
 

133
318
THS

PRQPAGAHQN C)? A fiGUNE PEJLSE EM 13¢

MEfiEUM WETH [a CGMPLZX ELASTSC

.‘iGBULfiS

Thesis for fine Degree 91‘ Ph. D.

MlCHIGAN STATE CGLLEGE

Saiah izzai‘ Tahsén

1953



   

   Thlsiltoeenlfgthat the

thesis entitled ‘ _

”Dqum... 4 a 3......\ P4“. :

”.2. a. My...“ uldk ..

Q... Wmmsm Mum

$4“ Ieaad TL...

r

has been accepted towards fulfillment *

of the requirements for

 
3

Major professor

Date “N. \O





Salah Izzat Tahsin

Candidate for the degree of

Doctor of Philosophy

Final examination: 3-5 p.m., Friday, November 20, 1953, Room

314 P.M. Building

Dissertation: Propagation of a Sound Pulse in a Medium with

A Complex Modulus

Outline of Studies:

Major Subject: Physics

Minor Subject: Mathematics

Biographical Items:

Born, Feb}. 10, 1917, Baghdad, Iraq

Undergraduate Studies, Am. U. of Beirut, Beirut, Lebanon,

1938-1941.

Graduate Studies, Michigan State College, 1949-1953.

Experience: Teacher of physics in secondary schools of Iraq,

1941-1948.

Member of the Society of Sigma Xi, Sigma Pi Sigma, Pi Mu Epsilon.





PROPAGATION OF A SOUND PULSE IN A MEDIUM WITH

A COMPLEX ELASTIC MODULUS

BY

SALAH IZ ZAT TAHSIN

A THESIS

Submitted to the School of Graduate Studies of Michigan

State College of Agriculture and Applied Science

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Physic s

1953



ACKNOWLEDGMENT

I wish to express my gratitude to Professor R. D. Spence for

suggesting the problem and for his continuous help in every phase of

this work.



PROPAGATION OF A SOUND PULSE IN A MEDIUM WITH

A COMPLEX ELASTIC MODULUS

by

Salah Izzat Tahsin

AN ABSTRACT

Submitted to the School of Graduate Studies of Michigan

State College of Agriculture and Applied Science

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Physic 5

Year 1953

 

App roved :2 D 3%“,01



SALAH IZZAT TAHSIN ABSTRACT

In the first part of this thesis, the physical causality prin-

ciple along with the assumption that a real (not complex) cause

gives rise to a real effect, is used to derive the following proper-

ties of the complex propagation constant k(u) _ .

1. It is analytic in the lower half of the complex u-plane.

Z. Lim kiu)=% as u_.(n ,

3. Its real and imaginary parts satisfy the Kronig-Kramers

relations.

4. It. possesses symmetry properties; i.e.,

RT) = -k(-fi) .

where the bar represents the complex conjugate.

The second part of this thesis discusses the propagation of a

plane wave pulse in an infinite, homogeneous, and isotropic medium

whose elastic modulus is assumed to be represented by a simple

form consistent with the relaxation theory of the elastic moduli.

Since the Fourier integral which occurs in this problem cannot

be evaluated exactly, two approximate methods are employed to find

the shape of the pulse. The precursors of the pulse are shown to

be exponential in form, negative for w°<<g and positive for
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(A)¢,>>‘/-,-t!I , where (a) is the amplitude of the relaxing part of the

modulus and (T) is the relaxation time.
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IN TRODUC TION

This thesis is divided into two parts. In Part I we shall

find some properties of the propagation constant applying the

causality principle and the assumption that a real (not complex)

cause gives use to a real effect. In Part II we shall discuss the

prOpagation of a plane sound wave in a dispersive medium, charac-

terized by a complex propagation constant.

Before we start the work on this thesis, we would like to

give a brief account of what has been done in connection with the

principles we are going to use.

The physical causality principle, namely that the effect cannot

precede the cause, has been, in various equivalent forms, the reason

in establishing some properties of many physical constants. Upon

the suggestion of Kro'nig (1), Shfitzer and Tiomno (2) analyzed the

relation between causality and the scattering matrix 5. They found

that, for the causality principle to apply, the analytic function S(k)

must have its singularities either in the lower half plane or on the

imaginary axis. The same principle is believed to be the deep

cause of the properties of Wigner's function (3) R (the reciprocal

logarithmic derivative of the wave function). Van Kampen (4) worked



on the same relation and found more properties of the S-matrix

for the scattering of the electromagnetic field by a fixed center and

for nonrelativistic particles. E. Hiedemann and R. D. Spence (5),

by applying the causality principle and using function theory methods,

obtained the Kronig-Kramers relations (6) between the real and

imaginary parts of the complex elastic modulus K. They further -

found that the singularities of K must lie in the upper half of the

complex frequency plane.

