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ABSTRACT

APPLICATIONS OF PLAY AGAINST PAST STRATEGIES IN

REPETITIONS OF A GAME

By

Lei Chen

Hannan [17] introduced and studied certain recursive “play against past” strategies

in the repeated play of a game. His results include bounds on the excess of total risk

to player II over an envelope risk, namely, that which results from use of the best

simple strategy based on knowledge of player I’s empirical distribution of past choices.

This thesis investigates the Harman results for finite games and extends their

applications to certain infinite games. This is accomplished in Chapter 2 by showing

that the Hannan bounds hold for play against random perturbations of the empirical

distribution of player I’s past choices of randomized strategies and by identifying pure

strategies in the infinite games with randomized strategies in a companion finite game.

Chapter 3 uses this idea to show that the Harman recursive strategies and resulting

bounds have applications in the repeated play of certain allocation and nonadversarial

multi—arm bandit problems.

Another application concerns the repeated play of an expert selection problem.

Chapter 4 contains a review of some of the literature for this problem. In this com-

ponent game, player II selects an expert from a set of experts for a prediction and

suffers loss equal to the prediction error. In repeated play, the enve10pe risk is the

total of the prediction errors by the best individual expert. For a set of n = 2 ex-

perts, Foster and Vohra [13] proposed a recursive strategy and showed that it results

in average prediction error close to that of the best individual expert in the limit.

Chapter 4 shows that their strategy is an example of a Harman strategy and that the

adaptation of Hannan to infinite games establishes a slightly stronger version of their

asymptotic result. Moreover, this approach provides an immediate solution for the

case of n experts.
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Chapter 1

Introduction

1.1 Introduction

There is current interest in a variety of problems that involve repetitions of a decision

problem. Examples are on-line allocation problems, multi-armed bandit problems

and expert selection problems. Hannan [17] developed recursive strategies for player

11 in the repeated play of a game. Our concern is the adaptation of the Harman [17]

finite game results for certain infinite games, including the aforementioned.

Prediction by combining expert advice has extensive applications. According to

Clemen [8]’s review, it has been applied not only to meteorology and economics, but

also to the prediction of social and technological events, football game outcomes,

electrical demand, tourism, political risk and population, etc.. Clemen [8] gave an

extensive survey of methods for combining forecasts. Most of these conventional

methods for combining forecasts involve taking a weighted average of individual fore-

casts and can be viewed within a regression framework. Regression techniques, such

as weighted least squares, robust-weighting techniques, ridge regression, latent root

regression, have been used in combining forecast. Bayesian techniques for includ-

ing prior information in a forecast combination have been studied by Clemen and

Winkler [10], Clemen and Guerard [9]and Anadalingam and Chen [1]. Most of these

approaches require that the probability distribution of the event being forecasted be

specified.



In computer science, predicting a binary sequence by combining the predictions

of a set of experts has been studied by Cesa-Bianchi et al.[7], Foster [12], Freund [14],

Littlestone and Warmuth [23], Vovk [27] [28] etc.. Haussler, Kivinen and Warmuth [18]

also provided prediction strategies for continuous-valued outcomes using expert advice

for certain classes of loss functions. Their strategies are based on the exponential

weight algorithm introduced by Littlestone and Warmuth [23] and by Vovk [27]. None

of their strategies requires statistical assumptions be made about the decision-maker’s

subjective beliefs regarding the distribution of outcomes. They proved bounds on the

difference between the average loss of their strategies and the average loss of the best

expert. The average loss of their strategies will approach that of the average loss of

the best expert at a certain rate as the length of outcome sequence T goes to 00.

Foster and Vohra [13] studied the problem of choosing a prediction from two

experts. Assume that the prediction loss is bounded and that the decision-maker has

the knowledge of the past losses incurred by the two experts. They constructed a

randomized strategy for the decision-maker and indicated that the difference between

the average loss of the decision-maker and the minimum average loss of the two

experts goes to 0 in probability as the number of trials T goes to 00.

By connecting the Foster and Vohra [13] randomized strategy with game theory

results studied by Harman [17], we verify that the Foster and Vohra [13] randomized

strategy is a special case of Hannan’s strategy for player II in a finite two-person game,

that is, it plays Bayes versus a randomized perturbation of the arithmetic mean of

player I’s past randomized strategies. The minimum average loss of the two experts

is the Bayes envelope, denoted by ¢(%XT), where XT is the sum of player I’s past

randomized strategies.

We also consider the prediction problem in which there are n experts. Based on

game theory results, we construct randomized strategies for the decision-maker such

that the difference between the average loss of the decision-maker and the average

loss of the best expert goes to 0 in probability as the number of trials T goes to 00.

In the compound decision problem, the extended envelopes, introduced by Johns

[21], is a lower envelope than the simple Bayes envelope. The extended sequence



compound decision problem has been studied by Swain [25], Gilliland and Hannan

[16], Ballard [3], Ballard, Gilliland and Hannan [5] and Ballard and Gilliland [4].

Vardeman [26] studied the k-extended problem in a game theoretic situation. He

constructed randomized strategies with risk approaching the k-extended envelope at

the rate of O(T"1/2).

If the loss of the experts have some dependency, then we can use Vardeman [26]’s

idea to construct k-extended randomized strategies for the decision-maker such that

the average loss of the decision-maker approaches a lower enve10pe.

1.2 Summary

This dissertation connects game theory, the on-line allocation model, the multi-armed

bandit problem and the on-line prediction problem using expert advice. It is organized

as follows.

In Chapter 2, following Hannan [17], we present notations, useful lemmas and the-

orems for a finite two-person game. We also extend the results of recursive strategies

to an infinite game.

In Chapter 3, we introduce two algorithms, Algorithm H and Algorithm H, based

on Theorem 2.3.2. In the on-line allocation model, if the allocation agent uses Al-

gorithm H, then the difference between the expected average loss of the allocation

agent and the average loss of the best strategy converges to 0 at the rate of 0(T“1/2).

In the multi-armed bandit problem if the player applies Algorithm H, then the differ-

ence between the expected average reward of the player and the expected maximum

average reward of any arm in a sequence ofT trials will go to 0 at the rate of 0(T‘1/2).

In Chapter 4, Sections 4.2 and 4.5.1 contain a general review of the most relevant

literature for the on-line prediction problem using expert advice and the k-extended

idea. In Section 4.3, we present a proof of Theorem 1 of Foster and Vohra [13] using

Theorem 2.3.3. In Section 4.4, Theorem 2.3.4 is used to generalize the problem studied

by Foster and Vohra [13] to the case in which the choice is among n experts. Without

any statistical assumption about the distribution of the sequence being predicted,



if the prediction loss is bounded, then we can construct a randomized strategy for

the decision-maker such that the difference between the average loss of the decision-

maker and the average loss of the best expert converges to 0 in probability at the

rate of 0(T'1/2). In Section 4.5, we use the Vardeman [26] technique to construct

k-extended prediction strategies when the decision-maker has the knowledge of the

predictions made by n experts. If the loss of the experts takes values in a finite set

with cardinality q, then using the k-extended prediction strategy the average loss of

the decision-maker will approach the k-extended envelope in probability at the rate

of 0(q"("‘1)T'1/2) uniformly in outcome sequences.



Chapter 2

Strategies for repeated play of a

game

2.1 Preliminaries

2.1.1 The finite component game

Consider a finite two-person game in which players I and II have, respectively, m and

11. pure strategies. Their spaces of randomized strategies are denoted by X and Y,

m

X = {x = (1:1,x2,...,:rm)|:r,- 2 0,223; = 1},

1

Y= {y= (y1.y2.--.,yn)ly.- 2 0,2!“ = 1},
I

and their pure strategies are represented by base vectors 6 and 6 in X and Y, that

is, the degenerate probability distributions.

Notations. For m-vectors, we use juxtaposition to indicate inner product, that is,

ab = 2’," a,b;, and we define the norms

m

Ial = mgxlaal and Hall = Slat-l-
1



Player II’s inutility is denoted by a loss matrix A,

011 “113 A1

A: g 5 = ; =(A1,...,An),

aml amn Am

It is assumed throughout the thesis that A has no dominant column, i.e., for each j

meax(eAj — mrin eA') > 0, (2.1)

and no duplicate and dominated columns.

Notations. Let

A"'=A"—A',1Sq<r5n.

The expectation of the loss when player I or player II uses a randomized strategy

is R(:r, y) = :rAy, and we will refer to it as risk. From the risk point of view, this

game is identical with the s-game in which player II’s pure strategies are m-vectors

in the set of columns of A, {A1, . . . , A"}, and player II’s randomized strategies 3 are

m-vectors in the convex hull of the columns of A,

s E S = {Ayly 6 Y}.

For each a: E X, the vector inner product ms is the Bayes risk of 3 against 2:. The

Bayes envelope is defined as

¢(x)= minws=jn11in :cA’, xEX.

" ’n

A pure strategy valued Bayes response is a function a(-) on X into {A1, . . . , A"}

where for each x,

“(93) = 43(93)-

Note that ¢(-) is uniquely defined and 0(o) is not unless, for each 2:, 2:0 is minimized

by a unique 0. It is useful to extend the domain of ¢(-) and any given a(-) to the

nonnegative orthant of m-space as follows. For w e [0, 00)”, let

¢(w)= minws= min wAj,

J'=—--1..n



and 0(0) = arbitrary and

0(w) = 0(W/llwll) ifw 9* 0-

It is follows that a(-) is positive homogeneous of order zero, that is, 0(kw) = 0(w)

for all w e [0, oo)m and constants k > 0.

Notations. In all of the following, a(-) will denote a pure strategy valued, positive,

homogeneous Bayes response defined on [0, 00)”; also, following Hannan [17, p. 102],

we let

IBI = sup |0($) - 0($’)I = Hgax lAq’l, (2-2)
z,z’ ,r

where the last equality follows from the fact that A has no dominated columns.

A strategy 3 e S may be evaluated for each 2: E X in terms of the additional risk

above the Bayes envelope risk ¢(:r), that is 2:3 — ¢(a:). This excess is called the regret

ofs at 3:.

2.1.2 The repeated game

This section considers repeated play of the component game and the evaluation of

recursive strategies in terms of their excess total risk over 42 evaluated at the (non-

normalized) empirical distribution of player I’s choices.

Suppose the component game is played repeatedly with e‘ and 0‘ denoting the

choices of pure strategies by player I and II, respectively, at time t = l, 2, ..., T. We

suppress the display of dependence on T in writing

1
g=(e ,...,€T) and g=(al,...,aT).

The total loss across the first T plays of the game is

T

RT(§, g_) = Z e‘a‘.

