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ABSTRACT

Deletion-Contraction Techniques for the

Chromatic Symmetric Function of a Graph
By

David D. Gebhard

Recently, R. P. Stanley defined and studied a symmetric function, Xg, which
generalizes the chromatic polynomial of a graph, G. This generalization has both ad-
vantages and disadvantages. The main advantage is that it gives us more information
about the colorings of G than the chromatic polynomial. However, one disadvantage
is that this new symmetric function does not satisfy a deletion-contraction recurrence
similar to the one for the chromatic polynomial.

In this thesis, we define a similar graph invariant called Y. This invariant is
defined using noncommutative variables, and from it we can recover X¢ by allowing
the variables to commute. This new invariant is also a symmetric function. More
importantly, by using noncommutative variables we will be able to obtain a deletion-
contraction recurrence for Yg. We may then obtain some of Stanley’s results for X
in a uniform manner by using induction. In addition, this will allow us to make some

progress on the 3+1 Conjecture of Stanley and Stembridge.
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INTRODUCTION

As early as 1912, Whitney [19] began to study graph colorings from a mathematical
point of view. Today the theory of graph coloring has many applications to both
scheduling problems and efficient network design. [11]. Here we will use symmetric
functions to enumerate graph colorings. While this section contains much of the
background leading up to our study, we will try to introduce notation and definitions
as they are needed throughout the text, rather than all at once. We will generally
follow Stanley [15, 14] for combinatorial notation or anything specifically related to
the symmetric function of a graph, X, and MacDonald [10] for symmetric functions
in general.

To begin, let G be a finite graph with vertex set V(G) and edge set E(G), where
the edges consist of unordered pairs of the vertices. We mention here that if the edge
set consisted of ordered pairs of vertices we would have had a graph with directed
edges, referred to as a digraph. A v,—v, walk in a graph is a sequence of vertices,
v1,Va, ... , Uy, such that v;_,v; is an edge for all 2 < 7 < n. A graph, G, is connected
if there is a u,v walk for every pair of vertices, u and v in V(G). The connected
components of G are just the maximal connected subgraphs of G. Finally, H is a
spanning subgraph of G if V(H) = V(G) and E(H) C E(G). In our study we will
actually consider multigraphs, in which multiple edges and loops are allowed. The
other definitions above extend in the natural way to multigraphs.

Since our main interest here is in coloring graphs, we define a coloring of G to be
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Figure 1. A coloring (not proper) of P;.
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Figure 2. Two proper colorings of P;

amap a: V(G) — C, where C is the color set. In particular, a proper coloring of G
is a coloring such that no two adjacent vertices are the same color, i.e., a(v;) # a(v;)
if v;v; is an edge of the graph. For an example, we show a coloring for the path on
three vertices, P3, which is not a proper coloring in Figure 1 and two proper colorings
for P; in Figure 2.

Whitney’s object of study was the chromatic polynomial of a graph, X¢(n), which
is defined to be the number of ways to properly color G using the color set C =
{1,2,...,n qef [n]. For P, since there are n ways to color v, from a set of n colors,
and n—1 ways to color each of the remaining vertices, we see that Xp,(n) = n(n—1)2.
It is somewhat surprising that Xg(n) is always going to be a polynomial in n. One
easy way to see this is to use induction along with the Deletion-Contraction Lemma,

which we will now discuss.

Given a graph G and an edge e € E(G), we can define the graph G — e to be the



graph G with the edge e deleted from its edge set. The contraction of G by e, G/e, is
obtained from G by contracting e (in the topological sense) to a single vertex. Given

these definitions, the Deletion-Contraction Lemma states that

Ag(n) = Xg_e(n) — Xgje(n).

This gives us a recursive way to compute the chromatic polynomial of a graph, as well
as to establish various properties of Xg(n) by induction. Two of Whitney’s results

that can be proven using this method are stated here.

Theorem 1 [19] For a finite graph, G,

Xa(n)= 3 (-1)nt9),
SCE(G)
where ¢(S) is the number of connected components of the spanning subgraph of G with

edge set S, which by abuse of notation we just denote by S. [

As an illustration, we will use this theorem to again calculate Xp,(n). If we let the
edge set of P; be {e;,e,}, where e; = v,v; and e; = wvyv3, then we can make the

following table.