Sommerfeld (7) and Brillouin (8) discussed the propagation

of light in dispersive media and established the presence of ”pre—

cursors” or forerunners to the main pulse. They showed that the

first precursor travels in any optical medium with the velocity of

light in vacuum. The propagation function for light waves used by

Brillouin leads to pure resonance phenomena. In our work in Part

II we Will use a propagation constant for sound waves that lead to

pure relaxation phenomena. The mathematical difference between

the two phenomena will be discussed at the end of Part I.



PART I

FUNCTION THEORETICAL CONDITIONS ON THE PROPAGATION

CONSTANT OF A SOUND WAVE

In this portion we define the propagation constant and

present a discussion of its most general properties.

Let a pulse be applied at the plane x = O in an infinite,

homogeneous and isotropic medium. The amplitude of the pulse in

this plane is given by

f 0 (<0

(1)

f

where {(0,1‘) is a real quantity. The frequency spectrum of the

{(0.19 5 %0

pulse is then.

<p(u.) = .._’__ {(0,6) e dfi (2)

Where (it) represents the complex frequency a.) + ill which is intro-

duced to insure convergence of the Fourier representations used in

this thesis and to facilitate a discussion of the problem in terms

of the usual methods of the theory of the complex variable.

By application of Cauchy's theorem and Jordan's lemma it

Can be shown that (1) implies that in the lower half plane LP(“) is
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analytic and tends uniformly to zero as u an . The statement

that {(0,(') is real leads to the requirement that (pot) a (Ppfi)

where the bar denotes the complex conjugate.

The amplitude of the pulse which arrives at the plane X¢o

can be found by superposing all the plane waves which belong to

the various frequencies in the original pulse. These plane waves

{at-luau]

are of the form 9 where kuu is the propagation constant

appropriate to the frequency (a) . Thus the amplitude of the pulse

in the plane X¢o is given by

«boo—id

(Iaf- ‘(UJXJ

f(x,é/ = 50m; e 61¢ (3)

~co-th

If we set

99‘“) = P’mwso’m

then

too-I'd
+0044

f(0,t) = [wzalmaf~lf?u).dévaljdu +5 (fiftyAJnuf-i-Ylulanulj d“ (4)

-aoac'cx -coq"

The response must be real since the pulse is real which demands

the vanishing of the second integral in the last expression, thus



 



4-09-5d

filfhjm 441‘ +507“) £01 at] da- = 0 (5)

-w—o'd

This in turn requires that

(any) = W’(-- «1.11)

307(4),“ = -. 90"(—w,2/)

This is the condition for a real pulse at x = 0.

Now let

. zL . u

90m; .2“ a sum 2 Van +cym)

where

SUI“) = (Pkujuvat‘ - Viz“! dénaf

9/7“) = (,Q'(u),4é4a/+ 99'7“] mat

and gym,“ a 5117-“), 11) , (Jody) = .. 5V”(-u),1/)

Thus equation (3) becomes

+ao-c‘ot -

~¢°£(“IX

f(x,t) .-. 5w“) 9 ‘ du

—ao-¢.'d

(6)

1-m-CK +OO-‘O.d

gnaw-ah +y"(u)4¢hix]du +i [Cl/"(441w 4x - Wu)». idea

«I’m-Dc.“ "ND-'5.“

Let Am) a ("(4) -t' 1‘7“) (7)

Substituting (7) in (6) we Obtain





+00-“

f(x,t)=/[y’cmu.'x1wo/tk it) + y‘hsawuu mn’fl'k)

— V910}: (I. ’x} Md "xi 1- V (ca-1M 'x) MM'X/Jcfl,

+09-£d

+.~ ”Cessna/(A's; - weavré'wM/é "x2

«vb-clot

+5Vlicay(fl’x)601{(£&) - Viao'nli'x) M(‘”X)I (2’64

Requiring a real response as before leads to the following

p rope rtie 5

FM, 22) - _ /r'(—w,z/)

Anna, 2/) k ”(— ‘4): 7))

However, if we expand ‘(UJ in a power series

. __ a .- g- , -. ll 8

Am) .. 7km; - C[law ¢k‘(u)] ()

where

k7“) = I A .21. ---

+ a. + a. +

k"(u)=_é:. 2.5.. 3.5.: .---a + a3 + a, +-

then

K’(w,7/) == Kl(-“)/V)

‘K"(w,2/) =_K"(-w,u)



Hence K(”-)= K(-E) .

At a certain plane Xoal-O there is aT¢0 such that the

response is zero for (17', then

+ 00 -c'a(

~¢.k(u)x° [at

(pm) 6‘ e du [- < T (9)II 0

40-64:

If we make the substitution

the last equation becomes

+OD-éa!

-"iugxc —¢'a//4/ +c'aT

(pm) e e da = 0

Mao-('0‘

Now we set Xo=cT. where (C) is an undetermined constant,

to get the integral in the form

«:01

+00 («[I- 29‘de «kt/H .

