.001 25 3.66 0.16 <0.001 67
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Figure 3.6 Solar azimuths inferred from the dances of restricted

experienced bees of colony 3. Solar azimuth curve is for August 10.
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3.3.4 Colony 4

The procedures used for colony 4 differed from the other three colonies in several

respects. This colony was restricted to fly only in the morning instead ofthe afternoon,

and I used an alternative method to determine these bees' estimates of the solar positions

during the unexperienced portion of the day. Instead of using the dances ofthe bees to

infer their representation ofthe sun's position, I used their flight bearings in unfamiliar

territory on a sunny day. Bees were captured at the feeder and released in a novel location

alter a holding period. Under these circumstances, bees normally use the sun compass to

set a homeward course (even though in these circumstances, the homeward direction takes

them in the wrong direction) and they compensate for the apparent movement ofthe sun

during their captivity (Meder, 1958).

Results of these manipulations are presented in Figure 3.7. The results show considerably

more variance than method ofusing the dance language. Therefore, I have plotted the

means :1: standard errors for the 10 significantly oriented groups ofbees (out of 12) in

Figure 3 .7. Nine ofthese were from a single release site and one was from another release

site. Most ofthe data corresponds roughly to the true ephemeris fiinction. With the high

error variance, the fit to the azimuth fimction was low (R2= .25), but the fit to a step

fiinction was considerably worse (R2: -.61).
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Several factors could have contributed to these results. First, the colony was set up in an

area with numerous other large hives, so it is possible that experienced bees could have

drified to the restricted experience colony. Second, the bees could have used landmarks

for orientation. Both the training site and the test site had a row oftrees that bore some

resemblance. They were of different densities and of different distances, but they may

have contributed to the orientation. This conclusion is supported (albeit weakly) by the

fact that one set of releases from an alternative site has a mean that falls a considerable

distance from the sun azimuth curve (see the circle in Figure 3 .7). The mean for these

data is almost exactly 270°, and it is further from the sun azimuth curves than any ofthe

other sets. Unfortunately, there was not time to make further releases fi'om this site before

the colony was compromised by an insufficient closing.

Although the data from flight bearings is considerably more variable than the data from

dance angles, it is somewhat easier to collect because ofthe required weather conditions.

This suggests that although colony 4 does not contribute much to the results presented

here, it may nonetheless serve as a useful guide to future investigations.
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Figure 3.7 Solar azimuths inferred from the vanishing bearings of colony

4. The data are means i standard error of significantly oriented groups of

bees (10 of 12) at two different release sites (squares and circle). Tests

occurred between August 11 and 26. The azimuths inferred for each

release day are plotted. The solar azimuth shown corresponds to August

1 8.
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3.4 Summary

The data presented here for honey bees and the data obtained from similar experiments

with ants (Wehner & Muller, 1993) suggest that the previous computational models of

linear interpolation and extrapolation are inadequate in their explanation ofthe

mechanisms by which insects (at least hymenopterans) compute the position ofthe sun to

fill gaps in their experience. New models are required to understand the underlying

computational mechanisms that results in the ability of ants and bees tofill large gaps in

their experience and incorporate aspects ofthe nonlinear pattern ofthe movement ofthe

azimuth into their estimates.

The new models must satisfy several conditions that the experiments with experience-

restricted bees revealed. First, the bees indicate a position for the morning sun that is 180°

from the position of the sun in the afternoon. Second, the transition between these

positions occurs at about noon. Third, the bees seem to rely on a continuous function to

estimate the position ofthe sun. Fourth, the representation ofthe sun's course is more

accurate with more experience.

Dyer and Dickinson (1994) suggested that the bees may have something analogous to a

template as described for bird song (Marler, 1976, 1984) that would account for their

behavior. It may be fruitfiJl to think about the models in the subsequent chapters as

templates for learning about the sun's course.



Chapter 4

NONLINEAR SYMBOLIC MODELS

It is clear from the data presented in Chapter 3 that the previous computational models of

sun compass learning cannot adequately account for the behavior ofthe insects in the most

recent experiments. New models are needed to fill these gaps. In this chapter and in the

subsequent chapter, several new models will be presented. The models are based on

contrasting approaches to modeling cognition and they differ considerably in their

underlying representational structure (i.e. how they represent the sun's course). In this

chapter I will consider a nonlinear symbolic model, while in the next chapter I will

consider a nonlinear nonsymbolic (or connectionist neural network) model. My goal will

be to examine how each ofthese approaches might be applied to the sun compass learning

problem.

4.1 A Symbolic Model of Sun Compass Learning

In the previous models of sun compass learning, measurements ofthe rate of change of the

azimuth at an observed time were used to compute the position ofthe sun at a new time.

The symbolic quantities of azimuth position and time are maintained throughout the

computation. The input symbols are manipulated mathematically to yield output symbols.

87
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The neural implementation of this computation would involve neural symbols that

represent azimuth position and time. Gallistel has specifically argued that the sun

compass learning problem can only be solved symbolically (Gallistel, in press). This

conclusion will be critically examined in the following chapter with the development of a

nonsymbolic model, but the first priority is to determine if there is a symbolic process that

the insects could use to fill gaps in their experience with the sun.

The equations ofthe true solar azimuth fiinction are symbolic (equations 2.1 and 2.2).

These equations have three input variables (latitude, solar declination, and time of day)

that could be used to calculate the output variable of azimuth position. As indicated in

Chapter 2, two of the input variables (latitude and declination) would be difficult for an

animal to assess. Both ofthese variables are confounded in the zenith distance ofthe sun.

In order to use the zenith distance as a means of determining the azimuth function, the

animal would have to have an independent measure of either declination or latitude. This

is not out ofthe range of possibility. Latitude for instance could be determined fi'om the

inclination of the earth's magnetic field (Wiltschko & Wiltschko, 1995). However, it does

not appear necessary to postulate a mechanism for the independent assessment of latitude

and declination. Experiments suggest that the zenith distance ofthe sun does not play a

role in the sun compass ofmany animals. Recall that longitudinal translocations indicate

that the animals respond to the sun's azimuth and their internal sense oftime without

regard for the sun's zenith distance (Papi, 1955; Renner, 1959). The equivalent effect has

been shown in animals with a phase-shifted circadian clock (Hoffmann, 1960). In
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addition, experiments with artificial suns have shown that the zenith distance does not play

a role in the determination of direction (St. Paul, 1953; Brines & Gould, 1979).

Instead of attempting to disentangle the potential inputs of zenith distance and latitude, I

will focus on the directly observable quantities. This is what the previous computational

models have done. The variables of azimuth angle and time are directly measurable by the

animal. Specific instances ofthese variables could be used to estimate a parameter that

describes the relationship between the variables. In the case ofthe previous computational

models, the parameter is the rate of change ofthe azimuth. The parameter is a constant

that can be used to compute specific values for the output variables of azimuth position

and time, given specific input values. The data suggest that more is needed. None ofthe

previous models were supported by the experimental results ofWehner and Muller (1993)

and Dyer and Dickinson (1994). They found that insects somehow account for the

varying rate of change ofthe azimuth over the day. Thus the rate of change of the

azimuth (r) is not a constant, but is itself a variable. The goal ofthe present model is to

determine a fimction that could describe the varying rate of change ofthe azimuth over the

course ofthe day.

The pattern ofthe curves in Figure 2.2 indicates that the rate of change ofthe azimuth

systematically varies over the course ofthe day. Thus r is also a function oftime. It is the

azimuth rate function. But what form does this fiinction take? In nature this equation is

the first derivative of the azimuth firnction (equations 2.1 and 2.2) with respect to time.
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But if it is reasonable to assume that the animals do not have access to the true azimuth

fimction (since they would need to independently assess latitude and declination), it is

reasonable to assume that they do not have access to its first derivative. These two

suppositions are further substantiated by the fact that bees that have restricted experience

do not have completely accurate representations ofthe sun's course (Dyer & Dickinson,

1994). Therefore, the azimuth rate firnction that the bees used is assumed to be an

approximation ofthe true azimuth rate function. Furthermore, this approximation should

be based on the readily observable quantities of azimuth angle and time of day. These

quantities would allow the parameters ofthe function to be estimated.

One function that meets these qualifications is based on the geometry of an ellipse. This

model was originally suggested in qualitative terms by Rudolf Jander (personal

communication). I have formalized this model and will show that it describes the

experimental data well. This model allows the generation of complete azimuth flmctions

from experience with very small portions ofthe actual azimuth fiinction. The azimuth

fimctions generated from the model are approximations ofthe true azimuth function, but

they are approximations that would allow a high degree of accuracy with a relatively small

investment in time to learn the pattern. The fit ofthe model functions to previous data

sets is very good.
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4.2 The Ellipse Rate Function

In this new symbolic model, the true azimuth rate function is assumed to be approximated

by an ellipse plotted in polar coordinates. In this form, the angle ofthe plot corresponds

to time, which cycles over 24 hours, and the length of the radius vector corresponds to the

rate of change of the azimuth. Ellipses of different shapes would correspond to azimuth

firnctions for different seasons and latitudes. Specifically, rounded ellipses correspond to

temperate latitudes and squashed ellipses correspond to tropical latitudes. This provides a

means of visualizing the relationship between the rate of change ofthe azimuth and the

time of day.

The geometry of an ellipse intuitively seems to provide a good description ofthe

variations in the rate of change ofthe azimuth over the course of the day. The rate

(radius) varies systematically with time of day (angle). As the radius sweeps around the

ellipse (like the hands of a distorted clock) it increases to a maximum at the semimajor axis

and decreases to a minimum at the semiminor axis. Thus the equation of the ellipse in

polar coordinates may be a fimction that closely approximates the rate fiinction ofthe

actual azimuth.

In the following sections, I will first bolster the case that the geometry ofthe ellipse

provides a good approximation for the true rate fimction. I will subsequently introduce

the equation of the ellipse in polar coordinates as an approximation for the true rate

fimction. The first part ofmy argument is purely geometrical.
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4.2.1 The Geometry of the Ellipse

From Figure 2.2 (see also Figure 4.1 below), it is clear that the rate of change of the

azimuth varies systematically over the course ofthe day. It reaches a maximum at midday

and symmetrically increases prior to midday and decreases after midday. The true rate

function and its hypothesized relationship with an ellipse function is portrayed in Figure

4.1. The first panel of Figure 4.1 (A and B) shows the full 24 hr azimuth fimction for a

temperate latitude (40° N) and a tropical latitude (10° N) for the equinox. In both azimuth

functions, the rate of change of the azimuth varies systematically over the course ofthe

day. The rate of change of the azimuth for a given time of day corresponds to the slope of

the azimuth curve at that point. In both curves the slope starts out high and decreases. It

subsequently increases to a maximum at noon before decreasing again. The systematic

variation in the slope is what needs to be explained by a rate function. The pattern of the

variation of the slope over the course ofthe day defines the azimuth rate fimction.

