‘ ' - . . , l ‘ ‘ a ‘ . 1 A STRESS ANALYSIS or . ma ',~‘~'C1H(;>0‘L or 'Musnfi '3 J. ”a 3 f _‘ '3 , _- MICHIGAN ‘sTATEfco’LLm-gg ‘ '- Qmijush 7 Thesis mt 1hc‘chzgn-E M l" JHESR LELLC‘ x' ,4. 1’1“ 1' Pat: mmmnmmrmmmm 3 1293 01748 78 st *zvr-VWPJ'LIIT' Thai” 1;. i... " r ‘, w, "‘ 3‘ ’. 5 ,5 '. 4 ~ f t i f “- ' . '4; f if , $ I ‘3";3' ma" " 4°”! .'-.'- 3'» V‘s! x‘ a' a w: 3-: £1 3 ' 1 1‘ . in. 'f a. e, a y xi ‘ L w . W " ' ‘54-". a" ’ in" I: '_ '99:} r Nova-s: 3 Me. I I a' ‘ u ' ‘A’ 5‘. .; '.«: 5. .a ;.\_ ‘. ‘. i ‘w 9;. “fl {9 if“ . K; Q Hi 2 ’3' 1.: 3’7 .3 4. s f“ g: It: ‘25.: #15.- f ‘&’- _fl; $4 é: $193; >-.' ‘\-‘ >304}; f. ._. 2L '9' _ ‘ i :1 t t r: J #7.“! “‘ 1‘ J H”; '&_"E-; u... 14.... —— 'vr'~' pr.‘ PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE A Stress Analysis of the N H. o. C. School of music A Thesis Submitted to The Faculty of MICHIGAN STATE COLLEGE of AGRICULTURE AND AFFLIED SCIENCE by O. J. Bth Candidate for the Degree of Bachelor of Science- Clvil Engineering June 1940 p). THE MICHIGAN STATE COLLEGE <,——u,- fi-f . v 1- JV- ,-,~_. flAr-wthw—VJth E 3 f i S r 5 SCHOOL of MUSIC 1.893383 ‘33 '1 2"? 5| . 33-7 . L . . 5 35:”; ' 5'. if“ . i; E ‘9 i § a? “ 5.1- : i, k. g: a ' ‘ "“"fl ' T- “h k 5 -£1 ; 153:“13 g ii figseis . s 3 i5. Han-13.. m g 41.31.“ . A i . I ~ ’ ' s . T The building considered herein is the new Michigan State College School of Music which was erected on the College campus during the spring and summer of 1939 by the J. A. Utley Co..of Detroit, Michigan. The building was designed and supervised by Malcomson, Calder, e Hammond Inc.. Architects and Engineers, also of Detroit, Eichigan. The stress analysis of this building was undertaken with a View toward gaining practice in analyzing problems and also to gain some knowledge of the problems which arise in actual practice and their solutions.. The author here wishes to acknowledge Professor C. A. Miller of the Civil Engineering Department and hr..hamm0nd of Malcomson, Calder. & Hammond for their help and guidance in the solution of this problem. Sincturr: LE II, 5—4 }—-I Specifications Structural Steel 1. Stresses A. Bending: hall bearing steel.............l6,000£/sq.in. Steel frame construction.......18,000#/sq. in. B. Shear: Power driven rivete............13.500¥/eq. in. Hand driven rivets & bolts.....10,000@/sq. in. C. Bearing: Bearing stresses shall be taken as twice the above shearing values. D. Tension and Compression: Tension........................18,000£/sq.in. Comperssion stress shall be determined by the formula, 17,000 - .485—%:— , as per American Institute of Steel Construction. II. Rivets and Bolts All rivets and bolts to be (3/4") three quarters inches in diameter with (13/16") thirteen sixteenths inch holes punched for them. III. Net Sections A. Rivet holes to be taken as (1/8") one eighth inch larger than the rivets when calculating net sections. B. Tension Members: In calculating net sections for tension members, allow two holes cut per angle for angles 6"x6" 1'43 Concrete . I. '31 Concrete. or larger and one hole cut per angle for angles smaller than 6"x6". 1. Strength requirements for various uses. Special - Concrete requiring strength in excess of A. B. C. Do- 3500 pounds per square inch minimum by reason of special design or use. Concrete requiring 3000 pounds per square inch minimum. Concrete subject to excessive exposure, wear, or in continous contact with water. Rein- forced members of small sizes, floors, sidewalks pavements, curbs, and gutters. All walls with earth on one side and floors on earth are to be of class A concrete. Concrete requiring a strength of 2500 pounds per square inch minimum. Concrete for general reinforced work, slabs, columns, walks, footings subject to severe exposure, and interior sub- floors. Concrete requiring a strength of 2000 pounds per square inch minimum. Concrete for mass work not reinforced and not subject to severe exposure. Concrete for any use designated as not requir- ing the strength or quality of class c - such as fill concrete. Reinforced co Stresses ncrete Using class B concrete for general reinforced work, we have: f'c I 25003/sq. in. to I lOOOK/sq. in. n. 12 Va 3 SOfi/sq. in. V . lEOg/Bq. 1“. Bond 8 1254/sq. in. for plain bars. Metal re A. C. I lBOJ/sq. in. for deformed bars. inforcement I All metal reinforcements shall be deformed, rolled rail steel bars-to meet the American Society for Testing yaterials standard Spec- ifications, designation No. A-l6-3S. .Where the principle slab reinforcement is paralell to the concrete beams, transverse reinforcement, three tenths of the gross section of the slab, shall be provided in the top of the slab and shall extend across the beam and into the slab not less than two thirds of the allowable flange hangover( six times the thickness of the slab on each side