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ABSTRACT

DYNAMIC MODELING OF CLOSED-CELL CUSHIONING MATERIAL

By

Dmitri V. Pokudin

Closed cell cushioning materials are clearly a multi-phase material system, thus it is

not surprising that all attempts to describe their behavior by Hooke’s Law and the Gas

Law which idealize a single phase material response have failed. The approach taken in

this paper separates the polymer matrix and gas contributions, applying appropriate

idealizations to each of them. The model does not try to preconceive the simplest

idealizations and parameters but rather is used to study the system to find out which

phenomena are the most significant and to measure the values of the associated variables.

The study showed that representation of the trapped air as an ideal gas with some

heat transfer to the walls and the polymer matrix as a plastic material with an additional

rate dependent resistance gives the best results. The model’s search algorithm allows all

the required system parameters to be found from a single experimental acceleration

profile. These are used to build a modeled acceleration profile aimed at replacing the

Fourier filtering technique and answer all of the other questions about the cushion

behavior. Since the measured coefficients are fairly stable for a given material, cushion

thickness, drop height and weight, more drops can be processed to obtain and tabulate

their average values. Obtained data is similar in its description of the material properties to

the cushion curves which predict the peak G, but it is capable of providing the entire

impact profile and complete information about it.
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CHAPTER 1

INTRODUCTION AND LITERATYRE REVIEW

Various types of cushioning materials are used in the packaging industry to protect

fragile products from damaging levels of acceleration. The mechanism of theirllactions is

to provide separation and some degree of independent movement to the product inside its

individual shipping container. By doing so, it is ensured that the shocks experienced by the

container are transmitted to the product through the cushion which both absorbs and

spreads part of the shock energy over time. Depending on the severity of the expected

shocks and the product fragility, different amounts of different cushion materials provide

the lowest cost for an adequate protection level. One of the most popular and frequently

used materials are cellular polymers.

Cellular polymers used as cushion materials are multi—phase systems that consist

of a polymer matrix and a fluid phase. The fluid is generally gas (air) and is either trapped

or continuous in the polymer matrix [3]. Thus two major types of polymer cushions exist:

closed-cell and opened—cell. The two types of material differ mainly in the gas phase

contribution to the cushion reaction force during its compression. Closed-cell air is

compressed and reacts back with increased pressure whereas an open-cell air escapes and

provides little or no resistance. There is much variation in the material properties even

within the types themselves. Cushion properties depend on the exact composition of the

polymer matrix, average cell size and wall thickness. Hundreds of different cushion grades

are available.

In order to utilize the advantages of one or the other material effectively and

minimize the cost, packaging engineers have to consider and evaluate a lot of different



package configurations. It is hardly ever practical to make and test prototypes for all the

possible choices. Instead, preliminary estimations are made to narrow the field of cushion

materials. Because of the complexity of closed-cell polymers, which I will now

concentrate on, none of the attempts to describe their properties in terms of a few

idealized phenomena and associated constants were successful. Hooke’s Law, which is

useful for most solid state materials, does not work [4]. Neither does purely adiabatic or

isothermal compression of the trapped air [1]. So in their calculations engineers have to

rely on the material properties supplied by the cushion manufacturer in the form of cushion

curves. Cushion curves relate the peak G transmitted by the cushion to its thickness,

product weight and bearing area for different expected drop heights. Since engineers are

faced with hundreds of similar tables and because no automation of the process can be

implemented, it becomes very difficult to use them.

As described in [5], each point on the cushion curve has to be obtained from an

average of 5-10 drops of a flat massive plate (drop head) directed squarely by guide rods

onto the sample cushion. In all, thousands of drops have to be performed and drop head

acceleration profiles analyzed. 80 the cushion curves are very difficult to generate too.

A typical acceleration profile recorded by the accelerometer mounted on the drop

head is shown in Figure l.
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Figure 1. Typical acceleration profile.

The only parameter of interest for the cushion curves is peak acceleration.

Although the general shape of the signal is mainly ignored, much attention is given to its

fine structure (ripples). Their presence makes it difficult to determine the exact location

and value of the peak acceleration. Moreover since the real acceleration of the massive

drop head is expected to be smoother than that, the ripples are attributed to the equipment

noise and are usually filtered out before any of the impact parameters are measured. Some

of the recorders used in industry have hardware filtering and others do it in their software.

Both methods are very similar in their physical nature. Software algorithms expand the

real profile into a Fourier series and drop the trailing terms starting from some preselected

filtering frequency [6]. Hardware attenuates high frequencies by analog filters. The result

produced is very similar and obviously depends greatly on the choice of the filtering

frequency. The mathematical apparatus of Fourier filtering does not have anything to do



with the physical phenomena of the process at hand which consequently does not provide

any information on the proper filtering frequency to use. Excessively high frequencies do

not change the signal very much and may leave ambiguity in peak G readings (Figure 2.)

Whereas low filtering frequencies distort the signal too much and may render its other

parameters such as impact duration, restitution coefficient and area under the curve

needed by some more advanced applications useless (Figure 3.)
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Figure 2. Under-filtering of the accelerometer signal.
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Figure 3. Over-filtering of the accelerometer signal.

As a result, data on the cushion material properties provided by existing signal analysis

techniques is incomplete and possibly unreliable.

The questions which prompted this thesis are whether or not the process of

collecting and presenting the data on cushion material properties can be simplified.

I wanted to avoid conventional techniques of signal processing and look the entire

unfiltered profile in order get more information about the cushion properties, to possibly

develop a better method of filtering and loss of important signal features.



CHAPTER 2

MATERIALS AND METHODS

2.1 Philosophy and justification of the modeling approach 

In earlier investigations of closed-cell materials, cushions were modeled as a

volume of trapped air [1], and as solid elastic and plastic materials [7] and [8]. Theoretical

formulas to determine peak accelerations and impact durations were worked out. Obtained

results and generated cushion curves were reasonably close to the experimental data. It

should be pointed out that ill spite of the apparent success, neither of the models in fact

accurately described the process and ind it was pointed out that some complicated

approach involving continuous heat transfer has to be taken.

In my approach, I am separating the polymer matrix and gas contributions and

applying appropriate idealizations to each of them. To maximize the amount of

information obtained from an experimental signal, I am looking not only at the peak 6’8

but at its entire profile. The model dynamically traces all the cushion parameters during the

entire impact duration. In order to do this a computer model utilizing a small time step

approach was created.