1

If player II uses the same component strategy a at each time t, that is, g_ = (a,

. . . , a), then we write 9; = UT and note that

T

RT(§, 0T) = 2 6‘0 = ETa

1



where ET = 2:," e‘. (Harman [17, p. 107] calls such g power strategies.) Note that

12%. o") 2 ¢(ET)

with equality if a = 0(ET). We will sometimes refer to the sum ET as the empirical

distribution of player I’s choices of pure strategies through time T.

The envelope risk ¢(ET) is the minimum total risk to player II resulting from the

use of a power strategy across the first T plays of the game. If player II knows ET in

advance, then the power strategy with kernel 0(ET) achieves the envelope risk.

Hannan [17] refers to the excess risk

RT(§,9_') - MET)

as the modified regret of g at 3:. He develops bounds for the modified regret of

recursive strategies g, with 0‘ a function of E"'1 and possible randomization. These

bounds are 0(T1/2) uniformly in g for finite component games.

Since we make extensive use of the Hannan [17] notations and results, it is conve-

nient to state some of these for future reference. We let H‘, t = 0, 1,. . . be a sequence

of numbers satisfying,

0<H°5H1$H25m z 2 2w. (2.3)
H1 H2 H3

T T '5'

Let p be a probability measure on the unit m-cube [0, 1]”. z ~ p provides the arti-

ficial randomization in the Harman recursive strategies and is such that the induced

distribution on

qu" = 2(A" — A')

satisfies a Lipschitz condition. Specifically, there exists a constant L > 0 such that

Miz i t1 S qur/lAqr] S t2} S “‘2 - t1) f0? all Q < 7', t1 S t2- (2.4)

Also 9 := Eullzll. When u is the uniform distribution on [0,1]”, 0 = m/2 and we

take L = 1.



Hannan [17, Theorem 3] showed that with the component game defined earlier, if

(2.3) and (2.4) hold, then for each T and g,

T

—HT9|B| g :c‘Epa(E“1+H"lz)—¢(ET) (2.5)

l

2 T 2 T

< T I‘— ___ ._ H 0lB|+L4(Zl: H, HT)IBI, (26)

where [B] is defined in (2.2).

Denote the right hand side of (2.6) by UT. For fixed p, Harman [17, Section 7]

showed that when T is known in advance to player II, then

H‘ = (Luz/40)1/2T1/2, t = 1,. . .,T,

minimizes supT T‘1/2UT. When T is unknown to player 11 and u is the uniform

distribution, then Hannan [17, Theorem 4] proved that for all T and _e_,

Ht = (3n2/2m)1/2t1/2, t = 1,2,. ..,

minimizes supT T‘WUT, and that

T 2 _

—(/3n2mT/8|B[ S gc‘Epa(Et‘l+(]§E-%n—llz)—¢(ET) S ‘/3n2mT/2|B|, (2.7)

Hannan [17, Theorem 6] produced bounds which are a uniform improvement of those

in (2.7). He showed that

—\/1.5mT|B| g ie‘EudEt'l + ([6—(t—flE—llz) - (MET) S V6mT|B|. (2.8)

2.1.3 The k-extended game

Consider the above two-person game. Player I has m pure strategies and player II

has n pure strategies and the loss matrix A satisfies (2.1). Let X and Y be the set

of player I and 11’s randomized strategies, respectively.

Denote S = {Ay I y 6 Y}. For a: e X and s 6 S, ms is the risk of player II

choosing strategy 3 against 2:.

Suppose that this game occurs repeatedly. At each time t, let 1“ represent player

I’s move, and 2:1, ..., 1:“1 are known to player II before he makes his move at time t.
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Let s = (31, 32, . . . , 3T) be such that s, is a function from X"1 into S. For x“1 =

(2:1, . . . ,T“1), the risk of sequence strategy 8 is

T

Z:r‘st(x“l). (2.9)

i=1

When 8 = (s, s, . . . , s) for a fixed 3 6 S, the risk (2.9) becomes

T T

222‘s = (Z T‘)s = XTs,

t=l t=1

where XT is the sum of the randomized strategies of player I through time T. The

definitions of Bayes response and Bayes envelope imply that

¢(XT) = XT0(XT).

Let S" be a set of functions from X"‘1 into S. Let

tt-l t—k-i-l , xt—l).

x =(a: ,...

If we consider 8 = (s‘, s‘, . . . , s‘) for a fixed 3" 6 S’, then the risk (2.9) for such an 3

reduces to 23;, :r‘s‘(x“'l). We term

a k-extended envelope.

We use Vardeman [26] ’5 Pk notation to define set S C [0, 00)“. of the form

S = {59' 6 R"‘k|(:r""°+1 <8) 32"“2 ® ~-® x‘)§ = T‘s*(x‘t'1),for some 3" E S“ },

where mk-vector TH‘“ ® Tt‘k” ® -- - ® 3‘ is given by

((a.-“"+1®a:“"+2 a ~~-®x‘),-,,,,,-,, 31-6 {1,...,m}, i: 1, . ..,k),

and

i:

t—k+l t—k-i-2 t _ t-k-i-t'

(x m 69 mm )1.....-. — I122... -
i=1

Let 6(a)) denote a positive homogeneous minimizer of ms. Denote

T

X; = Ext-k'i'l ® xt—k+2 ® _ . . ® xi.

t=1
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Then

T

min T‘s‘(x
s‘ES‘ t=1

“-1)

T

= mip 2(xt-k'i'l ® $t_k+2 ® . . . ® $t)§

565 i=1

= mipX5

565

= X;5(X;.).

For an E Rmk, define ¢"(w) = w6(w). Thus the Ire-extended envelope is

¢’°(X%) = X%5(X4‘~)-

2.2 Lemmas

For later application, we determine the behavior of the Harman recursive strategy

when player I’s choices are randomized strategies :1.“ and 0(E"1 + Ht‘lz) is replaced

by a(X"l + Ht'lz), where X0 = 0 and

For this purpose we reinterpret lemmas from Hannan [17] with 6‘ replaced by 2‘.

Remark 2.2.1 Lemma 2.2.1 below will be an important tool in the proof of Theorems

2.3.1 and 2.3.3. Hannan [17] used it in the proof of (2.5) and (2.6).

Lemma 2.2.1 Let v‘,t = 1,. . . ,T be any sequence of m-vectors. It follows that

T T T

23:”: = XTvT-i—l + Ext—1(1): _ 11‘“) + 21,10} _ 01H).

1 1 1

Proof.

T T

XTvT+l + Ext-1h} _ vt+l) + thh)‘ _ vt-i-l)

1 1

TT T T

= XTUT+1 + Ext—lvt _ Ext-lvH-l + Zztvt _ thvH-l

l 1 1 l
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T T T

Xtvt-i-l _ ZXt—IUHI + Zztvt _ Extvt+l

1 1 1

T T

+ Z xtvt _ Z xtvt+l

1l

n

“
M
“
!
“
M
“
!
“
M
”

H s
: i

a
(
'
5

e
6

Cl

Remark 2.2.2 Lemma 2. 2.2 below will be used in the proof of Theorems 2. 3.1, 2.3.2

and 2. 3.3.

Lemma 2.2.2 If (2.3) holds, then

Xt'l Xt t - l t — 2

 

 

“HEY-‘HTHSF‘HT

Proof.

XH Xt m x:-1 X,.H+x:

"—m-‘zll = XI t-1——t——[H H g, H H

m 1 1 T‘-
_ t-l i

- 2"“ (F'H’tl'ifi

1 1 1
S (t-1)('fifi-§:)+F

< t—l_t—2

— Ht-l Ht

E]

Remark 2.2.3 The proofs of Lemmas 2.2.3 and 2.2.4 that follow are reinterpreta-

tions of (6.8)-(6.10) of Harman [17]. He proved the results when player I uses pure

strategies g under the assumption (without loss of generality) that for any 6

¢(e) = jeiiliiin} eAj = 0. (2.10)

Lemma 2.2.3 Suppose that the sequence Ht is positive and nondecreasing and that

0‘ is the recursive strategy

0‘ := (7(X‘"1 + Ht'lz), t = 1,2, . . .. (2.11)
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It follows that

T

XXV - at“) 2 -HTllzlllBl.
1

where IE] is defined in (2.2).

Proof. From the definition of a‘, we have for each t

(X‘ + H‘z)(o‘ — at“) 2 0.

Then

xt(0.t _ Ut+l) 2 _th(0.t _ 0“”).

So

ixt(at_ 0.)t+1

l

TT

2: H‘zo‘+1 — Z H‘zot

1 I

I
V

T-1 T

HTZUT+1 + z: that-i-l __ thZUt

1 1

T T

= HTon+1 + 2Ht—lzo‘ — ZH‘zo‘

2 1

T

= HTZUT+1 _ H0201 _ 2(Ht _ Ht—l)za,t

1

= HTz(0T+l — a0) — H0210}l — a0) —ZT:(Ht— Ht1)2(0 — a0)

where a0 = (a9, . . . ,a?,,), and for each i

a9: min a,,-, (2.12)

j€{l.~..n}

where ajj is the element of loss matrix A.

Since for any t, 0‘ - a0 2 0, H‘ 2 0 and H‘ is non-decreasing, then we have

HTz(aT+1 — a0) 2 0.

0 S Hot/.(o1 - a0) 5 H°||z|||B|.

0 S (Ht - H"1)Z(0' - 0o) S (H‘ - Ht-INIZIIIBI-
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Therefore

T T

ZX‘(0‘-0‘“) Z -H°IIZIIIBI-Z(H‘-H"1)IIZIIIB|
l 1

= —HT||z|||B|.

:1

Lemma 2.2.4 Suppose that the sequence Ht is positive and nondecreasing and (2.11)

holds. It follows that

xTaT“ — ¢<XT> + )T:X‘-1(o*— W) s HTllzlllBl.
1

where [B] is defined in (2.2).

Proof. Since (XT + HTZ)[0T+1 — 0(XT)] S 0, then

XTaT“ — ¢(XT) 5 —HTz[aT+1 — 0(XT)]. (2.13)

It follows from (2.11) that

(X‘-1 + Ht-lz)(ot — at“) S 0.

Then

Xt—l(0.t _ 0"”) S _Ht—lz(at _ at-i-l).

So

T

HTon+1 — Hozo1 — EXHt — H“‘)za‘+l. (2.14)

1
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It follows from (2.13) and (2.14) that

7‘

XTUT+1 _ ¢(XT) + Ext—1(at _ (TH-l)

l

T

S ,HTzo(XT) — H0201 — 2(H‘ — H‘_l)zot+l

1

= HTz[o(XT) - a0] — H0207l — a0) Z—(H‘— Ht1 .z)(a‘+1 — a0)

3 HTIIzlllBI-

where a° is defined in (2.12). The second last inequality follows from the definitions

of H‘, a0 and |B|.

El

Remark 2.2.4 Lemma 2.2.5 below is a slight modification of Lemma 1 of Hannan

[17]. It will be used to prove Theorem 2.3.3.

