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ABSTRACT

By

Yuqi Hong

This dissertation investigates the inverse rough surface scattering problem in near-field op-

tical imaging, the purpose of which is to reconstruct a scattering surface with a resolution

beyond the diffraction limit. The surface is assumed to be a small and smooth deformation

of a plane surface. Based on a transformed field expansion, the boundary value problem with

complex scattering surface is converted into a successive sequence of a two-point boundary

value problems in the frequency domain, whereby an analytic solution for the direct scat-

tering problem is derived from the method of integrated solution. By neglecting the high

order terms in the power series expansion, the nonlinear inverse problem is linearized and

an explicit inversion formula is obtained. A spectral cut-off regularization is adopted to sup-

press the exponential growth of the noise in the evanescent wave components, which carry

high spatial frequency of the scattering surface and contribute to the super resolution in the

near-field regime. The method works for sound soft, sound hard, and impedance surfaces,

and requires only a single illumination at a fixed frequency and is realized efficiently by

the fast Fourier transform. Numerical results show that the method is simple, stable, and

effective to reconstruct scattering surfaces with sub-wavelength resolution.
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Chapter 1
Introduction

The aim of this dissertation is to present an effective mathematical model and accurate

computational algorithm for the grating surface problem that arises in near-field imaging with

general impedance boundary condition. The impedance boundary condition has become an

important concept in the modeling of wave propagation. It can be used for obstacles that are

partially or totally penetrable for time-harmonic scattering problems in electromagnetism.

The famous sound hard and sound soft boundary conditions are special cases of the general

impedance boundary condition.

A grating surface is a periodic structure with a non-local perturbation such that the new

surface lies within a small distance of the original plane. The perturbation is assumed to

be smooth and very small. The input information is measured at a constant distance from

above the grating surface orders in magnitude smaller than the wavelength of the incident

radiation. This is the defining feature of near-field optics, which focuses on features of light

or waves occuring in regions smaller than the wavelength. The hallmark of near-field optics is

that it breaks the diffraction limit and is able to obtain images at subwavelength resolution.

It also examines evanescent wave modes, which are crucial in near-field optical microscopes.

Near-field optics also has broad application in biology, chemistry, and materials science.

This dissertation limits discussion to time-harmonic waves field incident normally incident
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upon on a grating surface from above. A homogeneous medium fills the space above the

grating surface. The method we will present also works for general incidence, but the com-

putation is so much more complicated that it obscures the elegance of the method. Conse-

quently, we limit presentation here to normal incidence only. The grating surface problem is

just one kind of scattering surface problem. Scattering is a physical process in which some

forms of radiation, such as light, sound, or moving particles, are redirected from their origi-

nal trajectories by localized non-uniformities in the medium through which they are passing.

For example, the color of the sky is formed by dispersive scattering of sunlight by parti-

cles and molecules in the atmosphere, with stronger scattering at short (blue) wavelengths

leading to the sky’s distinctive hue. The scattering surface problem is so important that

it has been applied broadly across modern science and technology. For instance, detection

of the interior of the earth is possible by measuring the travel time of waves produced by

seismographs. The technique is invaluable to oil companies, who need to determine the best

location to drill. Beyond applications in the energy industry, medical imaging uses X-rays,

ultrasound waves, and other electromagnetic waves to help diagnose suspected tumors and

other malignant growths. Scattering problems also model animal echolocation, or the bio

sonar of bats, dolphins, and toothed whales. This idea can also be used to help blind humans

find their way around.

Paired with every inverse problems is a forward problem. For scattering, the forward scat-

tering problem is to determine how radiation or particles behave with preknowledge of the

scatterer. That is, the goal to find the total field given complete information about the

grating surface and incident wave. Conversely, inverse scattering seeks to determine the

characteristics of an object, such as shape or internal structure, solely from data concerning

the scattering of incoming radiation, waves, or particles. Mathematically, the inverse scat-

tering problem is to reconstruct the function that defines the scattering surface given the

total field and incident wave.
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The scattering surface is called an unbounded or infinite rough surface when the pertur-

bation is non-local and not confined to a compact region. The problem has been stud-

ied and discussed by a large number of researchers, including Voronovich[40], Chew and

Warnick[41], also Chandler-Wilde and Monk[18], DeSanto and Martin[24], Li, Wu and

Zheng[32], Milder[36], DeSanto and Wombell[42],Chandler-Wilde and Zhang[19], Bao and

Lin[14]. Bao and Lin[14] considered an inverse scattering problem with a local perturbation

on a perfect electric conductor (PEC) is considered. Since the perturbation is local, the

Sommerfeld radiation condition can be imposed in their model. However, a subsequent work

by Bao and Li[10] examined inverse scattering upon a PEC perturbed nonlocally. In this

scenario, the usual Sommerfeld radiation condition is inapplicable. So instead, the transpar-

ent boundary condition is imposed. Two related papers examine matters arising in nonlocal

PEC scatters: Bao and Li[9] analyzed the convergence and error estimate; and Li and Shen

[30]proved well-posedness and uniqueness of the weak solution of the corresponding forward

problem using a variational approach. Furthermore, the near-field imaging of infinite rough

surface scattering problem in dielectric media was tackled by Bao and Li[11]. Other related

works in near-field optics include Carney and Schotland in [17] and [16], Courjon[22], Bainier

and Courjon[23].

A cavity wall is a local perturbation of a planar surface in which the perturbation lies below

the unperturbed portion of the plane (cf. [26]). Many beautiful results in different offshoots

of the cavity problems have been established. Among them are Li[28], Bao, Gao and Li[29],

Li and Wood[31], Li,Wu and Zheng[33], Bao, Gao, Lin and Zhang[8], Ammari, Bao, and

Wood[2].

If the scattering surface is periodic structure, it is called a grating surface. Bao, Cowsar,

and Masters[5] and Bao, Dobson and Cox[6], Petit[39], Bao and Friedman[7] have established

excellent studies on mathematical analysis and numerical approaches for diffraction gratings.

Kirsch[27], Bao[3] and Ammari[1] published uniqueness theorems for grating problems. Chen
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and Wu[20] and Bao, Chen and Wu[4] crafted computational strategies based on the finite

element method (FEM). Bao, Li and Lv [12] and Bao, Li and Wu[13] published an elegant

work about inverse diffraction grating problem. The inverse grating surface problem with

PEC boundary condition has recently been studied in work of Cheng, Li and Wang[21]. This

thesis focuses on grating problem with general impedance boundary condition, which is a

more accurate approximation to the exact electromagnetic properties of the material.

Excepting the introduction, this dissertation is comprised of four chapters. The first intro-

duces mathematics and physics background, and the second establishes the mathematical

model and develops a solver for the forward problem. Chapter 4 derives an inversion for-

mula for reconstruction of the grating surface function. The final chapter presents numerical

experiments that highlight the accuracy and efficiency of Chapter 3’s method.

As will be shown in Section 2.4, the mathematical model of the scattering problem is a

two-dimensional Helmholtz equation with two different types of boundary conditions:

1. A transparent boundary condition on the inverse problem’s measurement surface

2. A universally applicable impedence boundary condition on the grating surface

The placement of these boundary conditions is depicted visually below in Figure 1.1.

Γ

S

Figure 1.1 Placement of Boundary Conditions. On the measurement surface Γ,
shown in red, a transparent boundary condition is placed; on the grating surface S (in

blue), an impedence condition.
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The neccessity of the transparent boundary condition arises from the invalidity of the usual

Sommerfeld radiation condition because of the nonlocal perturbation under consideration.

To deal with the boundary value problem on a curved domain, a transformed field expansion

is applied and the domain is transformed into a rectangular region. A formal power series

expansion converts a boundary value problem concerning a complex scattering surface into

a much simpler progression of two-point boundary value problems. Works by Nicholls and

Reitich [38, 37], Malcolm and Nicholls[35], Bruno and Reitich[15] are the primary references

for the transformed field expansion and boundary perturbation method. The boundary

perturbation method and boundary integral operators are applied to an inverse problem with

periodic scattering surface in Malcolm and Nicholls[34]. An explicit solution of the forward

problem is obtained by the integration solution method. The uniqueness and wellposedness

of the solution of this problem is proven.

Chapter 4 of this thesis derives an inversion formula for the grating surface. Discarding

the high order terms in the power series creates a linearization of the nonlinear inverse

problem. By calculating just the first two terms in the forward problem, an elegant yet

accurate expression for grating surface is achieved. The exponential growth in the inversion

formula is cured by a spectral cut-off regularization that reflects the ill-posedness of the

inverse problem.

Chapter 5 of this thesis presents numerical experiments that demonstrate the accurate sta-

bility and efficiency of this method for reconstructing the grating surface with subwavelength

resolution. When the deformation parameter is fixed, higher accuracy can be achieved by

taking measurements closer to the surface. This reinforces the purpose of near-field imaging:

measurements taken too far away lead to amplification of the exponential in the reconstruc-

tion formula and loss of valuable information contained in evanescent wave mode.
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Chapter 2
Background Knowledge

2.1 Maxwell’s Theory

Maxwell’s equations are precise mathematical expressions of the laws of nature. There are

many different ways using different notations to display the same mathematical formulation,

just like using different language to express a same idea. Here we express Maxwell equation

in the following mathematical form:

∇×H = ∂D

∂t
+ J, (2.1)

∇×E = −∂B

∂t
, (2.2)

∇ ⋅D = ρ, (2.3)

∇ ⋅B = 0, (2.4)

where E,B,H,D,J and ρ are all functions of space x and t.

Equation (2.1) is Ampere’s law or the generalized Ampere circuit law. Equation (2.2) is

Faraday’s law or Faraday’s magnetic induction law. Equation (2.3) is Coulomb’s law or

Gauss’ law for electric fields. Equation (2.4) is Gauss’ law or Gauss’ law for magnetic fields.

We refer to E as electric fields, D as electric displacement, and H and B as magnetic fields.
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Symbol Meaning Units

H(x, t) Magnetic field amperes/m

E(x, t) Electric field volts/m

B(x, t) Magnetic flux density webers/m2

D(x, t) Electric displacement coulombs/m2

ρ(x, t) Electric charge density coulombs/m2

J(x, t) Electric current density amperes/m2

Table 2.1 Quantities of Maxwell’s Equations. This table lists the physical quantities
appearing in (2.1)–(2.4) with their meanings and their units.