The philosophy behind modeling approach consists of the following: the model

attempts to describe the entire process of impacting a cushion with a drop head in terms of

known physics laws and the cushion physical characteristics. In order to do this, the

physical system is reasonably simplified and defined by a set of model assumptions.

Logical guesses and assumptions are made about the unknown phenomena and some

characteristics which are unavailable or difficult to measure. Subsequent running of the

model with one or another set of unknown variables and comparing the result to the real



shock profile verifies whether the assumptions were right and provides reasonable ranges

for the unknown values of model variables. Finally, when the model is well studied and is

believed to predict real system behavior with sufficient accuracy, a search algorithm is

employed to find a set of variables values which minimizes the mean square difference

between the model and real profile. The obtained curve is essentially a least square model

fit and can be used in place of the filtered curve to analyze the impact. On the other hand,

the model parameters fully describe everything and the curve is not really needed. The

approach is similar to the linear regression where some presumably linear data is fitted a

line to obtain its slope which is then used in place of the original data.



2.2 Model assumptions

1) the basic system set up is shown in Figure 4.
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Figure 4. Basic system set up

2)

3)

4)

5)

6)

The object of investigation is a closed cell cushioning material. Its force producing

components are trapped air and matrix of PE bubble walls.

Cushion cross section area stays constant during compression, thus reducing the

problem to one dimension.

There is no loss of thermal energy to the environment. The low air-to-PE convection

heat transfer coefficient (order of lOW/mzK) and the fact that average duration of the

impact event is only 20- 40 milliseconds makes the loss negligible.

Initially, internal air is in thermal equilibrium with its environment and has normal

atmospheric pressure.

All trapped air is considered to be a single volume of ideal gas. Van der Waals

corrections for initial and maximum compression states result in less than 0.1%

difference compared to the Ideal Gas Law.



7) The heat transfer to the PE walls is not negligible because of the big contact area

between internal air and walls[ 1].

8) The internal energy and thus the temperature of the walls changes as a result of the

heat transfer and work done by the friction forces. The walls are much more massive

than the air and have greater heat capacity, thus the change is small. (Even if all the

energy of the falling mass is absorbed by the PE only its temperature will be raised

only by approximately 1°C. For the purpose of air behavior, this can be disregarded,

but is kept later to estimate cushion recovery times.)

9) The matrix of PE walls resist change of their height with forces proportional to the

rate and the rate squared during the entire impact, designated by Fv(t). They also resist

with some additional force as a function of relative compression itself, Fx(t).

10) The guide rods of the testing equipment can also have rate dependent friction, which is

indistinguishable from the force inside the cushion and is taken in account by the same

Fv(t) term.

11) Some of the cushion thickness consists of damaged cells. This is taken into account by

decreasing effective thickness.

12) For the entire time of the impact drop head face and the cushion surface stay together.

The end of an impact is defined by the moment of drop head and cushion separation. If

some of the friction comes from equipment, head acceleration at that moment will not

be equal to zero. So the cushion condition for the end point is P(t,nd) = P0.

13) Model input data consists of system constants describing major parameters of the

physical set up including test cushion dimensions:

0 Xwn - Cushion thickness.



Po - Initial equilibrium air pressure.

Area — Cushion area.

M - Mass of the drop head.

m - Cushion or PE mass.

H - effective drop height calculated from experimental impact velocity.

T. - Initial equilibrium temperature.

C., p - Heat capacity and density for air.

Cp- Heat capacity for PE.

14) The search algorithm needsAW vs time - experimental drop head

acceleration profile.

15) The following model variables are inputted or searched for by the algorithm for each

individual test:

Fx, Fv - Resistance forces of the PE matrix.

h - PE-to-Air convection heat transfer coefficient.

16) For given system constants and model variables, the model generates:

A(t) Predicted acceleration profile. Time positions of any point of interest

(peak G, duration, etc.) can be precisely read right from the graph.

Fit coefficient - mean square deviation between A(t) and Ammo).

Gm - Peak acceleration in G.

t(G..,)- Time position ofGm

Xn- Drop head position above the base plate at the moment of maximum

compression.

10



0 X“...- drop head position at the moment of its separation from the cushion.

0 t(T.=T.) - time when temperature of the air is equal to the temperature of the

walls. Walls start to cool after that.

0 t(V=0)- time of the moment when direction of velocity reverses (same as

maximum compression).

0 dTm- given for air and walls as the maximum temperature change reached by

them over the initial conditions.

0 dTu- given for air and walls as the temperature change over the initial

conditions at the end of the intact.

0 Restitution Coefficient— Final velocity of drop head divided by its initial

velocity.

15) The model uses (It - variable time step in order to find a trade off between the

model accuracy, execution time and round off error.

11



2.3 Derivation of the model’s physfial fourgation

The physics of the small step model is based on starting with initial conditions and

propagating them in time by adding changes incurred on them over the small period of

time. The major parameters of the system are the position, velocity and acceleration of the

cushion drop head boundary. The initial values are:

A(O) = -g

V(0)=-,/2-g-H (1)

X(0)= xwm

Where g is acceleration due to gravity. Due to extreme smallness of chosen time step (it,

the total force on the drop head over this period is considered to be constant.

Acceleration, velocity and position of the drop head at any moment of time t can be

expressed using Newton’s second law and its basic integral forms together with

acceleration, velocity , position and total force at the t-dt moment of time. It is convenient

to denote position t-dt with an integer n and t as (n+1).

 

Halal

ADM-I = M

Vn+l=Vn+An.dt

(23, b,C)

 

-dt2

Xn+l= Xn+Vn-dt+ A"2

Repeating the calculations the necessary amount of times, we can obtain position, velocity

and acceleration as a discrete functions of t=0,dt,2dt,3dt,...ndt for the entire impact

duration. The total upward force is

Fl“ = 1'7." + EV + F." - 1%- Area (3)

where F‘" is the force due to the compressed air and F" , F" are due to the resistance of

PE walls as a function of rate and position. According to the assumptions made:

12



F: = Cl" -V,, + 62” -V,3

I",x = Some positive fimction of X

(4 a, b)

where Clv, C2v and Fx are unknown variables of the model. Later some specific forms of

Fx are introduced.

Let me next address Ema), the last calculable unknown needed to complete the

model:

Ff" = —P, - Area (5)

Pu is propagated similarly from its initial value P0. The necessary iterative relationship

similar to (2) is based on the assumption that air compression follows the Ideal Gas Law.

