
 



THEQS

mi3TTm!W

IlllilllllilIlllililililllllllllllflllllllllllllll
3 1293(01683 9031

This is to certify that the

thesis entitled

GEOSTATISTICAL ANALYSIS OF PENNSYLVANIAN

SEDIMENTS IN THE EASTERN MICHIGAN BASIN

presented by

Timothy Gerard Monaghan

has been accepted towards fulfillment

of the requirements for

hastens—— degree in -Gee-]:eg-:i.-ea-i- Sciences

 

0-7639 MSU is an Afiirmative Action/Equal Opportunity Institution

 

 

LIBRARY *

Michigan State

University

   



PLACE IN RETURN BOX

to remove this checkout from your record.

TO AVOlD FINES return on or before date due.

 

MTE DUE DATE DUE DATE DUE

 

  

 

 

  

 

  

 

  

 

        1/” WM“

 

 



GEOSTATISTICAL ANALYSIS OF PENNSYLVANIAN

SEDIIVIENTS IN THE EASTERN MICHIGAN BASIN

By

Timothy Gerard Monaghan

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Geological Sciences

1998



Abstract

GEOSTATISTICAL ANALYSIS OF PENNSYLVANIAN

SEDIMENTS IN THE EASTERN MICPHGAN BASIN

By

Timothy Gerard Monaghan

The purpose of this study is to determine how well sandstone

distribution within the Pennsylvanian Strata of the Michigan Basin can be

predicted. This analysis provides a test of the hypothesis that lithologic

variability is predictable in ancient fluvial sediments. A secondary hypothesis

is that coal exploration logs, recorded by geologists, are more accurate than

water well logs which were primarily performed by non-geologists.

Geostatistics can evaluate large data sets to determine the most likely

distribution of variables between known data points. We used the Michigan

Computerized Groundwater Resources Information Bank (MCGRIB) to

determine any predictable spatial patterns within the Pennsylvanian Strata of

the Eastern Michigan Basin.

We discovered that while there are widespread trends within data,

there are too many errors within the data to predict sandstone distribution at a

local scale.
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Introduction

Geologic data are commonly displayed as a spatial array; often the

most appropriate type of display consists of X, Y, Z data used to construct a

contour surface. Geostatistics can be used to characterize data value variation

with distance, to estimate data values at locations without observations and to

characterize these estimations statistically. We will use geostatistics to

determine if a sandstone thickness at a random point can be predicted based

on well log data from the surrounding area. The data set used is the Michigan

Computerized Groundwater Resources Information Bank (MCGRIB) of

computerized well logs, which includes private and municipal water well logs

along with coal exploration boring logs (Monaghan and Larson 1985).

The purpose of this study is to determine how well the distribution of

sandstones of Pennsylvanian strata in Bay County, Michigan can be

predicted. This analysis provides a test of the hypothesis that lithologic

variability is predictable in ancient fluvial sediments. A secondary hypothesis

is that coal exploration logs, recorded by geologists, are more accurate than

water well logs which were recorded mainly by non-geologists.

The MCGRIB data base used in this study encompasses more than 10

counties in the lower peninsula of Michigan. Some of the logs are highly
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detailed with recorded thickness intervals to the nearest half foot. Bay County

was chosen for detailed study because of higher density of coal boring logs. If

a suitable geostatistical model can be developed with Bay County data, then it

might be applied to other areas in Michigan that contain Pennsylvanian strata

to determine if the depositional environment is constant across the basin. If

the depositional environment is constant across the basin, the model can then

be used to predict the distribution of sandstone.



Geostatistics

Geostatistics refers to statistical methods used to evaluate data

variation with distance. Variography is the basic method for evaluating how

data that has relatively normal distribution and is continuous varies with
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Typical variogram with a gaussian model.
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distance. A variogram (figure 1) is a plot of variance between data points

versus distance between those points; generally as distance increases so does

 

70‘) = 1/2N0» 20.1)“: ' ‘0')2

h = radial distance from one point to any other.

2(,-J)(v,- - 12,-)2 = sum ofthe variance between two distances.

Mathematical formula for the variogram.  
 



the variance plot (Grant et. a1. 1994, Isaaks and Srivastava 1989, Olea R A

1996, and Wolf et. al. 1996). The variogram visually displays cumulative

variance between all data points at a given distance. The terminology for this

distance is lag or lag spacing. Change in cumulative variance may be

predictable over a certain distance until the variance of the entire data set is

reached. The range of a data set is the lag distance where cumulative variance

no longer changes with lag distance and cumulative variance equals variance

of the data set. Variogram sill is the cumulative variance of the data and is a

point where the variogram levels out or where data variance no longer

changes significantly with distance (Grant et. a1. 1994, Isaaks and Srivastava

1989, Johnson and Dreiss 1989, Olea R A 1996, and Wolf et. a1. 1996). If the

variogram shows variance at zero distance, it has a nugget. Nugget may be a

measure of the precision of a data set. If data has variance at zero distance, or

a nugget value, then some of the data can be assumed to reflect error or a fine

scale variability (Grant et. a1. 1994, Isaaks and Srivastava 1989, Liu et. al.

1996, Olea R A 1996, and Wolf et. al. 1996). A hole effect is a sinusoidal

variogram once the sill has been achieved (figure 2). Time series analysis may

be used to determine if periodicity of variance is predictable. Johnson and

Davis (1989) and Desbarats and Bachu (1994) suggested that the periodicity



of the data could be a measure of the length (horizontal) or thickness

(vertical) of a sedimentary body.
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Typical variogram with sinusoidal variations.  
 

