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Presentiy, ro satisfactory theory of tie
fundamental interactica betitesn nuclecns is aveitedbla.
Calculations have been mace using phencrmenological
potentials and meson theories,] but ncne of tnese can
be classified as satisfactory in the sense of ¢iving
quantitative predicticas of scattering cross scciion:
to any desired accuracy. Any potentiel theory serve:s
primarily as a parencterizetion scheme and ¢givas litlic
insight into the fundz zntal neture of the interactica
process. Meson thsorics crtemst to explein the nature
of the interaction. ricwever, the role of the msson is
still not well deteimined, since meson theory has yet
to give & quantitative result for the short range part
of the interaction.

The usual pi-meson theory assumes that the
nuclear force arises 7rcm & pibn field in the same way

the electromagnetic feorce arises frem a photon ficld.

1. For an extensive survey of the thecories of tne
nuclear interaction, See M.J. Moravcsik and H.P. Noves,
Ann. Rev. Nuclear Sci. 11, 1 (19582).

2. A discussion of tine picn tneory of nuclear Torces
can be found in J.D. Jzckscn, "The Physics of Zilcntentary
Particles," Princeton Univ. 2ress, Princetoa, 1>20.



The long range nucleon-nucleon force is given by the
exchange of a single virtual pion between two nuclecons.
The pion is virtual in that it does not conserve energy
and can only exist for a finite length of time by the
Heisenberg uncertainty relation. The pion carries
momentum between the two nucleons and, thus, gives risc
to a force of finite range ecual to the inverse mass
of the pion exchanged.3 The long range interaction
predicted by single pion exchange is well verified ex-
perimentally.

Since the range of the interaction eguals the

B

inverse mass of the particle exchanged, single picn

exchange should predict accurately the long rancc dart

of the interaction. Hcwever, tne short ri-_ e parc
should depend on the cichange of more thea one pica. The
effects of the excharge of more than one meson have naver
been satisfactorily calculated, and, considering the
complexity of the problem, it is unlikely that tncy wil
be using usual field theoretic technigues.

Since the calculation of the short rance
nucleon-nucleon interaction has not been made, it is
not certain that the pion is fundamental in the interaction.
Sakurai“ suggests that vector mesons hecvier thaen the

pion are the fundamental particles in the nuclear inter-

action, and the pion is a bound state of an antinucleon-

3. We use units such that MW =0C=/.

1, 1 (1980).

L, J. Sakurai, Ann. Phys.



nucleon pair under the influence of the heavy meson
field.

The existance of neavy mesons has been
confirmed by experiment. |f these heavy mesons
contribute to the nucleon-nucleon interaction, their
effects would be felt chiefly at short range, and
would not contribute eppreciably to the long renge
part of the interaction. Also, the heavy mesons reed
not be observed as free particles. They could ducay
rapidly into pions if their masses are greater t.an the
mass of two pions and their duantum numbers allcuy the
decay. We discuss these points in Chapter VI. itn
the recent discoveries of tne two and three pion
resonances,5 this heavy meson theory of nuclezar vorces
becomes more attractive.

It may be immaterial which of the mescas &a. ¢
considered elementary and which are considered ccmposites
of other particles. Supporting this viewpoint, Nishijima6
has shown the equivalence of elementary and ccmposite

particle theories for local, renormalizable field tnheories.

5. The resonances are f’*’ am reported by A.R. Erwin,
et al., Phys. Rev. Letters 6, 628 (1561); W—=> I T
regorted by B.C. Maglic, et al., Phys. Rev. Letters 7,
178 (1961); W\ —>3Tr reported by A, Pevsner, et al.,
Phys. Rev. Letters 7, 421 (1961); and ¥—> AT reporta”
by R. Barloutaud, et al., Phys. Rev. Letters &, 114 (1.. -

6. K. Nishijima, Phys. Rev. 111, 995 (1958).

—_—
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_ Similar considerations apply to the anti-
nucleon-nucleon interaction, with the added complication
that annihilation into pions or heavy mesons is possible;

Regardless of whether further progress in
understandiné the nucleon-nucleon and nucleon-anti-
nucleon interactions can be made within the framework
of field theory, basic objections have been raised to
the use of field theory to explain fundamental processes.
As long ago as 1943, Heisenberg7 suggested that the
failure of tHe concept of the continuum for short time
and space intervals makes even the definition of a

Hamiltonian impossible. More recently, Landau8

and
Chew’ expressed the opinion that field theory is
incapable of completely explaining elementary phenomena.
Our discussion is based within the framework
of dispersion relations, and the form of a dispersion
relation is independent of which particles are chosen

10

as elementary. Chew and Frautschi claim that it is

possible to use dispersion relations to completely

determine all strong interactions. |If this claim is

7. W. Heisenberg, z. Physik 120, 513 and 673 (1943).

8. L.D. Landau, Proceedings Ninth Ann. Inter, Conf.
High Energy- Phys., Kiev, 1959. :

9. 'G.F. Chew, "S- Matrix Theory of Strong Interactions,"
W.A. Benjamin Inc., New York, 1961. .

l%i 6?)F Chew and S.C. Frautschi, Phys. Rev. 1;1. 1478
9
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correct, the choice ¢/ eleneatary perticles is immat-
erial and field theory is unnecessary. However, the

claim has not been susstanticted.
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CHAPTER 11

THE BASIS CF DISPERSICN RELATIGHS.

Even in toc ebsciace of a cocmplete theory,

dispersion relations can piecict scme effects of gicns

nuclecn-nucleon and antinucleca-

W

and heavy mesons on tn

nucleon interactions.
Before discussing the use of dispersion

relations for the nuciccr interaction, we must des-

cribe the interaction. Ffor elastic scattering of eguea

mass particles, the difverertial cross section is

relcted to the T-matrix cs Toilcws:
Giile,p) = SKUTIE (1)

Where E is the center of mass energy of each particle.

The T-matrix is related to the S-matrix as follows:

&,

Cilslg = &, +am L M p-puTly @

Cr~

Where F% and F; are the initial and final toteal
four-momenta. The S-matrix is defined in terms of the

incident and scattered eve functions in the next chepter.

We use the invariant scotterisn_ emplitude introduced by

] - - . - - 1
MZller. For reaction:s with two incident ond two

1. C. Mgller, Det. Kgl. Dznsike Vidensk., Selsk., Met.-Fys.

~

Medd. 23, NR1 (1945).



scattered neutral, spinliess particles, the invariant

amplitude A is related to tne T-matrix as follows:

The initial and final Tour-momente arc 9 9 and

q3, ay- Labeling the initiai and Tinal particles A,B
and C,D, we write the scattering represented by ecguations
(])’ (2): and (3) as:

A B — C- 53 (&

-
~

The scattering amplituds for tinis reaction is a Tuncticn
of two indepencent variebles, e.g. the total energy end
the scattering angle. rcwever, it is more convenient to
choose the invariants s, the scuare of the total center

of mass energy, and t, the necative sguare of the momentum

transfer:

N

- A
s = (ql-’r Gyl

)
(q. — g5~
T

rt
i

In the formalism ci dispersion relations,
A(s,t) is continued into the ccmplex s-plane, while t
is kept fixed. The continued function may have singul-
arities in the s-plane. If the location of these singul-

arities can be determined, an integral representation for



co

~

A(s,t) cen be writtes usinz the Cauchy formula.
For example, coasicer a function A(s,t),

not necessarily a sceattering amplitude, which has two

simple poles and two traach points in the s-plane, as
shown in Figure 1. The lccctiocn of the singulerities
may depend on the seccad verieble, t. The brancn points

cre at sy(t) and sz(t), and the poles are at s3(t) and

Sh(t)'

Applying tinz Caucny formula for the contour

[N

)

shown in Figure 1, we obtain en integreal representatic

for A(s,t).

Aet g § T
C(x)

Letting the borcer or the contour extend to
infinity end assuming the contribution of the integral
around the border vanishes,z we are left with only the
pole terms and the intczrais along the cuts. Defining
A(s+€, t) and A(s-% t) as the values of A(s,t)

)
on different sides of the cuts, we rewrite equation (6)

for Figdre 1 as:

Alst) = Bss/(ss-s) t ir')"'*”:/\/s,,}-s) g

e, v,
._.I_'. g“‘ S' H[SL(,“C," P\’\b (,J 1 __!__ gclisl ik S-'.-(‘,\)' qu-c,'l)
3T =g Sl L $'= S
S, S&

2. See Chapter Il! for a discussion of this point



(g}

s-plane

.

FIGURE |

A Function A(s,t) With Twc Poles and Two Branch Points.
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R3 and Rh are residues, and the numerators of the
integrands are the discontinuities of A(s,t) across

the cuts:
Disc. A(s,t) = A(s+€ , t) = A(s—¢&,t)

Double diépersion relations are obtained
by applying the same considerations to Disc. A(s,t)
as a continued function in the complex t-plane.3

Our use of dispersion relations depends

entirely on our ability to determine the singularities

of A(s,t). The determination of the singularities of

the scattering amplitude constitutes the major part of

this work. We indicate how the singularities are

located and how residues and discontinuities are

(8)

determined from causality and unitarity in Chapter IlI1.

In Chapter IV and V, we discuss the double dispersién

relations for neutral,scalar, and charged, spinor

nucleons. In Chapter VI, we discuss the properties of

pions and heavy mesons and how these mesons affect the

dispersion relations.

3. See Chapter 1V.



CHAPTZR I
CAUSALITY AND UNITARITY

We ncw shc./ how to determine the singular-
ities of the scattering emplitude using causality and
unitarity. The use o7 ceuselity has a rather long
history in the theory of scettering. In 1826 Kronig]
and Kramers? used ceusaiity to write an integral
equation relating the dizpersive and absorptive parts
of the refractive incex for the scattering of lignt.

Causality was uscd by Karplus and Ruderman,3
and Goldbergerl+ in elernentery particle theory. A
rigorous proof that ceuszality imdlies a Kramers-Kronig
type of integral equaticn for the scattering amplitude
in field theory was given by Bogoliub@; and Symanzik.6

The mathematical details of the field theoretic

proofs obscure the physical content of the theory.

!

1. R. Kronig,-J. Cpt. Soc. Am. 12, 546 (1920).

H.A. Kramers, Atti. cong. intern. fis. Como 2, 545

*

1927).

R. Karplus and M.A. Rucdzrmen, Phys. Rev. 28, 771 (1355).

2
(
3
L, M.L. Goldberger, Phys. Rev. 57, 508 (1955), and S9,
979 (1955).
5
T
6

. N.N. Bogoliubov, Acport of the Internaticnal! Conf.
heor. Phys., Seattle, 1556,

. K. Symanzik, Phys. Rev. 105, 743 (1957).




In order to maintain < ciear insignt into the physical
nature of the theory, w2 avcid tine field theoretic
analysis. Our discussion is based on physically reason-
able arguments using causality and unitarity. This
approach sacrifices scaz of the rigor and completeness
of the more formal arguncnts.

Ve limit the scettering to two particle
initial and final states reoresented by equatioﬁ (&),
Chapter 1I1I.

Following the usuzl ana]ysis,7 we consider
that the interaction incuces & transition between non-
interacting stationary states. nese are the initial
state of particles A and 3 inccming to the region of
interaction with total cnergy 2, and the final state of
outgoing particles C anc D. The wave functions of these
states are | ?j in(E)>7 andg ] ?/out(E);> . The

scattering is represented by an operator S(E) connecting

the "in" and "out" wavas functions.
1Y out(6)) = s(8) 1 Yin(E)> (1)

The relation between the matrix elemcnts of S(E) and the

cross section is given in equation (1), Chapter I1I.

