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ABSTRACT

DERIVATIVES OF MOLECULAR ELECTROMAGNETIC
PROPERTIES USING NONLOCAL SUSCEPTIBILITY DENSITIES

by

Edmund L. Tisko

This thesis presents three analytic derivative relationships. The underlying concept of
these three relationships is connecting the change of a molecular property to other well-
defined molecular properties. The foundation of this work lies in nonlocal polarizability
density theory. The nonlocal polarizability density characterizes the polarization at one
point in a molecule due to its reaction with an electric field at another point in the
molecule.

In the first part, the derivative of the electronic hyperpolarizability with respect to a
Cartesian nuclear coordinate is related to the nonlocal second hyperpolarizability density,
the nuclear charge and the dipole propagator. The derivation uses the derivatives of the
wavefunctions and operators that comprise the six-term hyperpolarizability. These
derivatives, which are also derived, are substituted into the hyperpolarizability to yield a
sixty-term expression. The initial result is manipulated algebraically in a nontrivial way
to yield the equality. A brief review of hyper-Raman scattering theory is given. Recent
applications of hyper-Raman scattering are considered.

In the second part, a new expression for the derivative of the polarization propagator

with respect to an arbitrary coordinate is derived in terms of the quadratic polarization



propagator and a sum of polarization propagators. The derivation involves calculating
the derivative of a creation and annihilation operator pair with respect to an arbitrary
parameter. Then the propagator derivative is calculated via the derivatives of many-
electron wavefunctions. Past work calculating the derivatives of molécular properties
using polarization propagator techniques is briefly reviewed.

The third part concerns finding an expression for the derivative of the electronic
magnetic moment with respect to nuclear momentum and its relationship to a nonlocal
magnetizability density. The magnetizability density has a structure similar to the
chemical shift. The relationship is found by considering the magnetic field produced by a
moving nucleus as a perturbation on the electronic structure. The ground state
wavefunctions are corrected to first order in perturbation theory using the nuclear
magnetic field as the perturbation. The corrected wavefunctions are used to calculate the
expectation value of the magnetic moment. When the derivative of this expectation value
is taken with respect to nuclear momentum, its relationship with the nonlocal chemical
shift density is uncovered. The result is correct when adiabatic wavefunctions that go
beyond the Born-Oppenheimer approximation are used. The physical content of the
equation is interpreted as a description of intramolecular magnetic response.

Other possible paths to a complete susceptibility theory are considered. One path
involves substitution of 4-currents into the definition of the nonlocal polarizability
density. Other paths arise from an initial consideration of the relativistic Dirac equation
and subsequent analysis using the Gordon decomposition and the Foldy-Wouthuysen

transformation.



The heavens declare the glory of God;
The sky proclaims its builder’s craft.
One day to the next conveys that message;
One night to the next imparts that knowledge.
There is no word or sound,
No voice is heard;
Yet their report goes forth through all the earth,

Their message, to the ends of the earth.

The people who walked in darkness have seen a great light;
Upon those who dwelt in the land of gloom a light has shone.
You have brought them abundant joy and great rejoicing,
As they rejoice before you as at the harvest
For the yoke that burdened them, the pole on their shoulder,
And the rod of their taskmaster you have smashed.
For a child is born to us, a son is given us;

Upon his shoulder dominion rests.
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complex conjugation operator, see pg. 17
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\Y% potential energy

\Y vortex function, see pg. 71
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Miscellaneous

0,0, four-dimensional differentiation operator, see pg. 80
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Notations
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Indices used for arbitrary components are «, 8, v, 8 and .
In Chapter 5, p, v and o refer to components in four-dimensional space, while i, j

and k refer to components in three-dimensional space.
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(w|O|9) The bra-ket notation is used where (y|0|¢) = "0 ¢ dt and dr is the

differential volume element that may include summation over spin indices
and/or integration over time depending on the context.
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CHAPTER 1: INTRODUCTION

The Derivatives of Molecular Properties and Nonlocal Susceptibility Densities

This thesis is comprised of three parts. The underlying concept of these three parts
is relating the change of a molecular property to other well defined molecular
properties. In the first part, the derivative of the electronic hyperpolarizability with
respect to a Cartesian nuclear coordinate is related to the nonlocal second
hyperpolarizability density, the nuclear charge and the dipole propagator. In the second
part, a new expression for the derivative of the polarization propagator with respect to
an arbitrary coordinate is derived in terms of the quadratic polarization propagator and a
sum of polarization propagators. The third part, contained in chapters four and five,
concerns finding an expression for the derivative of the electronic magnetic moment
with respect to nuclear momentum and its relationship to a nonlocal magnetizability
density.

The foundation of this work lies in nonlocal polarizability density theory. The
nonlocal polarizability density characterizes the polarization at one point in a molecule
due to its reaction with an electric field at another point in the molecule. The densities
may be described as the distribution of a molecule’s polarizable matter. Nonlocal
polarizability densities have been used to describe optical rotation,' dielectric properties
of condensed matter,” and light scattering in dense fluids.* Hunt has further exploited
the properties of nonlocal polarizability theory in the theory of intermolecular forces,*’

intermolecular electronic forces on nuclei,*"® nonadditive three-body intermolecular



forces,’ zero temperature homogeneous electron gases,'° molecular softness,'' and
vibrational force constants and anharmonicities.”? Nonlocal susceptibilities densities
have also been used in the construction of a theory of vibrational circular dichroism."
Closer to the purposes of this work, nonlocal susceptibility densities‘ have been used in

expressions for the derivatives of molecular properties.'"'*'*"

Hyperpolarizability Derivative

The derivation of the nuclear coordinate derivative of the hyperpolarizability is
found in Chapter 2.'¢
By (LT, T3 —06501,02) / ORE = [dr™y o (X, 1", 1" 0,301, 0; ,O)Z""I‘us ", R¥) (
1)
The derivation starts with the Orr and Ward’s expression for the hyperpolarizability."’
Then derivatives of the wavefunctions and operators that comprise the six-term
hyperpolarizability are substituted into one term of the hyperpolarizability to yield a
ten- term expression. The derivatives used are derived in detail in Appendix A. The
initial result is manipulated algebraically in a nontrivial way to yield the equality in
Equation (1). The form of the second hyperpolarizability density in Equation (1) was
adapted from the expression for the second hyperpolarizability in Orr and Ward."” The
complete derivation involves a sixty-term expression which has been included in
Appendix B.

The nuclear-coordinate derivative of the hyperpolarizability yields intensity

information for nonresonant vibrational hyper-Raman scattering.'* Hyper-Raman



scattering is the nonlinear analog of Raman scattering. In a hyper-Raman scattering
event, two quanta are absorbed in taking the scatterer from its initial state to a virtual
electronic state. Then, as in Raman scattering, one quantum is emitted as the scatterer
relaxes into an excited or deexcited vibrational state. A brief review of hyper-Raman
scattering theory is given. Recent applications of hyper-Raman scattering are also

considered.
Polarization Propagator Derivative

Chapter 3 contains the derivation of the derivative of the polarization
propagator'®?*?' that was found to be related to the quadratic polarization propagator’**

and a sum of polarization propagators.

(o) _ [@I 22 (0.0
on o J,.
+ I I (@) + £ CralTiR(0) @

+ Z CalLE (@) + I Calli¥ (o).

The relationship between the polarization propagator derivative and the quadratic
polarization propagator was prompted by a relationship found by Hunt ef al.'® between
the nuclear coordinate derivative of the electronic molecular polarizability and the
electronic molecular hyperpolarizability density. A general relationship between
derivatives of linear response properties and quadratic response properties was

suggested by this specific relationship between polarizabilities.



The polarization propagator is employed in the calculation of linear response
properties.?’ Polarization propagators can be constructed in a conventional fashion as a
sum-over-states or in a second quantized fashion using a sum over creation and
annihilation operators and the techniques of “superoperator” algebra.” In the derivation
of the derivative of the polarization propagator, the second quantized version is used.
The advantage of second quantization comes from how the many-electron wavefunction
is managed. The antisymmetrical nature of the many-electron wavefunction follows
from the change of the wavefunction’s sign when two electrons are interchanged. In
second quantization, the antisymmetry of the wavefunction is ensured by the use of
anticommutation relations between creation and annihilation operators. The
relationships between the anticommutation relations and Slater determinants are
discussed in this chapter.

The derivation involves techniques found in Appendices A and C. However, the
novel portion of the derivation involves calculating the derivative of a creation and
annihilation operator pair with respect to an arbitrary parameter. The derivative is
calculated via the derivatives of many-electron wavefunctions. Throughout the
derivation, the second quantization formalism is used; however, portions of the
derivations are done in parallel with the Slater determinant formalism for pedagogical
reasons.

The advantage of Equation (2) is proposed to be in the calculation of derivatives of
molecular properties such as molecular gradients and Hessians.>* The derivatives of
many other molecular properties have been computed using analytical and numerical
techmiques. Past work calculating the derivatives of molecular properties using

4



polarization propagator techniques is briefly reviewed in Chapter 3. Different possible

applications of Equation (2) are discussed as well.
Magnetic Moment Derivative

In chapter 4, the derivative of the electronic magnetic moment with respect to
nuclear momentum is found to be related to the molecular high-frequency

(“paramagnetic”) chemical shift density from the theory of nuclear magnetic

resonance.?*?

aﬁ,a(f")__p.ch HF (= =N\U A4°
~ = 4ﬂMxj(;-,,‘,(r,r)V[,dr. 3)

The relationship is found by considering the magnetic field produced by a moving
nucleus as a perturbation on the electronic structure. The ground state wavefunctions
are corrected to first order in perturbation theory using the nuclear magnetic field as the
perturbation. The corrected wavefunctions are used to calculate the expectation value
of the magnetic moment. When the derivative of this expectation value is taken with
respect to nuclear momentum, its relationship with the nonlocal chemical shift density
isuncovered. The result is correct when wavefunctions that go beyond the Born-
Oppenheimer approximation are used.”” A brief review of research using nuclear
momentum derivatives, especially with application to vibrational circular dichroism
spectroscopy, is given.

Equation (3) demonstrates that within a molecule the electronic response to an

internal magnetic field occurs via a molecular property that describes the response to an



external magnetic field. The analogous equivalence has been shown by Hunt et al.'*"

for intramolecular electronic response to internal electric fields.

Chapter 5 considers possible routes to a more complete theory of intramolecular
electromagnetic response. The first consideration involves classical electromagnetic
theory in the context of special relativity. In the relativistic formulation of classical
electrodynamics, the electric and magnetic fields are not two different vector quantities,
but, rather they are both components of a second-rank four-dimensional tensor. The
relativistic current density is a four dimensional vector that includes as the “time”
component, the charge density. Similarly, the electrostatic potential and the magnetic
vector potential are integrated into a four-dimensional vector potential. Molecular
polarization and magnetization fields are not distinct, but rather the components of a
four dimensional second-rank tensor. All of the quantities and laws of electrodynamics
can be formulated very compactly in a relativistic formulation. The four Maxwell
equations that fundamentally describe all electromagnetic phenomena become two
equations in the relativistic formulation.

Maaskant and Oosterhoff* originally formulated the nonlocal polarizability density
in terms of current densities. Hunt* reformulated polarizability density in terms of
polarization operators. However Hunt’s reformulation is derived with the assumption
that the applied field is obtained from a scalar potential. It is suggested that a complete

nonlocal electromagnetic susceptibility density theory could be found from the removal
of this restriction and use of four-dimensional vector calculus.

A relativistically consistent four-dimensional quantum theory for electrons was
cons tructed in the early days of quantum mechanics by Dirac.”®* In addition to

6



increased accuracy in the calculation of atomic energies, the theory incorporated, in a
fundamental way, the spin of the electron. However, a disadvantage of the theory was
the appearance of energy states associated with the antimatter analog of the electron, the
positron. In the description of electronic interactions with electric or magnetic fields,
the positron states can not be neglected. Positrons in the description of low-energy
interactions such as molecular interactions are difficult to conceptualize.