Ampere’s original formulation of (2.1) lacked the electric displacement contribution ∂D
∂t , a

term added by Maxwell in his pioneering 1861 work “On Physical Lines of Force.” While

leading to correct results within magnetostatics, Ampere’s law without Maxwell’s correction

fails when time-varying charges are present in several ways:

1. Capacitors, which result in open circuits for direct current sources, can only be em-

ployed in alternating circuit systems. When the original Ampere’s Law is applied

to such a system, the result is a discontinuous current profile. Maxwell’s correction

restores the proper behavior.

2. Taking the divergence of both sides of (2.1), using that ∇ ⋅ (∇ ×A) = 0, and calling

upon (2.3) results in the continuity equation

∇ ⋅ J(x, t) = − ∂
∂t
ρ(x, t) (2.5)

which states that if current flows out of a region (i.e., ∇ ⋅ J > 0), then the charge

density in that region must correspondingly decrease. This amounts to a conservation

of charge. In Ampere’s original formulation,

∇ ⋅ J(x, t) ≡ 0
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which implies that the outward flux in space of current always vanishes. Obviously,

this is correct only if charge does not vary in time—e.g., in direct current systems.

3. Faraday’s Law (2.2) states that a time-varying magnetic field induces a time-varying

electric field. With the displacement term in (2.1), the corrected Ampere’s Law, in con-

junction with a constitutive relation between D and E, reciprocates this phenomenon:

time-varying electric fields induce time-varying magnetic fields. This relationship be-

tween the time-varying electric and magnetic fields constitutes the foundation of elec-

tromagnetic wave theory and led Maxwell to prediction of electromagnetic waves.

In linear materials lacking magnetic dipole moments, D and E are related by a dielectric

permittivity ε, and the magnetic fields B and H are related by a magnetic permeability µ:

D = εE (2.6)

B = µH (2.7)

We call (2.6) and (2.7) the constitutive relations. In free space (a vacuum), µ = µ0 and ε = ε0.

The numerical values of these fundamental constants are given below in Table 2.2.

Quantity Value Units

ε0 8.85 × 10−12 farad/meter

µ0 4π × 10−7 henry/meter

Table 2.2 Fundamental Electromagnetic Constants.

Inside a material medium, the permittivity ε is determined by the electrical properties of

the medium and the permeability µ is decided by the magnetic properties of the medium.

In particular, for nonmagnetic materials, µ = µ0, but there is no physical material for which

ε = ε0. Both ε and µ are more properly rank-2 tensors (3x3 matrices) with components that
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zero out according to the material’s crystal symmetry. For example, in uniaxial crystals,

ε(x) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

εxx(x) 0 0

0 εyy(x) 0

0 0 εzz(x)

⎞
⎟⎟⎟⎟⎟⎟
⎠

Only in homogeneous and isotropic materials will ε remain a scalar constant and in such

materials the electric field E is parallel to D and the magnetic fields B and H are parallel†.

In just isotropic materials, ε will be a constant tensor. Furthermore, because all materials

display dispersion, ε also depends on frequency ω.

In this thesis, however, discussion will be limited to homogeneous and isotropic materials so

that ε ≡ ε. Because all incident waves are assumed to be monochromatic, we may ignore the

effects of dispersion and set ε to its value appropriate for the input frequency.

2.2 Notations

A vector A has a magnitude and a direction, which can be represented graphically by

a straight-line element of length proportional to the magnitude of A and with an arrow

pointing the direction of A. In a Cartesian coordinate system, which is also the rectangular

coordinate system, A can be written in terms of the three Cartesian components Ax,Ay,Az:

A = x̂Ax + ŷAy + ẑAz (2.8)

where Ax,Ay,Az are the projections of A onto the x, y, z axes. Denote the unit vector in

the direction of x, y, z axes as x̂, ŷ, ẑ. The del operator ∇ is a vector differential operator,

†More strictly, H is the magnetic field and B is the magnetic flux density. In nonmagnetic materials,
however, the two are proportional so the distinction is not important to us. We refer to both as “magnetic
field” as is common in the literature.
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written as

∇ = x̂ ∂
∂x

+ ŷ ∂
∂y

+ ẑ ∂
∂z

(2.9)

When operating on a scalar function φ(x, y, z), the result is a vector

∇φ = x̂∂φ
∂x
φ + ŷ ∂φ

∂y
φ + ẑ ∂φ

∂z
(2.10)

Since x̂ ⋅ x̂ = 1, ŷ ⋅ ŷ = 1, ẑ ⋅ ẑ = 1,we have

∇2 = ∇ ⋅ ∇ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(2.11)

The curl of a vector field H is a vector defined as

∇×H = (x̂ ∂
∂x

+ ŷ ∂
∂y

+ ẑ ∂
∂z

) ×H =

RRRRRRRRRRRRRRRRRRRRRRR

x̂ ŷ ẑ

∂
∂x

∂
∂y

∂
∂z

Hx Hy Hz

RRRRRRRRRRRRRRRRRRRRRRR

= x̂(∂Hz

∂y
−
∂Hy

∂z
) + ŷ (∂Hx

∂z
− ∂Hz

∂x
) + ẑ (

∂Hy

∂x
− ∂Hx

∂y
)

The divergence of a vector function is a scalar, defined as

∇ ⋅D = (x̂ ∂
∂x

+ ŷ ∂
∂y

+ ẑ ∂
∂z

) ⋅ (x̂Dx + ŷDy + ẑDz)

= ∂Dx

∂x
+
∂Dy

∂y
+ ∂Dz

∂z

2.3 Wave Propogation

In the physics of wave propagation, a plane wave (also spelled planewave) is a constant-

frequency wave whose wavefronts (surfaces of constant phase) are infinite parallel planes of
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constant peak-to-peak amplitude normal to the phase velocity vector.

The wavenumber (also wave number) is the spatial frequency of a wave, either in cycles per

unit distance or radians per unit distance. It can be envisioned as the number of waves that

exist over a specified distance—analogous to frequency being the number of cycles or radians

per unit time. In terms of angular frequency, the wavenumber κ is given by

κ = 2π

λ
= ω
v

(2.12)

where λ is the wavelength, ω is angular frequency of the wave.

Theorem 2.1 (Dispersion Relation). The wavenumber κ is given by

κ2 = µ0ε0ω
2 = ω2/c2

where µ0ε0 = 1
c2 and c = 3 × 108 m/sec is the speed of light in free space.

The dispersion relation provides an important connection between the spatial frequency κ

and the temporal frequency ω.

Definition 2.1. Fields for which the time variation is sinusoidal or periodic are called

time-harmonic fields. Time-harmonic waves function can be written in a form of A(x, t) =

A(x)eiωt, where ω is the wave frequency.

Plane wave is one kind of time-harmonic fields and is called a “monochromatic” wave be-

cause it consists of a single frequency (color) of radiation. An incident wave may also be

“polychromatic,” or composed of a finite number of monochromatic waves. More generally,

any field u(x) may be decomposed into an infinite combination of monochromatic waves by

means of the Fourier transform:

û(ξ) = ∫
R
u(t)e−2πiξt dt
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By evaluating the above expression at a particular frequency ω = 2πξ, we can extract the

component of u at that frequency.

Theorem 2.2 (Gauss’s Law). The area integral of the electric field over any closed surface

is equal to the net charge enclosed in the surface divided by the permittivity of space.

∮
S

Edx = Qenclosed

ε0

In other words, the total of the electric flux out of a closed surface is equal to the charge

enclosed divided by the permittivity. It can be written in the differential form

∇ ⋅E = ρ

ε0

The electric flux through an area is defined as the electric field multiplied by the area of

the surface projected in a plane perpendicular to the field. Gauss’s Law is a general law

applying to any closed surface. It is an important tool since it permits the assessment of the

amount of enclosed charge by mapping the field on a surface outside the charge distribution.

For geometries of sufficient symmetry, it simplifies the calculation of the electric field.

Remark 2.1. First taking the divergence and then integrating both sides of the constitutive

relation (2.6) over a surface region S, we have in free space (ε = ε0)

∮
S
∇ ⋅Ddx = ε0∮

S
∇ ⋅Edx

∮
∂S

D ⋅ ndx = Qenclosed

with the equality on the right side coming from the Divergence Theorem; the left side, from

Gauss’ Law. Therefore, Gauss’ Law gives meaning to the electric displacement: D accounts

for the effects of charge contained within materials. ∎
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2.4 The Vector Helmholtz Equation

We are interested in Maxwell equations in regions devoid of source—that is in regions where

J = 0 and ρ = 0. This doesn’t mean there is no source anywhere in all space, instead, source

exist outside the regions of interest in order to produce fields in these regions. Employing

the constitutive relations (2.6) and (2.7) and this source-free assumption in (2.1)–(2.4), the

Maxwell Equations become

∇×H = ε0
∂

∂t
E (2.13)

∇×E = −µ0
∂

∂t
H (2.14)

∇ ⋅E = 0 (2.15)

∇ ⋅H = 0 (2.16)

In terms of scalar partial differential equations, Ampere’s Law (2.13) takes the form

∂

∂y
Hz −

∂

∂z
Hy = ε0

∂

∂t
Ex (2.17)

∂

∂z
Hx −

∂

∂x
Hz = ε0

∂

∂t
Ey (2.18)

∂

∂x
Hy −

∂

∂y
Hx = ε0

∂

∂t
Ez (2.19)

Faraday’s Law (2.14) becomes

∂

∂y
Ez −

∂

∂z
Ey = −µ0

∂

∂t
Hx (2.20)

∂

∂z
Ex −

∂

∂x
Ez = −µ0

∂

∂t
Hy (2.21)

∂

∂x
Ey −

∂

∂y
Ex = −µ0

∂

∂t
Hz (2.22)
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Finally, the two the Gauss’ Laws for electric, (2.15), and magnetic, (2.16), fields are

∂

∂x
Ex +

∂

∂y
Ey +

∂

∂z
Ez = 0 (2.23)

∂

∂x
Hx +

∂

∂y
Hy +

∂

∂z
Hz = 0 (2.24)

Taking the derivative with respect to time of (2.17) and plugging in (2.21) (2.22), we get

µ0ε0
∂2

∂t2
Ex = −

∂

∂y
( ∂
∂x
Ey −

∂

∂y
Ex) +

∂

∂z
( ∂
∂z
Ex −

∂

∂x
Ez) (2.25)

= ( ∂
2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
)Ex (2.26)

Finally, we plug in (2.23). Similarly, we can derive the following equations:

( ∂
2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
− µ0ε0

∂2

∂t2
)Ex = 0 (2.27)

( ∂
2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
− µ0ε0

∂2

∂t2
)Ey = 0 (2.28)

( ∂
2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
− µ0ε0

∂2

∂t2
)Ez = 0 (2.29)

which can be collected into the vector expression

∇2E − µ0ε0
∂2

∂t2
E = 0 (2.30)

This is the vector Helmholtz wave equation. If the wave is time-harmonic, then by means of

the Fourier transform, ∂2

∂t2 E(x, t) = (iω)2E(ω, t), the Helmholtz equation can be written in

frequency space†

∇2E + µ0ε0ω
2E = 0 (2.31)

†We implicitly always work in frequency space (after transforming in time only), so we do not make any
notational distinctions between the field and its transformed version aside from the change of symbol from
t to ω.
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Use the dispersion relation, κ2 = ω2µ0ε0, we have

(∇2 + κ2)E = 0 (2.32)

There is also another way to derive Helmholtz equation from Maxwell equation in free space.