In the second set ofgraphs (Figure 4.1 C and D), the rate of change ofthe azimuth is

plotted against time. This plot shows the systematic variation in the rate of change of the

azimuth with time of day that was described in reference to the curves in Figure 4.1 A and

B. The rates plotted in the second panel were calculated numerically over intervals of 8

minutes. The plots for both latitudes reveal a similar pattern, although the range between

the maximal and minimal rates is more extreme in the tropical curve. Ifthe x-axis were

stretched out to include several days, the pattern of change in the rate would repeat itself;
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therefore, the true rate function is a cyclic fimction with alternating increasing and

decreasing rates of change of the azimuth. Polar coordinates are well suited to the

representation of cyclical functions. The idea ofthe ellipse function is that the pattern of

increasing and decreasing rates of change ofthe azimuth would correspond to an ellipse if

they were plotted in polar coordinates. Thus, the equation of the ellipse would form an

approximation ofthe true rate function. In the third pair ofgraphs in Figure 4.1 (E and

F), a hypothetical pair of ellipses are plotted. Time is plotted in degrees with the following

relationships: 00:00 = 0°; 06:00 = 90°; 12:00 = 180°; 18:00 = 270°. The lengths of the

semimajor and semiminor axes of the ellipses correspond to the maximal and minimal rates

of change in the azimuth plotted in C and D of the figure. The resulting pattern is clear.

An ellipse has the potential to describe a wide variety of emphemeris firnctions. Relatively

rounded ellipses correspond to the ephemeris functions oftemperate latitudes, while

relatively squashed ellipses correspond to the ephemeris fimctions of tropical latitudes.
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Figure 4.1 The ellipse approximation of the azimuth rate function. The

rate of change of the azimuth varies systematically over the course of the

day. A. The full 24 hour azimuth function for 40° N at the equinox. B.

The 24 hour azimuth fiinction for 10° N at the equinox. C. The azimuth

rate function for the azimuth curve in A, computed over 8 minute intervals.

D. The azimuth rate function for the azimuth curve in B, computed over 8

minute intervals. E. An ellipse based on the rates in C (semimajor axis =

23°/hr; semiminor axis = 10°/hr). F. An ellipse based on the rates in D

(semimajor axis = 85°/hr; semiminor axis = 3°/hr).
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The hypothetical correspondence between the shape of an ellipse and the latitude of an

azimuth function is intuitively satisfying. Whether it actually approximates the true rate

function is another question. The actual values ofthe rate of change ofthe azimuth

plotted in Figure 4.1 C and D can be plotted in polar coordinates to check their

correspondence of the ellipse functions plotted in E and F ofFigure 4.1. Figure 4.2 (A)

provides a comparison of the true rate functions plotted in polar coordinates with the

ellipses generated in Figure 4.1 E and F. In this case, the curves for the different latitudes

are plotted in the same figure (the scale is the same as Figure 4.1 E and F). The ellipse is a

very good description ofthe azimuth rate curve for 40° north latitude. The azimuth rate

curve is nearly identical to the ellipse when plotted in polar coordinates. In contrast, the

azimuth rate curve varies slightly from the form ofthe ellipse for the 10° N curve.

However, the ellipse may still provide a good approximation to this 10° N rate function.

Figure 4.2 (A) still shows the special case ofthe equinox. As the declination ofthe sun

changes, the pattern ofthe polar plot ofthe true rate firnction changes considerably, and

the shape diverges significantly fi'om that of a true ellipse. Panels B and C ofFigure 4.2

show this effect. In panel B, the true rate function is plotted for 10° N on April 16

(declination 9°54') when the sun passes nearly directly overhead at noon. The scale ofthe

plot has been changed 100 fold to reveal the change in the pattern. Since the azimuth is

shifiing abruptly from east to west, there is a spike in the rate around noon. Note that the

pattern is now asymmetrical, since there is no corresponding spike at midnight. The
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pattern is more clearly evident in panel C ofFigure 4.2 which shows the true rate function

for 40° north latitude at the equinox.

Although the pattern of the true rate function plotted in polar coordinates is clearly

asymmetrical and not elliptical, the ellipse may nonetheless provide a good approximation

ofthe true rate firnction, particularly during the day. The pattern ofthe function between

06:00 (90°) and 18:00 (270°) is symmetrical around noon and well approximated by half

an ellipse. This corresponds to the majority ofthe hours of daylight, particularly in the

tropics. The fact that the nocturnal values would not be well approximated by the daytime

ellipse is not a serious problem. This would in fact be an interesting prediction ofthe

ellipse model. This would suggest that the solar positions estimated at night by animals

relying on a representation ofthe sun's movement based on an ellipse would correspond to

the pattern of movement ofthe sun during the day, even if the true nocturnal pattern

differed considerably. For temperate latitudes, the nocturnal values that would be

observed do not deviate considerably fiom an ellipse estimated from the daytime values.
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Figure 4.2 The true azimuth rate fimction plotted in polar coordinates.

The values plotted correspond to the numerically calculated rate of change

of the azimuth over 8 minute intervals. A. 40° N and 10° N for the

equinox. B. 10° N for April 16 (declination 9°54'). C. 40° N for the

summer solstice. In all cases the curves are not truly elliptical. The shape

varies considerably with season and latitude.
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4.2.2 The Equation of the Ellipse

Since the ellipse fiinction appears to be a relatively good candidate as an approximation to

the true rate fiinction, the equation of the ellipse in polar coordinates can be used to

describe the fiinctional relationship between time of day (1:) and the rate of change of the

azimuth (r). Thus:

ab

Jaz sin2(t) + b2c0S2(‘C)

 

r (4.1) 

where r is the rate of change ofthe azimuth; ‘C is the time angle (with 15° per hour); and a

and b are the parameters ofthe ellipse. These parameters are equivalent to the parameters

a and b in the familiar Cartesian equation of the ellipse which correspond to length of the

semimajor axis and the semiminor axis respectively:

— +— = (4.2)

The values of the parameters a and b determine the shape ofthe ellipse. When a and b

are roughly equal, the ellipse is nearly circular. When a is very large with respect to b,

the ellipse has a much more squashed shape. In terms ofthe rate of change ofthe

azimuth, the greater the variation between the maximal and minimal rates, the more

tropical the azimuth fiinction is (see Figure 4.1).

Equation 4.1 can be used in combination with equation 3.1 to determine the position of

the azimuth for a particular time of day. Equation 4.1 yields a series of values for the rate
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of change ofthe azimuth (r) for different times of day. These values can substituted into

equation 3.1 at the appropriate times of day in the calculation ofthe azimuth.

Using these two equations to calculate azimuth, one of which is a discrete difference

equation, bypasses an obvious alternative approach. Since the rate of change ofthe

azimuth (r) is a function of time, and it is theoretically the first derivative of the azimuth

fimction, if the antiderivative of the rate function can be found, an explicit fiinction ofthe

azimuth in terms oftime would exist and could be used to directly calculate azimuth

positions by time of day. However, no such explicit firnction appears to exist for equation

4.1. In addition, using the difference equation (3.1) with the ellipse rate function (4.1)

provides a direct parallel between the previous linear models of sun compass learning and

this nonlinear model, since all of the previous models can be expressed in terms of

equation 3.1 (see Chapter 3).

One byproduct of using a difference equation is that shape ofthe resulting fimction varies

with the number oftime steps used, as in any difference equation. This technically adds

another parameter to the azimuth estimation fiinction, although it is not a parameter that

the bees would have to estimate. However, this effect of the time steps may help describe

some ofthe results of previous experiments (Dyer & Dickinson, 1994), because it turns

out that using a function with fewer time intervals increases the likelihood ofgenerating an

azimuth estimate that corresponds to a step function (see section 4.9 below).
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In the next section, I will consider the range of functions that result fi'om a use of a

combination of the ellipse rate firnction (equation 4.1) and the azimuth difference

equation (3.1). The values ofthe ellipse parameters a and b required to produce these

curves will be generated, but I will leave it to the following section to discuss how the

parameters can be estimated by the insects.

4.3 The Ellipse Azimuth Function

Figure 4.3 shows the azimuth fimctions generated using equations 3.1 and 4.1 for the

same seasons and latitudes as discussed in the previous section (and Figures 4.1 and 4.2).

Panel A ofFigure 4.3 shows the true azimuth firnction for 10° north latitude at the

equinox and two azimuth fimctions generated from the model equations. Clearly, the

model does a very good job of approximating the true azimuth function, since one ofthe

lines completely overlaps the true function. The azimuth functions produced from the

ellipse rate fiinction in Figure 4.3 (A) both used an ellipse with the same parameters (a =

23, b = 10). These are the same parameters that were derived fiom the true rate function

in Figure 4.1. The two curves differ slightly because one has been scaled to 360°

(squares) and the other has not (diamonds). Looking at Figure 4.3 (B) it is apparent that

scaling is necessary to accurately approximate the true azimuth function. This shows the

actual azimuth function and two ellipse azimuth estimates for 10° north latitude at the

equinox. The ellipse parameters for this ellipse azimuth function were again taken from the

true rate function for 10° north latitude as in Figure 4.1 (D) (a = 85, b = 3). The scaled

ellipse azimuth fimction again provides an extremely close correspondence to the actual
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azimuth fimction. In this case, however, the unsealed ellipse azimuth function provides an

extremely poor approximation. This probably results from the fact that the true rate

function does not correspond to an ellipse in this case (see Figure 4.2 A). Scaling the

ellipse azimuth function forces equation 3.1 to sum to the appropriate level (360°).

Without scaling, the accumulation of errors can lead to results that deviate substantially

from the true pattern.

The third and fourth panels of Figure 4.3 (C and D) show the effects of seasonal variation

on the approximation of the ellipse azimuth fimction to the actual azimuth fimction. Again

the curves are for 10° and 40° north latitude. The declinations ofthe sun correspond to

those considered in Figure 4.2 The summer solstice curve is plotted for the 10° latitude

line and the April 16 curve is plotted for the 10° north latitude. The scaled and unscaled

ellipse azimuth fimctions are plotted as in A and B above. Again, the need for scaling the

resulting functions is apparent, particularly in D. Additionally, even the approximation of

the scaled ellipse azimuth flinction is not as good as in the functions plotted for the

equinox. Because of the symmetry ofthe ellipse, the ellipse azimuth fiinctions are

constrained to pass through 90° at 06:00 solar time and 270° at 18:00 solar time. Thus

the correspondence to the actual azimuth fimctions is not as good, since the true azimuth

firnctions do not have this constraint. This is one ofthe most important predictions ofthe

ellipse model.
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The necessity of scaling the output is probably not a serious problem for this model. Since

it is a neural model (the symbolic calculations are assumed to be implemented in

isomorphic neural processes) the outputs would not be scaled identically to the numerical

values presented here. The output could easily be a ratio based on another value in the

calculation. The scaling function I used relies on this simple manipulation:

A: = i4£360 (4.3)
AN

where the scaled azimuth at time I (AI) is equal to the ratio of the unscaled azimuth at

time I (A) and the unscaled azimuth for the last time interval (AN) multiplied by 360°. This

implies that the azimuth at midnight is 360°. The ellipse azimuth function could just as

easily be scaled to 180° at noon. Both ofthese alternatives force the ellipse function to

take on values that may not necessarily exist for a given latitude and season (i.e. if the sun

actually passes to the north at noon). However, the ellipse azimuth function could also be

scaled to pass through 90° at 06:00 or 270° at 18:00. All actual azimuth functions pass

close to these values and all scaled ellipse azimuth fimctions pass through them.
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Figure 4.3 The scaled and unscaled ellipse azimuth functions for different

seasons and latitudes. A. The true solar azimuth is plotted with two ellipse

azimuth fimctions for 40° north latitude at the equinox. The squares

correspond to the scaled ellipse azimuth firnction and the diamonds

correspond to the unscaled azimuth fimction. The ellipse parameters for

both ellipse azimuth fimctions are a = 23, b = 10 (as in Figure 4.1 E). The

scaling function is described in the text. The true sun azimuth curve is

depicted by the heavy line. B. The solar azimuth function (heavy line) and

two ellipse azimuth estimates (scaled = squares; unscaled = diamonds) for

10° north latitude at the equinox. Ellipse parameters are a = 85, b = 3. C.