90m; 9 . e c!“ = o (10)

-m-(d

The condition that this integral vanish requires that

' -5.‘ ]T
t I (a)

(a)(’0(a) e“f u is analytic in the lower half—plane.

(«[I- fikatllT -zulH

(b) (.f(a) e e a 3 o (11)



where C is an infinite semicircle in the lower half plane.

From (b), on the application of Jordan's lemma, we find that

(up - 724(th T

 

integral (10) is satisfied if ('0(u)e is analytic within C

and tends to zero uniformly as Ul—v- 00in C . But we already stated

that

got“) 7‘ Q” P 0

in the same region. Therefore

(«[1- ékflle

e ; finite constant

a —-> go

and («[I— §£(u)]7' a. -—)eo‘> c' D 

where D is also a finite constant. This leads us to the result

 
+41... .17..m) “a” r c c7. "’2“ (12)

which shows that the undetermined constant (c) is the velocity of

propagation as the frequency tends to infinity. By virtue of (8),

 (12) shows also that kfll) 4, 1 (12a)
ll—Pw

(up - f‘IUIJT 4' [7(a) g' [“(Wayl 4- iflfldfi'l]

e
Let Q = e

' . -/3. . . "
e and +4? ma = 3 +ul

I

Upon the application of the Cauchy—Riemann conditions on A

0!

and A , and after some simple algebra, we obtain



25-2.4 ' a~._a
9w'3v and 57 3g ’

which proves the analyticity of FY“). We can also write

£007.: aT-Ffl‘)

to Show that (mu is analytic, since the sum of analytic functions is

analytic.

Making use of relation (8) and following the method of E.

Hiedemann and R. D. Spence (5), we obtain the following:

 

(“L‘- “21)

5b))hfF/w“KW) “ du. (13a)

5:91). a 41—91. .___ aloe (13b)

«2 (aha/'0

moo) .. 1 -.. _I_/___k"(“) an. (14)
77' u

K’au 2 Ken) 4- #jk'lu) ..._~£_.. du. (15)
ul_wl

The above four forms of the Kronig-Kramer relations can be

supplemented by the following four forms if we assume that K(“)

possesses no singularities on the real frequency axis other than the

o rigin
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, co

K1212 = £32. + 3.1” m._al_ 51/“ (16a)
w w 77' a (60-40”

.59.! : _ .2. P 4’7“). “ a/ 16
w W U (u‘-w‘) “ ( b)

w

Kurd-K10); _ .2. j K’” 021. (17)

77' a

klw) =K(oo)+_2_P {mu—“— d“ (18)
. 7" (a‘-W")

where (P) stands for the Cauchy principal value.

Equations (13a), (13b), (14), and (15), as well as the last

four relations, make clear the reciprocal dependence of the real

and imaginary parts of (RI).

The singularities of K(u) have been shown to lie in the upper

half plane. The effect of such singularities on the propagation con-

stant may conveniently be discussed on the basis of whether they

lie on or off the positive imaginary axis.

The singularities which lie off the imaginary axis physically

represent resonance phenomena such as occurs in diSpersion of

light waves in optical media and which are almost never present





11

in sonic media. The singularities which occur on the positive

imaginary axis represent relaxation processes and lead to the type

of dispersion found in many sonic problems and in electromagnetic

waves of long wavelength. Throughout the remainder of this thesis

we shall assume that all the singularities of Kt“) lie on the positive

imaginary axis.



PART II

THE PROPAGATION OF A SOUND PULSE

IN A RELAXING MEDIUM

In this portion of the thesis we consider the propagation of

a plane wave pulse in a medium characterized by a complex prop-

agation constant which arises from a complex elastic modulus.

We assume, as in Part I, an infinite, homogeneous and iso—

tropic medium. The pulse applied at the plane X20 is given by

{(6) :0 ('(0 ,é>A

f“) =44" (4.1" 0 I
A

tell

where “AH? .51- and A = m ..

p is the period and m is an integer.

Mp,

The Fourier transform of {(Z') is

A -;

-4“

(9(a) =/Mw,[' e c!!-

a

A (TEL-‘0‘! -‘:(wo+“)t

=:/_§ a2 dé

O

 

  

(19)

26

zrrc'm -££:—:"~u vzfl'im -£’_"_‘£Zu

___!_ e e -I + e e ’ -:_

2( (“do ‘“) an). +u)



. mm“ 13

"‘ «I. /

rpm) .-.- w. e "

(I'M-6d}

 

The amplitude of the pulse observed at a point X=I50 at a

time (t) is given by

. “a ('[al‘ - hm]

font) ”iii/(Pm) e 0’“

~00

+oo

-——— _«_/._ - e do: (201
177' (flu-6d,?-

~00

: L+Iz

( if“! aha) x] ([uu - A) - km) 1:]

e 1

To find an expression for ‘02) we assume that the relaxing

modulus of elasticity may be represented by

 M(«) = Mano) (1— liar)

Where (a) is a constant characteristic of the medium and('Z'/

is the relaxation time. This is the simplest form of the complex

modulus which can be employed to exhibit the effect of relaxation

on the propagation of the pulse. More general representations

would include the contributions from a spectrum (discrete and/or

continuous) of relaxation times. In actual practice it is often found

that the previous expression for the modulus suffices over a fairly

wide frequency range.
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As was shown previously, (C) is the velocity of propagation

as (0.) tends to infinity, thus we write

c 4.47.221. and q; .,. /M(a)

D "”1:

where D is the density of the medium and (1!) is the complex

velocity associated with the frequency (u) .