Fortunately, for low-energy interactions, techniques have been found that can
remove the “positron” portion of energies in exchange for a series expansion of
“electron” energies. The first and most commonly used expansion is the Foldy-
Wouthuysen transformation.’*”' In this nonrelativistic formulation of the Hamiltonian
(nonrelativistic because it no longer involves positrons), several hyperfine terms are
found that depend on the nuclear momentum and the nuclear magnetic moment. It is
suggested that such terms be included in an application of perturbation theory to find

new magnetic phenomena and novel explanations for discovered phenomena.
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CHAPTER 2: RELATION OF HYPERPOLARIZABILITY
DERIVATIVES TO SECOND HYPERPOLARIZABILITY

DENSITIES

Introduction

In this chapter, a new analytical result is derived for the nuclear coordinate
dependence of the electronic hyperpolarizability B(-w.;w1,0,), Which gives rise to
nonlinear optical processes such as frequency-sum and difference generation.'****¢ In
earlier numerical work, derivatives of § with respect to nuclear coordinates have been
estimated semiempirically’ and calculated ab initio.**'*"" This chapter focuses on the

interpretation of the B derivatives via their connection to a different molecular property.
The derivative of B(—w4;w1,02) With respect to coordinate R* of nucleus K is shown to
depend on the second hyperpolarizability density y(F,F’,f",F""; ~wq;@1,0,,0) for the
electronic state, on the nuclear charge, and on the dipole propagator ’[(f "',K") from

R¥tot" . This result holds because the electrons within a molecule respond to changes

SF" in the Coulomb field of the nucleus, due to an infinitesimal shift in the position of
nucleus K, via the same nonlocal electrical susceptibilities that characterize their response

to external electric fields.
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Nonlocal Polarizability Densities, Polarization and Internal/External Electric Fields

Nonlocal polarizability densities a(F,F';—»;w) '>**'*'* and nonlocal
hyperpolarizability densities B(f,F',f";~0;0 -0',0) and
Y(5.F,F",F"-0;0 -0’ -0",0',0") " describe the distribution of polarizability within a
molecule. When an external field F'(f,(o) is applied, the electronic polarization
P(f,0)at point T is'®

P(f,0) =P, (f,0) + | &' o(f;F',0) - F(F',0)

l ©
+3 [do'[ de'de” B(E; T, 0 — ', t",0"):F{,0 -o') F{",0")
o (1)
1= © .
+— J’ do’ Idﬂ)"]df'(ﬁ"dfm ,Y(f.’?"m -0 —(D",f'",(!)',f'm,ﬁ)")ZF(i",(D -0 "0)")

6—Q -

xF{@",0)FE",0")+ - .

In equation (1), Po(f,m) denotes the polarization in the absence of the external field, and

symbols such as -, :, and : indicate tensor contractions. The convention used by Orr and

Ward'” and by Bishop® is followed in showing the frequency dependence of the

susceptibilities. The polarization in equation (1) is related to the charge density by
V-P(f,0) = -p(f,0) 2

and the same equation relates the polarization and charge density operators, P(f) and

p(f). Thus the polarization contains the full information about the electronic charge

redistribution of a molecule in the applied field, and not simply information about its

dipole density.
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The nonlocal polarizability density, a(F,F’;—0;0), is a tensor quantity which

15,16

describes the linear response to the applied field, and it can be defined as
al£.7) = 013, ()G(0) B, (F10) + (013, (7)G (-0)B. 6)), ®
where G()is the reduced resolvent operator
Glo) = (1 - ,) (%—Eo—hm)_l(l — ). )
I is the unperturbed molecular Hamiltonian, E, is the unperturbed ground-state energy,
and g, is the ground-state projection operator g, =|0)(0|. Integration of a(f,f';-w;)
over all space with respect to T and T’ yields the molecular polarizability, a(-w;®). As
in the work of Orr and Ward,'” damping is treated approximately by allowing for complex
eigenvalues of I,
En = f(w0,)~ilW/2, ®)
where I, is the inverse of the excited state radiative lifetime for state |n) (and I, = 0).
The nonlocal hyperpolarizability density, B(f,F',";—@;0 —®’,0'), yields the lowest-
order nonlinear term in the polarization, P(F,»), due to concerted action of fields
F(f',0 ') and F°(¥",0’) at F'and " ." The second hyperpolarizability density
describes nonlinear response at the next order. Integration of B(f,7’,f";~0,;0,,0,)
over all space with respectto T, t'and T” yields B(——(oc;co, ,a)z) where 0, =0+ ®;-
For o, = 0,, the hyperpolarizability (- ;0,,0,) is the molecular tensor that

generates second harmonics of the incident radiation. The intensities of hyper-Rayleigh

scattering and second harmonic generation (SHG) depend on this tensor. When ¢, =0,
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B is the electro-optic tensor which is responsible for DC-induced birefringence. In
general, the intensity of sum-frequency generation at o, + ®», depends on
B(-04;0,,0,)."****¢ Spatial integrals of second hyperpolarizability densities yield
electronic properties such as the molecular tensor y(-3w;®,0,®) for third-harmonic

genmﬁon 19,20,21

In earlier work, a chain of relations has been established linking permanent moments,

linear response, and the lowest-order nonlinear response.”** The change in the electronic
dipole moment when nucleus K shifts is determined by a(f,f’;(},O) , the charge on nucleus
K and the dipole propagator from R* to ', which gives the change in the Coulomb field
of the nucleus, §F(F’), due to the shift 5R*.” The change in the Coulomb field of the
nucleus is related to the shift in the coordinate of the nucleus via
OF% (F) = 2% Tup (7, R*) R - ©)

After this equation is applied, the first relationship in the chain of relations is found as

Oy (F)/ OR] = [dF'a,, (FF,00Z5T, (F',R"). 7
The change in the electronic dipole moment of a molecule when a nucleus is moved from

equilibrium depends on the response of the electrons to the change in the Coulomb field

of the nucleus via the nonlocal polarizability density. Similarly, the chain of relations is
extended to the change in the polarizability a(—;®)since it is determined by
B(F,F',F";—w;,0), 5F* and equation (6)*** which yields

da,, (F;1',0)/ ORS = [didi'df "By, (F;F',0,7",00Z" T, (t",R%), (8)
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where B, (T;T',0,7",0) is the nonlocal hyperpolarizability density tensor and the Byd
subscripts indicate the Cartesian indices of a third-rank tensor.

In this chapter, the change in (-0 ;0,,0 2) due to a shift in the position of the

nucleus K is proven to depend on the second hyperpolarizability density and §F*. This
result is expected on physical grounds, as a continuation to higher order of the chain of
relations between polarizabilities; however, an explicit derivation is considered useful,
because the proof involves transformations of a 60-term perturbation expression. The
Bom-Oppenheimer approximation is used to determine the parametric dependence of the
electronic hyperpolarizability on the nuclear coordinates. In this chapter, only specific
terms will be considered. The full 60-term derivation is given in Appendix B of this

volume.

Applications of the Hyperpolarizability Derivative

The derivatives in this work are taken with respect to the nuclear coordinates R*,

while any applied fields F° are held fixed (typically, at F°=0). Hence the chain of
relations that links permanent moments, a, B and y densities differs from well-known
relations that apply to derivatives of effective electrical properties taken with respect to
the external field strength.?* The derivative of the effective electrical property of order n,
with respect to F°, yields the effective property of order n +1, where the following
identifications are made: n =0 for p, n =1 for a, n =2 for B, n = 3 for y, etc. However,

there is an underlying physical connection between the two chains of relations, since

changes in electrical properties due to a shift in §R*, the position of nucleus K within a
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molecule, are determined by the electronic response to §E~, the change in the Coulomb
field from nucleus K. Relations among the p, a, B and y for linear polymethine dyes
(push-pull polyenes)?*?%?” have been suggested based on differentiation with respect to an
effective electric field F assumed to account for donor-acceptor strength, molecular
topology and solvent interactions, in analogy with the approach of Buckingham and
Pople.?* The result obtained in this chapter differs from that of Marder et al.** in terms of
the differentiation variable (R vs. F) and in terms of the quantity to which the
hyperpolarizability derivative is related (the second hyperpolarizability density vs. the
spatially integrated value of the second hyperpolarizability). For an explicit physical
connection between the two approaches, a specification of the effective electric field F
appearing in Marder’s work is needed.”® Such a specification could be made via the

change of the effective electric field with respect to a change in the nuclear coordinate

0F./ R} -

The results derived here provide a physical picture of the origin of vibrational hyper-
Raman scattering intensities on the intramolecular scale. For light of angular frequency
; incident on a sample of molecules having the vibrational frequency ®, for normal

mode Q, the nonresonant hyper-Raman scattering intensity at the frequency 2w, o,
depends on 8P, (F,F',F";—20,;0,,0,)/8Q the derivative of the B hyperpolarizability
with respect to the normal-mode coordinate Q.?***° This derivative,

B, (F.T',F";—200,;0,,0,)/3Q, is a linear combination of derivatives with respect to

Cartesian nuclear coordinates. Additionally, these derivatives of B appear in the
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vibrational contribution to the net molecular second hyperpolarizability, 2627212333433

reflecting the change in electronic energy induced by an applied field.

Hyper-Raman scattering was predicted theoretically by Gittinger,?® Decius and
Rauch,* Kielich,”’ and Li,”® and first observed by Terhune, Maker and Savage.” Reviews
of hyper-Raman spectroscopy have been written.***'“*** For molecules or crystal unit
cells with centers of symmetry, hyper-Raman scattering is useful as a probe of molecular
vibrations that are silent both in IR absorption and in Raman scattering at frequencies ;+
©o2**** such as the twisting modes of A, symmetry in tetrachloroethylene* and in
cyclohexane,” modes of B,,, B,, or E,, symmetry in C;H, and C,D,* the F, librational
mode in crystalline NH,C1,* and the F,, modes of SrTiO,,***"*>*** BaTi0,,*** and
KTa0,**" the A,, mode of BaTiO,,***** and the soft-optic mode of K, .Li, TaO,.*
Charge transfer excitons which disrupt the centrosymmetry in semiconductors such as
Cu,O crystals,” germanium-doped silica fibres,** and other inorganic glasses® have
been investigated with hyper-Raman scattering. The spectroscopy has been used to
examine the lattice dynamics of silica polymorphs.* For helical polymers, optical
phonon dispersion curves can be probed by hyper-Raman experiments at four
frequencies, of which two are excluded by IR selection rules.®’

Hyper-Raman scattering also offers a useful probe of very low-frequency modes of
large molecules or crystals--even modes that are IR or Raman active--because
interferences are generally reduced.*****° For example, low-frequency Raman scattering
may be masked by intense Rayleigh scattering,*** while the weaker hyper-Rayleigh peak

does not overlap the hyper-Raman bands appreciably. For the perovskites near
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ferroelectric phase transitions,” IR measurements are limited in applicability because of
unusually broad reflection bands with reflectivities near 1, as well as the shallow
penetration of far-IR radiation, which leads to variation in the spectra with surface
conditions. Thus, hyper-Raman spectroscopy has been used to determine the imaginary
part of the dielectric permittivity €"(w) at low frequencies for these
materials,’**'2%334353¢57 anq then combined with IR reflectivity data at higher
frequencies, in order to generate the real part £'(0).*® Other experimental applications of
hyper-Raman scattering have also been reported.®*""!727

Surface enhancement of hyper-Raman scattering has been observed for SO,
adsorbed on silver powder,” dye molecules adsorbed on silver colloids™*"""*" (e.g. oxa-

78,79 an d

and thia-carbocyanines,” basic fuchsin,” 3-hydroxykynurenine,” crystal violet
malachite green”), and for pyridine’ and trans-1,2-bis(4-pyridyl)ethylene® on silver
electrode surfaces or for pyridine on aqueous silver citrate sols.*'

The electronic property connected to the intensities of vibrational hyper-Raman
scattering by this work is the density of the second hyperpolarizability,
y(f,7',f",f";—20;0,0,0). An integration over all space with respect to the spatial
variables yields the electronic contribution to the tensor y(-2w;®,®,0) that governs DC
electric-field induced second harmonic generation (EFISH) by nondipolar species, and
the electronic part (i. e., the nonorientational part) of EFISH intensities for dipolar
molecules.®*** The conversion from molecular susceptibilities treated here to the

macroscopic EFISH susceptibilities x'”(~20;0,0,0) depends on the densities and the

local field factors at the frequencies 2w, ® and 0.* This conversion is similar to the
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conversion of the molecular polarizability to the dielectric constant.*® The susceptibility
x? (—2(0;0),(0,0) also determines the applied-potential dependence of the optical second-
harmonic response of polished surfaces in electrolyte solutions,*’ as shown in studies of
the Ag(111) surface in aqueous electrolytes®® and Si(111)/electrolyte or
Si(111)/SiOy/electrolyte interfaces.*”

This chapter considers the electronic contributions to the hyperpolarizabilities  and
¥, for specified values of the nuclear coordinates. The relative magnitudes of the nuclear
contributions to the total molecular B and y values''*'*2****** depend on the frequencies
involved.® For example, among processes that depend on the macroscopic susceptibility
%, the vibrational and rotational contributions tend to increase in the order:® third
harmonic generation, EFISH, degenerate four-wave mixing, AC Kerr effect (optically
induced birefringence), CARS (coherent anti-Stokes Raman scattering), and DC Kerr
effect (static field induced birefringence). Third harmonic generation and EFISH are the
preferred methods of investigating the electronic contribution to y. These results apply to

hyper-Raman intensities that can be described by the nonlinear analog of the Placzek

,91,92 t93

theory. Resonan and preresonant™ hyper-Raman scattering are not treated.

Derivation of the Dependence of the Hyperpolarizability on Nuclear Coordinates

The hyperpolarizability density B(f,f’,f”;—(o, ;co,,coz) satisfies'®

B 5-0,58,,0,) = 9, 1012, ()5 (00) ()G 0By (O o
H0lB, ()6 () BEIG (e} ()0 + 018, ()" () B2 ) By (F O
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where g, denotes the sum of the permutations of p,(F') and p, ("), simultaneously
with their associated frequencies ®, and ®,, respectively, in the expression that follows
the operator; 0, = ©, + ®,, and
P (F) = P (7) - (0 Ba (£)]0) (10)

Full permutation symmetry of B, exists only if damping is neglected. Equation (9) is
analogous to Equation (43b) for the spatially integrated hyperpolarizability
Bos, (—©4;@,,0,) given by Orr and Ward."”