Data are searched by comparing a data point with all others within a

given area. This search is performed in a circular or elliptical shape. The

search pattern (ellipse) defines an area, around a given point, in which we

assume that data values are most alike. This pattern is usually oriented to

exploit any trends in data distribution. Because data values in a given area are

usually similar, data values may have a preferred orientation. Thus, if there is

a preferred orientation that has a diagonal trend through the data, the ellipse

will have its long axis oriented along that trend. In an elliptical search, values

at greater distances along the preferred orientation are as important as those



closer data points perpendicular to the orientation. This utilization of a

preferred orientation can be used to effectively evaluate changes in variance,

since it evaluates variance trends that are intrinsic to the data. For efficient

searches of data values, the search ellipse should be oriented along any

preferred orientation, so the evaluation will be performed on data values that

are most similar. This search will then allow a preferred orientation within the

data to be preserved, by allowing data points that are similar to maintain their

similarity.

Spatial variation can also be analyzed with indicator data. Indicator

data are raw data converted to a one or zero. For example, data may be

converted to a value of one, if the item of interest is present and to zero if the

item of interest is absent or vice versa. Indicators can be a powerful method

of evaluating data because it allows data to be evaluated by presence or

absence of data values, instead of the raw data values. Raw data can vary

greatly within a given data set and abnormally high and low values can

impede variogram analysis due to high variance values at close lags. Indicator

data discounts the significance of abnormally high or low values. This method

is used to evaluate variance with distance with only magnitude being altered;

any spatial relationships between data points are preserved (Solow 1993).



A map created from indicator data may be used as a probability plot. A

value of 0.5 is the separation point of the two values (zero and one) and there

is an equal probability of either variable at the 0.5 contour. Values less than

0.5 are more likely to have zero value and vice versa.

Four types of models are commonly fitted to variograms; spherical,

 

 

 

 

 
  

Figure 3

All types of variogram models superimposed.

From Isaaks and Srivastava (1989)
 

exponential, gaussian and linear. Each model gives a mathematical formula

that can be used to predict variance with distance, using range, sill and any

nugget value to define the shape of the model (figure 3). Keckler (1994), used

a “scale” value, which is the difference between sill and nugget, to describe

the model and the search radius to define the range. Similarly, GEOEAS

defines the sill value as a difference between nugget and an actual sill. The

models are fit to a variogram and used to determine if the data is described
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with that particular mathematical description. The model that appears to

match the variogram best is then used in fiuther evaluations.

The Spherical model is described as follows:

 

 

y(h) = C [1.5 h- 0.5 113] ifO sh s 1

ory(h)=Cifh=l

where C = scale or nugget + sill of the data

where h = relative range ofthe data points

Modified from Keckler 1994.  
 

This equation describes data varying with distance to a polynomial formula.

The model slope changes in a parabolic shape until sill is achieved. Once sill

is achieved, the model levels out to a scale value, which is equal to the

difference between sill and any nugget value. This sill value should be

approximately equal to the total variance of the data whole set.

The exponential model is described as follows:

 

 

Y0?) = C [1 - 6"]

where C = scale or nugget + sill ofthe data

where h = relative range ofthe data points

Modified from Keckler 1994.
 

This model tends to mimic a parabolic curve and has an apex of the curve

greater than the spherical model. As with the spherical model, the model

levels out to a scale value.

 



The Gaussian model is described below. This model, while similar to

the exponential model, tends to have a shallower slope at lower ranges and a

higher slope at greater ranges until leveling out to a sill value once a range is

 

 

Y0?) = C [1 - 6“]

where C = scale or nugget + sill of the data

where h = relative range of the data points

Modified from Keckler 1994.
 

reached. The curve is less than the spherical model and has a more complex

shape.

The linear is described as follows:

 

 

W?) = C h

where C = scale or nugget + sill of the data

where h = relative range ofthe data points

Modified from Keckler 1994.
 

This model is a straight line with no change in slope. This model will not

reach a sill value. Data described by this model has constant variation with

distance.

Kriging is a mathematical method that uses a weighted average to

interpolate data values at both known and unknown points. The weighting

factor for each data point is based on inverse distance between that data point

and all other data points within the search area. This evaluation is performed

on all data points in the data set. The weighting factor is multiplied by the

9

 

 



variance between data point values, based on the mathematical model

developed with variography. This provides variance information which is

weighted by distance. Values are then calculated for all points, usually in

continuous x - y coordinate pairs, which will give an estimated surface. Thus,

kriging is used to calculate a surface between known data points with a model

developed by variograph analysis. An output can be created that describes

both quartile values and individual data points in both estimated and actual

data values along with standard deviation information. This output can be

compared to outputs of other models that have been developed. This

statistical evaluation can also be used to compare observed verses calculated

points and provides a method of determining if the model gives reasonable

estimates for all the data.

Kriging can also be used to evaluate a variogram model, by using the

model to estimate data values at all known points. Each point is removed in

turn and determined how well the model describes that data point, this

process is termed cross-validation. Cross-validation compares the computed

value with actual data points and allows for an output. This output can then

be statistically evaluated, by any number of methods, to determine the

accuracy of a given variogram model. Cross-validation is evaluated by two

10



general methods, an error map or x-y scatter plot. The error map is a measure

of relative error in the data estimation, which is a measure of proportional

error of an estimated point. This type of visual display does not allow for an

absolute value to be placed on a given point. The error map is useful to

determine general trends in model error along with problem areas in an

estimation. An error map can also be used to compare different models for

relative error that exists in each. If a model appears to be poor at only one

point, a reasonable explanation could be a few bad points. If, on the other

hand, it is poor in multiple areas, then the entire model needs to be re-

developed. The error map is generally used to compare relative accuracy of

different models in an attempt to determine if a model could be valid for the

data set. Once a model is determined to characterize a data set with little

relative error, an x-y scatter plot is used. The scatter plot is used as an

absolute measure of actual error within the model. Scatter plot information

can be output as x-y data for linear regression analysis. Linear regression

allows a quantitative measure of model error. This measure of error can be

evaluated by statistical methods, such as 12, p-score or t-score. These

statistical methods are then used as an indicator of evaluation significance.