of the beam). The spacing of bars shall not exceed 18". Shrinkage or temperature steel, not less than one fifth of one percent of the gross area of the slab section, and running at right angles to the main reinforcement, shall be provided D. E.. F. G. in all concrete slabs which are reinforced in one direction. The shrinkage steel shall be not more than, one and one half inches below the top of the slab and shall be spaced not more than 12" apart or further than five times the thickness of the slab. Bare paralell to the face of any member shall be embeded not less than one bar diameter from the face. Splices in walls, columns, piers, and struts shall provide sufficient lap to transfer the stress by bond. This lap shall not be less than thirty bar diameters. metal reinforcement in wall footings and column footings shall have a minimum covering of 3" of concrete. All surfaces of concrete exposed to the weather and atmosphere shall have metal reinforcements protected by not less than 2" of concrete. In all cases the thickness of the concrete covering shall not be less than one and one half times the bar diameter. General Hotes Concrete 1. 3. 4? c U1 a 7. 9. Provide 35 wire loops 5" o.c. for 6-2 slabs extended to the 1/3 point where called for. Provide #6 wire loops 5" o.c. for 8-2 slabs extended to the 1/3 point where called for. Frovide %" round bars 12" o.c. or ecuivalent area at right angles to the main steel in all 301st construction slabs. all bars to be bent for shear and continuity All columns to have %" round stays 8" o.c. for i" round bars; 10" o.c. for 5/8" round bars; 12" o.c. for 3/4 " round bars or more unless otherwise stated. All columns to have dowels extending at least 30 diameters of vertical steel into columns above and to be of smae size or equivalent area to column steel above. Soil pressure - Columns 8 50003 per sq. ft. walls a 5.000? per sq. ft. All slabs to have 8" and bearing unless otherwise noted. All beams to have 12" end bearing unless otherwise noted. L086. 1. Dead loads Weight of concrete..................150¥/cu. ft. Gypsum...............................509/cu. ft. Roof; Slate....................12%/sq. ft. 3" Gypsum................15€/sqa ft. Ceiling load.............l2€/sq. ft. PurlinsOOOOOOOOOOOIOOOOO 4'” sq. ft. £335sq. ft. Add two pounds per square foot when computing rafter loads and twelve pounds per square foot when computing truss loads. 11. Live loads ,Stairs and landings................lOO€/sq. ft. Auditorium floor and balcony........80%/Bq. ft. Corridors and lobby.................803/sq. ft. All other rooms.....................604/8q. ft. R00: loadOOOOOOOOOOOOOOO.OOOCOOOOOOOBO’q/BQO‘ ft. Furlins The purlins are considered as simple beams, freely supported at both ends, and carrying a uniformly distributed load causing a bending moment eoual t0 wl?8. They are checked in bending by comparing the section modulus supplied (é) with the section modulus requiredtg). Section rod ‘gize. Length Wt.per ft. Homemt"? Required guphlied 10 CBJ 11.5 16.5' 365 149,000 8.30 10.50 6 CBJ 8.5 11.5' " 82.500 4.03 5.07 8 033 10.0 15.5' " 132,000 7.30 7.79 6 CEJ 8.5 11.5' " ------- ---- ----- 10 ch 11.5 17.0' " 176,000 9.78 10.5 6 CBJ 8.5 12.0' " . 79.000 4.40 5.07 12 ca; 14.0 12.0' " 254,000 14.10 14.80 13 Ch. 31.8 27.0' " 400.000 22.20 25.90 8 ctJ 10.0 15.5' " ------- --.-- ----- All purlins of like denomination as those given in the table but of shorter length are not checked because of their obvious safety. ' Computations: lO CBJ 11.5 I/c ' 10.50 Length = 15.5 w - 355 2 a... . .1278 James. .12 . 149,000". %.. 14 830 : 8.3(less than 10.50, therefore O.K.) O No. i--- ‘5--- ---- Rafters & Roof Peams Size" sax. Moment 10"ch11.5 198,000"# 8"ch 10.0 101,000"4 10"ar 26.0 300.000"4 l4"sF 34.0 830,000"3 10"CBJ15.0 250,000"# 10"ch11.5 170.000"; " 64,800"? 10"aF 21 176.000"# 12"CBJ16.5 212,200"# 14"WF 34 586,000"# 10"sr 23 292.000"? 10"“? 29 390,000"? 10%? 33 495.000"4 12WF 4O 835,000"¥ 10"sF 14 310,ooo"a 12"WF 36 648.000"? 10"WF 33 Slo,ooo"g 10"wr 29 398,000"4 18"er 50 1,780,000"; 18"WF 50 1,955,000"? 10"CBL21 12"tF 25 8"WP l7 10"WF 21 200.000"# 509,000"? 147.000"; 269.000"# Sect. needed H/s 10.9 5.7 16.5 46.0 12.8 9.45‘ 3.6 9.75 11.75 39.6 16.2 21.8 27.5 46.4 17.2 36.0 28.3 22.1 98.6 107.0 11.1 28.2 8.15 14.9 Sect Hod. sunrlled Llc 10.80 7.76 27.6 48.5 13.8 10.5 10.5 21.5 17.50 48.5 24.1 30.0 35.0 51.9 44.5 45.9 30.8 89.0 89.0 18.8 30.9 14.1 Remarks Shear 00K. I1 N n I! H N N H N emu-.1“). a...“ Rafters & Roof Beams (can't) The two roof beams marked (*) Were evidently considered as partinlly restrained beams because of the fact that they were framed into trusses No. 3 and No. 4 with trusses No. 5 producing a cantilever effect on the beams. If this is true the section moduli 98.6 and 107 are reduced to 85.7 and 79.0 which are Just slightly smaller than the section moduli supplied and are therefore O.K. The reasons for the variation in some of these members is beyound the author unless perhaps there are reasons which present themselves in the detailing of the steel. Truss T-S Plate I No. somber Length Load Area Stress r l/r Allowable _‘_. 