To find the derivative of B, (f,f’,f";-m, ;0, ,coz) with respect to the nuclear

Cartesian coordinate Rf, the derivative of the ground state wavefunction with respect to

an arbitrary parameter A is used.>

d0) oX
E=—G(O)§IO>. (11)

For consistency with the approximate treatment of damping, as in the work of Orr and
Ward,"” the imaginary components of the eigenvalues in off-resonant denominators are
neglected; then G*(0) can be replaced by G(0), and the derivative of G(w) with respect to

A satisfies™*

26(a) _
OA

() 2B 6(0) 1., 2 6(0) 6l0) +60) 600 B . (12

Also*

_a%f) = (0| %% G(0)B, (7} 0) + (0| B, (f)G(O)%%I(» : (13)

If » = R¥, the § Cartesian coordinate of nucleus K, then?**
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aSC = =Xl =m
af&,s(=—fdr Z*P. (") T (¥, RY) - (14)

The change in the inverse lifetimes of the excited states due to an infinitesimal shift in

R¥ has been neglected. In Equation (14), T (f"',ﬁ") is the dipole propagator, which

determines the field at T due to the polarization at R* ; in general,
T, () =V,V (——1—) (15)
ap \%» aVp |f _ I—.rl *
The Einstein convention of summation over repeated Greek subscripts is followed in

Equation (14) and below. From Equations (9) through (13), each of the six terms in
Equation (9) for B, (T,F',7";~©,;0,,0,) generates ten terms when differentiated with

respect to R . The contribution to the hyperpolarizability derivative from the first term

(taken as representative) is

—(01B (9500 B )00 3 (F)0) = " 2 Tu(". R

[ (0]5.(F")G(0) B (F)G(wa) B3 (F")G(w1) By (')} 0)
+0] B, (F)G(ws) B2 (F")Glws) By (F)Glc1) 5 (') 0)

0] B, (F"")G(0)0| B (7)| 0)G(ws) By (F")Glw1) B () 0)
0/ B, (F)G(2)G(0) B, (F)|0)(O[B (")G(w1) By (F ) 0)
0|3, (F")G(0) B, (F")|0X0| B, (F)G(wo)Gler) B ()| O

(16)

~—~
~

X<

-

(

{

(

~(0|B, (F")G(0) B, (7")|0)(0] . (F)G(w<)Gle) B3 (')} O
(0] Ba (F)Glws) By (F7)G(w1) B (F)G (1) B4 () 0)
(
(
(

+

0| B (F)G(ws) By (£)|0X(O| B. () G(O)Glw) By (') 0)
0| B (F)G(wo) B; (7)G(w:X 0] By () 0)G(0) . ()} 0)
[+(0] B4 (F)G(we) By (F")Glw1) By (F')G(O) B (F)|0)
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The fourth term of this expression contains the fluctuating polarization operator 133 (f ”)

which can be changed to a total polarization operator p, (") through the identity*

(0184 (F)G(w)G(0) B, (F ) O)OI, ()G (1) By (") 0)
= (0] Pa (F)G(w4)G(0) B, (£ 00| B, (+*)G{e1) B (¥ 0)-

Similarly, the eighth term has a fluctuating polarization operator, which can be converted

a7

to a total fluctuation operator. Also with the definition of the fluctuating polarization

operator, the first and third terms within the brackets in Equation (16) combine to yield

(015, (F")G(0) B (115(w2) B ()5 B, ()0
- (0[5 (F)G(OX0/2. () OG(0) B EIS()B,EN0)  18)
= (013, ()G X ()G 02) B2 )G (0) By () 0).

Similarly, the ninth and tenth terms within the brackets of Equation (16) combine to give

the matrix element
(0P, (F)G(ws) By (F")Glw1) B (F')G(0) B. ()] 0) - (19)

From Equations (16), (17), (18) and the expressions generated by differentiating the

remaining terms in Equation (9) with respect to R} , we obtain
0 LT, f"-0,;0,,0
B raR;) L 2) [dT" Z¥ Tes ( ", R ) [1+C({0)i}—> {_(Di})]

(0] Ba (F)G(wo) B2 (F")G(wq) By (F*)Glw1) B4 (/)| 0)
"] +(0]84 (7)G" (—1) BL(F")G " (~w4) B2 (F)G(0) B, () 0)
[(0] B, (F)G(wa)G(0) B, ()| 0)(0] B, (F")G(c01) By () 0)
+(0] P (F)G(ws)Glw1) By (F')| 00| B. (F")G(0) B, (F )| 0)
p +(0] B, (F)G(wo)Gla1) By ()| 0X0| B, (F")G(0) B. (F ") 0)
P71 +(0], (F")G(w-)G(0) B, (F)| 0X0| B, (F)G(we) By ()] 0)
+(0]B, (F")G"(-2)G(0) B, (") OXO| B, (F)G(e:) B (') 0)

[ +(0]B, (F")G ™ (~02)Gl01) By (F')| 0)(0| B. (7")G(0) B4 ()| 0)

(20)
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where . denotes the sum of all permutations of p,(¥'), p,(¥"), and p, ("),
simultaneously with ®,, ®, and 0 (respectively) in the expression that follows. The
operator C({w:} - {—(Di}) takes the complex conjugate and replaces each o; by -o;; the
operation applies to ®,, ®, and ©,. Again damping has been neglected in off-resonant
terms; it is reiterated that G(0) and G*(0) are interchangeable at this level of
approximation.

In order to connect the hyperpolarizability derivative to the second

hyperpolarizability, the following identity is used,”

(018 (F)G(we)Gla1) By (7)) 0XO[ B (F)G(0) , (F")|0)
+(0] B (F)Glwa) By (7')|0)0] B, (F)G(0)G(w2) B, (F)|0)
= (0] B (F)G(e20)Glw1) By ()| 0)(O| B. (F)G(w22) B, (") 0)

+{0]B. (F)G(e1) By (') 0)(0| B. (F)G(0)G(02) B, (") 0),

@1)

which is proven by converting both sides S, and S, in Equation (21) to the explicit sum

over states form

(O] B (B) m)(m| By (') OX(OI B (™) 5)(il By ("I O){ om0 + 0~ 01— )

22
(Quo— (oa)(Qmo - ) Qjo(Qjo - Coz) @2

Si=S=hr"%'%
m )

where Quo = ®mo—1w/2 and the primes on the summations over m and j imply that the
ground state is excluded from the sum. We also use the complex conjugate of the identity
in Equation (21). Then Equation (20) can be simplified using the permutation operator

£ pye-
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[1+lfo) - (-

(013, ()5(02)G(0)B. () 001, ()G(1) 35 (7] )

013, ()G(02)G(wr) By F}O)O1 5. (F)(0)3, ()0

+(0]3. (G(02)G(0r) 25 F }O)013, (F1)G(0)3, ()0

(0], (F")G(w:)G(0)3, (F)ON0I. (G ) B4 F}O)

H0[3, ()G (~0:)G(0) B, ("} )05 ()G () 3, (7 )0)

+{0]B, (77)G" (~0:)G() 3, (7 0)(0] . (F)G(0) . (£)0),

=[1+Clio) > {-o)]

< o[ (01815008 (N0l ()50 4O
5| 4(0] B (FIG(0) B. Y ONOIB, ()G (-0r)Gr) By (70) |

~o ~——

(23)

Therefore

B opy (L., F"3-00,430,,0,)
RS
(0] Ba (F)G(006) B2 (F")Gleo6) By (F)Gle1) By (F")|0)
+0[ By (F)G" (~01) B, (F)G " (~00) B2 (F)G(O) B.(F)| 0)
~(0] B, (F)G(w)G(0) . (F )| 0)0[ B, (F")G(w:) By (¥} 0)
| (0] B (F)G(0) B..(F)| 0)(0| , (F")G ™ (~w2)Glw1) By (¥} 0)

- far 2T (F R 1+ Cl ) > -]

(29)

The quantity in the brackets of Equation (24) can be compared to the second
hyperpolarizability density. The equation used for the second hyperpolarizability is taken
from Orr and Ward’s article on nonlinear optical polarization.'” The equation is directly

quoted.
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P2 = K(-0¢;01,02,03) A 123
[ e e, (e, (), (B), (7o), (),
, (ng - (Do)(ng —o1— coz)(Q..g - (m) (Ql.g + (os)(ng -0 - mz)(Qng - 031)
Sl e ), (e e, (5,0,
gL (Qis + 1) Qg + 01+ 02)(Qug —03)  (Qie + @1)( Qg + 01 + 02)( Qo + @) | : (25)
[ (P)o(H03), (102) (1) (B, (1) (Ho7) (Heot),
| @mom-0an-a) " (Qme = 0} Qg + 03) (s~ 1)

= (e (), (e, (mer), (o) (we2) (wes) (P),
i (ng + (Do)(Q:ng + m;)(Q;g + m,) (Q:ng + 0)3)(9..; - mz)(Q;g + m.) ]

\ 7

Orr and Ward’s equation for the second hyperpolarizability is identical to the expression
in the brackets of Equation (24), though explanation is needed to relate the two equations
to each other. First the frequencies are compared; the o, in the second
hyperpolarizability corresponds to 0 in the hyperpolarizability derivative. The matrix

element notation translates as

(B3, = zll = IEe(£) B (£)di]m) > (1| B} m) (26)

(H23) = (1| - [H"o(F) E>(F)dF|m) — (1] p, (F" ) m).

Note that the expression from Orr and Ward includes the incident electric field to obtain
the net polarization whereas in this formulation, flexibility is maintained to multiply by
the electric field subsequently. The correlation is complete when it is remembered that

summation on the index of the polarization operator over all the Cartesian coordinates in
Equation (24) is necessary. The I, ,, operator is the same permutation operator as .
and the # in the denominator of the equation of the second hyperpolarizability can be
distributed through the frequency expressions to yield the energy expressions of the
equation for the hyperpolarizability.
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One can use the definition of the reduced resolvent to simplify the sum-over-states in
the equation for the second hyperpolarizability. Then the frequency conjugation operator
C({i} = {-wi}) can be factored from the second hyperpolarizability equation to
simplify further. The first and fourth, second and third, fifth and seventh, and sixth and
eighth terms of the second hyperpolarizability equation are frequency conjugates of each
other. Finally, the coefficient K(—ma;co. ,—32 ,—(o3) depends on the number of zero
frequencies and the number of repeated frequencies in the set ®,, ®, ®; and ®,. The
value of K becomes clear for specific frequencies when integrations over the frequency
values are taken. Integration over a single © will yield a different number than three
integrations over three distinct frequencies.

Thus being aware of all of these equivalencies, the equation for the second

hyperpolarizability can be written as

Y gpe (BT, F"5—0030,,0,,0,)
(0] B, (F)Geoe) B2 (7)Geae) B (F")Geo) B5 ()} )
1+l > (o] p H0| By (F')G" () By ()G (o) B2 ()G(O) B () O)  |(27)
™| 40] B, (F)G(w)G(0) B. ()| 0)(0] B, (F*)G{ew1) By ()| 0)
| (0] B (F)G(0) B. (") OXOI B, (**)G ™ (—02)Gleor) By ()| O)

Relating Equation (27) to Equation (24) yields the goal of the derivation.

OB g (., F";—00;01,0;) / IR = | A" g (B, T, T, "~ 06501, 02,0)Z°T,5 (F, R®) .(28)
If damping is completely negligible, Equation (24) can be cast into the more compact

form
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OB gy (F,1',1"5-00;0,,0,)

oRY B

‘o (0] B (F)G(wo) B2 (F")G(ws) By (F)G(w1) By ()| 0) .
| (0] Ba (F)G(w6) B ("} O)OI B, (*)G(~002)Gleo1) B ()] 0)

far" 25T, )
(29)

which again yields Equation (28) on comparison with Equation (44c) in Orr and Ward’s

paper.”” In Equation (29), £ .4, denotes the sum of all permutations of the pairs
{ﬁa(f),-mo} , {f)ﬁ () co;} , {f), (), (Dz} and {ﬁt(f'"), O} in the expression that follows;
here the frequency associated with p,(T) is —w, rather than o, . In deriving Equation
(29), we have used Equation (21), the equation obtained from Equation (21) by

interchanging the roles of {ﬁﬂ(f'), m.} and {ﬁ, (), (,)2} , the result

(01 B (F)Glwo) B, (") OXO| By (F')G(=001)Glw2) B, (F") 0)
+(0/p, (G(ws)G(0) B, (F") 0X0| ; (F')G(-w1) B, (F)|0)

= (014 (A)G(we)G(0) . (P OXOI 4 (F)Gw:) B, () O) (30)
+(0] B, (F)G(0) B, (F" )} 0X0| By (F')G(~01)G(w2) B, (F”)|0)

(0] B, (1) m)(m| B, (F) 0XO| By (') 3)(i| B, ("N ONCQmo + Q50 = @2)
(Qmo — ®o) Qumo (Qjo + (Dl)(Qjo - (Dz)

=h-2z, zr
m

and the analog of Equation (30) with the roles of {f)‘,(f’), co.} and {f), ("), 0)2}
interchanged. Equation (30) corresponds to Equation (21) with p,(F') and p, (")
interchanged, G(0) replaced by G(-w,), G(w,) replaced by G(0), and damping

neglected.
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Further Applications of the Hyperpolarizability Derivative

The analytic result given in Equation (28) is needed to relate quartic anharmonicities
of potential energy surfaces to electronic hyperpolarization energies,” and to relate
nonadditive three-body forces to the three-body polarization.”’” Equation (28) is
potentially useful for analyzing the origins of hyper-Raman scattering on the
intramolecular scale, and for making qualitative predictions about hyper-Raman
intensities. In ab initio calculations with a given basis set and method, a direct evaluation
of the left-hand side of Equation (28) is expected to be more efficient computationally.
However, use of the form on the right may assist in basis-set optimization by indicating

which regions of the molecule contribute most to the hyperpolarizability derivative.

