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ABSTRACT

DERIVATIVES OF MOLECULAR ELECTROMAGNETIC

PROPERTIES USING NONLOCAL SUSCEPTIBILITY DENSITIES

by

Edmund L. Tisko

This thesis presents three analytic derivative relationships. The underlying concept of

these three relationships is connecting the change of a molecular property to other well-

defined molecular properties. The foundation of this work lies in nonlocal polarizability

density theory. The nonlocal polarizability density characterizes the polarization at one

point in a molecule due to its reaction with an electric field at another point in the

molecule.

In the first part, the derivative of the electronic hyperpolarizability with respect to a

Cartesian nuclear coordinate is related to the nonlocal second hyperpolarizability density,

the nuclear charge and the dipole propagator. The derivation uses the derivatives of the

wavefunctions and operators that comprise the six-term hyperpolarizability. These

derivatives, which are also derived, are substituted into the hyperpolarizability to yield a

sixty-term expression. The initial result is manipulated algebraically in a nontrivial way

to yield the equality. A brief review ofhyper-Raman scattering theory is given. Recent

applications ofhyper-Raman scattering are considered.

In the second part, a new expression for the derivative of the polarization propagator

with respect to an arbitrary coordinate is derived in terms of the quadratic polarization



propagator and a sum ofpolarization propagators. The derivation involves calculating

the derivative of a creation and annihilation operator pair with respect to an arbitrary

parameter. Then the propagator derivative is calculated via the derivatives ofmany-

electron wavefunctions. Past work calculating the derivatives ofmolecular properties

using polarization propagator techniques is briefly reviewed.

The third part concerns finding an expression for the derivative of the electronic

magnetic moment with respect to nuclear momentum and its relationship to a nonlocal

magnetizability density. The magnetizability density has a structure similar to the

chemical shift. The relationship is found by considering the magnetic field produced by a

moving nucleus as a perturbation on the electronic structure. The ground state

wavefunctions are corrected to first order in perturbation theory using the nuclear

magnetic field as the perturbation. The corrected wavefunctions are used to calculate the

expectation value ofthe magnetic moment. When the derivative of this expectation value

is taken with respect to nuclear momentum, its relationship with the nonlocal chemical

shift density is uncovered. The result is correct when adiabatic wavefunctions that go

beyond the Bom-Oppenheimer approximation are used. The physical content of the

equation is interpreted as a description of intramolecular magnetic response.

Other possible paths to a complete susceptibility theory are considered. One path

involves substitution of4-currents into the definition of the nonlocal polarizability

density. Other paths arise from an initial consideration of the relativistic Dirac equation

and subsequent analysis using the Gordon decomposition and the Foldy-Wouthuysen

transformation.



The heavens declare the glory of God;

The sky proclaims its builder’s crafi.

One day to the next conveys that message;

One night to the next imparts that knowledge.

There is no word or sound,

No voice is heard;

Yet their report goes forth through all the earth,

Their message, to the ends of the earth.

The people who walked in darkness have seen a great light;

Upon those who dwelt in the land of gloom a light has shone.

You have brought them abundant joy and great rejoicing,

As they rejoice before you as at the harvest

For the yoke that burdened them, the pole on their shoulder,

And the rod of their taskrnaster you have smashed.

For a child is born to us, a son is given us;

Upon his shoulder dominion rests.

iv
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CHAPTER 1: INTRODUCTION

The Derivatives of Molecular Properties and Nonlocal Susceptibility Densities

This thesis is comprised of three parts. The underlying concept of these three parts

is relating the change of a molecular property to other well defined molecular

properties. In the first part, the derivative of the electronic hyperpolarizability with

respect to a Cartesian nuclear coordinate is related to the nonlocal second

hyperpolarizability density, the nuclear charge and the dipole propagator. In the second

part, a new expression for the derivative of the polarization propagator with respect to

an arbitrary coordinate is derived in terms ofthe quadratic polarization propagator and a

sum ofpolarization propagators. The third part, contained in chapters four and five,

concerns finding an expression for the derivative of the electronic magnetic moment

with respect to nuclear momentum and its relationship to a nonlocal magnetizability

density.

The foundation of this work lies in nonlocal polarizability density theory. The

nonlocal polarizability density characterizes the polarization at one point in a molecule

due to its reaction with an electric field at another point in the molecule. The densities

may be described as the distribution of a molecule’s polarizable matter. Nonlocal

polarizability densities have been used to describe optical rotation,‘ dielectric properties

of condensed matter,2 and light scattering in dense fluids.3 Hunt has further exploited

the properties ofnonlocal polarizability theory in the theory of intermolecular forces,”

intermolecular electronic forces on nuclei,”8 nonadditive three-body intermolecular



forces,9 zero temperature homogeneous electron gases,lo molecular softness,“ and

vibrational force constants and anharmonicities.12 Nonlocal susceptibilities densities

have also been used in the construction of a theory of vibrational circular dichroism.13

Closer to the purposes of this work, nonlocal susceptibility densities. have been used in

expressions for the derivatives of molecular properties.“"““5

Hyperpolarizability Derivative

The derivation ofthe nuclear coordinate derivative of the hyperpolarizability is

found in Chapter 2.“5

6803, (r,r',r";—rl).,;ool ,(oz) / 6R? = Idr"'ym(r,r’,r",r'";—co.,;(o1,m2,O)ZKT55 (r"’,RK) .(

1)

The derivation starts with the Orr and Ward’s expression for the hyper-polarizability.l7

Then derivatives of the wavefunctions and operators that comprise the six-term ‘

hyperpolarizability are substituted into one term of the hyperpolarizability to yield a

ten- term expression. The derivatives used are derived in detail in Appendix A. The

initial result is manipulated algebraically in a nontrivial way to yield the equality in

Equation (1). The form of the second hyperpolarizability density in Equation (1) was

adapted from the expression for the second hyperpolarizability in Orr and Ward.17 The

complete derivation involves a sixty-terrn expression which has been included in

Appendix B.

The nuclear-coordinate derivative of the hyperpolarizability yields intensity

information for nonresonant vibrational hyper-Raman scattering.l8 Hyper-Raman



scattering is the nonlinear analog ofRaman scattering. In a hyper-Raman scattering

event, two quanta are absorbed in taking the scatterer from its initial state to a virtual

electronic state. Then, as in Raman scattering, one quantum is emitted as the scatterer

relaxes into an excited or deexcited vibrational state. A briefreview ofhyper-Raman

scattering theory is given. Recent applications ofhyper-Raman scattering are also

considered.

Polarization Propagator Derivative

Chapter 3 contains the derivation of the derivative of the polarization

propagator‘m'21 that was found to be related to the quadratic polarization propagator”22

and a sum ofpolarization propagators.

1,1' ""

———a““'(“’) = [Eh—0] Interim»)
6n an 1."

+ EACmI-Iafi'(€0)+ ZACx'mI-IQE‘IUD) ' (2)

+ k2 , ctr. Héztiw) + .2 CirPM (0))-

The relationship between the polarization propagator derivative and the quadratic

polarization propagator was prompted by a relationship found by Hunt et a1." between

the nuclear coordinate derivative of the electronic molecular polarizability and the

electronic molecular hyperpolarizability density. A general relationship between

derivatives of linear response properties and quadratic response properties was

suggested by this specific relationship between polarizabilities.



The polarization propagator is employed in the calculation of linear response

properties.21 Polarization propagators can be constructed in a conventional fashion as a

sum-over-states or in a second quantized fashion using a sum over creation and

annihilation operators and the techniques of “superoperator” algebra.23 In the derivation

ofthe derivative ofthe polarization propagator, the second quantized version is used.

The advantage of second quantization comes from how the many-electron wavefunction

is managed. The antisymmetrical nature of the many-electron wavefunction follows

from the change of the wavefunction’s sign when two electrons are interchanged. In

second quantization, the antisymmetry ofthe wavefimction is ensured by the use of

anticommutation relations between creation and annihilation operators. The

relationships between the anticommutation relations and Slater determinants are

discussed in this chapter.

The derivation involves techniques found in Appendices A and C. However, the

novel portion of the derivation involves calculating the derivative of a creation and

annihilation operator pair with respect to an arbitrary parameter. The derivative is

calculated via the derivatives ofmany-electron wavefunctions. Throughout the

derivation, the second quantization formalism is used; however, portions of the

derivations are done in parallel with the Slater determinant formalism for pedagogical

reasons.

The advantage of Equation (2) is proposed to be in the calculation ofderivatives of

molecular properties such as molecular gradients and Hessians.24 The derivatives of

many other molecular properties have been computed using analytical and numerical

techniques. Past work calculating the derivatives of molecular properties using

4



polarization propagator techniques is briefly reviewed in Chapter 3. Different possible

applications ofEquation (2) are discussed as well.

Magnetic Moment Derivative

In chapter 4, the derivative ofthe electronic magnetic moment with respect to

nuclear momentum is found to be related to the molecular high-frequency

(“paramagnetic”) chemical shift density from the theory ofnuclear magnetic

resonance.”26

5E0. (f') '4 Z6 - -r __ap:_=—#ijg$(r,r )VB dar. (3)

The relationship is found by considering the magnetic field produced by a moving

nucleus as a perturbation on the electronic structure. The ground state wavefunctions

are corrected to first order in perturbation theory using the nuclear magnetic field as the

perturbation. The corrected wavefunctions are used to calculate the expectation value

ofthe magnetic moment. When the derivative of this expectation value is taken with

respect to nuclear momentum, its relationship with the nonlocal chemical shift density

is uncovered. The result is correct when wavefunctions that go beyond the Bom-

Oppenheimer approximation are used.27 A brief review of research using nuclear

momentum derivatives, especially with application to vibrational circular dichroism

spectroscopy, is given.

Equation (3) demonstrates that within a molecule the electronic response to an

internal magnetic field occurs via a molecular property that describes the response to an



external magnetic field. The analogous equivalence has been shown by Hunt at al.""5

for intramolecular electronic response to internal electric fields.

Chapter 5 considers possible routes to a more complete theory of intramolecular

electromagnetic response. The first consideration involves classical electromagnetic

theory in the context of special relativity. In the relativistic formulation of classical

electrodynamics, the electric and magnetic fields are not two different vector quantities,

but, rather they are both components of a second-rank four-dimensional tensor. The

relativistic current density is a four dimensional vector that includes as the “time”

component, the charge density. Similarly, the electrostatic potential and the magnetic

vector potential are integrated into a four-dimensional vector potential. Molecular

polarization and magnetization fields are not distinct, but rather the components of a

four dimensional second-rank tensor. All ofthe quantities and laws of electrodynamics

can be formulated very compactly in a relativistic formulation. The four Maxwell

equations that fundamentally describe all electromagnetic phenomena become two

equations in the relativistic formulation.

Maaskant and Oosterhoffl originally formulated the nonlocal polarizability density

in terms of current densities. Hunt" reformulated polarizability density in terms of

polarization operators. However Hunt’s reformulation is derived with the assumption

that the applied field is obtained from a scalar potential. It is suggested that a complete

nonlocal electromagnetic susceptibility density theory could be found from the removal

Of this restriction and use of four-dimensional vector calculus.

A relativistically consistent four-dimensional quantum theory for electrons was

constructed in the early days of quantum mechanics by Dirac.”29 In addition to

6



increased accuracy in the calculation of atomic energies, the theory incorporated, in a

fundamental way, the spin ofthe electron. However, a disadvantage of the theory was

the appearance ofenergy states associated with the antimatter analog ofthe electron, the

positron. In the description of electronic interactions with electric or magnetic fields,

the positron states can not be neglected. Positrons in the description of low-energy

interactions such as molecular interactions are difficult to conceptualize.

Fortunately, for low-energy interactions, techniques have been found that can

remove the “positron” portion of energies in exchange for a series expansion of

“electron” energies. The first and most commonly used expansion is the Foldy-

Wouthuysen transformation.”“ In this nonrelativistic formulation ofthe Hamiltonian

(nonrelativistic because it no longer involves positrons), several hyperfine terms are

found that depend on the nuclear momentum and the nuclear magnetic moment. It is

suggested that such terms be included in an application ofperturbation theory to find

new magnetic phenomena and novel explanations for discovered phenomena.
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CHAPTER 2: RELATION OF HYPERPOLARIZABILITY

DERIVATIVES TO SECOND HYPERPOLARIZABILITY

DENSITIES

Introduction

In this chapter, a new analytical result is derived for the nuclear coordinate

dependence of the electronic hyperpolarizability B(-we;m1 .002) , which gives rise to

nonlinear optical processes such as frequency-sum and difference generation."”'3""5'6 In

earlier numerical work, derivatives of B with respect to nuclear coordinates have been

estimated serniempirically7 and calculated ab initio.8'9"°’” This chapter focuses on the

interpretation ofthe [i derivatives via their connection to a different molecular property.

The derivative of [EX—0),, my, .002) with respect to coordinate fix ofnucleus K is (shown to

depend on the second hyperpolarizability density y(f, f', f", f’"; .496 ;ml .012 ,0) for the

electronic state, on the nuclear charge, and on the dipole propagator T(f'"',fi") from

i“ to f’" . This result holds because the electrons within a molecule respond to changes

5?“ in the Coulomb field ofthe nucleus, due to an infinitesimal shift in the position of

nucleus K, via the same nonlocal electrical susceptibilities that characterize their response

to external electric fields.
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Nonlocal Polarizability Densities, Polarization and Internal/External Electric Fields

Nonlocal polarizability densities or(‘r',f’;—0);00 and nonlocal
) 12.13.14.15

hyperpolarizability densities B(f,f’,f”;—co;m — 00 ',a) ') and

y(f,f',f",i'"’;—0);m — (0' — 01",0) ’,00 ") '6 describe the distribution of polarizability within a

molecule. When an external field F‘(f,0)) is applied, the electronic polarization

P(f,0)) at point f is“5

P(i,00) = Po(i,a)) + I <1? or(i';f',00) - F(f',(0)

1 co

+5 ldco'ldf'df" B(i';f’,0) —r0',f",c0'):F(f’,0)—00')F(i'",0)')

"° (1)1 co co .

+_ I dw'ldm"1(fi'(fi"(fim Y(I‘;IJ,CO"(D' -OJ",I'",O)',I'"',(D" IF(I",(D—CD' _0)n)

6.0 -Q

x F(f",00') F(f”',a)")+- -- .

In equation (1), P0 (E00) denotes the polarization in the absence of the external field, and

symbols such as -, :, and 3 indicate tensor contractions. The convention used by Orr and

Ward17 and by Bishop18 is followed in showing the frequency dependence ofthe

susceptibilities. The polarization in equation (1) is related to the charge density by

V . P(f,(0) = —p(f,00) (2)

and the same equation relates the polarization and charge density operators, P(f) and

13(f) . Thus the polarization contains the full information about the electronic charge

redistribution of a molecule in the applied field, and not simply information about its

dipole density.

11
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The nonlocal polarizability density, or(f,f’;—(0 ;00) , is a tensor quantity which

15.16

describes the linear response to the applied field, and it can be defined as

9803') = (0| 13.. (0909131: (F)! 0) + (0| Ps(?')G'(-<D) Pa (ill 0) , (3)

where G(0)) is the reduced resolvent operator

6(0)) = (1 - go,)(sc—Eo—hm)“(1 — 500). (4)

3C is the unperturbed molecular Hamiltonian, E0 is the unperturbed ground-state energy,

and go, is the ground-state projection operator pa = |O)(O|. Integration of or(f,i";—c0;(0)

over all space with respect to f and f’ yields the molecular polarizability, a(-w;(0) . As

in the work of Orr and Ward,17 damping is treated approximately by allowing for complex

eigenvalues of SC,

En = h(C0n)-irn/2 , (5)

where I], is the inverse of the excited state radiative lifetime for state In) (and F, = O).

The nonlocal hyperpolarizability density, B(f,f’,f”;—0);01 — 00 ’,0) ') , yields the lowest-

order nonlinear term in the polarization, P(f,0)) , due to concerted action of fields

F630) - 01') and F(f",00 ') at f' and f" .‘6 The second hyperpolarizability density

describes nonlinear response at the next order. Integration of B(f,f’,f”;—00 0 ;c0 , ,a) 2)

over all space with respect to f , f’ and f" yields B(—0Jo;00,,(02) where (9,, = 0114-002 .

For (111 = 002 , the hyperpolarizability B(-00 a ;0)] ,0) 2) is the molecular tensor that

generates second harmonics of the incident radiation. The intensities of hyper-Rayleigh

scattering and second harmonic generation (SHG) depend on this tensor. When 012 = O ,

12



B is the electro-optic tensor which is responsible for DC-induced birefiingence. In

general, the intensity ofsum-frequency generation at (91+ 012 depends on

[3(—0) 0 ;ml ,00 2 ) .‘ 2'3'4'5'6 Spatial integrals ofsecond hyperpolarizability densities yield

electronic properties such as the molecular tensor y(—3m;a),m,0)) for third-harmonic

generation '9'20'2‘

In earlier work, a chain of relations has been established linking permanent moments,

linear response, and the lowest-order nonlinear response.”23 The change in the electronic

dipole moment when nucleus K shifts is determined by or(f,f’;0;0) , the charge on nucleus

K and the dipole propagator fi'om fix to f’ , which gives the change in the Coulomb field

ofthe nucleus, 5?“ (f’) , due to the shift 5K“ .22 The change in the Coulomb field ofthe

nucleus is related to the shift in the coordinate ofthe nucleus via

aFE (r) = z" Ta,(1?)BR; . (6)

After this equation is applied, the first relationship in the chain of relations is found as

au,(r)/6R§ = jd‘f'am(r;r',0)zKTm(r','K"). (7)

The change in the electronic dipole moment of a molecule when a nucleus is moved from

equilibrium depends on the response of the electrons to the change in the Coulomb field

ofthe nucleus via the nonlocal polarizability density. Similarly, the chain ofrelations is

extended to the change in the polarizability a(—c0;00) since it is determined by

22.23

13(f,?',f";-c0;0),0), 513K and equation (6) which yields

6a,,(r;r',cu)/aR§ = jdfdi’df'BM(f;f’,0),f",O)ZKT50(f",RK), (8)

13



where BM (f; f',c0,f",0) is the nonlocal hyperpolarizability density tensor and the Byfi

subscripts indicate the Cartesian indices of a third-rank tensor.

In this chapter, the change in B(—0)O ;031 ,c0 2) due to a shift in the position of the

nucleus K is proven to depend on the second hyperpolarizability density and 51'?" . This

result is expected on physical grounds, as a continuation to higher order of the chain of

relations between polarizabilities; however, an explicit derivation is considered useful,

because the proof involves transformations of a 60-term perturbation expression. The

Bom-Oppenheirner approximation is used to determine the parametric dependence of the

electronic hyperpolarizability on the nuclear coordinates. In this chapter, only specific

terms will be considered. The full 60-term derivation is given in Appendix B ofthis

volume.

Applications of the Hyperpolarizability Derivative

The derivatives in this work are taken with respect to the nuclear coordinates I?" ,

while any applied fields F‘ are held fixed (typically, at 15‘ = 0). Hence the chain of

relations that links permanent moments, at, B and y densities differs from well-known

relations that apply to derivatives of effective electrical properties taken with respect to

the external field strength.24 The derivative ofthe effective electrical property of order n,

with respect to F" , yields the effective property of order n +1, where the following

identifications are made: 11 = O for u, n = 1 for or, n = 2 for B, n = 3 for y, etc. However,

there is an underlying physical connection between the two chains of relations, since

changes in electrical properties due to a shift in 5i“ , the position of nucleus K within a

14



molecule, are determined by the electronic response to 5?“ , the change in the Coulomb

field from nucleus K. Relations among the u, or, B and y for linear polymethine dyes

(push-pull polyenes)25'2“'27 have been suggested based on differentiation with respect to an

effective electric field F assumed to account for donor-acceptor strength, molecular

topology and solvent interactions, in analogy with the approach ofBuckingham and

Pople.24 The result obtained in this chapter differs from that ofMarder et al.25 in terms of

the differentiation variable (RK vs. F) and in terms of the quantity to which the

hyperpolarizability derivative is related (the second hyperpolarizability density vs. the

spatially integrated value of the second hyperpolarizability). For an explicit physical

connection between the two approaches, a specification ofthe effective electric field F

appearing in Marder’s work is needed.” Such a specification could be made via the

change of the effective electric field with respect to a change in the nuclear coordinate

tan/an}: .

The results derived here provide a physical picture of the origin ofvibrational hyper-

Raman scattering intensities on the intramolecular scale. For light of angular frequency

(0i incident on a sample ofmolecules having the vibrational frequency (Do for normal

mode Q, the nonresonant hyper-Raman scattering intensity at the frequency 2(1),: (0Q

depends on (913mm(f,f’,f”;-—200i;a)i ,coi)/6Q the derivative of the B hyperpolarizability

with respect to the normal-mode coordinate Q9839” This derivative,

68am (f,f’,f”;-20) i ;00 1 ,0),)/6Q , is a linear combination of derivatives with respect to

Cartesian nuclear coordinates. Additionally, these derivatives of [3 appear in the

15



vibrational contribution to the net molecular second hyperpolarizability,l "2"27'3"32'33-34'35

reflecting the change in electronic energy induced by an applied field.

Hyper-Raman scattering was predicted theoretically by Giittinger,28 Decius and

Ranch,"5 Kielich,37 and Li,38 and first observed by Terhune, Maker and Savage.39 Reviews

ofhyper-Raman spectroscopy have been written.“""‘2"3 For molecules or crystal unit

cells with centers of symmetry, hyper—Raman scattering is useful as a probe ofmolecular

vibrations that are silent both in IR absorption and in Raman scattering at frequencies 01,2“.

29.30.44.45

(0Q
such as the twisting modes of A.u symmetry in tetrachloroethylene“S and in

cyclohexane,‘7 modes ofB“, B,“ or E2“ symmetry in C,.,H,5 and C6D;8 the F1 librational

mode in crystalline NH4C1,49 and the F2', modes of SrTiO,,5°'51'52’53'“ BaTiO,,”"‘ and

KTaOf”7 the A,“ mode ofBaTiO,,’8'”'°° and the soft-optic mode ofKHLixTa 3.“

Charge transfer excitons which disrupt the centrosymmetry in semiconductors such as

Cu,O crystals,62 germanium-doped silica fibres,“64 and other inorganic glasses“ have

been investigated with hyper-Raman scattering. The spectroscopy has been used to

examine the lattice dynamics of silica polymorphs.“ For helical polymers, optical

phonon dispersion curves can be probed by hyper-Rarnan experiments at four

frequencies, ofwhich two are excluded by IR selection rules.‘57

Hyper-Raman scattering also offers a useful probe of very low-frequency modes of

large molecules or crystals--even modes that are IR or Raman active-because

interferences are generally reduced.‘2"’8"° For example, low-frequency Raman scattering

may be masked by intense Rayleigh scattering,“"’8 while the weaker hyper-Rayleigh peak

does not overlap the hyper-Raman bands appreciably. For the perovskites near
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ferroelectric phase transitions,” IR measurements are limited in applicability because of

unusually broad reflection bands with reflectivities near 1, as well as the shallow

penetration of far-1R radiation, which leads to variation in the spectra with surface

conditions. Thus, hyper-Raman spectroscopy has been used to determine the imaginary

part of the dielectric permittivity 8"(01) at low frequencies for these

materials,""5‘'52‘53"5"'55"°'57 and then combined with IR reflectivity data at higher

frequencies, in order to generate the real part e'(c0).5° Other experimental applications of

hyper-Raman scattering have also been reported.‘58"59'70'7‘'72'73

Surface enhancement ofhyper-Raman scattering has been observed for SO,"

adsorbed on silver powder," dye molecules adsorbed on silver colloids75’7m'78'79 (e.g. oxa-

78.79 and

and thia-carbocyarrines,76 basic fuchsin,77 3-hydroxykynurenine," crystal violet

malachite green”), and for pyridine7 and trans-1,2-bis(4—pyridyl)ethylene80 on silver

electrode surfaces or for pyridine on aqueous silver citrate sols.81

The electronic property connected to the intensities of vibrational hyper-Raman

scattering by this work is the density of the second hyperpolarizability,

y(f,f’,f”,f"';—20);(o,rn,0). An integration over all space with respect to the spatial

variables yields the electronic contribution to the tensor y(-20);(0,(0,O) that governs DC

electric-field induced second harmonic generation (EFISH) by nondipolar species, and

the electronic part (i. e., the nonorientational part) ofEFISH intensities for dipolar

molecules.”'83'8"85 The conversion from molecular susceptibilities treated here to the

macroscopic EFISH susceptibilities x‘3)(-20);03,c0,0) depends on the densities and the

local field factors at the frequencies 2c0, 01 and 0.“ This conversion is similar to the
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conversion of the molecular polarizability to the dielectric constant."6 The susceptibility

xm(—2w;co,(0,0) also determines the applied-potential dependence of the optical second-

harmonic response ofpolished surfaces in electrolyte solutions,87 as shown in studies of

the Ag(111) surface in aqueous electrolytes88 and Si(111)/electrolyte or

Si(1 l 1)/SiO,/electrolyte interfaces.”