By definition the complex propagation is

 

h<u2=£‘.=_‘L.————— =_“.-— 43—5—55 21
1r C /,_ a“ c. (I-a)+£ut’ ( 1

l-Hiut'

 

This form of 4(a) satisfies the restrictions which were de-—

veloped in the first portion of this thesis. From (8) and (21) we get

 

/ +£u‘c
u _ _._

K( ) '" (I-a)+£u1.'

 

which is analytic in the lower half-plane. And

a —-—~ oo (22)

It possesses two branch points on the positive imaginary

axis. Furthermore, Kl“) = K(—¢7) .

Evaluation of Integral (29;

Making use of (22), the exponent in 1. ,equation (20), becomes

(«U—‘55) as u -+ao , it has a negative real part,

in the lower half-plane when [-<

n
l
x

in the upper half—plane when f > €—

Similar results apply for iu(5-— {3) , 5: l ._ A



15

x
When t < E-

Both I, and I2 vanish along a path deep below the real axis.

When .5. E L‘.c < < c + A

In this case the integration path has to be moved up to the

upper half-plane. In so doing, the path encounters the singularities

at u at“), and the branch cut and branch points, if any, of the func-

tion 4(a) . These, as was assumed earlier, lie on the positive

imaginary axis. Figures 1 and Z Show the paths for I, and II.

The contribution of those parts of the path around the singularities

two are easily found by Cauchy's theorem. For this case we obtain

—‘“(“)0)
" £- - h

I, = e :19» wai— Hum] +;'— Li’zL. e 0‘ JQa’u (23)

11:0

When f>—é-+A

In this case I, still has the value (23), and It becomes

(:(tlg -- ‘5)

e

—£?WO)X

I,2 -.- — e MPJ -l:'(w.)x] - {if/fli— 6!“ (24)

C

, (flu-w."

Thus in this case the main pulse cancels. Only the integrals

in (2.3) and (24) remain. The integral in (23) will be discussed fully

later. The integral in (24), however, starts when the main pulse



 

   

    
 e e —>w

-UJo +wa

.5.
K C

are >—
  
Figure 1. The integration path for I, , eq. (20).

 

  

 

    
 

V

t>€~+ A

v

V [j .%_. V

, '1- a

C L “r

._ t.\ A.\ w

v U T”

“we +wo

Riga-A

\ a: as  
Figure 2. The integration path for 12 , eq. (20).
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vanishes and is of the same form as the integral in (23) except for

the sign. Since we are mainly interested in the manner of build-up

of the pulse, we shall, in the following, devote our attention to the

integral in (23), namely

' f-fi

LIMEL ed“ ’0 a’u (25)

C

277 a‘-%‘
1

.0.

The contour C! can be deformed into other paths, such as

the one shown in Figure 3, after reorienting the branch cut.

However, the evaluation will not be carried out along C’ or

the latter alternative path. Instead two approximate methods will be

used. One for «2,, << % and the other for Cd. >> 7?: .

Case I. (do << 4?:

We first make the following changes in our variable

€=¢r=P+C7 9

and set

ai—lzx. $41— .9 -(k—C-i—n = 55:51”— k; ,

an ’3 —§ --§- 1:55— .— ) od K .é at 'c': (1%)“: /

Now consider integral (25) in terms of the new variable.

where [-*=[- ..

n
i
x



 

’
Q
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: 4*U (I) T k

F K .
\E J) ”‘0’ + '-

N

P (A)

Figure 3. Alternate path for integral (25).

_ I}

u a P
      

 
7

Figure 4. Integration path for integral (26) and its equivalent.
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P “$6- K‘a/éx)

[(2949: -25? 21.32., e (26)

Y

where ‘7' is the path shown in Figure 4, along with two more equiva-

lent paths. Foré )>l , we can write

,

‘C-(PZ)

 

 

 

 

act c‘r‘

Let now

. .s. a ’ .. aw)

6 2c? and “ th'(a 9' 7

then

. 6 ‘ aer'

—5x ‘(T'f "' )
_ P. 1 5[ow - - n. e .9. 6 0'5 . f3. «)5! (27)

Y .