The Hyperpolarizability Derivative and Hyper-Raman Intensities

The derivative of the net molecular hyperpolarizability B, (- ,;0,,0,) with

respect to the vibrational normal-mode coordinate Q is

aBagy (—(Dc;O)I :0)2) / a(2

~x, RS (31
= 3 [AFAFAE"E™Y gy (F,F',F, F" 50030102, 0 2T, (7, R¥) 22 Gl
K8

Intensities for vibrational hyper-Raman scattering depend upon the derivative given by
Equation (31), with @, and ©, both equal to the frequency of the incident radiation ¢;,
and @, = 20; .2***° This connection'******* for hyper-Raman scattering of incident light
plane-polarized along the space-fixed Z axis, initially propagating in the -X direction

toward a scatterer at the origin in the space-fixed axis system (X, Y, Z) is reviewed.
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Scattered radiation of frequency , is detected along the Y axis. The intensity (per
unit solid angle) I,;(w,) of the scattered radiation plane-polarized along Z, due to an

isolated molecule that undergoes a transition from vibrational state m to n is given by

4
[ON

2
. 32
32n’eoc’ |(m|p.z| n)| ©2)

IZ.Z((’):) =

The intensity Ix;(ws) of scattered radiation plane-polarized along X satisfies Equation
(32) with p, replaced by p, . At the level of the Placzek theory as applied to hyper-
Raman scattering, p,and p, are identified as the electronic dipoles induced by nonlinear
response to the electric field of the incident light, so

Mx = 1/2 Byz(-201;01,0) Bz(0) E-(0), (33)
where EZ((Oi) is the electric field of the incident light (and similarly for pu,). Below,
Byzz(~20i;0i,0;) and B, (—2wi;0i,0:) are abbreviated as Py, and B,,,, respectively.
The hyperpolarizability components B, (IJK = XZZ or ZZZ) are expanded as series in

the normal mode coordinates Q,, about the equilibrium nuclear configuration (denoted by

the subscript eq),

B
Q,

Bu = Bl + T2 L, Q + - (34)

Hyper-Raman scattering occurs at frequencies o, shifted from 2¢; by (En— E.)/%, with

intensity Ixz(w,) given by*

__ o o 3Bxzz J . X
lia(o:) 128nzsoc3l<m|QV|n>I( aQ, ko) Eal(o) 39)
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and similarly for [, (cos) with B,,, = B,,, . For transitions between the ground
vibrational state and the state with one quantum of excitation in the mode Q,, in the
harmonic approximation, the strength of the transition is

(mlQ)n) = #/20., (36)
where @, is the frequency of the normal mode Q,. For a sample of N freely rotating
molecules, with probability P,, to occupy the initial state |m), the intensity Ixz(w,) of

hyper-Raman scattering is related to the isotopic average of the hyperpolarizability

. . 2 40
derivative, <(6szz/ aq, leq) >by

o) =—2_NP_ ’(aﬁ—m] 37
Ixz(0,) ot .,.Il<m|Qv|n>|< Q. g (37

and similarly for I,;(w,). In Equation (37), I, is the irradiance,” defined by

=12 ce,gE, (o), (38)
and g is a coherence factor.” The space-fixed tensor components 9, /Q, |, are
related to the molecule-fixed components 9, /6Q, |, by

B = (ayi iﬁl‘i 39
anLq ifkauaj,an anLq (39)

where ga;; is the direction cosine between the molecular axis i and the space-fixed axis I.
Since Equation (37) relates observed hyper-Raman intensities to the derivatives of the

hyperpolarizability, by Equation (31) the hyper-Raman intensities are also related to the

FN.

second hyperpolarizability density y(f,F',F",F";-20i;0i,0:,0) -
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Conclusion

The principal result of this work is contained in Equation (28), which establishes a

link between the derivative of the lowest-order nonlinear response tensor

[3(4,1 (-(0, ;0,,0, ) , taken with respect to the position of nucleus K, and the nonlinear
susceptibility density v, . (F,F',F",F";~20;;®i,;,0) of the next order. The second
hyperpolarizability density determines the change in the effective value of the
hyperpolarizability when a static external field is applied to a molecule (cf. References
24, 25 and 31 for cases with uniform applied fields and spatially integrated values of y
and B). When nucleus K shifts infinitesimally within a molecule, the electrons respond to
the change in the nuclear Coulomb field via the same nonlocal susceptibilities that
characterize their response to applied electric fields. This result is illustrated in Equation
(28), since the change §Fx in the Coulomb field resulting from the shift in the position of
nucleus K is given by Z*T, (t"",R*)6R¥. Thus the second hyperpolarizability density
determines the change in the hyperpolarizability due to small distortions of the molecular

geometry. Based on Equations (31) and (37), the second hyperpolarizability density also

determines band intensities for vibrational hyper-Raman scattering.
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CHAPTER 3: RELATION OF POLARIZATION PROPAGATOR
DERIVATIVES TO NONLINEAR POLARIZATION

PROPAGATORS

Introduction

In quantum chemistry, calculation of molecular properties involves two quantities,
operators and wavefunctions. Using perturbation theory, the value of a property is often
found by operating a single operator upon a sum-over-eigenfunctions (sum-over-states).
For example, the dipole polarizability can be calculated from the second-order

perturbation expression’

(1)

(0], | n)n|py|O) . (O] pg|m)(n|p,|0)
EO—En+hm EO-En—h(D ’

aw(®)=—§'{

where the |n) are the wavefunctions, p_ is the dipole operator of the ath Cartesian

coordinate and ¥’ indicates the sum over the excited states only. In general, accurate

excited-state wavefunctions are more difficult to calculate than ground-state
wavefunctions. Also for accurate property calculations, a large number of excited-state
wavefunctions may be needed. Thus the sum-over-states method is often impractical,
since its accuracy is dependent on the accuracy and number of the excited-state
wavefunctions.

Use of the polarization propagator avoids the problem of needing excited-state

wavefunctions. In a polarization propagator calculation, only an accurate ground-state
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wavefunction is necessary. To calculate a property, a sum is still needed; however, the
sum is not over a complete space of excited-state wavefunctions but over a complete
space of operators. The operator sums are found by applying the equation of motion of

the polarization propagator. The equation of motion® for the polarization propagator

((B; A)) that describes the effect of operator B on the molecular property of operator A is

no((B; A)) = (0[[B,A} 0) - ([, B} A)). @)
Equation (2) shows that the polarization propagator can be calculated in terms of the next
higher order of polarization propagator. The same equation of motion is used for the
higher order propagators. Therefore, the equation can be applied repeatedly to yield an
infinite sum of nested commutators. In this form, the polarizability in Equation (1)

becomes?

as(@) = 2= 0l 0+ (2ol L0+ (2 o[, -

Thus, the problem of calculating molecular properties shifts from the calculation of
excited states to the problem of calculating commutators. The commutators are
calculated as algebraic sums using “superoperator” algebra. More details can be found in

McWeeny’s’ text as well as Jorgensen and Simon’s” text.
Indistinguishability

The indistinguishability of electrons in a molecular system is important to consider
carefully since the polarization propagator employs a multi-electron wavefunction. The

multi-electron wavefunction, in order to describe the state properly, needs to incorporate
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the indistinguishability of the electrons in the system. Indistinguishability is the name
given to the concept that when two identical particles in a quantum mechanical system
are exchanged, the exchanged state can not be distinguished from the original system.
The consequence of indistinguishability for particles of half-integer spin such as electrons
is adherence to a fundamental principle, the Pauli exclusion principle.

The Pauli exclusion principle states that identical half-integral spin particles must
have wavefunctions that change sign when any two particles are exchanged. This
property is called antisymmetry. The wavefunction describing the electronic state must
be antisymmetric. Two formalisms are commonly used to ensure that the electronic state

wavefunction is antisymmetric, Slater determinants and creation/annihilation operators.
Slater determinants

The first formalism used to ensure antisymmetry is the Slater determinant. For a two-

electron system, an approximation to the total wave function can be written as

¥ ==V ()0 )~ v () v, ()] )

The y,(r;) are the individual one-electron wavefunctions. If the two particles are
exchanged by switching electronic coordinates r, and r,, the total wavefunction changes
its sign. Therefore, this wavefunction is antisymmetric. Using the definition of a

determinant from linear algebra, the total wavefunction is written identically as

va(n) v,(r)
vy(n) w,(r)

1
V2

Y= : )
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This determinant is an example of a Slater determinant. Similarly, an antisymmetric

three-electron wavefunction can be written as

LAQRACH AL
‘P=ﬁw.,(n) UNCARRN (B (6)

ve(o) welr) w.(r)

In general, a n-electron wavefunction is written as the following Slater determinant

Vi) wi) - - w()

1 \I’b.(l'l) ‘Vb‘(TZ) \l’b(I'N)
‘P=ﬁ : : . 7

WN(TI) ‘VN(H) WN(rN)

Writing a multi-electron wavefunction in this fashion allows the Pauli exclusion principle
to be satisfied. When any two columns of the determinant are exchanged, signifying the

exchange of two particles, the magnitude of the determinant remains the same; however,

the sign is changed.

Creati { Annihilation C Second Ouantizati

The properties of creation and annihilation operators found in harmonic oscillator
analysis*, many-body solid state theory*® and quantum field theory™® are exploited to
construct antisymmetric wavefunctions. Relating such operators to electrons in
molecular systems,**’ a creation operator operates on the electronic wavefunction of a
molecular system and creates an electron in a specific quantum state. As a simple

example in an atomic system, the creation operator a'(1s) is applied to the vacuum state

| @) as follows:
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a'(1s)| @) =|1s). @®)
The creation operator, a'(1s), creates an electron in the 1s state. The annihilation operator
destroys an electron as in the following examples.
a(ls ) llsz> = l 18‘) or 3(25 ) |ls'25'> = —l ls') . €))
The negative sign in Equation (9) is a consequence of antisymmetry. Both examples in
Equation (9), the initial state had two electrons. In both cases, the annihilation operator
destroyed an electron so that the final state had only one electron.

The creation and annihilation operators used above only had spatial labeling. Since
the antisymmetry property is a function of spatial and spin coordinates, spatial and spin
labels should be used to describe the electronic state. The examples in Equation (9)
become

a'(1%) D) =1s)>  a(Isa)|Isa1s) =1ss) and | a(2s) | 180 250) = 150 - (10)

What happens when we try to create an electron that is already present or annihilate
an electron that is not present? The implication of the Pauli exclusion principle is that the
maximum number of electrons in a given quantum state is one. In addition, the minimum
number of electrons in a given state must be zero. Therefore, trying to create an electron
in a state that is occupied or annihilating an electron that does not exist is not physical.

Such operations are defined as zero, €. g.,

a'(1s) | 1sa 1) =0 and a(2s,)|1sa155) = 0. (11)
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These definitions ensure that the Pauli exclusion principle is satisfied. The operators can
also be defined in an alternative, but equivalent fashion, using anticommutation rules to

ensure antisymmetry. For states m and n, the anticommutation relations are

{ah.al} =ahal+alah=0
{amaan} =aman+anam=0 (12)

{ah,a0) = aha.+asah = Sm-
These anticommutation relations demonstrate that when m = n, the same electronic state
can not be created twice nor the same electronic state be annihilated twice.
A two-electron ground state that satisfies the antisymmetry requirement in terms

creation operators is written as, e. g.

a'(1s5)a" (1) D) = |1sp 1) - (13)

An n-electron antisymmetric wavefunction is written as

a'(nlmp) +-a'(1s;) a' (150)| D) =| nlmp -+ Isp Isa) - (14)
An excited configuration of a multi-electron system can be constructed using a
combination of creation and annihilation operators. First the annihilation operator
destroys one of the electrons in the Hartree-Fock ground state, then the creation operator
places an electron into an excited state. For example, creation and annihilation operators

can be used to form an excited configuration of helium,

a'(2s.)a(1s)|15s 10) = |25 1) - (15)
Because of the anticommutation relations of Equation (12), the order of the operators is
very important. Appendix C explains in more detail the consequence of applying creation

and annihilation operators to a multi-electron state.
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Operators in the second quantized formulation of quantum chemistry are products of
creation and annihilation operators with specific coefficients. The operators can involve
any number of electrons, though only one and two electron operators are regularly used.