1]



Previous Work

The Pennsylvanian sediments are described in detail by Vugrinovich

(1984). We have included the detailed lithologic descriptions to show the

variation that is present within the Michigan Basin Pennsylvanian sediments.

The formation names used are those proposed by Vugrinovich (1984). The
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  Figure 4

Simplified Stratigraphic Column from the Area of Study

Modified from Vugrinovich (1994)

individual units can have sharp lithologic changes, with some of the units

grading into others. The units are also a complex conglomeration of aquifers

and aquacludes which can be similar to other cyclothem deposits (Westjohn
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and Weaver 1996). The Parrna primarily consists of a clean, well-sorted

quartz sandstone with areas of localized siltstone and shaly siltstone. The

Saginaw Group consists of the lower Six Lakes Member, the Hemlock Lake

Formation, the Lake George Formation, and the Winn Formation with the

Verne Member. The Six Lakes Member consists of a light colored micritic

limestone with some areas of silty limestone and areas of anhydrite and

gypsum. The Hemlock Lake Formation contains two distinct sequences, a

lower and an upper. The lower sequence is thinly bedded sandstone, siltstone

and shale with minor carbonate. The upper sequence is primarily shale with

minor amounts of siltstone and carbonate. Coal is also present in the lower

portion of the unit. The Lake George Formation is primarily well-sorted

quartz sandstone. There are areas of minor fine grained sediments consisting

of shale, siltstone and poorly sorted sandstone. The Winn Formation consists

of shale, siltstone and sandstone sequences. The unit is predominantly a dark

gray, soft, clayey shale. Some of the shale is dolomitic, hard and massive,

with quartz grains and carbonaceous inclusions. The siltstone is also gray and

tends to be associated with shale. The sandstone is dirty and poorly sorted,

although the individual beds can be well sorted. The Verne Member of the

Winn Formation is of limited extent, primarily in the eastern portions of the

13



 

basin. The unit consists of calcareous black shale and black argillaceous

limestone that contain brachiopod and mollusc fossils.
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Structural Contours of Pennsylvanian Sediments

from Vugrinovich (1984)  
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Based on Lilienthal’s (1978) interpretations of gamma ray logs of oil
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base of Pennsylvanian rocks lies at 95 feet above sea level. The contact with

glacial drift was not located, but it can be assumed that the glacial drift lies on

the Pennsylvanian rocks as noted by Dorr and Eschman (1970).

Pennsylvanian sediments in the Michigan Basin are up to 700 feet thick

(Shideler and Wanless 1965). In Mid-Michigan the sediments are up to 600

feet thick (figure 5). The Winn Formation (Pennsylvanian) in Mid-Michigan

is up to 200 feet thick (figure 6). Pennsylvanian sediments lie unconforrnably

above the Mississippian Coldwater Shale and Bayport Limestone and under

Jurassic Red Beds or Pleistocene glacial drift. The sediments were deposited

onto an eroded surface which appears to control the sediment thickness

(Shideler 1969). Shideler (1969) and Velbel et. al. (1994) described the

sediments as lithologically variable with many channel scours and fills of sand

and gravel, along with over-bank sand and associated shale, and coal

deposits. Some of these coal beds are economically developable units (Dorr

and Eschman 1970). Fine sand and shale units are highly variable and are

generally localized within coarser units (Velbel et. a1. 1994). Furthermore,

these fine textured units tend to be deeper in the units of the Pennsylvanian

System (Velbel et. al. 1994). During the Pennsylvanian Period, elastic

sediments of the Saginaw Group and Parma Formation began to infill a

16



shallow sea in the Michigan Basin from east to west (Velbel et. a1. 1994,

Shideler 1969, Shideler and Wanless 1965, and Newcombe 1932). This sea

was relatively isolated because of many arches surrounding the basin

(Shideler 1969). Marine limestone was deposited in western areas and deltaic

and fluvial sand was deposited in eastern areas (Shideler 1969). Fluvial sand

has been interpreted as a “coarse grained meandering” river deposit with low

to intermediate braiding and fining upward sandy channel fills (Velbel et. a1.

1994)

Dorr and Eschman (1970), Lilienthal (1978), Vugrinovich (1984), and

Velbel et a1 (1994) suggested that the Pennsylvanian sediments are fluvial in

origin, most likely deposited by a large river system. Vugrinovich (1984),

indicated that the Pennsylvanian system started with a transgression of the sea

to the west, followed by an associated regression and subsequent

transgression. The Lake George Formation, which is near the middle of the

system, has been interpreted as a meandering river system, based on

Vugrinovich’s descriptions of bed forms. Velbel et al (1994), in their work at

Grand Ledge, described the bedforms as tabular-planar cross-bedded units

with cross-bedding parallel to charmel margins, implying lateral accretion.

l7



The depositional environment was firrther determined to be a meandering

river system.

Meandering fluvial environments have been studied by many authors at

varying scales. Bridge et. a1. (1995) traced meander scrolls in a small river

system in Scotland. One of the sedimentary sequences distinguished was the

fining upward bar sequence. These units consisted of tens of centimeters thick

gravel beds that grade to fine crossbedded sand strata. Peat deposits

commonly underlie this material. Miall (1994) distinguished lateral-accretion

deposits in the multistory sand bodies that make up the Castlegate Sandstone

of eastern Utah. Such deposits were also noted by Velbel et al (1994) within

Pennsylvanian Strata at Grand Ledge, Michigan. In the Castlegate Sandstone,

Miall determined that some of these units were hundreds of meters in length

and even greater in width. Bridge et. al. (1995) determined that the channel of

River South Esk, in Scotland, moved laterally over 7 meters in 18 years. This

type of channel meandering could lead to the large sediment deposits that

have been noted in the Michigan Basin Pennsylvanian system and Miall’s

description of the Castlegate Sandstone. Bridge et. a1. (1995) also

distinguished centimeters to decirneters thick beds within their stratigraphic

sequence that were apparently deposited by seasonal flood events.