7. For example see J. Hamilten, '"The Theory of Elementary
Particles,' Clarendon Prsss, London, 1959, Page 243.
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8

This is the S-matrix introcuced by Vheeler® and used

by Heisenberg.9

The Fourier transforms of the quantities

in equation (1) obey the following relation.

-

core 2w 1 »?
=T s DT (2)

]
SN

W -
I out(t) = \
| ’ Z

-

Equation (2) states that, for an incident wave packet,
the outgoing wave at a time t is a linear superposition
of contributions frca the inccming wave at times t!.
Causality cz ancs that \H‘/in(t'ycontributes
tolY’out(ti}only if t' comes before t. Thus, the

scattering operator vanisnes for t' greater than t.
S(t-t') = 0, for tLt?, (3)

VWle use the Fcurier representation of S({f),
co

s =\ srye'” e (4

—c3
to extend the definition of S(E) into the complex E-plane.

Equation (3) limits 7 to positive values in equation
(4). Thus, if E has a positive imaginary part, the

integral has an exponential damping factor and is well

8. J.A. Whecler, Phys. Rev. 52, 1107 (13937).

9. W. Heisenberg, cop. cit.
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defined and finite. 7Ticn, S(Z) is enalytic in the
upper half E-plene. OCn the rezl E exis, there is no
exponential damping eand S(Z) may not be analytic.

We use the results of causality together

o cerive tne analytic properties of

rt

with unitarity

the scattering amplituce. lnitarity is a statement of

the conservation of pro>zbility in the scattering. |If

the initial state is ncrmalized to unity,
Niney Viney=1, (5)
the final state must also be normalized to unity.
Yout(e) 1Y out(e)=1. (6)

Using the definition of S(E) in equation (6), we get the

unitarity property.
{Yine)y 15s 1 YVineD=&ne) 1 Yined=1. (7)
S(E{r S(E)=1 (8)

S(E) is nct the most convenient quantity to
use in dispersion theory. A more convenient quantity is

the invariant amplitude, related to the T-operator by a
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function of the energy given in the definition of A

(eguation (3), Chapter i1!).

A= C(E)T. (9)
1 is related to S by
S = l—fl. ) (10)

T is related to the T-matrix introduced in equation (1),

Chapter |1 by:

<UT = ~mr‘féL}(Pg-'P+)<i\TH>

T and S obviously have the sanze singularities. T(E) is
~ -~
analytic in the upper naif E-plane. The unitarity of S

leads to the following condition on TI.

sts=(+izTH)-i1) = 1,
(11)

A ST SPARE

We make one vurtner convenient change.
Instead of the energy £, we use the square of the energy

s as a dynamical variable. Since T(E) is enalytic in the



upper half E-plane I(s) is cnalytic on the shect of s
corresponding to the upgpper heli E-plane, excluding tihe
real s axis.

9

L
lE1 e

m
u

PRRY)
s=zlg12e“ (12)

o< P T

Unless C(E) introduces new singu]arities,lo A(s) is also
analytic in the complex s-plane, except possibly on the
real s axis.

With the anziytic properties of A(s) estab-
lished, we use the Cauchy fcrmula to write an integreal

representation for A{(s).

\ <| H(g)cxy
Als) = 3 & g% (13)
cutCL

The contours CU and CL ere the two semi-circles shown
in Figure 2. If A(s) vanishes for large s, we can
extend the borders of the contours to infinity, and the
contributions from the corcers vanish, leaving only the

integrals along the real axis in equation (13).

10. C(E) actually removes ea undesirable singularity
at s=0.



17

(At R(s B(s-1¢)
M= 7y WA o %Js

o>
- o

Combining the two integrals gives:

[
‘ -~
- T 5.‘ .‘(S-{'lé\) R(S ‘é) .
Als) = 377 \ T (14)
We assume thet:
A*(S) = A(S."") . (15)

This assumption ccmes 7rcm the perturbation theory ex-
pressions for A(s). for certain perturbation theory
diagrams it does not hoid. (Sce the Appendix). It is tre
in perturbation thecry tvor nucleon-nucleon and antinucleon-
nucleon scattering, and we a2nly the condition in equation

(ll'l')o l H(S'-}-i&\- Hﬁ(s.{.te\

A(s) = T~ 1T AS oo S
A L
- — (!'M)
A(s) = AT\' ys S-S

-C0

Unitarity (equation (11) ) gives an expression

for Im A(s).

Im A(s) = C(E) Im I(s),
Im A(s) = - (S(EY(T-TN) /5 (17)

Im A(s) = - CLE)ITI/&



s-plane

7
N
Y

Ve,
LAY

Ay

(OR )
A\

CL

FIGURE 2

Contours for the Invariant Scattering Amplitude.



Taking matrix elemecnts tetween initial and final

states, we get:

Im (MR\M,- CE=:)<B\1TIIGL> (18).

()

Summing over a complete set of intermediate states gives

")

o <plRley = 25 SBIT IGITIO) (9

Equation (1S} shcws that Im <(3\Fi\°'\> fails
to vanish only at energies for wnich there is an allcwed
intermediate state In) , since J has only energy conserv-
ing matrix elements. |f Iny is a single particle state
with the same quantum numbers as |d) and |R) ,
Im {@\H\d\> does not vaenisn at an energy equal to the
mass of the particle in Iny . If In) is a multiparticle
state with the same quantum numbers as |I4d) and 18) ,
Im {RIA L) does nct vanish at all energies greater than
the sum of the masses cf the particles in In) . Of
course, In) could be either Id) or 1R) .

Using equation (19), we can write equation (16)
as:

o

T (BRI
Sas

y'-8§ (20)

Rf‘\ ]
CelAl) = 2wy ¥ 77 |
i Mt“rﬂk{-m}w



The sum on the pole terms is over all allowed single
particle intermediatc states. The lower limit on the
integral is the squerc of the mass of the particles in
the multiparticle interimediete state with the smallest
total mass, and Ryis the residue at the pole.

Vle ncw nave rules connecting the analytic
properties of the scettering amplitude and the allowed
intermediate states.

1. |If there is an allcwed single particle
intermediate state, the scattering amplitude has a pole

at at energy equal to the mess of the particle.

2. If there is an allowed multiparticle
intermediate state, ths scattering amplitude has a branch
point at an energy equail to the sum of the masses of the

particles.

3. The residues at the poles and the discont-

inuities across the cuts are given by equation (19).

To obtain equation (20), we assumed that
A(s) vanished for large real s. |If A(s) is constant the
borders of the contours CU and CL in equation (13) cannot
be extended to infinity. However, if s_ is not equal to

o

any of the M's, equation (13) applies to A(s)/(s- sy)
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and the contours can be extended to infinity for this

function.

) . R(S) + H(So)

s_ﬁ%)o_ = § A (s58)(s-8)  S-§, (21)
CutCL

Instead of equation (20), this gives:

.<(3IH(S)\°‘>_ CIADG | 5 Rn

$-%¢ S-S (M%) (M™5,)

M
| (. ImdRIAYI (22}
¥ ™ 845 (s=9)(s-S,)
(M1
Multiplying equation (22) by (s=- sg) gives:
1
(@‘H(S)l‘*}‘(ﬁ\ﬂ(%“d\>: ‘}; P’M(T\_I’:S_ mo)
LT 314 (<= - Sy (23)
_‘_F &CLS, W\(“‘ﬂh)]i) Y'Y S—Sb)

(MAtae]?
Equation (23) is the subtracted form of the

dispersion relation. |f the scattering emplitude goes
asymptotically as the nth power of s, n41 subtractions
will give a valid dispersion relation. Notice that in
equation (23) there is one new parameter, A(so). Each
subtraction adds one new parameter, since no two sub-

tractions can be made at the same value of So-
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Consider ncucron-proton elastic scattering.

n¥ p=>nd o

The deutercn is an ailowed intermediate state, giving

rise to a pole at s = H;z. Since the mass of the deuteion
is less than the sum of the masses of the neutron and
proton, the pole is selow the start of the physical region
of s,({r\,*\‘\,\\\$3400 ). The lowest mass multi-
particle intermediate state is the neutron-proton state.
The branch cut starts at s= iMn+ Még 2 and extends to
plus infinity.!!

Now consider antireutron-proton elastic scatter-

ing.

n¥p->ntp .

4+
The T -mescn is an allowed intermediate state,

h

giving a pole at s= i, .

The lowest mass multi-

particle state is the two-pion state. The branch cut

P Here,

-~ s e
starts at s = 4M; and extends to plus infinity.
the cut starts well telcw the physical threshold, while
in neutron-proton scattering the cut started at the

physical threshold. This difference makes antinucleon-

11. There will be higher mass allowed intermediate

states and they will centribute to the discontinuity

across the cut by equation (19), when s is greater than

the square of the sum of the masses in the intermediate state.
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nucleon scattering more difficult to analyze than
nucleon-nucleon scaftering.

The results presented here were shown to be
valid under the assumptions that A*(s) = A(s*) (equation
(15) ),‘2 and that C(E) introduce; no singuiarities in
A beyond those inT. For particular scatterings, of
certain particles, these conditions do not hold and
there are perturbation theory graphs which have differ-
ent singularities than those given by rules 1. and 2,
However, these rules are valid for the graphs involved
in nucleon-nucleon scattering.

Thusfar, we have not justified fully our use
of unitarity. Unitarity is well defined for physical
values of s, but it is certainly not obvious that
unitarity applies for non-physical values of s. In the
next Chapter, we show that the scattering amplitude for
negative values of s represents a different physical
process.'3 For s between zero and the physical threshold,
the meéning of unitarity is still not clear and our use
of it must be justified. Mandelstam]“ has shown that unit-
arity can be unambiguously extended to this region

consistent with the continuation of A(s).

12, The failure of A*(s) = A(s*) can lead to anomalous
thresholds and complex singularities. (See the Appendix).

13. See Chapter IV. .
14, S. Mandelstam, Phys. Rev. Letters 4, 84 (1960).



CHAPTER 1V
NEUTRAL, SCALAR NUCLEONS

1. Kinexm=ztics

Before deriving the dispersion relations,
we discuss the kinematics of the two body problem. Con-

sider the reaction represented by:
Ay B — C+ D. (1)

The kinematics are specified by the four-momenta of the
initial and final particles. Figure 3 is the diagram

of the four-mcmenta.

Time
Component N

/

'A 9

Space Component

FIGURE 3

Four-Momenta of the Reaction A¥B—>C+0D .
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The metric is defined such that:

->
q?=z -3 24 €2 = M2, (2)

The statement of energy and momentum conservation in

the reaction is:

- C{ . 3
q,+ qB ot qD (3)

We choose thes same variables as in equation

(5), Chapter 1l and ecuation (12), Chapter [II.

2 2
s = (g4 qB) = (qc+ qD)

t= (ga=-95)% = (a5- qp) (L)

2 2

In a two body scattering, there are only two incepen-

Therefore, there must be a relation

Equations (2) and (3) imply that

dent variables.

between s,t, and u,.

2
s+t+u=(q+q)2+(q-q)2+(q-q)
AT B A D A C

o 2.2 2 2
sktdu=3M "+ Ms "y MC + MD- 2qp-(qctay - O‘B)

skthuz MZyM 2y m 24n?
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For nucleon-nucleon and antinucleon-nucleon scatter-

ing:
MA: MB = NC = MD = M.