Lemma 2.2.5 If w and w' are m-vectors and (2.4) holds, then

Eu|o(w + z) -— 0(w' + 2)] _<_ L-gilBlllw' —- w||,

where [B] is defined in (2.2).

Proof. Let T1), = {zlo(w + z) = Aj,o(w’ + z) = A"}, and note that

Eulo(w+z) -a(w’+z)| = ZIA""In(T

#1:

= Z [Ajkill‘(7:ik) + #(Tkjll-

j<k

Note that

Z IA”‘|_< WI 21 s filB (2.15)

j<k j<k 2|

Hannan [17, p. 118] showed that

Hanna.) 5 Lllw-w’ll- (2.16)

Therefore, it follows from (2.15) and (2.16) that

2

E”|o(w + z) — 0(w' + 2)] s Ll‘é-lsmw — w'l].

This completes the proof of the lemma.
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El

Remark 2.2.5 Vardeman [26] proved the following lemma in the case in which player

I only takes pure strategies. Lemma 2.2.6 below shows that Vardeman’s lemma holds

for any finite set of player I’s randomized strategies. This lemma gives a decompo-

sition of (13"(X4‘i). By Lemma 2.2.6, we can modify the solutions of the uneztended

problem to produce solutions of the k-eztended problem.

Lemma 2.2.6 Let 36"“:--(.7:t",+1...,T"1), ¢"(Xf~) be the k-eztended Bayes enve-

lope. If the cardinality of X is finite, then

A T

¢"(Xt~)= 23 ¢( 2 x‘).

:rEX‘"l t:x“"’1=z

Proof.

T T

Zzts("(x“1) =2 ( 2 x‘)s’(:c). (2.17)

t=l TEX"—1 t:x""=::

Equation (2.17) is minimal if 3"(12) = 0(2):}..-1” x‘) for each x E X""1.

Therefore T

=2 ¢( 2 96‘)-

—"26X“1t:x“‘l=x

This completes the proof of the lemma.

2.3 Bounds for the modified regret of Hannan re-

cursive strategies

In this section, we prove results for the recursive strategy (2.11) that are extensions

of those of Hannan summarized in (2.5) - (2.8). The extensions are from (1 sequences

to 3; sequences.

Remark 2.3.1 Theorem 2.3.1 below extends the results of Hannan [17, Theorem 3]

as were summarized in (2. 5) and (2.6).
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Theorem 2.3.1 Suppose (2.3) and (2.4) hold. Then for all T and T,

T 2 T

—HT0|B| s E, Escort-1+ HHz) — ¢(xT) g HT0|B| + Lift—(Z % — 32w-
1 l

where 0 = Eyllz“, and [BI is defined in (2.2).

Proof. By Lemma 2.2.1, we have that

T T T

222:0" _ ¢(XT) = [XTO’T+1 _ ¢(XT)] + Ext—1(at_ at-i-l) + Extojt _ Ot-i-l)

l l l

:= 51 + $2 + 53.

Lemma 2.2.3 implies that

$2 + 53 Z -HT||2|||BI- (2-18)

(2.18) and X7707”1 — ¢(XT)) Z 0 imply that

51+ 52 + $3 2 —HT||z|||B|. (2.19)

By Lemma 2.2.4, we have

51+ 52 S HTllzlllBlo (220)

So it follows from (2.19) and (2.20) that

—HT||z|||B| 3 51+ 52 + 53 S HTIIZIIIBI + ix‘w‘ — at“). (2.21)

1

Taking expectation with respect to u on (2.21), we have

—HT0|B| g Ep(Sl + 5'2 + 53) _<_ HT0|B| + E“ iaflo‘ — at“). (2.22)

1

where 0 = Eu||z||.

Applying Lemma 1 of Hannan [17, p. 131] with w = )(“1/H“l and w’ = X‘/H‘,

 

we have

n2 xt—l xi

[EACH-0‘44” S leBlll'fifi-Efi”

n2 t—l t-2

S LT'BKHe-I‘F'

The last inequality follows from Lemma 2.2.2.
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Thus

T

191121370” 0”1) S 2 ||$‘|||E(0 -<7t+1)|

l

— t — 2

S L—IBI 23?: - 717)

T

g L—|B|(Z;,— — HT‘ . (2.23)

Therefore, (2.22) and (2.23) imply that

T

—HT0|B| g EuZT‘o(X‘"l+H“lz) —¢(XT)

n2 T

< HT6|B|+LnT(T127: 7HT)|B|.

1

Cl

Remark 2.3.2 Theorem 2.3.2 below extends results of Hannan [17, Theorem 6] as

were summarized in (2.8). From the proof of Theorem 2.3.2, we see that the results

of Hannan [17, Theorem 4] as summarized in (2. 7) hold with 5‘ replaced by x‘.

Theorem 2.3.2 If p is the uniform distribution, then, for all T and g,

T —

—\/1.5mT|B| S E” Zx‘dXt-l +‘]§-(-§-1-7-1—-1-)-z)- ¢(XT) S VfimTIBI.

t=1

where [B] is defined in (2.2).

Proof. Applying Lemma 2 of Hannan [17] with w = X“1/H"‘1 and w’ = Xt/H‘,

we have

X‘-
 

xt

7;”

t—ll t—2

s IBI(H._1- H. 1.

where the last inequality follows from Lemma 2.2.2. Thus

T T

E,. Z z‘(o‘ - 0"") Z llx‘lllEu(0‘ - 0‘“)l
1

IE»(0‘-0‘“)| S IBIIIH

 

|
/
\

-2
 

s IBIZ(H—.-_i H.)

T

s um; 73—,- - my (2.24)
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Therefore, (2.22) and (2.24) imply that

T

—HT6|B| 5 Eu Za."a(X"l + Ht'lz) — ¢(XT)

1

T
2

< HT0 B —— — — ._ | 1+ (21: H, H.118!

Hannan [17, Section 7] showed how to minimize

T 2 T
—l/2 T _ _ _

sng [H 9|B|+(§1:H, HT)IB|]

by choice of the H‘ satisfying (2.3). Hannan [17, (7.7)] gives

supT1’2IHT0lBI + (2H,— — —)IB|]_> (73181

with the lower bound obtained for

H‘= g1=1,2,....

m

[3

Remark 2.3.3 Theorem 2. 3.3 below is a modification of Theorem 3 of Hannan [17].

In Theorem 2.3.3 the Eu expectation is outside the absolute value rather than inside

it.

Theorem 2.3.3 Suppose that H‘ satisfies (2.3) and (2.4) holds. Then for all T and

£1

T t t 1 t 1 T T n2 T 2- _ _ < _ _ _ _ .
EHIZI:TU(X +H 2) ¢(X )| _ H 0|B| +L 2 (g H‘ HT)|B|

where 0 = EHIIzll, and [BI is defined in (2.2).

Proof. By Lemma 2.2.1, we start with

T T

ZTW —¢(XT) = [XTUTJ'l — ¢(XT)] + ZX"I(U‘ — 0“”) + 219(0‘ — at“)

1 1

I: 31 + $2 + 53.

It follows from (2.19) and (2.20) that

T

[51+ 52 + S3] S HT||z|||B| + IZT‘(0‘ — ot+1)|. (2.25)

1
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Taking expectation on both sides of (2.25), we get

T

EH|31+ S; + Sgl g HT0|B| + E,,|Z::1:’(at — a‘+1)|. (2.26)

1

Applying Lemma 2.2.5 with w = )("1/2H"l and w’ = X’/H’,

xt-l xt

Elliot_ at+li < Ln—:iBiilHt_1 ...-IF”.

It follows from Lemma 2.2.2 that

T T

Eulzz’(0’-0’“)l S Ellz‘llEul0’-0’+ll
l l

n2 T t—l t—2

S L-H-IBIZQfiZT—TIT)

TT)

5 L—IBI(ZT:—H, — — (2.27)

Therefore, Theorem 2.3.3 follows from (2.26) and (2.27).

El

Remark 2.3.4 Theorem 2. 3.4 below is a modification of Theorem 4 of Hannan [17].

Similarly we can show that for a fixed u, if T is known to player II, then

Ht = (n2/20)’/2T’/2, t = 1, . . . ,T,

minimizes supT T'1/"’UT(H).

Theorem 2.3.4 If p is the uniform distribution, then, for all T and T,

Es firm/X” + «mfg—1):) — ¢(XT)| 5 «W181.
1

where [B] is defined in (2.2).

Proof. Since [1 is the uniform distribution, the result of Theorem 2.3.3 becomes

 

T

EHI ZT’0(X"’ + H"’z) — ¢(XT)|<

1

Let T

U =+HTmIBI 712(22
T — _ 
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where E = (H1, . . . , HT). Suppose T is unknown to player II, we want to obtain an

11 minimizing

sup T’l/zUTLIi)

T

Harman [17, Section 7] showed that

sup T’l/zUT(_I_I_) 2 (3n2m)‘/"’|B| (2.28)
T

and this lower bound is obtained for £11 with

2

H‘=‘/§—"—3 t=1,2,--- (2.29)
m

Therefore, (2.28) and (2.29) imply the result of Theorem 2.3.4.

C]

Remark 2.3.5 Theorem 2.3.5 below will be used to construct k-eztended predicting

strategies in Chapter 4.

Theorem 2.3.5 Let p be the uniform distribution. Assume that the cardinality ofX

is d, and d < oo. Denote

 

3n2(T(x*“1) —- 1)
 at = 0(X,"_1|x"‘—l +(/ z),

where

t—l

th...1|x“_l = 2 $1"

and

t-l

T(x‘t—l) = Z [{xtj-lzxot—l},

i=1

Then for all T and g,

 

T

Eu] Zz‘a, — ¢’=(X;.)| g 1/3n2mdk-1TIBI,

l

where IE] is defined in (2.2).
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Proof. Lemma 2.2.6 implies that

21?0. <15"XT) = Z [( 2 x‘a¢)—¢(X§‘~|x)]

zexl‘“ t:x""l=z

:= 2 11(3).

:1:€X“"l

Denote the indices t for which x“‘1 = 2: by t; < t2 < . .. < tux). Then

= 2 z“a(X,':_1|a: +

i=1

T(x) 3 2 . -l

3&4» - «man.

By Theorem 2.3.4, we have that

E#|A(2:)| 5 ‘/3n2mT(:L')|B|.

Applying Schwarz inequality,

Efllzxat- QS"((XT)| S 2 ‘/3n2mT(2:)|B|

3610'"1

g \/3n2md"-1T|B|.

Hence the desired result follows.

2.4 An extension to an infinite game

In this section we adapt the Harman recursive strategies to produce strategies for

the repeated play of an infinite component game. The infinite component game

is general enough to cover the on—line allocation, multi-armed bandit and expert

selection problems as will be shown in Chapters 3 and 4.