18



Jordan and Pryor (1992) recognized 6 levels of heterogeneity in the

meandering Mississippi River from Cairo, Illinois to Memphis, Tennessee.

These levels range fi'om the scale of individual beds (level 6) to the entire

river meander channel deposits (level 1). Level 1 heterogeneity is most likely

to be determined at a scale represented by the MCGRIB data set. Level 1

heterogeneity is 10 - 15 miles wide and 10’s of miles in length with an

average thickness of 20 feet (Jordan and Pryor 1992). Sediments in this type

of heterogeneity consist within meander scrolls of sand bars formed as the

channel migrates laterally across clay and silt bodies that have infilled

abandoned channels. This infilling of abandoned channels occurs during the

periodic flood events. These are all overlain by silts and clay deposited on

levees and flood plains.

Fluvial environments can include predictable and fairly homogenous

lithologic units. For example, Desbarats and Bachu, (1994) predicted

hydrologic transmissivity in an aquifer consisting of fluvial sandstones and

associated shale aquacludes. Since these deposits can be predictable, a

random and representative sampling may be used to predict the distribution of

lithologies between data points. Davis et a1 (1993) studied hydrologic

variability in the Sierra Ladrones Formation of central New Mexico in an

19



attempt to correlate outcrop observations with core data. The ancestral river

systems in the area of study were between 10 and 20 miles in width, with a

20 foot high outcrop being studied. They showed that the maximum variation

in lithology of fluvial sediments, for a given lag, was perpendicular to flow-

direction. The highest variation is from channel to overbank deposits and the

least variation is down-flow because channel fill deposits are primarily sand

bars of similar texture.

May and Schmitz (1996) showed that a coarse sand body could be

distinguished from other finer textured sediments in a channel meander belt.

Their characterization was performed using a sinuosity ratio, channel length

to valley length and average sand body widths of the inferred stream type.

Braided streams are narrower and have a sinuosity ratio of less than 1.5

(Robinson and McCabe 1997). Channel and facies type were determined with

lithologic cores and interpretation of sedimentary structures in those cores.

Johnson and Dreiss (1989) applied a hole effect using variography and were

able to distinguish sand bodies using only lithologic information from the

Santa Clara Valley of California. A horizontal variogram was used to

distinguish width and a vertical variogram (down-hole) was used to

distinguish thickness of a sand unit. Obviously sampling must be less than the

20



unit width or thickness, if width and thickness are to be distinguished using

this method.

Johnson and Dreiss (1989) attempted to distinguish hydrogeological

sedimentary facies using an indicator variogram. An assumption in indicator

evaluation with two different variables is that a 0.5 value can be used to

separate different hydrologic or lithologic units. Indicators are determined

from inferred permeability or lithology from borehole data by presence or

absence of data. More efficient evaluations can be performed on data that has

similar values, such as indicators or data within a facies. Data with a

preferred orientation can be searched to exploit this preferred orientation.

Matheron and de Marsily (1980), Smith and Schwartz (1980), Gelhar and

Axness (1983), Fogg (1986) and Guven et. a1. (1986) used data distribution,

direction and orientation to determine search parameters for evauation of a

particular data set. General orientation of data values, in spatial plots of data

values can be used to determine primary search axis. In fluvial deposits this

search evaluation is important since the widest range of grain size is from

channel deposits to over-bank deposits.

Smith et. a1. (1993) used multi-variable indicators to evaluate soil

quality which were converted into an indicator variogram. Indicator

21



variograrns were determined to be a better indication of the soil quality

relationships than the standard variogram, due to the complex relationships

between soil nutrient values. This study showed that in a complex

environment an indicator could be used to suit the environmental variable of

interest. Vaughan et al (1995) used geostatistics to estimate the salinization of

a soil in the San Joaquin Valley California. Vaughan et a1 (1995) used

geostatistics because regression analysis did not adequately describe known

points and another procedure was deemed necessary. The study determined

that variography resulted in accurate data prediction, except at study area

boundaries.

22



 

 

 

 

 

 

      

 

  
  
 

 

 

 

  

    
  

  

Figure 7

County Map of Michigan

with Bay County Highlighted
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Township and Section Map

Bay County Michigan
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Methods

The data for this study is from the MCGRIB data set of well logs in the

Michigan Basin. Monaghan and Larson (1985) edited the data by determining

if the log made geologic and stratigraphic sense. For example, if a log had

lithologies that are not in the region or lithologies that seemed out of sequence

(e. g. rock over glacial drift), that well was eliminated. Questionable lithologic

units were sometimes given a code for an unknown lithology. Lithologic

codes under 50 represent glacial drift, while code values 50 or greater

 

 

7 13N 4E18501$WNWNW COL 192469999-9999

43.52967187926N84.05152063322W 4823645.294N 738263.425W16

3.750 2.230 36.912 32.179

635.0 158.6 476.4 515.0 9999.0 120.0521920

12 5.0 630.010 45.0 585.019 11.0 574.024 2.0 572.019 47.0 525.0

10 4.0 521.019 6.0 515.052 .5 514.577 6.5 508.052 8.0 500.0

75 1.1 498.977 3.9 495.052 7.0 488.075 1.4 486.652 .6 486.0

77 6.0 480.052 .6 479.472 .3 479.175 2.5 476.672 .2 476.4

7 [county code] 13N 4E 18 [township range section] 501 [well type] SWNWNW [well location]

COL [logtype (coal)] 192469999-9999 [well identification]

43.52967187926N84.05152063322W [latitude longitude] 4823645.294N 738263.425W 16 [UTM id]

3.750 2.230 [county plane projection] 36.912 32.179 [state plane projection]

635.0 [ground elevation] 158.6 [well depth] 476.4 [bottom elevation] 515.0 [bedrock elevation]

9999.0 [static water level] 120.0 [drift thickness]

52 19 20 [drift base lithology, top bedrock lithology, total number of lithologies]

[followed by lithology, thickness and unit base elevation]

12 5.0 630.010 45.0 585.019 11.0 574.024 2.0 572.019 47.0 525.0

10 4.0 521.019 6.0 515.052 .5 514.577 6.5 508.052 8.0 500.0

75 1.1 498.977 3.9 495.052 7.0 488.075 1.4 486.652 .6 486.0

77 6.0 480.052 .6 479.472 .3 479.175 2.5 476.672 .2 476.4

Typical coal log with explanation.