This chapter considers the electronic contributions to the hyperpolarizabilities B and

y, for specified values of the nuclear coordinates. The relative magnitudes of the nuclear

contributions to the total molecular B and y values”""”’”'3‘"’5 depend on the frequencies

involved.‘5 For example, among processes that depend on the macroscopic susceptibility

x"), the vibrational and rotational contributions tend to increase in the order:‘5 third

harmonic generation, EFISH, degenerate four-wave mixing, AC Kerr effect (optically

induced birefiingence), CARS (coherent anti-Stokes Raman scattering), and DC Kerr

efi‘ect (static field induced birefiingence). Third harmonic generation and EFISH are the

preferred methods of investigating the electronic contribution to 7. These results apply to

hyper-Raman intensities that can be described by the nonlinear analog ofthe Placzek

theory. Resonan '9'” and preresonant93 hyper-Raman scattering are not treated.

Derivation of the Dependence of the Hyperpolarizability on Nuclear Coordinates

The hyperpolarizability density B(f,f’,f”;—00 a ;0) 1 ,m 2) satisfies“

363383-91. :wnwz) = enl<0| P.(f)G(wa)P3 (f")G(wn)Pp(i')lO)

+<0|8(fact—e)t.(t’>G'(-m.)e.(0no>+<olr».(we(—s.)e:(e)e(m.)t.(r)|on‘9’

l8



where 5091 denotes the sum of the permutations of 13,, (f’) and 13, (f") , simultaneously

with their associated frequencies a), and 0),, respectively, in the expression that follows

the operator; 0),, = (0, + 0),, and

PEG) = 13.6) - (0| P.(f)| 0>- (10)

Full permutation symmetry of Bum exists only if damping is neglected. Equation (9) is

analogous to Equation (43b) for the spatially integrated hyperpolarizability

Bap, (—0)a;01,,(02) given by Orr and Ward.17

To find the derivative of Bum (f,f’,f”;-ma ;03 1 ,co 2) with respect to the nuclear

Cartesian coordinate RE , the derivative of the ground state wavefunction with respect to

an arbitrary parameter 1. is used.”

BIO) 63C
Evanglm. (11)

For consistency with the approximate treatment ofdamping, as in the work of Orr and

War ‘7 the imaginary components ofthe eigenvalues in off-resonant denominators are

neglected; then G*(0) can be replaced by G(O), and the derivative ofG(m) with respect to

1. satisfies23'9‘

996%me)L—Sca;596(0))+goo-:C‘G(O)G(w)+G(0)G(O)—500 (12)

Also94

a——P;(’)=<(OI—G(O)P. ()|0>+ <ou» (r)G(0)—|0> 03)

If A = R}? , the 6 Cartesian coordinate ofnucleus K, then22'23’9"
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63C m K m m

an." —Idf z P.(r )T (r ,R"). (14)

The change in the inverse lifetimes of the excited states due to an infinitesimal shift in

RI,‘ has been neglected. In Equation (14), Te,(r"',1_{x) is the dipole propagator, which

determines the field at 1"" due to the polarization at fix ; in general,

Tap (if) = Va WEE-{$1}. (15)

The Einstein convention of summation over repeated Greek subscripts is followed in

Equation (14) and below. From Equations (9) through (13), each of the six terms in

Equation (9) for Bw1(f,f',f";-00 a ;00 , ,0) 2) generates ten terms when differentiated with

respect to RI,‘ . The contribution to the hyperpolarizability derivative from the first term

(taken as representative) is

6;.<0|P.(P)G(wa)P°<r)G<m.)8<>1)wzT(m)

’ (OIP.(r"')G(0)P.(r)G(wa)P°(f")G(mn)Pt(f')IO>

+<0|P.(r)G(coa)Pi’(r "’)G(coo)P$(r")G(wa)Pt(r')I 0)

-0<IP.(r "')G(O)<0|P..(r)| o)G(s.)P‘.’(r'')G(oox)Pt(r')l0>

-(0|pa(f)G((oa)G(0)138(f"')l 0)(0|P:(r-")G(m.)13,(r')| 0)

-<0|P.(r"’)G(0)P.(r")I 0><0lP.(P)G(wo)G(con)Pt(i')|0>,

-< >

<

-<

-<

<

 

(16)

x<

OIP.(r")G(0)P.(r'")I 0><0lP.(f)G(wa)G(wu)Pt(i')l0

0|Pa(r)G(a>o)P3(r")G(con)P°(r'")G(<m)Pt(f')|0>+

OIP.(r)G(wa °(r")| 0><0lP.(r"')G(0)G(con)Pt(f’)l0)

OIP.(r)G(wo 36")G(wn)<0|Pt(P')| 0>G(0)P.(f"’)|0>

)P

)P

.+ 0an (r)G(0).,)P,0(1‘")G(CDI) P06)G(O)Pe (rm)l O)  J
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The fourth term of this expression contains the fluctuating polarization operator 13: (f")

which can be changed to a total polarization operator 13, (f") through the identity"5

(0| 13a (f)G(a).,)G(O) 13, (f "')| 0)(0|P: (r- ")G(o)1) 13, (r')| 0)

(17)

= (0| P. (r)o(m,)c(0) P. (f "’)| WI P. (f")G(co 1) Pt (f’)| 0)-

Similarly, the eighth term has a fluctuating polarization operator, which can be converted

to a total fluctuation operator. Also with the definition of the fluctuating polarization

operator, the first and third terms within the brackets in Equation (16) combine to yield

(0|P.(f"')G(0)P.(f)G(mo)P$(f")G(an)Pt(f')l0)

-(0|P.(f"')G(0)<0lPAP)!0)G(mo)P$(f")G(mn)Pt(f')|0) (18)

= (0| P. (f'")G(0) P2(P)G(m.)13$(f")G(m,)fa,(r')| 0).

Similarly, the ninth and tenth terms within the brackets ofEquation (16) combine to give

the matrix element

<01macho»:(t~)e<4.)ts<r)c<o>new) 0).  09>

From Equations (16), (17), (l 8) and the expressions generated by differentiating the

remaining terms in Equation (9) with respect to K}? , we obtain

BBQ,” (f,f',f";—(oo;a),,a1

6R}?

so” (0|1340600.)132(f"')G(w.)P3(r")G(co.)13.6)!0)

'8 +(0lP,(f')G'(—cm)P‘,’(f")G‘(—mo)P3(f)G(0)P.(f"')|0>

l<0| P. (f)G(mo)G(0) P. (f"')| 0><0l P. (i ")G((°1)1315 (P)! 0)

+<0| P. (P)G(wo)G(cm) Pe(f')| 0><0| P.(f'")G(0)P. (f")| 0)

+<0| P.(P)G(wo)G(wn)Pt(?')l 0><0| P. (T'")G(0)P.(f'")l 0)

+<0| P.(f"’)G(wz)G(0)P. (P') 0><0| P. (f)G(wa)Pt(f')| 0)

<

 

2) = ldfm ZKTss(f""-R_K)X [1+ C({COi} —) {-(01l)]

(20)

Xt

-5037

 

+ 0|P.(f")G'(—coz)G(0)P.(f"')l0><0|P.(P)G(wn)Pt(f')|0>

,+ 0|P.(f")G‘(—coz)G(m1)P.(f')|0><0IP.(f"')G(0)P.(f)I0>_,    
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where 501m denotes the sum of all permutations of 1'5fl (f') , p1 (f”) , and 13, (f "'),

simultaneously with 0),, 0), and 0 (respectively) in the expression that follows. The

operator C({mi} —> {—m,» takes the complex conjugate and replaces each (0i by -c0i; the

operation applies to 0),, a), and 006. Again damping has been neglected in off-resonant

terms; it is reiterated that 6(0) and G*(O) are interchangeable at this level of

approximation.

In order to connect the hyperpolarizability derivative to the second

hyperpolarizability, the following identity is used,”

(0| P. (f)G(wa)G(m 1) Pp (T')l OXOI P. (P'")G(0) P. (f")| 0)

+ <0! Pa (P)G(wa) Pt('r")| 0><0| P. (f'")G(0)G(wz) P. (f")l 0)

= (0| Pa(f)G(coa)G(cm)Pt(i’)l 0><0| P.(f'"')G(wz)P. (f")l 0)

+ (0| P.(P)G(91)Pt(f’)l 0><0| P.(i"')G(0)G(wz)P. (f")| 0) ,

(21)

which is proven by converting both sides S1 and S2 in Equation (21) to the explicit sum

over states form

 
S) = $2 _—_- 71.2 2! 2! (0| 13“(f)l mel 13136.,» 0><Ol 1326",] j><jl 13136.”) 0>(Qmo + Qjo "' (1)1 " (02)

22

at j (Qua - (DaXQmo ‘ 001) Q10(01'0 ' (92) ( )

 

where am, = mm, -i1‘,,,/2 and the primes on the summations over m and j imply that the

ground state is excluded from the sum. We also use the complex conjugate of the identity

in Equation (21). Then Equation (20) can be simplified using the permutation operator

@1513?
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prr

[1+C({m,}

Fl

 
+

will

0lP..(r)G(m)G(O)13(r")’|0(0|p1(f")G(m,)139(i"’)|0)

+<0|P (r)G(w)G(wn)Pt(r')IOXOIP.(f"')G(0)P.(f")|0>

+<0lP.. (f)G(m.,)G(m,)f>B(f')|O)(O|137 (f”)G(0) P.(f'")| 0)

+<

<

<

0|P.(P"’)G(w2)G(0)P.(i")l0>(0|P.(P)G(wa)Pp(i')lO)

0le(f")G'(—92)G(0)P.(i’")|0><0lP.(i)G(wn)Pt(f’)l0)

_+ on. 6091-4460013.0) 0><0|P.(P"')G(0) r». (0| or

=[1+c(<e}—+{-e})]

<01n<nc<mnc<o>e<r~><exclP.<f">c<e)t.<rro>

P +<o<madame")o><01e.<t")G‘<-e)9<wl)n(f')l0> '

Therefore

6Ba57(f,f',f";—0)U;0),,m2)
 

x5097:

 

6R}?

 

.1

 

=14r~'z*<'r..(r~znx)x[1+c({s.}—>{-80}

’(0lP.(f)G(u.)P2(f"')G(coo)P$(f")G(cm)P.(f')l0)

+<0|Pt(f')G'(-con)P3(f")G’(-w)P° (r)G(0)P (r"')IO>

-<0|P.(P)G(wo)G(0)P.(f"'0)|><0|P.(r')'G(mu)Pt(r')|0>

_-<0|P.(f)G(0)P.(f"')l0><0|P.(r'’)G (-a>2)G(wn)Pt(f'10),

The quantity in the brackets of Equation (24) can be compared to the second

(23)

(24)

hyperpolarizability density. The equation used for the second hyperpolarizability is taken

from Orr and Ward’s article on nonlinear optical polarization.l7 The equation is directly

quoted.
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Pa)" = K(-Coo;(.0n(1)2 ,coa)h'311.2.3

1 ’ <9. cerium)...(at). + <Hm>. <P>,.<PP>..(HP),

2' (918 - maXng - 011- m2XQm - (Dr) (Dig + 003)(ng - 031- wZXQng - (01)

.. + at).<nw2>.<P>..<Hm>. + <H->.crane-Prue.
_ (Qig + (1)1)(ng + (DJ '1' (1)2)(0113 "' (.03) (Gig '1' 030(ng + (01+ (02)(th + (Do)_ r. (25)

<1<P>.,.<He>..<nm>.um)..., P>.<Hm>..<H'w2>.<n'm>. ‘
_,., (n..-s.)(n..-s.)(n.,—s.) (am.—e.)(n;.+s.)(n.,—s,)

m" 91"”)...<F>mg<H"°'>..<H'°’2>., <H""‘>,..(H'”2>.,<H'°’3>,.<P>n

_ (0m, + (09(th + 010(th + (01) (0..., + (1)3)(Qng - (1)2)(th + 0);) A J

 

  

  

 

     L

Orr and Ward’s equation for the second hyperpolarizability is identical to the expression

in the brackets of Equation (24), though explanation is needed to relate the two equations

to each other. First the frequencies are compared; the (03 in the second

hyperpolarizability corresponds to O in the hyperpolarizability derivative. The matrix

element notation translates as

(em), = <11 - 1W?)P291044 m> —> 01132601 m>

<H"°3>lm = (II — lH'Ps(r) E93(f)df| m) —> (1|fi,(r"')| m).

Note that the expression from Orr and Ward includes the incident electric field to obtain

(26)

the net polarization whereas in this formulation, flexibility is maintained to multiply by

the electric field subsequently. The correlation is complete when it is remembered that

summation on the index of the polarization operator over all the Cartesian coordinates in

Equation (24) is necessary. The 11”,,3 operator is the same permutation operator as 50 p7,

and the h in the denominator of the equation of the second hyperpolarizability can be

distributed through the frequency expressions to yield the energy expressions of the

equation for the hyperpolarizability.
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One can use the definition of the reduced resolvent to simplify the sum-over-states in

the equation for the second hyperpolarizability. Then the frequency conjugation operator

C({m,} —> {-0).}) can be factored from the second hyperpolarizability equation to

simplify further. The first and fourth, second and third, fifth and seventh, and sixth and

eighth terms ofthe second hyperpolarizability equation are frequency conjugates of each

other. Finally, the coefficient K(—a).,;0)1,—m2 ,-003) depends on the number ofzero

frequencies and the number ofrepeated frequencies in the set (11,, (02. (03 and 0),. The

value ofK becomes clear for specific frequencies when integrations over the frequency

values are taken. Integration over a single (0 will yield a different number than three

integrations over three distinct frequencies.

Thus being aware of all ofthese equivalencies, the equation for the second

hyperpolarizability can be written as

ym(r,r',r",r'";—o);c0,,m,,013)

1011340914)...»3(r'")G(wa)P$(f'419()n(f')10>

-[1+9(11co.1-n1)]xn riOIPa(f')G‘1—4.)p$<r"o)'—e<1<)G<o>p.<"11> <27)

”" -<0|P.(P)G(coa)G(0)P.(r "')l 00><IP (P’W)P.6)'l 0)

_-<0|P.(r)G(0)P.(r"')|0><0|P.(")G -{02)G((01)135(l")|0>d

Relating Equation (27) to Equation (24) yields the goal ofthe derivation.

  

513.910 f'r";-<De;0)1,032)/ 5R? =l dfmyaer r'r",? -we;wt,m2,0)ZKT.s('f"'.BK) (28)

If damping is completely negligible, Equation (24) can be cast into the more compact

form
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6Ba57(f,f',f";-mo;c0,,0),)

8R?

w (0|Palfleoe)P3(?"')G(wo)l33(I")G((01)Pu(f')l0) .

up” “(0| Pa (05090 13.; (f"')l OXOI P7 (f")G(-032)G(w 1) I31: (Ell 0)

 =14r~m.(r~,m)

(29)

which again yields Equation (28) on comparison with Equation (44c) in Orr and Ward’s

paper.‘7 In Equation (29), (004,,a denotes the sum of all permutations of the pairs

{13a(f),-(oo} , {139(1"), 0),} , {137(f”), 012} and {13s(f"'), 0} in the expression that follows;

here the frequency associated with 13,16) is 49,, rather than 00., . In deriving Equation

(29), we have used Equation (21), the equation obtained from Equation (21) by

interchanging the roles of {13:3 (f'), (01} and {137(f"), (1)2} , the result

(OIP.(P)G(coe)P.(P"')10><01Ps(f')G(-wn)G(w2)P,(f")10>

+ (OIP.(P)G(wo)G(0)P.(T"')l 0)<0|Ps(f’)G(-w1)P.(f")l 0)

=<o1nematode)arr-")1o><o1n<r09<e2>n<r0o> (so)

+<ous.<ne<o>1>.<rm)1crewman-416(4).)13.6010)

(0| Pa (Ill mel P. (?'")l 0><0l Pp (ml00 l Py (PM Ollflmo + 910 “ (02)

((21:10 - (Do) Qmo (Qjo + (DIXQjo - (1)2)

 

= h-erzr

m J

and the analog of Equation (30) with the roles of {139 (f’), 0),} and {137 (f"), (02}

interchanged. Equation (30) corresponds to Equation (21) with BB (f’) and 13.1fm)

interchanged, G(O) replaced by G(—m,), G(O),) replaced by G(O), and damping

neglected.
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Further Applications of the Hyperpolarizability Derivative

The analytic result given in Equation (28) is needed to relate quartic anharmonicities

ofpotential energy surfaces to electronic hyperpolarization energies,96 and to relate

nonadditive three-body forces to the three-body polarization.97 Equation (28) is

potentially useful for analyzing the origins ofhyper-Raman scattering on the

intramolecular scale, and for making qualitative predictions about hyper-Raman

intensities. In ab initio calculations with a given basis set and method, a direct evaluation

of the left-hand side of Equation (28) is expected to be more efficient computationally.

However, use of the form on the right may assist in basis-set optimization by indicating

which regions of the molecule contribute most to the hyperpolarizability derivative.

The Hyperpolarizability Derivative and Hyper-Raman Intensities

The derivative of the net molecular hyperpolarizability Bum (-c0 0301,00,) with

respect to the vibrational normal-mode coordinate Q is

55m,(-we;031,w2)/5Q

= IE2"},jdfdf’df"df"'ymay,(i‘,f',f”,f"';—00.,;001«102,O)ZKT,,5(f"',RK)25%. (31)

Intensities for vibrational hyper-Raman scattering depend upon the derivative given by

Equation (31), with 001 and c0; both equal to the frequency of the incident radiation (1),,

and 0),, = 2cm .28'29'30 This connection'0'29'30’ms for hyper-Rarnan scattering of incident light

plane-polarized along the space-fixed Z axis, initially propagating in the -X direction

toward a scatterer at the origin in the space-fixed axis system (X, Y, Z) is reviewed.
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Scattered radiation of frequency a), is detected along the Y axis. The intensity (per

unit solid angle) 122(0),) ofthe scattered radiation plane-polarized along Z, due to an

isolated molecule that undergoes a transition from vibrational state m to n is given by40

2 2

1.4.0.): 37231411181 - (32)

The intensity 1xz(o),) of scattered radiation plane-polarized along X satisfies Equation

(32) with uz replaced by 11x. At the level of the Placzek theory as applied to hyper-

Raman scattering, uzand ux are identified as the electronic dipoles induced by nonlinear

response to the electric field of the incident light, so

11.. =1/2 szz(—2031;G)1,(Di)EZ(COJ)Ez(wi)a (33)

where 132(0) 1) is the electric field of the incident light (and similarly for uz). Below,

szz(-’2C0i;0)i,0)i) and Bm(_2m,;m,,m,) are abbreviated as BXZZ and B712, respectively.

The hyperpolarizability components BUK (IJK = XZZ or ZZZ) are expanded as series in

the normal mode coordinates Q,, about the equilibrium nuclear configuration (denoted by

the subscript eq),

flux = Bun (34)       

Hyper-Raman scattering occurs at frequencies 00, shifted from 2014 by (Em — En)/h , with

intensity Ixz(m,) given by40

 
1x201)5") ——"5ml<lel ”ll[aBXZZLxJ Ez(0)i)4 (35)

128:21toe c3 an
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and similarly for 122(0),) with BXZZ -> Bm. For transitions between the ground

vibrational state and the state with one quantum of excitation in the mode QV , in the

harmonic approximation, the strength of the transition is

2

l<levln>l = h/va ’ (36)

where 03. is the frequency of the normal mode Qv. For a sample ofN freely rotating

molecules, with probability Pm to occupy the initial state |m) , the intensity In((1),) of

hyper-Raman scattering is related to the isotopic average ofthe hyperpolarizability

derivative, <(aBXZZ/an
[eq)2> by40

=__<D_L_ 2 2 Eliza )2
IXZ((DS) 321I28305Npm I°l<levln>l <[ an Lg >9 (37)

and similarly for 171(0),) . In Equation (37), 10 is the irradiance,4o defined by

1, = 1/2 csogE,(m,)’, (38)

and g is a coherence factor.98 The space-fixed tensor components c‘BBUK/BQv Lq are

related to the molecule-fixed components 6Bijk/(3Qv L] by

a ..

66%”: Lq .-_- 13%|: an an 310%: L, (39) 

where 3,, is the direction cosine between the molecular axis 1 and the space-fixed axis 1.

Since Equation (37) relates observed hyper-Raman intensities to the derivatives of the

hyperpolarizability, by Equation (31) the hyper-Raman intensities are also related to the

second hyperpolarizability density y(f,f’,f”,f”'; —2c0t;00i ,0» ,0) .

29



Conclusion

The principal result of this work is contained in Equation (28), which establishes a

link between the derivative of the lowest-order nonlinear response. tensor

BaBY(—coa;031,w 2 ) , taken with respect to the position ofnucleus K, and the nonlinear

susceptibility density yaw (f,f’,f”,f"';—2m, m), ,m, ,0) of the next order. The second

hyperpolarizability density determines the change in the effective value of the

hyperpolarizability when a static external field is applied to a molecule (cf. References

24, 25 and 31 for cases with uniform applied fields and spatially integrated values ofy

and B). When nucleus K shifts infinitesimally within a molecule, the electrons respond to

the change in the nuclear Coulomb field via the same nonlocal susceptibilities that

characterize their response to applied electric fields. This result is illustrated in Equation

(28), since the change SF? in the Coulomb field resulting from the shift in the position of

nucleus K is given by ZKTfi, (f'", R“ ) 6R}?- Thus the second hyperpolarizability density

determines the change in the hyperpolarizability due to small distortions ofthe molecular

geometry. Based on Equations (31) and (37), the second hyperpolarizability density also

determines band intensities for vibrational hyper-Raman scattering.
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CHAPTER 3: RELATION OF POLARIZATION PROPAGATOR

DERIVATIVES TO NONLINEAR POLARIZATION

PROPAGATORS

Introduction

In quantum chemistry, calculation of molecular properties involves two quantities,

operators and wavefunctions. Using perturbation theory, the value of a property is often

found by operating a single operator upon a smn-over-eigenfunctions (sum-over-states).