Consider an infinite component game where player I chooses a pure strategy :3:

from

= [0,1]"

and player II chooses a pure strategy 37 from

Y={e1,...,e,,},
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the set of standard base vectors in n-space. Suppose that player II’s inutility is given

by the loss function

L(2,g) = 23;, 2 e x, g e 1?, (2.30)

where we have used the juxtaposition of vectors in n-space to indicate the ordinary

inner product.

Theorem 2.4.1 There exists a finite 2”Xn game with loss matrix A and a one to one

mapping f from 2? into X, the (2" — 1)-dimensional simplex of randomized strategies

for player I in the finite game, such that

f(2)AJ' = 2e,- = 2,, 2 e x, j = 1, . . ,.n (231)

Proof. We see that

f(5;)AJ' = 2,, j =1,...,n

if the f (:2) mixture of the rows of A, f(5:)A, is equal to :3. Thus, if the convex hull

of the rows of A is equal to X = [0, 1]", then (2.31) is satisfied with f, any mapping

where f(5:) is a mixing distribution of the rows that gives mixture 5:. The minimum

generating set for [0,1]" is the set of 2” vertices of this cube. We take A to be any

matrix whose row vectors are the 2" vertices and f as described above. This A has

no dominant columns since the left hand side of (2.1) is 1. It has no duplicate or

dominated columns.

C]

The infinite game it = [0, 1]“, Y 2 {e1, . . . , en} and L(§:, g) = 237 has randomized

strategies

5? = set of all probability distributions on X

and

i” = Y = (n — 1) — dimensional simplex of probability distribution on n points.

Since the loss function is linear in 5: and X is convex, the risks from randomized

strategies 23“ are the same as those from the means. Thus, the extension of the
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infinite game through its randomized strategies remains ”isomorphic” to the restricted

extension of the finite game X, Y = Y‘, A, the restriction being X replaced by f[X]

For any if E X‘ and gr 6 ?‘ there exists an a: 6 X, namely, :1: = f(mean of cit‘) and

a y E Y, namely, y = 37' such that L(a‘:‘, 37‘ = :rAy. Moreover, the Bayes envelope

risk in the finite game at a: = f (it) is given by

45(23) = min 571',
J

the Bayes envelope in the infinite game at :i‘.

Suppose the infinite component game is played repeatedly with :E‘ and gt denoting

the choices of strategies by player I and II, respectively, at time t = 1, ..., T. We

suppress the display of dependence on T in writing

=(21,...,2T) and g=(gl,...,*").I
R
)

Remark 2.4.1 In the repeated play of the infinite component game, suppose that

player II uses a Hannan recursive strategy

g‘ = e, if 0(X“1 +Ht‘lz) = A’, j = 1,2,...,

where a is a positive homogeneous pure strategy valued Bayes response in the finite

game described in Theorem 2.4.1, and

t

X0 :0, X‘ = Zx‘, 2‘ =f(:i:‘) t= 1,2,....

1

Then the modified regret in the repeated play of the infinite game at i is

T T T

zs‘g‘ — mjin: ‘3. = Zx‘dXt’l + Ht‘lz) — ¢(XT),

t=l t=l t=l

that is, it is the same as the modified regret in the finite game at 3;. Hence the results

of Theorem 2. 3.1-2. 3.5 cover repeated play of the infinite component game. Of course

m = 2" and |B| = 1 in this adaptation.



Chapter 3

On-line allocation model and the

multi-armed bandit problem

3.1 Introduction to on-line allocation model

3.1.1 Component allocation game

We consider the following component allocation game in which player I selects a loss

vector l 6 [0,1]" and player II selects a probability distribution p on n points with

loss L, = 2'; l,-p,-. We recognize this as an example where player I’s pure strategies

are in the cube

x = [0,1]"

and player II’s pure strategies are in the finite set

Y = {e1,...,e,,}.

By Theorem 2.4.1, there is a finite game isomorphic to the component allocation

game.

3.1.2 On—line allocation model

Suppose the component allocation game is played repeatedly with It and p‘ denoting

the choices of strategies by player I and II, respectively, at time t = 1, ..., T. This

25
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repeated game was studied by Freund and Schapire [15]. They called this game the

on-line allocation model.

Freund and Schapire [15] formalized the on—line allocation model as follows. The

allocation agent A has n strategies to choose from. At each time t = 1, 2, .. ., T, the

allocator A choose a probability distribution

19‘ = ‘1.p3,---.p$.)

over the 12 strategies, where pf is the probability that strategy 2' will be chosen, for

each i and t. Each strategy 2' suffers some loss I]. Denote loss vector It by

= (1], (2,“ 1;).

The loss suffered by A at time t is defined as

217‘”—

that is, the expected loss of the strategies with respect to A’s chosen allocation rule.

Denote the expected total loss of A across the first T trials by

T

E[L5] = Zp‘l‘.

t=l

The goal of A is to minimize

E[L§] — lmi<n"21‘.

—-~" t: 1

So A will try to perform as well as the best strategy among these it strategies.

Assume that the loss suffered by any strategy is bounded, so without loss of

generality, let If 6 [0,1], for each i and t. Also there is no statistical assumption

made about the loss vector 1‘. Reund and Schapire [15] showed that Littlestone and

Warmuth [23]’s Weighted Majority algorithm can be generalized to handle the on-line

allocation problem. They constructed an algorithm, called Hedge(fl), such that at

each time t, Hedge(fl) chooses the probability distribution vector

p‘ — -—..—wt
_ v

i=1 wi
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where w‘ = (w{, wé, . . . , wf,) such that for each i and parameter fl 6 [0, 1] ,

1 1 1+1 t 19
wi = E, “I" = wifl ' .

So at each time t, after the loss vector l“1 is received, the Hedge(fl) will choose the

probability distribution vector p‘ by updating w‘.

If ,6 is chosen as a function of L and n, Freund and Schapire [15, Lemma 4] showed

that T

T - "
ElLHedge(,6)] S lrglsnngl: + 2Llnn + lnn (3.1)

holds for all sequence of loss vectors l1, ..., IT which satisfies

T
. t "

m1 . <

lgignngl' " L

Dividing both sides of (3.1) by T, we obtain an upper bound for the difference

between the expected average loss of Hedgew) and the average loss suffered by the

best strategy.

  

ElLerdge<fi)]< m2+l‘+W+ .1112,

T "<T1Eli<<nn, T

That is, the average loss of Hedge(fl) approaches the average loss suffered by the best

strategy as T —) 00.

Note that, to obtain (3.1), the parameter ,6 in Hedge(fl) depends on L. In the

next section, we will give a solution of the on-line allocation model based on game

theory results when L is not available,

3.2 Application to the on-line allocation model

Our algorithm H for the on-line allocation model is described in Figure 3.1.

Lemma 3.2.1 For any x 6 [0,1]", let f(x) (f(x) ,f(x)2n), where

n

f(fla' =Hll$jav + (1 - 11W" 02)],

and a;,- is the element of matrix A defined in Figure 3.1. Then f is a one to one

mapping onto its range satisfying Theorem 2.4.1.
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Figure 3.1: Algorithm H

 

Algorithm H

Choose initial probability vector p1

Repeat for t = 2, 3,...

1. Choose allocation p‘, such that

p;- = viz—fa;- - 1:) _<_ [99,3222 — A1), W},

where z = (21,” .,Zzn), 21, ..., 22.. are i.i.d U(O, 1) under 11. And A1, . . .,A"

are the columns of matrix A.

011 "° aln A1

_ . . _ . _ l n
A _— z o o o : - z — (A ,0 I o , A ),

02M °'° 02% A2»

and A1, . . . , A2,. are the distinct sequences from W.

W = {w" I w" = (w1,. . .,wn), w.- E {0, 1},Vi}.

2. Receive loss vector 1‘ E [0, 1]".

 

Proof. For fixed j, let A = {i : a,-J- = 1}, then

2”

f(5)241 = 221:0.)

= in: fin”... + (1 - 5:1.)(1 - aikllaij

i=l h=l

= “j Z Hlikaik + (1 - i‘k)(1 - Gael]

ieA k¢j

)

j 2 II gm.
(3.2)

wn-le{o,1}"'1 #1



where

2 {L‘k if w, = 1

mm. = A I

1 - 3k If wk = O,

and (3.2) follows from the definition of a,,,.

Cl

Theorem 3.2.1 The modified regret for algorithm H in the on-line allocation prob-

lem satisfies

-\/2_'"—1\/3T_<_E[LE]-lminn Zl;<\/2“—+1\/—,

for all T and all loss sequences 1, where E[L§]—- 2Tp‘l‘.

Proof. Consider the allocation game described in Section 3.1. By Theorem 2.4.1,

there is a finite game isomorphic to this allocation game. Take f defined in Lemma

3.2.1 to be the one to one mapping in Theorem 2.4.1.

In the allocation game, at each time t, suppose player I chooses a strategy it“ such

that

it = (li,...,l,‘,),

and player II’s strategy is a random vector 9‘ taking value from a set

Y = {81,...,€n}

such that

I? = e]

if

o,(xt—1+6__(___t2:1)z)__ Aj

in the corresponding finite game, where z and Al are defined in Figure 3.1,

t

X°=O, X‘=Zx’, xt=f(x‘).

1
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It follows from Lemma 3.2.1 and Theorem 2.4.1 that the modified regret of the

allocation game is the same as that of the finite game, i.e.,

[
:
]
~
3

E
M
S

6 II
n

El
‘q
’l
“!

fl

6(t— 1)
Mt(xtl

2"
Z)- ¢(XT)

It follows from Theorem 2.3.2 that

T —

—\/2"-13T g E, :x‘aw-l + «Egan—1)» — ¢(XT) g \/2n+13T.

t=1

By the definition of pt and 37‘, we have for any 3' = 1, ..., n,

”{3}: = 81'}

= p{c7(X"'l + mz) = Aj}

= an:1(a)flit—2:31zIAJ' < [Zf(x’) +———1—,:’21A‘ Vi}

It follows from

 

that

#{gt — 81}

‘4 , , 6t—1 . . _
= ”{zaj — l,) S (2“ )z(A' - .41), V2}

=1

= 1;;

Thus

T T T

EHZ§J‘Q‘—min2“; = ilk)g—mingl;

t=1 J t=1 j=1

= E[L§]—min2l‘-

and the result follows.
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Remark 3.2.1 Compared with Hedgem), Algorithm H not only gives an upper bound

for Lg — minl§$n 23;, l: with the rate of 0(T1/2), but also gives a lower bound with

the same rate. At each time t, algorithm H determines the probability distribution

(allocation) without using either L or T.