7 £3112;..E$E§. 90.13. 3189.13. 5 flag, inI a s-i 4-00 -02.10 2.38 900 .77 62.5 15.1000 s C-3 5-3 ~05.55 9.38 2.370 .77 82.0 13.750 a D"4 5-03 ~05.50 2.38 2.310 .77 97.5 12.500 a 0-4 4-06 3.85 1.97 1,940 .77 ~--- 18,000 a 0-2 3-09 01.97 1.90 1.940 --- ---- " b 3-4 4-06 -05.20 2.12 2,450 --- ---- 14,580 b 3-2 9-00 04.90 1.71 2,860 --- ---- 18,000 b 1-0 10-06 05.50 1.71 3.220 ---- ---- 18,000 0 1-2 8-02 -05.20 2.62 2,000 --- ----+ 11,490 For truss T-S; a - 2L - 2% x 2% x i b - 2L - 2% x 2 x i c - 2L - 3 x 2% x 6h 3.4 o o D JGZZ 6700 Sea/ed 335:0 0 0" Plate I 00 Truss T-4 0 Plate II No..uember Length Load Area Stress r l/r Allowable ___ ft -in._§ipg_ sg.in.y£[gg&;g& £180.1n. to 13-1 4-08 -50.0 4.18 12.000 .89 6.2.9 15,100 to 0-2 4-08 -48.0 " 11,500 " 62.9 15,100 to 0-4 4-06 -45.0 " 10.750 " '0.4 15,250 to 2-6 8-03 -31.3 " .500 " 111.0 10,850 be 0-1 8-02 36.3 1.97 18,100 .77 ----- 18.000 be 0-3 4-04 34.0 " 17,200 " ----- " be 0-5 8-04 32.2 " 16,300 " ----- n be 0-7 8-04 30.2 " 5,300 " ----- n to F-B 4-06 -41.5 4.18 '9.950 .89 60.4 15.250 to 0-10 4-08 -44.0 " 10,500 " 62.9 15.100 to H-ll 4-08 -47.0 " 11,200 " 62.9 15.100 bc 0-9 3-04 32.0 1.97 16.200 .77----- 18.000 be 0-11 8-02 34.0 " 17,250 ---.. " a 1-2 5-08 -4.0 2.12 1,900 .78 87.0 13,300 a 2-3 7-10 2.1 1.71 1.230 " ----- 18,000 3-4 8-06 -4.8 2.62 1,830 .95 101.0 12,100 a 4-5 11-00 4.5 1.71 2,640 .78 ----- 18,000 0* 5-6 '13-10 -1.7 2.62 650 .75 208.0 0* 6-7 13-10 1.7 2.21 770 " ----- 18,000 a 7-8 11-00 4.3 1.71 '2,500 .78 ----- 4 8-9 8-06 -4.9 2.62 1,870 .95 101.0 12,900 a 9-10 7-10 h 2.2 1.71 1,290 .78 ...-- .18.000 a 10-11 5-08 -3.0 2.12 1.490 .78 87.0 15,300 For truss T-4; a - 2L - 2% x 2 x g b - 1L - 2% x 2 x 3 c - 2L - 3 x 2% x i to - 4 x 3 x 5/16 LLO bc - 2L - 2% x 2% x 5 member 5-6 of this truss, a compression member, has an 1/r ratio of 208 which is greater than that prescribed in the specifications for compression members. However, the limit- ing value of l/r, 120, is an arbitrary value and need not be strictly adhered to in extreme cases of stress, and since this member has a stress of only 650 pounds per square inch it is undoubtedly sufficient. 8 0 k \ p, 9 w E “i » a j” ”j a g .3 c /\ G“ o 0 B 4- 5, 6 3 HO 2' 3 7 9 I0 I II Truss 7‘4 g 5'7 00* 5cole:l/a”~*/' 0 . Y \ bee/c.4970, 000;, \ ["10 Hi Truss T-3 Plate III No. Member Length Load Area Stress r l/r Allowable ...... Msm eggs-m a in so 1 a 5-6 7-10 3.0 1.77 1,700 .78 u&--- 18,000 a 6-7 5-08 -3.1 2.12 1,460 .78 82.1 13,300 to 1-1 6-01 -28.0 4.18 5,700 .90 81.0 13,800 tc 2-3 7-11 ~29.A " 7,000 " 105.1 11,600 to C-4 4-06 -40.8 " 9,800 " 50.0 15.250 to n-6 5-04 -43.7 " 10,450 " 71.1 14.550 tc E—7 5-10 -46.9 " 11,200 " 77.8 14,130 be 0-2 15-10 28.0 1.96 14,300 .77 ----- 18,000 be 0-5 3-4 31.6 " 16,100 " ----- 18,000 be 0-7 8-2 33.0 " 17,000 " ----- 18,000 b 0-1 8-2 37.8 2.21 17,100 .95 ----- 18,000 4-5 8-06 -5,3 2.26 2,340 .95 107.3 11.500 c 1-2 11.00 -25.3 3.38 7,500 1.28 103.0 11,950 d 2-3 9-08 2.0 2.98 660 .90 ----- 18,000 9 3-8 11-00 -4.0 2.88 1,390 1.12 118.0 ‘10,280 For truss T-3; a - 2L - 2% x 2 x g b - 2L - 3 x 2% x s c - 2L - 4 x 3 x 5 gr.- 2L - 3% x 2% x % bc-2L-2ésx2fix 2.. e d - 2L - 4 x 3 x é LLO tc - 2L - 4 x 3 x 5/16 I A 4 0 .1. 7 . . «LEI Arms, . .. uIlir. — . I .\ oog 24.5”00 24000 / 3 IZflOO & / 5 Q 7705.? 7‘13 ,‘2 Jca/e.'%5"=/' '“A Z \ 1; Scale.'/ 17/0 000’“r Plate 13’ O I N Ho. sember Length Load to to to to to to to to tc to d W 0‘ tr ‘0' :r m A-l q--2 C-S D-6 3-9 F—lO - 9-13 H- 14 I-16 J-17 1-0 3-0 2-3 5-5 6-7 8-9 9-10 12-13 13-14 15-17 4-5 4-7 7-8 11-12 4-06 4-06 4-04 4-10 4-08 4-10 4-10 5-09 5-04 5-10 4-02 4-06 4-00 6-04 6-06 4-00 6-04 4-02 5-06 5-10 6-08 8-06 6-08 8-06 8-02 ft “in-.1128. -38.0 -38.0 -52.5 -52.5 “55-3 Truss T-I Plate IV Area sghg}: gagging _W 6.50 N N H N Stress 5.850 5.850 8,090 8,090 8,510 N N H 7,200 8,130 14,100 12,400 3.700 3.630 2,360 2,340 3,800 3.630 3.630 3.630 2,830 9,550 8,440 5,560 9,550 2‘ .86 N H .91 .91 .78 .95 H l/r Allowable 62.8 15,000 62.8 15,000 60.4 15,175 67.5 14,800 67.5 14,800 65.0 14,950 67.5 14,800 67.5 14,800 80.0 13,900 74.4 14.350 ---- 18,000 ---- 18,000 64.2 15,000 ---- 18,000 61.5 15,160 ---- 18,000 ---- 18,000 61.5 15,160 ---- 18,000 64.2 15,000 84.6 13.500 73.7 14,400 84.3 13,550 109.5 11,200 103.0 11,900 Truss T-l(con't.) No. Hember Length Load Ares Stress r l/r Allowable ___’ ft -in. kigs so.in. #nggin. ____ #[sq.in. b 15-16 8-00 4.3 2.21 1,950 ------ -- 18,000 be 8-11 6-08 0.0 2.21 0,000 .75 106.5 11,500 be 10-11 6-00 6.0 2.21 2,720 .75 ----- 18,000 0 12-15 6-00 23.7 4.48 9,550 1.12 ----- 18,000 0 14-15 6-04 28.8 2.48 11,600 1.12 ----- 18,000 0 3-4 8-06 -30.0 2.88 12,100 1.12 93.0 13,550 be 4-0 9-04 33.5 3.62 9,250 .91 ----- 18,000 00 11-0 9-08 50.0 " 13,700 .91 ----- " bc 15-0 9-08 32.? " 8,900 .91 ----- " be 17—0 7-06 37.0 " 10,400 .91 ----- " For truss T-l; a - 2L - 2; x 2 x i b - 2L - 3 x 2% x g c - 2L - 3% x 2% x fl d --2L - 4 x 3 x 3/8 to - 2L - 4 x 3 X % LLO C. be - 2L - 3 X 3 X 3/8 add-«l. .