We give the connection between s, t, u ...a

the center of mass energy and scattering angle for this

case. Kibble] has derived the connection between

s, t, u and the enercy end scattering angle for arb-
bitrary masses, but the results are more complicated.

The center of mass conditions for equal

mass particles are:

-2 2'/
- - - -\ g + M : 6
qA_qB_q _qD( \ (6)

Using equations (6), the following expressions for s,

t, and u derive.

' 2
se (@4 3% (a_+ a7 b(E24 M)

) |
-lay-ap) s (qu"qog)Z:-Z‘éz(l-cose) (7)

2, | 52 '

u=-(q,-qc) "+ (qOA-qoc)?; -2q"(1+cos8),
22 _-) - _ _+'~>

where q© cos8= qA- qD- qA c

1. T.W.B. Kibble, Phys. Rev. 117, 1159 (1960).
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From equations (7), tiae physical range of s, t, and

uis:

L:-MZ S s ©
-s+2 £ £ &0 (8)

-s+l'r.*42 < u %o

2. Croscing Relaticns

Consider the three reactions represented

by Figure 4. Each reaction is called a channel.

q a.

c D
N n
4 ﬁ/ﬁ

A % A B
I. N¥ NN+ N Il. N+ N> N+N 111, N4 N = N#N

FIGURE &4

Nucleon-Nucleon Channels.



Crossing rcizations for neutral scalar
particles state that the semes function of s, t, and
u, A(s,t,u), represcnts thz scattering amplitudes of
all three of these reactions.? (See the Appendix).
However, the ccnnections between s, t, and u and the
center of mass energics and scattering angles, and the
physical regions of s, t, and u are different for each
channel, Table | shows the connections between s, t,
and u and the center of mass energies and scattering
angles, and the physical regions of s, t, and u for
each channel.

A(s,t,u) represents Aj(s,t) when s, t, and
u are in the physical region for channel I, Aj;(t,s)
when s, t, u are in the physical region for channel II,
and Alll(“’t) when s, t, and u are in the physical
region for channel I11. Al’ All’ and Alll are the

physical scattering amplitudes in channels 1, 11, and

2. H. Lehmann, K. Symanzik and W. Zimmermann,Nuovo
Cimento 1, 205 (1955), and &, 319 (1957); and

S. Gasiorowicz, Fort. der Phys. 8, 655 (1960); and
M.L. Goldberger, Y. Nambu, and R, Oehme, Ann. Phys. 2,

226 (1957).
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1

TADL

s

Nuclecon-Nucleon Channels

it

CHANNEL CENTZR OF MASS VARIABLES

}

i
|

PHYSICAL REGI(ON

1 0OF s, t, and u

i N4 N *N+N |

s = b(G2+ M2)

t=-242 (1= cos8|)

=7

u==-2g< (1+-cosel)

4M2$s<°°
-s+4M2.<.t £0
—s+iMleu £ 0

Il N+ N->N&N

s:-Z.q>2

c= (324 M2

(1- cos8|y)

u=-232 (14 cos8, l)

-t+L+MZs s<0

UMl s t < &

| ~tslM%% ug 0

P11 N+ N> NN

S='222 (l+ COSGlll)

t=—-2'<§2 (1- coselll)
&

us= b(g2+ M2)

-u+1+M2$ s £ 0
-utiMZet £ 0

4M2.€ u< oo
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Since wa are going to relate allowed inter-
mediate states to singularities in the scattering
amplitude, we show in Teble 2 the pertinent, allowed

intermedic.. states fcor each of the three channels.

TASLE 2

Intermediate States

NE PARTICLE MULTIPARTICLE INTER-
CHANNEL INTERNEDIATE MEDIATE STATE WITH
SMALLEST TOTAL MASS
l (D) deuteron% NN =-Nucleon-Nucleon
I M - Mesonw* TT T1 - Pion-Pion¥*
111 M - Meson®* T1 1T - Pion-Pion**

*The deuteron state is only present for neutron-proton
scattering. We include it in our discussion inside
brackets. In the particular cases of neutron-neutron
and proton-proton scattering, the contents of the
brackets should be taken as zero.

**There are different mesons possible with the quantum
numbers of some nucleon-antinucleon state. Only five
have been observed and of these the pion has the lowest

mass (See Chapter VI).
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By the arquments of Chapter 111, Al(s,t) has

no singularities in the ccmplex s-plane for t real and neg-

ative. Therefore, we can apply equation (16), Chapter Il1l.
x
1 s
A5, 02 = gu{s In B(s)t) (2)
It S'_S

-03

When s' is greater than AHZ, Im Al(s‘,t) is the
imaginary part of the scattering amplitude in channel 1I.
When s!' is negative, since s+ttu's= MMZ, and since t!

is negative, u! is greater than 'Mz. For negative s!,
Im Aj(s',t) is the imaginary part of the scattering
amplitude in channel I1l. This second statement follows
from the crossing reiations. Thus, Im Aj(s',t) is the

sum of contributions Trom channels | and Il1.
Im Aj(st,t) = Ai(s',t)+ AB(U’,t)-

Al and A_ are related to the imaginary parts of T-matrix

3

elements by equation (3), Chapter Il. For example, A1 is

)
A ,t) = 6 a a I ,
1(s,0) = (16 q ,q,59 9 )% Im<q qglT 19,9
where the T-matrix is related to the S-matrix by:

GISIE = f v @)L §H(m-n) 1T

The unitarity of S,

L <o alsie) = ¢



32

gives the following expression for Im {i|Tl$) .

Im i) T1E) = (“'3'—: (¥R BTN RIT]4)

Thus, Al and A3 are:

’Y .
H kS t) (& ) 2 U e voo \»o('. 05\ S %ﬂ*%% n)<1ﬂa”f/")("l”z‘19>
(10)

F‘ k“ t\- ———- 2 \\Lau'-‘{cgok%occhﬂyl 6 (1)3*1)(. \ (biclr...fl'l)(n”:uuﬂ%)

In terms of Ai and A3, equation (9) is:

| PR L AU
s 5 (e s e gt )

- -

Equations (10) and Tzble 3 show that Ai(s',t)_is non-
zero at s! equal to the square of the deuteron mass,
stz MD (for neutron-proton scattering only), and .for
s! greater than c¢he square of the mass of two nucleons,
st 2 MMZ; and that A_(u',t) is non-zero at u'! equal to

>
the squares of the masses of the mesons discussed in
Chapter VI, u':Vnz, and for u! greater than the square
of the mass of two pions, u'%-hMi . Since s'+t+u'= th,
A3(u‘t) fails to vanish for s' =4M2-m2- t and

st M2 - HM%-t. Using these results, we write

equation (11) as:

P\m A (S“t)
R : l PRSI
Ht“)ﬂzk ;“ 54' ;\ S"\’"‘r(“\l-ml—-ﬂ ¥ r &Js =5
nn"s b8
- &N
A, )t
\ ! 9
.- \As AP (i)

4naMg-T



v
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The sum on m extends +to all single particle

intermediate states. Unitarity (equation (10) )

gives the residues RD and Rm and the discontinuities

Rm

A,(s',t) and A_(u',t). For example, the term
1 ( ) 3’( ) P (T A

comes from the single particle contribution of the

meson, m, to equation (10) for A3(u',t).

4 1 ‘ RPN ! I
—Rm—— . 1-‘!: X(B%‘) ‘; “L%Oﬂ %oi ‘kotj)ob\x Sq(%ﬂ+%“Pm) x
m

s - (442 - m-t)
& TRl TIR )

2
5 )
)2
o)

[}
wher s! = -
where (qA q

t =(q,'- q
= qA_

' 1.2

u'z (qy +9q; )

Since the sum is over a continuum of intermediate states

of four-momentum Pm,

Z‘ - Sc“' P Sk?i-m‘)

Py (aw)3

and

Rm
s-(#M%-mz- t)

S (U T Tt) S4B A ) Gl T Dl T3
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]
Since u! = (qA 4+ qC')2 and u'y t4 s's= 4M2, the s!

integration gives:

Run? (1680 Boabac o)™ (a8 TT Ik DK0a# 80| T 195 %)
wherg: qA'+ qc': qB' + ‘qD'
(qA'+ qc')2=
‘ ] [} 2
(qA - qB ) - s

! ‘l

This expression for R, is the square of the renormalized

meson-nucleon coupling constant.
2
Rm =94 -

Similarly, we can obtain a dispersion relation

for All(t's) in t for s real and negative,

% 4Miyng-s
H\\kt S\ 2‘ 2[ 't‘("”‘\‘ " ~s) Rg&u LR!S\ 1"%41‘ F‘:WtS) ( 3)
4'\]\ -00

and for,A;ll(u,t) in u for t real and negative,

-t

Ry Ruit), g .
du ’ 2 Al“ 't) (1L
u\k“:t) 2‘ .u “.‘qﬂ nb t)) 'ﬂ’qg“‘_ uta 1T -;T&-du (14)

n - 00
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Single dispersion relations heave been
obtained by GoldbergerB, Capps and Takeda4 for pion-
nucleon scattering and by Goldberger, Nambu and G:hmc5

for nucleon-nucleon scattering.

Since we have not considered the asymptotic
behavior of the scattering amplitudes, ''subtractions',
described in Chapter Ill, may be necessary in

equations (12), (13), and (14).

3. Double Dispersion Relations

Single dispersion relations have ccaen
used for pion-nucleon forward scattering by Davicon znd
Goldberger6 to exclude one of the two sets of phise
shifts that fitted the scattering data; and by fater-

8

Schaim7 and Gilbert” to determine the pion-nuclecn
coupling constant. It is difficult to extract xscre
information than this from ecuations (12), (13), and
(14), since they do not include the mcmentum transfer

dependence of the scattering amplitude. The mcmentum

transfer dependence is given in double dispersion relations.

[}

3. M.L. Goldberger, Phys. Rev. 99, 979 (1955).
L, R.,H. Capps and G. Takeda, Phys. Rev. 103, 1337 (155%).

N\

5. M.L. Goldberger, Y. Nambu & R. Oehme, Ann. Phys. 2,
226 (1957).

6. W.C. Davidon and M.L. Goldberger, Phys.Rev. 104,

1119 (1956).
U. Haber-Schaim, Phys. Rev. 104, 1113 (1956).

7
8. W. Gilbert, Phys. Rev. 108, 1078 (1557).
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Since A(s,t,u) must satisfy equations (f2),
(13), and (14), it has poles at (s:MDZ), t= m¢ and
us mz, and branch points at s::hMZ, t = QMTTZ and
us= QMTTZ. In equations (12), (13), and (14), one of
the variables must be real and negative, so these might
not be all the singuiarities of A(s,t,u).

Mandelstci’ assumed that the only singularities
are those required by the single dispersion relations.
Figure 5 shows the lccation of these singularities in the
real s, real t plene. Figure 5 shows only the pion
intermediate states for channels Il and Il!l, but remember
that the intermediate states in these channels should
include all the mesons discussed in Chapter VI.