The on-line allocation model described above is quite general. One of the appli-

cations is the problem of prediction using the advice of a team of experts. Suppose

at each time t = 1, ..., T, the decision-maker must make a prediction and has the

knowledge of the predictions made by each of the n experts. Each prediction and

the outcome, which is disclosed after the decision-maker has made his prediction,

determine the incurred loss. I

Let the decision-maker and the n experts select their predictions from a convex

set D, and let 6 be the outcome space. Suppose loss function is a function L,

L : ‘DXG —> [0,1].

At each time t, for each i, denote the prediction of expert B,- by B}, and denote the

outcome by 3],. Then L(B§, y) is the loss of expert B,- at time t. If at each time t,

the decision-maker chooses B: to predict y, with probability pg, where p: is defined in

Algorithm H with If = L(B,?, yt). Then by Theorem 3.2.1, we have that the expected

average loss of the decision-maker approaches the average loss of the best expert at

the rate of 0(T‘1/2).

Note that if the loss function L is convex with respect to d 6 ’D, then at time

t, let the decision-maker predict with a nonrandomized prediction 2;, pfiBf. The

convexity implies that

n n

14210332, ye) S 21931:.
i=1i=1

It follows from Theorem 3.2.1 that

T n T

‘. F ' i ‘/ +1,/1L(Zp,B,,yt) _<_ 1131511"; I, + 2n 3T.

t: i=1

We will continue the discussion of prediction using expert advice in Chapter 4.
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3.3 Introduction to the multi-armed bandit prob-

lem

3.3.1 Component multi-armed bandit game

We consider the following component multi-armed bandit game in which player I

selects a reward vector b 6 [0,1]” and player II selects a probability distribution p on

n points with gain LP = Z? b,p,-. We recognize this as an example where player I’s

pure strategies are in the cube

x = [0,1]"

and player II’s pure strategies are in the finite set

Y = {e1,...,e,,}.

By Theorem 2.4.1, there is a finite game isomorphic to the component multi-armed

bandit game.

3.3.2 The multi-armed bandit problem

We are going to study the repeated play of the component multi-armed bandit game,

that is, the multi—armed bandit problem. In the multi-armed bandit problem, origi-

nally proposed by Robbins [24], a gambler must decide which arm of n non-identical

slot machines to play. At each trial, he plays one arm and receives a reward (maybe

nonpositive). The goal of the gambler is to maximize his total reward over in a

sequence of plays.

Lai and Robbins [22] studied this problem using statistical assumptions about

the rewards of the slot machines. They assumed that the distribution of rewards

associated with each arm is fixed and does not depend on the number of trials T.

They bounded the difference between the expected total rewards of the player and

the maximum of the expected total rewards of any arm with 0(logT).

Auer, Cesa-Bianchi, Freund and Schapire [2] presented a variant of the bandit

problem in which no statistical assumptions are made about the generation of rewards.



33

They only assume that the rewards are bounded.

They formalized the multi-armed bandit problem as a game between a player

choosing actions and an adversary with knowledge of past plays choosing the rewards

associated with each action. Assume action space is { 1, ..., n} and all the rewards

belong to the interval [0,1].

They defined the full information game and the partial information game. In the

full information game, at each trial t = 1,2,. . .,T:

1. The adversary selects a vector of the current rewards

b‘=(b‘1,...,bf,),

where for each i, bf is the reward associated with action i at trial t.

2. Without knowing b‘, the player chooses an action it 6 {1, 2,. . . , n} and get the

corresponding reward bi.

3. The player observes bt after he makes the action it.

The partial information game also consists of three steps. All the steps are the same

as that in the full information game except step 3 is replaced by: The player only

observes b}, after he makes the action it.

They presented an algorithm, called Hedge, for the full information game. Al-

gorithm Hedge is a slight variant of Algorithm Hedge(,6) described in Section 3.1.2

The idea of Hedge is to choose action i at time t with probability

p‘- : (1 + a)’:

’ ELI“ + “)8: ,

 

where a > O is a parameter and

t

t+l _ E : t

Si — bio

t=1

Note that each reward b: is defined as a random variable on the set of player’s actions

up to trial t— 1. The measure of the performance of any algorithm, say A, is E(GA) —

Gk“, where

T

E(GA) = Emu-JAE big],

t=l
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and

T

Gbest = mag; Ei1,...,iq~[z b;]- (3-3)

' i=1
15:

Auer, Cesa-Bianchi, Freund and Schapire [2, Theorem 3.2] showed that in the full

information game for a > 0,

01 lnn

E(GHed9¢) Z Gbcst — 5056“ - :
—

For an appropriate choice of a, which is depends on Gbeu, the difference between

E(GHedge) and Gm, is at least —\/2Tlnn in the full information game.

Auer, Cesa—Bianchi, Freund and Schapire [2, Section 4] also gave an algorithm for

the partial information game based on Hedge.

3.4 Application to the multi-armed bandit prob-

lem

In this section, we investigate an algorithm for player in the full information game un-

der the assumption that each reward bf does not depend on past play. Our algorithm

is described in Figure 3.2.

Theorem 3.4.1 If 13‘ and b‘ are defined in Algorithm H, then the expected gain of

Algorithm H satisfies

T

-x/2n+1‘/3T _<_ E(GH) — 11:113.} 2b;- 3 \/2'H\/3T,

' 'nt=l

where E(GH) = 9:1133b;.

Proof. The proof is similar to that of Theorem 3.2.1 with loss replaced by gain.

By Theorem 2.4.1, there is a finite game isomorphic to this component game. Let f

be a one to one mapping in Theorem 2.4.1 associated with matrxi A defined in Figure

3.2.

At each time t, player I chooses a strategy it such that

:t‘ = (b§,...,bf,),
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Figure 3.2: Algorithm H

 

Algorithm H

Choose initial probability vector 131

Repeat for t = 2,3,...

1. Choose action it according to the distribution 13‘, where

- "1 , , 6t—1 . . .

p;- = Mite.- — b.) s —(—2,—)2(AJ — A“).Vz}.
8:1

and z = (Zl,...,22n), 21, ..., 22.. are i.i.d U(0, 1) under u, and A1, . . .,A" are

the columns of matrix A. A is defined in Algorithm H.

2. Receive the reward vector b‘.

 

and player II’s strategy is a random vector 37‘ taking value from a set

Y = {e1,...,e,,}

such that

lit = e)

if

0(X“l + 99%z) —Aj

in the corresponding finite game, where z and Al are defined in Figure 3.2,

t

X0 = 0, X‘ = 212’, 12‘: f(fitt).

1

It follows from Theorem 2.4.1 that

T

5%? + max 2; 5:;
J

t=l

:1:‘¢7(X"'l + 6(t2—lez) -— ¢(XT).M
s

E
M
“
!

H

II y
—
s
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It follows from Theorem 2.3.2 that

T

—\/2"—13T g E, Zita-(X‘1+‘/6L2:—)z—)¢()3XT 2n+13T.

t=1

By the definition of p~t and 37‘, we have for any j = l, .. ., n

#{9' = 31'}

= p{g(Xt-l + 6_(%:_1)Z) = _A1}

=u{[Zf(i’)+ ‘”;‘,,21).zJ,’(—Aj)s[:-fw)+6“ 1) z](-—-A") V}  

It follows from

.. = (b§,...,bf,), and f(a‘r‘M" = “$-

 

that

1437:6311

=u{§(b:—b;)s 6“;,lz’w—AA‘), W}

_figm

Thus

Therefore, Theorem 3.4.1 follows.

[3

Remark 3.4.1 Algorithm H gives both an upper bound and a lower bound of the

modified regret at the rate of 0(T1/2) without knowledge of T or sz.

Suppose the player has access to the Opinion of a set of K experts. At each trial t,

before choosing an action, the player is provided with a set of K probability vectors

(9(1), . . . ,£‘(K)). For each j, £‘(j) is the advice of expert j on trial t, that is
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and £f(j) is the recommended probability of choosing action 2' by expert j. After

receiving the reward vector b‘, the expected reward for expert j is 5‘(j)b‘.

At each time t, we apply Algorithm H with new reward vector

(€‘(llb‘, - - - .€‘(K)b‘)-

It follows from Theorem 3.4.1 that

T

-\/2K+1\/3T _<_ E(G'H) — ltggZE‘UW S V2K‘1\/3T.

- - t=l

Therefore, using Algorithm H, the expected average reward of the player will ap-

proach to

T

t - t
1131?;g E (2)1).

which is the average reward of the best expert, at the rate of 0(T‘1/2).



Chapter 4

Prediction using expert advice

4.1 Introduction

In this chapter we review some of the literature dealing with prediction using expert

advice. Section 4.2 is a self-contained review. However, the main thrust of this

chapter is to show how the Harman recursive strategies apply in a prediction problem

considered by Foster and Vohra [13]. In particular, in Section 4.3 we prove that a

strategy for n = 2 experts investigated by Foster and Vohra [13] is an exmaple of

a Harman strategy and we deduce a slightly stronger result than was established in

their Theorem 1. Section 4.4 gives a solution for the n expert case. Finally, Section

4.5 applies the k-extended approach to the prediction problem.

4.2 Literature review

Consider the following prediction problem. Suppose no statistical assumptions made

about the actual sequence

g=(y1....,yr) (4.1)

of outcomes that is observed. At each time t = 1, ..., the decision-maker must

predict the value of y,. Before making the prediction, the decision-maker is given the

Predictions of n experts.

38
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This decision problem can be viewed as the following game between two players,

the decision-maker and nature. At each time t = l, 2, . . .,

1. Each expert B,, i = 1,...,n, makes a prediction B: 6 D, where D is the

prediction space.

2. The decision-maker, who has the knowledge of all Bf, i = 1, ..., n, s g t, and

past outcomes yl, ..., y¢_1, makes his prediction 3), 6 D.

3. The nature chooses some outcome y; E G, where 6 is the outcome space.

4. Each expert B,-, i = 1,..., n, incurs loss L(B,?, 3],) and the decision-maker incurs

loss L(3)¢, 3],), where L : Dxe -> [0, 00) is the loss function.

Suppose at each time t, the decision-maker uses a prediction algorithm A to make

prediction 3),, then loss of the decision-maker is equal to the loss of the algorithm

A. Define the total loss of the algorithm A on a sequence of trials with respect to a

sequence of outcomes g to be

T

ylzg Myra yr) (4-2)

where g is defined in (4.1). Similarly the total loss of the expert B,- with respect to g

is defined to be T

Lg. (g) = 2: L035. ye)-
t=1

The goal of the decision-maker is to find an algorithm A to minimize

Lia) - min_L£,(y) (4.3)

The goal of the nature is to maximize (4.3). So the min/max strategy for the decision-

maker is the algorithm that minimizes the maximum of (4.3) over all outcome se-

quences.