- ‘ er 5cale: [920,000 Plate LY No. uembor Length to to to to to to to to to tc be be be be be be p w G-lO H-13 I-14 J-16 K-17 0-17 0-15 0-11 9-10 12-13 13-14 16-17 4-06 4-06 4-04 4-10 4-10 4-08 4-10 4-10 5-09 5-04 7-06 9—08 9-08 9-04 6-06 4-00 6-04 4-02 5-06 Load -50.0 -50.o -68.2 -69.2 -69.6 -59.5 ~70.5 ~70.5 -55.s -52. 44.2 39.5 54.0 43.9 57.8 66.0 -11.0 8.0 -6.0 5.0 7.8 -10.0 8.8 ~10.0 -6.5 Truss T-2 Plate V Area 7.00 N N H N H 4-33 H Stress 7,150 7,150 9.750 9.750 9,950 9,950 10,000 10,000 7,980 8,860 10,200 9,120 14,800 10,130 13.350 15,250 5,200 4,680 2,830 2,920 4,560 4,710 5,150 4,170 3.070 I‘ ft.-in. kigs sg,in. 3/50.1n. l/r Allowable 1.93 43.9 'n N N .78 H N N 43.9 42.2 47.1 47.1 45.6 47.1 47.1 ----- ----- ----- fl/eqdn. 16,065 16,065 16,320 15.960 15,960 16,000 15.960 15.960 15.470 15,700 18,000 H N H H R! 15,000 18,000 15,160 18,000 18,000 15,160 18,000 15,000 13,520 Truss T-2(con’t.) No. Member Length Load Area Stress r l/r AllOWable ___ I£§&;;g._§;2§_,gg&ig, $[so,in, fi/eq.int b 4-5 5-10 32.5 2.21 15.500 .95 ----- 18,000 b 4-7 6-08 2 .5 2.21 12,950 " ----- 18,000' b 7-8 8-06 -18.0 2.62 6.900 " 110.5 11,090 b 11-12 8-02 -2o.0 2.62 7,640 " 103.0 11,830 3 15-16 8-00 4.0 2.21 1,890 " ----- 18,000 b* 8-11 6-08 0.0 2.21 0,000' .75 ----- 18,000 b* 10-11 6-00 7.2 2.21 3.390 .75 ----- 18,000 0 3-4 8-06 -38.0 3.56 10,700 1.11 93.7 12.660 c 12-15 6-00 32.2 3.05 10.550 1.11 ---- 18,000 21 14-15 6-04 40.5, 3.05 13,300 1.11 ----- 18.000 For truss T-2; a - 2L - 2% x 2 x'% b - 2L - 3 x 2% x i c - 2L - 3; x 21 x 5/16 'b-- 2L - 3 x 22 x 5 LLO tc - 2L - 4 x 3% x 5 be - 2L - 4 x 3 x 3/8 C G H r. .J K.L "=20, aoo # Scalesl Plate Y No. Member Length Load to tc tc tc a a a be be be b c G .1-1 C-2 0.4 13-6 1-2 2-3 4-5 1-0 3-0 5-0 3-4 5-6 6-7 5-04 6-00 6-02 6-04 5-10 6-06 10-02 9-04 5-02 5-02 8-04 11-04 12-08 ftzin, Rigs ~37.7 ”30.0 -23.9 -19.2 -7.7 3.9 6.3 30.8 24.3 19.6 -8.0 -8.2 13-3 Truss T-6 Plate VI Area Stress r 1/r Allowable '§3&ig& #ng,in, fi/sq.in. 3.83 9,830 .74 86.5 13.380 " 7,820 " 97.5 12,400 " 6,230 " 100.0 12,150 " 5,000 " 102.8 11,900 2.12 3.630 .78 90.0 13.150 1.71 2,280 " 100.0 18,000 1.71 3,680 " ----- n 2.21 13.900 .75 ----- " 2.21 911,000 " ----- " 2.21 8,850 " ----- " 2.62 3,090 .95 105.0 11,600 3.38 2,430 1.28 109.0 11,200 2.48 5,360 .93 ----- 18,000 For truss T-6; a - 2L - 2% x 2 x i J «G c - 2L - 4 x 3 x % tc - 2L - 3 x 21 ‘. x 3/8 d - 2L - 3 x 3 x i be - 2L - 3 x 21 x { LLO 000‘ J)- 0980 ‘I coax“. m 3 5 DOWN. 7. oomQA/, 6 Av / v 096” 4 4 3 0090 2 I Ofihn ;/’ 37j6 $0 éCa/e .' 7705.5 com» .Pfinvm Scalerl FUbter’EDr Truss T-7 Plate VII No. Member Length Load Area . Stress r l/r Allowable __ M._§_1_2_s_ 9.9.2222. I! s in. 1180.111. $91 A-1 5-03 ~9.1 2.62 3.470 .95 79.0 14,000 101 A-2 5-08 -9.1 2.62 3,470 .95 71.5 14,500 tc2 2-5 4-01 -16.0 2.38 6,720 .77 63.6 15,080 162 c-7 5-02 -19.0 ..38 8,000 .77 80.6 13.850 tc2 0-8 5-08' -19.1 2.38 8,000 .77 88.3 13,220 be 0-1 8-04 12.3 1.96 6,280 .77 ~--- 18,000 be 0-3 7-07 12.3 1.96 6,280 .77 ---- " be 0-4 2-08 9.2 1.96 4,650 .77 ---- " be 0-6 3-07 11.1 1.96 5,660 .77 ---- " be 0-8 3-11 13.3 1.96 6,780 .77 --—- " a 1-2 5-08 0.0 1.77 0,000 .78 ---- " a 2-3 8-00 0.0 1.77 0,000 .78 ---- " a 4-5 11-00 7.5 1.77 4,340 .78 ---- " a 5-6 7-8 -7.4 2.12 .500 .78 118.0 10,200 a 6-7 8-06 5.4 1.71 3,050 .78 ---- 18,000 a 7-8 4-00 -5.0 2.12 2,360 .78 61.5 15.160 b 3-4 10-08 -8.3 2.88 2,900 1.12 114.3 10,680 For truss T-7; a - 2L -2% x 2 x 3 b - 2L - 3% x 2% x i be ‘"2L “ 2% X 2% X 1 tcl - 2L - 3 x 2% x % tc2 - 2L - 2% x 2% x 4. .1 IE 4r 1:, 03 «'3 o \ 5° N ‘4‘ l c g 0 “’T 3 o 8 5 k 2. N 4 6 0 770.55 7"7 ' Scale #5 I’ 7,4 1 i 0 ~B 0 scale /’-'— 5000* . E Mate-W Truss T-8 Plate VIII No. Member length Load Area Stress r l/r Allowable __b g ftgig, kins eg, 1 .flgsosin, €189.1n, to A-1 4-10 ' -5.0 6.13' 815 1.19 48.8 15,840' to 8-2 7-09 -7.0 6.13 4,430 1.19 78.0 14,100 to 0-3 7-10 -12.0 ‘ 6.13 7,960 1.19 79.0 13,980 3-0 11-01 8.5 1.96 4,080 .77 --- 18,000 1-2 11-00 -7.8 2.62 2,980 .95 123.0 9.560 2-3 7-09 -5.0 2.62 1,900 .96 98.0 12,350 9 0' Di 0 1-0 12-00 12.5 1.71 7,350 .78 ---- 18,000 For truss T-8; . a-2L-2i-x2za}. b-2L-3x2ifi;x NH 0 - 2L - 2% x 25 x i d - 2L - 3 x 2; tc-2L’2%x2i§X% 10 x 3/8 stem p1.' H- >4 6» The upper chord of this truss was designed to take a bending stress, and therefore the purlin loads may be brought to the upper chord at points other than the panel points. This practice results in a heavier upper chord than would otherwise be necessary, but by requiring less members it may also result in a cheaper truss.. Sample computations: Compression Member; T-8, 1-2 Unsupported length - 11'-OO" Load ~7.8 kips, area - 2.62 sq. in.s, stress - 2,980 Allowable stress 3 17,000 - .485.