In one time interval dt, air undergoes a transition between the two states:

{pa ,Vf', 7.7"}‘9 {19 V“’ 7:; } For any process involving ideal gas, the relationships
n+l’ Ml’

between absolute temperature, pressure and volume are [9]:

air

P P Tn+l XII

at. = .. ' Tna, . X..+t (6)

Here the assumption of constant crossectional area and thus V‘i'=Area*X is used. Xn

could be replaced by its expression from (2,c) or left like it is noting that it should be

evaluated before PM. is needed. The expression for '1‘" is worked out below and presented

in (12 a).

Using the assumption that the system does not lose energy to the environment, the

first law of thermodynamics applied to the whole cushion can be used to write an energy

balance for every transition from n to the n+1 states:

de’ + de'" + dEfd" = de' + duff“ (7)

Here dUn is a change of internal energy of the air and thermal energy in the walls and de

l3



is the work done by external forces on the air and walls air and walls. dB“ is the

mechanical energy associated with the wall compression (later in the case of elastic

compression it will be equal to the work of Fx and zero for plastic deformation) At the

same time, some thermal energy dQn was exchanged between air and walls. So (7) can be

separated in two equations:

du:ir =dwfl¢ir _dq-Mv

dU,;'°"’ = deW’“ - 4153“" + dQ‘H"
(8 a. b)

The heat term dQn is proportional to the convection heat transfer coefficient, contact

area, process duration and average wall-to-air temperature difference. For small dt, both

'1‘“ and TW" can be considered to be constant and equal to their respective values in the

beginning of the transition.

dQ:—Mv = h . Arr-NV . (flair _ 1:.de ) . dt

All-0w = 6' X‘PP‘N’" .

D

(9 a. b)
Area

Here air to wall contact area A“"“' is estimated from consideration of the PE average cell

dimension, D = 0.00114 m, representing them as cubes or spheres. It stays constant

through out the entire compression in spite of the change in cushion geometry. Estimation

of the convection heat transfer coefficient h represents the most difficulty. One estimate on

it can come from considering the average dimensions of the PE cells and static heat

transfer coefficients for PE and air . Careful consideration of the situation is presented in

[1]. It gives h=44.8W/(m21(). Another estimation is based on experimental data for free

convection in spherical cavities and is also given in [l] but actually comes from [10]. After

consideration of the average cell size and a reasonable range of temperature differences

gives h=21.9W/(m2K). In view of such differences and the fact that heat transfer is likely

14



to be accelerated by the rapid change of the cells geometry, b will be left as an unknown

model parameter.

Using similar considerations of small (it and constancy of pressure and resistance

forces, the work done by the air is dW°"= P*dV and by the walls is dW“"‘ = (F'+F")dx..

din" = I: -(V:"' -V"’)= P, -(X,, - XM)-Area
n+1

(10 a, b)

4W?” = (5' +F..‘)'(X. - Xau)

The changes of internal energy of the air and thermal energy of the walls are proportional

to the changes in their absolute temperatures.

dU:"' = Cv -(T.“" - mil-Area - Xo-p

dUt‘th = PE '(7L"°"'-T.."S“')'m

(11 a, b)

Specific heats Cv and Cpp, could be considered constant for the given temperature and

compression ranges. Their respective values are 717.3 and 1003.8 J/(kg*K) [11].

Equations (8),(9), (10) and (l 1) can be put the together to obtain iterative expressions for

1*" and T"“"‘,

air air Mair _dQ:‘”V

7in] = 1; -

CV -Area- Xo-p

dW'””‘ day”: + def’”
72:1“! = 1;de _ n

( 12 a, b)

CPE - m

It should be mentioned that (12 b ) is worked out for the most general case of some part

of friction work being converted to heat. Later when the nature of friction is discussed,

additional conditions of dlawalls =F"*dx (elastic) and dEW“=o (plastic) will be taken into

consideration.

Now all the formulas can be implemented in the computer program shown in

Appendix.

15



2.4 Study aad verific_ation of the model’s assumptions

2.4.1 Heat transfer considerations 

Running the model with no Fv or FX and setting the heat transfer coefficient h to

zero gives the adiabatic model described in [l] and shown below by Model 1. Setting h =

1000000 (a reasonable number for infinity in computer applications) gives the isothermal

model. It is shown below by Model 2 in Figure 5. Maximum air and wall temperatures

there are raised only by 2.43 and 1.07 0C above To = 295 K (room temperature) which is
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Figure 5. Adiabatic and Isothermal model checks

Both peak accelerations agree well with the theoretical formulas derived for them in [1].

This fact proves the validity of the small time step approach. However, both models give

an overestimation of peak G when in [l] adiabatic was an over estimation and isothermal

underestimation of cushion curve data. This happens first of all because my real signal is a

16



profile of a first drop on the cushion, not the average of five consecutive drops as it is

done for the cushion curves and secondly it is very likely that the manufacturer put some

safety factor in their curves.

The major differences between the model signal profiles and the real signal do not

leave any doubt that neither isothermal nor adiabatic processes are dominant contributors

in cushion reaction forces, especially during the first half of it. To see whether the

introduction of heat exchange improves the situation, the model was run with h = 22 and

43 W/(mZK), shown in Figure 6 by Model 1 and Model 2 respectively.
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Figure 6. Introduction of heat transfer coefficient h=22 and h=43.

The good thing is that the peak G and the general shape of the signal does not appear to

be very sensitive to the changes in h. A two fold change in h produced only a 5%

difference in peak G and the results are just somewhere between the limiting cases of the

purely adiabatic and isothermal models (not that it was unexpected). But introduction of



heat transfer did not make the model profile more like the real signal. Its peak G’s and

general shape are still wrong.

But heat transfer it is not altogether insignificant. It helps to address the

mechanism of residual cushion compression at the end of the impact and consequently its

recovery times. Up to the moment of maximum compression both the air and walls are

heated up by compression heating and heat transfer. Then on the way up, the air expands

and cools down, but for some time it is still warmer than the walls and continues to beat

them. At some moment later, the air temperatyre catches up with the wall temperature and

the walls start to cool as well. The condition of the impact end P(t,,.d) = P0 is reached well

before the walls have time to reach, but enough for the air to cool below To. In the models

shown above with h = 22 and 43 W/(mzK), the maximum temperature reached by air was

respectively 49 and 31 0C above To. In the end, it cooled down to 31 and 22 0C below To.