SCE(G) | (~1)8! | pets)
1 n?

e -1 n?

es -1 n?
e, e 1 n!

This shows us that according to the Theorem, Xp,(n) = n3 — 2n? + n = n(n — 1),

which agrees with our previous calculation.



The other theorem of Whitney’s in which we will be interested is the one known as
the Broken Circuit Theorem. A cycle or circuit is a closed walk with distinct vertices
and edges, v;,vs,...,Un, v, for m > 1. If we fix a total order on F(G), a broken
circuit is a circuit with its largest edge (with respect to the total order) removed.
Let the broken circuit complez Bg of G denote the set of all S C E(G) which do
not contain a broken circuit in our fixed ordering on the edges. The Broken Circuit

Theorem then asserts:

Theorem 2 [19] For any finite graph, G, on d vertices we have

Xo(n) = ) (=1)PInd-1sI,

S€eBg

]
If we again calculate Xp,(n) using this theorem, we will come out with exactly

what we had before, only with n® and n! reversing positions in the table, since P;
contains no circuits and hence no broken circuits. As a less trivial example, we will
use this theorem to verify that the chromatic polynomial for K3, the complete graph
on 3 vertices is indeed given by n(n — 1)(n — 2), which can be obtained by noticing
that there are n ways to color the first vertex, n — 1 colors left available for the second
vertex, and n — 2 colors allowed for the last vertex. We label E(K3) = {e), ez, €3},
where the fixed order on the edges is the obvious one induced by the subscripts.
Since the only circuit in Kj is {e;, €, e3}, the only broken circuit will be {e;, e2}.

This gives us the following table, where we notice that here d = 3.



S € Bg | (-1)!IS! | na-1S!
) 1 nd
el -1 n?
€s -1 n?
e3 -1 n?
€1, €3 1 n!
ey, €3 1 n!

This gives us Xk, = n® — 3n? + 2n, which again agrees with the previous calculation.

Following these early results, some of the more interesting applications are those
of Zaslavsky in [20, 21, 22]. In that series of papers he introduces the notion of
colorings for certain generalizations of graphs called signed graphs. These colorings
have very nice connections to characteristic polynomials of certain types of hyperplane
arrangements. A related result by Zaslavsky and Greene [7] concerns the sinks of
acyclic orientations for G. An orientation of G is a digraph D obtained by assigning
a unique direction to each edge of G. An orientation is acyclic if it has no directed
cycles. We also define a sink of D to be a vertex v € V(D) such that 92 ¢ E(D) for

all z € V(D). Also, for notational convenience we adopt the convention that

Xg(n) = ag + a1n + agn® + - - - + axnk.

Theorem 3 ([7] Theorem 7.3) Let vy be any vertez of G. The number of acyclic

orientations of G with a unique sink at vy is |a,|. (]

This theorem is related to one of Stanley, which states:

Theorem 4 [13] The number of acyclic orientations of G is Y, |ai|. »



All of these theorems are actually specializations of results which can be obtained
from Stanley’s symmetric function generalization of the chromatic polynomial. The
first three theorems listed previously can all easily be derived from the recurrence
relation for the chromatic polynomial. However, this symmetric function does not
satisfy any similar deletion-contraction recursion, which eliminates induction as a
tool for these proofs. In what follows we will extend the Stanley’s definition by
using symmetric functions in noncommutative variables. This setting will allow us to

establish a recurrence and again allow induction as a valid approach to our proofs.



CHAPTER 1

Preliminaries

1.1 Symmetric Functions

Here we will review the basic facts about symmetric functions in commuting variables.
Our development will closely mirror that found in Sagan’s book [12]. The interested
reader should consult either MacDonald [10] or Sagan [12] for a more comprehensive
discussion.