Vovk [27] introduced a general on-line prediction algorithm when the outcomes

are binary. For the case with continuous-valued predictions, Vovk proved for a large

class of loss functions bounds of the form

Lag) - 112531"ng (g) g cLlnn,
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where cl, is a positive constant determined by the loss function L.

In the rest of this section, we give a literature review according to the following

four cases.

Case 1. D = [0,1], 6 = {0, 1} and [31,...,B,,} is the flute set of experts.

Haussler, Kivinen and Warmuth [18] studied the Generic Algorithm first introduced

by Vovk. At each time t, the Generic Algorithm predicts with any value 9. that

satisfies for y = 0 and y = 1 the condition

A n w .e—fiL(B::Ul

[IQ/my) S ‘61" t"
 , (4.4)

n

i=1 i=1 wtii

where c and 17 are any two positive constants, for any i,

— L 39,
1013 > 0, wt+l,i = ware " ( ' m).

Haussler, Kivinen and Warmuth [18, Theorem 3.11] showed that if L is a loss

function such that

CL == sup 3(zlL’1(z>2-La(z)La(
z)2

L6<2>L¥<z> - Leonie)

where Lo(z) = L(0,z) and L1(z) = L(1,z), then it follows from by applying the

< 00, (4.5) 

Generic Algorithm with ml... = 1, c = CI, and r) = l/cL that for any T,

811p [Lgeneric(y) - 1127.21" LE,- (3)] S CLlnn! (46)

y E {0, 1}" - ..

B‘ 6 [0,1]"

where Bt = (Bf, . . .,Bg).

o For logarithmic loss, that is defined by L(§, y) = ylng + (1 — y)ln]—:%, (4.6)

holds with cL = 1.

o For squared loss, that is defined by L(g), y) = (ii—y)2, (4.6) holds with c1, = l/2.

Foster [12] also proposed a prediction method with the loss function defined as

squared loss. At each time t, the decision-maker predicts with

n

3}: = Z 10253:,

i=1
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where (wt,1,. . . , wm) minimizes

332": «1).-B: - y.)2 + 5:10?
9:1 i=1 i=1

over all probability vectors w. It follows from Foster [12, Theorem 1] that for

any outcome sequence g and any probability vector w,

T T n

2(3): - yt)2 - 2(2101'3: - 11:)2 _<_ 2 + nlnn(T + 1).

i=1 t=l i=1

Therefore using this strategy, the decision-maker can perform as well as any

convex combination of the n experts, namely, the difference between the average

loss of the decision-maker and the average loss of any convex combination of

the n experts will converge to 0 as T goes to 00.

For absolute loss, that is defined by L(37, y) = [37 — y], c1, = 00. Then the

Generic Algorithm can not be applies directly. Cesa-Bianchi et a1 [7] studies

some variants of the Generic Algorithm for the absolute loss.

Cesa-Bianchi et a1 [7] constructed a min/max strategy, called Algorithm MM,

for the decision-maker when the loss function is absolute loss. At each time

t = 1,. . . ,T, Algorithm MM predicts with

3,7 v(M'+Z",r—1)-—v(M'+1—r,r—1)+1
t:

1

2

 

where

r =T+l—t, Z” = (B[,...,B,‘,)

2-1

Mr = (M{,...,M,',), M]? = o M; = ZIB; —y.l, VJ‘.

8:1

and v is defined inductively as

v(M,0) = lrsnjign Mj,

— M 1 — , —1”(M:T)= min v(M+z,r l)+v( + zr )

z€[0,l] 2

 

Cesa-Bianchi et a1 [7, Theorem 2] showed that for any set of n experts and for

any outcome sequence g,

T
T _ - T _ _

LMMQI) 115111.13" LB,- (y) S 2 ”(O’Tla
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and Algorithm MM achieves the value of the game, €- — v(0, T). So Algorithm

MM is a min/max strategy.

The disadvantage of the Algorithm MM is that T must be known in the be-

ginning of the game. And the algorithm is computational expensive since the

calculation of v(M, r) involves minimizing a recursively defined function over all

choices of z 6 [0,1]". Therefore simple algorithms, Algorithm P, Algorithm P’

and Algorithm P‘, were introduced so that they can be implemented efficiently.

Algorithm P works as following. At each time t, Algorithm P makes a prediction

:03 = F16 (7'3),

where fl 6 [0,1),

22:1 wt,iB:

Tt =
n

{:1 wt,‘

1

w...- = 1. w¢+1,.- = w1,.-Up(|Bf - ytl). Vi.

and Fp(7‘) and Ufi(Q) be any functions such that

ln((1— r)fl + r) —ln(l — r + rfi)

SF 1‘ S .
2214,37,) ”( ) zznfifi)

 

1+
 

forOSr_<_1,and

3" S U301) S 1-(1-filq,

forogqgl.

The performance of Algorithm P depends on the parameter fl. Cesa-Bianchi et

a1 [7] showed how to choose fl in according to the type of knowledge available

to the decision-maker.

* If the decision-maker knows an upper bound on the total loss of the best

expert, Cesa-Bianchi et a1 [7, Theorem 15] showed that for any K _>_ 0,

taking fl = g(‘/‘"7"-), where

(4.7) 
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for any set of 11 experts and any outcome sequence 3) such that

min Lg(y)__< K,
l<j<n

we have

loggn
 

LP(3/) — 1min_nLB (y)_< VKKlnn +

* If T is known to the decision-maker in advance, then use a slight variant of

Algorithm P by adding a new expert Bu“, where at time t, B:,+1 = 1- Bf.

Denote the algorithm that uses the expanded n+1 experts by Algorithm P’.

Cesa-Bianchi et al [7, Theorem 16] showed that taking fl = “Mg—HT),

where g is defined in (4.7), for any set of 11 experts and any outcome

sequence g of length T, we have

 

. Tln n+1 lo n+1
LT’(y)_ min Ila-(E) S\/ (2 )+ 92(2 )
 

* If there is no prior knowledge about the upper bound on the total loss of the

best expert or the length T of the sequence, the following procedure, called

Algorithm P‘, can be used. For z = O to co, Algorithm P“ repeatedly runs

Algorithm P(g(\/%)) until the total loss exceeds b,, where g is defined in

(4-7).

k,= 4(1—-—+2‘/_)2=1nn,

and

loggn

2

Cesa-Bianchi et al [7, Corollary 22] showed that if n 2 7, then for any

bz = k, + kzlnn +
 

outcome sequence jg,

 

LT. (g) — lrsnjiéin La, (g) S 4\/115nji£n Lg), (g)lnn + 2.8lnn.

Case 2. D = [0,1], 9 = [0, 1] and {81, . . . , Bu} is the finite set of experts.

Haussler, Kivinen and Warmuth [18, Theorem 4.2] showed that for loss function such

that 62

9(yi “1 b) 69“,: a" b) 2

—————By. +(———ay) 2 o (4.8)
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holds for all y, a, b 6 [0,1], where

L(31.2) _ L(y, b)
ya: b =9(y ) CL CL
 

CI, is defined in (4.5), and C], < co, the Generic Algorithm satisfies

sup [LGeneric(y) _ 115111.21" ng (Ell S cLlnn, (4'9)

a 6 {0,1}"

Bt 6 [0,1]"

where 3;: (8],. ., Bf.)-

o For logarithmic loss, that is defined by L(g}, y) = ylng + (1 - y)ln]—:%, (4.8)

holds and cL = 1. Then (4.9) follows.

0 squared loss, that is defined by L(;17,y)= (y— y)”, (4.8) holds and CL: 1/2.

Then (4.9) follows.

0 For absolute loss, that is defined by L(g}, y) = [3) -- yl, we have at, = 00. Then

we can not apply the Generic Algorithm. Haussler, Kivinen and Warmuth [18]

constructed an new algorithm, the Vee Algorithm, that predicts with any value

fit that satisfies the condition

wtfie"HIE:

  

 

max{y+ w: ._1 . '22:)1/1n, +,..,1}

_<_ 37: — ’

wt fie-""IB:_yl

< min{y — UM; ’ ":1 u)”- )l/[2lnl+2e""]}

where for any i,

-"L(B: 1y!)

3101,1 > 0, wt+l,i = were

Y: {0, 1, B[,.. .,B‘}.

Haussler, Kivinen and Warmuth [18, Theorem 4.7] showed that for any outcome

sequence 31 and any i, the Vee algorithm satisfies

 
 Luvs—mm. J+n_m.inn_1T;L(ml/12ml,2
i=lw

-,1.
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Case 3. D = [0, 1], 6 = {0,1}, and there are unaccountably infinite set of experts.

Heund [14] generalized the Weighted Majority algorithm of Littlestone and Warmuth

[23] to the case in which there are unaccountably infinite set of experts. The algorithm

he used is called the exponential weights (EW) algorithm. The EW Algorithm gives

a prediction 3’], that is any value in [0, 1], such that for y E {0, l},

1 1

may.) 3 “If. e-%L<M>dn(p>1/1/0 am». (4.10)

where for each t, c is a positive parameter, and the measure p¢(A) is defined as

#t+1(A) = Le—%L(del‘t(1’)a

and 111 is a probability measure on [0, 1].

Assumption 4.2.1 Suppose the loss function satisfies the following properties

0 3 c and r) = l/c, such that (4.4) holds.

0 V y, L(p, g) has a continuous second derivative with respect to p.

o 315 : [0,1] —> [0,1], 13(6) is the unique minimizer of

T

z L(pi yt)

t=l

over all outcome sequence g whose empirical distribution is 9.

Choose the initial probability measure to be

p1(A) = [A w(:1:)d:c,

where 82

1

1003) = ‘3 ja'p—zghipllwflx):

1 82

z = [o lwgamnansdx, (4.11)

and

gum) = Elmo, 1) - Lo.1))+ (1 — x)(L<p, 0) - unem-
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Freund [14, Theorem 1] showed that for all outcome sequence y whose empirical

distribution is 6,

max 6[L3W(y(_) — min ZlL(p, y¢)]<_ gln-T— — —an+ 0(——),
1' 4, :1m4 pe,[o1]_ 2

where Z is defined in (4.11).

o For log-loss, that is defined by L(d,0) = -log(1 — |d — 0|), Assumption 4.2.1

holds with c = l. Freund [14, Theorem 3] showed that

max[LEW() — min 231L(p, yt)]_ %In(T+ 1) + 1
p6[0,1]t_

o For square loss, that is defined by L(d,0) = (d -— 0)2, Assumption 4.2.1 holds

with c = 1/2. Freund [14, Theorem 4] showed that

max[LEW(y) — min éflp, y,)]<_ 4lnT+ ;ln——f—_r(2\/2)— ilng,

p.6[01]_

where erf(p) = % f: e“dz.

0 For absolute loss, that is defined by L(d, 0) = Id — 0], we have c = 00. Since

Iggglélp— yt|= gggéfilp- yrl

this prediction problem can be treated as a prediction problem using two expert

advice.