A one-electron operator has the form,
0= %eu ata) where 6y = (9, (1)[0(z:,5,) ¢,(i)) - (16)

The coefficient 6,; is the matrix element of a more traditional quantum mechanical
operator with the basis functions ¢, and ¢,. The index i indicates the ith electron in the
system. Examples of quantities described with one-electron operators are the kinetic
energy, momentum, angular momentum, magnetic moment and polarization. Two

electron operators have the form,
V= ufnlmal al amaa (0, (i) 9, (j)|V(l"i JisPi ,5,) 6, (1)9..(3)) - (17)
The indices i and j refer to different electrons, i. €. i and j can never refer to the same

electron in the calculation of a single matrix element. The two electron operators are

used for the calculation of Coulomb and exchange energies.
Occupation Number Formalism

When a basis set is used to describe the multi-electron wavefunction of a system, the
wavefunction for a given state is written in terms of whether a particular basis function is
used or not. For clarity of presentation, the one-electron spin-dependent hydrogenic
wavefunctions are chosen as an example of a basis set. This basis set is {1s,, 1sg, 2s,,

285, 2Das 2Pxps 2Pyos -+ » §- The multi-electron wavefunction is derived from



antisymmetrized products of these functions. In the occupation number formalism,**’ the

wavefunction is constructed by counting the number of electrons in each state, €. g.

|¥') = | Mo Pisp D25 D2 ** D D) » (18)
where the n_,, denotes the electrons with the basis function nlm,, where nlm, are the four
quantum numbers needed to fully describe the hydrogenic single-electron state. Thus the
Hartree-Fock ground state of the helium atom is rewritten in the occupation number
formalism as

|15 1s5) =[1,1,0,0,0,-++,0) . 19)
The ones in the right side of Equation (19) indicate that the 1s, and 1s; basis functions are
occupied while the zeroes indicate that none of other basis functions are occupied. An
excited configuration of helium can be rewritten as

180 250) =|1,0,1,0,0,--,0) . (20)
A sum over a complete set of occupation numbers spans a complete multi-electron space;

therefore, the completeness relation for multi-electron wavefunctions can be written as

Zli)(i|=1= z X Zlnmnm“'nnnnn><nn1ma“'nupn|n|~ (21)

i Disa Dig  Daimp
In the summations above, the only values that the occupation numbers may have is zero
orone. This restriction is due to the Pauli exclusion principle. In terms of creation and
annihilation operators, the sum-over-states becomes
| s T+ Taimp) = 2" (1) 2" (1)~ 2" (mlmg)| B) - (22)
Further properties involving the importance of ordering of creation and annihilation

operators in multi-electron states are found in Appendix C.
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Foundations of the Polarization Propagator

The polarization propagator has its origins in the time correlation function of the
density operator. The density operator is a statistical description of the state of an
ensemble of quantum systems. One text describes the density operator as an averaging
operator of single quantum systems over an ensemble.* A density operator can represent
a mixed state, which does not have a specified wavefunction that can be constructed from
a basis set. Therefore, to find numerical results involving a large number of quantum
systems, the density operator is used. In conventional formalism, the N-electron density
operator is expressed as

p(t) =¥ ¥(1)|- 23)
For calculations with single-electron operators, the N-electron density operator contains
an overabundance of information. Therefore, the simpler single-electron density operator
is used. In the language of second quantization, the single-particle density operator can

be expressed as

p(f.t) = T¢;(F)9,(F)al (t)a;(t) Where the ¢;, ¢; are basis functions. (24)

The relationship between the densities at two different times is found in the density
correlation function constructed by Zubarev'® and considered by others''%2. Correlation
functions'® describe how one quantity changes in response to a perturbation that couples
to a second quantity. As a simple example, consider that an arbitrary charge distribution
will deform in the presence of a time-dependent external electric field. The density time

correlation function relates the charge distribution at one instant of time to the charge
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distribution at another instant of time. This charge density correlation function may be

written using the Heaviside step function' as

x(t') = -16(t- ) {(e(t)o(t)) - (p(t")Xp(t)) } - i0(t' ~ }{(p(t )e(t) ~ {pO))e(t))} - @5)
Since the correlation function is written using the Heaviside step function, a charge
distribution in the future never has an effect on a charge distribution in the past. Thus
causality is ensured since the effects of a charge distribution propagate into the future, not
into the past.

The Fourier transform of the time-dependent correlation function is the energy-

dependent density correlation function y_(E)."

80 540 E-—ha).o + 1€ E+h0)no - ie

o (E)=lim {<0|p|n><n|p|o>_<0|p|n><n|p|o>} whete hom e Eu—Ee. (26)

In terms of the points ¥ and ', the time-dependent density correlation function is

rewritten as

(0lp(F)n){n|p(F")}0) _ (Olp(F")n)n|p(F) 0)} @7

E-Awao + 1€ E+hwao— 1€

%Xy (F,F";E) = lim z{

€0 p,0

where iwa0=E.— Eo-

The imaginary infinitesimal amount added or subtracted to the energy denominator in
the transformed density-correlation function is a result of taking the Fourier transform of
the Heaviside step function. The imaginary infinitesimal allows causality to be
maintained when the polarization propagator is contour-integrated to find the residues or
poles of the propagator. The significance of finding the residue and poles will be
explained in an upcoming section. The imaginary infinitesimal arises in the consideration

of ensuring that a sinusoidal perturbation applied to system is zero at infinite time in the
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past. Thus, the damping of the sinusoidal perturbation occurs when it is multiplied by a

real exponential, ™.
lim H'(0) = lim -;-(Ao e+ A e™)e" =0. (28)
The energy-dependent density correlation function can be rewritten in terms of the
polarization propagator by substituting Equation (24), the definition of the density
operator, into Equation (27).

(014:(5)9,(F)al (t)a; ()m)ny () &, (F')ak (t)an (1) 0)

£ FiE) = im E—hwao + 1€ . (29)
Xoo (7S E) i.j.zk:.l l‘-’%go (019, ()6, (F")al(t) i (t) )| &; (F) ,(F)a] (t) a; ()| O)

Rearranging Equation (29) yields the energy-dependent density correlation function

in terms of basis functions and the polarization propagator
X (RF5E) = 3 61(F)0(7) 4 () 0,() x5 (E) (30)

where x;‘ (E) is defined as the polarization propagator.

wm _ <) (Olala;[n}n|ala)[0) (0|alai|n)(n|ala;|0)| _ &
xj'(E)_-=0{ E—A®a0 + i€ E+hwao— i€ }-xj'(m). Gh

Note E=ho is substituted to give the frequency-dependent polarization propagator. The

imaginary infinitesimal portion of the propagator shall be dropped since only off-resonant
response will be considered. The reduced resolvent operator R(w) is defined to further

simplify the expression.
R(0)=(~roon+ho ) (1-|0)0]) where 1=X|n)(n]. (32)

Therefore, the polarization propagator becomes
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1 (©) =~(0lala;R(-w)a} 0) - (0al 2 R(®)a a,]0) - (33)

Defining af as af = aj a, (the single-electron replacement operator) modifies the
polarization propagator to become

X} (©) = ~{0]aiR(~w)at|0) ~ (0] R(w)ai|0)- (34)
The polarization propagator is rewritten as

() = ~(0]aiR(-w)t]0) ~ (0]a} R(®)a!|0) (35)

or 2% (o) = —(0]atR(w)a]0) - (0]a¥ R(-w)a2|0) - (36)
It is also possible to include the damping of excited states in the definition of the

polarization propagator; however, such off-resonance damping is assumed negligible.
The Nonlinear Polarization Propagator

The polarization propagator is a general linear-response function meaning that it can
be applied to any situation where the state density responds linearly to an applied
perturbation. Specific examples include the polarizability as the linear-response function
measuring the response to an applied electric field, and the paramagnetic susceptibility
measuring the response to an applied magnetic field. When linear-response functions are
inadequate to describe the response, nonlinear-response functions are used in addition.
Nonlinear-response functions have been constructed by Olsen and Jergensen'® and have
been reinterpreted using second-quantized operators by Hettema et. al.'” and Moszynski
et. al."® in terms of nonlinear polarization propagators. The nonlinear polarization

propagator has the form
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(Ola¥{n)nl(at ~}) m)(mlati|o)
(—h(l)oa = ho,— h(oz)(-h(oo. - hcoz)
(0]a¥*| n)(n|(ak - p} ) m)(m|ak|0) A6
(—h(l)on + h(!)z)(—h(oon + h@l + h(x)z)
(0]a¥|n)(n|(ak - p’} m)(m|ak:| 0)

{ (—h(,l)on + h(l)l)(—h(l)on - h(x)z)

2 000) = (1420) T

where the permutator P,, permutes the following variables

W; € 0
Puo=|A A" (38)
K’ QK"

and the operator p: is defined as pﬁ = (O[ aﬁlO} . The nonlinear polarization propagator
expressed in terms of the reduced resolvent operator becomes

(0]aR(-a, - (1)2)(8:: - P::)R(— ®2)ak-|0) +
L% A (01,02) = (14 Pi2){ (0]ak R((oz)(aﬁ: - p::)R(w. +w)atl0)+ - (39
(0]ak R(co.)(aﬁ - p:)R(—mz) ax-|0)
The propagator that is Equation (39) is used to determine nonlinear molecular properties

such as the hyperpolarizability.
The Derivative of the Polarization Propagator

The structure of the polarization propagator in the form of Equation (29) shows that
for contour integration with respect to energy, its poles yield excitation energies of a
molecular system while its residues yield transition matrix elements. Thus, the values of
molecular properties can be found not only by applying the polarization propagator but

also by finding its poles and residues.
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The polarization propagator has been used to calculate a variety of molecular
properties. Oddershede'? mentions in his review article the following properties:
oscillator strengths, Rayleigh scattering cross sections, photoionization cross sections,
excitation energies, radiative lifetimes, static and dynamic polarizabilities,
hyperpolarizabilities, dipole moment derivatives, potential energy curves, nuclear spin-
spin coupling constants, nuclear magnetic shielding constants, magnetic susceptibilities,
Verdet constants, spin-rotation constants, magnetic rotatory strengths, force constants and
C, van der Waals coefficients. Most of these properties are calculated as single-point
calculations at the equilibrium geometry of the molecule. However, in many cases, it is
important to know the value of a property at several different molecular geometries about
the equilibrium geometry. Also nuclear-coordinate derivatives of the properties are often

calculated using numerical differentiation techniques.'
M i .

The derivatives of magnetic properties with respect to a parameter have been
examined, all using numerical methods. Several studies have examined the relationship
of various orders of spin-spin coupling constants to changes in molecular geometry. 'J(H,
C) and 2J(H, H) surfaces have been calculated for methane and perdeuteromethane using
49 distinct geometries.”’ Lazzeretti, Zanasi and Raynes also created surfaces from the
contributions to the spin-spin coupling constants: Fermi contact terms, spin-dipole terms
and orbital paramagnetic terms. The surface construction of 'J(H, C) and 2J(H, H) for
methane has been repeated more recently using 51 distinct geometries.?! Calculations of

*J(H, H) have been done for CH,, SiH,, GeH, and SnH, at multiple geometries.> The
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calculations necessitated finding the normal-coordinate derivatives of the spin-spin
coupling surface so that vibrational averages could be calculated. 'J(H, C) and 'J(H, N)
have been computed for HCN and HNC at the equilibrium bond distancer. and atr +
0.1A.2 Third-order, i. e. vicinal, spin-spin coupling constants *J(H, F) in substituted
fluoroethanes have been determined as a function of the torsion angle between the
hydrogen and fluorine atoms.** The through-space spin-spin coupling constants =J(P, P)
and ™J(Se, Se) in diphospho-methanes and diseleno-methanes have been calculated as a
function of torsion angle using a simplified polarization propagator technique.” (The
through-space contribution accounts only for that which is due to overlap of the lone pairs
of the phosphorus or se]enium atoms.) Spin-spin coupling constants have also been
computed as a function of hydrogen-bond distance.”®

Other magnetic properties have been calculated as a function as internuclear distance.
The magnetizability and "*C nuclear magnetic shielding surfaces for methane have been
determined using 59 distinct geometries.”” The spin-rotation constant has been computed
in GaH® and AIH? as a function of internuclear distance. The nuclear magnetic shielding
constant and spin-rotation constant of various isotopomers of second row hydrides have
been calculated as function of internuclear distance.*® Surfaces of the nuclear magnetic
shielding of '’O and H, the spin-rotation constant of '’O and the rotational g-tensor in the
oxonium ion H,0* versus normal vibrational coordinates have been constructed.*'

Vibrational averages for Verdet constants have been found for N,, H,, CO and HF.*?
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Electric P :