We will begin with the monomial symmetric functions. Let x = {z,zs,23,...}
be a countably infinite set of commutative variables, and let A = (A, Ag, ..., Ak)
be an integer partition of n, denoted A - n, where the ); form a weakly decreasing
sequence of positive integers such that Zle i = n. If we allow 7; to be the number of
parts of A equal to ¢, then we may also express A = (1™,22,... ,n™) as an alternate

notation. The monomial symmetric function corresponding to )\ is given by

_E : At A2 %
mA— IL'”.'EM Cl?ik,

where the sum is over all distinct monomials having exponents A;,...,At. As an



example we can see that
2 2 2 2 2
m(2,1) xlx2+zlxs+...+1‘2zl+$2$3+...+l‘3x1+... .

We then define the ring of symmetric functions as the vector space over C spanned
by the monomial symmetric functions. It is an elementary fact that the monomial
symmetric functions are actually linearly independent over C and so form a basis for
the vector space of symmetric functions. It is important to note here that while we
will usually consider the symmetric functions as a vector space in this thesis, the fact
that they form a closed set under multiplication also makes the symmetric functions
a ring.

While it is clear from our development that the monomial symmetric functions
form a standard basis for the symmetric functions, there are other nice bases for
this vector space which are routinely used. These include the elementary, power
sum, and complete homogeneous symmetric functions as well as the Schur functions.
We will define the power sum symmetric functions and the elementary symmetric
functions here, as they will be relevant to the rest of this thesis. For a description of
the complete homogeneous symmetric functions and the Schur functions, please see
either [10], [12], or [4]

The r** power sum symmetric function is

pr=m) = ZII,

i>1

and the r* elementary symmetric function is

€ =Mmary = E O PER o

1 < <ip

While these are seemingly natural definitions based on the monomial symmetric func-



tions, they obviously do not form bases since they are not even indexed by integer
partitions. Hence we must extend these definitions to p) and e, where A - n. We

will do this multiplicatively, by defining

def def
POy Az de) = PaPap s Pa @nd €y a0 0) = €x €y "t €y
These are the power sum and elementary symmetric functions, respectively. They
also form bases for the space of symmetric functions. To illustrate these definitions,

two simple examples are computed. For the integer partition (2,1) we have

peyy =pp1 = (@3 +z24+- )T +zo+00)
S R RO S SR

=m) + M2,
and

e21) =€ = (1T +T1x3+ -+ Tx3+ ) (T T2+ 23+ 0)
=22zy + zir) + -+ 3T 1Z923 + -+

= m(g,l) + 3m(1'1,1).

These functions are referred to as symmetric functions for the following reason.
Given a permutation in the symmetric group on n elements, § € S,, we define a

natural action on the set of functions in C[x] by

6f(1:1,.'l'2,.’r3, . ) = f(xJ(l)azé(Z)aa:J(B)v cee )

It should be clear that, for any permutation 4, the elements in our space of symmetric
functions will remain invariant under this action.

Given this information about the space of symmetric functions, we now have



10

sufficient background to introduce Stanley’s chromatic symmetric function.

1.2 The Chromatic Symmetric Function, Xg

In “A Symmetric Function Generalization of the Chromatic Polynomial of a
Graph” [15] (see also [16]), R. P. Stanley introduced a symmetric function, X, which
generalizes the chromatic polynomial associated with a labeled graph on d vertices.

Definition 1.2.1 Let G have vertez set V(G) = {v;,va, ... ,vq4}. We define

XG = XG(iL'l,.’IIQ, .. ) = an(vl) .. .l‘,{(vd),
K

where the sum ranges over all proper colorings, k : V(G) — P, and P is the set of

positive integers.

Note that X is homogeneous of degree d = |V (G)|, where | *| denotes cardinality.
We also notice that if G has loops this sum is empty, giving Xg = 0. To illustrate
this definition, we will compute the chromatic symmetric function for our standard
example of the path on three vertices, P;. We can see that any proper coloring of this
graph will have one of two possible types: the coloring could have v, and v3 one color
with v, a different color, or it could have all three vertices different colors. Since there
are 6 different ways to color the three vertices with the same set of three different

colors, we obtain
Xp, = xfzz + x%xl + -+ 6x,7973 + 6212974 + - - -

It should be clear from the definition that X is a symmetric function, since any
permutation of the subscripts simply permutes the colors and doesn’t affect the set of

colorings. We can also see it more explicitly in this case, since the previous expression
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clearly shows that