For all time-harmonic wave in free space,

∇×E = −∂B

∂t
= −iωB

∇×H = ∂D

∂t
= iωD = iωεE

which implies

− 1

iω
∇×E = B

We multiply by 1
µ on both sides,

− 1

iωµ
∇×E = 1

µ
B

and then take the curl. Using (2.4) and noting that B
µ = H, we have

− 1

iωµ
∇× (∇ ×E) = ∇ ×H = iωεE

⇒∇× (∇ ×E) − ω2εµE = 0

Using the vector identity

∇×∇ ×A = ∇(∇ ⋅A) − ∇2A

15



and calling upon the Gauss Law ∇ ⋅E = 0 for charge-free spaces, we have

∇2E + ω2εµE = 0 (2.33)

Due to the dispersion relation κ2 = ω2µ0ε0, the equation becomes

∇2E + κ2E = 0 (2.34)

This is precisely what we had before.

2.5 Fundamental Polarizations

Diffractive optics is an emerging technology with many applications. Some of the important

applications include the design and fabrication of optical elements such as corrective lenses,

anti-reflective interfaces, beam splitters, and sensors. A particularly important application

is replacing conventional lenses by diffractive gratings which are designed and fabricated by

interference fringes on holographic plates.

The basic electromagnetic theory of gratings has been studied extensively since Rayleighs

time in the early 20th century. Recent advance has been greatly accelerated due to several

new approaches and numerical methods including differential methods, integral methods,

analytical continuation, variational method, and others.

Diffractive optical elements, as opposed to the traditional optical lenses, have many advan-

tages. They are light, small, and inexpensive. Often diffractive structures exhibit certain

periodicity. There are two classes of grating structures: linear gratings (one-dimensional

gratings) and crossed gratings (biperiodic or two-dimensional gratings).

The scalar approach is valid only as long as the wavelength of the incident light is small

compared with characteristic transverse dimension of the structure. However, in many ap-
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plications the structure dimensions are of the order of the wavelength of the incident light.

In that case, the vectorial electromagnetic character of light becomes of interest. We are

then speaking of the vector theory. In the vector model, polarization properties specified by

the electric and magnetic fields in accordance with Maxwells equations must be studied.

Suppose that a grating is illuminated by a plane wave which lies in the (x, y) plane. The

electromagnetic fields are assumed to be independent of z. We consider the following two

fundamental cases of polarizations: transverse electric (TE) polarization and transverse mag-

netic (TM) polarization.

In TE polarization, the electric field is parallel to the grooves or is pointed to the z direction,

i.e.,

E =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0

0

u(x, y)

⎞
⎟⎟⎟⎟⎟⎟
⎠

(2.35)

It follows from the Maxwell equation for the electric field

∇× (∇ ×E) − κ2E = 0

that we may derive the two-dimensional scalar Helmholtz equation

∆u + κ2u = 0.

In TM polarization, the magnetic field is parallel to the grooves or is pointed to the z

direction, i.e.,

H =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0

0

u(x, y)

⎞
⎟⎟⎟⎟⎟⎟
⎠
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It follows from the Maxwell equation for the magnetic field

∇× (κ−2∇×H) −H = 0

that we may derive

∇ ⋅ (κ−2∇u) + u = 0.

Because κ is independent of x, this is the same equation as for TE polarization.

2.6 Impedance Boundary Condition

The impedance boundary condition is one which relates the tangential components of the

electric and magnetic fields via an impedance factor, which is a function of the properties

of the surface and maybe the incident field upon it. The approximate boundary conditions

can be used to simulate the material properties of a surface, and is very useful in simplifying

the analytical and numerical solution of scattering problems. A simple kind of approximate

boundary condition is impedance boundary condition, which is given by

n × (∇ ×E)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
normal comp.
of ∇×E∝H

−iη n × (n ×E)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
tangential comp.

of E

= 0,

where n is the unit outward normal on the surface and where η is a function of the material

properties called impedance parameter.

The unit outward normal is n = (n1, n2, 0) where n2
1 +n2

2 = 1. Using the form of E in the TE

polarization (2.35), a simple calculation yields

n × (∇ ×E) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0

0

−n1
∂u
∂x − n2

∂u
∂y

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0

0

−∂nu

⎞
⎟⎟⎟⎟⎟⎟
⎠
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where

∂nu = n ⋅ ∇u

Next,

n × (n ×E) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

n1

n2

0

⎞
⎟⎟⎟⎟⎟⎟
⎠

×

⎛
⎜⎜⎜⎜⎜⎜
⎝

n2u

−n1u

0

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0

0

−u

⎞
⎟⎟⎟⎟⎟⎟
⎠

Combining above identities, we obtain the impedance boundary condition for the TE polar-

ization

∂nu − iηu = 0.

2.7 Analysis

Denote α = (α1, α2, ..., αN)T ∈ ZN+ , where Z+ is the set of non-negative integers, we set

∣α∣1 =
N

∑
i=1

∣αi∣ and for u ∈ C ∣α∣1(Ω), define

∂αu

∂xα
= ∂ ∣α∣1u

∂x1
α1 , ..., ∂xNαN

Definition 2.2. An open, connected set Ω ⊂ RN ,N = 1,2,3 will be referred to as a domain.

The fundamental Sobolev spaces are denoted W s,p(Ω), where s ∈ Z+, 1 ≤ p < ∞ and Ω is a

domain in RN . These spaces are defined by

W s,p(Ω) = {u ∈ Lp(Ω) ∣∂αu ∈ Lp(Ω) for all ∣α∣1 ≤ s}

Each of these spaces is equipped with the norm

∣∣u ∣∣W s,p(Ω) =
⎛
⎝ ∑∣α∣1≤s

∫
Ω
∣∂αu(x)∣pdV (x)

⎞
⎠

1
p

(2.36)
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An important case occurs when p = 2. Denote the Sobolev Spaces

Hs(Ω) = {u ∶Dαu ∈ L2(Ω) for all ∣α∣ ≤ s}

and the periodic functional space

H1
p(Ω) = {u ∈H1(Ω) ∶ u(0, y) = u(2π, y)},

H1
p(Ω) is a subspace of H1(Ω). To define spaces on the boundary, we first need Parseval’s

Theorem:

Theorem 2.3 (Parseval). Let f, g ∈ L2[0,2π] with f(0) = f(2π) and g(0) = g(2π) (i.e., f

and g are 2π-periodic) with Fourier series

f(x) = ∑
n∈Z

f (n)einx

g(x) = ∑
n∈Z

g(n)einx

Then we have

∫
2π

0
f(x)g(x)dx = ∑

n∈Z
f (n)g(n)

This theorem allows us to define the trace functional space for periodic functions u defined

on boundary Γ with Fourier coefficient u(n):

Hs(Γ) = {u ∈ L2(Γ) ∶ ∑
n∈Z

(1 + n2)s ∣u(n)∣2 < ∞},

which is a Banach space equipped with the norm

∣∣u ∣∣s,Γ = [2π∑
n∈Z

(1 + n2)s ∣u(n)∣2]
1/2

The dual space associated with Hs(Γ) is the space H−s(Γ) with respect to the scalar product
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in L2(Γ) defined by

⟨u, v⟩Γ = ∫
Γ
uvdx = 2π∑

n∈Z
u(n)v(n)

The equivalence of Fourier series coefficients and the standard L2 inner product is also

established by Parseval’s Theorem.

Theorem 2.4 (Trace Theorem). Assume Ω is bounded Lipschitz domain and 1
p < s ≤ 1,

the mapping γT (u) = u∣∂Ω
defined on C∞(Ω̄) has a unique continuous extension as a linear

operator from W s,p(Ω) onto W s−1/p,p(∂Ω). Moreover,

W 1,p
0 (Ω) = {u ∈W 1,p(Ω) ∣γT (u) = 0}.

Theorem 2.5 (Lax-Milgram). Let H be a Hilbert space equipped with inner product ⟨ ⋅ , ⋅ ⟩H

and norm ∣∣ ⋅ ∣∣H. Assume that B ∶ H × H → R is a bilinear mapping, for which there exist

constants α,β > 0 such that

∣B[u, v]∣ ≤ α ∣∣u ∣∣H ∣∣ v ∣∣H (2.37)

for all u, v ∈ H and

β ∣∣u ∣∣2H ≤ B[u,u] (2.38)

for all u ∈ H. Let f ∶ H → R be a bounded linear functional on H. Then there exists a unique

element u ∈ H such that

B[u, v] = f(v)

for all v ∈ H.

Remark 2.2. Condition (2.37) says that the bilinear form is bounded. Condition (2.38)

says that it is coercive. ∎
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Chapter 3
Forward Problem

3.1 Model problem

In this chapter, we shall introduce a mathematical model, define some notations for the

grating problem by a surface, and present a boundary value problem for the surface grating

model. Let us first describe the problem geometry, depicted visually below in Figure 3.1.

Γ

S

Ω

Λ

y

x

Figure 3.1 Problem Geometry. The grating surface S (in red) is assumed to be
periodic with period Λ. The region Ω is the void between the scattering surface and upper
boundary Γ. In the inverse problem of the next chapter, Γ will be the measurement surface.