For example, the dipole polarizability can be calculated from the second-order

perturbation expression‘

(1)
  

(ols.ln><nlu.lo>+<01s.ln><nls.lo>
EO_En+hm EO-En—hfl) ,

(143(0)) = ‘E'{

where the In) are the wavefimctions, pa is the dipole operator ofthe ath Cartesian

coordinate and 2' indicates the sum over the excited states only. In general, accurate

excited-state wavefunctions are more difficult to calculate than ground-state

wavefimctions. Also for accurate property calculations, a large number of excited-state

wavefunctions may be needed. Thus the sum-over-states method is often impractical,

since its accuracy is dependent on the accuracy and number of the excited-state

wavefunctions.

Use of the polarization propagator avoids the problem ofneeding excited-state

wavefunctions. In a polarization propagator calculation, only an accurate ground-state
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wavefunction is necessary. To calculate a property, a sum is still needed; however, the

sum is not over a complete space of excited-state wavefunctions but over a complete

space ofoperators. The operator sums are found by applying the equation ofmotion of

the polarization propagator. The equation of motion2 for the polarization propagator

<(B;A)) that describes the effect of operator B on the molecular property of operator A is

hm<<B; A» = (0|[B,A]| o) — <([EJC, B]; A» . (2)

Equation (2) shows that the polarization propagator can be calculated in terms ofthe next

higher order ofpolarization propagator. The same equation ofmotion is used for the

higher order propagators. Therefore, the equation can be applied repeatedly to yield an

infinite sum ofnested commutators. In this form, the polarizability in Equation (1)

becomes2

(1,1,(61) = -’%(Ol[ua ,uBJI O) + (fijmlflflflpal, “all 0) + (%J2<0|[[3C,[3C,l~la]],%]| 0)+- (3)

Thus, the problem of calculating molecular properties shifts from the calculation of

excited states to the problem of calculating commutators. The commutators are

calculated as algebraic sums using “superoperator” algebra. More details can be found in

McWeeny’s2 text as well as Jorgensen and Simon’s3 text.

Indistinguishability

The indistinguishability of electrons in a molecular system is important to consider

carefully since the polarization propagator employs a multi-electron wavefimction. The

multi-electron wavefunction, in order to describe the state properly, needs to incorporate
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the indistinguishability ofthe electrons in the system. Indistinguishability is the name

given to the concept that when two identical particles in a quantum mechanical system

are exchanged, the exchanged state can not be distinguished from the original system.

The consequence of indistinguishability for particles ofhalf-integer spin such as electrons

is adherence to a firndamental principle, the Pauli exclusion principle.

The Pauli exclusion principle states that identical half-integral spin particles must

have wavefunctions that change sign when any two particles are exchanged. This

property is called antisymmetry. The wavefunction describing the electronic state must

be antisymmetric. Two formalisms are commonly used to ensure that the electronic state

wavefunction is antisymmetric, Slater determinants and creation/annihilation operators.

Slatchmnninants

The first formalism used to ensure antisymmetry is the Slater determinant. For a two-

electron system, an approximation to the total wave function can be written as

v=guinea)-v..<n>w.(e)]. <4)

The w.(r,) are the individual one-electron wavefunctions. If the two particles are

exchanged by switching electronic coordinates r. and r2 , the total wavefunction changes

its sign. Therefore, this wavefirnction is antisymmetric. Using the definition of a

determinant from linear algebra, the total wavefunction is written identically as

w.(rx) w.(r2)1

“"‘mo w..(r2)
,5 . (5)
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This determinant is an example of a Slater determinant. Similarly, an antisymmetric

three-electron wavefunction can be written as

“RED; SHED; “AER; .

\P=_ Wb 1'1 Wb r2 Wb 1'3 - (6)

J3 v.6.) w.(r2) v.6.)

In general, a n-electron wavefunction is written as the following Slater determinant

v.01) v.02) w.(r~)

1 81,01) whim) whim)

“m f i '- . i ' ‘7’

WNGI) WN(r2) WN(TN)  
Writing a multi-electron wavefunction in this fashion allows the Pauli exclusion principle

to be satisfied. When any two columns of the determinant are exchanged, signifying the

exchange oftwo particles, the magnitude of the determinant remains the same; however,

the sign is changed.

3. 13.1.].[1 IS 10 ..

The properties of creation and annihilation operators found in harmonic oscillator

analysis‘, many-body solid state theorys'6 and quantum field theory7'8 are exploited to

construct antisymmetric wavefunctions. Relating such operators to electrons in

molecular systems,”9 a creation operator operates on the electronic wavefunction of a

molecular system and creates an electron in a specific quantum state. As a simple

example in an atomic system, the creation operator al(1s) is applied to the vacuum state

lg) as follows:
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3*(15) IO) = lls) . (8)

The creation operator, a*(ls), creates an electron in the 18 state. The annihilation operator

destroys an electron as in the following examples.

a(1s ) [152) = lls') or a(2s ) lls‘zs‘) = —|1s') . (9)

The negative sign in Equation (9) is a consequence of antisymmetry. Both examples in

Equation (9), the initial state had two electrons. In both cases, the annihilation operator

destroyed an electron so that the final state had only one electron.

The creation and annihilation operators used above only had spatial labeling. Since

the antisymmetry prOperty is a function of spatial and spin coordinates, spatial and spin

labels should be used to describe the electronic state. The examples in Equation (9)

become

31(18u)|@) = Ilsa), a(1s..) Ilsa 15B) = “80 and _ a(2s..)l1s..2s.,) = -| Isa) - (10)

What happens when we try to create an electron that is already present or annihilate

an electron that is not present? The implication of the Pauli exclusion principle is that the

maximum number of electrons in a given quantum state is one. In addition, the minimum

number of electrons in a given state must be zero. Therefore, trying to create an electron

in a state that is occupied or annihilating an electron that does not exist is not physical.

Such operations are defined as zero, e. g.,

a*(1sa)llsslsp>=0 and 3(25a)l1sslss>=0- (11)
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These definitions ensure that the Pauli exclusion principle is satisfied. The operators can

also be defined in an alternative, but equivalent fashion, using anticommutation rules to

ensure antisymmetry. For states m and n, the anticommutation relations are

{ahsal} = aLal + aIaL = 0

{airman} zaman+anam=0
(12)

{almau} = aLan + anal. = 8......

These anticommutation relations demonstrate that when m = n, the same electronic state

can not be created twice nor the same electronic state be annihilated twice.

A two-electron ground state that satisfies the antisymmetry requirement in terms

creation operators is written as, e. g.

at (186)8'(1sa)| g) = llsfi 15a) - (13)

An n-electron antisymmetric wavefunction is written as

a*(n1m)~-a*(1s,)a*(1s.)|o>=|n1m,...1s,13.). (14)

An excited configuration of a multi-electron system can be constructed using a

combination of creation and annihilation operators. First the annihilation operator

destroys one ofthe electrons in the Hartree-Fock ground state, then the creation operator

places an electron into an excited state. For example, creation and annihilation operators

can be used to form an excited configuration ofhelium,

a*(28a)a(1sh)| 139 151) = '23: 15(1) . (15)

Because of the anticommutation relations of Equation (12), the order of the operators is

very important. Appendix C explains in more detail the consequence of applying creation

and annihilation operators to a multi-electron state.
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Operators in the second quantized formulation of quantum chemistry are products of

creation and annihilation operators with specific coefficients. The operators can involve

any number of electrons, though only one and two electron operators are regularly used.

A one-electron operator has the form,

9 = Eleuaian where e... = <¢.‘(i)l6(h .h)|¢.(i)>- (16)

The coefficient 0” is the matrix element of a more traditional quantum mechanical

operator with the basis functions 4’1 and 41,. The index i indicates the ith electron in the

system. Examples of quantities described with one-electron operators are the kinetic

energy, momentum, angular momentum, magnetic moment and polarization. Two

electron operators have the form,

V = “£3; 3i am an <¢k (i) ¢| (j)lv(fi ’ f'1' ’ Pi ’ fij] ¢n (0 $111 0)) ' (17)

The indices i and j refer to different electrons, i. e. i and j can never refer to the same

electron in the calculation of a single matrix element. The two electron operators are

used for the calculation ofCoulomb and exchange energies.

Occupation Number Formalism

When a basis set is used to describe the multi-electron wavefunction of a system, the

wavefirnction for a given state is written in terms ofwhether a particular basis function is

used or not. For clarity ofpresentation, the one-electron spin-dependent hydrogenic

wavefimctions are chosen as an example of a basis set. This basis set is {15“, 185, 28,1,

25,3, 2pm, 2pm, 2pm, , }. The multi—electron wavefunction is derived from



antisymmetrized products ofthese functions. In the occupation number formalism,“9 the

wavefunction is constructed by counting the number of electrons in each state, e. g.

W) = Inlsa 11155112311 nzsp' ' °nn1me nulmfi) 9 (18)

where the r1“1m denotes the electrons with the basis function nlma, where nlmu are the four

quantum numbers needed to fully describe the hydrogenic single-electron state. Thus the

Hartree-Fock ground state of the helium atom is rewritten in the occupation number

formalism as

1,1,0,0,0,---,0). (19)
 Ilsa 159) =

The ones in the right side ofEquation (19) indicate that the lscl and 1s,3 basis functions are

occupied while the zeroes indicate that none of other basis functions are occupied. An

excited configuration ofhelium can be rewritten as

'15:: 25a) = I 1909190903. ' ' 90> - (20)

A sum over a complete set of occupation numbers spans a complete multi-eliectron space;

therefore, the completeness relation for multi-electron wavefirnctions can be written as

Zii><i|=1= Z Z Zlnlmnlsfi"’nnlmfi)<nnlmfl”'nlsflnlnl- (21)

' nlunlsfi Bums

In the summations above, the only values that the occupation numbers may have is zero

or one. This restriction is due to the Pauli exclusion principle. In terms of creation and

annihilation operators, the surn-over-states becomes

Inn... nrm-"nmmp> = a*(lsu) a'(1ss)"'a'(nlms)l ®)- (22)

Further properties involving the importance ofordering of creation and annihilation

operators in multi-electron states are found in Appendix C.
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Foundations of the Polarization Propagator

The polarization propagator has its origins in the time correlation function ofthe

density operator. The density operator is a statistical description ofthe state of an

ensemble ofquantum systems. One text describes the density operator as an averaging

operator of single quantum systems over an ensemble.4 A density operator can represent

a mixed state, which does not have a specified wavefunction that can be constructed from

a basis set. Therefore, to find numerical results involving a large number ofquantum

systems, the density operator is used. In conventional formalism, the N-electron density

operator is expressed as

o(t)=|‘P(t)><‘P(t)|- (23)

For calculations with single-electron operators, the N—electron density Operator contains

an overabundance of information. Therefore, the simpler single-electron density operator

is used. In the language of second quantization, the single-particle density operator can

be expressed as

963) = Z¢:(f)¢,-(f)a!(t)a,- (t) where the 6,, 4),- are basis functions. (24)

The relationship between the densities at two different times is found in the density

correlation firnction constructed by Zubarev10 and considered by others"'”. Correlation

functionsl3 describe how one quantity changes in response to a perturbation that couples

to a second quantity. As a simple example, consider that an arbitrary charge distribution

will deform in the presence of a time-dependent external electric field. The density time

correlation firnction relates the charge distribution at one instant of time to the charge
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distribution at another instant of time. This charge density correlation function may be

written using the Heaviside step fimction“ as

so)=—ie(t-t'){<p(t)o(v»-<p(t')><p(t»}—ie(t'-t){<p(v)p(t)>-<p(t)><p<v)>}- (25>

Since the correlation function is written using the Heaviside step function, a charge

distribution in the future never has an effect on a charge distribution in the past. Thus

causality is ensured since the effects of a charge distribution propagate into the firture, not

into the past.

The Fourier transform of the time-dependent correlation firnction is the energy-

dependent density correlation function 1,905)”

E =lim

x°°( ) Z E—hm.o+ie E+hw.o-i8

Johanna) shaman} where hm,,=E,-E,, (26)

In terms of the points f and f' , the time-dependent density correlation function is

rewritten as

f,f";E = lim , ,

pr( ) Z E-hw.o + re E+hm.o -18

{WWIn)(nlp(f')|0> (OWN n><nlo(f)| 0)} (27)

where hmno = En - E0-

The imaginary infinitesirnal amount added or subtracted to the energy denominator in

the transformed density-correlation function is a result of taking the Fourier transform of

the Heaviside step function. The imaginary infinitesimal allows causality to be

maintained when the polarization propagator is contour-integrated to find the residues or

poles ofthe propagator. The significance of finding the residue and poles will be

explained in an upcoming section. The imaginary infinitesimal arises in the consideration

of ensuring that a sinusoidal perturbation applied to system is zero at infinite time in the
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past. Thus, the damping ofthe sinusoidal perturbation occurs when it is multiplied by a

real exponential, e“-

, , 1 . .

.lian H (w) -11.... awe-mew = o. (28>

The energy-dependent density correlation function can be rewritten in terms of the

polarization propagator by substituting Equation (24), the definition ofthe density

operator, into Equation (27).

r(0l¢§(f)¢,-(i)ai(t)aj(t)|n)(n|¢l(f')¢.(?')al(t)an(0W) ‘

pr(f,f';E)= Z lim21 E—hm.o+18 ((29)

1.18.1 “01-4) (0| 4); (f') d), (f') a}. (t) a. (0i n)(n| 4): (f) 9,“)£0) 31' (0i 0)

, E+hco..o - i8  J

Rearranging Equation (29) yields the energy-dependent density correlation function

in terms ofbasis functions and the polarization propagator

x..(f,f':E) = £ng 9:6) ¢,-(r) 92 (PM. (r') x}: (E), (30)

where x: (E) is defined as the polarization propagator.

. o t . t o o t J .0 .m): {< la.a.|n><nlara.|> (larallanlaraJl >}=,;(.,). (31)
no E—hcono +18 E+hcono - 18

Note E=hco is substituted to give the fi'equency-dependent polarization propagator. The

imaginary infinitesimal portion ofthe propagator shall be dropped since only off-resonant

response will be considered. The reduced resolvent Operator R(co) is defined to further

simplify the expression.

R(co) = (4,0, who, )"(1—|0)(o|) where 1: z|n)(n|. (32)

Therefore, the polarization propagator becomes

48



X216”) = ’(OI alarm-(0)31 aJIO) ‘ (0| 31': a. R((0)aia,-I 0) - (33)

Defining a}‘ as 3? = a; a; (the single-electron replacement operator) modifies the

polarization propagator to become

x226»)=-<ona2R(—w)ano>—<onarR(m)a:-Io>. (34)

The polarization propagator is rewritten as

x226»)=—<OIaJR(-m)ario>—<olarR(w)a2|o> (35)

or n:;::(m) = —(o|a: R(m)a::|o) - (clay R(-m)a:| o) . (36)

It is also possible to include the damping of excited states in the definition of the

polarization propagator; however, such off-resonance damping is assumed negligible.

The Nonlinear Polarization Propagator

The polarization propagator is a general linear-response function meaning that it can

be applied to any situation where the state density responds linearly to an applied

perturbation. Specific examples include the polarizability as the linear-response function

measuring the response to an applied electric field, and the paramagnetic susceptibility

measuring the response to an applied magnetic field. When linear-response firnctions are

inadequate to describe the response, nonlinear-response functions are used in addition.

Nonlinear-response fimctions have been constructed by Olsen and JPJrgensen16 and have

been reinterpreted using second-quantized operators by Hettema et. a1.17 and Moszynski

et. al.18 in terms ofnonlinear polarization propagators. The nonlinear polarization

propagator has the form
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l (OlatlanKafii — p.21) m><mla23|0>

(mm... - he. - hsz—hmo. - hon)

(0|a23ln)<n|(ai1- 9:3)! 1100!!! all 0) + > (3 7)

(-l"l0)oh + hmzx-hmm + 71031 + hmz)

(0| ah I n)(nl(afi - 9:) mela3: I 0)

\ (-h(Don + hmrxr-hwon - from)

 

 

11:37:22: ((01 9032) = (1+P12) 20‘

 

  
where the permutator P12 permutes the following variables

(019032

P12 = ’9' ('9 )9" (38)

K’HK"

and the operator of is defined as p: = (0| afiIO) . The nonlinear polarization propagator

expressed in terms of the reduced resolvent operator becomes

(one: R(-03. - e.)(a:: - p::)R(-e.)a::|o> +‘

H:::::::(0)1,C02) = (1+P12)4 (0| at: R(w2)(a§3 - 9:3)R(m. + m2) a:|0) +

“(0| at: 8(a).)(s: - p:)R(-e.)a:: | o)

(39)V

I

  J

The propagator that is Equation (39) is used to determine nonlinear molecular properties

such as the hyperpolarizability.

The Derivative of the Polarization Propagator

The structure ofthe polarization propagator in the form ofEquation (29) shows that

for contour integration with respect to energy, its poles yield excitation energies of a

molecular system while its residues yield transition matrix elements. Thus, the values of

molecular properties can be found not only by applying the polarization propagator but

also by finding its poles and residues.
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The polarization propagator has been used to calculate a variety ofmolecular

properties. Oddershede12 mentions in his review article the following properties:

oscillator strengths, Rayleigh scattering cross sections, photoionization cross sections,

excitation energies, radiative lifetimes, static and dynamic polarizabilities,

hyperpolarizabilities, dipole moment derivatives, potential energy curves, nuclear spin-

spin coupling constants, nuclear magnetic shielding constants, magnetic susceptibilities,

Verdet constants, spin-rotation constants, magnetic rotatory strengths, force constants and

CS van der Waals coefficients. Most ofthese properties are calculated as single-point

calculations at the equilibrium geometry ofthe molecule. However, in many cases, it is

important to know the value of a property at several different molecular geometries about

the equilibrium geometry. Also nuclear-coordinate derivatives ofthe properties are often

calculated using numerical differentiation techniques.”

I l . E .

The derivatives ofmagnetic properties with respect to a parameter have been

examined, all using numerical methods. Several studies have examined the relationship

ofvarious orders of spin-spin coupling constants to changes in molecular geometry. 1J(H,

C) and 2J(H, H) surfaces have been calculated for methane and perdeuteromethane using

49 distinct geometries.20 Lazzeretti, Zanasi and Raynes also created surfaces from the

contributions to the spin-spin coupling constants: Fermi contact terms, spin-dipole terms

and orbital paramagnetic terms. The surface construction of 'J(H, C) and 2J(H, H) for

methane has been repeated more recently using 51 distinct geometries.21 Calculations of

2J(H, H) have been done for CH4, SiH4, GeH4 and SnH4 at multiple geometries.22 The
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calculations necessitated finding the normal-coordinate derivatives of the spin-spin

coupling surface so that vibrational averages could be calculated. 1J(H, C) and 1J(H, N)

have been computed for HCN and HNC at the equilibrium bond (distance r,, and at re 5:

0.1A.23 Third-order, i. e. vicinal, spin-spin coupling constants 3J(H, F) in substituted

fluoroethanes have been determined as a function ofthe torsion angle between the

hydrogen and fluorine atoms.24 The through-space spin-spin coupling constants TSJ(P, P)

and TSJ(Se, Se) in diphospho-methanes and diseleno-methanes have been calculated as a

function oftorsion angle using a simplified polarization propagator technique.” (The

through-space contribution accounts only for that which is due to overlap ofthe lone pairs

ofthe phosphorus or selenium atoms.) Spin-spin coupling constants have also been

computed as a function ofhydrogen-bond distance.26

Other magnetic properties have been calculated as a function as internuclear distance.

The magnetizability and 13C nuclear magnetic shielding surfaces for methanehave been

determined using 59 distinct geometries.27 The spin-rotation constant has been computed

in GaH28 and AlI-I29 as a function of internuclear distance. The nuclear magnetic shielding

constant and spin-rotation constant of various isotopomers of second row hydrides have

been calculated as function of internuclear distance.30 Surfaces of the nuclear magnetic

shielding of 17O and H, the spin-rotation constant of 17O and the rotational g—tensor in the

oxonium ion H3O+ versus normal vibrational coordinates have been constructed.31

Vibrational averages for Verdet constants have been found for N2, H2, CO and HF.32
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Electric properties that have been calculated using polarization propagators include

Raman intensities, which depend on the normal-mode derivative of the polarizability, for

CO, N2, HCl and C12.33 The intensities were calculated using numerical differentiation

techniques on polarizability calculations at three bond lengths. Potential energy curves of

the ground state and various excited states ofBH have been constructed.34 Vibrational

averages of the ground state energy, dipole moment and different Cartesian components

ofthe polarizability, cram) and organ), and hyperpolarizabilities, 0mm), 0mm) and

0mm), have all been calculated using polarization propagator techniques.” The

hyperpolarizabilities were computed by applying the finite-field technique36 to

calculations of the polarizability. Vibrational averages of the second hyperpolarizability

y(co,o),0) ofN2 were found using finite-field techniques, applied to the polarizability

calculated with the polarization propagator. The vibrational contributions to the

hyperpolarizability and second hyperpolarizability of linear polymethine dyes (push-pull

polyenes) have been determined and have been used to examine the change in nonlinear

optical properties versus bond-length alternation ('BLA).37 Additionally, polarizability

surfaces for 12CH4 and 12CD4 have been constructed using 49 distinct geometries.” The

effect of vibronic coupling in the K-shell x-ray spectra of ethylene has been recently

examined via calculation ofnormal-mode potential energy derivatives as vibronic

coupling constants.39 Oscillator strength sum rules ofH2 have been computed at 21

geometries to find their internuclear coordinate dependences.4o
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Uses of the Nonlinear Polarization Propagator

The nonlinear polarization propagator has been used in quadratic-response function

t11eory'6"7to calculate quadratic-response properties and linear-response properties of

excited states. Quadratic-response functions have been used to calculate quantities that

are dependent upon vibronic coupling such as vibronic coupling constants,

phosphorescence lifetimes and forbidden dipole-transition strengths. The nonlinear

propagator is used to calculate the mixing of singlet and triplet spin states due to spin-

orbit coupling. This spin mixing allows spin-forbidden dipole transitions and

phosphorescence. Spin-forbidden transitions and phosphorescence lifetimes have been

calculated for formaldehyde.“42 The vibrational structure of ground-state excitation

bands has been determined by use of vibronic coupling constants for H20, NH3, CH4,”

ethylene,“ and pyrrole." The effect of vibronic coupling on the two-photon spectra of

benzene“5 and pyramidine“7 for dipole-forbidden two-photon transitions has been

computed. Spin-orbit effects on the Auger spectrum ofwater have been examined.48

Potential energy curves of the n* state ofthe cyclopropenyl cation C3H3+ have been

calculated including the effects of vibronic coupling on the transition from the ground

state to the 1t* state.49

Derivation of the Polarization Propagator Derivative

Introduction

The derivation relating the derivative of the polarization propagator to the first order

nonlinear polarization propagator is suggested by the relationship found by Hunt et al.50'5'
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between the nuclear-coordinate derivative of the polarizability and the hyperpolarizability

density,

6aw(f;i',m)/6R:‘ = 16mm, (r;r',m,r",0)z"T,, (rat—1"). (40)

The polarizability density or“, (f; f',(o) can be calculated using the polarization propagator

a...(r.r';w>=-[p(r).]:[p(r'>.]:metre) where [p(r>.]:=<>~lp(r).lx>, (41>

whereas the hyperpolarizability density is calculated with the nonlinear polarization

propagator

B...(nf'.f";wuw")=[pat]:[p(r').]:[p(f"),]:11:22:20»aw"). (42>

The matrix elements [p(f)m]:L = (1|p(f)a | K) may have a dependence on an arbitrary

parameter and, as shown below, the replacement operators that comprise the propagators

may also depend on the same parameter. Therefore, when the derivative of the

polarization propagator is considered, the derivative must contain terms that differ from

the nonlinear polarization propagator. These “extra” terms will be shown to cancel the

terms from the derivatives of the standard matrix elements [p(f)a]: in Appendix D. The

idea is emphasized that the extra terms arise in both the standard matrix elements and the

propagators because the basis functions that comprise the basis set for the calculation are

allowed to vary with respect to the arbitrary parameter 11.