If the only singularities are as shown in
Figure 5, A(s,t,u) has singularities only for s real
when t is constant and for t real when s is constant.
Therefore, equation (16), Chapter Ill holds for A(s,t,u)

in both s and t.

x
| oty " - L .
F\ks)t)u): I‘-“—.'\ fks‘ ri(s -\&,'t)\? ) RKS l&)t,u) (]5)
oo s-9
Ristigtus= & gcu‘ Plstie Tl u')~ Alstie,t (e u’) (6
-0 t'-t

9. S. Mandelstan, Phys. Rev. 112, 1344 (1953).
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FIGURE 5
Singularities of A(s,t,u)

Poles — — — —

Branch Pts"‘i_l—\"ﬂ_
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Applying equation (i6) in equation (15), we get:

» )
I ! Blstie trie, u)-Als=(ettiew)- Als*ig thie u')+ Alsve tlie o)
(&,t W)= JS Clt ) 3 ) ) ) s /)
-0 _

The integrand in equation (17) fails to

vanisn only for (s'=M 2), tte mz, ul= mz, and in the

D
three cross hatched regions in Figure 5. Actually from

perturbation theory the integrand vanishes in a smaller

region than these. (See the Appendix).
2
s »uM7, t > LM?
s > M2, u > Ly’

2 -
t >4M , u > &M

Defining the spectral functions as:

_?MS- Als-ie,t 406, u)-ALS-16,t-(e,u) = A(sie,trit u) + ALSHEt-(e, u)
=
[P

A

P (su)= Rls-tet,uie) = Als-tet u-ie) - Aot utie) + AGS+ie t, u-(¢
!

l‘r

Als, -1, utie)-ALls, t-1e,u-te) - A(S, T ie,urie) + ALS, t4iE, U-C¢)

éf

f;’s(t’u\\:

we get the Mandelst am representation from equation (17).



. % )
a _(R» <L, a0 (yafger Jalsit)
Rlst, “) (f*\;-s)J’ 5‘ ARt % mx-u*wtg‘“ g‘“ (- Ot-t)
n 4tg
oo 0 o] ‘*N 1 “9)
r ¥ ] 1
1 ( b I {syu) A ' ' ﬁ} (t,u')
e\ MU ey +w&4 gt
4n* YMg BTN

The assumptions made in obtaining the
Mandelstam representation are too stringent. Eden10
has shown the validity of the Mandelstam representation
for the following conditions.

a. In the real s, real t plane the singular-

ities of A(s,t,u) are those shown in Figure 5.

b. A(s,t,u) is analytic when one of the
variables is real and positive and the other two are

complex and satisfy s¥ tyu = uM2,

The most general conditions for the validity of the

Mandelstam representation have not been determined.

L, Determination of the Scattering Amplitude

Attempts have been madg to use the complete
two dimensional Mancelstam representation and unitarity
for piod-pion scattering.]] However, most applications
reduce the Mandelstan representation to a single dis-

persion relation.

10. R. J. Eden, Phys. Rev. 120, 1514 (1960).

1. See G.F. Chew, '"S-Matrix Theory of Strong Interactions",
W.A. Benjamin Inc., New York, 1961.
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These single dispersion relations do not fully
utilize the implications of the Mandelstam representation,
but they do give more information than equations (12),
(13), and (14). The difference between single dispersion
relations obtained frcm the Mandelstam representation
and equations (12), (13), and (14) lies in the assumption
that the only singularities of A(s,t,u) are those required
by equations (12), (13), and (14).

Assuming these are the only singularities,
we can remove the restrictions that one of the variables
be negative. For example, equation (13) is valid
in the physical regicn for channel |, where previously
s must have been negative. This is the single dispersion
relation that Cini and Fubini12 use to analjze nucleon-
nucleon scattering. Ve sketch their analysis below.

Making the change of variables:
U:LI-MZ- s—-t
wiolMi s

- dul= dt!

12. M. Cini and S. Fubini, Ann. Phys. 10, 352 (1960).
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in the second pole term and the second integral in

eguation (13), we get:
o0

RS, uy= Z} (M\T qu “:TSC{' H‘t}.u S)+_.. Sclu ._i(_\!’)b (20)

Sy ‘fﬂq

Unitarity gives expressions for A2 and A3 similar to

equation (10).

qood} 34(%:1*‘30'?“) L3ahl Tl Y
(21)

AL 0= “’z:m

ROL.

it v o4
Hsk“)s)":(lz) }":(“"boﬂc{)oﬁ%o&m%\) 8 (‘(’F\_*%c.?h)<%ﬂ%t\TTlh><“\Tl%313>

The sums are over multiparticle intermediate states,
since single particle intermediate states have been
split off in the pole terms. Cini and Fubini consider
only the two pion intermediate states and approximate
the rest of the sum by a finite series of Legendre
polynomials. They do not consider the possibility of
heavy mesons.

Ignoring the heavy mesons, this approximation
is reasonable, since intermediate states only contribute
when the energy is greater than the mass of the particles
in the intermediate state. Thus, the two pion state
contributes for t or u greater than 4M¢ , while the

three pion state contributes for t or u greater than 9Mﬁ
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Noticing the symmetry of equation (20) under the inter-

change of t and u and epplying the Cini-Fubini approx-

imation, we get:
(o]

B(s,tu) = %“Ilfn',‘g‘it' ‘)t"“(tts +(t ou) 2 X\s) .X(me)

M
wnere s, t, and u are in the physical reglon for

channel 1I.
s= 4(32+ M2)

t :-232( 1- cos)
u=-232(1+cose).

J%ﬂ(t',s) is the two pion contribution to Az(t',s).

(amyt R R AT T ‘
lm = }S‘ Pﬂ%‘;(“‘%"ﬂ“[’o&%ocbﬁb) t() (BAJ‘ZD'PH'?TIK%%JTT'?ﬂPﬂ><Pn?x;\T\IZID

We express the T-matrix in terms of the

scattering amplitude Tor antinucleon-nucleon annihilation

into two pions:

P l
<abﬂ%)g\-‘.-r\ ?ﬁ?ﬁ>: (16 S pO'“ %en %GBYA B (%H%L Pﬂ'?ﬂ: )

E)is the scattering amplitude for the annihilation reaction.

N#N 2> TT + TT.

These results give the following expression for A(s,t,u).
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_‘Xff_ _‘?Q__ 1 B e Brbr) Blsats W) 4 ,
H\S,t,u) = M-t T \5 t-t g\“,—;t 34- PZTI’WP)oTB( R%D ﬂ é ‘() %D‘?r“Pﬂ)
AMG : (22)
L

+ (t<—> u) +Zo‘ ¥ (9) B leond)

L and Kg must be determined from experiment. Hopefully,
they are small.

Cini and Fubini write the Mandelstam represent-
ation for 9 , bringing in the crossed channels
TI + N=TT+ N. Then they reduce the Mandelstam re-
presentation for B to a single dispersion relation and
evalﬁate the single dispersion relation approximately,
including only the two pion state in the unitarity express-
ion. Thus, the dispersion relation for B contains the
scattering amplitudes for T1+ TI =17+ T and
N¥N— TT + TT.

Following tne Cini-Fubini approach, one must
simultaneously determine the scattering amplitudes for

three different reactions.
T+ T =TT+ 17
T+ N —Tr+ N (23)

N ¥ N =N + N
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Chew and Handelstan]3 use equation (20) to de-
termine the singularities of the partial wave amplitude
in the complex 32 -plane. This method also involves
the simultaneous determination of the scattering
amplitudes for the reactions in equations (23), unless

only pole terms are considered.

Since we ccnsider the effects of ten mesons,
the large number of different reactions to be considered
in the methods mentioned above prohibits their use. We
deal directly with the Mandelstam representation, but
only consider the pole terms explicitly, and attempt to
find a convenient paremeterization for the ‘integrals.

The spectral functions have been determined
in fourth order perturbation theory for neutral scalar

nucleons from the diagrams shown below (See the Appendix).

q ;

o D
N W W, N )
For 3 (s,t) N v a N -
' N N
N | b N
A %
qC P —— - qD
For §|>3(S’U) N 4 a N 4
N N
N b N
7’ 7
9 g
13. G.F. Chew and S. Mandelstam, Phys. Rev. 119,
k67, (1960.
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/~ c
C qB
— e P P N —
N a N
N N
N I\ ‘\B\/ N \I'*
q q
For f (t,u) A D
P
QD qB
— }—— P ~—— — ;-
N a N
N N
N b N
> >
A _ e qC

a and b are any two mesons.

Vle express the contributions of these diagrams
to the spectral functions in the following way.
?Q(s,t) is the contribution of the first diagram
to ﬁk(s,t){

ab
? (s,u) is the contribution of the second diagram

to ?B(S,U).
ab
?(t,u) is the contribution of the third diagram

to H,(t,u).

ao
$ (u,t) is the contribution of the fourth diagram

to  §(tu).

The form of all of the § s is the same. Thus, we can

write:

Laolxy)= SM SM (x)(yLiy)



and substitute the appropriate variables for x and
y to obtain the contribution of anyone of the diagrams.
An approximate expression for Iab(x,y) is given
in the following.
With the szectral functions approximated
in fourth order perturbation theory, equation (19) is:

R PO | _‘__
HLS,t,U\) :(ﬂ&:)* ;‘\%MI\E‘L* V/\L-‘*3 (24)

From the generalized unitarity condition
a%
(See Appendix), the spectral function ? (x,y) is in

fourth order

fobo\ >
ab \ K—Z;—b3
Sb (%¥)= Lo ud 2 L v (25)
U\/- &M y)\[kwmmb\-x]- 4m;m;)§ >
ob ab
g (x,y) = 0, for x or y less than 4M2 and f (x,y)

complex.

Using this spectral function, [

ab(x,y) has been

approximated to within 30% as follows:

Im Iab(x’Y) =

Ly ) ebemd) g | (otacE)
g /T | (0patE)s 4 D-ack-a(AkE CDRRCEYE|
L (26)
+ e(X"H'\l\ .Qr_»c B

(Ry>-RY)* ¢ B-2AY- A(AY~ ABYY~
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Re Iab(x, Y) =

3 & QA
(!&_gb)_%y e(‘v-fmg g M BX (27)
% 2 ay)50ealea)s  Qatyiay) s ay-ant

X,o—% a4 (X-d)(X-8) 31&%/[(1'-«\(«-@)?[(&«)0@7*_ 2X-%-0
3 (x-a[x- B) 3K () \ o-X 3/ &x-a) -6y

- MOQKY:"Ml} ‘[(A-c) m %(J(a—d\(o.— @) +{(x-d) (x-8) ¢ A A-G\j\&f (x-d) (x-a))
M

a-X PV ek W LEEN

) a-2) Ay -d~ =) (G
w—a\m%(m enriedel) + o= 4 (ca)ic *Y)

e N\ e-s

Hc-xwkcx-«m-rs)szﬂ«-§\kti+«m-&)k5-n)' f 2d-s-p ){aj(&-q\[&-o) )}

Mid-4)d-0) )\ B

_ New) < M )[(x-b)m Loy m»m-ﬁ)'m&f*)

(y‘:quYY," L{'M‘-XY-B.KYEL}H\I);L p-4

¥ (a-x)/(b-o)(b-@) L’?\(” \b(;d\\:\b-(s)'«& x\o-d-(s) r (‘h_“) o3 wh) Bl-x) La(:i (x-eﬂ\X-P)Hx-cl-B>

p-d

+ (b-a) /Tl 8) © w-art) Loy (*W-«nx-;)' ¥ 2A--B ” g
-
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where
d\'. (h\ g‘\'mb)x

(= (my- Mb)]'
Az (X-a){X-B)

B = L‘.m’“ﬂ-\-%\‘(\:vn:)(

(Y:4ny)

(g}
u

(=]
1}

AWM Ct &m2m,y

Ez ARG

- LS amim}t I7¢. :
22Uy e ST k(e ¢ 2mdndy ) - dp

b = A-ay/(Emdemp]+ 2a0m0Y ) X Gy

Y kS
c - (W\:* M:)— ﬂqlﬂ\) +l'lf(-:'“:+mbl* MJM:Y-- qaﬁ
d = - * A M‘;‘Al > !
£ =3y (mimge =t) - db
Mo = l

£ dld-c) ¥ Xd K-d Jx K clc-x)
\
ab(b-a)thbix-b)+Xala~x)

8(x)=0 for x¢ O
e(x)=1 for x> 0.
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3

An estimate of the size of Iab(x,y) is

1 9
given in Table 3 by a comparison of Iaa(t,s) and *« /(M:-’() .

for ferward scattering.

f. - .2
2
m,~-t a
in Toa(t,s) = 56, x 107

b -4
Re Laa(t,s) = 4f_ x 10

Iab is the fourth pcrturbation theory con-
tribution to the scattering amplitude. However,
unlike the usual treatment, it is not evaluated in the

ctatic approximation, and it is completely covariant.
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We see from Table 3 that if the meson

coupling constant is not significantly larger than the
xn

pion-nucleon pseudoscalar coupling constant (SL ~ 15 )
of the spectral function in fourth order perturtation
theory contributes only 10% of the pole term to the
scattering amplitude at this energy. The similaritics
of the fourth order expressions for scalar and soirnor
nucleons suggest that the fourth order contribution in
the charged spinor case will not be more than ~~ 10%
of the pole term. Thus, either the spectral function
is unimportant in the NN problem, which is unlikely,
or the fourth order approximation is not very ccad.