%%%: : 9,5603/sq.in. 4.41!!! .n n . tad-by] . Tension member; T-B, l-O Gross area - 2.12 Net area 3 Gross area - two rivet holes - 2.12 - .406 a 1.71 sq. in.s Loadtscaled from Flats VIII)-l2.5kips Stress : %%%§29 0 7,350 4/sq.in. Allowable stress - 18,0004/sq.in. Member designed for bending; T-8, D-3. _ 2L - 25 x 25 x g , Area - 2.38 , I. - 1.40 in.“ 1 - 10 x 3/8 stem plate , Area - 3.75 . Ic ' 31.3 in.4 Area Area x_1 Sta-pl. 3075 18 50E} zoogg 40. _ 2 'fig—- 6.61 1(2L) ' 1.40 9 2.38(9.16 - 5.61) 15.88 I(st.pl.)' 31.3 -~3.75(1.61) - 41.03 I(beam) = 57.91 6 P . M o 12 O 7500 x 3.87x 12 Stress . “A I a m... 57.91 . ' 7.9508/89-1n- Allowable in compression - 13.9802/3q. in. Mooh‘xx /\ =éjooo# Scale: I" P/at e ~31 Size 8 Type 8’2 SOT. 1?. 12-2 S.T. @ 6-2T.c.r.0 6-2T.C.T.3 10-2 S.T. 3 6-2TOCQT.,?. 6‘2To CoTofin 25" 25" 17" 17" 25" 16" 16" Slab B 5"Bolid Size & Type 4"solid w—v 6-2T. Co To:17 u Slab B 5"solid 6-2 SoTo ‘3 25" 8-2 SQTQ 3 25" 4"solid 6-2T0C0To‘i’ 17" 6-2T.C.T.? 16" 6-2ToCoTo? 12-28 8.1.8 10-24 10-2% S.T.Q S OTOIE 6-2 SOTQ- "a: 16 '1 25" 25" 257 25" Positive steel Need Sunolied Need .67 1.32 .44 .59 .94 .24 .31 .25 .10 Positive steel Need Sunplied .44 .30 1.76 1.71 .96 .56 Floor Slabs Second Floor .78 1.78 .44 .60 1.20 .31 .31 .29 .17 First .44 .29 P.) [‘0 1. 1. .27 .60 U 00 .31 .31 1.78 1.78 1.20 .62 Eegative steel Bond Shear 57.8 Supglied .42 .44 105.0 .81 .78 97.5 .28 .31 102.0 .32 .31 102.0 .58 .60 129.0 .14 .11 87.0 .19 .20 95.0 “" ---- 31.8 ---‘ --'-- 58.6 Floor Negative steel Bond Need Supplied .28 .32 .14 .19 .59 .57 .56 .31 1.04 1.04 .31 .11 .20 .78 .78 .60 .91 102.0 31.8 120.0 115.0 116.0 102.0 87.0 95.0 108.0 128.0 ' 105.0 135.0 78.0 42.3 49.0 62.0 36.2 43.8 11.8 8.1 Shear 42.3 11.8 82.5 59.0 19.0 49.0 36.2 43.8 86.2 103.0 58.0 63.5 Floor Slabs First Floor(con't) Size & Type Positive steel Negative steel Bond Shear Need Supplied Need Supplied 8-2 8.T. @ 25" 1.09 1.22 .91 .91 93.8 88.7 6-2 SOT. 9:; 25" .49 .61 .49 e91 5505 58.4 5-2 S.T. e 25" .87 .88 .87 . 1.04 76.0 78.0 5” 8011d .15 .19 ---- --- 84.0 11.0 The ribbed floor slabs are considered as beams of approx- imately equal spans built to act integrally with columns. walls, or other restraining supports and assumed to carry uniformily distributed loads, and designed for the following moments; sz lo WL2 MIN-1's" The solid slabs are considered as freely supported simple beams with one-way steel and having a bending moment of; H : —§L3 ° All steel areas given for solid slabs are given in square inches per foot of slab. while the values given for the ribbed slabs are given in square inches. All slabs were found to very closely designed, and at points where some of the beams appear to be over - designed in negative bending. the large areas of negative steel are necessary because of the fact that the bars are bent for double continuitity and must supply some steel to take care of the negative moment in the adjacent beam. J .(FUQ hm~0fl 44“:th Qtdm. Q0 Qaddo U ZCQm saw 4 Wdedxhw _ :53 014m. Zoom 24“» Q8040 . nQDQQ k. - 1-1.00??? . \LLDzELeOU «on. Evin Qa‘uau M» .b oar.“ ALLSEILcou lot doQEWOo .3 24d» dtmau m NO. 201 P.) O l‘.) 203 205 206 207 208 209 210 211 212 213 215 216 217 218 219 220 222 223 Size l2"x22" 12"xl6" 12"xl6" 12"x20" 12"xl4é 12"xl4fi; 12"x16" 12"x10" 12"x15" 12"x18" 12"x22" 12"x16" 12"x20" 12"x12" 12"x18" 10"x14" l2"x16" 12"xl6" 12"x12" lO"x32" 10"x20" 12"x18" l2"x18" Positive steel Need Supplied 1.77 .94 1.77 1.76 .50 .93 1.48 .80 .94 1.63 1.95 1.29 2.36 .83 1.65 .98 1.60 1.20 .39 1.68 1.78 1.50 1.78 2.00 .88 .93 1.48 .88 1.93 1.77 208 1.63 2.35 .81 1.88 1.05 1.66 1.19 .75 1.80 2.01 .62 .61 Floor Feams Second Floor Negative steel Bond Igggg_ Supplied 1.11 1.20 1.14 1.24 1.11 1.20 .625 .78 .30 .31 .58 .62 .51 .60 .22 .20 .55 .78 1.05 1.36 1.95 2.08 .79 .78 .80 .78 .83 .81 1.03 1.00 .32 .44 .70 .78 .40 .44 .24 1.00 .56 .60 .39 .44 .25 .44 .19 .20 116.0 97.0 116.0 102.0 58.0 86.1 120.0 124.0 51.0 49.4 59.1 120.0 78.0 86.0. 104.0 124.0 148.0 141.0 136.0 122.0 139.0 92.0 92.0 Shear 68.8 109.0 68.0 74.0 18.5 30.0 75.0 34.2 48.5 62.1 87.5 74.5 40.5 78.6 66.6 43.0 72.0 55.5 55.0 67.0 66.6. 30.0 30.0 Floor Peams Second Floor (con't) No. Size Positive steel Negative steel Bond Shear ‘__ m#_ ' figgg. Supplied Eggg_ Supplied 224 10§"x19" 2.10 2.36 .75 .78 99.0 109.0 225 12"x18" 1.80 2.00 1.50 1.62 101.0 37.0 226 12"x18" .99 1.19 .32 .31 129.0 55.0 227 12g"x19" .33 .40 .18 .20 64.0 16.5 228 12%"x19" .77 .82 .25 .20 84.5 27.0 229 12§"x19" .13 .40 .06 .11 49.0 12.5 230 10"x10" .34 .40 .12 .31 165.0 32.2 Steel Reams on Second Floor gype Beam Length Sect. god. reeuired Sect. 20d. supplied 16"WF 404 17'-00" 24.3 64.4 16"WF 45? 