I l . ES‘ l-l 1!! f1 .

The derivation for the derivative ofthe polarization propagator is accomplished by

calculating and manipulating the derivative of the ground-state wavefunction, the
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derivative ofthe reduced resolvent and the derivative of the Hamiltonian.‘2 Finding the

polarization propagator derivative involves also involves the derivatives ofthe creation

and annihilation operators. The dependence ofthe creation and annihilation operators on

an arbitrary parameter, such as nuclear coordinate, can be demonstrated by examining the

derivative of the ground state wavefunction in the language of second quantization. The

simple case of a one-electron ground state is now considered.

|0>=a3|®> (43>

The derivative of the ground state is found to be52

9'9)— =-G(o)93£Io> (44)
an 5n

The reduced resolvent, G(O), can be expanded and simplified.

9'22“ _ _ -4 _ 51C
5'1 — (1 goXSC E0) (1 go)an|0>

=-(sc-E.>“((-e)%lo> (45>

=—R(O)%C-IO>

A new definition of the reduced resolvent is applied to Equation (45)

R(m) = (SC—E0 + hm)-'(1- so) (46)

The derivative in the language of second quantization becomes

 a 0) 1 63C 1 l I
a — — 21 an 0 R(O) ao aoI Q)

(47)

63c ‘ 63C . . . . .
where 3:]- = (K I El 7») are the matrix elements of the Hamrltonran denvatrve and

a: = a1 a, is defined as the product of a creation and an annihilation operator.
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This simple analogy between the ground state derivative in the second quantization

formalism and the ground-state derivative in the standard formalism holds only for one

electron systems. When two or more electrons comprise the ground state, the

commutation relationship between the creation and annihilation operators becomes

important and the simple analogy fails.’3 The antisymmetrical nature ofthe multi-

electron wavefrmction is taken into account by using occupation number wavefunctions.

Thus the differences between the derivatives ofHunt et. al.’°'Sl and this work lies in the

nature of the polarization propagator which is defined in terms of single-electron basis

states for a many-body system. Since the property is defined with a single-electron basis,

the anti-commutation relationship between the single-electron states must be taken into

account.

I: . . E l E I . . E

The polarizability density, in the language of second quantization, is expressed as’4

aw(irate) = —[p(f)a]:[p(f')fllr 11:32:61)) where [flan]: = (Mpfimx), (43)

To take the derivative ofthe polarizability density with respect to an arbitrary parameter,

we need to consider what elements ofthe polarizability density may have parameter

dependence. In this treatment, the electronic coordinate is the only parameter that will

not be considered. First the matrix elements [15(17):]: = (Mp(f)u|x> are examined. Both the

(XI and the In) wavefunctions may have parameter dependence that is easily calculated

in terms of sums-over-states with single-electron states.
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All of the elements of the polarization propagator may have parameter dependence.

The derivative of the polarization propagator can be written as

_;_a“¢¢(‘°)=-°'*R(w)10-|> (0| aa,,;R(m>:Io>- Pie—4611“”|°>

 

6n 5'1

a) a or Vim-fl" -O) 1 - anaa" —m a1 (49)(new)'l0)-<0| :R()a: an mam >a..I(>> <oI,n R( M»

_ aR__(_-4>). ea;_ .1, _,,.§I__o>an
<0Ia: an (RIO)- (Ola:R()anl0> (Oh. R(— )a

The derivative with respect to any parameter 1] of the ground-state wavefunction and the

derivative with respect to any parameter 11 of the reduced resolvent can be shown to be52

.5102 _ _ Bic
(9n — R(O) 5n IO) (50)

9%(‘192 = -—R(co)figmm+ R(m)R(O) (3% go + 50 %R(O)R(w) (51)

where p = IOXOI.

Upon substitution, the polarization propagator derivative becomes

alIfifiKm) A 63.,

—5n= +(0l—anSCR(O) asR(@) a.‘l-O) (O 5n

+ (OlatR(o>) d—anT-JRRO)21IO) (Ola: R(m)R(0)%n-Joae |0>

- (Olate %R(O)R(:)a1—|0> (ma: ‘2‘"

+ (0| aéR(o>) a5 R(O) —|0> + (OlgR(0) a5 R(-— (o) at|0> (52)
an an

—<OI%R(—w)at|0>+<0lat3R(—(o)(Xi—mm R(— e)

-<oIa.R( m)R(0)%soa.|0>-<O|aliso%R(0)R(—w)a:|0>

A3|0)        

        

allo)

> +<0Ia:1R(— e>a:R(o>%Io>     — (OI a5 R(-
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Terms (1, 5), (4, 7), (8, 12) and (l l, 14) in Equation (52) are combined using the

definition p: = (OIafiIO). As an example, terms 1 and 5 are combined.

53C . 63C .

(0| 73? R(O) a: R(m) art-Io) — (01 at (o ER(0)R(6I)) art-Io)

= <oI%n5£R(o)a:R(e)a::Io> - (Olatl0)<O|%R(O)R(w)afi$|0>

= (olagnSERw) a: R(m)a:1l0) — (OI%R(0)(OIa§IO)R(w)a§:I0)

= (OI%R(0)(at - p:)R(e) a::Io>

Completing the combination ofterms (1, 5), (4, 7), (8, 12) and (11, 14) yields

(53)

6112.500)

an

 if: R((o)at1|0>

+ (OlaiR(m)2(%-1i°) R(w) 215 I 0) — (0| a: R((n)

= +<0I%R(0)(ai - 6311(0)) afi1|0> - (oI

aati

an

+(OlatR(m)(at3—piI)R(0)%SCIO>+(0|%R(0)(at1—923)R(- m)a.’;l0> (54>

(:3:R(-o>)a:|0>+<OlatiR(—co)§(%°—)R(- m)at|0>

if Io> + (Ola:1R(- e)(a: - Pi)R(0)%SCIO>

 

IO)

-(0|
 

 

- (Olafi R(- (0)

We limit consideration to the set ofparameters 11 such that aSC/an can be written as a

sum ofone-electron operators ah/an , so that the Hamiltonian derivatives become

2%: ET" A: 55

an Ian 2was ( )

and

a(EEO-BO) Iahon” r» A"_ = _. .~- .~ 56an an ”(a P I ( )
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The expression [@I is a multiplicative term that relates the nonlinear polarization

propagator to the quadratic response function of a specific molecular property. After

substitution of Equations (55) and (56) into Equation (54), the polarization propagator

derivative becomes

antzfilw) = [fl "

an

x ((0Ia::R(0>(a:-0:)R(0>a::I+0+) (2:0Ia R(0)(a: -0.“0)R(0)aI0

+(OIa: R(‘Dxaii ‘ 9911(0) afiZII0)+ (OIa..-R(0)(ae4 - PrIR(-<D)a.. I 0) (57)

+08: R(—0>(a.: - p10)R(-0>a I0>+ <0Ia0=R((—0>(a:- 0::)R(0>a=>>I0

-<0I3fR(0>a:rI0>—<0Ia:R(0>—“—'I0> 

 —(0I7;I‘R(4>>a:I0>-(0Ia::R(    an)-

The first six terms ofthe polarization propagator derivative have a structure analogous to

the hyperpolarizability’5

(3.3. 65304930) = (0| 0.. (f)G(00)P3(f")G(00)Pa(f')l0)

+(0|Ps(f')G(-0>)P$(f")G(-0>)Pa(f)l0)

+(0lPa(f)G(w)P8(f')G(0)Pv(f")|0) (58)

+(OIPI(f")G(0)P8(f')G(-00)Pa(f)I0>

+ (OIP.(f")G(0)P3(f)G(w)Ps(f')|0>

+(0|Ps(f')G(-0>)P3(T)G(0)P4(f")|0>.

In fact, the hyperpolarizability can be expressed in terms ofthe nonlinear polarization

propagator.

Bap,('r3?',f";w',w")=IP(f),]:IP(').,:IIP(r"),:HI11:23:1100. (59)
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However, Equation (57) contains more than just the nonlinear polarization propagator.

The terms which depend on the derivatives ofthe replacement operator must also be

considered.

1: . . E] E l 3

To consider the derivative of the replacement operator at = a}, a: , the operator is

transformed into the occupation number basis set. First, two different complete sum-

over-single-electron-states are inserted, one preceding the operator and one following it?3

a:=a;a‘= z 2 In'ln'2”.n'1".n'xn.>

{nk} in'kl

x (11,111,2"11'1"'n'x"'laxaxInlnf'qh.”'nx”°><nln2'°'n1"'nx”'I (60)

= {in}}("1)S"("1)SK50,n15l.n‘In'l11'2"'n'1"’
n'x ...>

k

X (n'ln'2."n'l...n'x'..|nln2...nl+1...nK _1...><n'n2...nloo.nx...l.

Therefore,

a: :alax = 2 2 (-1)SA(—1)SKSOJIASIJI‘In
'ln'Z”'n'xu'n’x"'>

Ink} {n'k} (61)

x 5D,”)! 5n'2-n2" '5n'pnx-l ”511,101+!" .(m n; ...m.. .m .. .I_

Summation over the primed occupation numbers yields

3:: {z}(_l)sl~sx50,n151’nxIn]mum +1---n.. _1...)<mn2...m...m...l, (62)

Ill:

The right side of Equation (62) is necessarily equal to the left side; therefore, the right

side is an occupation number representation of the replacement operator.
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To calculate the derivative of the replacement operator, the occupation number

representation of the replacement operator in Equation (62) is used. Thus the derivative

ofthe replacement operator is the sum of derivatives of the ket-bra products.

 

anln2”'n1+1"'nx -1...)

(nInz---m---n."-I

Ba: 5 —s a" 63
_= E -1 1 ‘8 n 5 n . ( )
an {nk}( ) 0. 1 19 x _1...> a<nln2”'nl...nr...|

.. an

 
lnIn2°°°m+1'"n

Equation (63) necessitates the calculation of the derivative of the multi-electron states.

12' . Ellll'-l S

The derivative of the multi-electron state is different from that of the single-electron

wavefimction, since antisymmetry must be preserved in the multi-electron derivative.

For clarity, the derivative of the multi-electron state will be found by using the Slater

determinant formalism rather than the occupation number formalism. Comparing

Equations (7) and (18) yields the identity

Mn) w.(rz) ------ w.(r~)

1 0.0.) 0.02) ------ 02m)
I1!1213'°'1NON+10N+2"'>=7_§? : . (64)

0.0.) mm) --3 I...)   
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The multi-electron wavefunction is a sum ofproducts of single-electron wavefunctions.

Therefore, the derivative ofthe multi-electron wavefunction is a sum ofsums of

derivatives of single-electron wavefunctions. (The first sum is represented by the

determinant notation.)

 

 

 

 

 

WI“) W002)

d111213"'1NON+lON-+2"'>_ 1 W203) W202) '''''

an Jig 5 E

0.0.) 0.0.) ----- 3

WI (1") W102) """ W101“)

W261) W202) 6‘45“”)

+_1_ 5.” a." 5."
J1?! : : :

WN (1") WM (r2) """" WN (TN)

WI (1'!) WI (r2) """" W10")

Mn) w2(r2) '''''' wz(r~)

1 5 5 5

“LT/ii s s s

WNGI) aW~(r2) 601,6”)

6n 5'1 0n 

 

 

6W1 (W)

W2 (In)

WN .(TN)  

(65)

The derivatives ofthe single electron wavefunctions in Equation (65) can be expressed as

a sum-over-states.

6M

an and:

63

= Cka‘“) (66)



The prime on the summation of Equation (66) indicates exclusion of the Ik) function.

Substitution ofEquation (66) into Equation (65) yields

 

  

  

 

III “’2‘”? “I“?
dIIIZIBH'lNONHONQ'”) 1 W2.“ “12.1.2 “12:1“

00 0R5“ : : ' . :

WN (r1) WN (r2) """" WN (TN)

“’1 (1'1) “’1 (1'2) """" WI (”1)

1 (”IA“) Wm(f2) ...... Wm(TN)

+7.01%.sz E f f

WNII'I) WN'(1'2) ' ° ’ ' ' WN .(YN)

Mn) w.(r2) ------ w.(r~)

1 Wzlrn) W2.(r2) °°°° Wzng)

+fim§NCNm : : '.

w...(n) WI”) ..: Walk”) (67) 

Note that if there is a determinant where the Im) functions are included in the set of

single electron functions used to construct the multi-electron configuration, i. e.

Im) e {Ip}: p = 1,2- - -N} , then that determinant is zero. In addition, no assumptions have

been placed upon the determinants; they may be ground or excited configurations.

Before converting Equation (67) back into an occupation number representation, the Im)

fimctions in the determinant must be put into standard order. The ordering is done by

exchanging the Im) wavefunction row with as other rows as necessary. Each exchange

ofrows introduces a sign change, giving an overall factor that can be symbolized as

(—1)S""Sk . The quantity Sm-Sk indicates the number ofrow exchanges. Equation (67) is
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written as a double sum, the k sum indicating the sum ofdeterminants and the m sum

indicating the sum of single electron states.

 

  

W1 (In) W: (r2) """" W1 (In)

611.1213---1;:N.10N.2~->= % §m§k(_1)sm—skcm w..(r.) Wm(r2) w...(r~) . (68)

Wn (r1) Wu (f2) ”' '” WN(1’N)

In the occupation number formalism, Equation (68) becomes

a1I1213”'1NON+lON+2°°')

an

 = {I 2‘.k(-1)S“'"S"50,um 61% len1 mmnr -1'"nm +1"-nn) (69)

2"E1El E II"

Equation (69) is the derivative of the multi-electron wavefunction. Thus Equation

(69) is substituted into Equation (63) to continue calculating the derivative ofthe

replacement operator.

 

aa: — -

an = {2 } E: m§k (__1)Sm Sk (_1)S2L S‘ 50’”; 61'”: 80mm 51,1“m;

(70)
x{ Chnlnln2"'nk‘1"'n1+1”'nx '1'”nn+1‘”nN><nln2"'n1"'nx”'l}

+CLnlnln2"'nA +1...“K —1"'><nln2°"nk _ 1'°'n1'°'nx"'nm +1.“an

Now the right hand side ofEquation (70) is cast back into replacement operator

formalism.

p

a.

an

 

=§ 2 Cmafai+2 2 CLnaiai‘n- (71)

3* at math

Note that in the first term ofEquation (71), the effect of the derivative is to annihilate an

electron in the k state and create an electron in the m state; whereas, in the second term,
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the effect ofthe derivative is to annihilate an electron in the m state and create an electron

in the k state. Since k and m are only labels, they can be interchanged in the second term.

I.

 

"m=§2‘. Chm 3kmax+2 E kaaxai" (72)

k mack  

The replacement operators are expanded as creation/annihilation operator products and

the anticommutation relationships ofEquation (12) are applied

 

=E‘.2‘. Cr... amaraiat‘tz m2 kaaiataLak
mk‘  

= : Cu. [31,. at 8“,- am a; an. ax] + ka[3i 31: 8m.“’3;a... 3" 3‘1} (73)wk
{

...WJCalamaxfin -amarakat]+Cu[a{ak6.G.,—afna{akax]}

{£2 Cmamax5n + Can: a; 3k 8.....-_(Chn + C:nk) 8:113:81: ax} -

kmaek

Now the quantity Cm + CI“ must be examined. The Ckm coefficients indicate the amount

that the m state mixes into the k state when a perturbation is applied. Thus the perturbed

k state |k') can be written as

|k')=|k)+---+Ckm|m)+m. (74)

Accordingly, the perturbed m state (m'l can be written as

(m'l = (m|+- - -+ cInk(k|+- - -. (75)

The perturbed states can be constructed to be still orthogonal when perturbed if certain

conditions are met.

(m’lk') = (mlk)+---+Ch,,(m|m)+m+ cInk(k|k)+---= O

. (76)
= O+°°°+Ckm'1+"°+ka'1+"°= O

The conditions on the perturbed wavefunctions that insure orthonormality are that for all

k at m, Cm + C}... = 0. Thus continuing from Equation (73), the derivative of the
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replacement operator is found by substituting the orthonormality condition and

performing a summation over a single index.

63:-

an =m£ Cmalna.‘+ 2‘. Clkalak ‘ (77)

= z Cma3+ 2 kaak-

mad. but

3"EIEI"P. 12"v

To finish calculating the derivative of the polarization pr0pagator, we re-examine

Equation (57), specifically the last four terms.

II,',KKK~

61133::(0) = [33119:11W(0)O)

a}.

 

  

an

-<015;:R(w)a:rlo>—<o|am(m)%an§|o>
<78)

(00'6; R('C°)a:<I0) (Olaé3R(-co)%fi|0).

The derivative of the replacement operator is substituted to yield

Lg“): [:24]: my::2: (w0)

-macmmlarmmmilm—k§xCa<0latR(w)a3:i|0>

- mg. Cr... (0 I a: R(CD) a?" I 0) - kg CL: (0 I 3?; R((D) a? I 0)

- ”231 CA’m (Olaf? R(-0)) a: I 0) - :33" Ch (0 I at’ R(-CO) at I 0)

‘ EA'Cm(OIafiIR(—w)a?|O)—k§ CHIOIaizm—(DMHOI-

(79)

The terms are rearranged and the definition ofthe polarization propagator, Equation (36)

is applied to yield the final result.
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1.x "an.,..(m) = [2112] n:;::;::(m,o)
an an .

- 21cm<0larR(w)aé1|0)- 21Cm<0|ai3R(-‘°)33I°>

— ZA’C,.m(OIa§R(a))a2‘oIO)- EA'me(0Ia.'§‘IR(-O))aélo)

—k2'C;m(0IafiR(m)at'I0)-kZ,C2r(0Iai'R(-°3)33I0>

_ k2 c;.(0lat R(m) a: | 0) - kr: Cir (Ola? RH”) filo)

5110 It" 1. 1' A"

= — nx:x':x" ((0,0)

I an ..
+ EXCmH:;%’((D)+ zlcxmnmm)

(80)

+ k2‘. ' C21. Ht? ((0) + k2 Cid: 11:33:10)) -

Discussion

The result in Equation (80) demonstrates a new relationship between response

functions. The equation ofmotion for the linear-response function, Equation (2), shows a

relationship between linear and quadratic-response functions; however, the relationship is

not a derivative relationship. (Parkinson56 has used this relationship to calculate the

dipole polarizability ofH20 with the quadratic-response frmction. Since the

polarizability is more easily calculated using the linear-response function, using the

quadratic-response function is not advantageous.)

This work demonstrates that the calculation ofmolecular properties from energy

derivatives with respect to an electric or magnetic field such as hyperpolarizabilities or

hypermagnetizabilities can be calculated without finite-field techniques. Only response

functions are used. Since the relationship in Equation (80) is general, the equation may
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suggest an efficient method for the calculation ofthe parameter dependence of

electromagnetic properties allowing for frequency dependence.

The chief advantage ofEquation (80) is in the calculation of derivatives of linear-

response properties via the nonlinear polarization propagator. The calculation of energy

derivatives with respect to nuclear-coordinate molecular gradients and energy second

derivatives with respect to nuclear-coordinate molecular Hessians is essential in the

calculation ofmolecular structure?7 The derivatives are also important in the calculation

ofvibrational energies via harmonic and anharmonic force constants. Much effort has

been used to find efficient methods to calculate these quantities.""'59

Though the calculation of the derivative ofthe polarization propagator via calculation

ofthe second-quantized one-electron replacement operator appears to be novel, the

calculation of derivatives of individual creation and annihilation operators is not. The

derivative of the creation operator appears first in the paper by Bak et 01.“? where the

authors calculated first-order nonadiabatic coupling matrix elements necessary for

accurate accountings ofphenomena such as A-doubling61 and spin-orbit coupling. The

theory was also applied in the calculation of atomic polar and axial tensors of Stephens62

in work on the rotational strengths necessary for describing vibrational circular

dichroism."3 The result of this chapter differs from the work ofBak et. al. in that the

derivative of the number-preserving replacement operator has been found rather than the

derivative of the number-changing creation and annihilation operators and that the result

of this chapter is expressed in terms ofpolarization propagators rather than molecular

gradients.
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The result in Equation (80) was suggested by the relationship found by Hunt et (11.50'51

relating the derivative ofpolarizability to the hyperpolarizability density. In published

work“ and Chapter 2 ofthis thesis, a similar relationship has been found between the

derivative of the hyperpolarizability and the second hyperpolarizability density. This

relationship suggests a relationship between the derivative of the quadratic polarization

propagator and the cubic polarization propagator. Such a relationship would be useful as

cubic polarization propagators constructed for the random phase approximation are

already being used to find various cubic electric response tensors such as those

responsible for third harmonic generation, DC-electric field induced second harmonic

generation, degenerate four-wave mixing, etc.“ The cubic propagators" and mixed

analytical-numerical techniques“ have also been used in the calculation of

hypermagnetizabilities which are responsible for magnetic field induced birefiingence or

the Cotton-Mouton effect, a magnetic analogue of the Kerr Effect. In their review, Rizzo,

Rizzo and Bishop67 mention that the calculation of the vibrational corrections to nonlinear

properties, such as the hypennagnetizability, remains a nontrivial problem. The

extension of the results ofthis chapter to the next order could aid in the calculation of

such corrections.
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CHAPTER 4: FIRST ORDER APPROXIMATION TO THE

ELECTRONIC MAGNETIC MOMENT DERIVATIVE

Introduction

Intramolecular response to internal electromagnetic fields has been described by the

same electromagnetic response tensors that describe intramolecular response to external

electromagnetic fields. The first example of this equivalence was derived by Hunt1 who

showed that the derivative of the electronic dipole moment with respect to nuclear

coordinate is connected to the nonlocal polarizability density.

an,3 /6R§ =Ididf’orm,(f;f',0)ZK Tm(f’,RK). (1)

The physical interpretation ofthis connection can be discerned by examining the balance

of electric fields in the molecule at its equilibrium geometry. The electric field at the

nucleus in a molecule at equilibrium is zero since the electric field from the other positive

nuclei in the molecule must balance the electric field from the negative electronic charge

distribution. When a nucleus is perturbed away from equilibrium, the Coulomb field

changes throughout the molecule. The electronic charge distribution responds to this

change in the electric field via the nonlocal polarizability density. This response is

weighted by a distance relationship between the position of the nucleus and the point in

the electronic charge distribution where the change in the nuclear Coulomb field is

computed. This distance relationship, known as the dipole propagator, is defined as
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1 J = 3(fa‘r'axrb“r'BI’5aBIf'f'I2 _115
_ _ 6 5f—f'. (2)
|r_rr| lf-f's 3 “P ( )

Tab (f,f’) = Va Vfl[

The nonlocal polarizability density that characterizes the intramolecular response is the

same tensor used to describe the electronic molecular response to an external electric

field. Other such relationships have been found and will be discussed, subsequently.

ll l lS 1.1.]: ..

The distinction between the polarizability and nonlocal polarizability density should

be clarified. The nonlocal polarizability density yields the response ofthe molecule at a

single point due to an applied field at another point. When an electric field interacts with

a point ofcharge distribution, the charge distribution at the field point becomes polarized.

This polarization field in turn polarizes the charge distribution at the response point. To

find the total response at a single point in the molecule, the effect of the field at all field

points in the molecules must be summed. To calculate the total collective response, i. e.

the total polarizability, from all points, all the response points must be summed. Thus,

the relationship between the polarizability and nonlocal polarizability density is that the

polarizability is equal to the nonlocal polarizability density integrated over all field and

response points.