-

Since evaluation of the spectral function to ¢ :sztte:

W

approximation is very difficult, we consider oaiy pc.
terms in what follows. These have a chance of being

‘accurate at energies which are neither too high nor tco

Tow (150-300 Mev.).



CHAPTER V
CHARGED SPINOR NUCLEONS

l. The Scattering Amplitude

Since we write the scattering amplitude
in terms of nucleon spin and i-spin wave functions, we
record the following quantit.ies for future reference.
The Dirac spinor for a nucleon or antinucleon with

1
four-momentum q and spin projection § is:

% N
AFCITROL

, Bitit
AM A A ig-g)-

UaEA) = 4| o
B TR LY Ut o) i A i

* Ay t M
[ (1)

Btita
. AtytM J

WeTA) = WG Y,

=3 '/a_ corresponds to

spin projections parallel and antiparallel to the three-

-
momentum ‘{), A= corresponds to a nucleon, and

Az -l corresponds to an antinucleon.

1. See D.R.Bates,"Quantum Theory",
New York, 1962.

Vol.lll,Academic Press,
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In this representation, the spinor oper-

ators are:

0 -i O

o

(i 0 0 0}

/0 0 0 1)
0 -1 0

o<
"

o (@]

L

o

o

0 0 0 i (2)

0
= Lo4Y, = i 0 0 0
0

G;‘v = -'E—(XMXV- XVKM)
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2

The nucleon and antinucleon i-spin® wave functions are:

Proton K(p) = ((\3>

_ 0
Neutron X (n) = (‘ ) (3)
)

In this representation, the i-spin matrices are:
’Z/ _ LOI) :
X = \10
o-L
Ty (L 0) (4)
Z’ (l o)
z 0-1

For nucleon-nucleon and antinucleon-nucleon

elastic scattering, there are ten independent scattering
amplitudes, five for i-spin triblet scattering and five
for i-spin singlet scattering. This can be seen as
follows. Assuming chargé independence, we get no singlet-
triple; i-spin'transitions. There are four states of

total angular momentum J , orbital angular momentum { R

2. The isotopic spih of a nucleon is one-half., See
J. Hamilton, op. cit., p. 198.
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and spin S, for a particular total i-spin T. The
five allowed, independent transitions between these

four states are shown in Table 4.

TABLE L4

Allowed Transitions in N-N and N-N Elastic Scattering

SPIN SINGLET

== u=ly

SPIN TRIPLET
J‘l;'\—-)J =£4- |

J=2i Pyl

Jzlt—=d =L
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That tnes2 are the only independent
transitions can be seen from the following arguments.
For a particular i-spin state in nucleon-nucleon scatter-
ing, the Pauli principle3 requires that the parity of
singlet and triplet spin states is opposité since the
total wave function must be antisymmetrijc under the
interchange of the"nucleoné. Thus, a singlet-triplet
spin transition violates parity conservation insofar as
T is conserved. In the spin triplet state, transitions
fron J=; to J-.,!;*t I and from J=f; 1 to J= 0,
also violate parity conservation. The transition from
Jz=hi- 1 to~J=£++l is equivalent to the transition
from J=f . +1 to J;£+—l by time reversal invariance.

All of the arguments above apply to anti-
nucleon-nucleon elasticscattering except the application
of the Pauli principle. However, in this case, G-parity

§;+T (-1 #*T

and since T is conserved, there are no singlet-triplet

and parity conservation imply (=1)

spin transitions (See Chapter VI).

3. Notice that in the case of neutral, scalar nucleons
(equations (23), Chapter |IV) Bose statistics were
applied. This was done to avoid the inconsistancies invdv-
ed when Fermi statistics are applied to scalar particles.
See F. Mandl, "Introduction to Quantum Field Theory",
Interscience, New York, 1959, pp. 16 and 48,
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L
Following Goldberger, et al., we take the

ten invariant amplitudes shown below.

Channel |

R A C A T AU AT AT PP AU

e [ F a5y B AT R @AM Rl R e:3)] P

where ?{ and 13 are singlet and triplet i-spin
)
projection operatq;s.

Po" - ;%c’ Ty

& . (6)
fi= 3 T
Channel 11

A}n - [Eo (Sn'.gu) T E.O(T;\ fr’u) t EO ( Ay 'ﬁu H .lsq? (Vu"'vn) ¥ 'F"; ( le{)“)] ;E

(7)
F[ ! (S S)FE e Flac R+ B (V) o (e Bl B
where
-’/3 — I — %c" %B
° (8)

-y
-

4—
13 3*‘%&"%3
' &

Lk, M.L. Goldberger, M.T. Grisaru, S.W. MacDowell,

. and D.Y. Wong, Phys. Rev. 120,2250 (1960). A slightly
different amplitude is used by D. Amati, E. Leader,
and B. Vitale, Nuovo Cimento 17, 68 (1960).
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Channel 111
13' [ F (Sm Smh’ F ( m lu + Eo( F‘m— ﬁm\) ¥ E‘\-o (Vu\+ me' Eo (Puf ‘ﬁm)-) f\)o
(°)

[F S B T B A B L k) (B0 P

where ’PQ-_- |- T B (10)
¢
= - -»
'P: +fn'rg

The operators Sl’ etc. are analogous to the

3 - decay operators.

Channel I, for 5, F‘\\T. V\ ?l
[’\('[anl )\D).SL\&\‘kp,Q_B)\B)a.(‘kcG‘c }‘c.)_ﬂ_ M("kqwﬂ )‘H)

A

for H T\ ?
Ul T )g_mhmg)a UgoTo ) L UgqTara) (1)

M= AR = A=Ay =
where:
| for § ¢ g
_ x,.\ for Y & V
_D_: %:WMV for T fr -T
‘\.(g XM for A & ﬁ
Xg for ? & "?‘

for example:



58

Channel 1l for Su HuTu vu Pu

U (T M) 1 U Torp) & (5 T he) 0 Uk Ta )

AL

for gn ﬁll—l—ll Vll E;
UL T A) QL U (4,8 ) Ul T M) 2 Ui Ta p) €12)
)\ﬂ = /\c_ =

A= Ap=-1l

Similarly, we define the operators for Channel I11.

S,T,A,V,P are related to‘g,?,K,V,F as follows:

(5) 11 1 1 1) (s
v 4 -2.0 2 -4 v
7l =L l6 0-2 0 6|« |7 (13)
A u b 2 0 -2 -4 A
3 A -1 -t o) el

~

Equation (13) can be verified directly using the
definitions of the spinors and spinor operators (equations

(1) and (2) ). We also record the following relations
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which result directly from equation (13).

s (2 1 1 0 0) (5-79
v -4 2 0-2 4| vV
Tl= L |-6 0 2 0-6| |T+T (14)
A T 0 2 0 2 of [A-12
P o-1 1 0 2fP-F
(3) T2 1 1 0 o1 [s-3
v 4 2 0 2 -4 v
T =-5:_- 6 0 2 0 6 + T (15)
A 0 2 0-2 0 |A-A
Fl el

2. UCrossing Relations

We can determine the behavior of :} (s,t,u)
under the interchange of t and u from the Pauli p:inciple;
From the definition of t and u (equations (7), Chapter 1V),
this interchange corresponds to the exchange of particlés
C and D. In Channel |, the.wave function must be anti-

symmetric under the exchange, and

"}( (s,t,u) = -—-"3.l (s,u,t) (16)
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The exchange C &> D gives:
Ce»D
P -Po
Se S
VeV (17)
-~
T T
A7
-~
PeP
Equations (16) and (17) imply:

(g F:i’

L

F-E*(S.t.U) = (-1) (s,u,t). (18)

The crossing relation between Channels |

and Il has the following form (See Reference &4).
=h

F?‘ Fu Bih Fh
Eﬁ‘ rt_'k B{;h Fl:

where IB- is the i-spin crossing matrix and Fﬂ
TN (R

the spin crossing matrix,

(B’.“‘]—-— [%; %n‘]i [l' 3'] (20)

(19)

rrull r:; E; an |g\ r-""l (,’4+ -lw
<r‘ B S R A Y o S R R R (21)
tk [:x r;‘:.l:sr;t}r;r ‘i— Lo i
R I
C e -t 4t

is
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The crossing relation between Channels | and 11l can

be determined from equations (18) and (i9), but it is
not necessary to give it explicitly. Equations (18)

and (19) contain sufficient information to determine the

features of the dispersion relation.

3. Double Dispersion Relations

Assuming each of the | E.?_ (s,t,u) hasj_

only the singularities required by causality and unitarity,

we get the Mandelstam representation (equation (19), Chapter

IV) for each F-P(s,-t,u).

L b )+ Roié
F (st w = Zﬁmk( et T )+( r‘\S-S)
_‘_ S‘lt d flﬂi t u §— S ?l.\l ()t) (ll)
o (t-t)(utw) (‘ S)e-t)
My Mg 4M*
+ —La. SJS‘ SJU' ("\H:& fu.'\.'l“uu)
™) ) (sts)(w-u)
M g My

where fm* (truy = (-0 S’Hl% (u',t').

We have applied equation (18) in equation (22).
The residues P\m ‘& and R'Di‘& and the

spectral functnons can be

nig and fa.s'\-g

determined using unitarity, similarly to eduations (14),

Chapter IV. However, since equation (19) has related
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Y3lt to ﬁaﬁsﬁ and the u pole term to the t pole
term, unitarity applied in Channels | and 1 gives all
of these residues and spectral functions. This is the
reason we do not need expliéit crossing relations

between Channels | and I11.