The grating surface S is assumed to be invariant in the z direction and periodic in the x

22



direction with period Λ. We assume that the grating surface can be represented by the curve

S = {(x, y) ∈ R2 ∶ y = f(x), 0 < x < Λ},

where f is a periodic function with period Λ. Furthermore, we assume the grating surface

is small and smooth deformation of a plane surface, therefore f takes the form

f(x) = εg(x), g ∈ C2(R),

where ε is sufficiently and is called the surface deformation parameter. This deformation is

not restricted to the case of a local perturbation of a plane surface. Rather, it is considered

to be a general perturbation of a planar surface, with nonlocal perturbation permitted.

Let h > max0<x<Λ f(x). In the next chapter, this will become the measurement distance, but

this term has no meaning for the forward problem. Define the upper surface

Γ = {(x, y) ∈ R2 ∶ y = h, 0 < x < Λ},

For now, it should just be considered a plane close to but not touching grating; eventually, a

transparent boundary condition will be placed here imposed. The last region to be described

is the space bounded below by the grating surface S and bounded above by the line Γ

Ω = {(x, y) ∈ R2 ∶ f(x) < y < h, 0 < x < Λ}.

The domain Ω is where the Helmholtz equation that characterizes propagation of the scat-

tered field will be formulated.

Let Ω be filled with a homogeneous medium with a constant wavenumber κ > 0. An incoming

plane wave uinc = ei(αx−βy) is incident upon S from the top, where θ ∈ (−π/2, π/2) is the
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incident angle and

α = κ sin θ β = κ cos θ

For simplicity, this thesis shall only consider normal incidence since our method requires

only a single incident wave. Hence, α = 0, β = κ and the incident wave is reduced to

uinc = e−iκy.

It is easily verified that the incident wave satisfies the Helmholtz equation in the whole space

(∆ + κ2)uinc = 0 in R2 (3.1)

As derived in Section 2.5, the diffraction of a time-harmonic electromagnetic wave in the TE

polarization can be modeled by the two-dimensional Helmholtz equation:

(∆ + κ2)u = 0 in Ω, (3.2)

where u is the total field consisting the incident field uinc and the diffracted field ud, i.e.,

u = uinc + ud. (3.3)

Adding (3.1) and (3.2) and making use of the relation (3.3), it can been seen that the

diffracted field satisfies the same Helmholtz equation as uinc and u:

(∆ + κ2)ud = 0 in Ω, (3.4)
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For a grating with the impedance boundary condition, the total field u satisfies

(∂n − iη)u = 0 on S, (3.5)

where n = (n1, n2) is the unit normal vector on S, given explicitly as

n1 =
f ′(x)√

1 + [f ′(x)]2
, n2 = −

1√
1 + [f ′(x)]2

, (3.6)

η ∈ C is the impedance coefficient and is assumed to be known. To ensure existence of a

unique solution for the direct problem, we assume that Re η > 0 and Im η ≥ 0. When η = 0, the

impedance condition becomes the sound hard condition. The impedance boundary condition

will reduce to sound soft condition—perhaps better known as a perfect electric conductor

(PEC)—when η = ∞ . We are going to deal with the general impedance boundary condition

and present a general solution for any η. Our result will be applicable to specific cases, like

sound soft boundary condition and sound hard boundary condition.

It is known that for any given periodic function u(x) with period Λ, it has a Fourier series

expansion

u(x) = ∑
n∈Z

une
in( 2π

Λ
)x,

where the Fourier coefficients are given by

un =
1

Λ ∫
Λ

0
u(x)e−in( 2π

Λ
)xdx.

Motivated by uniqueness, we shall seek the periodic solution of u, which implies ud is also

periodic with same period. Therefore, we may write the Fourier series of ud in x:

ud(x, y) = ∑
n∈Z

udn(y)ein(2π/Λ)x, (3.7)
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When (3.7) is plugged into (3.4), an ordinary differential equation of ud is derived,

d2udn
dy2

+ [κ2 − (2πn

Λ
)

2

]udn(y) = 0

The diffracted wave is required to be a bounded outgoing wave in Ω. Mandating this, the

solution for each n can be readily obtained as

udn(y) = Aneiβny (3.8)

Upon substitution into the Fourier series (3.7), we see that ud is a (infinite) combination of

plane waves:

ud(x, y) = ∑
n∈Z

Ane
iαnx+iβny, (3.9)

valid for y > max0<x<Λ f(x). An is a complex number and the factors in the exponent are

given explicitly by

αn =
2πn

Λ
βn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(κ2 − α2
n)1/2 for κ > ∣αn∣,

i(α2
n − κ2)1/2 for κ < ∣αn∣.

Now we will introduce a transparent boundary condition on Γ. Taking the partial derivative

of ud with respect to y and then evaluating at y = h yields

∂yu
d(x,h) = iβn∑

n∈Z
Ane

iαnx+iβnh (3.10)

Now given any u on Γ, define a boundary operator T which maps the Dirichlet data u(x,h)

to the Neumann data ∂yu(x,h):

(Tu)(x) = ∑
n∈Z

iβnu
(n)eiαnx.
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For ud on Γ, we have

(Tud)(x) = ∑
n∈Z

iβnAne
iαnx+iβny (3.11)

The transparent boundary condition on Γ is

∂yu
d = Tud (3.12)

which is

∂y(u − uinc) = T (u − uinc) (3.13)

Equivalently, a transparent boundary condition for the total field which bridges Dirichlet

data and Neumann data is derived:

(∂y − T )u = ψ on Γ, (3.14)

where ψ = ∂yuinc − Tuinc = −2iκe−iκh.

To summarize, the surface scattering model can be reduced to the following boundary value

problem for the total field:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∆ + κ2)u = 0 in Ω,

(∂n − iη)u = 0 on S,

(∂y − T )u = ψ on Γ,

(3.15)

This thesis considers two problems: the direct diffractive grating problem and the inverse

diffractive grating problem. The direct problem is to determine the total field u, with

knowledge of the incident field and the grating function f . The aim of this dissertation is

to study the inverse diffractive grating problem, which is to reconstruct the grating surface

function f from the measurement of the total field u on Γ when given the incident field uinc.

In particular, we are interested in the inverse problem in near-field regime, in which the

measurement distance h is much smaller than the wavelength λ = 2π/κ of the incident wave,
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in the presence of noise.

We point out that u∣
Γ

should belong to H1/2. The trace theorem guarantees that if the

variational problem has a weak solution in H1, then the boundary information will belong

to H1/2. Since u∣
Γ
∈H1/2 ⊂ L2(Γ), the Fourier series of u will converge in the sense of L2.

The forward problem has a C∞ solution by elliptic regularity, since the boundary here

Lipschitz continuous (but not smooth because of the corners).

Before proceeding further, we prove a result about the boundary operator T , below.

Lemma 3.1. The linear boundary operator T : H1/2(Γ) →H−1/2(Γ) is continuous.

Proof. For any u, v ∈H1/2(Γ), we have

⟨Tu, v⟩Γ = i2π∑
n∈Z

βn(1 + n2)−1/2(1 + n2)1/4u(n)(1 + n2)1/4v(n) (3.16)

Define

G(n) ≜ ∣βn∣
(1 + n2)1/2 = ∣κ

2 − n2

1 + n2
∣
1
2

Claim. G(n) is bounded on Z.

Proof. Extend G to all of R by

G(x) = ∣κ
2 − x2

1 + x2
∣
1
2

and compute

G′(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− x

1 + x2

⎛
⎝

√
1 + x2

κ2 − x2
+
√

κ2 − x2

1 + x2

⎞
⎠

if ∣x∣ < ∣κ∣

x

1 + x2

⎛
⎝

√
1 + x2

x2 − κ2
+
√

x2 − κ2

1 + x2

⎞
⎠

if ∣x∣ ≥ ∣κ∣

Now observe that for a fixed κ, G′ has the following properties:

1. G′(x) < 0 for x < −κ
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2. G′(x) > 0 for −κ < x < 0

3. G′(x) < 0 for 0 < x < κ

4. G′(x) > 0 for x > κ

Accordingly, G(x) is increasing on [−κ,0] ∪ [κ,∞] and decreasing on (−∞,−κ) ∪ (0, κ).

Consequently,

G(x) ≤ max{G(0),G(∞),G(−∞)}

= max{κ,1}

Let C ≜ max{κ,1} + 1 so that for all n ∈ Z, ∣G(n)∣ ≤ C. This proves the claim. ∎

Now, applying the result of the previous claim to (3.16), we have

∣⟨Tu, v⟩Γ∣ ≤ C ∣2π∑
n∈Z

(1 + n2)1/4u(n)(1 + n2)1/4v(n)∣

Then, by the Cauchy-Schwarz inequality, the above becomes

∣⟨Tu, v⟩Γ∣ ≤ 2πC

√
∑
n∈Z

(1 + n2)1/2 ∣u(n)∣2
√
∑
n∈Z

(1 + n2)1/2 ∣v(n)∣2

≤ 2πC ∣∣u ∣∣1/2,Γ ∣∣ v ∣∣1/2,Γ

This shows that the L2(Γ) duality pairing of Tu with H1/2(Γ) functions forms a bounded

linear functional on H1/2(Γ). Therefore, we conclude that Tu ∈ (H1/2(Γ))∗ = H−1/2(Γ).

Further, we have the bound

∣∣Tu ∣∣−1/2,Γ ≤ sup
v∈H1/2(Γ)

∣⟨Tu, v⟩Γ∣
∣∣ v ∣∣1/2,Γ

≤ C ∣∣u ∣∣1/2,Γ
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which establishes that T is continuous from H1/2(Γ) to H−1/2(Γ). ∎

Lemma 3.2. The estimates

Re⟨Tu,u⟩Γ ≤ 0 and Im⟨Tu,u⟩Γ ≥ 0

hold for any u ∈H1/2(Γ).

Proof. By the definition of the transparent boundary operator T , we have for any u ∈H1/2(Γ)

that

⟨Tu,u⟩Γ = i2π∑
n∈Z

βn ∣u(n)∣
2
.

Taking the real part gives

Re⟨Tu,u⟩Γ = −2π ∑
∣αn∣>κ

( ∣αn∣ − κ2)1/2 ∣u(n)∣2 ≤ 0

and taking the imaginary part gives

Im⟨Tu,u⟩Γ = 2π ∑
∣αn∣<κ

(κ2 − ∣αn∣2 )
1/2 ∣u(n)∣2 ≥ 0,

which yields the proof. ∎

We are going to focus on the variational formulation for the direct diffractive grating problem.

Define the periodic functional space

H1
p(Ω) = {u ∈H1(Ω) ∶ u(0, y) = u(2π, y)} (3.17)

which is a subspace of H1(Ω).