We write

g); «at _ (“(5. J; .. :5. a:
r g 1‘ xx 3 1

Let

v —(-0- (a-

__§_E%.=le and égfia-ie (28)

then ét' .. “"T = 2" Fax (.010-
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Now onU')

“F

E, :: Re

multiplying by TL 25—),- , we obtain

' . 7r
.. r--—

$77"r7".Pe‘he“
" from<28>

_L._t_‘_ R = R = r/“x
r xx I or 7‘..—

l I" u'a-

a d _ ._ .______.

n E! ' axr‘

Function (27) now becomes

-ex €42.”de Cavr+r)

‘C’ «tx 2—77'0

-ex _ 4

zé—lfi—e .(‘L(2L/£“X) (29)

For small values of (a) we can write

_ l -9. ‘ ~ _____..Q

or ' zct’i(a ‘f'a _ let"

then

-——(5—-x

{01.0.13 /-3—(€-/) e “r "1(1'3-5)‘ [—(9-0) (30)

where 9:55: -

For very small (9-!) , (1,03) :1 ——£—y , so that in this case

we can write

 

/(x,H-.- _w,-g— e “r -(6’-/) (31)
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To get an idea of the orders of magnitude, let us take

.5' —6 5'
a=0.1 , C=/.5K10 (rm/sec. , T: 10 sec. , LU, = /0 C-/sec.

Then for (0-!) of the order of 10-2, f(x,{) is of the order of

~3 . . .
la . This is a very small magnitude compared to that of the

pulse.

The interval of validity of expression (30) is obtained from

the condition in (27), i.e.

F. —. _. 95:5
Po <<tg‘ whare ’él "' R- t tax

From which we get the condition '

6—] << ___£z___
. 2%1'Z'I

To make the expression valid for a large interval, we demand

that

Id." 2" << a

And hence the limitation on (’0) which was set for this case,

0

i.e. (do << % .

. Md
Case 11 (4)0 >7 _T

For this case we need to use the saddle point method. This

method is used because of the difficulty the function hat) presents

in a conventional evaluation. We have already defined the propaga—

tion function as

 

k(u) =.‘£.k(u) :3. /*i“: See (8) and (21).

C C (1*“)+Lu.r
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Thus 4(a) has two branch points, one of the type of a pole

at u 35-51—23 and an ordinary branch point at “=54. .

The first of these points presents an essential singularity of

the integrand which renders the evaluation impractical. An approx-

imate nethod (the saddle point method) will be discussed in the

following.

The complex u-plane will be surveyed as to the negative do-

mains of the real part of the exponent for varying(€). Saddle

points of the exponent will be located and shown to shift with time.

The ‘path of integration will be made to run in the negative domains,

passing through saddle points whenever it goes from one negative

domain to the neighboring one. The integral will have negligible

values along most of the path. It yields an appreciable value only

when it goes through a saddle point, where the real part is not too

negative. The shifting with time of the saddle points forces the path

to intersect the poles and thus give rise to the main pole.

Mapping the complex plane.
 

The integral to be evaluated is integral (25). We rewrite

the integral in terms of the new variable
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.1. We§[g-K(€)]

I P. (I

-{7}. 27:2? 8 J45, (32)

cl

Let now

we; = .' efa-Kzan .- X(,o.7) +z Y(,a.7)

where

 

X(,0.7)= —- 79 +7Em(wgfi) +Pf-ETAJ.‘ (ii—fl) (33a)

Y‘W= P9 -ff-%i:““(i§-f‘) WE” (fig-‘52) <3”)

 

 

r, afiu- (7-1)‘ , r; a/l;+[7-(I-dl]‘

if}: 5:14.151. . , (fl: andI-Ig-a}

It was shown earlier that K(§) 2:?» 1, so that for large &, we

can write

ME.) = if. (6-!) = rpm-I) - 7119-!)

Then Xz-ll(9-I) behaves as follows at infinity

For 9<l is negative infinity below the real axis.

is positive infinity above the real axis.

For 9:] is zero.

For 5)] is positive infinity below the real axis.

is negative infinity above the real axis.
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The domains of X(’o,7]) in the finite plane are shown in Fig-

ures 5 to 8. In the shaded region X is positive; in the unshaded

region it is negative. These figures were obtained by plotting X(/0,77)

as given in (33a).

Location of the saddle points.
 

Since the function

7N6 z X09171) +£ Y(,o.7])

is analytic except at 5:20 and .5: ((I—a) ,X60.7/ and Yfp; 7)

cannot possess finite maxima and minima, they can only possess

saddle points, at which

Xgflgflgg—yaa )

‘gp 97 9F 7

orwhere

Bar“

22:“

Carrying out the differentiation and equating to zero we get

the quartic,

't . 3 —a z. . :3 b bu-5') 3 ‘(I-b

e, -.(sb+1)g —[3b(1+6)+1L—H;‘ lg+¢[1.(+)-————jg +[b’b19'JI (34)

Where b = I— a

The solutions of this equation represent the loci of the saddle

points for a certain (a) and a varying (3) . Since the algebraic

solution of this equation for arbitrary (a) and (9) is unwieldy, it
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Figure 5. Topographic map of the function X(P,77) in the complex

(fa-plane. Shaded area is positive.
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was solved numerically for a number of values of (a) and (9}

sufficient to obtain a general picture of the location of the saddle

points.