(1043(0)) = Idfdf'aagfij'xo). (3)
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IntramoleculaLElectriLResnonse

The intramolecular responses ofthe polarizability’ and hyperpolarizability3 due to an

applied electric field are related to external response tensors. .

c301,,y (0))/5R: = J'dfdf'df" B,.,(r;r',m,r",0)z" T50(f",R"). (4)

60am (—co.,;(0',(0")/ 6R:

_ (5)
= Idfdfrdfrrdfrrry any: (T;T',(D r, 110,0) n, frrr,0)zK T55 (fur, RK ).

Equation (4) shows that the electronic polarizability responds to an internal electric field

via the nonlocal hyperpolarizability density, whereas Equation (5) demonstrates that the

hyperpolarizability responds via the second hyperpolarizability density.

IntramoleculatMagnetiLReannse

Derivatives of the electronic magnetic moment with respect to nuclear linear

momentum have been related to nonlocal charge-current susceptibility densities.4

I drdr' Im<0| p(r')G((D)G(- co)[fxi(f)L|0>V§|1—,—xl——-‘f’l

%_ hZKe

apg‘ MKc

 

(6)

In Equation (6), G((o) represents the reduced resolvent from standard perturbation theory.

G(m) =(1-geX8c-Eo-hm)’1(1-p),where go =|0)(0|, (7)

ZK is the charge and MK is the mass on nucleus K while VI,‘ is the gradient Operator with

respect to the nuclear coordinate R“. p? represents the [3th Cartesian coordinate of the

linear momentum ofnucleus K while m3 is the 01th Cartesian coordinate of the electronic

magnetic moment. Equation (6) demonstrates that the change of the electronic magnetic

78



moment due to an internal electric field is related to a charge-current susceptibility

density, x2“ = (0|p(r')G(0J)G(—m)[ij(f)L | O). This susceptibility tensor is the nonlocal

density analog of the rotational strength, the quantity calculated to find the intensities of

the transitions associated with vibrational circular dichroism, VCD.

VCD5’6'7 is the phenomenon when light ofone circular polarization has a different

degree of vibrational absorption than light ofthe other circular polarization. The effect

occurs only in chiral molecules or molecules with chiral crystal symmetry. Heuristically,

VCD can be understood by considering the electric field ofthe nuclei during a vibration.

As the nuclei move, a time-dependent electric field is produced. The electric field

produces a time-dependent deformation of the charge density that induces a magnetic

moment within the molecule. The intensity ofthe absorption is determined by a quantity

called the rotational strength that couples the electronic electric-dipole transition matrix

element to electronic magnetic-dipole transition matrix element.

The charge-current susceptibility x3” used in the theory ofVCD relates a change in

the electronic magnetic moment at one point in a molecule to the change in the

polarization due to an applied electric field at another point in the molecule. Thus, the

derivative ofthe electronic magnetic moment with respect to nuclear linear momentum

can be calculated from a change in the current density due to electric field perturbations.

The work in this chapter also calculates the derivative ofthe electronic magnetic moment

with respect to nuclear linear momentum. However, the result differs because the

susceptibility density used to calculate the response is different. The response of the
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magnetic moment due to an applied magnetic field is considered, rather than an applied

electric field.

In this chapter, the magnetic moment derivative with respect to nuclear linear

momentum is related to the paramagnetic nonlocal chemical shift density. The nonlocal

chemical shift density describes how a magnetic field at one point in the molecule affects

a magnetic moment at another point in the molecule. Magnetic moments are created in

the molecule when magnetic fields induce the charge density to circulate. This induction

of circulation is termed the magnetization. In macroscopic terms, the magnetization is

defined as an average of magnetic dipole moments just as the polarization of a molecule

is defined as an average of electric dipole moments.8 One can understand a magnetic

dipole as a loop of current in the same way that an electric dipole is pictured as two

oppositely charged particles separated at a distance.

Molecular Electromagnetism

Eackmund

‘°’” provide an introduction to molecularMany texts9 and monographs

electromagnetism, i. e., the interaction ofmolecules with electric and magnetic fields.

Molecules interact with magnetic fields differently than they do with electric fields.

Viewed figuratively, the electronic charge distribution of a molecule ‘stretches’ when

perturbed by an electric field. When a magnetic field is applied to a molecule, the

electronic charge distribution becomes ‘twisted’. The twisting of the electronic

distribution produces two different effects. Diarnagnetism is produced when the twisting
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causes circulation of the electrons in currents. These induced currents circulate as to

decrease the total magnetic field. Pararnagnetism may be produced when the applied

magnetic field torques the electrons that cause their magnetic moments to align with the

magnetic field. The alignment of the magnetic moments increases the total magnetic

field. In molecules without unpaired electrons or net orbital angular momentum, the

response to an applied magnetic field is diarnagnetic. However, the description of the

response is inherently quantum mechanical and has an unequivocal dependence upon an

arbitrary function named the gauge whose value changes the quantum mechanical

description ofthe magnetic response but not its actual value. The next section discusses

the basic theory ofthe gauge function and its relationship to the vector potential and

magnetic fields.

I! E .13 E . lll 'E'll

The simplest magnetic object found in nature is a magnetic dipole. This contrasts

with the electric case where the simplest particle is a monopole. Because magnetic

monopoles do not exist, the magnetic field can not emanate from a point source, thus the

divergence of a magnetic field is always zero.

V - fi = 0. (8)

When the divergence of a vector is zero, the vector can be described as the curl of a

second vector.“13 In the case of a magnetic field, this vector is named the vector

potential.

B=VXA. (9)
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The curl of a gradient of a scalar function is always zero. Therefore, the vector

potential can be parameterized with the gradient of a scalar function.

§=VX(X'+V}\.), where X=A'+V}.. (10)

This scalar function A is known as a gauge function. The gauge function does not affect

measurable quantities but may ease their calculation.

5 1.1” 'E'll “11.1 .

The application of a magnetic field to a molecule changes the Lagrangian ofthe

molecule. If the nuclei are fixed and there are no spin interactions between the nuclei and

the electrons, the Lagrangian9 of a single electron within a molecule with applied electric

and magnetic fields in SI units“ is

1 ,2 , _
£=§m¢r +V+e¢—er-A (11)

where 4) is the electric scalar potential and A is the magnetic vector potential. The

canonical linear momentum associated with the Lagrangian is defined and subsequently

calculated as

5.53 ,
pk=—ar—=m¢rk-eAk° (12)

k

The canonical linear momentum is seen to depend on the vector potential. Using this

canonical momentum, the Hamiltonian of the molecule becomes

SC=—1—(p+eX)2 +v—e¢ (13)

2m.
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When p is replaced by p = -inV , the Hamiltonian after expansion becomes

-h2 2 eh_ eh e2 2
=—-—V +——AV+—VA+—A +V— e0. (14)

2111. rm. 2imc 2m,

For convenience in calculation, a gauge for the vector potential is often chosen such that

V - X = 0. This gauge choice is referred to as the Coulomb gauge. After applying the

Coulomb gauge and assuming that only magnetic fields are acting on the molecule, the

Hamiltonian becomes

eh
EJC=—V2+——AV+—A2+V. (15)

2me 1m. 2m.

The Hamiltonian can be examined in orders ofthe vector potential where

2

30°) =—V2+V, 3C“) =—Av and SC”) =2—e—A2. (16)
im. me

The two different magnetic effects mentioned earlier can be seen with the division of

the Hamiltonian into first and second-order terms. The first-order term is the

paramagnetic term. Its energy depends on the alignment ofmagnetic dipoles with the

magnetic field thus increasing the total magnetic field away from the molecule. In

molecules with zero spin angular momentum, the magnetic dipoles originate from the net

orbital angular momentum of the molecule. The second-order term can be considered the

diarnagnetic term where the applied magnetic field induces electronic currents in the

molecule. These currents produce magnetic fields that oppose the applied magnetic field

and thus decrease the total magnetic field away from the molecule.

The distinction made between paramagnetic and diarnagnetic effects is not rigorous.

While the first-order paramagnetic effects are independent of the gauge, the second-order
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paramagnetic effects are dependent on the choice of the gauge. How the total second-

order magnetic effects are described can be changed by adjusting the gauge ofthe vector

potential. Because of choosing the proper gauge, the total second-order magnetic effects

can be described using different combinations of first-order perturbation theory applied to

SC“) in Equation (16) and second-order perturbation theory applied to SC“) in Equation

(16). Therefore, division ofmagnetic effects in a molecule into diamagnetic and

paramagnetic effects is illusory, but conventional. Adjusting the gauge will not affect the

second-order energy ofthe system. In this work, only the first-order effects are

considered, therefore the specific choice of gauge, within the general Coulomb gauge, is

ofminor importance.

Construction of the Nonlocal Chemical Shift Tensor

ll 'E'llEllll :

A nonlocal magnetizability tensor will be constructed in this chapter via finding the

derivative of the electronic magnetic moment with respect to nuclear linear momentum.

The theory presented will consider only the zeroth and first-order parts ofthe

Hamiltonian from Equation (16). The second-order contribution will not be included. To

find the magnetic moment derivative, the expectation value of the magnetization operator

is calculated. However, the expectation value is calculated with wavefunctions from

first-order perturbation theory, where the perturbation is the first-order portion of the

Hamiltonian from Equation (16).
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When a charged particle moves rectilinearly relative to a fixed reference fiame, the

particle produces a magnetic field.“

   

§(§)__)queRxV__p0ZeRxfi

- 47: [if ’ 47rM lfif '
(17)

In equation (17), no is the vacuum permeability associated with SI units, R is the vector

distance from the particle, Ze is the particle’s charge, M is the particle’s mass and p’ is

the particle’s mechanical linear momentum. When a nucleus inside a molecule moves, it

creates a magnetic field. The electronic charge distribution changes in response to the

magnetic field of the moving nucleus. The effect on the ground-state wavefunction is

calculated by applying standard nondegenerate time-independent perturbation theory.

E' _ 1 3 l S III E .

The first-order correction to the ground state wavefunction from standard

perturbation theory is found to be’

“1“) = 2, <WiImlIw0>| i)

1 5.3-8. (18)

where the III/i) are the unperturbed wavefunctions from the zeroth-order Hamiltonian, the

Si are unperturbed energies and the prime on the summation indicates summation over

all states except the ground state. When the first-order perturbation ofEquation (16) is

substituted, the ground-state perturbed wavefunction becomes

(WiliXPI‘VoI
5045‘ IV.) (19)
 

IMP>=Iwo>+2i'
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At this point, the nature ofthe perturbation A - '13 needs to be considered. For a

uniform applied magnetic field, the vector potential can be written as

_ 1 _

A f = — B x f . . 200 ,1 > < >

Substituting Equation (20) into the perturbation A - 1‘) yields

X-p=-1—(§xr)-p. (21)

LE, (22)

where the electronic angular momentum operator has been defined as l = f x p. The

electronic magnetic moment operator is defined as H = - :21— —e—l. Thus for a uniform

m

magnetic field, the first-order perturbation of Equation (16) can be written in terms ofthe

electronic magnetic moment operator.

3C“) = -j.I-B (23)

One can arrive at a similar result if, for the magnetic interaction between a nucleus

and the electronic charge distribution, the perturbation Hamiltonian used is'5

3C“) = -I 3,. Xndr (24)

In Equation (24), the e and n subscripts represent electronic and nuclear quantities,

respectively. This form of the interaction Hamiltonian is written in terms of the

electronic current density rather the current. The density formulation is vital to the

construction of the nonlocal magnetizability density. The divergence of the electronic
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current density is zero for steady currents, i. e. where the charge density is not permitted

to fluctuate over time. Thus, the current density can be written in terms ofthe

magnetization density:

j,=Vx m.. I (25)

Note that the magnetization density in, is written as a vector whereas the electron mass

m, is written as a scalar. The magnetization in Equation (25) is more than only the

magnetic dipole density, because it includes all the information about the electronic

current distribution under the influence of an applied magnetic field. Substitution of

Equation (25) into Equation (24) yields

SIC“) = -I(me,)-X,dr. (26)

The vector potential due to the linear momentum of the nucleus and the electronic

magnetization density are finite for a finite molecule. Therefore, for a surface

surrounding the molecule at an infinite boundary, the following integral is zero.

-I (A. x m.) - d8. = 0. (27)

By application ofthe divergence theorem, Equation (27) becomes

~jV-(anm,)dr=0. (28)

Adding Equation (28) to Equation (26) and using the vector identity

v-(a x E): B-(Vx §)-5-(Vx 5) yields

SC“) = —IV .(A’, x ‘rfi,)dr -I(me,)-X,dr = —Im.-(v x X,)dr = —Im,-B.,dr (29)

where BI, is the magnetic field due to the motion of the nucleus.
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The interaction Hamiltonian of Equation (29) can be substituted into the expression

for the first-order ground-state wavefunction of Equation (18) to yield

 

,161mm.e.(r)|y.>d3rwi>.
50 _ 51 (30)

IT>=IW0>-Ei

Substituting Equation (17), the expression for the magnetic field produced by a nucleus

undergoing rectilinear motion, into Equation (30) yields

era-(“r“) ,

pole MI W lwo)dr

IWI=IWO>+WEX 50_5i IV.) (31)

 

 

Equation (31) has the implicit assumption that the origin in the three-dimensional space

considered is at the nucleus. This choice is arbitrary and differs from the choice of origin

for the electronic coordinates which affects the gauge ofthe magnetic field and is often

intentionally varied for ease of calculation.""7"8"9 This wavefimction is the new ground

state wavefunction corrected to first order for magnetic fields produced by a moving zero-

spin nucleus.

El '1[ '11 I"

The wavefimction found in Equation (31) is now used to calculate the expectation

value ofthe electronic magnetic moment density at point f'. The expectation value is

computed by calculating the ground state matrix element ofthe magnetization operator
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+ Hole 2’ I<W1I IIIS I‘VOId IIWOIEG'» ‘11,)

471M i go-gi

u Ze WWII: x 5 )IW.)d’r<w.lm(f')Iwo) (32)

+ 41: M 21' 50 — 5.

)1 Ze 2 I<W0Im(f)l.f(|:xp )Iwi'XWiI m(f)lfgfx p )IWo>d3f<‘Vi'Ifi_le(f')IWi>

In) .2; (e.,—ere-..) '

The derivative of Equation (32) with respect to the nuclear linear momentum is is

performed while also neglecting the fourth term. The electronic wavefunctions used are

the complete adiabatic wavefunctions formulated by Nafie and Freedman,20 which only

have parametric dependence on the nuclear momentum 1’)". Therefore, the only quantity

in the expression for the electronic magnetic moment with functional nuclear linear

momentum dependence is the quantity i x p“. As a lemma, the derivative of f x f5" with

respect to the z-component nuclear linear momentum is calculated.

f x PK 5 e e e

6( 5p: ) = apf [(YPZ‘ - 2p?) + (2P;< - XP§)J + (xp‘f - Ypf)k] (33)

=fi-fi=—V
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In Equation (33), the vortex firnction V has been defined9 as V = -yi + xj

 

    

  

  

- Applying

this result within the derivative of the electronic magnetic moment yields

6171.0”) ___ drlm.(r')I~P> _

5P. 61?2

e V

rm. - w><Im—‘i—thr

" “028 '
34)

4n M i 50 _ 51
(

V

WoIm°(:—_r——Z Iwi)(wilfi.(f')lwo)d3r

_HoZez. II

4nM i 80 _ 5i

Because the vortex function is a function of three dimensional space but not of electronic

coordinates, the matrix elements in Equation (34) ofthe form (wiI—m°(r) . V

 

  

  

 

ITIJ Iv/o) can be

rewritten as ( “If?)lwo)V . Thus, Equation (34) becomes

6116') __lloZe

513, - 41rM

' _ _, ah) ah) _ _, ‘
(Woler )IW.)<W.| I-I’ Iw.)+(wo| H. Iw,)(w,lm.(r III.) (35)

xIZ' r 8 _5. 1' ~th‘.

  

The quantity in the brackets [] is the high-frequency or “paramagnetic” chemical shift of

Rarnsey’s nuclear magnetic resonance theorym"22 Equation (34) neglects all effects of

spin.23

F
q

 

(wolfica (T’)Iwi><wiI—Ifii:|3(f)Iwo>+<WoI—:n1_I:I—3(QIW1><WIIE¢01 (f') we)

amt?) = z' 650— 8. . (36)
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Substituting Equation (36) into Equation (35) and putting the equation in component

form yields the final result.

6171“: (f') ’4 Z8 - -r —

'73.— : 1an x Iomm IV. d’r. <37)

In Equation (37) and all subsequent equations, the Einstein summation convention is used

where summation over repeated coordinate indices is assumed.

As mentioned briefly in the above derivation, the wavefunctions in the derivation

have a parametric dependence on the nuclear momenta in addition to the nuclear

coordinates. The need for such wavefunctions arises from the observation that the use of

adiabatic wavefunctions from the Bom-Oppenheimer approximation24 to calculate

electronic velocities results in zero.”26 This lack of computability necessitates the use of

wavefunctions beyond the zeroth-order Bom-Oppenheimer approximation. Nafie and

Freedman have constructed complete adiabatic electronic wavefunctions that include a

parametric dependence on the nuclear motion for use in theories of vibronic coupling20

and vibrational circular dichroism.27 These wavefunctions are adiabatic because the

electronic portion is separable from the nuclear portion. The wavefimctions have the

utility of calculating electronic momenta without using the nuclear portion of the

wavefunction.

Discussion

The physical interpretation ofEquation (37) is not completely transparent. However,

Equation (37) does demonstrate that molecular electronic current densities respond to
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internal magnetic fields with the same molecular properties used to describe the response

to external magnetic fields. The chemical shift tensor describes how an external magnetic

field induces magnetic moments in the electronic distribution, which affect the true

 
magnetic field at a nucleus. The induced magnetic moments create magnetic fields that

oppose the external field. Thus, the total magnetic field seen by the nucleus is a sum of

 

contributions from the fields of the induced magnetic moments and the applied field.

Equation (37) shows that the chemical shift tensor not only relates magnetic field

 information from the electrons to the nuclei, but that it also relates magnetic field 3

information from the nuclei to the electrons.

This calculation of the nuclear linear momentum derivative incorporates a

magnetization-magnetization mechanism for the response ofmagnetic perturbations

within the molecule. The calculation differs from other calculations done for the nuclear

linear momentum derivative of the electronic magnetic moment in theories ofvibrational

circular dichroism. In their nonlocal theory ofVCD, Hunt and Harris‘ consider the

response to a magnetic field via a magnetization-polarization mechanism in the

construction of a nonlocal charge susceptibility density. This susceptibility is related to

the magnetoelectric shielding tensor that describes the electric field shielding to due an

applied magnetic field”. Their result was derived with the assumption of a homogeneous

magnetic field. In contrast, the result of Equation (37) was derived with an

inhomogeneous magnetic field though the field used was not general but it was specific

to the rectilinear motion of charged particle.
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The derivative of the electronic magnetic moment with respect to nuclear linear

momentum is an important quantity in theories ofVCD. Buckingham, Fowler and

Galwas29 have examined the velocity dependence ofmolecular property surfaces. They .

generalize property surfaces to include imaginary operators such as the momentum and

apply the theory to a nuclear momentum surface of the electronic magnetic moment for

use in a description ofVCD. In work on the electromagnetic effects ofnuclei upon

electrons, Lazzeretti et (11.”31 have investigated how vibrational motion ofnuclei affects

the average electronic magnetic dipole. The effects of the nuclear spin on the electronic

magnetic dipole were also studied.30 Extension of this work led to a sum rule for the

electromagnetic nuclear shieldings in terms of the paramagnetic susceptibility.” Walnut

has examined how radiation interacts with a molecule under the influence of a magnetic

field generated by nuclear motion.33 In a novel application ofthe velocity surface theory

ofBuckingham, Fowler and Galwas, a theory of antisymmetric nonresonant vibrational

Raman scattering has been constructed using the nuclear linear momentum derivative of

the antisymmetric portion of the polarizability tensor.“

In the theories above, the susceptibility tensors used have not been densities.

Chemical shift densities, i. e., nuclear magnetic shielding densities have been constructed

by Jameson and Buckingham.” Their chemical shift density is a local density and differs

fi‘om the nonlocal density found in this chapter. A local chemical shift density has been

calculated for several small molecules. The method involves constructing a neutron

magnetic shielding tensor via calculating the magnetic response of a “probe” neutron

within the molecular volume.36
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The theory constructed in this chapter relating internal magnetic fields to molecular

properties is incomplete. Only the paramagnetic response to a spinless charged particle

has been considered. The diamagnetic response is the same order ofmagnitude as the

paramagnetic response. To include the diamagnetic response, an appropriate treatment of

the second order Hamiltonian ofEquation (16), which contains the square ofthe vector

potential, is necessary. In addition, the spin of the nucleus has been neglected which is

also a nontrivial contributor to the magnetic interactions within a molecule. In Chapter 5,

possible avenues ofresearch are presented to produce a more complete theory of

intramolecular magnetic interactions and even a unified electromagnetic theory of

intramolecular interactions.
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CHAPTER 5: TOWARD A COMPLETE ELECTROMAGNETIC

SUSCEPTIBILITY DENSITY

Introduction

In Chapter 4, the derivative of the electronic magnetic moment with respect to the

rectilinear nuclear momentum was related to the paramagnetic or high-frequency

nonlocal magnetizability density

am,”ll f’ u Ze _ _,
_—a’;(——) = —4:—t—IVT x Icy-250; )VB d3r (1)

where V is the vortex function defined1 for the magnetic axis in the z-direction as

V = —yi + x}. In other words, Equation (1) shows that the electronic magnetic moment

changes due to the influence from the magnetic field of a moving nucleus via the

response ofthe nonlocal magnetizability density. The intramolecular response to

magnetic fields is described with the same molecular property used to describe molecular

response to external magnetic fields.

Two unfinished aspects of the treatment ofresponse ofthe electronic charge

distribution by intramolecular magnetic fields are the treatment of diamagnetic response

and the response due to the nuclear magnetic moment. Initial possibilities to extend the

theory include manipulation of the diamagnetic portion of the interaction Hamiltonian,

which is essentially the square of the vector potential, into a form that is the square of the

magnetic field.
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The intramolecular magnetic response theory can be extended by including the

magnetic moment of a nucleus with spin angular momentum. This extension should

yield an explanation of nuclear spin-spin coupling using a nonlocal susceptibility density.

Though this idea has not been adequately investigated, the addition ofthe magnetic field

due to a nuclear magnetic moment would not appear to contribute to the nuclear

momentum derivative since the nuclear dipolar field is independent ofthe nuclear

momentum. However, this independence is only to first order in a relativistic

electromagnetic theory. Thus, further investigations into intramolecular magnetic

response seem to necessitate the introduction of special relativity.

Most ofthe remaining discussion in this chapter will present two possible paths to

pursue using special relativity in the context ofmolecular interactions. The first path

involves using the original formulation ofthe nonlocal polarizability density in terms of

3-dimensional current densities and using the ansatz ofreplacing the 3-dimensional

current densities with 4-dimensiona1 current densities from special relativity.

Manipulation ofthis pseudo-relativistic polarizability density to relate it to

electromagnetic properties is nontrivial since the tensor calculus of the 4-dimensional

space-time is much different from the vector calculus ofthe 3-dimensional “3-space”.

The second path involves the construction of a nonlocal electromagnetic

susceptibility density using the nonrelativistic expansion of the interaction Hamiltonian

ofthe firlly relativistic Dirac equation. Such an expansion contains interesting terms such

as spin-other-orbit terms that have a dependence on the nuclear momentum. If such

terms can be included within an intramolecular response theory, new insights into what

electromagnetic properties are affected by nuclear magnetic fields may be found.
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The Special Relativity of Electromagnetic Theory

 
El"'lll'

Special relativity is a consequence oftwo axioms concerning physical laws?‘3 The

first axiom is that the laws of nature are same in any inertial reference flame. The second

axiom is that the speed of light is the same in all inertial reference frames. Heuristically m

stated, the second axiom says that one can never ride on the crest of light wave unless one

is a light wave. The two axioms together change the intuitive notion oftime and space.