21'-OO" 37.1 72.3 16 WF 644 21'~OO" 61.2 102.4 12"WF 404 l3'-06" 25.0 51.9 12"2F 32¥ 13'fi00" 17.6 40.7 12"WF 404 l6'-00" 27.8 51.9 The steel beams listed here are all over designed as far as their tensile and compressive stresses are concerned. However. these beams carry plastered walls and are therefore designed to a maximum deflection. Floor Beams First Floor No. Size Positive steel negative steel Bond Shear ___ 3 figgg_ Supplied 2222. Supplied 101 12"x22" 2.81 2.98 2.10 2.08 127.0 108.0 102 l2"x16" 1.39 1.49 1.39 1.77 127.5 100.0 103 12"x16" 1.73 1.77 1.08 1.13 130.0 100.0 104 12"x16" .42 .50 .42 1.13 100.0 50.0 105 12"x14:" .98 1.19 .29 .31 114.0 44.0 106 12"x14;" .43 .62 .54 .62 101.0 29.0 107 12"x16" 1.63 1.80 .56 .60 132.0 77.0 108 12"x10" .83 .88 .83 .80 126.0 44.5 109 12"215" 1.33 1.39 1.33 1.69 129.0 84.4 110 12"x18" 1.75 1.77 1.75 1.66 135.0 88.0 111 12"x22" 1.80 2.08 1.80 ..08 108.5 81.0 112 12"xl6" 1.50 1.82 1.50 1.98 126.0 79.0 113 12"x20" 2.44 2.57 .81 1.00 154.0 74.5 114 12"x12" 1.13 1.19 1.35 1.44 188.0 101.0 115 12"x18" 2.15 2.34 1.35 1.44 94.8 91.5 116 12"x18" 1.44 1.56 .60 .78 230.0 54.0 117 12"x20" 1.35 1.56 1.35 1.39 166.0 71.5 118 l2"x20" 1.11 1.20 1.11 1.56 144.0 58.0 119 12"x20" 1.46 1.56 1.46 1.56 160.0 65.6 120 l2"x22" 1.89 1.98 .98 1.20 149.0 77.5 121 12"x22" 2.02 2.17 1.18 1.20 201.0 83.0 122 12"x22" 1.89 1.98 1.31 1.57 150.0 78.0 Floor Beams First Floor(con't) No. Size Positive steel Negative steel 80nd Shear __*_ 288d Supplied ggedw Supplied 123 12"x22" 1.81 1.98 1.48 1.57 150.0 78.0 124 l2"x20" 1.92 2.08 .62 1.77 158.0 87.5 125 12"x20" 1.98 2.08 1.76 1.77 163.0 93.0 128 12x27" Length - 16'-00" 2/8 - 132.1 I/c .‘180.0 130 10"x12" .21 .39 ~--- ~--- 90.0 23.0 131 12"x14" 1.53 1.64 .43 .60 87.5 55.0 132 12"x18" 1.34 1.49 .53 .61 98.7 62.0 133 12"x14" 1.23 1.49 .54 .61 98.0 34.0 134 12"x14§ 1.09 1.22 .51 .61 109.0 38.6 135 12"x22" 2.08 2.36 .69 .78 109.0 84.0 136 12"x22" 1.78 1.90 .90 1.38 127.0 63.0 137 l2"x22" 1.67 2.17 1.38 1.38 141.0 60.0 138 12"x22" 2.14 2.78 .58 1.64 165.0 89.0 139 22"x26" 2.43 2.78 1.58 1.64 165.0 89.0 140 12"x20"~ 1.71 1.80 1.58 1.60 122.0 67.0 141 12"x12" .61 .75 ---- ---- 110.2 34.4 142 l2"xl6" 1.44 1.64 .48 .44 89.2 63.4 143 10"x20" 1.62 1.80 .53 .60 102.0 78.0 144 8"x 8" .44 .59 .14 .20 89.0 22.0 :323fi0 B 873/ft. Encased The floor beams were considered as beams freely supported or built to act integrally with beams, girders, or restraining supports, or beams built into masonry walls in such that only partial and restraint is developed. and carrying uniformly distributed loads , end having the following moments at the critical sections: Positive moment near the center and negative moment at the support of interior spans. r w 12 1 12 Positive moment near centers of end epans and negative moment at the first interior support, a 12 M a ——-. 10 Negative moment at end suprorts for all cases to be not less than w l2 M ' 24 All beams were found to be sufficient with the exception of one or two which had a stress of 21,000 pounds per sq. in. in the main steel. However, recent Specifications have been more liberal in the tensile stress of steel and allow 22,000 pounds per sq. in. and 21,000 pounds per sq. in. is undoubt- edly all right. Sample computations: Beam 109 12"x15" l = 11.5' V s 2292K/ft. 1-1"round B.D.C. 2-5/8" round st. 2 2 M . LL 3 W12 : 365.000? 10 < 10 M 326 000 : A3(p&n) 3.3.3_?;.. z 20,006_x .875 x 13 1.338q.in. A. 3 3651000 B(end supfort) 2.4 x 20,000 x .575 x 15 ' .555q.in. 1-1;gound .EB l-l;zound ( .gg 2-5 "round 1 2-3 "round ad3.hesm . 1.39 1766 1 4~._. 1% ffltulw 13\u&nx_\|\w\kpww v _ I “ska. Lnoxoxmmaiiuwv — 1 13 Ilw _Lfl vasouofi Irllj .N K lb 35 26:3 xox came xee‘ufiew 1 -\ Nxm>0uo= . Efbhimio not 3:66:68 .64 read .326 flew 533.30 mxiwomuxmm u V : Balcony The beams in the beleony are designed as beams having cantilever ends projecting over the girder. This necessitates computing the bending moments in the beams with; 1 only the cantilever and loaded. 2 only the part between the columns and the girder loaded, and 3 with both parts loaded. The Maximum moment was found to be present when Just the cantilever portion of the beams were loaded. Some of the balcony members, part— icularlly the girder. were over designed as far as the bending and shearing stresses are concerned, however. they are carry- ing plastered ceilings and therefore are designed to a maximum allowable deflection. Joists Concrete No. Size Positive steel Negative steel Bond Shear __‘ Eggg_ Supglied flggg_ Sugnlied JA 19"x 6" .35 .44 .23 .31 . 