Now we multiply the Helmholtz equation by the complex conjugate of a test function v ∈

H1
p(Ω):

∆uv + κ2uv = 0
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Then we integrate over Ω and integrate by parts, obtaining

∫
Ω
∇u ⋅ ∇v dx − ∫

∂Ω

∂u

∂n
v dS = κ2∫

Ω
uv dx

Applying the boundary conditions on Γ and S, we get

∫
Ω
∇u ⋅ ∇v dx − ∫

S

∂u

∂n
v dS − ∫

Γ

∂u

∂n
v dS = κ2∫

Ω
uv dx

which implies

∫
Ω
∇u ⋅ ∇v dx − iη∫

S
uv dS − ⟨Tu, v⟩Γ − ⟨ρ, v⟩Γ = κ2∫

Ω
uv dx

Therefore we derive the variational formulation for the forward problem: find u ∈ H1
S,p(Ω),

such that

aΩ(u, v) = ⟨ρ, v⟩Γ for all v ∈H1
p(Ω) (3.18)

where

aΩ(u, v) = ∫
Ω
∇u ⋅ ∇v dx − iη∫

S
uv dS − ⟨Tu, v⟩Γ − κ2∫

Ω
uv dx (3.19)

Lemma 3.3. The direct scattering problem has at most one solution.

Proof. Because the problem is linear, if u1 and u2 are both solutions for this direct scattering

problem, then so is u1 − u2. It therefore suffices to show that u = 0 in Ω if ψ = 0 (no source

term). It follows from Green’s theorem that we have

0 = ∫
Ω
(u∆ū − ū∆u) = ∫

∂Ω
(u∂nū − ū∂nu)

= ∫
S
(u∂nū − ū∂nu) + ∫

Γ
(u∂nū − ū∂nu)

= −2iRe(η)∫
S
∣u∣2 − 2iIm⟨Tu,u⟩Γ,

which yields that u = 0 on S since Re(η) > 0 and Im⟨Tu,u⟩Γ ≥ 0. The impedance boundary
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condition on S gives that ∂nu = 0 on S, which implies that u ≡ 0 in Ω. ∎

Theorem 3.1. The direct scattering problem has a unique weak solution in H1
p(Ω).

Proof. Decompose the bilinear form into aΩ = a1 − κ2a2, where

a1(u, v) = ∫
Ω
∇u ⋅ ∇v̄ − iη∫

S
uv̄ − ⟨Tu, v⟩Γ

and

a2(u, v) = ∫
Ω
uv̄.

Simple calculations yield

Rea1(u,u) = ∫
Ω
∣∇u∣2 + Im(η)∫

S
∣u∣2 −Re⟨Tu,u⟩Γ ≥ ∫

Ω
∣∇u∣2

and

Ima1(u,u) = −Im(η)∫
S
∣u∣2 − Im⟨Tu,u⟩Γ ≤ −Im(η)∫

S
∣u∣2.

We conclude that a1 is coercive from

∣a1(u,u)∣ ≥ C(∣Rea1(u,u)∣ + ∣Ima1(u,u)∣)

≥ C (∫
Ω
∣∇u∣2 + ∫

S
∣u∣2) = C ∣∣u ∣∣21,Ω ,

where the last inequality may be obtained from the Poincare inequality.

Define an operator K ∶ L2(Ω) →H1(Ω) by

a1(Ku, v) = a2(u, v) for all v ∈H1
p(Ω).
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Using the Lax-Milgram Theorem, we have

∣∣Ku ∣∣1,Ω ≤ C ∣∣u ∣∣0,Ω .

Thus K is bounded from L2(Ω) to H1(Ω). Because H1(Ω) is compactly embedded into

L2(Ω), K ∶ L2(Ω) → L2(Ω) is a compact operator.

Define a function ξ ∈ L2(Ω) by requiring ξ ∈H1(Ω) and satisfying

a1(ξ, v) = ⟨ρ, v⟩Γ for all v ∈H1
p(Ω).

It follows from the Lax-Milgram theorem again that

∣∣ ξ ∣∣1,Ω ≤ C ∣∣ρ ∣∣0,Ω .

Using the operator K, we can see that the direct scattering problem is equivalent to finding

u ∈ L2(Ω) such that

(I − κ2K)u = ξ.

It follows from the Fredholm alternative and the uniqueness result that we have

∣∣u ∣∣0,Ω ≤ C ∣∣ ξ ∣∣0,Ω ,

which gives

u = ξ + κ2Ku.

The proof is completed by noting that K is a bounded operator from L2(Ω) to H1(Ω). ∎
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3.2 Transformed field expansion

In this section, we shall introduce the transformed field expansion to convert the domain to

a rectangular region to facilitate derivation of the analytic solution for the direct problem.

The expansion of solution is given as a power series of the parameter ε and is crucial in the

inversion formula.

Consider the changes of variables:

x̃ = x, ỹ = h(y − f
h − f

) ,

which maps the domain Ω to the rectangle

D = {(x̃, ỹ) ∈ R2 ∶ 0 < ỹ < h, 0 < x̃ < Λ}.

Notice that the grating surface y = f(x) is mapped into the plane surface ỹ = 0 while the

measurement plane y = h is mapped to itself as ỹ = h under this change of variables. Now

the grating problem can be restated in this transformed coordinate. First, we prove the

following.

Theorem 3.2. Let w(x̃, ỹ) = u(x, y). Then w is a periodic function with period Λ.

Proof. For arbitrary x ∈ R, y ∈ [0, h], we have w(x̃+Λ, ỹ) = u(x+Λ, y), and u(x+Λ, y) = u(x, y)

since u is periodic, therefore w(x̃+Λ, ỹ) = u(x, y) where u(x, y) is w(x̃, ỹ) by definition. We

can conclude w(x̃ +Λ, ỹ) = w(x̃, ỹ), which implies w is periodic with Λ. ∎

Now we are going to focus on the scattering problem for w. By the chain rule,

ux =
∂w

∂x
= ∂w
∂x̃

∂x̃

∂x
+ ∂w
∂ỹ

∂ỹ

∂x

= ∂w
∂x̃

+ ∂w
∂ỹ

h(y − h) −f ′
(h − f)2
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= ∂w
∂x̃

+ ∂w
∂ỹ

hf ′
h − y

(h − f)2

and

uy =
∂w

∂y
= ∂w
∂x̃

∂x̃

∂y
+ ∂w
∂ỹ

∂ỹ

∂y

= ∂w
∂ỹ

h

h − f

So we have

∂x = ∂x̃ − f ′ (h − ỹ
h − f

)∂ỹ,

∂y = ( h

h − f
)∂ỹ.

Therefore,

uxx = (∂w
∂x̃

+ ∂w
∂ỹ

hf ′
h − y

(h − f)2
)
′

x

= ∂2w

∂x̃∂x
+ ∂2w

∂ỹ∂x
hf ′

h − y
(h − f)2

+ ∂w
∂ỹ

(hf ′ h − y
(h − f)2

)′
x

= ∂
2w

∂x̃2
+ 2

∂2w

∂x̃∂ỹ
hf ′

h − y
(h − f)2

+ ∂
2w

∂ỹ2
(hf ′ h − y

(h − f)2
)

2

+ ∂w
∂y

(hf ′ h − y
(h − f)2

)
′

x

where the derivative in the last term

(hf ′ h − y
(h − f)2

)
′

x

= h(h − y)f
′′(h − f)2 + hf ′(h − y)2(h − f)f ′

(h − f)4

= (f ′′(h − f) + 2f ′2)h(h − y)
(h − f)3

Note that

h(h − y)
(h − f)3

= h(h − f + f − y)
(h − f)3

=
hh−fh−f − h

y−f
h−f

(h − f)2
= h − ỹ

(h − f)2
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So

(hf ′ h − y
(h − f)2

)
′

x

= (f ′′(h − f) + 2f ′2) h − ỹ
(h − f)2

We may differentiate again and obtain the needed second derivatives:

uxx =
∂2w

∂x̃2
+ 2

∂2w

∂x̃∂ỹ
hf ′

h − y
(h − f)2

+ ∂
2w

∂ỹ2
(hf ′ h − y

(h − f)2
)

2

+ [(f ′′(h − f) + 2f ′2) h − ỹ
(h − f)2

] ∂w
∂y

= ∂
2w

∂x̃2
+ 2f ′

h − ỹ
h − f

∂2w

∂x̃∂ỹ
+ (f ′ h − ỹ

h − f
)

2 ∂2w

∂ỹ2
+ [(f ′′(h − f) + 2f ′2) h − ỹ

(h − f)2
] ∂w
∂y

uyy =
∂

∂y
(∂w
∂ỹ

h

h − f
)

= h2

(h − f)2

∂2w

∂ỹ2

Since uxx + uyy + κ2u = 0, it can be derived that w, upon dropping the tilde, satisfies the

following equation in D:

(c1∂xx + c2∂yy + c3∂xy + c4∂y + c1κ
2)w = 0, (3.20)

where

c1 = (h − f)2 c3 = −2f ′(h − y)(h − f)

c2 = [f ′(h − y)]2 + h2 c4 = −(h − y)[f ′′(h − f) + 2(f ′)2].

Combing (3.5) and (3.6), the impedance boundary condition becomes

f ′ (1 − f
h
)∂xw − (1 + (f ′)2)∂yw

− iη (1 + (f ′)2)1/2 (1 − f
h
)w = 0 on y = 0. (3.21)
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The transparent boundary condition (3.14) reduces to

∂yw = (1 − f
h
) (Tw + ρ) on y = h. (3.22)

By the small perturbation assumption, we consider a formal expansion of w in a power series

of ε:

w(x, y; ε) =
∞
∑
k=0

wk(x, y) εk. (3.23)

Substituting f = εg into each of c1, c2, c3, and c4 and inserting the power series expansion

(3.23) into (3.20)–(3.22), we derive the recursion equation for wk:

(∆ + κ2)wk = vk in D, (3.24)

where

vk =
1

h
[2g∂xx + 2g′(h − y)∂xy + g′′(h − y)∂y + 2κ2g]wk−1

− 1

h2
[g2∂xx + (g′)2(h − y)2∂yy + 2gg′(h − y)∂xy − (2(g′)2 − gg′′) (h − y)∂y + κ2g2]wk−2.