The exact solution of the quartic for a:a.1 and varrying(€)

is shown in Figure 9.

Thus two sets of saddle points are obtained, one pair starts

at 55:11» when 9: I and proceeds towards the finite plane with

increasing (9) The other pair is in the finite plane and on the

im inar axis at 9:1 . The two points of the latter pair a roach
ag Y PP

each other with increasing (9) until they meet in the upper half—

plane and fork out as shown.

’ It is possible to obtain an approximate representation of the

locus of the points on the imaginary axis for values of (9) very

near unity. For such values of (5) , the saddle points lie very

near the origin where Ea <1 This makes it possible to drop the

te rms with the third and fourth powers of (5,). Thus we obtain

the following quadratic which proves to be a very good representa-

fi-On of the locus:

[3b(+b)+:b(;;1‘qu "‘("”’*”"E§%39]’7 [13.60+17;o (35)

 



'r) 2 8

l/—\\

_,,,o
 

 
Figure 9. Loci of saddle points for varrying(6). Arrows show

direction of shift with increasing (9)

 

 
 

Figure 10. Location of saddle points on the imaginary axis for

varying (9) . The solid curve is obtained from eq.

34 and the broken curve from eq. 35 and both for a=0.l.
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Figure 10 shows how good the approximate equation is, es-

pecially for small values of (6), which we are most interested in.

We can obtain another good approximate expression for the

locus of the other pair of saddle points, if we divied (34) by (35)

and drop the remainder after obtaining a quadratic. We will prove

later, however, that the contribution of these saddle points will be

canceled by the contribution of other parts of the path.

The integration path.

Integral (32) is to be evaluated for 6)] and ’00 >> £25:

Figure 11 is.the same as Figure 6 with the addition of less

negative ridges in the negative domains and the integration path.

The integration path is (—oo)fadcd'6{'(+ao) , made to pass through

Sfiddle points whenever possible.

For €<l , the path runs completely below the real axis

and gives no contribution. At 9:/ or l'z—é- , the path remains in

the lower finite plane except at infinity. However, the path has to

Shift completely to the upper plane at 9: VJ— , see Figure 7.

[-0

 

The part of the path going around the poles‘tP moves up before

0

9;. i . In so doing, the path intersects the poles and an

[-61
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Figure 11. The true integration path for eq. (32). a , b , and C are

saddle points.

 

Figure 12. The approximate integration path for eq. (32), before

(broken) and after (solid) the arrival of the pulse.



31

oscillating term is obtained, which builds up very quickly to an ap-

preciable value. We will discuss this point with more detail in a

later section.

The total contribution of the path to the integral is obtained

by finding the contribution of those parts of the path that are in the

immediate neighborhood of the saddle points. However, as will be

shown Shortly, the contributions of the saddle points(a)and(b) ,

Figure 11, are canceled by the contribution of that part of the path

crossing the ridge at the far end of the plane. This leaves the con-

tribution from the vicinity of the point (‘6) to be calculated.

QTO prove the above statement, we draw the shortcuts (df) and

(d7! ), Figure 11. These two shortcuts are equivalent to (faa’)

and (alblfl) respectively. Let G be the contribution of (a’f),L the

Contribution of the saddle point (a), and L‘ the contribution of the

part crossing the ridge between (1") and (a) . it follows that

G ,_._ L + L,

We now proceed to show that G is negligible, thus proving

that L ..’~.=-.LI and hence the contribution of the saddle point (a) is

ca—nceled.

Alongdd) and(dl‘Fl),&, is very large, so that we can rewrite

integral (32), making use of relation (12) as follows:
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71 x x
.—..£,o(0-U .. 7- mo-u

’Zér/é‘efl- e c d5 A<g<o

«00

The second exponent is a constant, Since(7) is constant

along (id). The integral thus has an upper bound of 3’- , which is

very small except when the path approaches the pole. In this case

form (32) of the integral must be considered. However, by this

time, the contribution of the path in the neighborhood of the pole

becomes too prominent, giving rise to the main pulse, and the

contribution of the rest of the path becomes negligible. Thus, be-

fore the pulse builds up, the contribution G) of(fd) is negligible and

we are justified in [considering the relation L z—LL .as valid.

Furthermore, Q can still be kept negligible after the pulse builds

up by taking the path along a large circle around (3) . Figure 12

Shows the new path before and after it crosses the poles at if.

Next we proceed to find the contribution of the path in the

immediate neighborhood of the saddle point at (C), Figure 11.