84.0 30.0 JB 19"x 6" .42 .44 .27 .31 99.0 35.0 JC 19"x 6" .42 .44 .35 .31 99.0 35.0 Jo 19"x 6" .42 .44 .32 .31 97.0 34.0 Steel Size Max Homent Sect. Mod. Sect. vod.. Remarks seededs/s Supelied ;[£_ 10": 25.4 '315,000"5 17.5 24.4 shear is 10"c 15.3 131,000"4 7.3 13.4 05K. Beams 12"sr364 676,000"4 37.5 45.9 " 2-7"Ch 9.84 93.000"4 5.17 5.44 " Girder 36"sF 230? 8,430,000"4 470.0 835.5 " I2. No. Size 13 8"H 31 14 " 15 " 16 8"H 48 17 8"s 31 18 " l9 " 20 " 23 8"H 48 l.4&9 6"H 15.5 2,5&10 " 6 &7 n 8 7! Columns Supporting Second Floor Plate Load 3123 l2"x10"x1" 54.0 15"x12"x1" 89.0 " 93.0 20"x22"x2" 182.5 12"x10"x1" 72.0 12x 12"xl" 68.0 12"x14"x1" 74.0 12"x10"x1" 52.0 18"x16"x1" 128.0 Supporting Roof 8"x8"x3/4" 29.0 8"x8"x3/4" 27.0 " 30.0 " 27.0 10"x12"x1" 50.0 8"x8"x3/4" 26.0 10"x12"x1" 54.0 1o"x10"x3/4" 19.0 " 53.0 " 49.0 " 53.0 Allowable load-kins 132.0 132.0 132. 207.0 132.0 132.0 132.0 132.0 207.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 132.0 132.0 132.0 132.0 Bearing on_p1ate 4503/80." 4634/89." 484fl/Bq." 4153/sq." 6004/89." 4704/sq." 4404/sq." 4344/89." 4034/89." 4504/sq." 4224/sq." 4703/sq." 422¥/80." 4164/sq." 4064/sq." 4505/sq." 1904/80." 4404/ae." 4904/89." 5304/89." Columns (con't) Supporting Roof No. Size Plate Load Allowable Bearing ___ , 5325 load-hips on plate 17 8"H 31 10"x10"x3/ " 25.0 132.0 2502/sq." 18 " " 18.0 132.0 1804/sq." 19 " " 21.0 132.0 2104/80." 20 " " 25.0 132.0 2504/sq." 21 6"H 15.5 8"x 8"x3/4" 22.0 56.0 3444/sq." 23 8"H 31 10"x10"x3/4" 53.0 132.0 5304/80." Sample Computations for steel columns(3upporting Ref! No.12)- Load = 54.0k1p8 6"H 15.54/ft. A a 4.59 as. in} length - ll'-00" r = 1.42 . least radius of gyration : 1.42 l/r I —%¥§§- a 93(1ess than 120. 0.x.) Allowable stress : 17,000 - .485 %%%g 8 12.1503/30. in. Allowable - 12,150 x 4.59 a 56,0003 No. 1.429 l2"xl2" 2,5210 12"x12" (DNOU 12 21 22 1.4&9 l2"xl2" 2,5&10 ODNQU Size H N 12"x18" Columns 16"x36;" 8-3/4"rd. Supporting Second Concrete- Main steel Ties 4-5/8I‘d. inrd.’310" H H n n H N 4-3/4"rd. %"rd.§12" 4-5/8"rd. fi"rd.?10" i "I‘d.l§’10" Floor Load Rigs ”Zoo." 73.0 68.0 74.0 56.0 63.0 73.0 70.0 75.0. 66.0 23.0 Supporting First Floor 4-l"rd. 4-7/8"rd. 4-1"sq. 4-5/8"rd. 4-l"sq. 4-7/8rd. 4-1"sq. 4-5/8"rd. 6-1"rd. gflrd‘filen H I! i"rd.010" n i"rd.?12" l1 %"rd.310" N 111.0 102.0 121.0 85.0 75.0 121.0 101.0 123.0 84.0 156.0 Stress 453 431 455 471 410 540 Allowable 41/89... 111.1 563 '9 H H N H H Columns Supporting First Floor (con't) No. Size Main steel Ties Load Stress Allowable .__. _: 3 hips ”699:" fi/sq. in. 16 2o"x24" 8-7/8"rd. %"rd.0l2" 237.0 435 563 17 l6"x12" 4-7/8"rd. " 114.0 505 " 18 l2"x12" 4-1"rd. " 108.0 575 " 19 l4"xl2" 4-l"rd. " 113.5 604 " 20 l2"xl2" 4-3/4"rd. " 83.0 490 " 21 " 4-1"rd. " 116.0 580 " 24125 " 4.5/8"rd. §"rd.sio" 49.0 304 " 26&27 " " ‘ "' 32.0 200 " 28&29 " " " 49.0 304 " 30 " " " 39.0 943 " 31 " " " 26.0 162 " Sample Computations for Concrete Columns:(Col. 18, First Floor) 1231x12". A-1"rd. . éllrd‘filrafl Mom. Inerta . bh3/12 , Area 8 12"x12" u 144 sq.1n. p 3/;::§::'-’= *3.45" Limiting height a 40p : 138" Maximum height of Columns 8 132", therefore all columns are short coulmns. and P 108 000 Ag " W = 5750mm... is the gross area and P the total normal load. Stress-z where Ag Allowable stress : 5633/sq.in. All ofthe columns were quite closely designed although some of them were slightly over stressed. A 12"x12" column with 4-5/8"rd. bars being the minimum size column allowed for buildings was used where ever it was possible. NO. Footings l,4&9 6-8x5-8xl6 2,5&10 6-4x6-4x15 '40“ ll 12 13 14 15 16 17 18 19 20 21 24225 26227 28229 30 31 8129 Steel Gross Ep As Need Have l2-l/2"sq. 2,600 2.60 3.00 ll-l/2”sq. 2,750 2.47 2.75 5-8x5-8xl6 l2—l/2”sq. 3,490 2.31 3.00 5-825-8xl4 9-1/2"so. 2,810 1.66 2.25 6-Ox6-0x15 10-172"sq. 2.270 1.74 “.50 " 10- " 3.000 2.30 2.50 6-9x6-9x16 12-1/2"sq. 2,920 3.10 3.00 6-4x6-4x15 11- " 2,280 2.05 2.75 8-Ox8~0x18 14-5/8"rd. 2,600 4.15 4.30 7—8x7-8x18 13- " 3,040 4.50 4.10 4-9x4-9x14 20-- " 5.550 5.72 6.12 5-4xs-4x15 11-1/2"sq. 3.000 9.67 2.75 6-8x6-8x16 12- " 2,620 2.62 3.00 5-8x5-8x16 11- " 3.750 1.25 9.75 6-4x5—4x15 11- " 2,260 2.03 2.75 6-8x6-8x16 12 " 2,800 2.80 3.00 4-4x4-4x13 ll-3/8"rd. 2.750 .84 1.22 3b6x3-6x12 lO-§"rd. 2.780 .42 .50 4-4x4-4x13 11p3/8rd. 2.750 .84 1.2 4-0x4-0x13 lS-i"rd. 3,500 .74 .75 3-4x3-4x12 9—%"rd. 2,400 .32 .44 7-0x7-0216 12-5/8rd.. 2.680 3.18 3.68 Bond Shear fi/sq. in. 103.0 140.0 97.0 70.0 94.0 124.0 129.0 116.0 130.0 131.0 68.5 152.0 104.0 93.0 115.0 111.0 117.0 156.0 117.0 106.0 150.0 117.0 206.0 272.0 223.0 160.0 158.0 209.0 232.0 226.0 130.0 224.0 95.0 296.0 210.0 213.0 224.0 224.0 . 118.0 82.0 118.0 125.0 64.0 238.0 Sample computations for Footings: (Footing No. 8) Column load - 121.0008 7-0x7-0x16, l2-5/8"rd. Footing - 6'800 . 3 , 00$ Gross Ep , 130:800 ='2,680££sq. ft. As by Bending, As : g ( 6 2 4 2 680 x 12 fsxjxd 12 x 20,000 x 7 x 3 :18 . 