Xp, = mz1) +6m 1)

For A + n having r; parts of size i, we can also use the notation A =
(1",2m2,...,n™), and define |A\| = ry!---r,!. We say that a partition of the ver-
tex set of G is stable if no block of the partition contains adjacent vertices. Then
it is not hard to see [15] that Xg = ), ax|A|m,, where a, is the number of stable
partitions whose block sizes correspond exactly to the parts of \. We are also easily
able to see that for the disjoint union of two graphs, G = HWI, we have X¢ = Xy X|.

We can verify that this symmetric function is a generalization of the chromatic
polynomial, Xg(n), since setting z; =z = ... =z, = land z; =0 foralli > n
in Xg, denote by X¢(1"), yields Xg(n). To see this, note that this substitution will
produce a term equal to 1 for each monomial in X; which comes from a proper
coloring of the graph using the first n colors, and a term equal to zero for each
monomial arising from a proper coloring which uses a color not in [n]. Hence the sum
of all these monomial terms after this substitution will just be the number of proper
colorings of G which only use the first n colors. This is precisely Xg(n).

Once we are assured that this is a generalization of the chromatic polynomial,
one might expect that previous results about the chromatic polynomial should also
generalize. It is also natural to study the expansion of this chromatic symmetric
function in terms of the different symmetric function bases. The calculation of X¢g
for various specific graphs is also of interest. Stanley pursues all of these lines of
inquiry in his paper.

Several of Stanley’s results for X are extensions of Whitney’s [19] theorems for
the chromatic polynomial. For example, Stanley’s symmetric function extension of

Theorem 1 utilizes the power sum symmetric functions.
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Theorem 1.2.2 [15, Theorem 2.5] Let G be a finite graph of order d. We have

Xe= Y, (-1)¥lpys),
SCE(G)

where A(S) = (A1, A2, ..., Ak) @S the integer partition of d with ); being the number

of vertices in the i** component of S. .

We can see that this result directly implies Whitney’s first theorem by noticing
that p,(1") = n for any r, and so px(1") = n"»), where [()) is the number of parts of
A. Hence py(s)(1") = n9), completing the reduction.

Not surprisingly, Stanley also has a generalization of Theorem 2.

Theorem 1.2.3 [15, Theorem 2.9] For any finite graph G, we have

Xe= Y (-1)"Ipys).
S€Bg | ]

In this thesis, we will be studying an analogue of Stanley’s chromatic symmet-
ric function Xg, called Yg, which is defined using noncommutative variables. We
wish to consider this analogue because we know that many results for the chromatic
polynomial can be proven easily using induction and the deletion-contraction recur-
rence. Unfortunately, Stanley’s symmetric function has no such deletion-contraction
property, which deprives him of induction as a tool for his proofs.

To see where the problem lies, note that Xs is homogeneous of degree d, while
Xg/e is homogeneous of degree d — 1. In order to find a recurrence, we would need to
add another variable to each monomial in X¢/.. But which variable? In the proof of
the deletion-contraction rule for the chromatic polynomial, we have proper colorings
of G /e corresponding to colorings of G — e with u and v the same color, where e = uv.
However, while X/, gives us more information about the colorings of G/e than the

chromatic polynomial, it does not give us the explicit information we need to fix the
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problem: namely, what color was assigned to the vertex obtained by contracting uv.
We lost that information when we allowed the variables to commute.

To correct this difficulty, in Chapter 2 we introduce an analogue of X which is a
symmetric function in noncommutative variables. That is, for any multigraph G with

vertices labeled vy, vy, ... ,vq in a fized order we define the analogue of X as

Yo = ) T(w)Tx(wa) *** Tniva)
K

where again the sum is over all proper colorings of G, but the z; are now noncom-
muting variables.

The reason for using noncommuting variables is so that we can keep track of the
color which x assigns to each vertex. Since we still have the homogeneity problem
in Yg/., we define an operation on the non-commutative symmetric functions which
will allow us to use deletion-contraction techniques for computing Y. In this chapter
we also provide some basic expansions of Ys; which closely resemble Whitney’s and
Stanley’s theorems.