The solar azimuth fimction (heavy line) and two ellipse azimuth estimates

(scaled = squares; unscaled = diamonds) for 40° north latitude during the

summer solstice. Ellipse parameters are a = 48, b = 9 (these values were

determined from the actual azimuth rate function numerically calculated

over 8 minute intervals as in Figure 4.1 C and D, and depicted in Figure 4.2

C. D. The solar azimuth fiinction (heavy line) and two ellipse azimuth

estimates (scaled = squares; unsealed = diamonds) for 10° north latitude on

April 16 (declination 9°54'). Ellipse parameters are a = 662, b = 1.5. The

values for the ellipse parameters a and b were determined fi'om the actual

azimuth rate fiinction, numerically calculated over 8 minute intervals as in

Figure 4.1 C and D, and depicted in Figure 4.2.
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All of the ellipse azimuth functions presented up to this point concern azimuth fimctions

that pass to the south at noon: those typically viewed from the northern latitudes. But

during the northern summer, from most vantage points on the earth, the sun passes to the

north at noon. At the northern summer solstice this occurs fiom viewing positions from

the tropic of Cancer (23°26' N) southward. In these cases, the sun appears to move

counterclockwise around the northern horizon. By convention, the rate of change of the

azimuth in these cases would be negative. The rate of change is still maximal around

noon. The fimctional relationship between the rates of different times of day is

maintained; therefore, it would seem that they too can be described by an ellipse function.

However, by inspection of equations 4.1 and 4.2 (the equations ofthe ellipse), it is clear

that the ellipse will have a positive radius (r, the rate of change ofthe azimuth) even if the

parameters a and b are negative. The easiest way around this problem is to assume that

information about direction of movement is maintained in a separate channel of

information flow in the nervous system. This information can be implemented by changing

the sign in equation 3.1 and subtracting changes in azimuth fi'om previous values

throughout the day.

Figure 4.4 shows the results of a case of counterclockwise movement. In this figure, the

azimuth functions for 5° N and 40° N on the summer solstice are plotted with the

corresponding scaled ellipse fiinctions (40° N: a = 48, b = 9; 5° N: a = -43, b = -1).

Although it is technically inaccurate, for simplicity, I have conveyed the information about

the direction of movement in the signs ofthe parameters a and b. I will use this
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convention henceforth. The values for a and b are theoretical estimates, derived from a

numerical calculation of the true azimuth rate firnctions for the two ephemeris functions

(as in Figures 4.1, 4.2, and 4.3). Additionally, the actual theoretical value for b is 1,

instead of -1. This occurs because in the tropics the azimuth's movement along the

horizon can reverse directions. But for the model, I will assume that b has the same sign

as a.

From Figures 4.3 and 4.4 it is apparent that the combined use of equations 4.1 and 3.1

(the ellipse azimuth function) with appropriate scaling functions, can yield sun azimuth

positions that closely approximate the true sun azimuth firnction for any particular season

and latitude.
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Figure 4.4 Ellipse azimuth fimctions for 40° N and 5° N at the northern

summer solstice. The parameters ofthe ellipse rate function were

estimated fi'om numerical calculations ofthe actual azimuth rate fiinction

over 8 minute intervals (as in Figures 4.1, 4.2, and 4.3) (40° N: a = 48, b =

9; 5° N: a = -43, b = -1). The actual ephemeris fiinctions are plotted for

comparison.
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4.4 Estimating the Parameters of the Ellipse

The ellipse rate firnction (equation 4.1) has two parameters that determine its shape (a and

b). These parameters can be estimated from the readily observable quantities that have

been used in the previous symbolic models of this process: azimuth position and time of

day. For a bee to estimate the position of the sun using computations equivalent to

equations 3.1 and 4.1, she would have to estimate the parameters ofthe ellipse at a time of

day when the rate of azimuthal movement has been observed. With two observations of

the rate of change ofthe azimuth and time (this could involve four observations of azimuth

position and time, see equation 3.2), the parameters a and b can be estimated with the

following two equations:

 

- 2 - 2

'81!) T] —SlIl ‘Czl

 

a=r1r2 (4.4)
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b=r1r2 (4.5)

lrfcos 11 —r§cos212|

in which a and b are the estimated parameters ofthe ellipse and r,, r2, 1,, and 132 are

specific observations ofthe rate of change ofthe azimuth at specific times of day.

Equations 4.3 and 4.4 were generated by solving equation 4.1 for a and b and substituting

each equation into the other. I have added the absolute value operators to prevent

imaginary numbers from resulting. They have no effect on the magnitude ofa or b, only

whether they are real or imaginary. This manipulation is required because not all rates
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and times that could be observed by a bee necessarily fall on a true ellipse since the ellipse

is an approximation ofthe true function. If equations 4.4 and 4.5 were not constrained in

this way, the resulting fimction would not necessarily be an ellipse.

Note that once again the effects of observed negative rates (counterclockwise movement

ofthe azimuth) are eliminated in equations 4.4 and 4.5 (assuming the two observations of

rate have the same sign). This occurs because the rates are multiplied together and

squared in equations 4.4 and 4.5, eliminating negative sign ofthe rates. This substantiates

the need for an independent channel to carry information about the direction ofmovement.

4.5 Fit of Ellipse Azimuth Function to Experimental Data

The ellipse azimuth fiinction is flexible enough to represent a wide range of azimuth

functions. By determining the values of a few parameters, an animal can have a

representation of a full 24-hour fimction which closely approximates the course ofthe sun.

In the data presented in Chapter 3, it was established that honey bees can relatively

accurately estimate the position of the sun in the morning, even if they have previously

seen it only during the late aftemoon. However, the bees' representation ofthe sun's

course was not completely accurate. Instead, the data suggested that a 180° step fiinction

describes the mechanism they were using. Figure 4.5 shows that the ellipse azimuth

fimction can produce curves that range from 180° step firnctions to relatively flat curves

that correspond more closely to a sun azimuth curve from a temperate region. The

parameters (a and b) for the ellipse azimuth functions range from the theoretically
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expected values (given the actual maximum and minimum rates of change of the azimuth

for those dates) to the values that best fit the experimental data. The set of parameters of

the ellipse function that produced the best fitting azimuth curves to the data was actually

one set of out of many sets of parameters that fit the data equally well. Because ofthe

discrete nature of one ofthe equations (3.1) used to generate the ellipse azimuth function,

the best-fitting parameters had to be determined iteratively rather than analytically. I used

a hill climbing algorithm to make small adjustments to a and b in order to find the values

ofthe parameters that maximized R2. The algorithm stopped repeatedly at local maximum

that produced R2 values very close to each other, often differing only in the fifth decimal

place. A systematic exploration of the space revealed a long ridge of roughly equal height.

For the values of the parameters reported, I used the values closest to the theoretically

predicted values that resulted from 50 runs from different randomly chosen starting points.
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Figure 4.5 A range of ellipse azimuth functions corresponding to the data

from colony 1 (see Chapter 3). A. Parameters corresponding to the best

fitting ellipse fimction (a = 1076, b = 1). B. Intermediate parameters (a =

600, b = 3). C. Intermediate parameters (a = 300, b = 6). Theoretical

(expected) parameters ofthe ellipse (numerically calculated from the true

azimuth rate fimction as in Figure 4.1, 4.2, and 4.3) (a = 36, b = 10). The

shaded region corresponds to an ideal step function based on the data from

colony one. The region corresponds to the mean (270° or 90°) i one

standard deviation (~30°) ofthe data.
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An azimuth fiinction generated with a combination of equations 3.1 and 4.1 fits the data

from colony 1 well (R2 = .87; a = 1076, b = 1). This is 2% better than the fit ofthe 180°

step function, but it is a statistically significant difference (Fs = 1.16, df= 536,536, p <

.05). This difference probably results from the fact that the ellipse function explains the

variance of the bees' estimates during the midday transition period better than a step

fimction. See Table 4.1 for a comparison ofgoodness-of-fit with the actual azimuth

function and the 180° step fimction. The parameters ofthe ellipse fimction that produce

the azimuth curve that best fits the data are considerably different from the theoretically

expected parameters (see Figure 4.5 and Table 4.2). The theoretically expected

parameters were derived from numerical calculations ofthe true rate function. The value

ofa in the best-fitting ellipse was 1,076° per hour which was nearly 30 times the 36° per

hour expected maximal rate around midday. It would seem that if the bees are using this

type ofmechanism to estimate the unknown azimuth, they are using an ellipse that is

considerably more squashed than the most appropriate ellipse for this season and latitude.

This could be a default mechanism.

For colony 2 an azimuth firnction generated from the ellipse rate model explains a

considerable proportion of the data (R2 = .94; a = 421, b = 3) ofthe experience-restricted

bees. The fit ofthe data to the ellipse model is significantly better than the fit ofthe data

to the actual ephemeris fimction (Fs = 4.23, df= 179,179, p< .001), and to the 180° step

function (Fs = 1.53, df= 179,179, p < .005). Again, the observed parameters of the ellipse
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that produced the best fitting azimuth curve were different from the theoretically expected

values (see Table 4.2).

The ellipse model, with different parameters of shape, also explains a considerable fraction

of the data for the fully experienced bees (R2 = .87; a = 36, b = 3). This is significantly

better than the 180° step fimction 073 = 2.85, df= 59, 59, p < .001). The ellipse function

appears to explain slightly more ofthe data than the actual azimuth function, but the

difference is not statistically significant (F, = 1.29, df= 59, 59, p = .17). Thus the fully

experienced bees appear to be using an ellipse azimuth function based on a more accurate

estimate ofa and b.

For colony 3, the ellipse azimuth function fits the data as well as the 180° step fiinction

(R2 = .82; a = 13; b = 9); there is no statistical difference between them.