The walls reached 0.82 and 0.99 0C at 23.3 and 18.6 ms respectively, which is 82% and

62% of the impact time, after which it had enough time to cool only to 0.58 and 0.43 °C

above To. The fact that the air is colder than the initial conditions means that the cushion

volume and thickness are reduced, referred to as “permanent set” in [5]. Starting from

0.054m thickness the models ended up at 0.0481 and 0.0501. To observe the situation, the

same plots shown above can be integrated to produce acceleration as the function of

cushion thickness.
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Figure 7. Heat transfer models acceleration vs. X

Here it looks like only Model 1 intersects the X axis at 0.481m exactly right where it is

supposed to, whereas Model 2 is off its 0.0501 m mark mentioned above. This is caused

by the fact that actual axis conversion has been made on the basis of Model 1. Repeating

the same for Model 2 gives the right result too.

2.4.2 Defining the real time of cushion contact

Further investigating the shock profile, one should notice that for the first 1.5 ms

or 0.007m of travel, the real acceleration is considerably lower than predicted by any of

the models. This can not possibly be remedied by the addition of FV or Fx as they would

only increase the model response force. Careful consideration of the possible causes for

the phenomenon leads to the realization that this section is due to the viscous forces

resulting from displacement of thing layer of air by the rapidly oncoming drop head. Both

the drop head and cushion are really experiencing this force. As a result, right before the

19



actual impact, the cushion is slightly presqueezed and the drop head decelerated. In order

to take these affects into account, the real time of impact should be placed at the

intersection of x-axis and a linear extension of the impact leading edge, the deceleration of

drop head calculated and the effective cushion thickness should be measured under slight

pressure.

2.4.3 FV considerations

Now the real cushion response at time of contact is not equal to zero. There is no

air compression and Fx has hardly started yet so the force had to have come from rate

dependent forses. This condition can be used to estimate C1 or C2 or their combination

needed for FV in (4 a). Making such estimations for C1 and taking C2=0 in Model 1.
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Fv pushes Model in the right direction towards better fitting the real signal, shown in

Figure 8. It also explains the negative acceleration on the trailing edge of the real signal

profile. But the effect is not nearly powerful enough. Estimating C2 or the C1,C2

combination gives very similar results. So the contact time force condition is probably not

useful. Letting the computer find the best fit in terms of Cl and C2 gives Figure 9.
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Figure 9. F" adjusted for the best fit

This model behaves much more like the real signal. The fit coefficient went down to 19.4,

meaning that the average error in the predicted and actual accelerations is 4.3 G. The fact

that the leading edge of the model is vertical is discussed later.

2.4.4 Fx and X0 considerations

The next variable which can improve the model is Fx mentioned in (4 b). Since FX

is unknown, the aproach is to first look at what Fx profile is required to make the model

21



behave exactly as the real signal does. Since FX is a function of position, it helps to look at

acceleration vs. position as in Figure 10.
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Figure 10. First estimation of possible Fx (Elastic)

I should disregard the leading edge up to 0.045m there Fx is negative as it happens

only because it is compensating for too much Fv there. Otherwise it looks almost linear,

increasing as compression grows . Linear extension of the profile intersects the X axis at

position of contact. This is exactly the behavior one would expect from any elastic

material. So one way to represent Fx is as an elastic force that obeys Hooke’s Law: Fx=

Area*Y*dx/Xo where Y is Young’s modulus for the material: unfortunately it is not

available for the complex structure at hand, but I can let the model find its value for the

best fit. Remember that model should be adjusted to reflect the fact that elastic

compression does not heat the walls: all of the work goes to the mechanical energy
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(condition dWx = dEx in (12 b)). There dWwalls is not separated in dWx and de but it is

easily done.

Another Fx form which I think could be applicable to such a material as PE

especially at high compression ratios is elastic - perfectly plastic . Its behavior is elastic up

to some critical value of relative compression (strain). Then the force stays constant

(perfectly plastic) all the way until maximum compression and becomes elastic on the way

back. Young’s modulus and thus the stress vs. strain curve slopes stay the same during

expansion as it was during compression. This approach can only improve the model

because it includes the previous one in it. If the model does not prefer the elastic -

perfectly plastic approach, it will find during the search that the length of plastic plateau is

equal to zero thus returning to the elastic representation. This by the way is exactly what

happens.

While changing FV in the process of looking for best fit (and varying KW“.

usefuhless of which will be shown later) I saw that another shape of an arbitrary Fx can

work too, as in Figure 11.

23



 

A
c
c
e
l
e
r
a
t
i
o
n
[
G
]

 

  

 

 

Distance [m]

Figure 11. Second estimation of possible Fx (plastic)

This tells me that another form of Fx as a constant (perfectly plastic) should not be

ignored.

Introduction of an elastic FX improved both the general appearance and the fit

coefficient.
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Figure 12. Fitted model curve with elastic F"

Fitting all five experimental sets of data and tabulating the results obtained gives Table 1.

Table l. Fitted results for Elastic F" model

 

 

 

 

 

   

Mass, Drop Height Fit coefficient Clv C2V Young’s modulus

[N*s/m] [N*s2/m2] [kN/mzL

1 17.8 kg 0.4577m 1.9 706 0 79950

2 17.8 kg 0. 2543m 1.1 756 0 1669095

3 17.8 kg 0.661 1m 2.9 600 0 38502.38

4 8.7 kg 0.6611m 6.72 564 0 2245167

5 8.7 kg 0.4577m 9.32 538 0 3100167    
 

Even the worst fit coefficient of 9.32 looks fairly good as shown in Figure 13.
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Figure 13. Worst fit for the model curve with elastic Fx

So apparently the model with an elastic Fx has enough flexibility to be used for filtering.

But the fact that Young’s modulus varies so much means that it is not physical and thus

not acceptable. Trying the elastic-plastic approach gives identical results because the

search algorithm finds best fits when the length of plastic plateau is equal to zero leaving

only elastic part.

Going back to the possibility of perfectly plastic Fx and fitting it to all five

experimental sets of data and tabulating the results gives Table 2.

Table 2. Fitted results for Plastic FK model.