In Chapter 3 we will further explore the interrelationships between chromatic
polynomials, chromatic symmetric functions, acyclic orientations and sinks. There is
an interesting connection between Theorem 2 and the result of Green and Zaslavsky,
Theorem 3. From Theorem 2 we can interpret the coefficients of the chromatic poly-
nomial as the number of sets S € B¢ of a certain size. From Theorem 3, we see the
coefficient of n in Xg(n) is the number of acyclic orientations of G with a unique
sink at any fixed vertex of G. It follows that the number of acyclic orientations of
G with a unique sink at the fixed vertex is the same as the number of sets S € Bg
with |S| = d — 1. Elementary graph theory tells us that this is also be the number
of spanning trees of G which contain no broken circuits. We will provide a bijective

proof of this fact by modifying an algorithm due to Blass and Sagan [1]. Finally,
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we will also extract some of the information that the non-commutative chromatic
symmetric function can give us about acyclic orientations and sinks.

In Chapter 4 we will consider a conjecture about the coefficients of X, when it is
expanded in terms of the elementary symmetric function basis. We will make some
progress here on the (3 + 1)-free conjecture of Stanley and Stembridge, proving it in
some special cases.

We finish in Chapter 5 with some other partial results about acyclic orientations
and sinks, as they relate to the (3 + 1)-free conjecture. We conclude with some
open problems, as well as a few ideas on how they might be approached using our
techniques. Before we begin, however, we will need to discuss symmetric functions in
noncommuting variables and our analogue of X in that setting. This is the focus of

our next chapter.



CHAPTER 2

The Noncommutative Case

2.1 Symmetric Functions in Noncommuting Vari-

ables

We begin with some background on symmetric functions in noncommuting variables.
Much of this follows from the work of Doubilet [4], although he does not explicitly
mention these functions in his work. These noncommutative symmetric functions will
be indexed by set partitions, which form a lattice under a certain partial order, which
we will define here.

A lattice is a poset (partially ordered set) £ such that every pair z,y € £ has a
least upper bound (or join) denoted by z V y and a greatest lower bound (or meet)
denoted x A y. Any finite lattice has a unique minimal element denoted by 0 and
a unique maximal element denoted by 1. We let II; denote the set partitions of
{L2,..., d} = [d]. This forms the set partition lattice, where the partial order is
defined as follows. If o = A/Ay/---|Ar and T = By /B;/ - - - /| By, then o < 7 if and
only if for all 1 < i < k there exists some j with 1 < j < m such that 4; C B;.
That this partial order on II; actually forms a lattice is an elementary result. As an

€Xample, we have included the Hasse diagram for Il in Figure 2.1. Given a poset,

15



Figure 2.1. The partition lattice I1,.

P, we also recursively define the Mébius function, pu, of P on intervals [z,y] in P by

p(z,z) =1 and pu(z,y)=-— Z u(z, z) for all z,y € P.
z<z<y
It can be shown that for o, 7 € Il with 0 = A,/Ay/ -+ /Ar and T = By/By/ -+ + | Bp,

and o < 7, then

wo,m) = [[(-1)*(an - 1),
n=1

where a,, is the number of blocks of o contained in B,.

Since we will be using both integer and set partitions in this thesis, our convention
will be that ) and 1 generally denote integer partitions, while o, 7, and 7 are usually
set partitions.

If 7 € I1, we define A(m) to be the integer partition of d whose parts are the block
sizes of 7. So if 1 = By/B,/ ... /By, where the block sizes are in weakly decreasing

order, we have M) = (|B1l, |Bal,- -, |Bx|). Further, if A(w) = (17,2%,... ,d"™), we
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define

= el
T T1:T2o. Td.
| | 2 d

and

= 11"21" ... gl"e,

We can now introduce the vector space for the noncommutative symmetric func-
tions. Let x = {z,z3,13,...} be a set of noncommuting variables. We define the

noncommutative monomial symmetric functions, m,, by:

Mgy = Z Tiy Ty * - "Tid? (2‘1)

il 71"2s"' )id

where the sum is over all multisets (collections in which repetitions are allowed)
{{é1,12,... ,ia}} of the positive integers P such that ¢; = i if and only if j and k are

in the same block of 7. For example,
My3/24 = T1T2T1T2 + ToT1 X2 + T1X3T1Z3 + T3X T3 + - ¢

is the monomial symmetric function in noncommuting variables corresponding to the
partition 7 = 13/24.