For colony 4, the ellipse azimuth function fits the data about as well as the true azimuth

fimction (R2 = .27; a = 31; b =16). The fit ofthe data to the ellipse azimuth was not

statistically different from the fit to the true sun azimuth, although both were substantially

better than the step function. There is considerably more error variance for this colony,

which relied on flight bearings rather than dance angles to determine their estimates ofthe

solar azimuth.
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Table 4.1 Fit of Models to Experimental Data (R’)

 

 
   

Data Set Azimuth Step-Function Ellipse

Colony 1 0.59 0.85 0.87

Colony 2 (RE) 0.73 0.91 0.94

Colony 2 (FE) 0.85 0.65 0.87

Colony 3 0.76 0.82 0.82

Colony 4 0.25 -0.61 0.27

 

RE: restricted experience; FE: full experience

 

Table 4.2 Expected and Observed Parameters of the Ellipse

 

 

  
  

Data Set Expected Observed

a b a b

Colony 1 36 10 1,076 1

Colony 2 (RE) 27 10 421 3

Colony 2 (FE) 27 10 36 3

Colony 3 32 10 13 9

Colony 4 30 10 31 16

 

RE: restricted experience; FE: full experience
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4.6 Fit of Ellipse Azimuth Functions to Other Data Sets

In addition to fitting the experimental data from Chapter 3 well, the ellipse model may be

applied to other data sets with similar success. The data from New and New (1962)

provide an example ofthe generality of this model as a description of sun compensation.

Recall that New and New (1962) observed the dance ofbees in the tropics as the sun

passed very close to the zenith at noon. They found that bees compensated during midday

at a very rapid rate over the approximately 180° separating the morning and afiemoon

azimuths ofthe sun. The data (see Figure 3.3) have long been interpreted as evidence that

bees interpolated linearly between the moming and afiemoon positions ofthe sun. The

alternative explored here is that the bees were using a continuous function based on an

ellipse. With suitable parameters, the ellipse azimuth fimction describes the data very well

(see Table 4.3). In this case, the observed parameters ofthe best fitting ellipse azimuth

functions are quite close to the expected parameters (see Table 4.4).

One striking result ofNew and New (1962) was the fact that the bees anticipated the sun

passing to the north at noon several days before this occurred. With the ellipse model, this

would suggest that the bees were using the parameters of a single ellipse throughout the

days during the transition period. The pooled data (for colony 1) fi’om New and New

(1962) for April 15 to 21 are well described by a single ellipse azimuth function (R2 = .91,

a=-251,b=-2).
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Table 4.3 Fit of Ellipse Model to New & New (1962) Data (R2)

 

Data Set
 

April 15

April 16

April 17

April 18

April 20

April 21

Azimuth 180° Step-Function
 
 

-0.42

0.14

0.48

0.36

0.72

0.74

0.51

0.5

0.63

0.19

0.33

0.31

Ellipse
 

0.92

0.92

0.9

0.97

0.89

0.91

 

Data from New & New (1962): Colony 1, Trinidad (10°38' N)

 

Table 4.4 Expected and Observed Parameters of the Ellipse (New & New, 1962)

 

 

    

Data Set Expected Observed

a b a b

April 15 240 3 -229 -1

April 16 254 3 -359 -2

April 17 263 3 -415 -2

April 18 -262 -3 -l66 -2

April 20 -23 8 -3 -218 -2

April 21 -227 -3 -192 -2

R2

0.92

0.92

0.9

0.97

0.89

0.91

 

Data from New & New (1962): Colony 1, Trinidad (10°38' N)
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4.7 Reducing the Number of Parameters

As 1 indicated above, in the search for the parameters that yielded the ellipse azimuth

functions that best fit the data, I encountered multiple pairs of parameters that produced

curves that fit the data equally well. In retrospect, this is to be expected since the effect

of the scaling function is to render the particular values assumed by the parameters a and b

somewhat irrelevant. This is because it is only the shape ofthe ellipse that is important in

determining the values that the ellipse azimuth function assumes. This suggests that it is

the relative magnitude of the parameters a and b that is important. Figure 4.6 further

substantiates this inference. Figure 4.6 shows the range of values ofthe parameters of the

ellipse (a and b) that yield ellipse azimuth functions that fit the data equally well (or very

close to it). These data are for the restricted experienced bees of colony 2. The linear

relationship between the values ofa and b indicates that it is the relative magnitude that is

important. This same pattern appears for almost all ofthe other data sets examined. The

data for colony 1 provide an apparent exception to this rule, which is probably a special

case where the slope of the line is zero. This probably results fiom the fact that all

parameters for the best-fitting ellipses for colony 1 yield ellipse azimuth functions that

approximate step fimctions. Thus, all of these functions explain the variance in colony 1

equally well. In other words, once the step-function threshold is surpassed, there is a

wider range of parameters that yield equivalent azimuth curves.
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Figure 4.6 Range ofthe parameters ofthe ellipse that generate equivalent

ellipse azimuth fiinctions (see footnote 6). All ofthe parameters yield

azimuth curves that fit the data of colony 2 equally well (R2 = .94). The

linear relationship suggests that the two parameters necessary to describe

the ellipse azimuth function may be reduced to a single ratio.
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This relationship between the parameters a and b suggests that the number ofparameters

that need to be estimated to generate an ellipse azimuth fimction may be reduced to one.

A single parameter would be powerfill enough to generate approximations to all ofthe

azimuth functions on the planet. I will define this parameter as k which is simply the

ratio ofa to b. From equations 4.4 and 4.5, a means of estimating k directly can be

generated:

 

 

Irjcosztl —r§cos2121
k: 2.2 2.2 (4.6)

Irlsrn 11 —r2srn 12'

This parameter can be used with the following equation to produce an ellipse of

standardized size:

r = k (4.7)

sz811121 + 00821

 

 

The semiminor axis ofthis ellipse is always one and the semimajor axis is k which

corresponds to the ratio ofa and b. This ellipse requires the use of a scaling function to

produce the correct range ofvalues.

4.8 Estimating k with Restricted Experience

So far I have shown that ellipses can be used to generate a range of azimuth functions and

that with the right parameters, these ellipse azimuth fiinctions provide a good fit to the

experimental data. With equations 4.4, 4.5 and 4.6, I have shown how the bees could
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theoretically estimate the parameters ofthe ellipse. There is a considerable gap, however,

between this theory and the practice of actually estimating the parameters given the

restricted experience of the bees. I conducted numerical simulations to see if this is at

least possible. I randomly picked four times of day falling within the training period of

colony 1. These defined two time periods over which I estimated the rate of change ofthe

azimuth, using the azimuth for the last day oftraining. For 1000 simulation runs, the

results suggest that accurate estimates ofk could be obtained with the restricted

experience (see Table 4.5). The mean k was 4.1 which is very closed to the predicted 3.6,

but very far from the observed 1,076 of the best fitting ellipse azimuth fimction. The

maximum k from this run was only 160.7.

This result raises the question ofhow the ellipse model can account for the data. This

question can be allayed somewhat by introducing error into the bee's ability to estimate the

position of the azimuth. New and New (1962) first suggested this as one ofthe potential

reasons behind the data they observed. Introducing error, or limits on visual acuity into

the estimate greatly increases the range of parameters estimated from the restricted

experience period. Even small errors of 1° can have large effects. New and New (1962)

suggested that a 3° acuity level best described their data. Table 4.5 shows the estimates of

k from 1°, 3° and 5° limits on acuity.
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Table 4.5 Estimates of k from the Training Period of Colony 1

 

  

Acuity Standard

Threshold Mean k Maximum k Median k Deviation ofk

0° 4.1 106.7 1.9 10.4

1° 41.3 16,700 2.1 602.1

3° 51 13,000 2.2 561

5° 32.3 2,698 2.3 160.1
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4.9 The Effect of the Time Interval

Since a discrete difference equation (3.1) is used in the generation ofthe ellipse azimuth

function, the length ofthe time interval over which it is summed has an effect on the

resulting function. I suggested above that this essentially added a parameter to the

equations. Presumably the bees (or other animals) have a specific time interval or average

interval that they would use in this process. It makes sense that it is a finite interval, since

the predicted change in azimuth should be above the perceptual threshold ofthe animal.

In the determination ofthe best fitting ellipse parameters, a single time interval was used

for all of the data sets: 40 minutes. Initially, I did not hold this parameter constant. The

result of numerous runs suggested that the best-fitting parameter was between 20 and 60

minutes. I assumed that the interval size should not vary considerably between individuals

or colonies. The 40 minute size is also corresponds to some empirical data that suggests

that bees update their information about the sun's position about every 40 minutes (Gould,

1984)

One ofthe effects of using this relatively large time interval (with respect to instantaneous

updates) is that error gets incorporated into the function that is generated. This is

equivalent to sloppy integration. It appears that this error increases the range of filnctions

that can be produced, particularly those resembling step functions, which correspond to

the experimental findings (Dyer & Dickinson, 1994). Figure 4.7 shows this effect.
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Figure 4.7. The effect oftime interval on the ellipse azimuth estimate. For

all ofthe curves, k is 1076 as in the best-fitting ellipse azimuth function for

colony 1. Time intervals are (A) 1, (B) 2, (C) 5, (D) 10, (E) 20, and (F) 40

minute intervals. The curve that is most like a step function is the curve for

40 minute intervals.
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4.10 Summary

In this chapter, I have shown that it is possible to derive a symbolic model that could

account for the recent experimental results regarding the sun-azimuth functions used by

ants (Muller & Wehner, 1993) and bees (Dyer & Dickinson, 1994). The critical departure

from previous models of sun compass learning is in the fact that this new model

incorporates the variation ofthe rate ofchange ofthe azimuth throughout the day.

Although other fiJnctions may perform as well, this model relied on the intuitively

satisfying model of a rate function based on the geometry of an ellipse.



Chapter 5

CONNECTIONIST MODELS

In this chapter I present a set of models that provides a contrast to the symbolic model

described in Chapter 4. In all ofthe models of sun compass learning presented in Chapters

3 and 4 the assumption was that insects rely on an explicit fiinction to calculate azimuth

position using the time of day. Regardless ofwhether the models relied on linear or

nonlinear rates of change ofthe azimuth in their calculations, the processes involved the

manipulation of symbols that corresponded to the observable quantities of azimuth

position and time.

In this chapter, I will present a set of connectionist models (Feldman & Ballard, 1982) that

contrast with all ofthe previous models of sun compass learning, including the model

presented in Chapter 4. In these models there is no explicit function computing azimuth

angle from inputs oftime of day. There is no mechanism manipulating symbols that

correspond to azimuth position and time of day. These models will include nonlinearities

(Grossberg, 1988) that may allow them to account for the nonlinearities ofthe pattern of

solar movement that appear to be incorporated into the bees' (Dyer & Dickinson, 1994)

and ants' (Wehner & Muller, 1993) estimates ofthe sun's position at times of day they

126
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have never seen it. These models could therefore be considered nonlinear nonsymbolic

models in contrast with the nonlinear symbolic model of Chapter 4.

These connectionist models of sun compass learning illustrate the types ofbehavior that

could result from a network of interconnected simple computing units (i.e. neurons) in

which there no explicit coding of an azimuth function. Such a network could form the

basis of an innate template that is modified with experience. This connectionist template

may allow insects to quickly recognize the local ephemeris function or quickly learn the

local ephemeris fimction or both.

5.1 Connectionist Computations

Connectionist neural networks generally consist of a large number ofinterconnected

processing units (Feldman & Ballard, 1982; Rumelhart et al., 1986a). For the networks I

will consider, the neural elements are arranged in layers with connections between the

elements of each layer, but not within the layer. The information flows in one direction

from the input layer (sensory) to the output layer, making them feed-forward networks or

perceptrons (Rosenblatt, 1958; Rumelhart et al., 1986b). The power of a network to learn

a complex representation comes from the number of layers in the network and the number

of units in the layers. Figure 5.1 shows a diagram of a simple feedforward network.
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Figure 5.1 General form of a feed-forward connectionist network. 1: input

units H: hidden units. 0: output units. w: connection weights.
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Each individual unit essentially computes a weighted sum of its inputs to determine its

output. The sum is weighted by the connection strengths (or weights) between the units.