3.18 BC]. in. 12-5/8" rd. bars a 3.68 sq. in. Shear, s a :1‘1730680 : 2384/sq.in. Allowable with special anchorage - 225?/sq.in. Bond, u a( gx7‘ x22§.g6 3 1217/80.}.1’1. % K 3 2 ’ War 17.3 ”-qu The Ways oft/71.5 bwldmg @133 load beefing 353123115 ‘ rep/lawmg a»?! sartewar columns. f?cw%x*w@v, dare to :3} J’omj‘x“ § ' of time, 0273;" one section tfiiru tho 5:2;th 3.5501703,on 3055533 column No-I/ // size anal/yaed. F333 mefi‘croed Comfiffifg g Wu” from 3‘ '3 YVG'd'e I’Ifle doww 5:» 3.433352 fooimy 56mg horzzanta/ 32.91 bot/5 top and £35523an guy/55a r? (3 5K beam actmr; musing £59 70010” to :53 meQ @Vwfly 5 é/dte disfnbutea’ :‘kflg the fbcfiflg" Zl‘f‘flifl 5f" ordymaryg [5 K by plain COI3J'5t633 or may/50535} 53755137375. Rafter Reaotiwv 5: 639 [m tel oveér 2nd floor wigg’gwég F; .3 . ”d5 onry 5;ng 5* 5’; . a 0 beam fissacézon (222.3 K? i .00 0 aeoim Rem: :50!) (22.3) 55; f0 Rem forced con c r§¢£ wa/E’ 5; 7 *9 Q Foo 2512757 5:3,; :35) 0 grow 5mm? Fro-mum 3.3 “$355393: 3; $“é‘@’# 47’ _ @ 3 ; 772/5 I5 55% £375 {5!} fiaoa‘irpg5 are G-‘éélg-W for 3500’?" fsziffa‘? Xi’assvng F0 07/40/09 am: 5 surfed/61 5% X 55;: @550; 1’2 ”3"?“ ”13%: 5+ ”*3”; 53?“ M; if'ajnn be»: 5:41;”? I? = ~17; -.,- 3/40x/z __‘; ~59 a... 5 Ivo’ W, 0005335 // an 6 x255 "" ewe. ~= 255m .333- ’ ‘33-‘9- ' 5‘!!de r' Bib ofi's ‘ 3 .mfifbgdxg 3,550.;(323+[2111x% ._._-K 36#nuar ’ 7 K K Zifiéflécan finous 2:: In 4.1- sz" Q muctré. Vera .11}. ~73 I” (6"ctrs.‘ fiarz. g; 2’96 con two as ‘ 'V 3/5 " *@J"o. c. t5¢~2c1‘:1c>r7f77'7ch E.Souz‘th Wd// ., . ‘;5KC;'a/e_‘/4u=';/V v . 3:5 ‘ r 7 , 1 .7 Wm ' ,r _. , maxn‘nkzm mug-1‘ "- $333,311 1.}.xtiullixt.ii.i':|ll ‘ 533,, y ROOF ‘ F KAM IN C: I'PLKA N ‘ ScALe—‘Iegf—o" 7 'K 7" . “$5. ’i_ €601:’{Wer a i T? J / bod‘h ends Can/”Mew manual,“ _j “35139334. UPPQV Part 0)‘ 130’10’ Room I l . namgmua .-‘ — . “sail... 3! A. h...___..___.._:,__.,,_. . V TE 9: ’1 K3 7 J F" k A. -- 12.. ’ E ; 1: on: .M...,grm 3 v 11:06 o 7"“ ._____z;&_.....z~_or___J-7L “+ ' 9&5):— 2o m~~ ’2. i " 3/4‘a a» a I «1' ' __.-—<=——~~__.___“| 69-2.".5fvee/716’ i—F—‘A 2.2.3 K M o l , _ _ M . EA wmfim .6 tick: 16"W" 4o ‘3' _L I o 1.03 7.7.2.. ,7 2,22. t p O m 4. .n .v. p n .5 u. 0? 4 £3! a .. ~@ 9%. =‘\ g ”33:0 awuflb A . Q n. . QJ ‘§~8 .. .§*$-N.~@K .Uuh nu.“ #6 . . x ,w o 3% xx «3 3 K _ .. a ,. _. r , . ., d @ 2 _ a Wm P , W. W WM. M P. . “mm?” . Pp , 5W4. .. u 5 4 m« w. llllll ."IIIHHHH 4.99.3 .. .GNQQ “ “\h. r 1.;on...¢ 2.30 . . 4 . _ _ woken: «mm “WW .1 ,, ,_ 4.“ . . H. . u mm .o 5.0.3 o 353% .5 +33 M... 9 Q . .. a w , o fin _ rod fil y» HHHHHH: u, IIIIH or Inn. IfiG ou. m _ _ m l. w. . : o a . c a... mm» A . . _ _w M... u. a; 1... WM ll If!!! M lul— T .w Z». w. 5 _ .R M... _ a mo) .. mm as»... k. :. 1... .A 5w.» ... , myrr‘ K ua'é-Jfi‘w'." m, .34.... .7- - was, ., a, .. W B: Erika.» fihnutlhinuuihkas. l. V. _ . , ,. . 55.. E}; Erna: .315: .tlfk (€72 .wlr W. m a t 3.53.1.5 31$! fl @NM m FT :1... I. .l «5L h .. . In L1; E.E x 4.. Ir ,. ..,.:,./z:. 6 .N \N m m .N . . .m, “Tifitlmmub b- 5; ...ii .14.. . ......S. ....w..-r.~ I III llll."|.lllll.. . I III-I'll M-nnll W. _ _ IlIIIJJfJII ...: llllnl m... .w .. . a : .2 .211 _ _ . e .. _ ... k _r a a o. : : ,4. — Mam z.m _ __ M . _ M w mu m Moll-.324. _5 : , _ 1: K - _ "5%”... on... B. , . _ __.... um «WWW WM...” _“ M_ - ' FL :2 wt, __ __ , .F... Illir® @: , w. __._._:—-—-—--—._ _ .5 [a . gr kw __ . ... I, o” K CT. 0.... __ L , L , bt BS __7 20.— uwo 76. JV: 3 o A la 74“ _I _ , 51. _ I — c J/ .1 __ , O . ..IIIIIIIRFII hula: __ 4: . J 3 llllll I2 W112? IIJJIILL@ o _ L Q mun...“ :I/HM. .. :T . H / M mwwo &V\\o\_ “HWMWMMW 1 F. \6 a4- -Z..8 \ c 2 ly . \\\2 (PW/ // ., IRWIN a. l..:./ I \ \\\m\u 1/ TD~W~U<°WIW_ _ _ e . / llH..lH.:i\b k k_ .1 \ m. cm @ a ..u. .@ n o. w L _8 alway— _ £86 wine; T “m: o. “a mu: w 3.: /_ ... :: $5M-“ .¢\ on. .Nslds I . I I . . ...... WM, :- mm. IL . mm“: L _ 9 .06.: any}... 5. ., _ at dice ".../«4,4 _ _ < 3o . ..6 \.I._1 6 ..II __ K F __’—_Ti— H .II 9’.“ '} Oh | Qlt . I I l : :2 sill H __ +4- ® 612:”51‘. Tile. 25"0. - L—er._T——-F‘_“W———-J——f—l_ .... __..——-.—. .. “a _ o . fl: _ . A 5.3 r J" _B _ 21:: ,. . fi-JHJ... .. o ., . - 8 _ * .. 12:55: _ _gfnwroosflm To”, Z m: E :11: 2:2: i:.:.- ...-,- .... no _ _ L: :_. _ _ ..— _. . ,. . - a . e .. _ . . -.. ”wow @ . _ _ _ _ _ ‘ . II ... . 22" IIIII: lbnllwsuil lllll #.® ... : .. . @ _lllllll Ill-ll— . 25.24 w.- :.22 : 2 .i. 3:22, : ...-.....- :- { l N. @ a. ...: ... @ a. _ _ _ 3., . :_-i__:.-2. . . m My. : _ _ _ // . m 6 fl , _ O . m. _ _ IV 5 $8.... Li M “3%-“ _ wllL. u 8 Inlllluz .. .. mm WW _-+o:o~.nu.b.ux _ m. ‘ . ......w - III-fi— 7 . _ . ., . ...:2.|. fill: Ila _® * I. l 22.2w ... M. _ .3 «EWL _ _6 .. : . 1 .35. gnu-RS ... 1...... ll llotl. II...@ _lwmhur [IA—“__@ : _ r ...-o. ..z-J 5 : --..wW.a. .w.\-\ ...x . ”W s v 5 an 4. ~52NW?£WFW. l‘l ICHIGRN STRTE UN IV. 55 5| |5|55 13 129301748 LIBRARIES 55555 8788