Case 4. L(d,0) _<_ K, for all d6 D and 0 E 6.

Foster and Vohra [13] studied the problem of choosing between two expert forecasts.

Suppose that B1 and 32 are two experts with bounded forecasting errors or called

loss. At each time t = 1, ..., T, the decision-maker has the knowledge of the past

loss incurred by Experts BI and 82. Foster and Vohra [13] constructed a randomized

strategy 0 from BI and 32 based on their past average loss. They indicated that

the difference between the average loss of C' and the minimum average loss of BI and

B; will converge to O in probability at the rate of 0(T‘1/2). We will give a detail

description of the strategy 0 and a proof in Section 4.2 using game theory results.
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One of the applications of the on-line allocation problem studied by Freund and

Schapire [15] is predicting using expert advice when the loss function is bounded. By

the Hedge(fl) Algorithm, at each time t, the decision-maker predicts with g. = B:

with probability pg, where B: is the prediction of Expert B,- at time t,

t

t w

pi =m

where the parameter fl 6 [0,1], for any i,

wil =1/1’l wH-l = wtflMBf ,yt).

Freund and Schapire [15, Lemma 4] showed for all outcome sequence of y such that

min LTJ(_y)< L,
l<j<n

choosing B as a function of L,

E[Lgedge(m(y) ] — {(1121n LT (y)__< 2Llnn + lnn,

where

ElLHedgeW) (E)l__ ZZp:L(3:1)yt)1

t=l i=1

is the expected total loss of the Hedge(,B) Algorithm over y.

In Chapter 3, we use game theory results to construct an algorithm H for the

decision-maker when the loss function is bounded. Without loss of generality, for any

deD,andae 9, let

0 S L(d, 0) S 1.

At each time t, the decision-maker predicts g. = B: with probability pg, where p: is

defined1n Algorithm H with l‘= L(B,‘,y¢). Theorem 3.2.1 shows that for all outcome

sequence of y,

T

_r—2.-.¢—3T s Evian - mm 2L1... (y) s War—2T.
_I_fl i=1 -

where

t=l i=lp

is the expected total loss of Algorithm H over y.
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4.3 A proof of Theorem 1 of Foster and Vohra

Suppose BI and 32 are two experts. At each time t, let B] and B; be their predictions

of outcome yt, respectively. Suppose for i = 1, 2,

B: 6 D1 yt 6 61

and the loss function L is bounded. Without loss of generality, for any d e D, and 0

E 9, let

0 5 L(d, 0) S 1.

For i = 1, 2, denote

In their paper, Foster and Vohra [13] constructed a randomized strategy C for the

decision-maker. At each time t, the decision-maker predicts with

. B‘ with probability min(max[0, —J-;—l—D"“:‘11 '], 1)
yt = 1 2(1 1

B; otherwise,

where s is a constant that satisfies 0.5 _<_ s < 1,

t t

D. := Z b’,c — Z b’f. (4.12)

k=1 k=l

Now we will write the randomized strategy C in the following equivalent way. At

each time t, the decision-maker predicts with

. B; if 1)..1 > 2(1 — 1)‘(z - 1/2)
y =

B; if DH 5 2(t — 1)‘(z — 1/2),

where z is U(0, 1) random variable under 11.

Foster and Vohra indicated that if the decision-maker uses the randomized strat-

egy C, then the difference between the average loss of the decision-maker and the

minimum average loss of the two experts will be bounded by a nonnegative random

variable 67, and 67' goes to 0 in probability as T goes to 00. On its face, this random-

ized strategy C is similar to the Harman [17]’s recursive strategies for player II in a
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two-person finite game, that is player II plays Bayes versus a randomized perturba-

tion of the player I ’s empirical distribution. We will prove Theorem 1 of Foster and

Vohra [13] using the game theory results of Chapter 2.

Theorem 1 of Foster and Vohra [13] If Bl and 32 are two experts with bounded

loss bi, b; for all t, and the strategy C is defined as above, then

1 T 1 T T

TZT S Tm1n(2b[,2b§) +61,

1 1 1

and

0 < 5T 1’1 0,

where E, is the loss of strategy C at time t.

Proof. Without loss of generality, for all t, let

0311531 and 0311.331.

Consider a finite two-person game in which player I has 4 pure strategies, player 11

has 2 pure strategies, and the loss matrix A is defined as following:

(00)

1o

01

[11}

Let 2 = (21,22,23,z4). Under a probability measure )1, 21, 22, 23 and 24 are

  

independent. 2,- is U(0, 1) for i = 1, 2 and 4. 23 is degenerate at 1/2.

( o )

1

Since A" = A” - A' = , for l S q < r g 2, (2.4) becomes

—1

\0/

II{Z|t1322—23$t2}St2-t1-

  

So (2.4) holds with L = 1. a = Eullzll = m/2 = 2.
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Consider that player I chooses randomized strategies T from the class it that

consists of all 3‘ such that for each t,

It = {(1_ btl)(1 — b2):bt1(1_ b2): (1 - btl)b21btlb2}

For any t and z' = 1, 2,

:IJ‘Ai = b:.

Then the Bayes envelope ¢(XT) becomes

T
T_ - T _ - t

¢(X )— mm X a—mirgz bi.
UE{A1,A2} 1: , t=l

If H‘ = 2t’ and z is defined as above, we have

t—l

(Xt'l + lit-120Al = Z b’f + 2(t—1)’(z2 + 24),

k=l

and

t-l

(X‘“1 + H“"1z)A2 = 2 b; + 2(t — 1)‘(z3 + 24).

k=l

Then the Bayes response 0(X"1 + H"'12) becomes

.41 if 1),.l > 2(t — 1)‘(22 — 1/2)
0(X“l + Ht'lz) =

A2 if D¢_1 _<_ 2(t — 1)‘(22 - 1/2),

where D¢_1 is defined in (4.12).

Since

$t0.(Xt-l + Ht-lz) = btl if Dt-l > 2(t " l)‘(22 " 1/2)

b; if Dt-1 S 2(t-1)‘(22 - 1/2),

the definition of the strategy C implies that

6, = :z:‘0(Xt'l + Ht'lz).

Then applying Theorem 2.3.3 with m = 4, n = 2, [HI = 1, L = 1, 6 = 2, H‘ = 2t‘

and for any player I’s strategy 55‘ in i, we have

T T T

Eul 25¢ “ min(21:btla 2%“

1 1
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T

= Efll 2::1:‘(I(Xt"1 + Ht"lz) — ¢(XT)|

1

2
__ l—s

2,, T )IBI

22 T

< " —_ 2T 2|B|+ 2 (g

3 4T‘ + if".

1 3

By Markov inequality, we have that

1 T ~ . T t T P

Tl th — m1n(z b1,2b§)| —) 0.

1 1 1

Hence the desired result follows.

C]

Remark 4.3.1 71-4 2? E, — min(2fb‘l, 2,7123” 5) 0 is slightly stronger than the result

of Foster and Vohra [13, Theorem 1]. The optimal choice of s is 1/2, and the optimal

convergence rate is 0(T‘1/2).

4.4 A generalization to more than two experts

In the last section, we have proved that given the predictions of two experts, we can

construct a randomized strategy for the decision-maker such that the decision-maker

performs as well as the best experts in the sense that the difference between the

average loss of the decision-maker and the average loss of the best expert converges

to 0 in probability. In this section we consider how to construct a randomized strategy

for the decision-maker when there are more than two experts.

Suppose at time t, Bf, . . . , Bf, are the predictions of n experts, respectively. For

any t and i, let outcome y, 6 9, B: e ’D. Suppose the loss function L is bounded.

Denote

b‘. = L(B:,y.), w, t.
8

Without loss of generality, we assume that 0 5 bf S l for all i and t.

Suppose at each time t, for all i, the decision-maker has the knowledge of b}, .. .,

bf“. We define a randomized strategy 0 for the decision-maker, which is described

in Figure 4.1.
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Figure 4.1: Strategy C'

 

Strategy G

Choose initial prediction from the set of {B}, i = 1, . . . , n}

Repeat for t = 2, 3,...

predict with B; if for any i,

t-l 2 _ ‘ '

2(1);- — bi) s \/§3—(§,,—1)z(A‘— .42),
t=l

where z = (21, . . . , 22»), and 21, ..., 22.. are i.i.d. U(0, 1) random variables under 11,

A1, . . ., A" are the columns of matrix A.

011 "' aln A1

02"1 aznn A2»

And A1, . . ., A2,. are the distinct sequences from W.

W = {112" | w" = (1121,. . . ,wn), 112,6 {0,1},Vi}.

 

In the next theorem we will show that using strategy C, the decision-maker will

perform as well as the best experts among the n experts.

Theorem 4.4.1 Let c. be the loss of the strategy 0 at time t, b: be the loss of the

expert B.- at time t with

ogfigIVLt

Then as T goes to co,

1 T T t P

Tl)?“ - £1,151!”ng -+ 0.

and the convergence rate is 0(T‘1/2).

Proof. We consider the two-person game infinite game described in Section 2.4.

By Theorem 2.4.1, there is a finite game isomorphic to this infinite game. Let f be
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a one to one mapping in Theorem 2.4.1 associated with the loss matrix A defined in

Figure 4.1..

In the infinite game, at each time t, suppose player I chooses a strategy 52‘ such

that

it = (b§,...,bf,),

and player II’s strategy is a random vector 9‘ taking value from a set

Y = {e1,...,e,,}

such that

if

0(X"l + H‘"lz) = Aj

in the corresponding finite game, where z and Al are defined in Figure 4.1,

t

X°=0, X‘sz‘, T‘=f(:i;‘),

1

2

H‘=‘/3;t t=1,2,...

It follows from Theorem 2.4.1 that the modified regret of the allocation game is

and

 

the same as that of the finite game, i.e.,

T

= 22:1:‘0(X"l + Ht‘lz) — ¢(XT)

1—1

By the definition of 32‘, we have

T T

2 .. - 252.21%
T

= ZT‘UUC’I + Ht’lz) — ¢(XT)

t=l

It follows from Theorem 2.3.4 that

T

Eu| Z z‘a(X“l + H“1z) — ¢(XT)| g \/3n22“T.

i=1
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Thus T

T

_ ' t, 2Eulgq lglgngb’l S V311 2"T.

By Markov inequality, we have that

15an

1 T T t P

Tlgq— m1n21:bj|—>O.

Hence the desired result follows.

4.5 The k-extended prediction strategies

4.5.1 Introduction

In the on-line prediction model described in Section 4.2, at each time t, the decision-

maker predicts the outcome y, 6 6. The decision-maker has the knowledge of the

predictions made by each of 11. experts, and makes a prediction based on the past and

current expert predictions and the past outcome sequence. The goal of the decision-

maker is to find a prediction strategy such that the total loss is as small as possible.