Modified from Monaghan and Larson 1985   
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correspond to the bedrock lithologies. Codes used in this study are

sandstone/shale (51), shale (52) and sandstone (50). Because the code 51

(sandstone/shale) was present in less than 10% of the wells and was such a

vague term, it was ignored for this study.

Considerable effort was directed toward determining an area for study

within the MCGRIB data set. The data was divided into smaller subsets

based on individual legal townships and given short hand descriptions (table

1). Variogram evaluation of the entire Bay County data set was not possible

due to software limitations. GEOEAS software can efficiently evaluate no

more than one hundred data points using variography and the Bay County

 

 

Township location Township designation Township ltfltion Township designation

 

T17N R3E bayl T15N R4E bay6

T17N R4E bay2 T14N R3E bay7

T16N R3E bay3 T14N R4E bay8

T16N R4E bay4 T14N R2E bay9

T15N R3E bags T13N R2E bale

Table 1

Township locations and designations in Bay County Data set
 

data set has well over 500 data points. GEOEAS creates a “pair comparison

file” (PCF) to evaluate a data set using a variogram and it allows a maximum

of 16,384 pairs for evaluation (50 to 75 points maximum). To achieve good

results with GEOEAS, the area of study should have a relatively large amount
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of well distributed data points. Although many townships within Bay County

have relatively good data distribution, there are often gaps in data coverage.

 

 

  

Township Location Sections File Desgn_ation Wells in file

T14N R3E 25, 26, 27, 28 BaySadat 53

T15N R3E l, 2, 3, 10, 11, 12 Bay7a.dat 93

T15N R3E 10, 11, 12 Bay7e.dat 70

T15N R4E 26, 27, 28, 33, 34, 35 Bay6c.dat 25

All All Bachu 499  

Township Locations, File Designations

Sections used, and Wells in File

For Areas Studied in Bay County.
 

Such gaps can hamper proper variogram evaluation (Isaaks and Srivastava

1989). Townships T15N R3E and T14N R3E have the largest quantity of

data within the Bay County data set, but again there are gaps in data

coverage. Plots of data location with respect to individual sections within

townships revealed two areas; T15N R3E sections 25, 26, 35, 36 (area

bay5a) and T14N R3E sections 1, 2, 3, 10, 11, 12 (area bay7a) with the most

evenly distributed data. Sections 10, 11, 12 within T14N R3E (area bay7e)

contained the majority of data for a smaller subset of T14N R3E sections 1,

2, 3, 10, 11, 12, so it was used as the basis for all subsequent evaluation. A

final area was used for evaluation; T15N R4E sections 26, 27, 28, 33, 34, 35

(area bay6c). This area has more sandstone, but less total well logs than the

larger bay7e and bay5a areas.
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Probability plots indicate the data has relatively normal distribution and

were used because a large quantity of zero values tends to skew results of a

histogram. Distribution on a cumulative percent plot tended to be straighter

with the data than with a log normal data plot, but neither plot shows a clear

normal distribution (figure 10).
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Figure 10

Cumulative percent plots for

thickness of sandstone (thick ss)

and log thickness sandstone (log ss).
 

Well location was also a problem with this data set. Because wells

were only located to the 3rd 1%: section, multiple wells within this 40 acre

parcel have the same location. A program was written to reproject raw wells

and assign random location within the 40 acre parcel. This simple

reprojection eliminated any identical data points.

The data was sorted into smaller, easier to manage data sets based on

specific townships with all or a specific set of sections. Specific thickness
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intervals were chosen, then a data subset created. Wells were also sorted for

type: coal boring or all rock logs. Coal logs were used in primary evaluation

 

Bay County T15N, R3E = bay5.dat File identification.

12 Number of variables.

nonhing Northing value.

casting Easting value.

top rock Elevation ofbedrock surface.

top ss Top ofthe first sandstone unit elevation.

thick ss Thickness ofthe first sandstone unit.

ind ss Indicator value offirst sandstone unit.

top sh Top ofthe first shale unit elevation.

thick sh Thickness ofthe first shale unit.

ind sh Indicator value of first shale unit.

top all Top ofthe first sandstone or sandstonefshale unit elevation.

thick all Thickness ofthe fust sandstone or sandstone/shale unit.

ind all Indicator value of first sandstone or sandstone/shale unit.

 
[last columns give a absolute location identification ofthe well in question]

186.079 259.378 498.0 420.0 45.01 400.0 0.00 420.0 45.01 ISN 3E 2501COL 43.732786 84.075009

184931259123 468.0 420.0 86.0 1 400.0 0.00 420.0 86.0 1 UN 3E 2502COL 43.731102 84.087422

180.798 260.249 535.0 433.5 29.5 1 400.0 0.00 433.5 29.5 1 15N 3E 5502COL 43.738464 84.132153

179.187 258.481 507.0 425.0 6.0 1 400.0 0.00 425.0 6.0 l 15N 3E 6501COL 43.726832 84.149540

Description ofthe GEO-EAS data format.