 

 

 

 

 

    

Mass, Drop Height Fit coefficient C1v C2v FX[N]

[N*s/m] [N*s2/m2]

1 17.8 kg 0.4577m 14.56 709 0 892.6472

2 17.8 kg 0.2543m 28.08 780 0 2280.511

3 17.8 kg 0.6611m 6.34 580 0 523.854

4 8.7 kg 0.661 1m 72.6 612 0 869.6859

5 8.7 kg 0.4577m 120 700 0 1043.794   
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This is not an improvement at all. As a matter of fact, fits to data 2,3 and 5 are clearly not

physical. Their shape is not what one would expect which is reflected in the fit coefficient

too. This is shown below in Figure 14.
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Figure 14. Non physical result for plastic Fx

But the fact that the two drops with the most energy are still in semi acceptable shape says

that the factor that is not taken into consideration by the model is connected to the energy

of the drops. One of the possible things this factor can be is Xo, the effective thickness of

the cushion. As of now it is taken as the apparent cushion thickness minus the PE

Volume/Area (X0 = 0.054m). Physical observations of cushion compression under static

load shows evidence that the central regions of the cushion experience smaller relative

compression than the ones next to the cushion faces. Moreover, smaller than average size
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cells if they happen to have thicker than average walls get compressed less or hardly at all.

All this justifies the reduction of cushion thickness in the model, but does not give any

realizable estimates of how much. It essentially introduces another unknown variable in

the model. Xo can not be greater than the apparent thickness and is probably not less than

10-20% of it.

Conducting a search for the best X0 using the elastic and elastic plastic F" does

not lead any where. Fit coefficients there are too small already and the search sets

X0=Xmm to produce the results identical to the ones shown in Table 1. The plastic Fx

approach gives the results in Table 3.

Table 3. Fitted results for Plastic Fx model with adjusted X0

 

 

 

 

 

 

 

Mass, Drop Height Fit ClV c2V Xo/xm FX[N]

coefficient N*s/m] [N*s2/m2]

1 17.8 kg 0.4577m 2.58 625 0 0.7822 668.7

2 mgg 0.2543m 2.53 633 0 0.53 590.2

3 17.8 kg 0.66llm 4.21 545 0 0.88 576.2

4 8.7 kg 0.66llm 13.66 544 0 0.65 483.0

5 8.7 kg 0.4577m 14.42 508 0 0.543 507.8        

Now the fit coefficients are much better and there is some consistency in Fx, ClV and

good logic in X0 (it is decreasing for smaller weights and smaller heights). Fit coefficients

and the general shape of the curves are similar to the ones shown in Figures 12 and 13.

Relative success of the plastic Fx does not mean that elastic can not do better. The

difficulty there is that X0 is acting as a parameter by itself and affects Young’s modulus

too. It so happens that the latter effect is stronger and pulls the model towards Xo=Xmm

and away from a consistent Young’s modulus. A massive search algorithm which takes
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several sets of data, puts first priority on Young’s modulus consistency and looks for the

minimum square deviation across all the data simultaneously can separate that

dependency. Unfortunately this is not straightforward and has to be left for later. For now

I can insist that the same type of X0 reduction should happen during both model

approaches. I can verify the possibility by forcing Xo to be equal to its values in Table 3.

Running a set of fittings for the elastic Fx again gives the results in Table 4. The numbers

marked by a * in the table were given the value to keep overall consistency of entire table.

They were estimated using an iteration procedure of putting initial values for X0 to get

best Young’s moduli, then using its average to estimate new best values for X0 and over

again.

Table 4. Fitted results for Elastic Fx model with adjusted Xo

 

 

  

 

 

 

 

       

Mass, Fit C1v C2V Xo Young’s

Drop Height coefficient [N*s/m] [N*s2/m2] Xm modulus

1 17.8kg 0.457m 4.28 720 O 0.78 34013.6

2 17.8kg 0.254m 3.49 618 92 0.53 32074.8

3 17.8kg 0.661m 7.78 572 30 0.88 340136"

4 8.7kg 0.661m 15.89 471 37.5 0.65* 35430.8

5 8.ng£.457m 17.94 585 2.87 0.50* 44977.3
  

So Young’s modulus can be constant with out introducing too much disturbance in other

parameters. It means that the elastic Fx can be is as good as plastic. Individual differences

between different drops of the same weight from the same height are greater than the

difference between the two models. As a matter of fact, in reality it is most likely that a

combination of the two is working. Knowing the limiting cases is enough to get a good fit

and estimate all the other parameters. The plastic Fx model has slightly better fit
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coefficients and is much more stable during the automatic searches, so later it is more

convenient to use it for filtering and tabulation of average values for the model

coefficients.

2.4.5 Justification of the model’s use as a filtering tool

The stability of the filtering technique by fitting the model to the real shock pulse is

verified by checking if it can filter out artificial noise in the form of a sine wave.
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Figure 15. Fit filtering of a noisy signal.

In the example shown in Figure 15, a 1000 Hz sine wave (noise) was added to the

acceleration profile # 1 from Table 3. Running the model’s search algorithm and bringing

the coefficients together in Table 5, we can see that the results of the fit filtering are

practically identical.
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Table 5. Results of fitting original and noisy signals

 

 

 

       

Signal fitted Fit coefficient Clv Xo/Xmm FX[N]

[N*s/m]

1 Original 2.58 625 0.7822 668.7

2 Noisy 4.64 620 0.7834 671
 

The fit coefficient was expectedly higher, but over all, the model was not confused by the

additional noise. Increasing the noise frequency gives even better results. Highter or lower

noise amplitudes appears not to have any affect at all. Frequencies below 500 Hz should

be avoided, but those usually have low amplitudes and do not matter any way. So the

model appears not to be sensitive to sine wave noise too much and probably it is as

effective in filtering out natural noise in the signal as well.

2.4.6 Verifigtion of suggested cushion recovery tm

There is still no real handle on the heat transfer coefficient h because the difference

in fit coefficients for h=22 and h=43 with all the other coefficients kept the same is on the

order of 5%, which is easily absorbed in the uncertainties of all other coefficients. Heat

transfer coefficients taken outside the 5 to 50 range consistently give worse fit

coeflicients which cannot be compensated by any other parameters. For the absence of

any better choice, I will take h=32 for the fit filtering and results tabulation. Now for this

fixed value of h the model gives final temperatures for the air and walls for example for

the #1 drop in Table 3 of 0.56 °C and -23.24 °C above initial temperature respectively. It

will take heat transfer and work of air expansion against Po only 18.7 ms to warm up the

air and cool the walls to reduce the difference by a factor of ten. Unsteady state heat

transfer is dominating the work factor in the energy loss process and it is an exponential
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process, so it its not surprising that the next factor of ten reduction is reached at 37.5ms

(roughly double the time). Thus by the cushion recovery time recommended in [5] of one

minute between the consecutive test drops is over the air-to-wall the temperature

difference would be reduced by about 3000 orders of magnitude (overkill). On the other

hand, both temperatures will converge on the value which is 0.5 °C higher than the initial

temperature. The time to dissipate this energy can be estimated. Because of poor heat

conductivity of the cushioning material, it will clearly be more than a few minutes. The

energy of consecutive drops will accumulate even if the one minute recommendation is

followed. After a dozen or so drops, the elevated cushion temperature could be felt by

hand. Fortunately, raising the initial temperature by even 10°C does not introduce too

much difference. For the above mentioned example, peak G would increase by 0.5 G

which is only 1.5 %.