The impedance boundary condition (3.21) becomes

(∂y + iη)wk = ϕk on y = 0, (3.25)

where

ϕk =[g′∂x − iη (g
h
)]wk−1 − [g′ (g

h
)∂x + (g′)2∂y]wk−2

− iη

⌊
k
2
⌋

∑
l=1

(
1
2

l
)(g′)2l × [wk−2l − (g

h
)wk−2l−1] .

Here ⌊l⌋ is the largest integer not greater than m and the generalized binomial coefficient

(
1
2

l
) =

1
2(

1
2 − 1)⋯(1

2 − l + 1)
l!

.
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The transparent boundary condition (3.22) reduces to

∂ywk − Twk = ψk on y = h, (3.26)

where

ψ0 = ψ,

ψ1 = −(g
h
) (Tw0 + ψ),

ψk = −(g
h
)Twk−1, k ≥ 2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.27)

It is understood that wk = 0 for all k < 0 in the above recurrence relations. For each wk,

the equation (3.24) and the boundary conditions (3.25) and (3.26) require only the previous

solutions wk−1,wk−2, . . . ,w0. Hence the transformed diffraction problem (3.24)–(3.27) can be

solved recursively starting from k = 0.

3.3 Fourier series expansion

For fixed k, we shall derive an analytic solution of wk for the problem (3.24)–(3.27), con-

sidering vk, ϕk, ψk as known functions. Since wk, vk, ϕk, ψk are periodic functions in x with

period Λ, they have the following Fourier series expansions

wk(x, y) = ∑
n∈Z

w
(n)
k (y)eiαnx,

vk(x, y) = ∑
n∈Z

v
(n)
k (y)eiαnx,

ϕk(x, y) = ∑
n∈Z

ϕ
(n)
k (y)eiαnx,

ψk(x) = ∑
n∈Z

ψ
(n)
k eiαnx.
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Substituting these expansions into (3.24), (3.25), and (3.26), we obtain a two-point boundary

value problem for w
(n)
k :

d2w
(n)
k

dy2
+ β2

nw
(n)
k = v(n)k , 0 < y < h,

dw
(n)
k

dy
+ iηw

(n)
k = ϕ(n)k , y = 0,

dw
(n)
k

dy
− iβnw

(n)
k = ψ(n)k , y = h.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.28)

By taking the Fourier series, the two-dimensional grating problem for the Helmholtz equation

reduces to a one-dimensional two-point boundary value problem in the y direction, which

can be solved analytically. Using Theorem B.1 in Appendix, we obtain an explicit solution

of (3.28).

Theorem 3.3. The two-point boundary value problem (3.28) has a unique solution, which

is given by

w
(n)
k (y) =K(n)1 (y)ϕ(n)k −K(n)2 (y)ψ(n)k + ∫

h

0
K
(n)
3 (y, z)v(n)k (z)dz (3.29)

where

K
(n)
1 (y) = eiβny

i(βn + η)

K
(n)
2 (y) = eiβn(h−y)

i(βn + η)
K(n)(y)

K
(n)
3 (y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eiβn(y−z)

i(βn + η)
K(n)(z), z < y,

eiβn(z−y)

i(βn + η)
K(n)(y), z > y,
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and

K(n)(t) = (βn + η)
2βn

+ (βn − η)
2βn

e2iβnt.

It follows from Theorem 3.3 that the power series (3.23) along with the solution representa-

tion (3.29) gives an analytic solution of the direct grating problem (3.20)–(3.22).

Remark 3.1. Theorems 3.1 and 3.3 together give an explicit analytic solution of the grating

surface problem. From the definition of K
(n)
j , it is clear that when ∣αn∣ < κ, the solution

component at n is a propagating wave. When ∣αn∣ > κ, the solution component becomes an

evanescent wave, which decays exponentially in the y direction. ∎

Remark 3.2. Notice that Re η ≠ 0 and Imη ≠ 0 while βn is either a real number or a pure

imaginary number. Hence we have η ≠ βn for all n ∈ Z. ∎

Remark 3.3. When the impedance boundary condition is reduced to sound soft condition

and f ∈ C2, the convergence of power series for w has been proved in [9]. ∎

Based on (3.29), we shall derive explicit expressions for solutions w
(n)
0 and w

(n)
1 , which play

an important role in the reconstruction formula.
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Chapter 4
Inverse Problem

4.1 Reconstruction formula

The previous chapter presented an analytic solution of forward problem based on a trans-

formed field expansion and power series. We turn attention to the inverse problem. Suppose

that the total field is measured on the boundary Γ with noise. Assume that the noisy data

takes the form

uδ(x,h) = u(x,h) + O(δ),

where u(x,h) is the exact data and δ is the noise level.

Since the the information is collected on y = h, it is natural to evaluate the power series

(3.23) at y = h. Noting w(x,h) = u(x,h) and wδ(x,h) = uδ(x,h), we have

wδ(x,h) = w0(x,h) + εw1(x,h) + O(ε2) + O(δ). (4.1)

Rearranging (4.1), and dropping O(ε2) and O(δ) yield

εw1(x,h) = wδ(x,h) −w0(x,h), (4.2)
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which is the linearization of the nonlinear inverse problem and enables us to find an explicit

reconstruction formula for the linearized inverse problem.

Based on (4.2), we next shall derive the analytical solution for the leading term w0 and then

deduce an equation relating w1. From there, we can obtain the scattering surface function

f for an explicit inversion formula.

Recalling (3.2), (3.26), and (3.27), we have

v0 = 0, ϕ0 = 0, ψ0 = −2iκe−iκh,

whose Fourier coefficients are

v
(n)
0 = 0, ϕ

(n)
0 = 0, ψ

(n)
0 = −2iκe−iκhδ0n.

Here δkn is the Kronecker delta. It follows from (3.29) that

w
(n)
0 (y) = −K(n)2 ψ

(n)
0 = 2iκe−iκhK

(n)
2 (y)δ0n, (4.3)

which gives

w0(x, y) = ∑
n∈Z

w
(n)
0 (y)eiαnx = 2iκe−iκhK

(0)
2 (y)

= e−iκy + (κ + η
κ − η

) eiκy. (4.4)

Denote uref(x, y) = (κ+ηκ−η) eiκy. It is clear that uref represents an outgoing reflected field, that

is, w0(x, y) = uinc + uref. It can also be verified that w0 satisfies the impedance condition on

the flat plane y = 0.

Remark 4.1. Physically, the leading term w0 shows how incident field uinc interacts with

the impedance plane surface. It provides insight into how the incident wave is reflected by
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the grating surface without any deformation (i.e., ε = 0), or when S is a smooth flat plane.

Mathematically, it satisfies the Helmholtz equation,

(∆ + κ2)w0 = 0 in D,

with the impedance boundary condition

(∂y − iη)w0 = 0 on y = 0,

and transparent boundary condition

∂yw0 − Tw0 = ψ on y = h,

where ψ = −2iκe−iκh. It can be verified that the solution w0 consists of the incident uinc and

the reflected field uref. ∎

Now we are going to derive w1 using (3.2) and the equations of Remark 4.1,

v1(x, y) =
1

h
[g′′(x)(h − y)∂y + 2κ2g]w0

= 2κ2

h
[e−iκy + (κ + η

κ − η
) eiκy] g(x) − iκ(h − y)

h
[e−iκy − (κ + η

κ − η
) eiκy] g′′(x)

and its Fourier coefficient

v
(n)
1 (y) = 2κ2

h
[e−iκy + (κ + η

κ − η
) eiκy] gn +

iκα2
n(h − y)
h

[e−iκy − (κ + η
κ − η

) eiκy] gn, (4.5)

where gn is the Fourier coefficient of g (note the difference in notation from the usual g(n)!).

Following (3.26) and (4.4) yield

ϕ1(x) = [g′∂x − iη(
g

h
)]w0(x,0)
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= − iηg(x)
h

w0(x,0) = −[ 2iκη

h(κ − η)
] g(x)

which has Fourier coefficients

ϕ
(n)
1 = −[ 2iκη

h(κ − η)
] gn. (4.6)

Similarly, we have from (3.27) and (4.4) that

ψ1(x) = −(g
h
) (Tw0 + ψ0) = −(g

h
) (Tw0 + ψ)

= −(g
h
)∂yw0(x,h) =

iκ

h
[e−iκh − (κ + η

κ − η
) eiκh] g(x)

which has Fourier coefficients

ψ
(n)
1 = iκ

h
[e−iκh − (κ + η

κ − η
) eiκh] gn. (4.7)

Letting k = 1 and evaluating at y = h in (3.29), we get

w
(n)
1 (h) =K(n)1 (h)ϕ(n)1 −K(n)2 (h)ψ(n)1 + ∫

h

0
K
(n)
3 (h, z)v(n)1 (z)dz. (4.8)

where

K
(n)
1 (h) = ieiβnh

η − βn
,

K
(n)
2 (h) = i

η − βn
K(n)(h)

= − i

2βn
+ i

2βn

η + βn
η − βn

e2iβnh

K
(n)
3 (h, z) = eiβn(h−z)

i(βn − η)
K(n)(z)

= e
iβn(h−z)

2iβn
+ e

iβn(h+z)

2iβn

βn + η
βn − η

By letting M1 = K(n)1 (h)ϕ(n)1 , M2 = K(n)2 (h)ψ(n)1 , M3 = ∫
h

0 K
(n)
3 (h, z)v(n)1 (z)dz, (4.8) could
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be rewritten as w
(n)
1 (h) =M1 −M2 +M3. We continue simplifying M1,M2, and M3:

M1 =K(n)1 (h)ϕ(n)1

= 2κηeiβnh

(η − βn)(κ − η)h
gn,

M2 =K(n)2 (h)ψ(n)1

= κgn
2βnh(κ − η)(η − βn)

[(η − βn)(κ − η)e−iκh + (η + βn)e2iβnh(κ + η)eiκh

− (η − βn)(κ + η)eiκh − (η + βn)e2iβnh(κ − η)e−iκh],

M3 = ∫
h

0
K
(n)
3 (h, z)v(n)1 (z)dz

= κ2gneiβnh

ihβn(βn − η)(κ − η) ∫
h

0
K+n(z; η)dz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I+

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≜ N1

+ κeiβnh

(βn − η)(κ − η)
α2
n

2hβn
∫

h

0
(h − z)K−n(z; η)dz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I−

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≜ N2

where

K±n(z; η) = [(βn − η)e−iβnz + (βn + η)eiβnz] × [e−iκz(κ − η) ± eiκz(κ + η)]