We start by expanding the function

”((5) :2 Cafe "" K(58

in a. Taylor series around the saddle point as obtaining

we) -_-. 7/05..) --z'-|V”<'ci,))(e, .55)‘ (36)
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whe re

(mag) =

. 3

ll-(l-(l) +a(4~3a)c£, - 35': '- 35 is

20"“)‘5’6651-72 (1 ‘ngsy/z

the first derivative is zero at the saddle points.

 

 

Integral (32) now becomes

1‘ . - . a, . - l.

I P. fiy(5,) fijvfidflé 5,)d

_... 7—— e .e 5., (37)
z7r g 70‘

At the saddle points, on the negative imaginary axis, the path

is parallel to the real axis. If now we limit our integration path to

a very small portion in the neighborhood of the saddle point, we can

write

5, : E +i. 75 where 1° 7: = as,

SO that d6, = d6.

Along such a small path we may consider ___F a constant,

E.

which is especially true for I0 >) E, as we are considering in

this case. Taking all constant terms out of the integration sign we

 

get

i’lflé ) +6 x a 1

Ct ‘ -227.er (£3)! 6

.. Be , 1 e de (38)
me. 437

-€

1/(55) is always negative and 7/15,) is of the order of ID“

for a =0.l . If now we choose X= Icm° : C=/o53’oacm'/5€¢o and

__1
u

T: ’0 sec. or smaller. The order of magnitude of fil’V(51)|is
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about (3) or larger. This value of the exponent makes most of the

contribution come from a very small interval about the saddle point.

Thus, extending the limits of integration to infinity does not alter

the result appreciably. In so doing we obtain the result

-Ex?)v<e;|

P» e an 2’ (39)

“Ha; - A") xlv'ugn)

For this expression to be valid we should keep ESE-é? as

nearly a constant as possible. This can only be done by requiring

that

/2’ >> )a.)‘

An expression for the maximum value of (£351 is obtained by

setting (€‘-/) equal to zero in equation (35). The result is sim—

plified considerably if we note that (a) is usually very small com-

pared to unity. After some simplifications we obtain the following

expression for as Max.

lé’maxJ = Cl + J;

Now fi> Cl , so that we can write

,9 » fa“ or w, » Lg:

WhiCh is the condition of validity we stated for this case.
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Qiscussion of the solutions (29) and (3_l.

Expression (31) shows a linear dependence of f(x,t) on (6)

for very small (0-/) . However, for large ((9-0 expression (29)

decreases exponentially and rapidly with increasing (5) . This ex—

ponential decrease of the function continues until the function loses

its validity according to the condition

_ .9:—9 /<< 1’0,

obtained earlier. To find the order of magnitude of the function for

values of (€-/) restricted by the above condition, we assume 61-70.],

It: -.- o./ , 1': la-‘sec. , x =1 Icm. and Ca- I.SXI05cm./3¢c. . These

values require that €-/<< 5 . Let us choose €~/=a.05' , then

from (29) we get font) of the order of [0-3 which is very small

compared to the amplitude of the pulse. We will show later that

it is not possible to determine exactly the time of build-up of an

observable pulse. However, to be safe in applying expression (29),

W8 should assume a very small (9-!) in accord with the above con-

dition. This in turn limits the amplitude of the function to very

Small values until the arrival of the pulse. It can easily be seen

from expression (30) and the condition on(€-/) that, within the limits

0f Validity, an increase in(/:) decreases the absolute value of the

func tion.
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Expression (39), on the other hand, builds up exponentially

from a finite nonzero value at 9==/ . It reaches a maximum at a

certain (9) which is a function off?) alone. The amplitude, in-

cluding that .of the maximum,is a function of both (,9) and ( T) ,

it changes directly with (T) and inversely with {/3 ) .

The difference in sign between the two expressions (29) and

(39) is expected because of the factor ETC-:33 which changes sign

a

as '5' assumes values smaller and larger than (’00). Figurel3

shows three plots of (39) versus (a) for f: -_-_/0 and three differ-:

ent values of (T).

- The contributions of both expressions (29) and (39) are usually

referred to as the "precursors" or ”forerunners” to the observable

pulse, which will be discussed next.

lhe pulse.
 

We have shown in the last section that the amplitude of the

precursor is very small compared to the pertaining pulse. We also

Stated that, the moment the integration path crosses a pole, the

amplitude builds up to a noticeable value.

Theoretically, the pulse arrives at the plane tho with a

Velocity (C) , the maximum velocity. This is certainly true of those
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Figure 13. Plots of expression (39) versus

(9) for three values of('t') aides/0.
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Fourier components of the pulse with the highest frequencies.

These, however, do not constitute the bulk of the components con-

stituting the pulse. Most of the components have lower frequencies

and hence lower velocities compared to (C) . The whole set of

components can be subdivided into groups of different average

frequencies which move with different average velocities. The

"group velocity” 72"? is defined by the relation

.L-i’ :Td—A, ) 40113"“:‘M’ JP (,0 ()

where (6(a)) is a function of the real average frequencymu and is

the real part of km».