2.4.7 Consideration of model’s vertical leading edge

The fact that model has vertical leading edge and real signals never do can be

explained by several factors:

0 Cushions can not possibly have perfectly uniform thickness so they meet the drop head

with the high point first and then rapidly increase the area of contact.

0 The top layer of cells is no doubt damaged more than the center so the FY coefficient is

smaller while these are compressed and is rapidly reaching a constant value. This

explanation has a supporting evidence of slight and not explained by anything else

increase in cushion response right before the end of impact.
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0 Some of the restricting forse comes fi'om the slider rods. It is practically zero when the

head is freely sliding. As the head comes into contact with the cushion, the reaction

force is likely not to be passing exactly through its center of mass, gradually creating a

rotational moment which jams the rods and increases their friction.

No matter which factor or what combination of them is really working, this can be

taken into affect by adding just one more variable. My estimations show that it will

drastically improve the fit coefficient but does not change any other important parameters

by more than l-2%, so I will not complicate the model.
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CHAPTER 3

RESULTS AND CONCLUSIONS

3.1 Corrections and additions to th_e model assumptions.

As a result of the model study, the following corrections and additions to the

original model assumptions have been made:

Xo -effective cushion thickness is introduced as a model unknown.

C2V Should be completely dropped from the model since it is consistently found that

best fits have it equal to zero indicating no Fv dependence on second order of

compression rate. This does not contradict any physics of the system because there is

no considerable air flow with which the second order of rate resistance is usually

associated.

Plastic Fx is preferable to elastic not only because of the ease of use but because of

better fits, stability of the model coefficients, and the plastic nature of PE. The

condition dEn=0 is used in (12 b). It should be mentioned that the latter condition

practically affects only the temperature of the PE walls and not that much either since

FV > Fx for the most of time.

The heat transfer coefficient is taken to be 32 W/(mzK), the middle of its reasonable

range for the lack of better choice. Fortunately, because of the model’s extreme

insensitivity to h, this does not render the model inaccurate.

The vertical leading edge of the modeled profile is ignored for the lack of verifiable

physical explanation and its little overall effect on the model.



3.2 Model use for tabulating the material promrties 

Now with the model studied and complete, given a new cushion it is enough to

make several drops to get averages on Fx, X0, and Clv. Within reasonable limits, they

could be interpolated for any other real situation. Using the interpolated values and

running the model we can receive an estimated acceleration profile and predict the peak G,

impact duration, restitution coefficient, maximum compression as well as almost anything

else one can think of. For example, using Table 3 we can interpolate model coefficients for

a {17.8 kg 0.557m} and {13.25 kg 0.6611m} drops. They are given in Table 6.

Table 6. Interpolated parameters for an arbitrary drops.

 

 

 

      

Mass, Drop Height Cl" Xo/Xmm F"[N]

[N*s/m]

1 17.8 kg 0.557m 585 0.83 615

2 13.25 kg 0.6611m 545 0.765 529
 

Predicted acceleration profiles together with some other useful information are shown in

Figure 16, Models 1 and 2 respectively.
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Figure 16. Model Predictions for {17.8 kg 0.557m} and [13.25 kg 0.6611m} drops.

3.3 Model use for fit filtering

The model can be used to fit itself to the real signal profile essentially filtering it

and finding the coefficients for this particular drop. The only input parameters required by

the model are drop height, drop head mass and cushion thickness which are usually

known. The result of such an approach is shown in Figure 17.
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Figure 17. Unknown signal fit filtering

The real signal in Figure 17 is the result of {25.6kg 0.508m] drop on the same cushion but

the which was beaten more than cushions used for the data in Table 3. So the model not

only gives a good fit but predicts a decrease in Fx and Clv, an increase in X0 , peak G,

restitution coefficient and other logical changes in temperatures reached due to the fact

that the cushion is worn out.



CONCLUSIONS

The model of the cushion compression process in conjunction with the best fit

search algorithm allows the user to process experimental data on cushion tests more

accurately and efficiently than using existing techniques.

Because fit filtering as opposed to Fourier filtering is based on the real physics of

the process, it can recognize and partially cancel some experimental systematic errors. It

also deals with random errors (noise) at least as well as the Fourier filtering, but does not

cause a dilemma of filtering frequency choice. The process of filtering simultaneously

provides information on all useful drop parameters.

The type of material constants generated as the result of such data analysis carries

more information about the cushion properties and is much more compact than the

standard cushion curves. A new ASTM standard for generation and application of these

properties can be easily designed. It will require the use of a computer and a standard

algorithm, but in our time it is fairly easy to set up. The advantage of using the computer

is that the search for the material capable of providing appropriate product protection

levels at the minimum cost can be automated.

Extension of the model search capabilities and abilities to work with multiple sets

of experimental data is not very difficult to implement. It most likely will lead to better

approximation of the heat transfer coefficient and incorporation of a different apparent

cushion thickness dependence, which in turn will make the model more accurate and

further simplify the material properties tabulation.
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Computer Program Code

Public Sub Build_model(lndex As Integer)

’Index gives ability to use the same function for different variable sets

col = (Index + 3) * 2

Sum = 0

VnotDone = True

TnotDone = True

Temp_FofX = 0

dt = Tstep / Niterations

XN = Xo(Index)

XaN = XN

VN = -Sqr(2 * g * DropHeight)

AN = 0

PN = P0

TN_Air = InitialTemp + 273.15

TN_wall = TN_Air

CurTime = TContact(Index)