Electric properties that have been calculated using polarization propagators include
Raman intensities, which depend on the normal-mode derivative of the polarizability, for
CO, N,, HCl and C1,.** The intensities were calculated using numerical differentiation
techniques on polarizability calculations at three bond lengths. Potential energy curves of
the ground state and various excited states of BH have been constructed.** Vibrational
averages of the ground state energy, dipole moment and different Cartesian components
of the polarizability, o, (®) and ax;(a)), and hyperpolarizabilities, B, (®), B.(®) and
B,x(®), have all been calculated using polarization propagator techniques.’® The
hyperpolarizabilities were computed by applying the finite-field technique™ to
calculations of the polarizability. Vibrational averages of the second hyperpolarizability
¥(®,0,0) of N, were found using finite-field techniques, applied to the polarizability
calculated with the polarization propagator. The vibrational contributions to the
hyperpolarizability and second hyperpolarizability of linear polymethine dyes (push-pull
polyenes) have been determined and have been used to examine the change in nonlinear
optical properties versus bond-length alternation (BLA).*”” Additionally, polarizability
surfaces for ?CH, and '2CD, have been constructed using 49 distinct geometries.”® The
effect of vibronic coupling in the K-shell x-ray spectra of ethylene has been recently
examined via calculation of normal-mode potential energy derivatives as vibronic
coupling constants.”® Oscillator strength sum rules of H, have been computed at 21

geometries to find their internuclear coordinate dependences.®
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Uses of the Nonlinear Polarization Propagator

The nonlinear polarization propagator has been used in quadratic-response function

'%17 to calculate quadratic-response properties and linear-response properties of

theory
excited states. Quadratic-response functions have been used to calculate quantities that
are dependent upon vibronic coupling such as vibronic coupling constants,
phosphorescence lifetimes and forbidden dipole-transition strengths. The nonlinear
propagator is used to calculate the mixing of singlet and triplet spin states due to spin-
orbit coupling. This spin mixing allows spin-forbidden dipole transitions and
phosphorescence. Spin-forbidden transitions and phosphorescence lifetimes have been
calculated for formaldehyde.*“> The vibrational structure of ground-state excitation
bands has been determined by use of vibronic coupling constants for H,0, NH,, CH,,*
ethylene,* and pyrrole.*’ The effect of vibronic coupling on the two-photon spectra of
benzene* and pyramidine*’ for dipole-forbidden two-photon transitions has been
computed. Spin-orbit effects on the Auger spectrum of water have been examined.*
Potential energy curves of the nt* state of the cyclopropenyl cation C,H," have been

calculated including the effects of vibronic coupling on the transition from the ground

state to the nt* state.*®

Derivation of the Polarization Propagator Derivative

Introduction

The derivation relating the derivative of the polarization propagator to the first order

nonlinear polarization propagator is suggested by the relationship found by Hunt et al.*"'
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between the nuclear-coordinate derivative of the polarizability and the hyperpolarizability
density,
ot o (F;7',0) / ORY = [dF" By, (F;F',0,F",0)Z T, (F",R*). (40)

The polarizability density a,(f;f’,0) can be calculated using the polarization propagator

aas(r.70) == [p(0),[[p) || 2 0) where [p(),[ = (Al 1x), @)
whereas the hyperpolarizability density is calculated with the nonlinear polarization
propagator
By (17, 750%,07) = [p(2), [ [p(F ) [p(r") | 1222 (@ 07). “2)
The matrix elements [p(f')a]: = (A|p(f),|x) may have a dependence on an arbitrary

parameter and, as shown below, the replacement operators that comprise the propagators
may also depend on the same parameter. Therefore, when the derivative of the
polarization propagator is considered, the derivative must contain terms that differ from

the nonlinear polarization propagator. These “extra” terms will be shown to cancel the
terms from the derivatives of the standard matrix elements [p(f')u]: in Appendix D. The

idea is emphasized that the extra terms arise in both the standard matrix elements and the
propagators because the basis functions that comprise the basis set for the calculation are

allowed to vary with respect to the arbitrary parameter 7.
Inad ies of Single-el Wavefuncti

The derivation for the derivative of the polarization propagator is accomplished by

calculating and manipulating the derivative of the ground-state wavefunction, the
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derivative of the reduced resolvent and the derivative of the Hamiltonian.”? Finding the
polarization propagator derivative involves also involves the derivatives of the creation
and annihilation operators. The dependence of the creation and annihilation operators on
an arbitrary parameter, such as nuclear coordinate, can be demdnstrated by examining the
derivative of the ground state wavefunction in the language of second quantization. The
simple case of a one-electron ground state is now considered.

10)=al|@) 43)
The derivative of the ground state is found to be®

49 _ 502
on =GO 710 (44)

The reduced resolvent, G(0), can be expanded and simplified.

d0) a 3.8
— =—{1-pfH-Eo) (1-p)—10)
- 0%
- ~(x-E)"(1- ) o) @)
om
0K
= -R(0)—-10)
on
A new definition of the reduced resolvent is applied to Equation (45)
R(0) = (X-Eo + ho) ' (1- p) (46)
The derivative in the language of second quantization becomes
d 0> ' agc " At
"a?—-zl o 0R(O)aoao|®) (47)
ox ] , 8% . e
where E = (x| —&?l A) are the matrix elements of the Hamiltonian derivative and

a) = a} a, is defined as the product of a creation and an annihilation operator.
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This simple analogy between the ground state derivative in the second quantization
formalism and the ground-state derivative in the standard formalism holds only for one
electron systems. When two or more electrons comprise the ground state, the
commutation relationship between the creation and annihilation operators becomes
important and the simple analogy fails.*® The antisymmetrical nature of the multi-
electron wavefunction is taken into account by using occupation number wavefunctions.
Thus the differences between the derivatives of Hunt et. al.***' and this work lies in the
nature of the polarization propagator which is defined in terms of single-electron basis
states for a many-body system. Since the property is defined with a single-electron basis,
the anti-commutation relationship between the single-electron states must be taken into

account.

Derivative of the Polarization F
The polarizability density, in the language of second quantization, is expressed as™

e (5.70) = ~[p(e) [[pF),[ 122 (0) where [p@) ] = (Alp(e) ). (48)
To take the derivative of the polarizability density with respect to an arbitrary parameter,

we need to consider what elements of the polarizability density may have parameter

dependence. In this treatment, the electronic coordinate is the only parameter that will

not be considered. First the matrix elements [p(f)a]: = (A|p(F),|x) are examined. Both the

(7| and the |x) wavefunctions may have parameter dependence that is easily calculated

in terms of sums-over-states with single-electron states.
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All of the elements of the polarization propagator may have parameter dependence.

The derivative of the polarization propagator can be written as

51-[&:'((0) (0] , Ylov_ /o 02k o)1) 1M .
on ana‘R(ﬁ))ax'lo) (0] R( )ak|0) - (0] - 2¥|0) |

(latR(0) Z10) - (0 R()*'d—"—% ER(-0)a]0)- (0 ZER(-0)atl0) 49

~0la¥ "Rf}q"’) 2210)- 0l R(-0) 210) 02 R(-0)a2 22,

The derivative with respect to any parameter n of the ground-state wavefunction and the

derivative with respect to any parameter 1 of the reduced resolvent can be shown to be*™

A0 _ X
o = R(0) on |0) (50)
aRa(:)) - —R(0) a(gca:‘Eo) R(o) + R(0)R(0) % P+ % R(0)R(w) (51)
where g ={0)(0|.

Upon substitution, the polarization propagator derivative becomes

AL (@) _ 012 R(0) e Rlw) a0} — (0 2%
- = +{0] on R(0)a}R(w)ak o

+ (0] R(m)a(“—'E")R(m) 2100 (0l R(m)R(O)%soa‘ 0

«|0)

—(0lat %n(o)n(m)auw (Ola.(R(OJ

+(0l2*R(o)a¥ R(o)%?l—‘m)uo%k(o)a:: R(-0)a2[0) (52)

O ZER(-0)at10 + 0latR(-0) P vt

-<0|a::R(-m)R(o)9—soa‘|o> —(0la¥ %R(o)k(-m)am

10) +(0la R(- ) a2 R(O)%KIO)

A

0Oa,
an

—(0la¥
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Terms (1, 5), (4, 7), (8, 12) and (11, 14) in Equation (52) are combined using the

definition p, = (0|a|0). As an example, terms 1 and 5 are combined.

(OIER(O)a.(R(w)a J0) - <olaﬁgo%ck(o)k(m)atilo)

= <o|——-R(o) aR(w)ak’|0) - (0/a} |0)(0|—R(0)R(m)ax |0)

on on

afx A A agc A A’ (53)
=(0| ER(O) aR(w)ak|0) - (0| . R(0)(0la}|0)R(w) a|0)
- <o%‘k<o)(a: ~P)R(0)a10)

Completing the combination of terms (1, 5), (4, 7), (8, 12) and (11, 14) yields

«|0)

My (o) (m)
B <|—an R(0)(a? -
a(s’can Eo) p(0)a[0) -

+(0la}R(0)(a® - p} )R(O)EIOM(OIB—“—R(O)( ' P} )R(-0)at|0) (54)

R(- m)ﬁ‘qﬂ“—)n(— ©)a2(0)

)R(w)aﬁ:|o>-<o|3f

+(0latR(0) ———

Oay.
on
- (Olax R(-

-©)a;|0) +(0lay’

¥R(-0)(a} - )R(o)%m

We limit consideration to the set of parameters 1 such that 03(/on can be written as a

sum of one-electron operators dh/dn, so that the Hamiltonian derivatives become

8o =[aho]‘" . s
and
6(3(:0 _EO) [5110 jlxu A A
= X —pl 56
o =~ 1( PY) (56)
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The expression [%]- is a multiplicative term that relates the nonlinear polarization
-

propagator to the quadratic response function of a specific molecular property. After
substitution of Equations (55) and (56) into Equation (54), the polarization propagator

derivative becomes

bl
x {(0]aX R(0) a2 - p})R(w)ak|0) + (0]} R(w)(ak - p}-JR(w)ak|0)

+(0a R(w)ak - pl)R(0)ak:|0) + (0] a¥ R(0)a - pL.)R(—w)a|0) 57)
+(0]ak R(-w){a¥" - p}-)R(-w)ak|0) +(0]a¥ R(-w)(ak - 0} JR(0)ak:|O)}

2a 0)a2]0) - (02 R(0) 22
(0122 R(@)at 0)- (0l R(a) 2= o)

aal
=10).
0!1')

- (012 R(-0)at|0)- (0]a2 R(0)

The first six terms of the polarization propagator derivative have a structure analogous to
the hyperpolarizability*

Bag, (.7, 0,7",0) = (0] Pa (F)G(w) P} (F")G(e) P4 ()| 0)
+(0] Py (7')G(-0) P} (7")G(~w) P (7} 0)
+(0| P (F)G(w) PR (')G(0) P, ()| 0) (58)
+ (0[P, (F")G(0) P§ (+')G(-) Pa (7)|0)
+ (0[P, (£")G(0) P3 (F)G(w) s (')} 0)
+(0|Ps (F')G(~w) P2 (F)G(0) P, ()| 0).

In fact, the hyperpolarizability can be expressed in terms of the nonlinear polarization

propagator.

By (., 750%,07) = [p(0), L [p(), | [ ), ] 222 (0,0). (59)
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However, Equation (57) contains more than just the nonlinear polarization propagator.
The terms which depend on the derivatives of the replacement operator must also be

considered.
Derivati f the Rep] q

To consider the derivative of the replacement operator a} = a] a, , the operator is
transformed into the occupation number basis set. First, two different complete sum-
over-single-electron-states are inserted, one preceding the operator and one following it.”

at=alac= X I |nin2'nanct)

{nc} {n"s}

x (n’m’z'"n';“'n’,"'|a{ax|mnz"'m“'n"“)(nnnz'"m“'n.:'“| (60)

) {EI:J{nz’:k}(_l)Sl(-l)sxso'“zSl.ng'nlln'z"'n'x"'n'x"'>

X (n'ln'z...n'l..-n"..-lnlnz...nl + l...l1x _1...><n| nz-..nl...nxo..l.
Therefore,

at=alac= £ T (-1)*(-1)%80q, 8in Inin2 00 )

{ni} {n'e} (61)
X 8nrmy On'my " O -t '"Sn'x-m.*"' (N2 macenee|.
Summation over the primed occupation numbers yields
b= T (-)% %800 Sin lmnzm + 1one = 1 Nnm e maemee . (62)

{o}
The right side of Equation (62) is necessarily equal to the left side; therefore, the right

side is an occupation number representation of the replacement operator.
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To calculate the derivative of the replacement operator, the occupation number
representation of the replacement operator in Equation (62) is used. Thus the derivative

of the replacement operator is the sum of derivatives of the ket-bra products.

Amina-ma+1one = 1)
(minzome-nee|

dar $1-S on 63
— =3 -1 A xs n 5 n . ( )
on {n,‘,( )80, 81, oy it

) on

Imnz'“m+1-"n

Equation (63) necessitates the calculation of the derivative of the multi-electron states.