This weighted sum is described by the following equation:

x]: ZYI‘WJ‘I' (5-1)

in which the total input (x) of thejth neuron is the sum ofthe outputs 0),.) of the ofthe ith

layer and the connection weights between the layers (wfi) (Rumelhart et al., 1986c). The

output ofthe unit is a nonlinear firnction ofthe weighted sum ofthe inputs. Generally,

this fimction is a sigmoid:

__ 1

y} _ 1 +e‘xf (5-2)

 

where yj is the output ofthej th and x}. is the weighted sum ofthe inputs to thej th neuron

as in equation 5.1 (Rumelhart et al., 1986c).

Networks composed of these simple units that are arranged in at least three layers

(Rumelhart et al., 1986c) can learn a wide range of arbitrary mappings between inputs and

outputs. In fact, they are universal approximators (Hornik et al., 1989). This means that

given the appropriate network size and training time, they can learn to approximate any

functional relationship between a set of inputs and a set of desired outputs. Simple

perceptrons (Rosenblatt, 1958) are limited in their learning abilities (Minsky & Papert,

1969), but the inclusion of the internal layer of "hidden units" greatly increases their

capacity to form a wide range of representations (Rumelhart et al., 1986c).
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For a network to learn a complex representation it must have a mechanism for adjusting

the connection weights (wfi) between the layers of neural elements. Connection weights

could be set by hand, but the complexity of such networks usually requires a learning

algorithm that adjusts the connection weights progressively to reduce the error between

the outputs of a network and the desired outputs. One ofthe most common and most

powerful algorithms is the method ofbackpropagation of error (Rumelhart et al., 1986c).

This is a method for finding the global error minimum in multidimensional weight space.

The backpropagation algorithm adjusts each weight such that it achieves the steepest

descent in error. Thus errors in the output of the network as a whole can be used to

modify the connection weights within the network.

This learning method lacks biological realism in the exact mechanism of learning, the

modification ofthe connection weights. Nonetheless, the major advantage of

backpropagation is that it allows the behavior of large networks of simple units to be

investigated. These are good models for the behavior of distributed representations that

can provide insights into brain mechanisms (McClelland et al., 1995).

5.2 Connectionist Characteristics

Aside from their flexible learning abilities, perhaps the property of connectionist networks

that has attracted the most attention is their ability to generalize the learned relationship

between the input and output sets. This allows networks to classify novel inputs and to
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complete partial patterns. The ability of connectionist networks to recognize and

complete patterns has long been recognized (Rosenblatt, 1958; Minsky & Papert, 1969),

but the widespread application to this area awaited a sufficient learning algorithm

(Rumelhart et al., 1986b).

An example of this is seen in the face-recognition network of Cottrell and Metcalfe

(1991). This network, which had an architecture analogous to that in Figure 5.1 but with

different numbers of units, was trained on a set of images to classify human faces by name

and gender. Subsequently, the network could recognize different images ofthe same faces

in the training set and it could classify novel faces by gender. Additionally, when

presented with partial views ofthe faces, it could reconstruct the entire face. This was

done without any explicit coding of the geometrical properties of faces. The same

network would undoubtedly have been able to learn to recognize images of different bird

species, or the leaves of different tree species, and to classify partial images ofthese

natural shapes.

5.3 Connectionist Representations of the Sun's Course

The ability of connectionist networks to complete partial patterns seems to parallel the

ability of insects to fill gaps in their experience with the sun's course. In this construction,

the sun compass learning problem is a pattern completion problem or a perceptual

recognition problem. This is based on the assumption that completing the pattern of solar
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movement is analogous to the other types of patterns that connectionist neural networks

are able to complete.

I will consider both the learning capabilities and the pattern completion capabilities of

connectionist networks as I examine their relevance to the sun compass problem.

Additionally, I will consider two alternative ways of representing the sun's course in a

connectionist framework. The first is a binary mapping and the second is a continuous

mapping.

5.4 A Binary Representation

It is clear from the experimental data presented in Chapter 3 that bees and ants are able to

fill gaps in their experience with the sun to such an extent that they relatively accurately

infer the position of the sun during large portions ofthe day or night. To model this with

a connectionist architecture, we must consider that the network that the bees bring to the

problem must be innately configured so that it can estimate unknown solar positions.

Thus, the training of this network could not have involved the experience with these

portions ofthe sun's course. We are therefore dealing with a network trained during

evolutionary history. In principle, however, standard connectionist training principles

might apply. In this case, the errors generated by the network would be minimized

through the action of natural selection.
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A preconfigured network could have several forms, each with different potential

advantages to a small-brained, short-lived animal. Such a network may allow an animal to

quickly access the appropriate solar ephemeris function for its foraging lifetime. Honey

bees forage outside the colony for only about 10 days before they die, and they make

relatively few flights before they start foraging. A preconfigured network may allow them

either to quickly recognize the correct local ephemeris pattern or to quickly learn the

correct local ephemeris pattern or both. I will consider these alternatives in turn.

5.4.1 Pattern Matching

Like the face recognition problem outlined above, a network configured to recognize a

solar ephemeris function would be trained (over evolutionary time) on a range of azimuth

fiinctions. The strategy employed in this model was to train a network on a range of

azimuth functions and subsequently test the network with partial azimuth firnctions. This

is analogous to bees with an innately-configured network receiving restricted experience

with the sun's course (Dyer & Dickinson, 1994).

The training patterns for this network (Figure 5.2) were idealizations of a range of solar

ephemeris functions that would normally occur at different seasons and latitudes (see

Figure 2.2 for a range of real azimuth functions). A binary mapping was used to represent

the ephemeris fimctions (in Figure 5.1, black = one, white = zero). The pattern of ones

and zeros indicates the presence or absence of a particular combination of azimuth angle

and time of day. Some preprocessing would be required to get observations of azimuth
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angles at times of day into this format. Each 10 by 10 array corresponds to a

coarse-grained depiction of a particular solar azimuth firnction. The specific size of the

array was originally constrained by the maximum size of the input array in the computer

simulation package that I initially used (Caudill & Butler, 1992). Seven patterns were

generated to correspond to a range of ephemeris functions: from a 180° step function

approximating a tropical azimuth curve to gradual curves approximating the typical

ephemeris firnctions ofthe northern and southern temperate regions. Given the coarseness

of the binary mapping, seven patterns provided the complete range between a step

function and a gradual function.
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Figure 5.2 Idealized solar ephemeris filnctions used as the training set for

the connectionist models. The patterns consist of a matrix of ones and

zeros, with the ones corresponding to the black squares and the zeros

corresponding to the white squares. Each point corresponds to a pairing of

azimuth position and time of day. These patterns correspond roughly to

the natural range of solar azimuth fimctions (See Figure 2.2).
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Network Architecture
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Figure 5.3 Network architecture. The network has 100 input units and

100 output units that correspond to azimuth-time coordinates. There are

25 hidden units. See text for explanation of connection patterns. The

connections are not shown because ofthe number ofthem. Activation is

shown by the gray scale (white = zero; black = one).
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The network was trained to recognize each ofthe seven training patterns. The network

had 100 input units and 100 output units. Between the input and output layers was a

single hidden layer of 25 units. Each of the input units was fiilly connected with each of

the hidden units and each ofthe hidden units was fiilly connected with each ofthe output

units. The original findings were obtained with a commercially available simulation

package (Caudill & Butler, 1992), but they have been replicated and extended with

models run on Mathmalica® and Mathcad®. The initial connection weights were

pseudorandom numbers ranging from -0.3 to 0.3. The learning constant (11) was set at

0.5. (This determines the size of the weight changes). The networks were trained through

repeated exposure ofthe network to the patterns until the mean squared error between the

desired and the actual outputs ofthe network was reduced to 5%. The backpropagation

algorithm was used to adjust the connection weights during training (Rumelhart et al.,

1986c)

After the networks reached the criterion, they were presented with test patterns consisting

of fragments of ephemeris fimctions (see Figure 5.4 A). These test patterns were

analogous to the partial ephemeris functions experienced by the bees in the experiments

presented in Chapter 3. The responses of a trained network to each ofthe test patterns

are presented in Figure 5.4 B. These responses consist ofthe activity levels (the result of

equations 5.1 and 5.2) for each ofthe output units. The values range from zero to one

because ofthe effect of the sigmoid activation fiinction (equation 5.2) of each ofthe units,

which asymptotically approaches zero and one. Although the patterns presented in Figure
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5.4 (B) correspond to a single network configuration produced through training, the

results of other replicates were consistent. The results are presented in this way to show

the subtleties that exist in the representation of the pattern in a single network. The results

presented in Figure 5.4 correspond to a network with 25 hidden units; nearly identical

effects are seen in networks with only 10 hidden units.

In response to the test patterns, the network filled the gaps in the partial azimuth curves.

When the test pattern consisted only of solar positions in the late afiemoon (analogous to

what afternoon-experienced honey bees faced (Dyer & Dickinson, 1994) or in the early

morning (analogous to what moring-experinced desert ants faced (Wehner & Muller,

1993)), the network produced a pattern of activation resembling the 180° step function

that the experience-restricted bees and ants develop. For several ofthe test patterns with

late afiemoon azimuth fragments, the network produced a step-function that also

exhibited variability during the midday transition. This mimics the behavior of some ofthe

bees from colony 1 (Figure 3.3 and 3.4) and ofthe bees in New and New's (1962) study.

In contrast with the patterns that produce a step fimction, several ofthe test patterns,

corresponding to midday time-azimuth positions, resulted in gradual functions. This

suggests that experience at different times of day might lead to different representations of

the sun's course.
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One of the test patterns was unnatural and indicated time-azimuth positions that would

never occur on the earth (e. g., bottom panel ofFigure 5.4). The preconfigured network

ignores this type of spurious information.

These results demonstrate that certain aspects of the sun compass learning problem in

insects can be mimicked by a neural network that does not explicitly encode a

mathematical expression corresponding to the relationship between azimuth angle and

time. With experience over the entire day, the network may be able to recognize the

appropriate local ephemeris function. But with partial experience, the overlap among the

possibilities causes the network to partially activate several ofthe alternatives, leading to

the highest activation of the intermediate function: the 180° step function.
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Figure 5.4 Responses of preconfigured network to test patterns consisting

of partial ephemeris functions. The test patterns (A) consist of inputs

arranged in an array of ones and zeros as in Figure 5.2. The responses (B)

for each test pattern are presented immediately to the right. The responses

consist of the activation level of each of the output units. They range fiom

zero to one and are all on the same scale. See text for a description ofthe

network.
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5.4.2 Learning Advantage

An alternative potential advantage of a preconfigured neural network may be that it allows

the insect to rapidly learn the appropriate local pattern. The question in this case is

whether a network that has learned one representation ofthe sun's course can quickly

replace that representation with one that corresponds to the actual pattern ofmovement

observed.