Since no statistical assumptions are made about the distribution of the outcome

sequence, a reasonable goal for the decision-maker is to perform as well as the best

expert. In Chapter 3 and the first four sections of Chapter 4, different strategies have

been introduced to give upper bounds on the difference between the total loss of the

decision-maker and the total loss incurred by the best expert such that the average

loss of the decision-maker approaches the average loss incurred by the best expert as

T goes to 00. We observe that the average loss incurred by the best expert is equal

to the Bayes enve10pe in a finite two-person game. It is of interest to find a strategy

for the decision-maker such that the average loss of the decision-maker approaches a

lower envelope as T goes to co.

Herbster and Warmuth [20] considered the prediction model where 'D = [0,1],

8 = [0, 1] and loss function is L. They studied the case in which the outcome

sequence is divided into at most 11: + 1 arbitrary segments. Each segment has a best
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expert. The sequences of segments and its associated sequence of best experts is

called a partitioning. Now the goal of the decision-maker is to perform well relative

to the best partition.

Let y = (y1,...,yT) be any outcome sequence. For any (t1,...,tk) such that

1<tiSTandtiSti+n

[inyt1):[yt11 ytz): ' ° ° ) [ytu yT-i-l)

is called a k-partition of g, denoted by Pug), where

e: (60,...,6k),

such that 1 S e,- S n and e,- 75 e,-+1. Expert 8,, is the best expert associated with the

ith segment [th 3],,+1)- Define the total loss of Pk,¢(g) to be

I:

11%,,(3) = Z ngl-ti(lyt.1yt.+1))a

i=1

where Egg-“([3)“, y¢,+,)) is defined in (4.2). Since

LP” (g) can be considered as a lower envelope.

Herbster and Warmuth [20] modified Vovk’s Generic Algorithm, which is de-

scribed in Section 4.2, by adding an additional update to obtain two algorithms: the

Fixed -— share Algorithm and the Variable - share Algorithm. Each algorithm has

a parameter a 6 [0,1].

Herbster and Warmuth [20, Theorem 4.4] showed that for any positive integers h

and T, by setting a = $5, for any outcome sequence 31 with T 5 T, and any Pug!)

with k S h, the Fixed — share Algorithm satisfies

A

T ..

Lama) g clnn + an?” (g) + clean: + ln(n — 1)) + 2011:,

where c and n are determined by the loss function, and Lame!) is defined in (4.2).

Herbster and Warmuth [20, Theorem 5.8] showed that for any positive integers h

and L, by setting a = 575%, for any Pk,e(g) with k S h, LRJg) 5 L, the Variable -
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share Algorithm satisfies

T T I" *

LVariable(g) 5 an" + GULF,” (31) + 004171;) + 00“):

where c and 17 are constants determined by the loss function, and Lam-we(g) is defined

in (4.2).

For certain loss functions, such as square loss, c and n can be chosen such that

on = 1. Then using either Fixed — share Algorithm or Variable — share Algorithm,

we have bounds for the difference between the average loss of the decision-maker

and La'Jg). As an example, Herbster and Warmuth [20, Section 6] considered a

sequence of 800 trials with four distinct segments. They compared Vovk’s Generic

Algorithm to the Variable-share Algorithm. The simulation results showed that the

Variable-share Algorithm performs better than Vovk’s Generic Algorithm for this

sequence.

Cover and Shenhar [11] introduced a prediction strategy whose average loss ap-

proaches to the k-th order Bayes envelope in the situation of sequential prediction

of binary sequences with apparent Markov structure. In their paper, ‘D = [0, 1],

9 = {0, l}, and they use a score function instead of a loss function. Without con-

sidering the Markov structure, Cover and Shenhar [Section 4][11] gave a random pre-

dictor that predicts 37; = 1 with probability p; at each time t, where p, is constructed

based on Blackwell [6] ’s procedure.

For any outcome sequence g, denote the expected average score by

T

MST) = itgmy. + (1 - mu - yo],

and the Bayes envelope by

1 T 1 T

(MST) = mad; 21:11:.1 - 5,: 21:11:)-
t= t:

It follows from Hannan [17, p.139] that for any g,

3

¢(ST) " E(ST) S 7—73-
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Considering the k-th Markov structure, Cover and Shenhar [11, Section 5] gave a

k-th order Markov predictor. At time T, T = k, k + 1, ..., let

2 =(yT—k+1,~-,yT)-

Denote T’(2) = T(z, 1) + T(z, 0), where T(z, 1) and T(z, O) are the number of times

the sequence 2, 1 and z, 0 were observed in 34. For each .2, the k-th order Markov

predictor uses the Blackwell procedure to make predictions. It follows that

,, 2*3 k
45 (ST) — E(ST) S 7—1: + '71,

where

1

¢“(S )= —— T’(2)¢(S ,,)
T T4133], T"

is the k-th order Bayes envelope.

In the compound decision problem, a lower enve10pe than the simple Bayes en-

velope is the extended envelope introduced by Johns [21]. The idea of the extended

version is to take advantage of higher order empirical dependencies in the parameter

sequence. Johns [21] proposed extended compound rules whose risks achieve these

envelopes in the limit. Gilliland and Hannan [16] generalized and strengthened some

results previously reported by Swain [25] and Johns [21]. Theorem 3 of Gilliland

and Hannan [16] implies that the extended rules should compare favorably with un-

extended rules relative to the parameter sequence generated by a strictly stationary

process.

Vardeman [26] treated a sequence version of the finite state compound decision

problem. He also studied the k-extended problem in a game theoretic situation. After

proving a simple game theoretic decomposition of k-extended envelope, he constructed

randomized strategies with risk approximating the k-extended envelope at the rate

of 0(T1/2).

Suppose that the loss sequence of the experts has some dependencies. For instance,

in the case of two experts, assume that the loss sequence {(b],b§), (b§,b§), (b‘f, b3),

(bf, b3), ...} is {(0, 1), (1, 0), (0, l), (1, 0), ....} Taking advantage of the dependencies,

we can use the idea of the k-extended problem in decision theory to construct a



58

strategy, named k-extended strategy, such that the average prediction error of the

k-extended strategy approximates the Ic-extended envelope, which is a lower envelope

than the simple Bayes enve10pe.

4.5.2 The k-extended prediction strategies

Consider the prediction problem discussed in Section 4.4. Suppose at time t, Bf, .. .,

Bf, are the predictions of n experts, respectively. For any t and i, let outcome y; E 9,

Bf E D. Suppose the loss function L is bounded. Denote

bf = L(Bf,y¢), Vi, t.

Without loss of generality, we assume that 0 5 bf g l for all i and t. Let

Q = {b5 Vi. t}

and suppose that Q is a finite set with cardinality q.

Assume at each time t, for all i, the decision-maker has the knowledge of bf, .. .,

bf‘l. Using Vardeman’s technique, we define a k-extended randomized strategy 0"

for the decision-maker, which is described in Figure 4.2. So at each time t, strategy

6'" only uses the past stages, at which the It previous predicting errors are the same

as b“‘1, to determine the prediction.

Theorem 4.5.1 Let of be the loss of strategy 0" at each time t, bf be the loss of the

expert B,- at time t with

oswslvtt

Suppose Q = {bf Vi, t} is a finite set with cardinality q. Then as T —) oo,

1 T . T

Tlgcf- Z {2133 Z: b§)|5>0.
y€Qn(h-l) - — “bot-1:”

and the convergence rate is 0(T‘1/2).

Proof. Denote

X = |{x‘ = {xf, . . . ,xfn}, xf = H[bfa,-¢ + (1 — bf)(1 - au)], Vi}

l=1
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Figure 4.2: Strategy 0"

 

Strategy 0"

Choose initial predictions 3),, t < h, from the set of {B}, Vi}

Repeat fort: k,k+ 1,...

predict with

 

 

2 “-1 __ . .

2;. = B;- if 2 (b; — b?) 5 1/3" (”b ,, l ”204' — A’Wi.
s:b“"1=b"'l

2

where

[ft-1: {bi—k-H bt—k+2 bt-l}

b“1={bf‘l bH}

t-l
T(btt-l)

= 21{boj-l:bot—l}.

i=1

and z = (21, . . . ,Zzn), and 21, ..., 22.. are i.i.d. U(0, 1) random variables, A1, ..., A"

are the columns of matrix A.

02H 02M; A2»

And A1, . . ., A2» are the distinct sequences from W.

W = {MI | w" = (w1,. . . ,wn), w,- E {0, 1},Vi}.

 



60

Since the loss of experts take values in a finite set Q, which has cardinality q, the

cardinality of 5C is Q”. There exits a one to one mapping between Q" and 5f.

Consider a finite two-person game in which player I has 2" pure strategies and

player II has n pure strategies. The loss matrix is the matrix A in Figure 4.2. Suppose

player I only takes strategies from i. Denote

 

 

, _ 3n2 T x“"1 — 1

0t=0(th—1lxt 1+\/ ( (2,, ) )2):

where

t—l .

X'tk-llx‘lt—1 = 2: 1J1

jzxej-l=xo¢-l

and

X‘t-l)=21{x.j-1=xu-1}.

Then the definition of the strategy 0" implies that

T

212190;: 2 ( Z 23%,)

xeib-l t:x“-1=x

2(24)
y€Qn(b-l) “bu—1:”

It follows from Lemma 2.2.6 that

¢*(Xl‘~) = Z Milo

361""1

= 2: (min( 2 bf)).

yeQn(h- l) t:'b""‘1=y

Thus, applying Theorem 2.3.5 with [B] = 1, m = 2", and x‘ in i, we have

T T

alga: - 0%”my”; b.,.)>|

—"ME-Tat” ¢k(XT)l

_<. \/3n22nqn(k—1)T.

 

Therefore, by Markov inequality, Theorem 4.4.1 follows.
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[3

Remark 4.5.1

2: < '( i b >> )3}min ,3, 5 min f.

y€Qn(k—l) ' “be ‘-1:y 151$" t=l

Example 4.5.1 Suppose there are two experts, and their loss sequence is as following:

{(bl’ 1);), (bf, b3), (bg’ b3), (bf, b3), ' ° °} = {(0, 1), (1’ 0), (0’ 1), (1’ 0), ° ’ '}

Then the simple envelope is

¢(XT)={ % ifT>landTisoddO

if T is even

For the simple case of k = 2, the k-extended envelope is

920%) = 0-

Therefore, we see that the 2-extended envelope is indeed a lower envelope.

Let T = 5000. To compare the average loss of strategy 02 with the average loss

of the strategy C defined in Section 4.3, we used S-PLUS to determine:

— c. = 0.5196078,
4998 ,=,

1 ”2°“ .2— = 0.
4998 ,=, ‘

Thus, the 2-extended prediction strategy performs better for this sequence.
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