 
As brief example, consider two observers observing wave motion on a body ofwater. A a

stationary observer on a riverbank measures the time interval for a wavecrest to travel 20

feet. An observer in a 20-foot boat traveling in the direction ofthe wave measures the

time interval needed for the wave to travel from stem to bow. The time interval

measured by the moving observer is longer than that measured by the stationary observer.

This agrees with our intuition. The conflict with our intuition arises in the second axiom

of special relativity for the case of light waves. In this case, the measured time interval

for each observer is identical. Consequently, the time interval between two events is no

longer an invariant quantity. Time measured on the shore differs from time measured on

the boat. The effect of relativity is that time and space are no longer absolute and

independent quantities, but they are fused into geometry of four-dimensional space-time.

In Newtonian mechanics, the transformation between a stationary reference frame and

a reference frame moving exclusively in the x-direction is dictated by the Galilean

transformation

t'=t,x’=x—vt,y'=yandz'=z, (2)
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where the primed coordinates refer to the moving reference flame. Within a Galilean

transformation, time is absolute; i. e. time has no dependence on the position in space. In

relativistic mechanics, the transformation between stationary and moving flames (in the

x-direction) is dictated by the Lorentz transformation

’
3'5

t'=y(t—-v—:(), x'=y(x—vt), y'=y and z'=z where y =(1_l’2§] . (3)

c c

Quantities in space-time must be expressed four-dirnensionally to retain the same

structure in different inertial reference frames. This retention of structure is known as

 
Lorentz invariance. In other words, the structure must be the same after a Lorentz

transformation. All physical quantities and laws must be Lorentz invariant. Thus the

position vector is not a three-dimensional vector 32 = (x. x2 x3) but rather a four-

dimensional vector that includes time x = (ct x y z) or x = x“ = (x6 x, x2 x3) .

(Greek subscripts are usually used to indicate a four-dimensional vector or tensor. Also

note that the time component is often referred as the zeroth component in space-time.

This convention is not absolute and depends on the formalism chosen to describe space-

tirne.) A Lorentz invariant vector is also known as a 4-vector. A 4-vector differential

operator can also be constructed which is known as the 4-gradient

i_au_(l_a_ 2. 2 3)-(-5_ i .9. :1) (4)

ax" cataxayaz aflm‘afiafi'

The abbreviated notation for the gradient 6“ will be used in this chapter.

Distances and time intervals measured separately in a stationary flame and in a

moving fiame will differ. The difference will be slight when speeds are small compared
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to the speed of light. As the speed ofthe moving frame approaches the speed of light, the

differences in the values of length and time measurements become more pronounced. In

contrast, four-dimensional space-time intervals are Lorentz invariant, i. e. the value ofthe

interval will be the same in all reference flames, moving or not. This invariance of the

space-time interval can be expressed as

(czt'z-x'z-y'z-z'z)=(czt2-x2-y2-zz). (5)

The mixed signs in the space-time interval are contrasted with the uniformity of signs

within the invariant space interval ofNewtonian mechanics (x2 + y2 + 22) . This

additional complication is tackled using two formalisms. The first formalism is the use

ofpseudo-Euclidean space where the time component of4-vectors is made an imaginary

number. The second formalism uses Minkowski space where a distinction is made

between contravariant and covariant vectors and dot products between the two 4-vectors

are performed via contraction with a diagonal matrix called the metric tensOr. The use of

Minkowski space is more accurate since it is derived from the differential geometry used

in Einstein’s theory of gravitation, the general theory of relativity. These issues ofmetric

choice are ignored in this chapter.

Bl"'El 'I]

The fusing of quantities naively considered to be independent also occurs in the

electromagnetic theory.“ Before the advent of relativity theory, the fundamental

equations of electrodynamics, Maxwell’s equations, were known to be the same in

stationary and moving reference frames. Maxwell’s equations in SI units" are
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V-E=£, (6)
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VxE+§E=0, (n

at

V-B=0, (8)

— -. (BE 3
VXB=qu+POSOE° (9) f
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Equations (6) and (8) are static equations indicating that in a stationary frame, the source

of the electric field is the charge whereas the magnetic field has no source. Equations (7)

 
and (9) are dynamic equations showing that electric fields can be created fi‘om time-

dependent magnetic fields and that magnetic fields are created fi'om moving charges and

time-dependent electric fields.

In relativity theory, the electric and magnetic fields are components of a single

quantity called the electromagnetic field tensor.

0 —Ex —Ey —132

E. 0 —B. By

E, B. 0 —B. '

E2 ‘337 Bx 0

F... = (11)

The charge density and the current density are merged into a four-dimensional current

density or 4—current density. The 4-current density is written as

j(r) = j“ (r) = (cp(r,t), jx(f,t), jy(f,t), jz(f,t)). (12)

The convention used in this chapter is bold type to indicate a four-dimensional quantity

and an overhead bar to indicate a three-dimensional quantity. The constant c is the speed

of light that can be considered a proportionality constant between electric and magnetic
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quantities. Maxwell’s equations can be rewritten in terms of the electromagnetic field

tensor and the 4-current density as

6,.F’” = Moiv ‘ (13)

a°F“’+a"F"°+a’F°“=0 (14)

where 6,. represents the 4-gradient from Equation (4) and the Einstein summation

convention of summation over repeated Greek indices is followed. Equation (13) is the

relativistic equivalent of Equations (6) and (9) whereas Equation (14) is the equivalent of

the Equations (7) and (8). The relativistic formulation ofMaxwell’s equations is an

example ofthe compactness of the relativistic electromagnetic theory. As a further

example of the compactness ofthe theory, the electrostatic scalar potential and magnetic

vector potential can be fused into a single quantity, the 4-potential.

A=A"=@ A" A’ A2) (15)

where 4) is the scalar potential and Ai are the components of the vector potential. All of

the components of the electromagnetic field tensor can be derived with the Equation (16)

va= auAv—avAu (16)

The relativistic formulation of electrodynarnics is not limited to Maxwell’s equations

ofmicroscopic matter but can be extended to Maxwell’s equations ofmacroscopic

matter.

V-5=9. (17)

VxE+a—B=0, (7)

at

V-BzO, (8)
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VxH=°+—. 18J at ( )

The relationship between the microscopic equations and the macroscopic equations is

established with the constitutive relations

_1_

Po

fi=goE+P and H: B-M. (19)

The macroscopic fields D and H include the effects ofpolarization P and

magnetization M of a system. Relativistically, the polarization and magnetization can be

fused into a single electromagnetization tensor,"8 Muv

0 CR. ch ch

—ch 0 M2 —My

—ch —M: 0 Mx

-ch My -Mx 0

Muv = (20)

Similarly a second rank tensor H“, can be constructed from the displacement field D

and the magnetic field H.

0 -—cDx —ch —ch

CDx 0 Hz -Hy

H v = 21

5‘ CDy -Hz 0 Hx ( )

CD2 Hy _‘Hx 0

Using Equations (11), (20) and (21), the constitutive relations of Equation (18) can be

rewritten relativistically as

F... = 11.,(H.v + M...) (22)
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Relativistic Adaptation ofNonlocal Polarizability Density

The lack of independence between the polarization and magnetization exhibited by

Equation (20) suggests that response tensors that describe the changes in polarization

within a molecule could be extended within a relativistic formulation to describe also the

magnetic response. Nonlocal polarizability densities”"°'“"2 have been used to describe

the effect ofpolarization at a point upon the polarization at another point. Hunt9 has used

the nonlocal polarizability densities of Maaskant and Oosterhoff,l3 originally created for

use in the theory of optical rotation tensors, in a theory of intermoleCular and

intramolecular electric response. Maaskant and Oosterhoff’s nonlocal polarizability

density was fashioned with current densities.

 

_ 1 (Olja(f)|n>(n|j,,(f')|0> (Ollb(f')|n><n|j,(f)|0>

“”8““ F6730 5 -6 4m + 6 -6 +7260 n 0 n (23)

1

--m—,§00(r)5(f-r')8,p.

In Equation (23), the current density is defined quantrun mechanically as

. - 1 Cl- _ _ h (l- _ _ h .

<0l1.(r)|n>=§[<0|§:j (r-r.);v..Im>+<oI2;;’;a(r-n);v..Im>l <24)

and QM?) is defined as

q?

6.6) = <0Iz—i.6(t—n)l0>- (25)
J mj

The index j indicates both electrons and nuclei with charge qj, mass m,- and position rj.

Hunt demonstrated that the nonlocal polarizability density formulated in terms of
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current densities could be reformulated in terms ofpolarization operators as long as the

field incident upon the molecule could be derived from a scalar potential.’

_ <0|Pa(f)|n><an(f’)|0> (0|P(f')|n)(ana(f)|0>

a“”(r’r"°)’2{ {go—6,422) + B6.—6,+rtm i

 
 

(26)
nato

Since the electric field is derivable from a scalar potential, Hunt’s formulation of the

nonlocal polarizability density is able to describe the molecular response to extemal9"° F

and internal“12 electric fields. A complete theory ofnonlocal susceptibility densities

would describe electric, magnetic and mixed electric-magnetic response.

0
'
.
.
.

One approach to extending nonlocal susceptibility density theory is to substitute into  
Equation (23), as an ansatz, classical 4-current densities.

 

_ _ 1 (0|j,(f.t)|n><nlj.(r'.t')lo> (olj.(r'.t')ln><nlj,(r.t)lo>

“"43”“??? 2. 6 -6 + 6 -6(D n: 0 n 0 n (27)

— —(:—,§,,O(r,t)5(r — r',t - t')5,,.

Substituting the 4-current densities does not make Equation (27) relativistically rigorous.

Such rigor would need to be developed from the first principles ofquantum

electrodynarnics. This approach is discussed further in the next section. Since the zeroth

component ofthe 4-current density is the electric charge density, the (zoo component of

the “relativistic” nonlocal polarizability density of Equation (27) would include Hunt’s

formulation of the nonlocal polarizability density plus additional terms associated with

the time dependence ofthe charge density. The applications of the 4-polarizability

density may follow from analogies with Hunt’s earlier work. However, such analogies

would be indirect since the tensor calculus of relativistic electrodynarnics is different

from the calculus ofCoulombic electrostatics. Application of the four-dimensional
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tensor calculus upon Equation (27) may uncover interesting and unknown relationships

between the responses of electric and magnetic fields with molecules.

Four-dimensional susceptibility tensors have been used by McLachlan to describe

retardation effects in the theory of long-range intermolecular forces.“

 

<on.(r)In><an.(t')Io> <on.(t')In><n|iu(f)'°>}. (28)
auv(f,f';(o)= n¢0{ 80-8n—hm + 80—6n+hm

This form ofthe susceptibility density describes the response of the relativistic interaction

perturbation

V = -I 1,,(f)A" (f,t)df (29)

where the current densities are assumed to be time independent. McLachlan’s

susceptibility density was constructed from the generalized susceptibility discussed by

Landau and Lifshitz." The susceptibility of Equation (28) is simpler than the

susceptibility of Equation (27) since the 4-currents in Equation (28) are time-independent.

However, McLachlan’s equation suggests the ansatz used in the creation ofEquation (27)

is not too unphysical.

Relativistic Quantum Mechanics

K] . _3 l E .

As coordinates in the space-time ofrelativistic mechanics, space and time belong to

the same class. This equivalence contrasts with 3-space where the x, y, and z coordinates

belong to the same class but the time coordinate is different. The energies of most non-

relativistic phenomena can be calculated with the Schrodinger equation.
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i—az—‘P+V‘P=ih§-‘P (30)
2m 6x3. at

The Schrodinger equation treats the spatial and time coordinates differently as it has a

second order spatial derivative and a first order time derivative. A relativistic equation

would have identical orders of derivatives for the time and spatial coordinates. The

Klein-Gordon equation""17 is a relativistic equation that has second order time and space if

' I

derivatives. E

i

h2[i2325-—@2—2--§23—323)W—m3c2\P=0. (31)

c at 6x ay 62

 
The negative signs in the spatial derivative arise from the special relativistic tensor

calculus needed to describe invariance of the space-time interval, Equation (5). Also,

note that in Equation (31), m0 is the rest mass. (In special relativity, the total energy

includes the kinetic energy and the potential energy of the rest mass, i. e.,

E2 = (p2 + m3(9)8 or for a particle with no kinetic energy, E = mocz.) Analysis of the

Klein-Gordon equation demonstrates that it is an inadequate description for particles with

half-integral spin such as the electron but it provides an excellent description of exotic

massive zero-spin particles ofhigh-energy particle physics.

E . E .

Dirac formulated a relativistic wave equation based on first order derivatives

6 a a a

th‘a \P = [—ihC(a13x’ + (1,2 ‘6? + a3 32') + Bmocz :lLP (32)
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where the 0ti and B are coefficients. Dirac put the condition on the solutions ofEquation

(32) that they must satisfy the Klein-Gordon equation as well. For Equation (32), the

Dirac equation, to have well defined solutions, the 0ti and B coefficients must be 4 x 4 ,.

 

matrices.

0 0 0 1 0 0 0 —1 0 0 1 0 l 0 0 0

_0010 _00 0 _000-1B_0100(33) "

a"0100’°‘”0-io “”1000 ’00-10

1000 1000 0-100 000-1

These matrices can be written as matrices ofthe Pauli matrices and the unit matrix

i: an = .

To make the Dirac equation truly Lorentz invariant, the Dirac matrices y” are used rather

than the 0ti and [3 matrices.

i" “l . - -(‘ ”l 3571'" -O'i 0 an Yo-B- O -l - ( )

Using these matrices in the Dirac equation yields solutions that are vectors. These

vectors are four-component spinors. To examine some of the consequences ofhaving

these four-component spinors as solutions, let us investigate the solutions for a fiee

electron with a specified momentum. The four solutions to the Dirac equation are
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( 1 f O \

l

LPr = CE ' P Calif—E!) , ‘Pz = 0 eilfi'i's‘) 9

mo c2 +E CE ' P

\ O \mhc2 +E )

f 1 \ l 0 )

0 1

‘1’; = cE-P 6‘3““ and ‘114 = 0 6‘5“). (36)

mo c2 -E CE ' P

K 0 J \ moo2 —E )
 

‘11, and KP; are called the positive energy solutions and ‘11, and \P, are the negative

 

energy solutions. When Dirac first published his equation, the interpretation of a

negative energy state for the electron was mystifying since the negative energy state of an

electron is unobservable. With the discovery of antimatter, the negative energy states

were reinterpreted as positive energy states of antielectrons or positrons.

Within each solution there are two sets of components. The upper two components

are called the large components and the lower two components are called the small

components. At low energies, i. e., most chemical energies, the rest mass energy moo2 is

much greater than the kinetic energy E. Therefore the quantity fl— within the

mac2 +E

lower two components is much less than one. Thus the lower two components are much

smaller than the upper two components and their labeling as large and small components

is natural.

At first glance, ignoring the negative energy states and the small components might

prove to be useful. However, the Dirac equation is actually four coupled wave equations.

One could start with a solution from the free Hamiltonian that neglects the small
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components and positron energies. However, when an interaction Hamiltonian is added,

the small components and positron energies reappear. In a fully relativistic calculation,

the electron energies are inextricably connected with the positron energies.

E l E . .

In relativistic quantum mechanics, the current density is written as

j=c¢-yu.\r (37)

where §=Lyl - yo and II” is the Hermitian conjugate of ‘1’. Using substitutions of the

Dirac equation and the calculus of4-component spinors, Equation (37) can be rewritten

18,19

as

'= 53—6—6173! 7,310+ flfi-‘E — EAEJKP + ¥(—a— - £AJ‘P}
2m 6x,l “ 2m 6x" hc 6x” hc (38)

= jun + jeonv -

In Equation (38), jim is interpreted as an internal current analogous to the internal currents

and charges that arise from magnetizations and polarizations. The convection current

density jam, describes crurents analogous to the currents created by moving charges. The

currents in the Gordon decomposition are still fully relativistic; that is, the currents

calculated involve positron states in addition to electron states. However, the technique is

included in this chapter for consideration when trying to separate applied fields from their

molecular responses. Nonrelativistic transformations would still be needed for chemical

applications.
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Nonrelativistic Approximations to the Dirac Equation

Chemically, the concept of electrons having positron ‘shadows’ is mysterious. Even

for relativistic effects that become observable in molecules with high-Z nuclei, chemists

are not accustomed to searching for positrons within molecules. Fortunately, methods

exist where the positron portions of relativistic equations can be approximated by

expansions of the electron portions of the equations. One technique, the Foldy-

Wouthuysen transformation, will be briefly examined.

WW

For molecular systems, fully relativistic calculations are impossible since the

interaction Hamiltonian between electrons is not well defined. Even under relativistic

approximations molecular calculations quickly become intractable. In a relativistic

calculation, each electron in the system does not have just four components but instead

has 41’ components where n is the number of electrons within the system. For example,

calculation of energies ofthe helium atom involves 16 x 16 Dirac matrices as well as 16

component spinors. Calculation of energies of the lithium atom uses 64 x 64 Dirac

matrices and 64 component spinors. This problem is avoided by finding a transformation

that removes the effects of the positron states so that relativistic energies can be

calculated from a series expansion using only electron states. The expansion that is

considered in this thesis is the Foldy-Wouthuysen transformation?”

Operators within the Dirac equation can be classified according to how they couple

the components of the wavefunction and their parity. Operators that couple the electron
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and positron states have odd parity. Operators that couple the electron states with other

electron states (or positron states with positron states) have even parity. Thus uncoupling

the effects ofpositron states on the electron states involves finding a transformation for

the odd operators in terms of even operators and higher-order odd operators. The Foldy-

Wouthuysen transformation achieves this uncoupling. The method involves a unitary

transformation where the generator ofthe transformation is a specific odd operator. The

essence of the transformation involves commutation relations between even and odd

operators.

 
li-l”’H .1.

Before stating the molecular Hamiltonian fiom the result of a Foldy-Wouthuysen

transformation on the Dirac Hamiltonian, the two-body interaction between charged

particles must be considered. There exists no fully relativistic closed expression for the

two-body interaction. However, relativistic approximations such as the Breitequation""21

can be made for low energy systems such as molecular systems. Moss presents a

nonrelativistic expression based on the Foldy-Wouthuysen transformation of a single

electron system, a relativistic expansion of the vector potential and the requirement that

the interaction be symmetric with respect to the interchange of electrons. Moss states that

his ad hoc Hamiltonian is accurate to mc20t5 where a is the fine structure constant and

that it agrees with the Hamiltonian rigorously derived by Itoh22 from quantum

electrodynamics. In the Hamiltonian below, nuclei are treated as Dirac particles;

however, their anomalous magnetic moment is considered in an ad hoc fashion.

114



Moss20 gives the nonrelativistic molecular Hamiltonian as

H =E{mc2

-C¢I

+ n?/2m

+ 8P3(§i ' fit)

the electron’s rest mass energy,

the electron’s interaction with external electric

potential,

the electron’s kinetic energy,

Zeeman interaction of e’ spin with magnetic field,

- (ng/4mc2) s, - [‘i, x E - E x iii] interaction of electron spin with magnetic field

+ (eh2/8m2 c2)V . i=3

-(1/8m’c’)n?

- (gun/Zm’ c’)(st - E) u?

+ $678113. n,

-(e2/167teom2c2)7't1'(rfilit'j)

caused by movement through external electric field,

the Darwin term, an effect of the positrons,

relativistic correction to electronic kinetic energy,

relativistic correction to Zeeman interaction,

Coulomb interaction between electrons,

orbit-orbit interaction,

- (e2/1 61t80 m2 c2)(fit ° Tij) r53 (fij - fij) retarded orbit-orbit interaction,

- (eng/81t80 mc2 r131) §1 '(fu‘ x 17i)

+ (eguB/41reo mc2 r13) §1 '(Tij x it)

spin-orbit interaction of an electron’s spin

interacting with magnetic field arising from motion

relative to the electric field of a another electron,

spin-other-orbit interaction of an electron’s spin

with the magnetic field created by another

electron’s orbital motion,
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+(gzl-13/87tjocz)

['15’ I3(81')r11)(r11' S1)/r1’1

—(g 111/3811“)(r11)(81'§1)

-(e 112/821m c)5(r11)+“°}

+§imacz

+Za e¢a

+ 713/2%

- 611116.. - 1‘31.)

+B§Q[ZuZBez/8Tt80rap +"']

—Za ez/411280 not

+ (Z... e2/87reomma c2) 7‘11 '(r'E in)

+(Zae2/81160n1rhc2)(7c1 'rta)r"1§(7'ta ' in)

- (Zn eng/8‘tt80me2 tin) §i ' (fiat X 171)

dipolar spin-spin interaction,

Fermi contact term of spin-spin interaction,

relativistic correction to Coulomb interaction, E

;.

rest mass energy ofthe nucleus, §

the nucleus’ interaction with external electric I

 potential, I

the nucleus’ kinetic energy,

Zeeman interaction ofnuclear spin with external

magnetic field,

nucleus-nucleus Coulomb interaction,

electron-nucleus Coulomb interaction,

electron-orbit-nuclear-orbit interaction,

retarded electric-orbit-nuclear-orbit

interaction,

spin-orbit interaction of an electron’s spin

interacting with magnetic field arising from motion

relative to the electric field of nucleus,
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-(Zaeg11LB/4momuc2 r3.) 6., (is, x Ea) spin-other-orbit interaction of an electron’s spin

with the magnetic field created by a nucleus’ orbital

motion,

+ (ega H111/47:60ch fig)L - (n, x E) spin-other-orbit interaction of a nucleus’ spin with

 

the magnetic field created by an electron’s orbital Pl

motion,

- (66.. 111. uN/4nso c2)

(§, - in)/r131. dipolar electron-spin-nucleus-spin interaction,

X

- 3(§i ° fia)(l'ia ' 1.3/13.

 

+ (8811. pg uN/3go c2)5(f,a)(§i - in) Fermi contact term of electron-spin-nucleus spin

interaction,

-(Za 62 hz/81Som2 c2)5(i-,a) +~ - -} +~ - -} relativistic correction to Coulomb interaction, etc.,

+3CQ + - -- nuclear quadrupole interaction, etc., (39)

where the i and j indices indicate electrons, the or index indicates nuclei, g, is the electron

spin, in is the nuclear spin, g is the magnetogyric ratio, H13 and 11111 are the Bohr and

nuclear magnetons, respectively, and the momentafi are canonical momenta,

i=5—eA.

Higher Order Magnetic Susceptibilities

Vibrational effects can be very important in chemical shifts of light nuclei.23

Rovibrational effects on chemical shifts have been calculated for lH"’F,24 “N25 and 13C.26

These calculations are done readily using numerical differentiation techniques. However,
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during the course of a vibration. A higher-order magnetic susceptibility density may

offer such interpretations. Intramolecular response due to mixed electric-magnetic effects

such as the effect ofhydrogen bonding on the chemical shiftmg'29 may also find a

they lack a physical interpretation in terms of the electromagnetic phenomena occurring ‘

physical explanation. n

 A physical interpretation of vibrational averaging ofmagnetic properties may include

the effects of nuclear motion via the nuclear canonical momenta. The terms in equation

 (39) that involve the nuclear canonical momenta are a I

3C ' = 2i2§+ ni/Zma + (2., e2/8tteomm,ll c2)[fii ° (r12 fia)+ (it - itch-EGO, i110] 40

- (Z11 egllg/47:811mac2 r131.) §1 -(fta x in). ( )

These terms describe the nuclear kinetic energy, the retarded electron-orbit-nuclear-orbit

interaction and the spin-other—orbit interaction of the spin of an electron with the

magnetic field created by a nucleus’ orbital motion. The creation of a higher-order

susceptibility density that would have the ability to describe intramolecular magnetic

response to moving nuclei could involve Equation (40). This Hamiltonian could be used

in a first-order perturbation theory similar to that used to create the magnetic

susceptibility density found in Chapter 4 or in a second-order perturbation theory.