The 180° degree step function provides a logical starting place for this question. An insect

using a 180° step function during any season or at any latitude would experience the least

average error in its estimation of the sun's position than one using any other azimuth

function. This is because the 180° step function is the average of all of the solar ephemeris

firnctions encountered on the earth (i.e. all ephemeris fimctions at all latitudes for all days

ofthe year) (Dyer & Dickinson, 1996). This suggests that a step firnction would be a

good template. By using the 180° step function as a template, an insect would on average

make fewer errors before the current local pattern is learned. This is not a learning

advantage per se but it is an advantage during the learning process. In addition, a step

function might also allow a more rapid learning of the local pattern than an unconfigured

network would. There are several reasons this might be true.

First, it may simply be easier to learn a pattern corresponding to an ephemeris function

once any other ephemeris function has been learned. Ifthis were the case, all ephemeris
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firnctions would work equally well, although the step function would still have the

advantage of making fewer errors while learning.

Second, since the 180° step fiinction is the average of all ephemeris functions encountered

on the earth, it may be a good starting place for learning the other curves. This may

occur because the step function is intermediate between all ofthe other possible curves.

Thus the average amount the curve would have to change would be minimized (Dyer &

Dickinson, 1996).

Third, the step function may share more points in common with other ephemeris curves

than any ofthe other curves would. Because of this overlap, fewer substitutions (of

time-azimuth coordinates) would have to occur on average to move from a starting point

of a step fiinction to any other curve than from any other starting curve to another curve.

The number of substitutions between the patterns can be measured by the Hamming

distance (Hamming, 1986). Hamming distance is an information-theoretic concept that

describes the amount of overlap between binary strings. It is expressed as the number

positions in two strings that do not overlap, therefore, the Hamming distance between

{1,1,1} and {1,1,0} is one, and the distance between {1,1,1} and {0,1,0} is two.

This third alternative uses a different metric for measuring distance than the second

alternative does. The third alternative measures distance between points in the azimuth

patterns in Hamming distance rather than conventional linear distance, which is implied in
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the second hypothesis above. Standard linear distance, or Pythagorean distance is

calculated with the following formula:

afl = Z(x-y)2 (5.3)

while Hamming distance is calculated:

d = Z Ix -y| (5.4)

(see Hamming, 1986). Figure 5.5 illustrates these distance metrics with two time-azimuth

patterns. The figure depicts the transitions between a step firnction and two other azimuth

curves. The Hamming distance between the step function and each ofthe other curves is

the same (4), but the Pythagorean distance is different (2 and 4).
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Figure 5.5 Comparison ofHamming and Pythagorean distances. In this

diagram, the standard linear (Pythagorean) distance from the step firnction

to each of the others pictured varies, while the Hamming distance is

constant. A. Pythagorean distance = 2, Hamming distance = 4. B.

Pythagorean distance = 4, Hamming distance = 4. Hamming distance is a

measure of overlap between the patterns. In each ofthe cases, two points

have changed, which gives a Hamming distance of 4 (turning offthe old

point and turning on the new point for each of the two changes). The

linear distance between the old points and the new points makes a

difference for the Pythagorean distance but not for the Hamming distance.
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1 investigated these alternative advantages of a preconfigured network with a series of

retraining experiments. In each case a network was trained to learn one ofthe ephemeris

fiinctions depicted in Figure 5.2 and was subsequently retrained on each ofthe other

curves (the ending weights for the first training were used as the starting weights for each

of the retrainings). The network characteristics (e.g. layer size, learning constant,

criterion) were the same as described above.

Figure 5.6 shows the results of these experiments. In all of the cases, the retraining time

was considerably less than the initial training time. The retraining times are represented as

a percentage ofthe original training time, and they are all well under 100 percent. This

suggests that there is an advantage to starting with a preconfigured network no matter

what its form. It would be advantageous to start with a step function since the fewest

errors would occur during the learning process, but are there any firrther advantages of a

step fimction, corresponding to the second or third possibilities listed above? This too is

apparent from the results ofthe retraining experiment (Figure 5.6). The results are

extremely consistent and fall into a clear pattern. There are three distinct groups of points.

The overlapping points in each group all are the same Hamming distance (Hamming,

1986) from the original training pattern. This corresponds to the third ofthe alternatives

listed above. The retraining time appears to be a function ofthe Hamming distance

between the patterns and not the linear distance (as implied by the second hypothesis listed

above). This makes sense in light of the fact that the networks considered are fiilly
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interconnected; this means there is actually no geometry to the grids depicted in Figure

5.2. Each ofthe points in the grid is equally close to each ofthe other points.

The Hamming distance between each ofthe azimuth curves is shown in Table 5.1 (The

letters correspond to the letters in Figure 5.2). The step function (A) is among the curves

with equally short average Hamming distances to each ofthe other curves. In this case,

however, the step fimction is only one of five curves that is closest to all of the other

curves in the number ofbinary substitutions that would have to occur during retraining.

This does not alone give it an advantage over the other curves as starting configurations

for an innate template ofthe sun compass. This may not be true for binary representations

of ephemeris curves that have greater detail. It is possible that with a smaller grid size the

step function would share more overlapping regions with more ofthe other curves. But it

is also the case that with greater detail will come a greater average Hamming distance

between the curves.



149

  

100 —

,\ 75 —

e\: 1..

co 1 i

.S r

.S .. I

ga) 50 —

ad

E i

.5

CD

25 —

0 h 1 1 1 L 1 l

2 4 6 8 10 12 14

Hamming Distance

Figure 5.6 Binary retraining trials for azimuth network trained on one

azimuth pattern and retrained on another. Binary retraining percentage is

the number retraining trials to reach an error criterion of .05 as a

percentage ofthe training time for the original pattern. Data are the means

i standard error for 10 replicates for each ofthe 7 azimuth patterns

retrained on the 6 other patterns. They are plotted against the Hamming

distance (number ofbinary substitutions) between the two patterns. This is

clearly the major explanatory variable.
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Table 5.1 Hamming Distance between Azimuth Training Patterns

 

 

 

A(Step) B C D E F G

A (Step) 0 4 4 8 8 12 12

B 4 0 4 8 8 12 12

C 4 4 0 8 8 12 12

D 8 8 8 0 8 4 12

E 8 8 8 8 0 12 4

F 12 12 12 4 12 0 12

G 12 12 12 12 4 12 0

Mean 8 8 8 8 8 10.67 10.67

 

To examine the effect of grid size on the Hamming distance between the curves, 1

produced a set of azimuth curves to the nearest ten degrees. Like the curves in Figure

5.2, these azimuth curves were restricted to the daytime and consequently consisted of 18

by 18 grids. I subsequently looked at the average Hamming distance from each curve to

every other curve. If the search is confined to the tropics, the step fimction indeed has the

lowest average Hamming distance to every other curve (see Figure 5.7 A). However,

when the temperate latitudes are included, this changes (see Figure 5.7 B). Figure 5.7 A

shows the average Hamming distance between azimuth curves corresponding to each set

of latitude-declination coordinates to each ofthe others. Curves were produced for ten

degree increments of latitude and of declination from 20° N latitude and declination to 20°

S latitude and declination. The pit in the center ofFigure 5.7 A shows that the lowest

average Hamming distance to all other curves corresponds to the azimuth curve for 0°
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latitude and 0° declination, which is a 180° step function. However, when the temperate

latitudes are included, the picture changes, as Figure 5.7 B indicates. Figure 5.7 B shows

the average Hamming distance between all curves fiom 40° N latitude and 20° N

declination to 40° S latitude and 20° S declination. In this case, the curve with the lowest

average Hamming distance is a more temperate curve. The step fiinction no longer has

the lowest average Hamming distance to all other curves. This effect is somewhat

surprising, although in retrospect it is understandable. With higher latitudes come flatter

azimuth curves; therefore, the more curves from high latitudes that are considered, the

more flat curves there are. These curves subsequently have a high degree of overlap with

each other, and hence they have a lower average Hamming distance.

There is still a considerable retraining advantage, however, for the curves discussed in

Figure 5.7 B, even for the curves that are farthest apart. Figure 5.8 shows the results of a

retraining experiment involving these azimuth curves. Since Hamming distance is the

relevant factor, I restricted the experiment to a sampling of each ofthe Hamming distances

between the curves in Figure 5.7 B, instead of looking at all ofthe pairwise comparisons.

The Hamming distances range from 0 to 36. Each ofthe points in Figure 5.8 represents a

set of five replicates for each Hamming distance. Although the Hamming distances are

larger than those represented in the previous retraining experiment (Figure 5.6), the

retraining times are similar. This suggests that it is not Hamming distance per se that is

important. Since all of the azimuth curves have the same proportion of ones and zeros, it

might be reasonable to assume that it is the relative Hamming distance that is important.



152

For this reason, I plotted the results in terms of relative Hamming distance and have

included the results from the previous experiment for comparison. I have defined relative

Hamming distance as the Hamming distance divided by the number of elements in the

pattern.

In summary, a preconfigured network would seem to confer a learning advantage. Once a

network has been trained on one curve, it can more quickly learn another curve. Ifthe

preconfigured curve were in the form of a step fiinction, firrther advantages would accrue.

A preconfigured network that resulted in a step fiinction would give the insect an

advantage in the early stages of learning, because a step firnction leads to the smallest

average error for all possible ephemeris fianctions observable on Earth. This is the

reduction of errors during the learning process that is mentioned above. Additionally, the

step function would be among the curves with the lowest average Hamming distance to all

other curves, particularly in the tropics. These three factors could lead to the evolution of

this mechanism. For a temperate animal it would make sense to have a preconfigured

network in the form of a flat curve rather than a step fimction; however, this is only the

case if the animal is confined to either the northern or the southern temperate regions.
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Figure 5.7 Average hamming distance from each azimuth curve to every

other curve The curves are to the nearest ten degrees. The average

Hamming distances are plotted with respect to their latitude-declination

coordinates. Panel A shows the situation when the curves are restricted to

the tropics (between 20° N and 20° S). Panel B shows the situation when

temperate curves are included (between 40° N and 40° S).
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Figure 5.8 Binary retraining trials for azimuth curves discussed in Figure

5.7. For the range ofHamming distances that exist between the azimuth

curves represented in figure 5.7, a network trained on one azimuth pattern

and retrained on another. The network had 324 inputs and outputs and 81

hidden units. Binary retraining is the number retraining trials to reach an

error criterion of .05 as a proportion ofthe training time for the original

pattern. Data are the means i standard error for 5 replicates for each

Hamming distance (filled circles). They are plotted against the relative

Hamming distance (number ofbinary substitutions)/(number of elements)

between the patterns. For comparison the data from Figure 5.6 are

included (open circles).
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5.5 A Continuous Representation

The models described in the previous section have a drawback that could limit their

applicability. Real insects can estimate the position ofthe sun at night. However, this part

of the sun's course falls outside ofthe range ofthe time-azimuth combinations in the

training patterns for the preconfigured networks. Since the networks are assumed to be

trained over evolutionary time, the responses ofthe ancestors ofthe bees to these times

would have to be incorporated into the training sets, yet no ancestor could have seen the

solar position at night. Additionally, in the binary mapping, not only can points outside

the range ofthe training pattern not be estimated, but also points within the range and

below the resolution ofthe network cannot be estimated, because ofthe discrete nature of

the binary mapping. For example, if the time dimension were coded at a resolution of one

point per hour, it would be impossible to estimate azimuth angles at intermediate points on

the half hour. This problem, and the problem ofthe range ofthe training set, may be

eliminated with an alternative mapping. Such an alternative representation would be to

use a continuous mapping rather than binary mapping.