We notice, from [4] that letting the z; commute transforms m, into |7|my(r). The
noncommutative monomial symmetric functions, {m, : 7 € Ily,d € N}, are linearly
independent over C, and we call their span the set of noncommutative symmetric
functions. (Note that this is different from the noncommutative symmetric functions
studied in [6])

Another useful basis will be the noncommutative power sum symmetric functions
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given by
def
Py = Zma = Z Ti\ Tiy * * - Tiy, (2.2)
o>w 11,82,.00,1d
where the second sum is over all multisets {{i,42,...,14}} of P such that i; = i

if 7 and k are both in the same block of 7. In a similar manner we will define the

noncommautative elementary symmetric function basis elements by
E meye = E T, Tiy * - Tiy, (23)
o:oAT=0 11,0250 ,1d

where the second sum is over all multisets {{7},1%2,... ,i4}} of P such that ¢; # i if
j and k are both in the same block of 7. With these definitions one may derive the

formulae found in the appendix of Doubilet’s paper [4] which show

= um,o)p,

o>m

and

p(m, 1)
= 6.7 > ulo, e, (2.4)

> o<t

This verifies that these are actually bases for the noncommutative symmetric func-
tions.

As an illustration of these definitions, we see that

P13/24 = ZT1Z2T1%2 + T123L123 + -+ x‘f + z‘é + -

= My3/24 + Mi234
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and that

€13/24 = x?$§+---+xlm§x1 +--.+zfg;2$3 4+ .-

+xlz§x3 +---+ xlxgmg + -+ 21 XT2T3T) + 0 -+ X1 T2X3T4 00

= Mj2/34 + Mi4a/23 + Mi12/3/4 + My/23/4 + My 2/34 + Magj2/3 + M1/2/3/4-

Allowing the variables to commute transforms p, into pyr) and e, into mley(r).
It should be clear that these noncommutative symmetric functions are symmetric
in the usual sense, i.e., they are invariant under the previously defined symmetric
group action on the variables. However, it will be useful to define a new action of the
symmetric group on the noncommutative symmetric functions which permutes the

positions of the variables. For § € Sy, we define
do My d‘_if Mg(x),

where the action of § € S; on a set partition of [d] is the obvious one acting on
the elements of the blocks. It follows that for any § this action induces a vector
space isomorphism, since it merely produces a permutation of the basis elements.
Alternatively we can consider this action to be defined on the monomials so that

def

do (zilxiz T Iik) = xié—l(l)xi6—1(2) tee xi6_1(k)

and extend linearly.
Utilizing the first characterization of this action, it follows straight from definitions

(2.2) and (2.3) that 6 o p; = ps(r) and 6 o e, = e4(x).
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2.2 Development and Results for Y

We begin this section by reviewing the definition of Y.

Definition 2.2.1 For any multigraph G with vertices labeled vy, v,, ... ,v4 in a fixed

order, define

Yo = Z Tr(v1)Tr(vz) * * * Tr(vg)s
K

where again the sum is over all proper colorings of G, but the z; are now noncom-

muting variables.

As an example, we can calculate

Yp3 = I1T9x1 + T2T1Z2 + T1Z3%1 + -+ T1ZT2X3 + T1XT3%2 + -+ -+ T3T2Xy + -+

= Mmiz/2 + Mi/2/3.

We again mention that if G has loops then this sum is empty and we would have
Ys = 0. Furthermore, Ys; depends not only on G, but also on the labeling of its
vertices. In this section we verify that Ys does indeed satisfy a deletion-contraction
recurrence and use this to prove some results about the expansion of Y in certain
bases for the noncommutative symmetric functions. In order to get such a recurrence,
it is necessary to have a distinguished edge.