Derivative of the Multi-el S

The derivative of the multi-electron state is different from that of the single-electron
wavefunction, since antisymmetry must be preserved in the multi-electron derivative.
For clarity, the derivative of the multi-electron state will be found by using the Slater
determinant formalism rather than the occupation number formalism. Comparing

Equations (7) and (18) yields the identity

wilr) wi) - o W, (rw)

1 Wz(rl) \Vz(rz) """ vV, (rN)
|111213"'1N0N#ION+Z"'>=\—/'——I‘Q—! . . (64)

WN.(r.) \VN.(rz) """ Wn .(rN)
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The multi-electron wavefunction is a sum of products of single-electron wavefunctions.

Therefore, the derivative of the multi-electron wavefunction is a sum of sums of

derivatives of single-electron wavefunctions. (The first sum is represented by the

determinant notation.)

W) owi(m)
on on
dlnlzl;"'lnoml()mz"')_ 1 Wz(rl) Wz(rz)
on i R
WN.(n) WN'(rz)
() wil) - - W,(ry)
a‘Vz(rl) a‘l’z(rl) a‘":(TN)
L] o o on |, ..
m : : ", :
w(m) (1'2) """ Yn (TN)
v, (rl) v, (rl) """ v, (TN)
Vo) o) - - W (rx)
1 : : :
TN : O
a‘VN(Tl) aWN("Z) aWN(rN)‘
on on on

oy, (rN)
on
v, (TN)

Wn .(TN)

(65)

The derivatives of the single electron wavefunctions in Equation (65) can be expressed as

a sum-over-states.

6‘—1(>= Cim| M)

arl m=

63

(66)



The prime on the summation of Equation (66) indicates exclusion of the |k) function.

Substitution of Equation (66) into Equation (65) yields

d]l 1 13"'1N0N410N¢2"'>

Wm(l'l) W..,(I'z)
\V;.(l'n) \Vz.(rz)

aﬂ i ‘/N—' 'ﬂz’ C"n . .
Wy (rl) Wy (rz) ......

v, (rn) v, (I'z) ...... v, (rN)
| \V...(rn) v, (l'z) ...... \V..(I'N)

+ N m§2 Com| : ) :
wale) Wil - walen)
wn) wilm) - o W, (rv)
, v, .(rn) v, .(l'z) ..... v, (rN)

+ ﬁ m{‘,N Cnm| : :
W.,.(ru) v, (l’z) ...... Wm(rN)

Note that if there is a determinant where the ]m) functions are included in the set of

single electron functions used to construct the multi-electron configuration, i. e.

. Wn .(TN)

Vo (I'N)
Wzng)

(67)

|m) €{|p): p=1,2---N} , then that determinant is zero. In addition, no assumptions have

been placed upon the determinants; they may be ground or excited configurations.

Before converting Equation (67) back into an occupation number representation, the | m)

functions in the determinant must be put into standard order. The ordering is done by

exchanging the |m) wavefunction row with as other rows as necessary. Each exchange

of rows introduces a sign change, giving an overall factor that can be symbolized as

(-=1)5="Sx. The quantity S-S, indicates the number of row exchanges. Equation (67) is



written as a double sum, the k sum indicating the sum of determinants and the m sum

indicating the sum of single electron states.

wiln) wi(r) - - v, (rv)
dlilz1s-- l;:ml On.27"7) _ \/_lm %ng:k (—I)Sm'sk Cin[Wm(r) Wal(ra) Yo (rn)[- (68)
Yn (rl) Yn (l‘z) """ Yn (rN)

In the occupation number formalism, Equation (68) becomes

A1zl 1nOnet Onez )
o

5 (_I)Sm‘sk 50’% 8l,nk lem Nong =1 nm+ ]...nN) (69)

m=k

=X
Y

Continuation of the Reol ) Degivai

Equation (69) is the derivative of the multi-electron wavefunction. Thus Equation
(69) is substituted into Equation (63) to continue calculating the derivative of the

replacement operator.

dal - -
o ™ E AU S B0n, 81 Bon
“* (70)

x{ Chlllnlnz...nk _l"'ﬂl +lo..n‘ -l...nm +l.“nN)(nlnzn.nlu.nK'..l}

+CL,.|nmz“'m +1--ny —1"'>(nmz"'m —lemonenm + l"'nNI
Now the right hand side of Equation (70) is cast back into replacement operator

formalism.

aal

=% L Cmarar+3 L Cimarak- (71)
&n k m:

=k m mzk

Note that in the first term of Equation (71), the effect of the derivative is to annihilate an

electron in the k state and create an electron in the m state; whereas, in the second term,
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the effect of the derivative is to annihilate an electron in the m state and create an electron

in the k state. Since k and m are only labels, they can be interchanged in the second term.

A
2 Z I Camal'ac+L I Cuaral- (72)

The replacement operators are expanded as creation/annihilation operator products and

the anticommutation relationships of Equation (12) are applied

aa:--z):c maralax+ I T Cueajacan

n —k = m 3m Ak ) A« L mk &) ax am Ak
=z { Cim[ahacBu — aha] acac] + Cru[a] a1 8en — 2] ahac i (73)
=Lz Cm[a..aKSu amalakax]+Cu[a;ax8m amalaka‘]}

z
Iz {Cb..a..,a.‘ 8ax + Couc 2] 81 Sum — (Cim + Ch) aha] 2 ax}
Now the quantity Cy,+ Cpx must be examined. The C,, coefficients indicate the amount
that the m state mixes into the k state when a perturbation is applied. Thus the perturbed
k state |k’) can be written as
[k’) = |k)+ -+ Cia| m)+-+-. (74)

Accordingly, the perturbed m state (m’| can be written as

(m’| = (m]+ -+ Cru (k|++-. (75)
The perturbed states can be constructed to be still orthogonal when perturbed if certain
conditions are met.

(m"]«) = (mlk>++ckm(m|m)++ Cox <k|k>+...= 0

. (76)
= 0+"'+Ckm'l+"'+ka'1+"’= 0

The conditions on the perturbed wavefunctions that insure orthonormality are that for all

k#m, Cun+ Crx = 0. Thus continuing from Equation (73), the derivative of the

66



replacement operator is found by substituting the orthonormality condition and

performing a summation over a single index.

Dax .
— = ¥ Cwmahac+ I Cuala
3r| mzl k=x

= Z Cimac + I Cuai-
mzi k=x

(77)

Continuation of the Polarization F Degivati

To finish calculating the derivative of the polarization propagator, we re-examine

Equation (57), specifically the last four terms.

ol (@) - [@ -II“"”(O) 0)

an o f
- (012 R(@)az10)- (0la2R(0) 210 78
- (015 R(-0)at|0) - (0lat R(-a) 2E]o).

The derivative of the replacement operator is substituted to yield

I (@) [aho]" "
Tl -1 20| mit(on
an on | Tex(@0)

- £ Cunl012R(®)a]0) - £ Ca(0lat R(0)a]0)

- .,Ex'crm (0'3.’: R((O)aln'l()) - kE' Cux (Olaﬁ R((D) at| 0)
- X Cra(0la?R(-0)a2|0) - £ Cia(0la} R(-0)at|0)
~ £ Cin(0la}R(-®)a?|0) - T Cu(0|a}R(-w)at|0).

(79)

The terms are rearranged and the definition of the polarization propagator, Equation (36)

is applied to yield the final result.
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+ Z CalLi (0) + T Culik (o)
Discussion

The result in Equation (80) demonstrates a new relationship between response
functions. The equation of motion for the linear-response function, Equation (2), shows a
relationship between linear and quadratic-response functions; however, the relationship is
not a derivative relationship. (Parkinson®® has used this relationship to calculate the
dipole polarizability of H,O with the quadratic-response function. Since the
polarizability is more easily calculated using the linear-response function, using the
quadratic-response function is not advantageous.)

This work demonstrates that the calculation of molecular properties from energy
derivatives with respect to an electric or magnetic field such as hyperpolarizabilities or
hypermagnetizabilities can be calculated without finite-field techniques. Only response

functions are used. Since the relationship in Equation (80) is general, the equation may
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suggest an efficient method for the calculation of the parameter dependence of
electromagnetic properties allowing for frequency dependence.

The chief advantage of Equation (80) is in the calculation of derivatives of linear-
response properties via the nonlinear polarization propagator. The calculation of energy
derivatives with respect to nuclear-coordinate molecular gradients and energy second
derivatives with respect to nuclear-coordinate molecular Hessians is essential in the
calculation of molecular structure.”’” The derivatives are also important in the calculation
of vibrational energies via harmonic and anharmonic force constants. Much effort has
been used to find efficient methods to calculate these quantities.*®*

Though the calculation of the derivative of the polarization propagator via calculation
of the second-quantized one-electron replacement operator appears to be novel, the
calculation of derivatives of individual creation and annihilation operators is not. The
derivative of the creation operator appears first in the paper by Bak et al.* where the
authors calculated first-order nonadiabatic coupling matrix elements necessary for
accurate accountings of phenomena such as A-doubling®' and spin-orbit coupling. The
theory was also applied in the calculation of atomic polar and axial tensors of Stephens®
in work on the rotational strengths necessary for describing vibrational circular
dichroism.*® The result of this chapter differs from the work of Bak et. al. in that the
derivative of the number-preserving replacement operator has been found rather than the
derivative of the number-changing creation and annihilation operators and that the result

of this chapter is expressed in terms of polarization propagators rather than molecular

gradients.
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1 50,51

The result in Equation (80) was suggested by the relationship found by Hunt et a
relating the derivative of polarizability to the hyperpolarizability density. In published
work® and Chapter 2 of this thesis, a similar relationship has been found between the
derivative of the hyperpolarizability and the second hyperpolaﬁzability density. This
relationship suggests a relationship between the derivative of the quadratic polarization
propagator and the cubic polarization propagator. Such a relationship would be useful as
cubic polarization propagators constructed for the random phase approximation are
already being used to find various cubic electric response tensors such as those
responsible for third harmonic generation, DC-electric field induced sec;ond harmonic
generation, degenerate four-wave mixing, etc.® The cubic propagators® and mixed
analytical-numerical techniques® have also been used in the calculation of
hypermagnetizabilities which are responsible for magnetic field induced birefringence or
the Cotton-Mouton effect, a magnetic analogue of the Kerr Effect. In thei_r review, Rizzo,
Rizzo and Bishop®” mention that the calculation of the vibrational corrections to nonlinear
properties, such as the hypermagnetizability, remains a nontrivial problem. The
extension of the results of this chapter to the next order could aid in the calculation of

such corrections.

70



REFERENCES
! Peter W. Atkins, Molecular Quantum Mechanics, 2nd. ed. (Oxford University Press,

Oxford, 1983).

2 Roy McWeeny, Methods of Molecular Quantum Mechanics, 2nd ed. (Academic Press,
New York, 1981).

* Poul Jergensen and Jack Simons, Second Quantization-Based Methods in Quantum
Chemistry (Academic Press, New York, 1981).

* Claude Cohen-Tannoudji, Bernard Diu and Franck Lalog&, Quantum Mechanics, Vol. 1
(John Wiley and Sons, New York, 1977).

5 Alexander L. Fetter and John Dirk Walecka, Quantum Theory of Many-Particle
Systems (McGraw-Hill Publishing Co, New York, 1971).

® Richard D. Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem, 2nd.
ed. (Dover Publications, Inc., New York, 1992).

’ Michio Kaku, Quantum Field Theory (Oxford University Press, Oxford, 1993).

¥ Michael E. Peskin and Daniel V. Schroeder, An Introduction to Quantum Field Theory
(Addison-Wesley Publishing Co., Reading, Massachusetts, 1995).

® George C. Schatz and Mark A. Ratner, Quantum Mechanics in Chemistry (Prentice-
Hall, Englewood Cliffs, New Jersey, 1993).

'D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) - Sov. Phys. Usp. (Eng. Trans.) 3, 320
(1960).

" Jan Linderberg and Yngve Ohm, Propagators in Quantum Chemistry (Academic Press,

New York, 1973).

71



12J. Oddershede, Adv. Quant. Chem. 11, 275 (1978).

P L. D. Landau and E. M. Lifshitz, Statistical Physics: Part 1, 3rd ed. (Pergamon Press,
Oxford, 1980).

4 George Arfken, Mathematical Methods for Physicists, 3rd Ed. (Academic Press, San

Diego, 1985) pg. 490.

' The following replacement may be made -fiw,, > I-E,

¢ J. Olsen and P. Jergensen, J. Chem. Phys. 82, 3235 (1985).

7H. Hettema, H. J. A. Jensen, P. Jorgensen and J. Olsen, J. Chem. Phys. 97, 1174
(1992).

'® R. Moszynski, P. E. S. Wormer, B. Jeziorski and A. van der Avoird, J. Chem. Phys.
103, 8058 (1995).

' Douglas R. Hartree, Numerical Analysis, 2nd. ed. (Oxford University Press, Oxford,
1958).

2 P, Lazzeretti, R. Zanasi and W. T. Raynes, Molec. Phys. 66, 831 (1989).

2 J. Geersten, J. Oddershede, W. T. Raynes and T. L. Marvin, Molec. Phys. 82, 29
(1994).

2 S. Kirpekar, T. Enevoldsen, J. Oddershede and W. T. Raynes, Molec. Phys. 91, 897
(1997).

B A. Barszczewicz, T. Helgaker, M. Jaszunski, P. Jergensen, and K. Ruud, J. Mag. Res.
A 114,212 (1995).