Header description top to bottom, is left to right in data fields

 

because they were assumed to be more reliable. The data were evaluated in

four distinct smaller sub-sets mentioned above. These include bay7a, bay5a,

bay6c and bay7e. The entire Bay County data set was used only in final

kriging due to software limitations. Data sets were sorted for only coal logs in

the sections specified, except for bay6c which was sorted for all wells to

increase data quantity. The two subsets, bay7a and bay5a, generally have

continuous data distribution throughout the entire area of coverage with bay7e

being a subset of bay7a.dat. The two subsets, bay7a and bay5a had the best
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distribution with very few unrepresented areas. These two areas are also

contiguous, T15N R3E sections are on the lower tier of the township and

T14N R3E sections are in the upper tier of the township. This allowed data

from two continuous areas, which should have similar geostatistical results, to

be evaluated individually. Using R2 of estimated thickness verses actual

thickness, the results from these areas showed no significance (table #4), so

bay6c was determined to be the area for final data evaluation.

Glacial influence in the study area needed to be determined to be

certain that sandstone absence was not due to removal by glaciers. Based on

the lowest elevation of the top of bedrock, an elevation of 420 feet above sea

level was the limit of glacial erosion within Bay County data. Based on raw

data evaluation, this low elevation occurred at well location 179.4434 east

and 235.5822 north. Due to glacial erosion, an interval of 420 to 400 feet of

elevation was chosen. Any interval above this interval would be unreliable

because a sandstone unit may be absent due to glacial erosion. Conversely

units below this interval would be less reliable due to lack of well quantity,

which drops significantly with depth. For example, bay7 has 239 wells in the

420 to 400 foot interval while only 26 wells extend into the 360 to 340 foot

interval. BayS begins with 74 well in the 420 to 400 foot interval and only 34
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wells occur in the 360 to 340 foot interval. For good data quantity and

distribution, the interval from 420 to 400 feet was used in this study. In

addition this interval range allows evaluation of the level 1 heterogeneity.

Jordan and Pryor (1992) described the heterogeneity at this scale to be 20’

thick.

The well separation is as little as zero distance with average separation

appearing to be 500 to 1000 feet. The data were kriged based on a variogram

with a lag spacing of 0.110 or 0.130. A lag spacing of 1.0 has an absolute

measurement of about 2000 feet, so variogram lag spacing used in this study

would be about 200 feet to 250 feet. The thickness of the first sandstone unit

encountered, when sorting well logs, was used as the sandstone thickness for

that well location. Because mean thickness of sandstone units in the study

area is 30 feet, the 420 to 400 foot interval should place the evaluation of

sandstone thicknesses within the interval described as a level 1 heterogeneity.

The cross-validation information was output to a data file and a linear

regression analysis was performed on actual thickness verses estimated

thickness.
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Results

The sandstone thickness data were best fit by a gaussian model. This

type of model tends to have less variation at close lags which increases as the
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Variogram for area bay6c.
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Variogram for area bay6c.

Linear Model: Nugget = 750, C - Value = 1500, Rafinge = 1.5  
 

33



range is approached. Although some of the data fit a linear model for short

distances, a gaussian model tended to better characterize the entire data set

 

Variogram for thick ss
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(figures 11 & 12). The gaussian model fits areas baySa (figure 13),bay7a

(figure 14), bay7e (figure 15), bay6c (figure 11) as well as the entire Bay
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Variogram for area bay7e.

Gaussian Model: Nugget = 22, C - Value = 15, Range = 1.5

Error maps show many areas with relatively small differences between

 
 

actual and predicted values and few areas of large relative error (figures 16

and 17). The areas with larger error are confined to small groups of highly

variable data. These groups of data apparently skew the results, because they

are closely spaced but also have a wide range of values. Two attempts were

made to eliminate this phenomena, reprojection of data points and the use of
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indicator data. Change variance with respect to distance is assumed to be near

immediate, with some of the data in these areas having widely variant data
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Figure 16

Error map of area bay7e

Error is proportional to symbol size
 

values. A gradual change in variance is needed to predict change in variance

with distance. The reprojection moved data location a maximum of 100 feet.

Reprojection, however, did not disperse data location enough to allow for

gradual change in variance with distance.
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The use of indicator data to eliminate data variability at short lags was

also not successful. Area bay7a and bay5a were evaluated using indicator

data. The standard deviation for bay7a is 0.484 and for bay5a is 0.5. These

 

 

bay5a.dat bay7a.dat

minimum -3.818 -3 .926

25th percentile -1.236 -1.535

50‘11 percentile 0.000 0.000

75th percentile 0.975 1.074

maximum 4.593 4.050

standard deviation 1.842 1.819

Table 2

z-star and standard deviation ofthe indicator data sets (thickness ss)
 

standard deviation values are what would normally be derived from data that

is either one or zero. This indicator evaluation is assumed not to be any better

than what can be expected of randomly chosen data.

To determine if the closely spaced, highly variable, data groups were

representative of the entire data set, they were evaluated individually. Three

groups of data were evaluated singly and totally as a group. Each group had

only 7 or 8 well logs and because of small sample size, they were difficult to

evaluate. The error maps had small relative error, but regression and

statistical analysis revealed poor model performance. The best linear

regression evaluation had a t-test value of 0.057 and a p—score of 0.875; these

values indicate no significance.
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The following statistical results are for the thicknesses of sandstone

units (50) in coal logs of the individual subsets. The search radius used was

1.5 lag units which is the range on the model developed from variogram

analysis. The evaluation of the smaller data sets was poor using the error map

information (figures 16 and 17). The raw statistics results for models used to

 

 

bay5a.dat bay6c.dat bay7a.dat bay7e.dat

data 0' 24.36 42.52 7.377 5.731

indicator 0 0.50 0.50 0.484 0.463

minimum -95309 -107000 .45.199 -28.527

25* percentile -5.362 -33739 0.000 0.000

50th percentile 3.718 2.995 0.102 0023

75th percentile 11.407 17.764 2.998 2.211

maximum 40.109 76.844 24.775 13.102

z-star O’ 10.34 26.43 3.956 2.763

Table 3

o = standard deviation

z-star and standard deviation ofthe data sets (thickness all)  
 

evaluate area bay7a and bay7e are similar, while bay5a performed poorly

(table 3), using a standard deviation test. The z-star is the estimation of data

value at a given point.