4, Cross Sections

We now relate the. invariant amplitude
defined in equation (5) to the cross section. First
we define the amplitude for transitions between states

of given helicities, following the formalism of Jacob

and Wick.s

CTALALAS

The helicity, § , is the projection of the spin of
a nucleon along the direction of motion of the nucleon.
(P‘ is defined such that the relation between the

helicity amplitude and a particular i-spin component of

.3-\ (s,t,u) is:

4’7(‘6*“\(@“’»\‘““’&%) F(S S) (25)
23

1 F&L(T|*:i-t)+ F:(Hl-ﬁl).‘- FA; W.*T’.)*Fs: (P\'?‘)

where i = 0,1,
5. M. Jacob & G.C.Wick, Ann.Phys. 7, 404 (1959).
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The cross section for scattering in a given
i-spin state between states of definite helicities

is:

d Wi(“’n% s LAY ' &
o = <o) Pioa)| (25)

There are no singlet-triplet i-spin transitions. The

ten independent helicity amplitudes are5
YARCEIRAESVARSALATEN
AT RVENERIFATATRY,

RO LAV R SIS AR,

(25)

\P;l.'z <'/,,'};,\ Lpll"/; l/1> - <'l/;t/1.\ “Ptl ,/a.' l/a.>

LP; = (’1 ‘/:.\\Pi‘}:.'l/x> = -<‘/,.“/;\ WLI ‘/;.'/a.>
LA AR S AR A B
<"=~ h\ w.\\-./"‘/o':-(-}a;‘/a.\ \p‘l 55.‘&)
AR ERN T LD CRTTRV IR

where i = 0,1.
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The connection between the F:* and the
helicity amplitude, \PR , can be determined from
equation (23) and the definitions of the F%* b

(equations (5) and (11) ).

IR o L
kPl Tamys [”1{ Fi+(R+Fy)cou} - [3fy++ Y E‘J
a” mF[-SF/ﬂr" ORTNA mF Imeﬂn F,- ‘bFs]

LP_:‘ leF Llf'\ F +5F1’/ t % ‘ Fle st )]m 9/1 (26)

L LU (SN Rt B
- i?rT;‘ [ar e SRS NS AN sintg,

i

=My
Ce= 7 (B tFy) swmo

where s =4(3%+ MZ)
=922
t=-2q° (l-cos8)

u'—-Za2 (1+ cosB)
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Jj’;:n\: Jjgf\ - 8lT(x EI'IM;[F:'\' (r4 &‘)me:\_

(s BIR ¥4 lsmge [ioRsmglene (29)
PR PR LR SRl B (EeRE) Lty

TS | : ' 2.
+1§{1MxF;+ Sh,'/J_— ‘lf(-r-', + 1[{,'4- Fé)] Sw:’*'@/J~

+4Mm> 'Ilsﬂmléi
'j___)._@m P { IM I'F+ F+l‘;+F4+Fn, m@l—-
oA L1 (30)

7 *‘ls‘ iﬁ"“‘s'l\ L 2[R Te (G + )RR
(R e - TR+ LR AR A

£ |2 (B B+ (R R T R R R aR 4R ) [ !

8
Y

1 \m (E%F )+ £ (ErE)- 3 LR R PR ) Sl g

Fant | FAE YRR s eg
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Neutron-neutron and proton-proton scatter-
ings are in purs i-spin triplet states. The center
of mass cross scctions for these scatterings with
unpolarized incident and target nucleons is the
square of the arplitude obtained by averaging over

initial and switing over final helicity states.
[)
A

dTinn) _ JTY) _ Z Z ZZ |<i4l ‘?"'i'}?‘k

d-S)- A.ﬂ. ‘-_l,&t _}"‘l L"ﬂ

Applying equations (25), we get:

dmm): M)"z;‘.l‘{*l ¢ P a9 Ll (27)

R
W > &
2| v g | e g
Neutron-proton scattering is in an
equal mixture of i-spin triplet and singlet states

and, similarly, the center of mass cross section

for unpolarized incident and target nucleons 1s:

dSnp)_ {l\\{) “P‘*l\‘f) &pl

da e
+1\¥P:+ A AT
AL AN

Applying equations (26) to equations (27) and

(28)

(28), we get:



CHAPTER VI
PIONS AND HEAVY MESONS

1. G-parity
The quantum numbers specifying a state

of strongly interacting particles with zero baryon
number, B, and strangeness, ), , are the spin, J, the
parity, P, the i-spin,T, and the charge conjugation
parity of the neutral member of the i-spin multiplet,
C. Lee and Yangl introduced the operation G, which is
the product of charge conjugation and a 180° rotation

about the 2-axis in i-spin space.

.\ﬂ'T;. ()

All members of an i-spin multiplet with
B=0,L= 0 are eigenstates of G with the same G-parity.
We specify the G-parity of all charge states instead of C
for the neutral state. Also, since G is conserved in
strong interactions, it can lead to selection rules.
. The i-spin wave function,)L , ‘transforms under
s as follows:

For i-spin zero,
Ty

e Xo = Xo (2)

1. T.D. Lee and C.N. Yang, Nuovo Cimento 3, 749 (1956).
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For i-spin one, since

X+= X‘{’.(XL
X=X UK,
-XO: X;
and since
. Xu "X:
T,
€ T X = Xu.
X3 -Xs
then
. 'y X
etﬂ'T; X- - _ X+
X’ X°

2. G-parity of Baryon-Antibaryon States

For a nucleon-antinucleon state with zero
charge, charge conjugation interchanges spacial and
spin coordinates of the particle and antiparticle. The

nucleon-antinucleon wave function is

) AL R LERM YR ARSI AN PR A
| T and X are spin and space coordinates.

C \K : .(N!;I)= |'V-\X,G".)[nx*¢*> * lsxnﬁ'&l P, T

eut

If a1' and bf are antinucleon and nucleon creation

operators then:

C e, 990 { ) B8 £ asa B (e} | o)
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Since the fermion operators anticommute
< t t
C‘K.d.ww - {bhumalixsyt bht abtm) |0

C \Yhtqt. (NR)= - \Y\X,_“}.)lﬁ X.W.> Al qu'x)ll;x-“.l)

The interchange of the X; and T gives a factor

(-l)L (-1)5”. Thus, we get

C \H\eu't.(NN) = ("|)L+l (‘\)SH neut, (NN) (4)

L and S are the orbital angular momentum and the total
spin. Since the G-parity of all members of.an i-spin
multiplet is the same, equations (2), (3), and (&)

give the G-parity of nucleon-antinucleon states as:
L¥SHT
G=(-1) (5)

, Equation (4) shows that the parity of an NN state is

(-I)L"']. Thus, N and N have opposite intrinsic parity.
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Table 5 shows the G-parity of nucleon-antinucleon

states wlt_h J< 2.

TABLE 5
G-Parity of NN States With J< 2

NN State T J P L S G
1S, 0 0 - 0 0 +
'S, | 0 - 0 0 -
3p, 0 0+ I +
3p, | 0+ I -
P, 0 |+ I 0 -
'Pl ] | + I 0 +
3p, 0 | + Lo t
3, ] |+ Lo -
351 0 | - 0 1 -
3| | | - 0 | ¥
3p, 0 | - 2 | -
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For a lambda-antilambda state, the wave

function is:

Y(AR) = |AXT) IR K6

CY(ARY = [RXSY IAXED = ()" ™ W(aR)
Thus, the G-parity of a lambda-antilambda state is:
6 = (-ntTtSs » (6)

since the i-spin of the lambda is zero.
For a sigma-antisigma state with zero charge,

the wave function is:

YW(Z-X') = a | TAGIEAGY b1 2X.6)| THa)

+ | X T aw)

where a, b, and ¢ determine the .i-spin state.

C t\’ntu‘t.(zi) = (& ‘ i°x|€|>l ):'oxxwa-)*' b l i\a* xl¢l> l E*X.\ WAS
e TR IRGY

Lt S+1 o
= ()TN YR D)
Thus, the G-parity of a sigma-antisigma state is:

G=(-nttStT (7)
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- A complete discussion of the G-parity
of baryon-antibaryon states should include 2 7\ and
2 A\ states. However, the G-parity of these states
. depends on the relative /\—2, parity, which has not

been determined.

3. Quantum Numbers of Mesons

A meson with strangeness zero is
spedified by the quantum numbers T, J, P and G. Table
6 shows the sixteen combinations of these quantum
numbers with J<2, T<2. Only ten of the mesons shown
in Table ‘6 have the same quantum numbers as a nucleon-
antinucleon state. Notice that equivalence to a nucleon-

antinucleon state places the following restrictions

on the G-parity.

Scalar meson G = (-l)-_r
Vector meson G = (-I)T"l
g (8)

Axial Vector meson G = t(-I)T

Pseudoscalar meson G = (-l).r
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TABLE 6
Mesons With J<2, T2

MESON JPG T NN STATE
ott 0 3
PO
o+" 0 -
SCALAR ott 1 .
ot~ 1 3,
1t 0 -
1~ 0 3s) & 3p,
VECTOR 4
1 1 3sl 530l
1~ " ] -
1t+ 0 3p,
1+ 0 'p,
AXIAL
VECTOR [ | Ip,
1+ 1 3p,
ot 0 Iso
0" 0 -
PSEUDO o~ ¥ 1 -
SCALAR I
0" ] So
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- Table 7 shows the meson-nucleon interactions

that are linear in the meson field and display strong

interaction symmetries (conservation of J, P, G, and T).

TABLE 7

Meson=-Nuc

leon Interactions

MESON T INTERACT I ONS
° - o - o
scamr | BWNNY [ NN
CORRENY R Rgeand)
[~ 0 ~ M O - H 0= Tar )“ 3. v“
VECTOR OL%V NNAM\'P:J *vaHva tv N..f.N(_"P:. ),\‘P)
l %;&‘ENQ}*\P;‘] “’J NXA%N' \ov“ 'C‘: R’ E‘) %N' 3u¢v)’34¢:)
3 Fun
0 - ) 0= M
OE:FJ&NJ‘.‘&M} | ‘f’“ N“‘AN ‘Pﬂ ta NXCG%WN L):‘ :-AA\P’J
cgé?hR -+ - - &~
. N - | - - >
1 [zﬂw;‘méu\?n] hNt;Xu‘cN-S/’n“ ts i&’c%"‘?u-““\p’:j‘(}é‘) :
of NG NY,  |[s NGHaN o %)
SCALAR .
- L e
! %'\’ NETN-9, [ﬂ N HﬁtN'éu‘P-}

*We do not use the bracketed interactions for reasons
explained in the text.
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For vector and axial vector mesons, Wentze12
shows that QM\PH' must vanish identically to avoid
negative energy states. The vector and axial vector

.Interactions for the scalar and pseudoscalar mesons

can be transformed as follows:

+5 q}N XM\YN én\& < - ‘}5(3‘5\’.; XM \YN) LPS (9)
'f", :\.’u‘cxu*fvéﬁa‘f)p:- {-PUM ‘PN ng“%)tpp (10)

Application of Euler's equations:

3l ) 38
L2 YT

TR IRT
Y2 S T P!

gives the same field equations for both interactions

in equation (9).

CRRIRTAL ARAR WAL (11-a)
(D-M:) \Ps = "fs QM.:JI—/N KMYN (11-b)

2. G. Wentzel, "Quantum Theory of Fields," Inter-
science, New York, 1949, Chapter 3.

\
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The Euler equations also give the same field

equations for both interactions in equation (10).