M_air = 1.225 * Xo(Index) * Area ’For my volume

N = M_air/ 28.9644 ’number of moles

Cp = 1003.8 "‘ M_air ’for my mass

Cv = 717.29875 * M_air 'For my volume

Cpe = 1901 * Mpe 'For my mass

h = Ktherm(Index) * 5263 * Area * X_apparent

Convective Heat Transfer coefficient for my area of contact

With FFiltering.Graphl .DataGrid

ContactTimeInteger = IntRangeStart + CInt('IContact(Index) / Tstep) + 1

Will start impact there

If TContact(Index) > 0 Then

Aend = 0

For i = 1 To ContactTimeInteger ’ no cishion compression yet

.GetData i, 2, temp, 0

.SetData i, col, 0, 0

.SetData i, 10, 0, 0

Abeg = Aend

Aend = temp * g

For j = 1 To Niterations

'before the contact Xn=Xo

VN = VN + (Abeg + (Aend - Abeg) * j / Niterations) * dt

’Velocity of the mass

Next j

Next

AN = Aend

End If

VContact(Index) = VN



counter = IntRangeStart + CInt(T_modelStart(Index) / Tstep) + 1

’Will start impact there

If (counter > IntRangeStart + 1) And (counter > ContactTirnelnteger) Then

Temp_FofV = FofV(Index, VN)

Temp_FofX = AN * mass - Temp_FofV - Area * (PN - Po)

Abeg = AN

For i = ContactTirnelnteger To counter

If FFiltering.View_FofV(Index).Checked Then .SetData i, 10, FofV(Index, VN)/

g / mass, 0

If FFiltering.View_FofX(Index).Checked Then .SetData i, 10, (AN "' mass -

Temp_FofV - Area * (PN - Po)) / g / mass, 0

.SetData i, col, 0, 1

.GetData i, 2, temp, 0

Abeg = Aend

Aend = temp * g

For j = 1 To Niterations

step (Index)

AN = Abeg + (Aend - Abeg) * j I Niterations

Next j

Next

End If

CurTime = T_modelStart(Index)

Temp_FofV = FofV(Index, VN) ’ It is used later to show the graphs

Temp_FofX = FofX(Index, XaN, VN, FofX_type_Number(Index))

VN_modelStart(Index) = VN

AN_modelStart(Index) = AN

Temp_FofV_mode18tart = Temp_FofV

Temp_Fofl(_modelStart = Temp_FofX

Do While (PN >= Po) And (counter <= IntRangeEnd)

.SetData counter, col, AN / g, 0 Recording next point

.GetData counter, 2, temp, 0

Sum=Sum+(temp-AN/g)"2

If FFiltering.View_FofV(Index).Checked Then .SetData counter, 10, Temp_FofV / g

/ mass, 0

If FFiltering.View_FofX(Index).Checked Then .SetData counter, 10, Temp_FofX I g

/ mass, 0

For i = 1 To Niterations

step (Index)

AN = (Area * (PN - Po) + Temp_FoD( + Temp_FofV) I mass

Next 1
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counter = counter + 1

Loop

For i = counter To IntRangeEnd

.SetData i, col, 0, 1 ’clearing the rest of the points

.SetData i, 10, 0, 1

Next i

FFiltering.XfBox = Format(XN, "#00W”)

FFiltering.TfBox = Format(TN_Air - 273.15 - InitialTemp, "HOW?

FFiltering.TmaxBox = Format('T_Air_Max - 273.15 - InitialTemp, "#0.0###")

T_Air_Max = 0

FFiltering.TwallmaxBox = Forrnat(T_wa11_Max - 273.15 - InitialTemp, "##0.0W")

T_wall_Max = 0

FFiltering.TwallFinalBox = Format(TN_wall - 273.15 - InitialTemp, "#0.0M")

FFiltering.GmaxBox = Format(Amax / g, "##0.0HF#")

Amax = 0

FFiltering.FitCoefBox = Format(Sum/ (counter - (IntRangeStart +

CInt(T_modelStart(Index) / Tstep) + 1)), ”W0.0#")

FFiltering.RestitytionBox = Format(-VN / VContact(Index), "0%”

End With

End Sub

Public Sub step(Index As Integer) ‘ Is called from the main body of Build_model

dX=VN*dt+AN*dt*dt/2

XaN = XN + dX

VN = VN + AN * dt

IfVN > 0 And VnotDone Then

Xmin = XN

FFiltering.XminBox = Format(XN, ”0.0#ii##")

FFiltering.TimeOfVisOBox = Format(CurTime * 1000, "##0.0HH#")

VnotDone = False

End If

'work done by gas

dW_air = PN * Area * dX 'exact adiabatic PN * Area * XN / (gam - l) * (l -

(XN / XaN) " (gam -1))

'work by forses of friction done on the walls

dW_Friction = -dX * (Temp_FofV + Temp_FofX) ' no Temp_FofX if it was a

spring

' heat given to the air

dQ = h * (TN_wall - TN_Air) * dt
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TaN_Air = TN_Air + (dQ - dW_air) / Cv TN_Air * (XN / XaN) " (gam - l)

TN_wall = TN_wall + (dW_Friction - dQ) / Cpe

PN = PN * (XN I XaN) * (TaN_Air/ TN_Air)

Temp_FofV = FofV(Index, VN) ’ It is used later to show the graphs

Temp_FofX = FoD((Index, XaN, VN, FofX_type_Number(Index))

CurTime = CurTime + (it

XN = XaN

TN_Air = TaN_Air

If TN_Air < TN_wall And TnotDone Then

FFiltering.TimeOf’TisTwallBox = Forrnat(CurTime * 1000, "#00W")

TnotDone = False

End If

If AN > Amax Then

Amax = AN

VofAmax = VN

XofAmax = XN

FFiltering.TimeOfArnaxBox = Forrnat(CurTime * 1000, ”##0.0##")

End If

If TN_Air > T_Air_Max Then

T_Air_Max = TN_Air

End If

If TN_wall > T_wall_Max Then

T_wall_Max = TN_wall

End If

End Sub

Private Sub Minimize_Click(Index As Integer)’ used for variable search and fit

minimization.

Dim Smalest_variable As Double

Dim VarStep As Double

Dim Error As Double

Dim Smalest_Error As Double

Dim N_Intervals As Integer

Dim Error_Valyes(0 To 20) As Double

Dim max, min As Double

Dim Best_Smalest_Error As Double

Dim best_Xo As Double

Dim best_FofV_Cl As Double

Dim best_FofV_C2 As Double

Dim best_I(therm As Double

Dim best_FofX_Va1yes(0 To 4) As Double

Dim best_FofX_PosFrac(0 To 4) As Double
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If T_modelStart(Index) = TContact(Index) Then

Randomize ’ Initialize random-number generator.