Area bay6c was the only small data set to have a statistically

significant correlation between calculated and observed sandstone thickness.

Since the majority of estimation error does not fall within two standard

deviations about the mean, statistically the evaluation is not valid (table 2).

The model developed for area bay6c.dat was the only model that performed
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well enough in preliminary statistical information to be applied to the other

data sets (table 3).

To determine if coal logs and water well rock logs are equally valid in

precision, an evaluation was performed on separately sorted well logs. Two

subsets of the entire county were formed, one sorted for coal logs and another

sorted for all rock logs. Since only coal logs were encountered in the 420 to

400 foot interval of the smaller data sets, the coal logs to rock log accuracy

could not be evaluated in the smaller data sets. The model developed for

bay6c.dat was also applied to the entire Bay County data set, both coal and

water well log sorts. Except for abnormally high and low maximum thickness

values, the model performed similar to the small data sets (table 4).

Linear regression analysis and significance tests were performed on the

kriged output from the models (figures 18, 19 and 20). This was an observed

thickness (THK SS) verses calculated thickness (Z-star) analysis. The model

used was that determined for area bay6c. This model was applied to all data

sets, with entire Bay County data set sorted for coal logs (bay.dat) and entire

Bay County Data set sorted for all rock wells (bay-w.dat). Since the average

sandstone unit thickness was less that 5 feet, large estimated thickness could

be suspect. In a clipped data set, values of sandstone thickness that were
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greater than 100 feet, both original thickness and estimated thickness, were

removed. This clipping was performed in an attempt to eliminate abnormally

high and low data values, since these tail values could skew results

significantly. This clipped data was evaluated using the same statistical

methods as the other data sets.

 

 

 

 

R2 N p-score t-score ta_rget t-score

bay5a.dat 0.043 52 0.136 1.671 1.463

bay6c.dat 0. 186 42 0.004 1.684 2.720

bay7a.dat 0.003 92 0.601 1.658 0.522

bay7e.dat 0.000 69 0.998 1 .698 *

bay.dat 0.184 477 * 1.645 10.219

bay-x.dat 0.23 548 0.000 1.645 1 1.224

bay-w.dat 0.308 970 * 1.645 17.109

hay-w-XCEL 0.177 878 0.000 1.645 12.439

Table 4

Statistical outputs and values for data sets

* - Indicates uncalculatable values

Bay-x and Bay-w-x - calculated and thickness values over 100 eliminated

T-Score over target indicates significance

P-Score less than 0.05 indicates significance
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Figure 18

Linear regression plot of bay6c.dat
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Figure 19

Linear regression plot of entire Bay County data set

Coal Logs Only
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Figure 20

Regression plot of entire Bay County data set

Sorted for all rock well logs
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Discussion

With respect to error maps, our geostatistical estimation was relatively

accurate. Errors were spread throughout the study area, with high error

concentrated around areas with close well spacing. However, this

performance was not confirmed in linear regression analysis of model output.

 

  

 

 

R2 N p-score t-score target t-score

bay5a.dat 0.043 52 0.136 1.671 1.463

bay6c.dat 0. 186 42 0.004 1.684 2.720

bay7a.dat 0.003 92 0.601 1.658 0.522

bay7e.dat 0.000 69 0.998 1.698 *

bay.dat 0.184 477 * 1.645 10.219

bay-x.dat 0.23 548 0.000 1.645 1 1.224

bay-w.dat 0.308 970 * 1.645 17.109

pay-w-xdat 0.177 878 0.000 1.645 12.439

Table 4

Statistical outputs and values for data sets

* - Indicates Uncalculatable values

Bay-x and Bay-w-x - calculated and thickness values over 100 eliminated

T-Score over target indicates significance

P-Score less than 0.05 indicates significance
 

This discrepancy can be expected, since error maps only indicate relative

error of observed thickness compared to estimated thickness. The statistical

evaluations (table 4) for bay6c.dat indicates some data correlation along with

significance of some degree. The model, as applied to bay5a, bay7a and

bay7e showed no significance, while the model applied to the entire Bay

County data was significant. The larger data sets have somewhat improved

performance, which is attributed to a predominance of widespread data
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location throughout the study area. Models developed should more closely

resemble widely dispersed data, which has a change in variance relatively

small with respect to distance. The closely spaced data has a relatively high

change in variance with respect to distance. These different data variance

types could distort the variogram and assign greater importance to data

variance that are closer to average thickness value.

Data point locations could explain poor model estimation. For example,

some groups of data points had zero distance separation and some of these

data points had widely variable thickness values. Reprojection of data points,

in an attempt to move wells at zero distance in order to allow for more

predictable change in variance with distance, was insufficient to allow

thickness changes to be predictable. Even though well locations were

displaced, much of the widespread data had less variation with distance than

that of zero distance groups. This fact was indicated by the large nugget value

in the model. Geostatistical methods can not efficiently evaluate relatively

high variation with respect to distance and relatively low variation with

respect to distance. To achieve a proper estimation, the change in variance

must be predictable with respect to distance. If one of these data variance

types does not dominate, it will be difficult to model any change in variation

44



with distance because mathematical models will predict higher variation than

is true for the data set.

Well location estimation could explain some model variance. Wells are

spaced at irregular intervals, with an average distance of 500 to 1000 feet,

with some of the wells located at zero distance. This spacing should be

sufficient to allow evaluation of the presumed channel width of 10’s of miles.