Chadu M = fy Gt (90 Y (12-2)
(U'W\}) Opz-4 3, (% ¥ {uty) (12-b)

Expanding the right hand side of equation

(9), we get:

“s-\Pﬂh‘y«léuk@: -1 (o ‘R,Kul t +q{"w““)“%§)¢5

Applying equation (ll1-a) and the conjugate equation,

we get: |

£V tu o du = - 4 (MT e - o o tat Yo 00 4,
. | (13)
== 38 e (0 ¢,

Equation (13) shows that the vector interaction for

scalar mesons is equivalent to an interaction that is

quadratic in the meson field.
Expanding the right hand side of equation

(10), we get:

'hiipﬂ xf XM ‘YN é“\Pp = " "'p ({ JMWN XSXM} \YN+ 'EV{(C xM 3M‘*,N} ) LP&
since [XS,XM]+= 0

$o Yy Sctuty Wdp=- o b bl Yo t+ Yo ts{ 3 R AL
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Applying equation (12-a) and the conjugate equation,

we get:
'fp\-yN xs XM YN éMLPtF {'p (a M\T’N xg YN - &ﬂ,q’n XA YN )M\Pp) Lpb (14)

Equation (14) shows that the axial vector interaction

for pseudoscalar mesons is equivalent to the pseudo-

scalar interaction to linear terms in the meson field.
Since we calculate only the pole terms

explicitly, and since we eliminate negative energy states,
we take:
°- l- o _ ‘= 0 \ ° '
."'s'fs'fv‘ﬂ» LR VA PR PR
The G-parity of the mesons in the interactions

" without brackets in Table 7 is determined by the con-

servation of G-parity. The G-operation has the following

effect on the nucleon fields:

GYatG=w ¥al,

G%ﬂ%%g'“wc %ﬂ%% ()

where

We=l oy o

i, X‘XH) X;'

w‘:"( for = XM’G_}_A,XC%I
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The mesons have the same G-parity given in equations

' (IS), since G-parity is conserved.

Scalar Meson G =(--l)T

Vector Meson G=(-1)TtI
Pseudoscalar Meson G= (-])T (16)
Axial Vector Meson G = (-I)T for .= ¥ XM

6=(-NT for.a= g T

Equations (8) and (16) are the same, as
we would expect, since both sets of equations derive
from strong interaction symmetries. Notice that the
vector meson has two linear interactions, and there are
two axial vector mesons.

Five mesons have been observed. Table 8

shows these mesons with their masses and quantum

numbers.
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TABLE 8

Observed Mesons

MESON MASS T JPG DECAY
-- To—=ay
04 140 Mev 1 o Yt ut 4y
3
W 780 Mev 0 N w— 3T
4 -t
§ 750 Mev 1 1 p— 2710
Y
n 550 Mev ? ? n°— 317
(A

)? 575 Mev ] ? fi = 217

4, Mesons and the Nucleon-Nucleon Scattering
Amplitude. '

The (,\))f) "L and { mesons have been

studied primarily by their decays.7 However, Lichtenberg8

and others have considered the effects of mesons with

various quantum numbers on the static nuclear potential.

3. B.C. Maglic, et al., Phys. Rev. Letters 7, 178(1961);

& M.L. Stevenson, et al.,Phys. Rev. 125,687 (1962).

-4, J.A. Anderson, et al., Phys. Rev. Letters 6,365 (196l);
D. Stonehill, et al.,Phys. Rev. Letters 6, 624 (196)); and
A.R. Erwin, et al., Phys. Rev. Letters 6, 628 (1961).

5. A. Pevsner, et al., Phys. Rev. Letters 7, 421 (1962);

P.L. Bastien, et al., Phys. Rev. Letters 8, 114 (1962);
& D.D, Carmony, et al., Phys. Rev. Letters 8, 117 (1962).

6. R. Barloutaud, et al., Phys. Rev. Letters 8, 32 (1962);
and B. Sechi Zorn, Phys. Rev. Letters 8, 282 (1962).

7. See for example D.B. Lichtenberg & G.C. Summerfield,
Phys. Rev. (to be published).
8. D.B. Lichtenberg, Nuovo Cimento (to be published);

D.B. Lichtenberg, J. Kovacs, & H. McManus, Bull. Am. Phys.
Soc. 71,55 (1962?; and N. Hoshizaki, |. Lin, & S. Machida,

Prog. Theor. Phys, 26, 680 (1961).
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We determine the mesons'! pole terms in the nucleon-
nucleon dispersion relation.

The pole terms are given by single particle
exchange In perturbation theory. The meson exchange .
diagrams that give poles in the nucleon-nucleon amplitude

are shown in Figure 6.

%Y q q q
1§ \ D B LN N C
L8l Vgl 7 rd
m m
: > o > —
q 4 q q 4 q
A c A D
FIGURE 6

Meson Exchange Diagrams

The contributions of these diagrams for the ten
mesons that interact linearly with nucleons are given
in Table 9.
In equation (22), Chapter V, the pole terms for

the ten invariant amplitudes Fij are given as:

F?(S,t,u) = };\‘ Rmi% (w-\%i' + -1 ) (17)

mi.u
Equetions (14) & (15), Chapter V, give the exprsssions

in Table 9 in the representation of equation (17). The

R are glven in terms of the coupling constants and

mi j
masses in Table 10. Iquation (17) and equation (29)
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TABLE 9

" Meson Pole Terms

MESON ' POLE TERM

JPG T Mass

o0 M ()RR S ) B-RIS mi- )
o1 My (VRS fimw) L) BRAR) S A

1T 0 My (VDS )R ku) - (O VAB ) (RR) et
T My (@ VSRR g (€T ) ORARY gt
M0 Mg () R A ma-w) t e ) BB R /i)
*T1 Mg () 6RR) R fei-w) TR GRAR) A finit)
M0 My - (e (R B i PR B B /1)
M Mg =My G ORI A T M ) (R B}
00 Mg () (BB fidw G RR) R /ing-1)
071 Mg ()RR ) T ) BRI R/ (Ml t)

0’z (foramtd)” ) a's (fpamty)’

b= M- 4MtE) Bobamty) 5 b= Mg () -4Mt, (fyHamty)
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and (30), Chapter V i

JW\g ey sive the differontial cross sections.
Tt S = | LR, ket i R ,_.u\tme]
Bl R (K b )[4 B Rt o | (1)
(15 4%) Ry MR i b con B4 L3W Ry
'5’ R e P \l \x*' "5\%{[‘“1 Ruur 3 Ru&\][;“-‘t';}:‘*}"’

= I N
1’ ( Reans* Rt Rms‘\\( mit +M‘-U\\“ m“_e, 4 '!5‘21 ilhnkm”.*.

+\“

2 RM*;\ '\\’t- ‘;.“—&'2\ ( Rmui’lﬁms\'\'ﬁmg“m “t M’M)l qug’ +
4M* { &(“M\\"'?‘mﬂ\(;-(‘ m‘-u\\ S.\M‘GZ

J;q}:» = iTl]-T‘l {L l L MxI,Knlc( bitim-}-.u\{'gmu(';l‘.f‘-ﬁ H.[( Ragt R"'“) oz t M “).‘-

(RMM"RMI\( M’ Lt M u\) 00’19] L {."'s"l"?][Rmo(m’ t m’-u\“'Rqu( =, r lu),*'

mit ™
L1 e 3 Rl ) H{ (L W W g )
f) HE3 Rt Ruag) Lt 8 + [3M Runs o Rovss [
w.mrm=am.-1=mn.;l:,+.:%1 1342 rvaet (x
3 Kmfo][»\ e Y u\& *'[”ﬁ‘.m Rmn][\m’-t m ul"’?r [Rm.,
e “'Rmsolim Lt “mk u]*‘l- [Rmu“fml“?u«n][uer n«*—-ﬁ)(
et L lI,‘im Rmaot 3 Ruso L wiry Furt 1+ 190 Ruray +
2 Kmq.][""rt M"u]' % {‘ﬁwuo + xRm3o + ﬁm?b][mtt J—

Y “Ronnit 3 Rwy PRy [ [ S ! _SLTH swite, +
4M 12|{‘_RMLO.} le-b][w\"r m> H‘\+LRW\&I+RM+JLM)~T

v;fu]\g Sm 91
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In equations (18) and (19),
s=U4(q 2+ M_z)
t:-232 (1-cos8)
u=-282 (14+cos8)

and the sum on m is taken from MI to MIO‘

Equations (18) and (19) can be used to
study the propert}es of mesons from nucleon-nucleon
phenomenajor,when the masses and coupling constants
are known,they can be used to determine the NN cross
section. Because of the large number of parameters
in equations (18) and (19), comparison with experiment
must await further clarification of heavy mesons.

We have considered only the pole terms in
equation (18) and (19). The effects of heavy mesons
should include an evaluation of the spectral function
in equation (22), Chapter V. We showed in Chapter IV
that fourth order perturbation theory does not give
adequate evaluation of the spectral function for scalar
particles,and we expect it is not any better for spinor
particles. A more complete evaluation than this is

beyond the scope of this work.
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TABLE 10
Residues, Rmij
il Jj|m my | mg|my |m5 |mg | m7 [mg |mg |mjg
1o L@ 36)|-a° [-3a' [0 olo|o]o]o
S| % ey sk,
2o [QOPSIY] 6 [38 [0 | o [Caiseady] GO Rgt
4 |4 |4 | & 4 [+ | % | &
3o | o | o |9 |3 LUURY 0| o oo
> >~ EN o~
wo [P 309 2% [ URTT3 aVilmgar ity 307 3t
™ T |- _33/4_ > | > | 4 4 4
\ (it Bigtal | (400 3(g0)*
o o o (32 gl L Ul 30
5 0 A 0 U il B o
(1")l (2;)1 2 [-a
IR SR 0 o|lo| o oo]o
= [ % |- |+8a
A ) [ P O R P o e I
vl |4 | EREE
31 0|0 |a U |- o | o | oo
Lrg |94
B WY )P A o g ()™ | (et (}1‘;‘_(2_,‘,)*
14 Pyl | X | [ [% | R | &
siif o | o [Lalsa [0 | o [ty (87 ]
AN > |5 | 7| >
= (feramty) ar= (fomty)*

6% {M [tV AMT ot b (M) Aty Ramt )}
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APPEND I X
SINGULARITIES IN PERTURBATION
THEORY

l. lIntegral Transformgl

Consider a function F(Z) defined in

a region, R, of the complex Z-plane by:

F(Z) = S g(W,zZ) dw (1)
C .

C is a contour in the W-plane, as shown in Figure 7.

W-Plane

ijwo(Z)

FIGURE 7
Contour Defining F(Z)

1. Our discussion follows that of R.J. Eden, Univ.
of Maryland, Phys. Dept. Tech. Report #211(1961),
and Jan Tarski, J. Math. Phys. 1, 149 (1960).
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F(Z) is well defined and analytic in R, if there
are no singularities of g(Z,W) in the neighborhood
of C for Z in R.

F(Z) can be analytically continued Into
any region adjacent to R for which no singularities
of g(Z,W) are in the neighborhood of C. Suppose that
as a point Zo is approached from a certain direction

a singularity, W_, of g(Z,W) approaches C. F(Z) can

o
be analytically continued to Z, by deforming the
contour C to C! ahead of the approaching singularity,

and without crossing any other singularity.

F(Zo) = g(Z,,W) oW (2)

]

C

Applying the Cauchy theorem before the

approaching singularity gets to C, we get:

Sg(l.w)dw = g(Z,W)daw (3)
. [

C C

F(Z) is analytic in the region away from Z, and in
the neighborhood of Z,, and from equation (3) F(Z)

is continuous across the boundary of the two regions.

There are two cases when the prescription
for analytically continuing F(Z) breaks down:

1) Pinching Singularities

Two singularities of g(Z,W) approach the

same point on C from opposite'sides.
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2). End Point Sinqularities

A singularity of g(Z,W) approaches

either end point of C.