CoeficientsOK_Click (Index) ’ get the numbers in and run the model first time to get the

constants

Best_Smalest_Error = 1E+300 ’ get first best error to be big

For k = 1 To N_RandomStarts ’N of random (10 to 20) numbers of intervals applied.

N_Intervals = Int((N_Intervals_above_5 * Rnd) + 5) ’ Generate random value

between 10 and 20.

For 1 = 1 To N_variable_sycles ’N times to cycle all variables

’Xo minimization

If XoAsFractionBox(Index).BackColor = 12632256 Then ’variable is marked for

minimization

Smalest_Error = 1E+300 ’ get first refference error to be big

max = Xo_max(Index)

min = Xo_min(Index)

For m = 1 To N_Step_Reductions 'N times to reduse the step and interval

VarStep = (max - min) / N_Intervals

For p = 0 To N_Intervals

Xo(Index) = min + p * VarStep

Error = Quick_model_Sum(Index)

If Error < Smalest_Error Then

min_number = p

Smalest_Error = Error

Smalest_variable = Xo(Index)

End If

Next p

If min_number > 0 Then min = min + VarStep * (min_number - 1)

If min_number < N_Intervals Then max = min + VarStep * 2

Next m

Xo(Index) = Smalest_variab1e

End If

’Same thing for FofV_Cl

IfF1(Index).BackColor = 12632256 Then Variable is marked

Smalest_Error = 1E+300 ’ get first refference error to be big

max = FofV_Cl_max(Index)

min = FofV_Cl_min(Index)

For m = 1 To N_Step_Reductions ’N times to reduse the step and interval

VarStep = (max - min) / N_Intervals

For p = 0 To N_Intervals



FofV_C1(Index) = min + p * VarStep

Error = Quick_model_Sum(Index)

If Error < Smalest_Error Then

min_number = p

Smalest_Error = Error

Smalest_variable = FofV__Cl(Index)

End If

Next p

If min_number > 0 Then min = min + VarStep * (min_number - 1)

If min_number < N_Intervals Then max = min + VarStep * 2

Next m

FofV_C1(Index) = Smalest_variable

End If

’Same thing for FofV_C2

If F2(Index).BackColor = 12632256 Then ’variable is marked

Smalest_Error = 1E+300 ’ get first refference error to be big

max = FofV_C2_max(Index)

min = FofV_C2_min(Index)

For m = 1 To N_Step_Reductions ’N times to reduse the step and interval

VarStep = (max - min) / N_Intervals

For p = 0 To N_Intervals

FofV_C2(Index) = min + p * VarStep

Error = Quick_model_Sum(Index)

If Error < Smalest_Error Then

min_number = p

Smalest_Error = Error

Smalest_variab1e = FofV_C2(Index)

End If

Next p

If min_number > 0 Then min = min + VarStep * (min_number - 1)

If min_number < N_Intervals Then max = min + VarStep * 2

Next m

FotV_C2(Index) = Smalest_variable

End If

’Same thing for Ktherm

If K_therm(Index).BackColor = 12632256 Then ’variable is marked

Smalest_Error = 1E+300 ’ get first refference error to be big

max = h_max(1ndex)

min = h_min(Index)

For m = 1 To N_Step_Reductions ’N times to reduse the step and interval
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VarStep = (max - min) / N_Intervals

For p = 0 To N_Intervals

Ktherm(Index) = min + p * VarStep

Error = Quick_model_Sum(Index)

If Error < Smalest_Error Then

min_number = p

Smalest_Error = Error

Smalest_variable = Ktherm(Index)

End If

Next p

If min_number > 0 Then min = min + VarStep * (min_number - 1)

If min_number < N_Intervals Then max = min + VarStep * 2

Next m

Ktherm(Index) = Smalest_variable

End If

’Same thing for 5 FofX_Valyes and FofX_PosFrac

For r = 0 To 4

If BValuesBox(r + 5 "' Index).BackColor = 12632256 Then ’variable is marked

Smalest_Error = 1E+300 ’ get first refference error to be big

max = FofX_Valyes__max(Index, r)

min = FofX_Valyes_min(Index, r)

For m = 1 To N_Step_Reductions ’N times to reduse the step and interval

VarStep = (max - min) I N_Intervals

For p = 0 To N_Intervals

FofX_Valyes(Index, r) = min + p * VarStep

Error = Quick_model_Sum(Index)

If Error < Smalest_Error Then

min_number = p

Smalest_Error = Error

Smalest_variable = FofX_Valyes(Index, r)

End If

Next p

If min_number > 0 Then min = min + VarStep * (min_number - 1)

If min_number < N_Intervals Then max = min + VarStep "' 2

Next m

FofX_Valyes(Index, r) = Smalest_variable

End If

If BPositionBox(r + 5 "' Index).BackColor = 12632256 Then ’variable is marked

Smalest_Error = 1E+300 ’ get first refference error to be big

max = FofX_PosFrac_max(Index, r)

min = FofX_PosFrac_min(Index, r)

For m = 1 To N_Step_Reductions ’N times to reduse the step and interval

 



VarStep = (max - min) / N_Intervals

For p = 0 To N_Intervals

FofX_PosFracandex, r) = min + p * VarStep

Error = Quick_model_Sum(Index)

If Error < Smalest_Error Then

min_number = p

Smalest_Error = Error

Smalest_variable = FofX_PosFracandex, r)

End If

Next p

If min_number > 0 Then min = min + VarStep * (min_number - 1)

If min_number < N_Intervals Then max = min + VarStep * 2

Next m

FofX_PosFracandex, r) = Smalest_variable

End If

Next r

Next 1

If Best_Smalest_Error > Smalest_Error Then

best_Xo = Xo(Index)

best_FofV_C l = FofV_C 1 (Index)

best_FofV_C2 = FofV_C2(Index)

best_Ktherm = Ktherm(Index)

For r = 0 To 4

best_FofX_Valyes(r) = FofX_Valyes(Index, r)

best_FofX_PosFrac(r) = FofX_PosFrac(Index, r)

Next r

End If

Next k

Xo(Index) = best_Xo

FofV_C 1 (Index) = best_FofV_C1

FofV_C2(Index) = best_FofV_C2

Ktherm(Index) = best_Ktherm

For r = 0 To 4

FofX_Valyes(Index, r) = best_FofX_Valyes(r)

FofX_PosFrac(Index, r) = best_FofX__PosFrac(r)

Next r

Write_To_Boxes

Build_model (Index) ’run the model to update graph

Else

MsgBox ("Time of modelstart should be the same as time of contact to run

minimization")

End If

End Sub
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