To explore the effect of a continuous mapping, I turned to simple network with only three

neural elements and an input unit (see Figure 5.9). This network has one input unit and

one output unit. In addition there is one hidden unit and one bias unit. A bias unit is a

unit that whose activation is always one. It is connected to the other units via connections

with variable weights (See Figure 5.9). Bias units can increase the range offunctions a
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network can learn and decrease the convergence time (Rumelhart et al., 1986c). The bias

unit appears to be necessary for convergence in this case. The input corresponds to time

of day and the output corresponds to azimuth angle. Because ofthe sigmoid activation

function used, these numbers for both time and azimuth angle ranged fi'om zero to one.

This network can be trained to learn particular time-azimuth correspondences. Because of

the continuous mappings ofthe inputs and outputs, their is no constraint on the values that

the test inputs can assume. A network trained on time-azimuth correspondences can be

tested with time inputs from the night. It can also be tested with inputs that are

intermediate to the training values. Both ofthese were impossible in the preconfigured

networks with binary mappings.

Figure 5.10 shows the responses of several networks with different training regimes. The

networks can be trained on a set oftime-azimuth input/outputs and tested on a novel set

of time inputs.

In Figure 5.10 (A), the network has been trained on the azimuth angles at two hour

intervals between sunrise and sunset. The curve shows the responses ofthe network when

tested at half hour intervals throughout the 24-hour period. During the day, at values

intermediate to the training set, the network does a very good job of filling the gaps.

However, outside the range ofthe training set, the network performs much more poorly.

This is expected from the general behavior of neural networks, and it has been
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demonstrated elsewhere (Johnson & Picton, 1996). The nocturnal azimuth estimates of

this network vary considerably from the true azimuth patterns.

The architecture and the mapping ofthis network allow it to interpolate between points in

the training set and to extrapolate forward and backward to points outside the range ofthe

points in the training set. This is a very important feature ofthe network that is parallel to

the mechanisms implicated in the sun compass learning problem (New & New, 1962;

Gould, 1980; Wehner & Lanfranconi, 1981; Wehner, 1982; Dyer, 1985, 1987) (and see

Chapter 3). Because of these distinctive features of this network, I will call it the

interpolation network.

The architecture of this network also allows it to be trained on a small portion ofthe sun's

daily course and to be tested on another part of it. This is analogous to the experiments

presented in Chapter 3 (Wehner & Muller, 1993; Dyer & Dickinson, 1994). In this case

(see Figure 5.10 B), the network does a very poor job of estimating the position ofthe

azimuth in the unexperienced portion ofthe day.
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Figure 5.9. Diagram of simple connectionist network used for the

interpolation network. 1: input unit. H: hidden unit. 0: output unit. B:

bias unit. w: modifiable connection weights.
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Although this network does a good job generalizing to azimuth positions temporally close

to those they have experienced, it does not estimate azimuths as well as insects at times

several hours from the training period. However, this model could be rescued if there

were a way to incorporate some structure in the model that is analogous to the type of

innate structure that appears to be present in bees (Dyer & Dickinson, 1994).

There are several mechanisms that could be used. Like the preconfigured networks in

sections 5.3 and 5.4, this network could have preconfigured connection weights.

Alternatively, there may be a different way of imposing structure on the learning process.

This could be achieved by incorporating some ofthe universal features of solar movement

into the training set. The 180° step function (Dyer & Dickinson, 1994) observed in the

behavior of experience-restricted bees can be used to accomplish this goal.

To do this, I trained a network with the same training set as in Figure 5.10 (B), but I also

included two additional points in the training set. These points were for time inputs of

06:00 and 12:00 (solar time). The azimuth angles for these times were derived from the

azimuth angle observe at 18:00. For the azimuth angle for 06:00, 180° is subtracted from

the azimuth angle at 18:00. Likewise for the angle at noon, it is obtained by subtracting

90° from the azimuth angle at 18:00.

By including these additional angles in the training set, the network produces a much

closer approximation to the true position ofthe sun when tested during the new time of
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the day (see Figure 5.10 (C)). This suggests that this simple connectionist network is

capable of broadly simulating the behavior revealed in experiments. This seriously

challenges Gallistel's assertions about the ability of nonsymbolic models to solve the sun

compass learning problem. This last model might verge on symbolic elements, such as

deriving the additional training patterns through subtraction; but the essential

computations of the network are subsymbolic and they are not isomorphic to any logical

mechanism of computing azimuth angle from time.
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Figure 5.10 Response of interpolation network to three different training

regimes for learning the same specific azimuth firnction. The azimuth

function corresponds to 25° N on April 22 (solar declination 12°). A.

Response of a network over 24 hours at half-hour intervals for a training

set of hourly azimuth angles between sunrise (~06:00) and sunset (~18:00)

(local solar time). B. 24 hour response of a network trained only on

hourly positions in the late afiemoon and evening (15:00 to 18:00). C.

Response of a network trained on afiemoon positions in B but with

additional constraints (Azimuthmo = Azimuthm00 - 90°; Azimuth“00 =

Azimuth“,00 — 180°).
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5.6 Summary

In this chapter I have shown that connectionist models could account for several ofthe

characteristics of sun compass learning that have been revealed in recent experiments. In

contrast to the suggestion of Gallistel (in press), these types ofmodels may provide a

viable alternative to a symbolic model as a means of explaining the sun compass learning

problem. To explain the phenomenon, however, a connectionist model must include a

certain amount of "innate" information about the sun's course. The results presented here

suggest that some kind of innately configured network could explain the behavior ofthe

animals in the experiments.



Chapter 6

CONCLUSIONS

The sun compass has proved to be an excellent avenue into gaining a more complete

understanding of the nature of a representation in the brain of an animal. Behavioral

experiments alone have gone a long way towards delineating computational mechanisms

by which the sun compass learning problem must be solved. The problem consists ofthe

ability of small-brained animals such as bees and ants to estimate positions ofthe sun at

times of day (and night) when they have never seen it. The actual solution is still a

mystery, but new experiments have shown that the problem may be solved by an innate

template that is modified with experience (Chapter 3), and I have shown how two broad

classes of computational mechanisms could solve the problem (Chapters 4 and 5).

I have focused on the dichotomy of symbolic and nonsymbolic processing that has

emerged out ofthe field of cognitive science (see Smolensky, 1988; Boden, 1991) and has

intersected with the problem of animal orientation (Gallistel, in press). Taking up

Gallistel's challenge that symbolic computations provide the best explanation for the sun

compass learning problem, I have established several models ofhow subsymbolic

163
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connectionist models could underlie the sun compass learning problem. In addition, I have

formalized a conceptual model of how the problem can be solved in the symbolic domain.

Both classes of models account for some ofthe aspects ofthe observed behavior that

were not present in the previous models. This suggests that the actual neural

computations that underlie the estimation of the sun's course may involve equivalent

mechanisms. The computational mechanisms hypothesized by these models may

contribute to the elucidation ofthe neural mechanisms that insects use to compute the

position ofthe sun and indeed how brains represent information about the environment.

The symbolic and connectionist fiameworks posit fundamentally difi‘erent views ofhow

the brain processes information. The symbolic framework lacks a correspondence with

neuroscience: the fundamental elements of a symbol-processing mechanism have yet to be

identified (Gallistel, in press). On the other hand, the connectionist framework lacks a

correspondence with major areas of psychological theory: processes that appear to be

characterized by the logical manipulation of symbols (Boden, 1991; Gallistel, in press).

By examining how the sun-azimuth estimation process can be accomplished by these two

broad classes of models, I have shown what types of symbol-manipulating mechanisms are

necessary to solve the problem, and how connectionist models can solve this apparently

symbolic process. In Table 6.1, I present a synopsis ofthe features ofthe four main

models that have emerged from this endeavor. Included in the table are the main

distinguishing features of the models. I will consider each of these aspects in greater detail

in the text.
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Table 6.1 Comparison of New Models

 

 

Model Representation Modification Symmetry Nocturnal

with Experience Assumptions Compensation

Ellipse Continuous Yes (Averaging) Yes Yes

Pattern Matching Binary No (Matching) No No

Network

Learning Advantage Binary Yes (Learning) Implicit No

Network

Interpolation Continuous Yes (Leaming) Some Yes

Network
 

6.1 Innate Structure

All of the models are consistent with the conclusion (Wehner & Muller, 1993; Dyer &

Dickinson, 1994) that there is innate structure to the mechanism employed by the bees and

ants to estimate the position ofthe sun at new times of day. This statement is based on

the observation that all of the models require global information about the task to come

close to simulating the behavior of the bees and ants in the experiments. That is, the local

information (the observed positions of the sun's azimuth at certain times of day) appears to

be insufficient to determine the position ofthe sun at vastly different times of day.

Instead, either more information or some means of interpreting the available information is

needed. In the symbolic framework, the additional information is embodied in the

functional relationship between time and azimuth position. This even applies somewhat to

the linear models (New & New, 1962; Gould, 1980; Wehner & Lanfianconi, 1981; Dyer,

1985, 1987) of compensation, but it is more clearly evident in the nonlinear (ellipse-based)
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model. The global information is that the azimuth changes at a varying rate that

approximates an elliptic function oftime. In the connectionist models, the global

information resides in the connection weights ofthe preconfigured networks or in the

constraints imposed upon the learning process (interpolation network).

6.2 Templates

Dyer and Dickinson (1994) suggested that the implied innate structure might be analogous

to a sensory template after Marler (1976, 1984). Marler invoked the sensory template

concept as a heuristic model to describe the development of species-specific song in birds,

and he suggested that it may apply to other types ofbehavior in other organisms, though

he focused on vocal behavior. The template is a genetic constraint on learning that makes

the organism particularly sensitive to particular types of stimuli at particular times. Marler

(1976, p. 328) states:

Sensory templates provide a structural fi'amework for the perceptual

analysis of arrays of stimuli that is both plastic and yet constrained. After

more or less extensive modification by experience, with their number added

to or subjected to attrition, and changed in specification so that their

properties may now be both species-specific and also population-, group-,

or even individual-specific, they then guide motor development by a

process of sensory feedback. Phases of this multistage process may

interdigitate in time or they may be temporally separated, proceeding most

readily at particular developmental stages or "sensitive periods."

In the sun compass learning problem, there are clearly specific classes of stimuli that are

important. These correspond to azimuth position and time of day. In honey bees, the

learning occurs rapidly and during a specific period ofthe individual's life (Lindauer,
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1959), though it is not clear that it cannot occur at other times. There are physiological

changes in the brain that correspond with this period in the bee's life, which are

hypothesized to be related to the many things she has to learn as she begins to forage

(Withers et al., 1993).