Polkinghorne and Screaton? show that the

- singularities of continued, multiple integral transforms

are given by 1) or 2) applied to each variable of

integration.

2, Perturbation lIntegrals

The general perturbation theory
term for the Feynman amplitude of a graph with n

internal lines i53

Blg;
F£: SA*K‘..KJ*K‘Q ” ) (Ll')
T‘; (47-m2+ie)

1 is less than n since the vertex delta functions .have

been integrated out. The q; are linearly related to
the K; and the external momenta pj. B\%-‘\ is a
polynomial for particles with spin and a constant for
scalar particles. It does not effect the singularities

in either case3 and we set it equal to one.
[
- (a4
FE- gd K‘... &J*KI ﬁ'( (5)

bi-mItie)

. . . u
Using the identity, n
\ §(1- B4)

| \ AT iy
I AR S TR L
2. J.C. Polkinghorne & G.R. Screaton, Nuovo Cimento
15, 289 and 925 (1960).

‘3. For example, See J.Hamilton, "The Theory of Elementary

Particles," Clarendon Press, London, 1959.
4, J.S.R. Chisholm, Proc. Camb. Phil.Soc.48,300 (1952).
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We get:
. ' .
F=C 0 (ae (e (gt d0-1ad)
e So q, So 4y %a K, § Ky i_—__% (@ o (7)
where (8)

"
L ACWAIE )’T‘.q;(%‘-‘-m}ne)

We take the limit€ — 0, remembering the convention
+i1¢ , when defining the physical scattering amplitude.
F has possibly the following singularities.

1) End Point Sinqularities
VY =0
o= o, | (9)
Ki=0

2) Pinching Sinqularities

Y=o

and (10)

K,
Either end point or pinching singularities

must occur in all variables of integration. The form
of 1’ is such that:

-3 o oY
V=2 a ()
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The end point conditions are redundant, since d; = 1
implies that %-\-)(-.- 0. Now transform the K; to put
. i N

‘Y in canonical form.
. .
K = K+ L, (12)

where l;_ is a linear combination of the Kj(_# i)

and
J 'y
Y= ;C;\d) K™+ D, p) (13)
Then (14)
. 4
3V - (i) K
IK;
The pinching conditions are also redundant,
since K';-- 0 implies that 3__4../, =0 . Since é.:.y = _éi’
3K K  JK;
we get the following necessary conditions for singularit-
ies of F. :
l) Q_:_V=o L: | oo
3 Ki ! A

(15)

2) either o(.a' =0

or 7);'-: Mtl
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Consider a closed loop within a pertur-

bation graph.

FIGURE 8

Closed Loop Within a Feynman Graph

The p's need not be single lines. In the evaluation
of the Feynman amplitude we can choose K;j as shown in
Figure 8. The Rt 1 four-momenta delta functions at

the vertices give R equations relating the q;, K;, and

R+t

Pi» and the condition é: ?i=° . Thus we write:
q = K; - Py

9, = K. = p - P, (16)
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and

|4
g_l;;:éé—m {°(i(Kc~ +)1°H1* M*)i

‘ ]
°r Z di%1=0 (i7)

Where the sum is taken around a closed loop in the
graph. This gives the Landau-BjorkenS conditions for
the singularities of a Feynman amplitude associated

with a Feynman graph.

1) 20\;““ = 0, sum taken around closed
loops in the graph.

2) Either qL: 0

i=l, ..., n.

or %?2 yn?

Notice that ;= 0 removes the line i from consid-
eration, leading to a reduced diagram in which the

line does not appear.

3. Normal Thresholds

Consider the fourth order diagram shown

in Figure 9.
N %, ,
rd (4 7
Py y pd
r— O
pa ql pc
FIGURE 9

Fourth Order Box Graph

5. L.D. Landau, Nuc.Phys, 13, 181 (1959).
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The Feynman amplitude of this graph has a singularity

for the following conditions:

a) Q)': Q{A,= 0
2 2
b) q, = ml
2 _ 2
q = m
3 3

<) A, 4PNkt =0

From conditions a) and c), we get:
A, P, +d3 %y =0 (18)

Taking the scalar product of equation (18) with q and
93, we get: ‘

oy b+ oy %o %h, =0

oy By byt oky By =0

From condition b), we get:

A 4 bfy=0

a_ (19)
oy e by + Ay My=0
For non zero solutions of these equations,
o 2
' =0 (20)
Q,q3 m3 -
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The positive solution leads to negative
values of o , which are not on the contour.® so
there is only one singularity from equations (20).

qp * q3 = -m|m3

. i 2 SN2 i o Lo
Since s = (pg—pb) = (ql q3) , this singularity is
- - 2 -— 2 2 - . - 2
at s (qi q3) - mmg Zqiqs._(nn+m3) (21)

L, Anomalous Thresholds

Consider the singularity of the Feynman

amplitude for Figure 9 for the following conditions.

a) Ays= 0

®  q % 2
6y’ = mzz.
q32 = m,2

c) dl%|+dl%;+43%3:o

Condition c) gives:

dlml‘.’t cl)-%l' 1':+ d‘sab"‘tfs:? (22)

oo, + Ky Ay EE, 7O

dl q&u‘%g + «J%J‘%s‘\' d‘i Ms"'.'o
Definin :

I X;& = %(.%} /Mcw‘t

solutions of equations (22), only if

\ y‘iyd

%L J )33 =0

VARISY

Ya= Y Via X {(“‘/3)(1-)3;\}'/"

6. This needs further justification by a detailed study
of the method of continuation. See References 1,2,or 5.

we get non zero

(23)
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If none of the particles in Figure 9

can energetically decay into the other two at the
7

same vertex, we get
'leI;.él

-1$ Yy &l

(24)

Equations (24) and the positive solution of equation
(23) give negative values of the ©\ . For positive
ol the negative solution of (23) must be taken and

the following condition must hold.

YL 1Y 0 {1-vad™ < o (25)
and ylS: Na Y;s - {(“X:)(\‘Y;‘;’)}& (26)

In terms of the Y;% , S is

2 2
s =m 4 my” - 2‘%3|nl@3.

For Y3 given by equation (26), Y3y> -! and the
threshold is below s = (ml-}ma)z, in contradiction

to the results of Chapter lll. This is an anomalous

7. See Reference |I.
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threshold, and it will not appear unless equation (25)
is satisfied. Expressing equation (25) in terms of
the masses of the particles in Figure 9, we get the
following results: , :
2. m2¢ M2 2p n29 M2
1) |If m3 *.mh 4 Md and m|“¢ m4 > Ma ,

there is an anomalous threshold, if

2_ 2.2 2, .2 .2
My m3 mS >m +m, M)™ .

2 2 2 2 2 2
2) |If m3 + M, < Md and ml + mh < Ma ,

there is an anomalous threshold.

3) If neither 1) or 2) are satisfied there

is no anomalous threshold.

If the internal masses of Figure 9 are much

smaller than the exterior masses singularities occur for

complex values of s.

5. Fourth Order Diagrams

Consider the singularities of the
amplitude for Figure 9, for

q.2=m.2 ’ i=1, 2, 3, l'l"
S (27)

4
Z: qi‘k;=(3

This gives the following condition for singularities:
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AN yl‘s YIL}
Yial yﬂ \/14
Yiy yas I Y;,.;
Y“i' Yi¢ Yig |

I
O

(28)

where
s= (R4 Pb§1= (%,- f"s)lz m 4 myl-1Y,; mmg
= (BB = (g ) My 4 Wy =2 Yoy Whany

pa2= Mq = (%~ %4\%" g+ Mg = 3 Yyy M3 My (29)

PbZ: M;-: (%4"‘&,)’.: mtﬂ'm‘\?-"yl“i'm'm“i

Pcz = M:: (abn.'ékl‘l: Mll*mll'lYll mwm,

N ;
Pam= M= (4 )= mPemg -y, mum,

sm=m_=M,

d 1 3
equations (28) and (29) give singularities of the Feynman

For the case M =M =M =M
a b [

amplitude for s and t such that:

(s-4M) ([t amBm2 1t m2- m3)2) -4 mymg t= 0

(30)
$> 4mM*

t > (mypmy) >
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FIGURE 10

Singularities in Fourth Order Perturbation Theory

A
E>‘Equation (30)

Figure 10 shows all the singularities for Figure 9,

in the case Ma= Mb: M=Mz=m,=m_,=M. The dashed
c d | 3

lines are normal thresholds and the solid curve is the

solution of equation (30). For this case there are no

8

anomalous thresholds or complex singularities.

6. Generalized Unitarity
9

Cutkosky” has shown that the discontinuity
of the Feynman across a cut starting at one of the
singularities discussed above is given as follows: In
equation (4), for each pinching singularity ‘/(%E-Vﬂf)

is replaced by AT S\’k? -ml)

8. See Reference 1.

9. R.E. Cutkosky, J. Math. Phys. 1, 429 (1960).
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Discontinuity F =

) AL G ma Y (e ma)
p is the number of pinching singularities. For example,

the discontinuity for a normal threshold (equation (20) )
is:
Discontinuity =
-4 (% S(am) $(44-my
(3=mi)%5-m3)

The discontinuity for an anomalous threshold
(equation (26) ) is:

(32)

Discontinuity F=

| (33)
-8 Yt {amy) Samy) Sl /g ms)

The discontinuity for equation {30) is:

Discontinuity F=

o (a¥ie §0sma) §(5m) §aEm) §(gi-mg) B

- s VY Y3 Vig |-,
M*m, m Yy iy Vag *
M YaYa o v

Yia Yaq Yag |

7. Crossing Relations

Consider the Feynman amplitude for the

graph in Figure 9, representi'ng the reaction A4+ B > C+ D.

S“‘ﬁ,d‘*%»d“%,d“u vt x
(35)

FI = $ 'i( Po.ﬂ’b' PC m\

$¢( R ‘(M) 84( PA*%{ 13)
7 (2-m?)

.
—l
=
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Now consider the Feynman amplitude for the

graph in Figure 11, representing the reaction A+ C B+ D.

FIGURE 11

Crossed Box Diagram

. ' F\\\ -

| SCA l}z.. . o(“iu 34( Pat i %‘AS‘(_ Pet1r%y) S“(_ Pc*‘k(“n\ 34( Pa ﬁ%i%)

4 o - 4
é (Pa*bc "b bd\ i:.l.T (c():_ mt)

By inspection of equations (35) and (36)

Flll can be obtained from FI by reversing the signs of
Py and P Thus, F, and Flil are the same function of
Py» Pp» Pes and Py and consequently they are the same

function of s, t, and u. However, the connection between
s, t, and u and the center of mass energy and scattering

angle must be different for F; and FIII' s, t, and u
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for Flll are:

s = (pA~pB)

t= (p.-p )2 (37)

The center of mass conditions for equal masses are:

> - > -
IPA{= IPB[:\PC| :lpol = |?1’)

)
PoA = Pog = Poc = Pgp =(32+ M2 YA (38)
> > 2 >

The equations corresponding to (37) and (38)
for F| are equations (4) and (6), Chapter IV. Equations
(37) and (38) give the results shown in Table 1.

10 and Goldberger,

Lehmann, Symanzik and Zimmermann,
Nambu and Oehmell derive crossing relations without

reference to perturbation theory.

10. H. Lehmann, K. Symanzik and W. Zimmermann, Nuovo
Cimento 1, 205 (1955), and 6, 319 (1957).

11. M L. Goldberger, Y. Nambu, and R. Oehme, Ann.
Phys. 2, 226 (1957). . .

- N
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