Relativistic effects have been incorporated into ab initio calculations in the chemical

shift ofhigh-Z nuclei, ””Sn,30 WW,” and non-zero spin isotopomers of the halides.32

Relativistic theories of the chemical shift by Pyykko”, Pyper’" and Zhang and Webb35

have been formulated. These theories consider the relativistic effects on the core

electrons ofheavy atoms within molecules. The effects arise fi'om the high velocities that
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are created through interaction with the large electric fields that originate from the high-Z

nuclei. Effects ofthe nuclear momentum on the molecular magnetizability are not

specifically considered.
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APPENDIX A: DERIVATIVES OF WAVEFUNCTIONS AND

OPERATORS

A. Derivative of the ground state wavefunction

In deriving the derivative ofthe ground state wavefunction with respect to an

arbitrary parameter, the orthonormality ofwavefunctions that are eigenfunctions of a

Hamiltonian is exploited. The proofbegins by considering the following off-diagonal

Hamiltonian matrix element in a basis of eigenfunctions of the Hamiltonian.

n¢0 (nlflCIO)=Eo<n|0)=O. (Al)

The derivative of this matrix element is also zero.

6(nI3CIO)

T= 0. (A2)

The derivative of the matrix element becomes the sum of three derivatives.

 mm”) = a<"'€100+<11IflIo>1<nIaIc 8'0)
a). a). a). '19—)— ’ (A3)

The Hamiltonian (which is Hermitian) operates on the wavefunctions I0) and (nl and

yields Equation (A4).

a(n|flCl 0) 6(nl 63C 6| 0)

T=EOETIO>+<n|3f|O>+E"<n a. (A4)
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(n|0)=0 wheren¢0 =>

5(nl0) 6n(Shim+n(|%_O>_O . (A5)

61:6

 

$601é=l0> _(nI510__)_

 

Using Lermna 1, the derivative of the matrix element becomes

_<__>6n|€1C|0 __)alo 6'ch

a). l+671. a).
610) 63C (A6)

-1

:6I—a, =(1~:.-1=.o) (nl 0, l0).

Multiply Equation (A6) on the left by In) and sum over all the excited states 2

nan

610) .. 63c
>:In><n —— = -2In><nl(1=...- E0) ‘—Io> (A7)

Recall that the complete sum-over-states ofprojection operators |m)(m| is one.

Z|m>(m|=1- (A8)

Now insert one, as a complete sum-over-states into the equation between the energy

denominator and the Hamiltonian derivative.

2I11><11 521—9:gayn><nI(E.-Eo)“Im><mI%i—CI0>. (A9)

In the summation over m, the m = 0 term vanishes. Therefore, the sums can be rewritten

2I11><n @ = -2 2|n><n|(En—Eo)"|melgaiilO). (410)
nan a)» natOman
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The expression is simplified by defining the reduced resolvent operator G(co) (the prime

on the summation implies neglect ofthe ground state) as follows:

9(a) = g; En'|n><nl(En-Eo-hw)"lm><ml = (1 -Io><0I)(E.-Eo—1w)"(1—Io><0I). (A11)

Thus by using the zero frequency expression for the reduced resolvent, Equation (A10)

becomes

811161913)=—(1—Io>(oI)(E.-Eo)‘1(1-Io>(0I)—Io>
a)

- —G(0)—-agc l0) (A12)
“ a). ’

To find the derivative of the ground state, the left side of Equation (A12) must be

manipulated. First, the sum-over-excited—states is rewritten as sum-over-states minus the

ground state term.

é'lanl-OEL §|n)<nl%?-|0)(olélé§l

 

(A13)

all 07.

Lemma}

As a lemma, calculate (0| "222°

(0|0)=1=>

59"” = 5(0'|0)+(0|54—0—>- = 0 (A14)
0“). 5’1

(mgr-@590).
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If the ground state is real, (not complex), then

0

((01%—))= é—af'w) (A15)

Thus substituting Equation (A15) into the last line of Equation (A14) yields

(OI%=-(<OI%>) . (A16)

The only time a complex number Z = -Z* is when Z is purely imaginary; however, we are

assuming that the ground state is real. Therefore Z = -Z 2'» Z = 0.

(oold—02:0 (A17) 11’
 

 

Using Lemma 2, Equation (A13) becomes

 
0 0 0 0

|><|d>al>l)<|51>d>- (ms)

Substituting Equation (A18) into Equation (A12) yields the result

6!_0_>_
m— -G(0)—| 0) (A19)

B. Derivative of the reduced resolvent

The proof starts with the definition of the reduced resolvent from Equation (A1 1),

noting that the Hamiltonian operator 3C can be substituted for the energy En when the

wavefunctions are eigenfunctions of the Hamiltonian operator. The symbol go is used to

represent the ground state projection operator l0)(0|.
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G((o) = 23" 2!" I n)<nl(Bn-Bo-hm)“|m><m| = (1 -lo)<0|)(Bn-Eo—rtc1)"(1-|0)<0|)

=(1—so)(5C-Bo—1m)“(1-1a)-

Initially the derivative with respect to arbitrary parameter In is found to be

(131)

 

 

 

1- -.
___aGag'm) = __a(my?) (SC-Eo-hm) (1- p)

+(1- (0) “xii-hm) (1- to) (B2)

+(1— p)(flC—Eo—hw)-l?—(-la_T‘0—).

LemmaJ

6(1- 1') _ _LP _ 39111
a) ’ a ’ a)

= -%§3(0I 4695}?
(113)

= G(0)%i—C|0><OI + I o>(oI 336(0)

= dogma-gem).

Lemma}

@(1- 6)) = EIOXOIGmeI - IOXOI) = EIOXOImel ~|0>(0|0>(0|

= §|0>61n(ml-|0>(0| = IOXOI-IOXOI (B4)

= 0.
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Lemma

(1- (0X1 - (a) = §(lm)<ml -I0)<0|)§(In)<nl -|0><0I)

= gglmelanl-Im)<ml0><0l -I0><0In)<nl +I0)<OIO)<OI

= Elmwmml-Im>a...<oI—|0>6.o‘<nl+l0)<0|

= glmel-I0><0l—IO)<OI+I0)<OI = glmeI-IOXOI

= (1-6)

(135)

 

Substituting Lemma 1 into Equation (B2) yields

2G?) = [mm-66% 50 + 50 %G(O)](SC—Eo—hm)'l(1 — go)

— (1 - ga)(sc-Bo-ruo)"M(sc-Bo-rtm)"(r - 50) (B6)
6;.

+ (1 — 60)(3C—Eo-h0)-I[G(0)% (0 + (0 26%00»)

Distributing the quantities in Equation (B6) yields

211111)
a)» = G(O)%i£50(SC-E0‘h

m)-l(l _ 50) + pea—icGwXSC-
Eo-hcoTIO _ 50)

hw)-IM(SC-Eo
-hm)-l

(1 _ 50)
(B7)

or.

+ (1 - m)(sc—Eo—hm)"o(0)% {1 + (1 — ga)(s1c—Bo—rtm)" go %G(0).

"(1'- flex-Eo-

Lemma 2 is applied to the first and fifth terms of Equation (B7).

9912)... .51

67). "Oar

— (1 — p)2(SCa—;I€Q(3C—Eo-hm)-l(SC—Eo-hm)_l(l — 50) (B8)

G(O)(SIC-Eo-hw)" (1 - 60)

+(1-n)(1c-Eo-1w)“c(o):—icc
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Lemma 3 is applied once to the first and third terms and twice to the second term.

 €841"7%601— 111(11-11-1111'1-14

-(1-:I(1c-Eo-111)“(1-11%?(1-11161-11-11ro-11) (1191

+(1-cI(11—1~:1-111)"(1-111110-2311.

Substituting for the definition of the reduced resolvent yields the result.

 5‘:anfigment)_s(unfliilqsnewdogn (131°)

C. Nuclear coordinate derivative of the Hamiltonian

The nonrelativistic, nonmagnetic Hamiltonian can be written as

  3C0: ”h zv?- >13h,(V%r—211119(——r)__Z +Idrdr'dr——)——;—plr) HES—Ll (C1)
2me i K=12m x-I If-Rxl Ir -r'| K-bKlRK—Rli

The terms of the Hamiltonian describe respectively the electronic kinetic energy, the

nuclear kinetic energy, the electrostatic potential energy between the electrons and the

nuclei, the electrostatic potential energy between the electrons and the electrostatic

energy between the nuclei.

Taking the derivative of Equation (C1) with respect to nuclear coordinate i“ is

straightforward. Only the third and fifth terms ofthe Hamiltonian have nuclear

coordinate dependence.

aSCKo__ x K 1 _ J L J

an, Idrp(r,)zVI_RI EgszI_I_§LI. 
 

(C2)
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In the Bom-Oppenheimer approximation, the second term is an additive constant. Since

the derivation in the thesis concerns only electronic response, the second term will be

ignored. Therefore the nuclear-coordinate derivative ofthe Hamiltonian to be considered

is

653C 1

°=- df ' z“v§——_—. C3
 

 The first manipulation is a substitution using the identity foI l - - Va I—1—— where
- —K- _ —fl

r-R l r-R

Vf,‘ refers to a gradient with respect to the nuclear Cartesian coordinate and V,l refers to

a gradient with respect to the electronic Cartesian coordinate. Thus Equation (C3)

becomes

559’- Idfp(r)Z‘V,I_ 1m.
,_
  

6R5 - (C4)

At this stage an integration by parts is performed to yield the final result. Necessary for

the integration by parts is the electrostatic identity V - P(1") = -p(f). Considering the

form ofintegration by parts to be In dv = uv —f v du , the integration proceeds as

du = p(f) = —V - 136) :> u = -F(f)

   

1 1 _—K

=V———— d =VV———-= ,R C5v lf-§K| :> v lf-fixl fir ) ( )

=P V7 w— m1) Z‘VV _ .
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The boundary term in Equation (C5) is zero since the polarization of a molecule at

 

. . . . . . . — 1

mfimte distances lS zero. The defimtlon ofthe dipole propagator T(f,RK) = VV[| _KI]

f—R

is substituted to yield the result.

6H0

afi“

 = -1 a; Hf) z“T(f ,R’K). (C6)
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APPENDIX B: COMPLETE DERIVATION OF THE

HYPERPOLARIZABILITY DERIVATIVE

Introduction

The proof ofthe result of Chapter 3 begins with the expression for the

hyperpolarizability taken from Orr and Ward’s article on nonlinear optical polarization.‘

The polarization operators are adapted to be polarization density operators so that the

expression becomes a hyperpolarizability density.

Ban. (“Sf"rw.mm) = 5091K0|13a (f)G(wo)13$ (f")G(mn)f>s(f’)|0>

+<Ol 131 (f")G.(—<02)1336961403 13.. (3| 0) + (0| l5T (f")G’(—m2)f’: (f)G(m,) 139(r')| 0)] (1)

The permutation operator 50m denotes the sum ofpermutations of 135 (f') and 13I (f’) ,

simultaneously with their associated frequencies, a), and (0,, respectively. The frequency

0)., is defined as (no = or, + 0),. Applying the permutation operator, 50% , the

hyperpolarizability density is written as

- 1

(0|13.(f)G(<oo)133(F")G(m1)1‘>a(?')|0)

+<0|13.(F)G(coo)133(?')G(coz)f>.(f")l0>

B...(f,f',f";-w.;w..w2) = +<0l1:.(:”)G (-w2)AI;p(:')G.(-coa)r>.(:')|0> . (2)

+<OIPB(" )6 (—cm)1>.(r ')G (—wo)P.(r)|0>

<

<

+ 0|13,(F")G‘(—mz)133(F)G(wn)1‘>.(?')l0)

_+ 0|fia(F')G‘(—m1)fi3(f)G(w2)13.(f")|0>   ..J

 

1B. J. Orr and J. F. Ward, Molec. Phys. 20, 513 (1971).
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In the above expression, three types of quantities depend on the nuclear coordinate: the

  ground state wavefunction, ( , the reduced resolvent, G(m,) , and the fluctuating

polarization operator, in: (P’). Note that the total polarization operator, 1'50l (f) , has only

electronic coordinate dependence. The derivative of the ground state wavefunction for an

arbitrary parameter is calculated to be2

510) 653C

3;: = -G(0) filo) . (3)

The derivative of the reduced resolvent is2

aG((°) -G( )a(gc___"__E0)
63C

m (0 a). G(m)++500—6).—G(0)G(w)+G(m)G(0)a—-m (4)

The derivative of the fluctuating polarization operator is2

91?.“0|—idem-m+<0|1‘>.(r)G(0)-—l0> (5)

When the arbitrary parameter is specified as the nuclear Cartesian coordinate, i. e. A=R§ ,

the derivative ofthe Hamiltonian becomes2

_gRgcg ___ _J‘drm ZKPg(rm)T35 (-ngK). (6)

Taking the derivative with respect to nuclear coordinate R? of all six terms of Equation

(2) and substituting Equations (3) through (6) yields for the hyperpolarizability

derivative, the sixty term expression of Equation (7).

 

2Appendix A

133

 

 

 

“
I
r
a
-

 

 



F(0|P(F)G(ma)P$(F'')G(m,)13,(r')I 0)

+<0|P (T)G(wo)Pg(r)G(c02)Py("No)

_a_ +(0lP.(F'')G(—w2)P3(F')G(—m.)P(F)l0>

0R? +(0lPo(F')G(—wn)P‘.’(F")GH).)1‘> (F)l0>

+<0lP. (F')G(—a>2)P° (F)G(an)Pp(F’)l 0)

+(OIP:(ZF')6(—w:)P° (F)G(m2)P.(F')l 0) j

=IdF “R(F'"R)

><{(0lP.(F'')'G(0)P.(F)G(<oo)P3(F")G(con)Ps(F')l0)

+<olP.(r"')G(0>P.(F)G(m.)P3(F')G(m2)P.(F")lO)

+<0|P.(F)G(wo)P‘Z(F"')G(mo)P3(F")G(an)Pp(F')l0)

+(OIP. (F)G(coo)P°(F"')G(ma)P3(F')G(co2)P.(F'’)l 0)

-(0|P(F'")G(0)(OIP. (F)! o)G(...)f>3('r-")o(m.)13,(r')I 0)

-(0lP(F"’)G(0)(0|P. (F)! 0>G(m)P3(F')G(co2)P.(F ")l 0)

~(0lP.(F)G(wa)G(0)P.(F'")l00>(0|13°(F'")G(<m)Pa(F)l 0)

- 0|P.(F)G(wo)G(0)P.(F'")| 0>(0|P§ (F')G(wz)P.(F'')IO)

- 0|P.(F"')G(0)P.(F")IOXOIP.(F)G(w)G(con)Pa(F' )l 0)

- OIP.(F"')G(0) Pp(F')l0>(0|P.(F)G(coa)G(wz)P. (F')10>-

- OIP. (F")G(0) P.(F"')l 0>(0|P. (P)G(w.)c(m,)13,(r')| 0)

- Ole(F')G(0)P.(F'")|0X0!P.(F)G(coo)G(w2)P.(F")|0)

0|P.(F)G(wa)P$ (F”)G(<m)P2(F"')G(w1)Pp(F')|0)

(

(

(

(

(

(

(0|P.(F)G(oo.)P3(F')G(coz)P3(f"')G(w2)P,(F")IO)

(

(

(

(

(

(

  

- 0|P.(F)G(wo)P3(F")|0>(0lP.(F"')G(0)G(wx)Ps(F’)l0)

- 0|P.(F)G(wa)P3(F')|0>(0|P.(F"')G(0)G(m2)P.(F")IO)

- 0|P.(F)G(ma)P3(F")G(mn)(OlPa(F')|0>G(0)P.(F"')|0>

- 0|P.(F)G(wo)P§(F')G(<o2)(0lP.(F")|0>G(0)P.(F"')|0)

OIP.(F)G(wa)P3(F")G(mn)Pa(F')G<0>P.(F"’)|0>

+ 0|P.(F)G(wa)P§(F')G(w2)P.(F")G(0)P.(F"')|0>
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+<0IP.(F"')G(0)P.(F")G‘(-a>z)P3(F')G‘(-coa)P.(F)l0)

+<0|P.(F'")G(0)P.(F')G'(—a>n)P‘.’(F")G'(-wa)P.(F)|0)

(0|P.(F")G‘(-mz)P2(F"')G‘(—w2)P8(F')G‘(-wa)P.(F)I0)

(0|139(F')G'(—co1)P3(F"')G'(—co1)13$(F")G'(-ma)13a(7)|0)

0|132(F'")G(0)<0|P,(F")l0)G‘(-coz)P3(r')G‘(-m.)r>.(F)!0)

0|P2(F'")G(0)<0IP.(F')l0)G‘(—<m)P‘.’(F")G‘(—wa)P.(F)I0)

Olin.(F")G‘(-mz)G(0)P.(F'")I0><0IP3(P')G‘(-w.)P.(F)l0>

OIP.(F')G‘(—w1)G(0)P.(F'")|0><0IP$(F")G‘(-m.)P.(F)I0)

0|P.(F'")G(0>P.(F')|0><0IP.(F")G‘(-o»2)G‘(—co.)P.(F)l0)

0|P.(F"')G(0>P.(F")IOXOIPB(F')G'(-mx)G‘(—coo)P.(F)|0)

0|P.(F')G(0>P.(F'")|0><0|P.(F")G’(-m2)G‘(-wo)P.(F)l0)

OIP. (F")G(0) P.(F'")I0><0IP.(F')G‘(—w1)G'(—wa)P.(F)!0)

(

(

(

(

(

(

(

(

+(0lP.(F")G'(-wz)P§(F')G°(—wa)P3(F"')G'(-wo)P.(F)|0)

(

(

(

(

(

(

(

+
+

+ 0|P.(F')G‘(—w.)P3(F")G'(-co.)P3(F"')G'(-wa)P.(?)|0)

0|P.(F")G'(—w2)P§(F')|0><0|P.(F"')G(0)G‘(-wa)P.(F)|0>

0|P.(F')G‘(-wn)P‘.’(F")l0><0|P.(F'")G(0)G‘(-ma)P.(F)I0)

OIP.(F")G’(—co2)P3(F')G‘(—wa)<0|P.(F)I0>G(0>P.(F'")|0>

0|P.(F')G‘(—cou)P$(F")G‘(-<oa)<0IP.(F)|0>G(0>P.(F"')|0>

o!P.(F")G'(-mz)P§(P')G'(—m.)P.(F)G(0>13.(P'")|0>

+ 0|P.(F')G‘(-w1)P$(F")G‘(-wa)P.(F)G(0)P.(F"')|0>

(7)

+

135

“
W
I
:

 

 

 



+(Ol13..(?"')G(0)Py (7")G’(-w2)133(F)G(wn)13.3510)

(0|1'5,(f"')G(O)13I,(F')G‘(-cm)132(F)G(a)2) 137 (in) 0)

(0'131(f")G.(-032)132(7'")G.(-02)132(f)G((01)133(F)|0)

+(0I139(?')G’(—m1)132(T"')G°(—col)13:(F)G(mz)13,(?")|0)

-(0|132(7"')G(0)(0lI3,(7")|0)G°(-C02) 132(F)G(m1)13,,(F')10)

-(0|132(7"')G(0)(0|135(?')l (”GT-cot) 13:.(?)G(002)1'57 (WHO)

"(W 131 (7")G.(-032)G(0) 13.1me OXOIISZ (36901) 135(PM 0)

—(0|f>,,(F')G‘(—m,)G(O)13,(F"')|O)(0|132(F)G(m2)1’5,(F")|0)

‘(0l13.(7"')G(0)l3a(7)l 0><0|137(7")G.(—032)G(C°1) P.(F')l0>

-(

"<

-(

+
+

0|P.(F'")G(0)P.(F)|0><0|P.(F')G‘(—wn)G(coz)P.(F")|0>

0|P.(F)G(0)P.(F'")|0>(0lP,(F")G‘(—wz)G(m1)PB(F')IO>

0|P.(F)G(0)P.(F"')|0><0|P.(F')G‘(—<on)G(w2)P.(F")|0>

+<0IP.(F")G‘(-mz)P3(F)G(a>n)P‘.’(F"')G(wn)Pp(F')|0>

+<0|P.(F')G‘(-w:)PZ(F)G(m2)P§(F’")G(w2)P.(F”)|0>

-<0|P.(F")G’(-m2)PZ(F)I0><0|P.(F"')G(0)G(wn)PB(F')|0>

-<0|P.(F')G‘(-mn)P2(F)l0><0|P.(F"')G(0)G(co2)P.(F")|0>

-<0lP.(F")G'(-w2)P3(F)G(mn)<0|PB(F')|0>G(0)P.(F"')10>

-<0|P.(F')G‘(—wn)PZ(F)G(w2)(0|P.(F")|0>G(0)P.(F"')lO>

+<0lP.(F")G’(—w2)P2(F)G(cm)P.(F')G(0)P.(F'")l0)

<+ 0|P5(?')G°(-wn)P3(F)G(w2)P.(F")G(0)P.(F"')| 0)}-
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Lemma: Proof of fluctuating polarization operator identity

Terms 7, 8, 15, 16, 27, 28, 35, 36, 47, 48, 55 and 56 have matrix elements ofthe form

(0| 13a (f)G(m°)G(O) 136 (f"')[ 0)(O|13: (f”)G(m,) 13,(r')| 0) . The fluctuating polarization

operator is changed to a total polarization operator by proving the identity

(0|13a(F)G(mo)G(0)i5,(?"')l0><0|§:(F")G(wn)fia(?')10>

=<01macaque)134?"):o><on">,(r")e(mm(f')lo>.

(8)

The proofof the identity (8) begins by substituting the definition ofthe fluctuating

polarization operator, Equation (9) into the left side of identity (8) to yield Equation (10).

1336") = 13,(‘r'")-<0|1’5,(F")|0> . (9)

<0m<r>G<ma>G<o>a<fm>Io><oufi2(F")G(coof>p(i-")Io>

=(Olfia(?)G(wa)G(0)138(F"')|0><0|13,(?")-<0|13,(?")|0>G(wx)fip(?')10> (10)

=(0|13a(F)G(ma)G(0)I3,(F"')|0><0|13,(?")G(cm)1’5¢(?’)10>

-(Olfia(?)G(wo)G(0)1356'")!0><0|<0|1‘>,(?")|0>G(m:)1‘>s(?')|0)-

Substituting the sum-over—states definition ofthe reduced resolvent, Equation (B11),

yields Equation (B12) after little manipulation and recalling that (0| n) = 50,.

  

In><n|-|0><0| lanl—IOXOI
G(wl)=§ SEEM] =§ 0W0] . (11)
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<0I13a(r~)c(ma)c(0)126-"'1o><0If>2(f-")G(cm)m(f')lo>

=(Olfia(?)G(mo)G(0)Pe(P"')I0><0|P,(T’")G(con)f>a(?')I0)

-<o|§a(r)G(ma)c(o)13,(rm)Io><ol<olia,(rv)lo>gmg]:(0'

=<onm<r><s<ma>G<om<fm>I 0)<0|13,(?")G(w11‘>p(?')IO)

-(0|13.1(7')Gv(ma)<3(0)1‘>e(f-"')I0>(0|1‘>,,(r")I0){:21“(OI(”IP"(r)|0%_mI0'1“")

=(OIPa(?)G(ma)G(0)Pe(F"')I0><0|P,(?")G(col)1‘>p(?')|0)

-<0If> (196(0) 6(0),: (r)|oolp (-)l0>§2“5°<nl133(?)|0>‘1(0
1133(?')I0)

a a c 1
nos-(DI

=<O|Pa(r)G(w°)G(O)Pe(r"W(0|P7('"'))G(0h Pp(r')|0)

-<0I13,(r)c(ma)c(0)fie(fm)lo><0Ii>,(r-")Io><0'P“(")'::'_<:'IP“(")'°>

=(OlPa(r)G(wa)G(O)P.=(r"“IO<01P1("")G((01)Pp(r')|0>

-<0IPa(r))G(mur)G(0) P,(r"'))IO(0|§,(r)IO) x0
(12)

= (OIPa(P)G(wa)G(0)Pe(F"’)I 0)<0I1‘>,(?")G(m1)13,(r')| 0).