Performing the integration yields

I+ =
(βn + η)(κ + η)

(βn + κ)
(1 − ei(βn+κ)h) + (βn + η)(κ − η)

(βn − κ)
(1 − ei(βn−κ)h)

− (βn − η)(κ − η)
(βn + κ)

(1 − e−i(βn+κ)h) − (βn − η)(κ + η)
(βn − κ)

(1 − e−i(βn−κ)h)

I− = 2i(κ2 − η2) + 1

2hβn
A
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with

A = (βn + η)(κ + η)(βn − κ)
(βn + κ)

(1 − e+i(βn+κ)h) − (βn + η)(κ − η)(βn + κ)
(βn − κ)

(1 − e+i(βn−κ)h)

− (βn − η)(κ − η)(βn − κ)
(βn + κ)

(1 − e−i(βn+κ)h) + (βn − η)(κ + η)(βn + κ)
(βn − κ)

(1 − e−i(βn−κ)h)

Combining N1 and N2, we get

M3 =
2iκ(κ2 − η2)eiβnh

(η − βn)(κ − η)
gn +

κeiβnh

2hβn(βn − η)(κ − η)
×

gn[ (βn + η)(κ + η)(1 − e+i(βn+κ)h) − (βn + η)(κ − η)(1 − e+i(βn−κ)h)

− (βn − η)(κ − η)(1 − e−i(βn+κ)h) + (βn − η)(κ + η)(1 − e−i(βn−κ)h)]

Subtracting M2 from M3 leads to

M3 −M2 =
2iκ(κ2 − η2)eiβnh

(η − βn)(κ − η)
gn +

2ηκeiβnh

h(βn − η)(κ − η)
gn

Finally, we calculate M1 −M2 +M3.

w
(n)
1 (h) =M1 −M2 +M3

= 2κηeiβnh

h(η − βn)(κ − η)
gn −

2iκ(κ2 − η2)eiβnh
(βn − η)(κ − η)

gn +
2ηκeiβnh

h(βn − η)(κ − η)
gn

= −2iκ(κ + η)eiβnh

(βn − η)
gn

Therefore, an elegant equation relating Fourier coefficient of w1 and g is obtained:

w
(n)
1 (h) = 2iκ(η + κ)

(η − βn)
eiβnhgn. (4.9)

Remark 4.2. The impedance boundary condition (3.5) reduces to the perfectly conducting
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boundary condition u = 0 on S as η →∞, and (4.9) becomes

w
(n)
1 (h) = 2iκeiβnhgn,

which is consistent with the result in [10]. ∎

We recall that f = εg so that fn = εgn, where fn is the Fourier coefficient of f . Plugging

(4.3) and (4.9) into (4.2), we deduce that

fn =
i(βn − η)
2κ(κ + η)

[w(n)δ (h) −w(n)0 (h)] e−iβnh, (4.10)

where w
(n)
δ (h) is the Fourier coefficient of the noisy data wδ(x,h) and w

(n)
0 (h) is the Fourier

coefficient of w0(x,h) given as

w
(n)
0 (h) = [e−iκh + (κ + η

κ − η
) eiκh] δ0n.

Remark 4.3. The inversion formula (4.10) includes cases for sound soft and sound hard

boundary conditions. For sound hard boundary conditions, i.e., η = 0, the inversion formula

reduces to

fn =
iβn
2κ2

[w(n)δ (h) −w(n)0 (h)] e−iβnh,

For the sound soft boundary condition, η = ∞, the inversion formula reduces to

fn = −
i

2κ
[w(n)δ (h) −w(n)0 (h)] e−iβnh.

∎

Remark 4.4. The inversion formula (4.10) accounts for both propagation wave modes and
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evanescent wave modes. More explicitly, we have

fn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i(
√
κ2 − α2

n − η)
2κ(κ + η)

[w(n)δ (h) −w(n)0 (h)] e−i
√
κ2−α2

nh for ∣αn∣ < κ

−
√
α2
n − κ2 + iη

2κ(κ + η)
[w(n)δ (h) −w(n)0 (h)] e

√
α2
n−κ2h for ∣αn∣ > κ

(4.11)

The low frequency modes of the scattering surface function f come from propagating (bounded)

waves, while the evanescent modes generate the high frequency modes. The factor on the

right hand side of (4.10), e−iβnh, reflects the ill-posedness of this problem. In other word, the

measurement noise will be exponentially amplified for high frequency modes ∣αn∣ > κ.

It follows from the definition of βn and (4.10) that it is a well-posed problem to seek re-

construction of the Fourier coefficients fn for which ∣αn∣ < κ, since small variations in the

measured data will not be amplified and lead to large errors in the reconstruction. However,

the resolution of the reconstruction f is limited by the given wavenumber κ. In contrast,

it is severely ill-posed to reconstruct those Fourier coefficients fn with ∣αn∣ > κ, since small

variations in the data will be exponentially amplified and lead to huge errors in the re-

construction. However, these ill-behaving modes contribute to the super resolution of the

reconstructed function f .

To obtain a stable and super-resolved reconstruction, we may adopt a regularization to

suppress the exponential growth. One remedy is to make h as small as possible, i.e., measure

the data at the distance which is as close as possible to the grating surface, or bring the

scanning tip close to the scattering surface. This is exactly the idea of near-field optics. The

other remedy is to adopt a commonly used regularization, such as cut-off regularization or

Tikhonov regularization[25]. Following [14], we consider the spectral cut-off regularization.

Define the signal-to-noise ratio (SNR) by

SNR = min{ε−2, δ−1}.
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For fixed h, the cut-off frequency ω is chosen in such a way that

e(ω
2−κ2)1/2h = SNR,

which implies that the spatial frequency will be cutoff for those below the noise level and

the surface deformation parameter. More explicitly, we have

ω

κ
= [1 + ( log SNR

κh
)

2

]
1/2

, (4.12)

which indicates ω > κ as long as SNR > 0 and super resolution may be achieved.

Taking into account the frequency cut-off, we may have a regularized reconstruction formu-

lation:

fn =
i(βn − η)
2κ(κ + η)

[w(n)δ (h) −w(n)0 (h)] e−iβnh χn(αn), (4.13)

where the characteristic function

χn(αn) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for ∣αn∣ ≤ ω,

0 for ∣αn∣ > ω.

Once fn have been computed, the grating surface function can be approximated by

f(x) ≈ ∑
∣αn∣≤ω

fne
iαnx. (4.14)

Hence, only two fast Fourier transforms are needed to reconstruct the grating surface func-

tion: one for the data to obtain w
(n)
δ (h) and another to obtain the approximated f .

Remark 4.5. When the impedance boundary condition reduces to sound hard boundary
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condition, i.e. η = 0, the regularized inversion formula (4.13) is reduced to

fn =
iβn
2κ2

[w(n)δ (h) −w(n)0 (h)] e−iβnh χn(αn), (4.15)

For the sound soft boundary condition, i.e.,η = ∞, the regularized inversion formula (4.13)

is reduced to

fn = −
i

2κ
[w(n)δ (h) −w(n)0 (h)] e−iβnh χn(αn) (4.16)

∎

This completes solution to the inverse problem.
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Chapter 5
Numerical Experiments

We have already derived an elegant reconstruction formula for the inverse problem. In this

chapter, we are going to present two numerical examples to illustrate the effectiveness of

our method for algorithmic implementation and dependence of resolution on parameters

measurement distance h, surface deformation parameter ε, and the noise level δ.

The near-field data u(x,h) is created by solving the direct grating problem using the finite

element method with a perfectly matched layer. The wavenumber is taken as κ = 2π which

corresponds to the wavelength λ = 1. The grating period is Λ = 1, i.e., Λ = λ, and the

impedance constant η = 2π(1 + i), which is merely illustrative and stands for a complex

impedance. To get the data we need on boundary Γ, we use synthetic data: first, we solve

the forward problem by FEM then get the solution, then use these data as information to

reconstruct the scattering function f(x). We present two numerical examples. The first

example only contains low Fourier modes and the second example contains high frequency

modes which necessitate cut-off regularization will be applied.

In all the figures, the plots are rescaled with respect to the wavelength λ. Due to the

unstructured triangular meshes, the wave field data u(x,h) is not equally spaced with respect

to x. We construct a curve u(x,h) by using the natural cubic spline interpolation formula

based on the computed discrete data u(x,h). The curve u(x,h) is evaluated at equally
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spaced points xj and used as our synthetic scattering data. For the stability test, some

relative random noise is added to the data, i.e., the near-field measurement is updated with

uδ(x,h) = u(x,h)(1 + δ rand),

where rand represents a normally distributed random number in [−1,1]. In the examples,

approximately 1% noise is added to the data.

5.1 Numerical Example 1: Low Frequency

The exact grating surface is given by f(x) = εg(x), where

g(x) = 0.5 sin(4πx) + 0.5 sin(6πx).

This is a simple example since the grating profile function g only contains a couple of low

Fourier modes. We examine the dependence of reconstruction results on the parameters h

and ε. Figures 5.1 and 5.2 display the reconstructed surfaces against the exact surfaces.

(a) (b)

Figure 5.1 Numerical Experiment #1: ε = 0.01. Reconstruction of a grating with
finite Fourier modes: the exact surface (solid line) is plotted against the reconstructed

surface (dashed line) using different h and the same ε = 0.01: (a) h = 0.1λ; (b), h = 0.2λ.
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Figure 5.1 above compares the reconstruction using two different measurement distances.

The examples of this figure fix ε = 0.01. (a) and (b) plot the reconstructed surfaces by

using h = 0.1λ and h = 0.2λ, respectively. It is clear that smaller h of (a) gives a better

reconstruction than what is seen in (b). In particular, the fine features of the grating surface

are completely recovered and sub-wavelength resolution is achieved when using h = 0.1λ. A

larger cut-off frequency ω may be used in the reconstruction when the measurement distance

h is smaller, allowing for inclusion of higher-frequency modes, and hence, more detail.

The next comparison fixes h = 0.1λ and consider reconstructions for two different ε. The

result is displayed in Figure 5.2 below.

(a) (b)

Figure 5.2 Numerical Experiment #1: h = 0.1λ. Reconstruction of a grating with
finite Fourier modes: the exact surface (solid line) is plotted against the reconstructed
surface (dashed line) using different ε and the same h = 0.1λ: (a) ε = 0.01; (b), ε = 0.05.