Reprojection of well locations should not alter the evaluation significantly,

due to accuracy of original well location. Wells were located within a 10 acre

parcel of land, which has a width and length of 660 feet. Location information

as determined for each well within a given parcel was the center of that

parcel. If a well was near a comer of a given parcel and its location was noted

as the center of the parcel, an error of up to 450 feet could have been

introduced to the evaluation. Well reprojection moved well location up to 100

feet, which was enough to eliminate wells located at identical locations, but

not enough to alter error introduced in the original location.

A basic assumption of this study was that data contained in the logs is

accurate, and geological logs (oil and petroleum), being highly detailed, were

assumed to be the most accurate. Evaluations performed on coal logs only

and compared to those for all logs, using the same model on both data sets,
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were nearly identical. Since identical models performed similarly on each

data set, the geologic and water well logs can be assumed to be equal in their

accuracy. Monaghan and Larson (1985) reported that many logs were

eliminated due to lithology data that was vague or inaccurate. These include

bedrock units over glacial sediments, rock descriptions that were uncertain,

and wells described by persons that tended to use the aforementioned errors.

Vertical control on wells was not always accurate. In many cases vertical

elevation used was estimated from a USGS quadrangle map for the area, this

estimation could have introduced 21:10 feet of vertical error (Monaghan and

Larson 1985). Depending on sandstone thickness, this vertical error, along

with any error in the depth to unit, could miss a sandstone body in a given

interval.

Error in lithologic information could have also been introduced to a

log. For example, some drillers noted a sandstone / shale lithology. It is

uncertain what this lithologic description is; interbedded sandstone and shale

is likely but it could also be a “dirty” sandstone. Bridge et a1 (1995) were able

to discern thin, fine-textured beds within thicker sandy units, which were

interpreted as flood events. These could be the origin of the sandstone / shale

units. Some logs contain massive thickness of sand, up to 450 feet. Based on
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Robinson and McCabe (1997) work, on channel width to sandstone thickness

associations, a sandstone thickness or 450 feet will not correspond to a

channel width. An explanation for these unusual thicknesses could be a

“lumping” factor, which would be ignoring thin units which are either

destroyed or mixed with sandstone cuttings in a given log. This could explain

the presence of abnormally thick units near thinner units, units greater than

100 feet thick. These abnormally thick units are assumed to be errors and

should be ignored.

Poor model accuracy could also be explained by assumptions about

depositional environment. Depositional environment throughout the study

 

 

 
 

TOWNSHIP 420-400 ft INTERVAL 400-380 ft INTERVAL

LOCATION MEDIAN THICKNESS MEDIAN THICKNESS

17N 3E 85 feet 106.5 feet

17N 4E 35.5 feet 20.5 feet

16N 3E 10.5 feet 9.5 feet

16N 4E 0 feet 0 feet

15N 3E 4.5 feet 1.9 feet

15N 4E 20 feet 20 feet

14N 3E 0 feet 0 feet

14N 4E 0 feet 0 feet

14N SE 0 feet 2.5 feet

13N 4B 0 feet 0 feet

14N SE 0 feet 0 feet

Table 5

Median sandstone thicknesses for townships in Bay County
  
area was assumed to be a broad meandering river valley, that should have one

or more wide channels. Based on Robinson and McCabe (1997), in which a

channel depth is proportional to depth, there was not enough sandstone
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thickness in southern Bay County to correspond to wide channels. Studying

median thicknesses and a plot of indicator data shows no apparent patterning

to sandstone thicknesses (figures 9 and table 5). Robinson and McCabe

(1997) showed that a meandering river with a depth as shallow as 1 meter (3

feet) should have a width of at least 70 meters (230 feet). This relationship is

linear on a log thickness vs. log width plot. With sandstone thickness

averaging 20 to 30 feet, a river channel should have a width of 10 to 15 miles.

There are no areas, in southern Bay County, that have continuous sands of

these dimensions.

These are all based on the assumption of continuous channeling and a

meandering river system deposit similar to those studied by Robinson and

McCabe (1997) and Jordan and Pryor (1992). With a wide channel that was

abandoned quickly, it is possible that a majority of the former channel could

have been filled with fine textured over-bank deposits. This would be similar

to the level three heterogeneity from Jordan and Pryor (1992). This level three

heterogeneity consists of individual channel point-bar and channel-splay sand

bodies. There are also associated thin sheets and lenses of low-permeability

muds. This deposit is contained within the river channel itself and can be up

to one mile in width, 2 miles in length and 100 feet in thickness. There

48



appears to be more sand indicators in the northern area of Bay County than in

southern portions (figure 9). It is possible that a wide river channel moved

north, isolating wide channels, which were then filled with fine textured

sediments. These channels later became the thick shales we see today.
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Conclusion

When the MCGRIB data base was used to estimate Pennsylvanian

sandstone distribution, we were able to show that coal logs are as imprecise

as those that describe water wells. This was shown through model

performance in wells sorted for coal logs and wells sorted for all rock logs.

Geostatistical estimation performance on average was poor, with some

correlation between observed and estimated values. The Pennsylvanian

sediments in the interval 420 - 400 feet of elevation appear to be part of a

meandering river channel. This is similar to what has been reported in

previous work, this area being a broad meandering river valley. Due to poor

coverage throughout Bay County, data being extensive but not as continuous

as is generally required for geostatistical evaluation, sandstone data could not

be evaluated with a high degree of certainty. Although, we were able to

develop a model that could be used to determine depth to sandstone aquifer

with some level of confidence, there are too many areas of error in the data

set to allow for this data to be used at a localized level. The MCGRIB data

set, although extensive and somewhat detailed, is useful in determining

general, county wide trends. The data set was found to be only marginally

useful for specific areas.
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