We want to be able to uniformly choose such an edge, and so we will also define an
action of the symmetric group on a graph. For all § € S; we let § act on the vertices
of G by 6(v;) = vs;y. This creates the action on graphs given by §(G) = H, where
H is just a relabeling of G. Finally, any partition P of V(G) induces a set partition

7(P) of [d] corresponding to the subscripts of the vertices.
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Proposition 2.2.2 (Relabeling Proposition) For any finite multigraph G, we
have

d oY =Y,
where the vertez order vy, v, ... ,vq4 15 used in both Yg and Yjc).

Proof. Recall that a stable partition of the vertex set of G is a set partition of V(G)
such that no two vertices in the same block of the partition are adjacent. (If G has

a loop, there are none.) It should be clear from the definitions that

Yo = zmw(P) (2.5)
P

where the sum is over all stable partitions, P, of V(G).

If we have two different labelings of G, say G and H, we choose § € Sy such that
0(G) = H. We note that the action of § produces a bijection between the stable
partitions of G and H. Utilizing the above characterization (2.5) of Y and denoting

the stable partitions of G and H by Pz and Py respectively, we have

Yo =) Mapy) = D Mita(Pe)) = P00 Ma(pg) =60 Y Mu(py) =060 Y. .

Py Pg Pg Pg

We now turn our attention to deletion-contraction techniques. Using the Rela-
beling Proposition allows us, without loss of generality, to choose a labeling of G so
our distinguished edge is e = v4_1v4. It is this edge for which we will derive the

deletion-contraction recurrence for Yg.

Definition 2.2.3 We define an operation called induction, 1, on the monomial
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T\ Tip " xid_.zzid_l ) by

- . . . e . . 2
(T4, Tiy - - - Tig_yTig_, = ziTh Tig_2Ti,_,

and extend this operation linearly.

Note that this function takes a noncommutative symmetric function which is homo-
geneous of degree d — 1 to one which is homogeneous of degree d. Context will make
it clear whether the word induction refers to this operation or to the proof technique.

This definition will only be used for deletion-contraction on the edge e = vyv4_,.
We can extend induction to any edge e = v, as follows. For k < [, define an oper-
ation 1% on noncommutative symmetric functions which simply repeats the variable

7 in the I** position. That is, for a monomial z;, Ty c - Ti,_,, define

def

)
(xil ...zik ”.xil—-l‘ril '.'xid—l)Tk — xil ...xik “en

and extend linearly.

At this point it will be useful to adopt the convention that provided G has an
edge which is not a loop, we choose a labeling such that e = v4_;v4. We also note
here that if there is no such edge, then

y, = J C1d = iy if G = Kq (2.6)

0 if G has a loop.

We mention here that K, is the complete graph on d vertices, i.e., the graph (not
multigraph) on d vertices having all possible edges. Its edge complement is K, the
completely disconnected graph which has d vertices and no edges. In order to allow
for multiple edges and loops, we note that contracting a multiple edge will form a

loop, and adopt the convention that to contract a loop, we simply delete it.
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Proposition 2.2.4 (Deletion-Contraction Proposition) For e = v4_1v4, we

have Yg = Yg_. — Yg/ct, where the contraction of e = v4_,1vq is labeled vq—;.

Proof. The proof is very similar to that for the deletion-contraction property of
AXg. We consider proper colorings of G — e. They can be split disjointly into two

types:
1. Proper colorings of G — e with vertices v4_; and v, different colors;
2. Proper colorings of G — e with vertices v4_; and v4 the same color.

Those of the first type clearly correspond to proper colorings of G. If k is a
coloring of G — e of the second type then, since the vertices v4_; and vy are the same

color, we have

Tr(v1)Tr(v2) " Tr(vaz1)Ta(va) = (Tn(v1)Tr(va) ** " Tn(va_y)) 1= TzT

where k is a proper coloring of G/e, and the vertex obtained from the contraction
is labeled v4_;. Thus we have Ygo_. = Yg + Y5, 1. Rearranging the terms gives

Yo = Yo YG/eT- .

‘We note that if e is a repeated edge, then the proper colorings of G — e are exactly
the same as thos<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>