Figure 5.2 shows the reconstruction surfaces from using ε = 0.01 and ε = 0.05 in (a) and (b),

respectively. Our method yields better results with the smaller ε of (a) than with larger ε

of (b). Because we use a linearized model (i.e., truncate all terms of ε2 or higher), smaller ε

gives a more accurate approximation of the original nonlinear model problem.
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5.2 Numerical Example 2: High Frequency

This time, the exact grating surface is given by f(x) = εg(x), where

g(x) = 0.5esin(4πx) + 0.4esin(6πx) − 1.5.

This is a harder example as the grating profile function g contains much higher Fourier

modes. It is expected that larger cut-off frequency ω is desirable and thus even smaller h

is necessary in order to capture all the surface features. As in the preceding example, we

present comparisons of different ε and h values.

(a) (b)

Figure 5.3 Numerical Experiment #2: ε = 0.01. Reconstruction of a grating with
infinite Fourier modes: the exact surface (solid line) is plotted against the reconstructed
surface (dashed line) using different h and the same ε = 0.01: (a) h = 0.05λ; (b), h = 0.1λ.

Figure 5.3 shows the reconstructed surfaces for h = 0.05λ and h = 0.1λ, respectively, both

with ε = 0.01. For the larger h value in (b), the reconstruction is unable to capture the fine

features in the middle part of the exact grating surface. Recall that this choice of h was

sufficient for the grating surface in Example 1 (the wavelength is the same in both examples).

In contrast, all the detailed features are almost reconstructed in (a) when using h = 0.05λ

because larger ω is indeed allowed to be taken.
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(a) (b)

Figure 5.4 Numerical Experiment #2: h = 0.1λ. Reconstruction of a grating with
infinite Fourier modes: the exact surface (solid line) is plotted against the reconstructed
surface (dashed line) using different ε and the same h = 0.1λ: (a) ε = 0.01; (b), ε = 0.05.

Our final comparison, above in Figure 5.4, compares the results by using different ε. Taking

the same h = 0.1λ, (b) and (c) show the reconstructed surfaces using ε = 0.01 and ε = 0.05,

respectively. Again, it can be seen from the subplots of Figure 5.4 that smaller ε yields better

reconstruction than larger ε due to the approximation error in the linearization procedure.

Nonlinear corrections may be needed in order to improve the reconstructions.

5.3 Summary and Conclusion

We have presented a simple, stable, and effective computational method for the imaging

of impedance grating surfaces and achieved sub-wavelength resolution. The grating sur-

face model was assumed to be a small and smooth deformation of a planar surface. Using

the transformed field expansion, the complex grating surface problem was converted into

a forward-marching sequence of two-point boundary value problems. Thanks to the power

series expansion and integration method, we were able deduce an analytic solution for the

direct problem. By dropping higher order terms in power series, we linearized the nonlin-

ear inverse problem and obtained an explicit reconstruction formula for both propagation
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and evanescent wave modes. To suppress the exponential growth, an appropriate cut-off

frequency was chosen from SNR analysis after proper consideration of the deformation pa-

rameter, noise level, and the measurement distance. Fast Fourier transforms contributed to

implementing the reconstruction formula.

In conclusion, we have shown that the method presented works for general impedance grat-

ing surfaces. We presented two examples, one of which has finite Fourier modes and another

one has infinite Fourier modes, and investigated how the parameters influence the recon-

structions. The numerical results show that super resolution may be achieved by using small

measurement distance, which is exactly the principle of near-field optical imaging.

56



APPENDIX

blank space

57



APPENDIX

A.1 Integration solution method

For self-containedness, the integrated solution method is briefly introduced to solve a two-

point boundary value problem. We refer to Zhang [43] for the details of the integrated

solutions of ordinary differential equation system and two-point boundary value problems.

Consider the two-point boundary value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′(y) +M(y)u(y) = f(y),

A0u(y)∣y=0 = r0,

B1u(y)∣y=h = s1,

(A.1)

where f(y) ∈ Cm are m-dimensional vector fields, r0 ∈ Cm1 and s1 ∈ Cm2 are given m1- and

m2-dimensional vector fields, respectively, M(y) ∈ Cm×m is an m×m matrix, and A0 ∈ Cm1×m

and B1 ∈ Cm2×m are full rank matrices with m1+m2 =m, i.e., rankA0 =m1 and rankB1 =m2.

Let Φ(y) be the fundamental matrix of the system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

cΦ′(y) +M(y)Φ(y) = 0,

Φ(0) = Im,
(A.2)

where Im is the m ×m identity matrix.

Theorem A.1. The two-point boundary value problem (A.1) has a unique solution if and

only if

det

⎡⎢⎢⎢⎢⎢⎢⎣

A0

B1Φ(h)

⎤⎥⎥⎥⎥⎥⎥⎦

≠ 0. (A.3)
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Let the pair of functions {A(y), r(y)} and {B(y), s(y)} be the integrated solutions of the

problems (A.1), then there exist D0(A,y) ∈ Cm1×m1 and D1(B,y) ∈ Cm2×m2 such that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A′ = AM +D0A, A(0) = A0,

r′ = Af +D0r, r(0) = r0,

(A.4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B′ = BM +D1B, B(h) = B1,

s′ = Bf +D1s, s(h) = s1.

(A.5)

Theorem A.2. If the two-point boundary value problem (A.1) has a unique solution, then

the matrix
⎡⎢⎢⎢⎢⎢⎢⎣

A(y)

B(y)

⎤⎥⎥⎥⎥⎥⎥⎦

∈ Cm×m

is nonsingular.

Theorem A.3. The two-point boundary value problem (A.1) is equivalent to the linear

system
⎡⎢⎢⎢⎢⎢⎢⎣

A(y)

B(y)

⎤⎥⎥⎥⎥⎥⎥⎦

u(y) =

⎡⎢⎢⎢⎢⎢⎢⎣

r(y)

s(y)

⎤⎥⎥⎥⎥⎥⎥⎦

. (A.6)

A.2 A two-point boundary value problem

Consider a two-point boundary value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′ + β2u = v, 0 < y < h,

u′ − iηu = ϕ, y = 0,

u′ − iβu = ψ, y = h,

(B.1)
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where β ∈ C, η ∈ C, and η ≠ β.

Let u1 = u and u2 = u′. The two-point boundary value problem (B.1) can be equivalently

formulated into

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′ +Mu = v,

A0u(0) = ϕ,

B1u(h) = ψ,

(B.2)

where

u =

⎡⎢⎢⎢⎢⎢⎢⎣

u1

u2

⎤⎥⎥⎥⎥⎥⎥⎦

, v =

⎡⎢⎢⎢⎢⎢⎢⎣

0

v

⎤⎥⎥⎥⎥⎥⎥⎦

, M =

⎡⎢⎢⎢⎢⎢⎢⎣

0 −1

β2 0

⎤⎥⎥⎥⎥⎥⎥⎦

,

and

A0 = [−iη 1], B1 = [−iβ 1].

Theorem A.4. The two-point boundary value problem (B.1) has a unique solution given by

u(y) =K1(y)ϕ −K2(y)ψ + ∫
h

0
K3(y, z)v(z)dz, (B.3)

where

K1(y) =
eiβy

i(β − η)
, K2(y) =

eiβ(h−y)

i(β − η)
K(y),

K3(y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

eiβ(y−z)

i(β − η)
K(z), z < y,

eiβ(z−y)

i(β − η)
K(y), z > y.

Here

K(t) = (β − η)
2β

+ (β + η)
2β

e2iβt.
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Proof. It can be verified that there exists a non-singular matrix P such that

P −1MP = N,

where

N =

⎡⎢⎢⎢⎢⎢⎢⎣

−iβ 0

0 iβ

⎤⎥⎥⎥⎥⎥⎥⎦

, P =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1

iβ −iβ

⎤⎥⎥⎥⎥⎥⎥⎦

, P −1 = 1

2iβ

⎡⎢⎢⎢⎢⎢⎢⎣

iβ 1

iβ −1

⎤⎥⎥⎥⎥⎥⎥⎦

.

A simple calculation yields that the fundamental matrix of (A.2) is

Φ(y) = P

⎡⎢⎢⎢⎢⎢⎢⎣

eiβy

e−iβy

⎤⎥⎥⎥⎥⎥⎥⎦

P −1,

which gives

det

⎡⎢⎢⎢⎢⎢⎢⎣

A0

B1Φ(h)

⎤⎥⎥⎥⎥⎥⎥⎦

=

RRRRRRRRRRRRRRRRR

−iη 1

−iβe−iβh e−iβh

RRRRRRRRRRRRRRRRR

= i(β − η)e−iβh ≠ 0.

It follows from Theorem A.1 that the two-point boundary value problem (B.2) and thus

(B.1) has a unique solution.

Let {A(y), r(y)} and {B(y), s(y)} be the integrated solutions of the problems (B.2). Taking

D0 = iβ, D1 = −iβ,

we obtain from (A.4) that the integrated solutions satisfy

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A′ = AM + iβA, A(0) = A0,

r′ = Av + iβr, r(0) = ϕ,
(B.4)
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and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B′ = BM − iβB, B(h) = B1,

s′ = Bv − iβs, s(h) = ψ.
(B.5)

Upon solving the initial value problems (B.4) and (B.5), we obtain the integrated solutions

for A and B:

A = [A1(y) A2(y)], B = [B1(y) B2(y)], (B.6)

where

A1(y) =
i(β − η)

2
− i(β + η)

2
e2iβy,

A2(y) =
(β − η)

2β
+ (β + η)

2β
e2iβy,

and

B1(y) = −iβ, B2(y) = 1.

Once A and B are available, we may solve the initial value problems (B.4) and (B.5) and

obtain the integrated solutions for r and s:

r(y) = eiβyϕ + ∫
y

0
eiβ(y−z)A2(z)v(z)dz, (B.7)

s(y) = eiβ(h−y)ψ − ∫
h

y
eiβ(z−y)v(z)dz. (B.8)

It follows from Theorem A.3 that the two-point boundary value problem (B.2) is equivalent

to the linear system
⎡⎢⎢⎢⎢⎢⎢⎣

A1 A2

B1 B2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

u

u′

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

r

s

⎤⎥⎥⎥⎥⎥⎥⎦

.
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An application of Cramer’s rule yields

u = rB2 − sA2

A1B2 −B1A2

. (B.9)

A simple calculation yields

A1B2 −B1A2 = i(β − η).

Substituting (B.6)–(B.8) into (B.9), we deduce (B.3). ∎
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