The group of frequency components centered on («2.) arrives

.9.

15?

Thus (6?) is the ratio of the maximum velocity to the group velocity.

at the plane X4=0 at t: 3; , and since 6:35- , at 9:19} =

Figure 14 is a plot of((€/) as a function off/o). This was

obtained from (21) according to the definition (40). The figure shows

that((%) approaches unity as the frequency tends to infinity. In other

Words, as the frequency increases, the group velocity approaches

the maximum velocity.

It is not possible to find a reasonable definition for the pulse

Velocity in a medium for reasons that will become clear later.

However, it is evident from the past discussion that the pulse
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Figure 14. 5’ as a function of(/D)(solid curves). Broken curve

represents (6) as a function of gaff.
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velocity must not exceed the group velocity. We now make the as-

sumption that the pulse velocity is only slightly smaller than the

group velocity. This is especially true for high and low frequen-

cies; it is not so true for frequencies lying in the region of

anomaly.

The broken line in Figure 14 represents the limit of validity

of both (29) and (39). Expression (29) is valid in a region to the

right of the point of intersection of 'the broken line with the (9;

curve for a certain value of (a) . Expression (39), on the other

hand, is valid in a region to the left of the points of intersection.

The figure yields the following useful information. First, the

interval of validity of (29) increases with increasing (a) . Second,

9} is smaller for (39) than it is for (29). Taking notice of our

assumption in the preceding paragraph, we conclude that the signal

arrives earlier when (39) is used than it does when (29) is used.

Usually the constant (a) is of the order of [0—2, which means that

6; is very small as can be seen from Figure 14. Thus our choice,

in a previous section, of 6 : [.05 t0 find the order 0f magnitude

of (29), was rather generous. Nevei'theless, (29) was found to be

Very small compared to the pulse.
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Figures 15 and 16 are schematic representations of what

happens at the plane X4=0 , using expressions (29) and (39) respec-

J‘. .5. (15,:tively. Until l' = ‘2" nothing happens, at I": v =5 3

I ”I-

pulse velocity), the pulse builds up very rapidly to its full ampli-

tude.

Nothing was said, so far, about the decay of the pulse. In

equation (20) we had two integrals I, and 12. These two integrals

are identical except for their sign and their lower time limits. A

was picked such that 12 starts in phase with I, , but the difference

in sign puts them completely out of phase and leads to the destruc‘

tion of the pulse. Thus I2 yields the same contributions as I, ,

only the former leads to a trailing phenomenon instead of the

precursor. This tail phenomenon, not being of any special value,

is not shown in Figures 15 and 16. From Figure 14 we can easily

establish that, for the same(Cu), the pulse arrives earlier the larger

(T) is. Figure 13, on the other hand, shows earlier maxima for

larger T3. Thus we find that the rise of (39) to its maximum value

Occurs at the same range of (%)for the pulse arrival. In Figure 16

We let the pulse build up from the maximum value of (39).
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Figure 15. The pulse build—up for w,<<1.r@: , eq. (29).
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Figure 16. The pulse build-up for a), >> T 9 eq. (39).



 

 

 

  

 

CONCLUSION

A pulse traveling in an infinite, homogeneous and isotropic

medium, characterized by a complex elastic medium, moves with

a maximum velocity (C) . This is the velocity of the Fourier com-

ponent of the pulse with the highest frequency. Other components

move with lower velocities, each a function of the pertaining fre—

quency.

Because of the above-stated dispersive property of all media,

a pulse arrives distorted at the plane X¢o . Of particular interest

to the Observer is the manner in which the pulse builds up to an

observable amplitude. Experimental determination of sound velocity

in different media is a case where a knowledge of the process of

building up of a pulse might prove to be of considerable importance.

We have found that a sonic pulse, in a medium having a re-

laxation time (T) builds up exponentially at first and later assumes

its Oscillatory property.

A detector of infinite sensitivity, at a distanceOUfrom the

Source of the pulse, registers the arrival of the pulse at f: .25..

As the sensitivity of the detector decreases, the detection of the
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pulse arrival is delayed. This is one of many effects that make the

experimental determination of sound velocity subject to controversies.

Such a determination leads to values dependent on the following prop-

erties:

l. the dispersive properties of the medium,

2. the Fourier composition of the pulse,

3. the sensitivity of the detecting device.

Further treatment is needed to discuss the behavior of a

pulse for the case Paw/awhich is not cOvered by the approximate

methods developed in this thesis. However, it appears that, for

most of the values of (a) met in practice, the error introduced, in

the velocity determination, by the presenceof the precursor will not

be too large.

Finally, it must be pointed out that the general methods de—

veloped here may be applied to the propagation of an electromagnetic

pulse in a medium in which the dispersion arises from a relaxation

process. In this case, however, the values of (a) will not,in gen-

eral,be small and the effects of the precursor may be much larger

than in the sonic case.
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