Perhaps the most critical correspondence between Marler‘s (1976) sensory template

concept and the sun compass learning problem is the feature ofthe template model that

suggests that the response to certain stimuli is both plastic and constrained. I would argue

that this is true for all four of the specific models I have considered. In general terms there

are specific stimuli (azimuth angle and time) that must be represented in a flexible enough

framework to correspond to the range of azimuth firnctions encountered on the earth, but

they may also be constrained to fall into a particular range.

This is most evident in the pattern matching network. Encoded in the connection weights

of this network are a range of patterns of azimuth movement that correspond to the range

of natural patterns. If a spurious combination of azimuth position and time is entered into

the network, it has no effect on the response ofthe network. From the noisy information

is generated a complete pattern of azimuth-time mappings. This is seen in the response of

simulated network to one ofthe test patterns that included a spurious time-azimuth

coordinate not included in any ofthe training patterns.
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With the learning advantage network, this may not be as much of an issue. Spurious

azimuth-time coordinates will be included in the learning process. Ifthey are consistent

the network will releam the new pattern. It is conceivable that the network would learn

the new pattern faster than it would have without the preconfigured connection weights.

This would occur even if the spurious coordinates were beyond the range of the natural

patterns of azimuth-time coordinates, since by the Hamming distance rule, only the

amount of overlap matters and not the Pythagorean distance between the points.

However, the network would nonetheless be biased toward the step-firnction response in

the early stages of retraining. Since the step function is encoded in the initial connection

weights, the initial responses ofthe network would be biased toward a step function, but

as new inputs are encountered, the connection weights would shift to represent the new

pattern.

The interpolation network provides an excellent example ofthe need for global

information in the sun compass learning problem. A network trained on a subset of

time-azimuth coordinates can estimate the azimuth angle for new times of day. If the

training set is restricted to a portion of the day, the estimates in the other part ofthe day

would vary considerably from their actual values. In order to solve the problem a global

constraint is needed. One such constraint that reduces this problem is to include in the

learning set some universal relationships, such as that at 6:00 it is 180° fiom its position at

18:00 and vice versa.
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In the symbolic model, the observable quantities of azimuth position and time are flexible,

but the firnctional relationship is strictly constrained. The values must fit an ellipse.

Spurious values may lead to ellipses that are considerably different in shape from the true

seasonal and latitudinal azimuth rate firnction. This may underlie the behavior ofthe bees

in the experiments presented in Chapter 3 (Dyer & Dickinson, 1994). In these

experiments the bees' representation of the sun's course corresponds to a curve

approximating a 180° step filnction. If something akin to the ellipse azimuth firnction

were the underlying mechanism, the ellipse being used to approximate the rate of change

of the azimuth would be a much more squashed ellipse than the ellipse corresponding to

the true azimuth rate function ofthe season and latitude of the experiments.

6.3 Symbolic versus Nonsymbolic

I have maintained throughout that the models differed in their underlying representational

structure. The major distinction I have used is between symbolic and nonsymbolic

processes. At the level ofbehavior, it is very hard to distinguish between these

alternatives. The indeterminacy ofbehavioral data certainly has contributed to much of

the debate among cognitive scientists regarding this distinction (Smolensky, 1988; Boden,

1991; Gallistel, in press). Table 6.1 suggests some ofthe distinctions between the models

that may be amenable to behavioral test. Two ofthese features make very specific

predictions about the positions ofthe sun estimated during the night. The fact that many

animals are able to estimate the position ofthe sun at night enforces a major constraint on

the types of processes that may underlie the behavior. In their current state, this fact
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appears to eliminate the possibility ofthe two preconfigured networks with the binary

mapping. With the binary mapping there can be no interpolation for points not in the

training set. This seems to limit models of this sort. However, there may be several ways

around this problem. For the preconfigured pattern matching network, it is assumed that

responses of the ancestors ofthe bees and ants responded appropriately to observed

positions ofthe sun at different seasons and latitudes. Through natural selection an

appropriately configured network could conceivably emerge. But since, the ancestors

could not see a range of values for azimuth functions during the night, they would not

evolve a preconfigured network to deal with a nocturnal position ofthe sun. However,

there are seasons and latitudes in which the sun is visible at night. Moreover, there are

populations of arthropods that live in such areas and that orient by the sun throughout the

night (Papi & Syrjamaki, 1963), e.g, Finnish populations ofwolf spiders (Arctosa

cinerea). It is true, however, that there is not a range of azimuth functions visible at night.

But one ofthe results from many studies ofthe nocturnal compensation is that a gradual

constant rate of compensation is observed rather than a varying rate like during the day

(Pardi & Ercolini, 1986).

There are two problems with the hypothesis the Arctic sun could determine the nocturnal

patterns in an preconfigured network, however. First, Italian populations ofArctosa

cinerea do not compensate during the night, suggesting that the Finnish populations are

learning the nocturnal course. Second, some arthropods, including, other spiders,
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compensate for the nocturnal period by reversing the apparent movement ofthe azimuth,

and this is not how the Arctic sun moves (Tongiorgi, 1959; Papi & Syrjamaki, 1963).

For the learning advantage network, it is not clear that ancestors of an animal using this

mechanism would actually have to see the position ofthe sun at night for the network to

have it encoded in its connections. Since one of the advantages ofthis type of network is

decreased learning time, having some representation ofthe nocturnal sun's course may be

better than having none. The representation could be arbitrary, it could be a step function

extended through the night, or it could be an observed gradual function extended through

the night.

Both the nonsymbolic interpolation network and the symbolic ellipse model could achieve

nocturnal compensation, but they differ significantly in their predictions, and both differ

somewhat from reality. In the ellipse model, the nocturnal movement ofthe sun is

assumed to be in the same direction as its movement during the day, and the pattern of

change in rate would be symmetrical with the daytime pattern. This is not necessarily true

of actual sun azimuth functions. In many cases the azimuth reverses directions during the

night. This pattern appears throughout the tropics. In addition, the pattern ofmovement

during the night (the azimuth's rate of change) is not necessarily symmetrical with the

pattern during the day. In fact, only during the equinox is it truly symmetrical.
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There are also specific predictions for the pattern of nocturnal compensation if the

underlying mechanism resembles the connectionist interpolation network. The predictions

in this case depend on the constraints placed on the learning. Ifno constraints are placed

on the position of the sun at night, the network will extrapolate nonlinearly into the night.

At midnight, there will be an abrupt shift to a pattern that resembles backward

extrapolation (Dyer, 1985) although it too is nonlinear (see Figure 5.10 A).

The diverse predictions of the models with respect to nocturnal compensation suggest that

these models can be distinguished experimentally. The models also differ in predictions

and assumptions about the symmetry ofthe pattern of solar movement. In most ofthe

models there is some symmetry imposed that is not seen in the natural pattern of

movement ofthe sun's azimuth. In the ellipse model, this symmetry comes from the

pattern of movement assumed for the night, as discussed above. This is one ofthe most

substantial predictions ofthe ellipse model, and it is one that can be addressed

experimentally. There is evidence suggesting that this might be the case. The explanatory

power of the 180° step firnction (Dyer & Dickinson, 1994) rests on this symmetry. The

behavior of many systematic errors made in sun compensation also support this conclusion

(Wehner & Lanfranconi, 1981).

The symmetry assumptions in the other models may not be as substantial. Symmetry

assumptions are encoded in the preconfigured networks, although symmetry may not be

necessary. Some kind of symmetry assumption is required to impose the necessary
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constraints on the interpolation network. In the current model, an assumption of 180°

symmetry is necessary for the network to accurately estimate the position ofthe sun in the

morning with only afiemoon experience with azimuth-time pairings.

6.4 A False Dichotomy?

Throughout this dissertation I have maintained a dichotomy between symbolic and

nonsymbolic solutions to the problem of estimating the position ofthe sun during

unexperienced times of day. This dichotomy has a tradition in the literature (Smolensky,

1988; Gallistel, in press), but there are also those who suggest that the approaches are not

as different as they have been portrayed (Boden, 1991; Oden, 1994). The distinction may

be more an issue ofwhat is computed versus how it is computed (Boden, 1991).

Symbolic models provide an hypothesis about what is computed while connectionist

models provide an hypothesis about how distributed networks of simple elements

compute. Attempts to integrate these levels of explanation are emerging (Smolensky et

al., 1994). I favor Marr's (1982) three levels of explanation (computation, algorithm, and

implementation). Resolving the symbolic-nonsymbolic dichotomy into Marr's trichotomy

would be a worthwhile challenge.

For the sun compass learning problem, traditional symbolic models have provided a

framework for investigating the problem (New & New, 1962; Gould, 1980; Wehner &

Lanfranconi, 1981; Dyer, 1985, 1987), after all, they made specific predictions that could

be falsified by behavioral experiments (Dyer & Dickinson, 1994). It could be argued that
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to a certain extent, they are phenomenological models that are meant to describe the

behavior rather than the neural implementation of the behavior. Yet they have been

interpreted as the latter (Gallistel, 1990, in press). Even New and New (1962) suggested

this in the following statement: "in fact they appear to have an innate mechanism that can

divide angles by time" (p. 287).

At a fundamental level there may be no difference between these approaches. The

interpolation network looks very much like a symbolic model. The equations that describe

it are indeed quite simple because of the limited number of neural elements. Equations 5.]

and 5.2 can be combined in a relatively simple form to describe the output ofthis network.

In this sense, the connection weights (w), become the parameters ofthe firnctional

relationship between inputs and outputs, and in this case there are only four ofthem,

which is in the range ofthe parameters required for the symbolic model based on the

equation of the ellipse. Since connectionist networks are universal approximators

(Hornick et al., 1989), a network not firndamentally different from the interpolation

network could approximate any fimctional relationship the variables in this case (azimuth

position and time). Thus over a given range, the nonsymbolic model would have exactly

the same characteristics as a symbolic model. The network would then be firnctionally

isomorphic with the symbolic model in a very real sense. Clever experimental

manipulations may be able to distinguish whether the animal's representation is truly

isomorphic with the true parameters of the problem or whether it is firnctionally

isomorphic over the range in which the problem is normally solved.
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6.5 Caveat

The modeling effort cannot stand alone. It must be thoroughly based in data, and it must

be amenable to experimental falsification. The models presented here conform to these

requirements. It is clear that there may be multiple ways to model the sun compass

learning problem, but without models ofthe possible mechanisms it is unclear exactly what

questions to ask with experiments.

 

6.6 Representing the Regularities of the World

I began with a very broad statement about the regularities of the world. Throughout this

dissertation, I have focused on a very narrow aspect of one environmental regularity, the

sun's course, and how it could be represented in the brain of an insect. In this case it is

clear that the regularities of solar movement are encoded in the brain ofthe insect. This

regularity is not completely genetically hard wired in the insect's brain, but aspects ofthe

regularity are encoded in the insect's brain. This allows an insect with very little

experience with the sun's course to have a relatively accurate representation of the sun's

course. But it is flexible enough to allow a more accurate representation develop with

more experience. I have attempted to show in very broad terms how this could be

accomplished with models oftwo general classes. The nature-nurture debate has been

raging for centuries, but far too infrequently are problems at the cusp addressed

systematically.
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