2 ]. San Fabian and J. Guilleme, Chem. Phys. 206, 325 (1996).

72



¥ C. G. Giribet, M. C. R. DeAzua, R. H. Contreras, R. L. Debonczak, G. A. Aucar and
S. Gomez, J. Mol. Struct. 300, 467 (1993).

% C. Vizioli, M. C. R. DeAzua, C. G. Giribet, R. H. Contreras, L. Turi, J. J. Dannenberg,
I. D. Rae, J. A. Weigold, M. Malagoli, R. Zanasi and P. Lazzeretti, J. Phys. Chem.
98, 8858 (1994).

7 P, Lazzeretti, R. Zanasi, A. J. Sadlej, and W. T. Raynes, Molec. Phys. 62, 605 (1987).

S P. A. Sauer, Chem. Phys. Lett. 260, 271 (1996).

# 8. P. A. Sauer, J. Phys. Chem. 98, 8617 (1994).

*S. P. A. Sauer and I. Paidarova, Chem. Phys. 201, 405 (1995).

31'S. P. A. Sauer, V. 8pirko, I. Paidarové and J. Oddershede, Chem. Phys. 184, 1 (1994).

2 W. A. Parkinson, S. P. A. Sauer, J. Oddershede and D. M. Bishop, J. Chem. Phys. 98,
487 (1993).

 J. Oddershede and E. N. Svendsen, Chem. Phys. 64, 359 (1982).

** M. Jaszunski, Int. J. Quant. Chem. 51, 307 (1994).

3 M. Jaszunski, P. Jorgensen and H. J. A. Jensen, Chem. Phys. Lett. 191, 293 (1992).

% H. D. Cohen and C. C. J. Roothaan, J. Chem. Phys. 43, S34 (1965); A. D.
Buckingham, Adv. Chem. Phys. 12, 107 (1967); D. M. Bishop and G. Maroulis, J.
Chem. Phys. 82, 2380 (1985); M. Jaszunski, Chem. Phys. Lett. 140, 130 (1987).

7 M. Cho, J. Phys. Chem. 102, 703 (1998).

*® W. T. Raynes, P. Lazzeretti and R. Zanasi, Molec. Phys. 64, 1061 (1988).

¥ H. K6ppel, F. X. Gadea, G. Klatt, J. Schirmer and L. S. Cederbaum, J. Chem. Phys.

106, 4415 (1997).

73



“J. R. Sabin, I. Paidarov4, and J. Oddershede, Theor. Chim. Acta 89, 375 (1994).

“' 0. Vahtras, H. Agren, P. Jorgensen, J. Jorgen, A. Jensen, T. Helgaker, and J. Olsen, J.
Chem. Phys. 97, 9178 (1992).

“2 B. F. Minaev, S. Knuts, H. Agren and O. Vahtras, Chem. Phys. 175, 245 (1993).

4 J. Schirmer, A. B. Trofimov, K. J. Randall, I. Feldhaus, A. M. Bradshaw, Y. Ma, C. T.
Chen and F. Sette, Phys. Rev. A 47, 1136 (1993).

“F. X. Gadea, H. Képpel, J. Schirmer, L. S. Cederbaum, K. J. Randall, A. M. Bradshaw,
Y. Ma, F. Sette and C. T. Chen, Phys. Rev. Lett. 66, 883 (1991).

“ A. B. Trofimov and J. Schirmer, Chem. Phys. 214, 153 (1997).

Y. Luo, H. Agren, S. Knuts, B. F. Minaev and P. Jorgensen, Chem. Phys. Lett. 209,
513 (1993).

“7Y. Luo, H. Agren, S. Knuts and P. Jorgensen, Chem. Phys. Lett. 213, 356 (1993).

“ H. Agren, and O. Vahtras, J. Phys. B - Atom. Mol. and Opt. Phys. 26, 913 (1993).

“ H. D. Schulte and L. S. Cederbaum, J. Chem. Phys. 103, 698 (1995).

K. L. C. Hunt, J. Chem. Phys. 90, 4909 (1989).

S'K. L. C. Hunt, Y. Q. Liang, R. Nimalakirthi, and R. A. Harris, J. Chem. Phys. 91, 5251
(1989).

52 Appendix A.

5* Appendix C.

$X.Liand K. L. C. Hunt, J. Chem. Phys. 105, 4076 (1996).

*B. J. Orr and J. F. Ward, Molec. Phys. 33, 513 (1971).

% William A. Parkinson, Int. J. Quant. Chem. Symp. 26, 487 (1992).

74



57 Attila Szabo and Neil S. Ostlund, Modern Quantum Chemistry (McGraw-Hill, New
York, 1992).

%8 Geometrical Derivatives of Energy Surfaces and Molecular Properties P. Jorgensen
and J. Simons, eds. NATO ASI Series C: Vol. 166 (D. Reidel Pub. Co.,
Dordrecht, 1985).

 H. B. Schlegel, Adv. Chem. Phys. 67, 249 (1987).

%K. L.Bak, P. Jorgensen, H. J. A. Jensen, J. Olsen, and T. Helgaker, J. Chem. Phys. 97,
7573 (1992).

¢! Jack D. Graybeal, Molecular Spectroscopy, 1st Rev. ed. (McGraw-Hill, New York,
1988).

S2P. J. Stephens and M. A. Lowe, Annu. Rev. Phys. Chem. 36, 213 (1985).

% K. L. Bak, P. Jorgensen, H. J. A. Jensen, J. Olsen, and T. Helgaker, J. Chem. Phys. 98,
8873 (1993).

*E. L. Tisko, X. Li and K. L. C. Hunt, J. Chem. Phys. 103, 6873 (1995).

% P. Norman, D. Jonsson, O. Vahtras and H. Agren, Chem. Phys. 203, 23 (1996).

% S. Coriani, A. Rizzo, K. Ruud and T. Helgaker, Chem. Phys. 216, 53 (1997).

7 C. Rizzo, A. Rizzo and D. M. Bishop, Int. Rev. Phys. Chem. 16, 81 (1997).

75



CHAPTER 4: FIRST ORDER APPROXIMATION TO THE

ELECTRONIC MAGNETIC MOMENT DERIVATIVE

Introduction

Intramolecular response to internal electromagnetic fields has been described by the
same electromagnetic response tensors that describe intramolecular response to external
electromagnetic fields. The first example of this equivalence was derived by Hunt' who
showed that the derivative of the electronic dipole moment with respect to nuclear
coordinate is connected to the nonlocal polarizability density.

dug / OR} = [dFdF’ o, (7,00 2% T, (F',RY). 1)
The physical interpretation of this connection can be discerned by examining the balance
of electric fields in the molecule at its equilibrium geometry. The electric field at the
nucleus in a molecule at equilibrium is zero since the electric field from the other positive
nuclei in the molecule must balance the electric field from the negative electronic charge
distribution. When a nucleus is perturbed away from equilibrium, the Coulomb field
changes throughout the molecule. The electronic charge distribution responds to this
change in the electric field via the nonlocal polarizability density. This response is
weighted by a distance relationship between the position of the nucleus and the point in
the electronic charge distribution where the change in the nuclear Coulomb field is

computed. This distance relationship, known as the dipole propagator, is defined as
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The nonlocal polarizability density that characterizes the intramolecular response is the

same tensor used to describe the electronic molecular response to an external electric

field. Other such relationships have been found and will be discussed, subsequently.

Nonlocal S ibility Densiti

The distinction between the polarizability and nonlocal polarizability density should
be clarified. The nonlocal polarizability density yields the response of the molecule at a
single point due to an applied field at another point. When an electric field interacts with
a point of charge distribution, the charge distribution at the field point becomes polarized.
This polarization field in turn polarizes the charge distribution at the response point. To
find the total response at a single point in the molecule, the effect of the field at all field
points in the molecules must be summed. To calculate the total collective response, i. €.
the total polarizability, from all points, all the response points must be summed. Thus,
the relationship between the polarizability and nonlocal polarizability density is that the
polarizability is equal to the nonlocal polarizability density integrated over all field and
response points.

Qop (0) = [dT AT’ aop (T, T 0) . (3)
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Intramolecular Electric Response
The intramolecular responses of the polarizability’ and hyperpolarizability® due to an

applied electric field are related to external response tensors.
dog, (@) / 0R; = [dFdF'dE” B4 (T, 0,5",00Z% Ty, (F,R¥) . @)

OB opy (- 0003 00',0") / OR
— &)

= I df.dl_.ldf"dfl",y m (f;f’,(‘) I’ f.'l’(o "’ f”l,O)ZK 'I‘88 (I_.l", RK ).
Equation (4) shows that the electronic polarizability responds to an internal electric field
via the nonlocal hyperpolarizability density, whereas Equation (5) demonstrates that the

hyperpolarizability responds via the second hyperpolarizability density.
Intramolecular Magnetic Response

Derivatives of the electronic magnetic moment with respect to nuclear linear

momentum have been related to nonlocal charge-current susceptibility densities.*

1

o, _ Idrdr Im(0| p(r")G()G(- @) [Fx (D], |0} V§ = R 7] (6)

7

In Equation (6), G(w) represents the reduced resolvent from standard perturbation theory.
G(o) = (1- p)3 - Eo- ko)~ (1~ p), where g =|0)0)], ™

Z¥ is the charge and M* is the mass on nucleus K while V{ is the gradient operator with

respect to the nuclear coordinate R¥. p:,‘ represents the Bth Cartesian coordinate of the

linear momentum of nucleus K while m;, is the ath Cartesian coordinate of the electronic

magnetic moment. Equation (6) demonstrates that the change of the electronic magnetic
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moment due to an internal electric field is related to a charge-current susceptibility
density, ¥ = (O|p(r')G(m)G(—m)[fx](f)L |0). This susceptibility tensor is the nonlocal
density analog of the rotational strength, the quantity calculated to find the intensities of
the transitions associated with vibrational circular dichroism, VCD.

VCD**’ is the phenomenon when light of one circular polarization has a different
degree of vibrational absorption than light of the other circular polarization. The effect
occurs only in chiral molecules or molecules with chiral crystal symmetry. Heuristically,
VCD can be understood by considering the electric field of the nuclei during a vibration.
As the nuclei move, a time-dependent electric field is produced. The electric field
produces a time-dependent deformation of the charge density that induces a magnetic
moment within the molecule. The intensity of the absorption is determined by a quantity
called the rotational strength that couples the electronic electric-dipole transition matrix

element to electronic magnetic-dipole transition matrix element.
The charge-current susceptibility 3" used in the theory of VCD relates a change in

the electronic magnetic moment at one point in a molecule to the change in the
polarization due to an applied electric field at another point in the molecule. Thus, the
derivative of the electronic magnetic moment with respect to nuclear linear momentum
can be calculated from a change in the current density due to electric field perturbations.
The work in this chapter also calculates the derivative of the electronic magnetic moment
with respect to nuclear linear momentum. However, the result differs because the

susceptibility density used to calculate the response is different. The response of the
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magnetic moment due to an applied magnetic field is considered, rather than an applied
electric field.

In this chapter, the magnetic moment derivative with respect to nuclear linear
momentum is related to the paramagnetic nonlocal chemical Shift density. The nonlocal
chemical shift density describes how a magnetic field at one point in the molecule affects
a magnetic moment at another point in the molecule. Magnetic moments are created in
the molecule when magnetic fields induce the charge density to circulate. This induction
of circulation is termed the magnetization. In macroscopic terms, the magnetization is
defined as an average of magnetic dipole moments just as the polarization of a molecule
is defined as an average of electric dipole moments.® One can understand a magnetic
dipole as a loop of current in the same way that an electric dipole is pictured as two

oppositely charged particles separated at a distance.

Molecular Electromagnetism

Background

1011 provide an introduction to molecular

Many texts’ and monographs
electromagnetism, i. e., the interaction of molecules with electric and magnetic fields.
Molecules interact with magnetic fields differently than they do with electric fields.
Viewed ﬁgurati;'ely, the electronic charge distribution of a molecule ‘stretches’ when
perturbed by an electric field. When a magnetic field is applied to a molecule, the

electronic charge distribution becomes ‘twisted’. The twisting of the electronic

distribution produces two different effects. Diamagnetism is produced when the twisting
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causes circulation of the electrons in currents. These induced currents circulate as to
decrease the total magnetic field. Paramagnetism may be produced when the applied
magnetic field torques the electrons that cause their magnetic moments to align with the
magnetic field. The alignment of the magnetic moments increases the total magnetic
field. In molecules without unpaired electrons or net orbital angular momentum, the
response to an applied magnetic field is diamagnetic. However, the description of the
response is inherently quantum mechanical and has an unequivocal dependence upon an
arbitrary function named the gauge whose value changes the quantum mechanical
description of the magnetic response but not its actual value. The next section discusses
the basic theory of the gauge function and its relationship to the vector potential and

magnetic fields.
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