 

M")0)

 

 

 

Thus, the identity is proven.

Continuation of proof

The first and fifth terms in Equation (7) are simplified by applying the definition of

the fluctuating polarization operator.

<0Ifi,(?"')G(0)fia('r')G(wa)P$(F")G(w1)f>s(F')I0)

-<0I13e(f"')G(0)<0IM?)0>G(coo)13$(F")G(con)Mr") 0) (13)

= (0|13e(f"')G<0)13f:(7)60»)P3(F")G(con)fia(f')l0)
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Similarly, the following pairs ofterms in Equation (7) can be simplified: (2, 6); (19, 17);

(20, 18); (21, 25); (22, 26); (39, 37); (40, 38); (41, 45); (42, 46); (59, 57) and (60, 58) to

yield Equation (14).

6130431 (r,f',f";—co°;o),,c02)

6R?

x{<oIi5,(f"')G(0) 132(?)G(wo)1‘>$(f")G(m1)f>B(F')| 0)

+<0IP,(F'")G(0)fii(‘r’)G(ma)P8(f')G(coz)P,(F")I0)

+I0|13.,(F)G(<oo)P2(f'")G(mo)i5$(F")G(cm)1‘>a(f')l0)

IOI13a(F)G(wa)PSIF'")G(mo)P3(?')GIw2)P, (F")IO)

-<0I13.,(f)G(coa)G(0)Pe(‘r'"')I0><0I1‘>,(P")G(wn)f>a(f')|0>

—<0|13,(r)G(ma)G(o)is,(r'")|o><o|13,(r')G(m2)13,(role)

-<0I1‘>r(f"')G(0) P, (f")IO><0IPa(?)G(coo)G(wn)fip(f')I0>

-<0|13=(?"')G(0)Pp(f')l 0><0I13a(f)G(wa)G(mz)P,(f")I0)

-<0|13,(F")G(0)1‘>,(F"')I0X0113a(F)G(wa)G(mn)fip(f')I0)

-<0IPp(P')G(0)Pe(f"')I0><0IPa(F)G(ma)G(coz)P,(f")|0>

OIPa(F)G(wa) 13$ (P")G(m1) P2(f"’)G(wx)f>a(f')IO>

0|13a(f)G(coa)1’58(F')G(coz)132(f"')G(wz)P, (F")IO)

0|ii..(f)G(ma)f>,(F")I0)<0IPe(f"')G(0)G(wn)Pp(f')I0)

0|13..(P)G(<oa)13.,(f')lo><ol13,(r"')G(0)G(m2)13.,(P")IO>

OI13a(i‘)G(wa)P$(f")G(a>1)P§(P')G(0)PAP")0)

0|13..(i")G(coa)PEIF')G(coz)P$(F")G(0>Pe(?"')|0>

I

I

I

I

I

I

+I0|P3I?'")G(0)133(F")G'I-w2)133(?')G'(-coo)f>a(f)|0)

I

I

I

I

I

I

I

=Idf"'z"rs(r"',fi“) 

+

+

+
+

+

+ Olfis(f"')G(0> 133(f')G.(—‘Dl)133(7")G.(-030)13a(filo)

0|1‘»,(f")G‘(—<o2)132(f"')G‘(-w2)138(?')G‘(—coa)13a(P) 0)

0|139(F')G'(-m1)132(?"')G‘(—w1)f>$(F")G‘(-coa)13a('r')I0)

Olin(f")G‘(-w2)G(0)134?")0><0IPB(F')G‘(-mo)fia(F)l0>

0|Pp(f')G‘(—mn)G(0)f>e(‘r'"')| 0><0|13, (F")G’(-wo)i5a(f)l 0)

0|13,(f"')G<0>fia(f')I0><0lf),(f")G‘(-w2)G’(—wo)m?)0)

0|13e(f"')G<0>f»,If")!0><0|PBI‘r")G‘(—w.)G‘(—wo)1301f)!0)

+

+
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OIPBIF')G(0) P,(P"')IO)I0|1‘>, (f")G‘(-co2)G‘(-coa)f>a(f)l 0)

Olfi,(‘f")G<0>P3(P"')IO><0|Pa(f')G‘(-cm)G‘(—wo)f>..(f)l0)

0|13,(f")G‘(-coz)P3(f')G‘(—wo)132(?"')G‘(—wa)f>a(f)l0)

ol§,(r')c°(—m,)ra3(F')c‘(—m.)ls:(t"')c'(-mo)no)o>

0|I3,(F”)G’I-w2)1‘>s('r")|0)I0|Pe(f"')G(0)G'(-wa)13a(?)|0)

0|P5(f')G‘(-wn)f>, (7")! 0><0I135(?'")G<0> G‘(-wa)i5a(i‘)| 0)

OIP, (?")G‘(-mz)132(r')c'(—mo)132(r)6(0) 13,(‘r'"')I 0)

0|MP)G°(-co.)i‘>$(f")G‘(-wa)132(f)G(0> 13,('r'"')IO>

0|138(f"')G(0)13$(?")G‘(—coz)PZIF)G(wn)Pa(F')I0)

0|Pc(?"')G(0)133(7')G°(-mn)P3(f)G(w2)131IF")I0)

0|13,(f")G‘(-wz)132(F"')G‘(—m2)fi2(P)G(con)f>p(f')I0)

0|1%(f')G‘(-con)f>i’(f"')G‘(—con)P2(f)G(mz)i‘>,(f")|0)

I

I

I

I

I

I

I

I

I

I

I

I

IOIP,(F")G'(-coz)G(0)Ps(?"')I 0>I0|Pa(‘f)G(mn)Pa(?')IO

I

I

I

I

I

I

I

I

I

I

I

+

+

+

+

+

+
+

+

>

- 0|Pp(f')G‘(-con)G(0)1347'")0><0Ifia(F)G(coz)f>,(?")IO>

0|in(f"')G(0)13,.('f)I0><0I13,(F")G‘(-co2)G(wn)fip(F')I0)

0|1‘n(f"')G<0) 13,. (f) 0><0IPB(?')G’(—wn)G(mz) 13, (F")IO>

Olfia(f)G(0> 13,(f"')l0)(0|I3,(F")G'(-m2)G(m1)139(F')IO)

0|13,.(F)G(0)r>,(f"')|0><0lfip(f')G‘(—mI)G(w2)P,(f")I0)

Olii, (f")G‘(—<oz) fi2(f)G(w.)fi2(f"')G(wn)133(7)0)

0|§,(r')c'(.m.)lsg(r)c(mz)13:(r~')c(m2)13, (F")I 0)

0|f»,(P")G‘(—mz)1‘>..(f)I0><0l13,(F"')G(0)G(wn)fia(7')I0)

0|fifl(f')G‘(-m:)r>a(f)|0><0I1‘5,(F"')G(0)G(m2)13,(f")l0)

+ Olin, (f")G‘(—m2)132.(f)G(m1)1‘>3(r')G(0) 13, (‘r‘"')| 0)

+ 0|135(f')G.(’ml)132(f)G(C°2)f’$(f")G(O)13¢(fm)|0>}

(14)
+

+

The expression within the {} brackets in Equation (14) is compared to the expression for

the second hyperpolarizability density adapted from Orr and Ward.l
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ym(f,f',f",f"';—(oo ;w 1 ,a), ,0) =

(OI 13a(?)G(mo)1‘>2(F"')G(wa)fi$(f")G(m1)1‘>,(f')I 0)

+(OI fa. (?)G(wa) P2(F')G(coz) 132 (F"')G(co2) 13, If") 0)

+(OI fa. (F)G(wo) 13$ (f")G(co1)f>§(F')G(O> P, (F")I 0)

+(OI Pa (F)G(ma) 1’52 (F"')G(wa) 1’5: (f ')G(o>2) 13, (P ")I O)

+(OI13..(P)G(mo)13$(f")G(m1)132(?"')G(co01356)O)

+(OI 13.. (F)G(coa)1‘>8(f')G(wz) 13$ (F")G(O> 134?") 0)

+(OI 1‘», (F'")Gm) 133 (?)G(wo) 13$ (F")G(ml)133 (F')! O)

+(OI1‘5,(F"')G(O) 13f: (F)G(coo) P2 (F')G(co2) P, (f")I O)

(OI 1‘5, (‘r‘")G(o>.) 13.36") O><O| 13a('f)G(coa)G(O)1‘>e(?"')l O)

(OI 13,(F")sz) 1‘», (f")| O>(OI 13.. (r)G(m,)G(w,) 13,(r')| O)

OI 1% (f')GIO) 1’5, (F "')I O>(OI 13a (r)G(m,)G(m,) 13, (f ")I O)

0| i5, (r 06(0):) i5, (‘r‘")I O>(OI 13.. (F)G(coa)G(O) in (?"')I O)

OI 13e(f"')G(con) 1336") O>(OI 13., (r)G(m,)G(m,) is, (“f ")I O)

OI 13, (f")G(O) 134?") O><OI 13a (?)G(wa)G(<m) 133 (F ')I 0)

OI 13.. (F)G(co n) 13, I?) O>(OI 13.: (f "')G<O>G(m2) ii, (?")I 0)

OI Pa (f)G(co2) 1‘5, (f")| O>(O| i5, (f"')G(O)G(wn) 13,MI O)

(OI 13., (f')G‘(-cm) 1’53 (F")G' (-coo) 1’52 ('r')G(O) in, (F'")I 0)

OI 13, (F') G‘(-<oz) 13:: (r')c‘(—ma) 1’53 (f)G(O> 13, (F") O)

(

(

-I

-I

-I

-I

-I

-I

+

+ <

+ oIf»,(r')c°(—m.)is:(r~)c‘(—m,)132(rm)c'(_m.,)1w)o)

0113,(max-m)f»:(r'~)c‘(_m2)133(r')c‘(_m,)13,(r)|o)

+(OI13,(?"')G(O>133(7')G‘(—mu)i5$(F")G‘(—mo)f>a(f)lO>

(0|13,Mex—m)13;;(r')G'(—m,)132(rm)e'(_m,)13,(r)|o)

+(OIPIIF')G‘(—w)132(f"')G‘(-wn)f>$(F")G’(—wa)f>a(f)lO>

+(OI13,(F"')G(O>13$(F")G‘(—co2)fi3(F')G‘(-coa)fia('r')lO>

+
+
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-(O|fia(f')G‘(—wx)fi,(f")lO>(OIfie(f"')G(O>G‘(-coa)f>a(f)lO>

—<OI13,(f")G‘(—a>2)f>e(f"')lO>(O|Pa(f')G‘(-cm)G'(-wo)f>a('r')lO)

-(O|P...(‘r"")G(O>Pn(f')IO>(OIin,(f")G‘(—w2)G‘(—ma)PAP)!O>

-(OI1‘>, (F")G’(—mz)fia(F')IO>(OIfu(‘r"")G(O>G’(—<oo)i5a(f)IO>

-(OIPB(F')G‘(—cm)f>...(f"')lO)(O|f),(7")G‘(-ooz)G‘(—mo)fia(f)|O)

-(OIfa(F"')G(O)13,(F")IOXOIOB(F')G‘(-mn)G‘(-ma)13,6)O)

-(O|PBIF')G‘(—wx)fia(f)IO><Ol13,(F")G'(-w2)G(O)PAP")O)

-(OIi5,(F")G'(—coz)f>a(f)lO><OIOa(?')G‘(—ml)G(O)134?")O>

(OIPp(f')G‘(—con)132(F)G(m2)f>2(F"')G(wz)f>, (f")I 0)

(0113, (‘r’")e’(-m2)132(f)G(mx)f>3(f')G(O) 13,(f"')IO)

+(OI13, (f")G‘(-w2)f>2(F)G(co:)P3I‘r‘"')G(cm)Pp(f')IO)

(OI135696140013:(P)G(wz)f>3(f")G(0) fi,('f"')I O)

(Olin(f")G‘(-w2)f>2(F"')G'(-co2)P2(f)G(wn)f>a(F')IO)

(OIIOe(f"')G(O)P3(f')G‘(-mn)fi2(F)G(wz)fi,(P")IO>

+<o|13,(r')c'(-m,)132(rm)c‘(_m,)132(r)e(mz)is, ('r‘")IO>

+(OI1‘>¢(F'")G(O> fi$(f")G‘(-coz)f>2($660134?)O>

-(Ol13a(?)G(O)13e(f"')IO>(OI13,(F")G‘(—wz)G(wI)f>a(F')IO>

-(OIfia(F)G<O)Pe(F'")IO>(OI fia(f')G‘(-m1)G(mz)P+ (f")|O>

-(Ol134666913,(f")IO>(OIPp(f')G‘(-co)G(O)f>e(F"')|O)

-(Olf>a (?)G(wx)f>p(F')IO>(OIP, (F")G'(—coz)G(O)f>e(f"')I O)

-(OI1‘>s(f"')G<O> 13a(?)l0)I0I135(f')G.(-(01)G(o)2)13, (7")IO

-(

-(

-(

+

+

+
+

+

(15)

)

Olin (F"')G(O) 13.. (f)! O)(OII‘>, (f")G‘(-w2)G(<m) 135 (F')I O)

OI P, (F")G‘I—mz) Pa If) O)(O|Pe(?'")G(O>G(con) 13,, (F') O)

OI PBIF')G’(—wn)13a(f)l O>(OI Ps(f"')G(0)G(mz)Py (F")I 0)

Proof of a sum-over-states identity

The expression in the brackets {} of Equation (14) is equal to Equation (15) if term

by term they are equal. Forty of the terms are equal to each other; however, eight terms

are not. The following convention is adopted for an ordered pair: (nth term of (14), mth
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term of (15)). In this convention the following terms are similar but not equal: (7, 10);

(8, 13); (13, 16); (14, 15); (21, 31); (22, 32); (25, 29) and (26, 26). The equality is found

once the terms are grouped into two distinct sums and the sum-over-states definition is

substituted for the reduced resolvent. The substitution for the reduced resolvent is needed

since the equality is proven by manipulating the energy denominators. The algebraic

manipulations below will show that the sum ofterms 7, 14, 21 and 26 ofEquation (14)

(labeled 3,) equals the sum ofterms 10, 15, 26 and 31 ofEquation (15) (labeled 3,).

Similarly, the sum ofterms 8, 13, 22 and 25 ofEquation (14) (labeled 9,) equals the

sum ofterms 13, 16, 29, 32 of Equation (15) (labeled 8': ).

S1 = -(0|P,(?'")G(0) P, (F") 0>I0IP,(?)G(wa)G(wn) P, (P')I 0)

- IOIP,(F)G(coo)PB(?')I 0>I0lP,(?"')G(0)G(w2) P, (7")I 0) (16)

- (OIP,(?")G’(-w2)G(0)P,(F'")I 0)I0 135(P')G.(-C°o) Pm (7)| 0)

- IOI P, (?")G(0)P,(?"')I 0)I0|P,(?')G'(-OO:) G’I-ma) Pa(?)| 0)-

 

 :vszO'f’eIF"')|m><mIP, 7")I0)(0IPa(F)In>(nIP,(r')|
0)

 

 

 

m n sz(nu‘moXQng-O)l)

_ 2' 2, (0|13a(f)lm>ImI133(7)0)(0I13,('f'")|n)(n|py(i“")|0)

m n (gins—03°)Qns(ans-C02)
17

_ , , (OIP,(?")Im>(mIP,(F"’)|0)(0|P,(P')In>(an,(F)IO) ‘ I

m n ((21,, +co2)nm,(a;, + on)

g En' (0| P, (F")Imel P,(F"')| 0>(0|P,(F')I n)(an,(F)|0>

—— 0mg(0;; 4' (1)1)(0; + (03)

Recalling that the summation labels m and n are arbitrary, we exchange m and n in the

second summation and sum like terms together over a common denominator.
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IOIPeIF'") m)IIIIIP, (7") o)IOI Pa(?)| n)InIPn(7')I 0)

0mg(9,, - moXQng - (on)

'2' (0| PaI?)| n)Inl Puff") 0WI 134?")! m)Im|P, (F")l 0)

m n (nag—mo)ng(ng-m2)

(0| P, (F")I m)ImlPJF'") 0)IOI PBIF'N n)Inl Pa(?)| 0)

(52;, + (02)ng(0;, + cos)

{3; 2' IOI P, (F")I WI“! | Pe('f"')l OXOI 13,6") n)Inl Pa(?)l 0)

om,(r2;,+m1)(n;,+ma) '

 

S] = “2'2'

 

(18)

 

_EIZI

 

(OIP(r)Im)m(lp,(r)I0)((0|Pa(r)<InnIn,(P)Io>[(n.,-n,)+(a,,-m,)]

QmIQns‘coaXQng-wIXQm-mz)

, ,Ions,(n")Im><mIn,(f"')Io><0In,(n')In><nIn,(n)Io>[(n;,+n,)+(o:,+n,)]
-2 2‘. . . .

m n (m+w2)flm(flng+mn)(m+ma)

2; 2, (0|f)£(f'")'m><m|137(7")|0><0l13a(f)|n><n|133(f')|0>(nmg
+ gag “(1)1 -032)

m n malng-maXQg-(DIXng-(DZ)

-X' 2' (OlPr(rMm)(m'Pe(r")OX0|P5(r
Mn)(nlpa(r)|0)(Qm+Q;g+c01+m2)

... ,. (unmannmwnxmuna)

 

SI=-E'2n

 

(19)

 

 

The same manipulations are performed on the sum, S,

S: = -I0IP,(?’")G(w2)P,(F")I 0>I0|Pa(?)G(wa)G(wx)Pn(f')I 0)

-I0|Pa(?)G(OJ1)Pp(?')I 0)(0|1‘>,(f"')G(0)G(m2)13,(F")|0)

-(0IP,(?")G‘(-co2)PEIF'") 0)(0IPn(?')G'I-mn)G’(—coa)Pa(F)I0)

-IOIPpIF')G’(-wn)Pa(?)l0)I0|P,(7")G'(-CO2)GI0)PAP") 0)-

(20)

, (0|P,(?'")|m>(mlP,(F")I0)(0IP,(F)In>(nIPn(?')I0)

(9mg - (sznng - maXQng - cm)

,IOIP,(?)|m)Im|Pn(?')| 0)I0|P,('r'"')| n)InIP,(F")I0) .

m n (am-ml)nng(nng-m2)

, IOIP,(?")I m)(m|f>,(r"')| 0)I0|Pn(?')l n)IIIIP,,(?)I0)

m n (Qing+m2)(Q°g+mI)(Qig +(Da)

(0IPnIr')lm)ImIPGIr)|00)(IP,(r")|n))InIP,(r"')I0)
”2

n n (:2:,,,+nm)(n:.,+nnz)og

 

S2=-2'2

 

(21)
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Next the summation labels, m and n are exchanged in the second and fourth summations.

 s, = _ z, 2. <0|Pe(?"')|m><mlfi,(f")lo><0In.(r)In>
<nIn,(n')Io>

 

 

 

 

 

m n (0m, - onXQng - maXQng - on)

_ 2,(OIP.(?)In)(n|P,(F')I0>(0IP.(?”')Im)(mIP,('f")l0>

m u (an, - 031)Qm8(§2m, - (02) (22)

, (0| P, If") m)Im| P,(?"')I 0)IOI PBIP'N n)Inl Pa(?)|0)
- X . . .

m n (Om, + (DZXQng + (DIXQng + (00)

_ , ,(0|P,(F')In>(nIP..(?)I0>(0|P,(?")|m>(mlP,(?'")I0>

n n (9;, + m,)(Q;., + (1)2)ng '

S _ , , (OIP.(F"’)Im)(mIP, (F")I 0>(0|P..(?)In)(an,(F')I o>[(am,) + (a, — no]
2 - ' 2 E '

m n (am-m2XQu-maXQu-wn)9ms

_ Z ' (0' 13, (“f")lmxnfl 135G"). OXOI 1313“,). n)In| 13016:» O)[(Qms) + (9;: + (90)]

m n (Qing+mz)(flig+ml)(flig+coa)flmg (23)

IOIP,(F")ImeIP, (7")1 O><O|13a(i:)|n><nlfip (7')OXch + Qua - (01" (Dz)

(0mg - (DZXQng - (DaXng - (m) (2...,

_ 2.2.I01P,(7")Im)Im|P,(‘r’"')I0)I0IPn(?')In)(ana(?)I0)(0m, + 92;, + 031+ (:32)

m n (QLg+(oz)(Q;,+mI)(Qig+ma)Qm .

:_ZIZI

At this point, the only difference between 8, and S2 is the frequency (2;, in the

second summation of S, and an; in the second summation of S2. The frequency (2“,, is

defined as 0",, = 9,, — Q, . Spontaneous decay of the state (2,, is introduced via the

inverse radiative lifetime 1“,, such that (In. = (on. — i1“,,/2 . Spontaneous decay is

neglected in this treatment; therefore, 52:“, = am, . Thus S, = 32. At this point, 44 terms

ofEquation (14) are equal to 44 terms ofEquation (15). The manipulations below show

that 8'1: S'z -

145

 



S', = -I0IP,('r'"')G(0)Pn(F')I 0)(0|13,(F)G(m,)G(w2) P, If") 0)

- IOIPa I?)G(coo) P, (F")I 0)I0|P, (F'")G(0)G(con) PBIP'N 0)

-IOIPBIP')G'(-wn)G(0)P,(7"')I 0)I0IP,(7")G°(-<Oa)Pa(?)|0)

-I0IPp(P')G(0)P,(7"')I 0)I0|P,(F")G'(-(O2)G‘I-coo)Pa(?)I0)-

(24)

, _ , ,(OIP.(F"’)Im>(mIP,(F')IO><OIP.(F)In><nIP,(?")I0)
S 1 - ‘2 E

.. . 9.,(n,-m.xa.,-m)

,(0|PQIF)Im>ImIP,(F")I0>I0IP,(?'")In>InIP,(‘r")I0>
2

m n (flung-(Do)Qng(Qng—ml)

,(0IPBIF')Im>ImIP.('r'"')I0>(0|P,(F")In)(an.(F)I0)
X 2 . .
m n (ng+a)1)ng(Qng +030)

2,I0IP.,(II'))Im(mIP Ir”'>I)I0>I0IP,(r'’)In)In|P..(r)I0)

m n ng(a;8+(02XQng +000)

 

 

(25)

 

 

S, hm?(0|Pe(?"')Im>Im|PnIP’)0)I0IP.(P)In)(nIP,(?")l0>[(oq-<n,)+(n.,-co2)]
 

 

 

 

m n (2118(‘Lg—030X‘2ng-m2X‘h-ml)

_m,IOIPnIF')m>ImIP,(F"')I0>I0lP,(?")In>(nIP.(F)IO>[(a;,+m2)+(o:.,+m,)]
m n (m,8+(01)§2(m(fl;g+ma)(fl;8+mz) (26)

_ , ,(OlfieIPHNmIImIHI?)O>IOIPQI7)ID)IHIP,IF")I0X0»;+0“-cm-a)2)
--E X

m " QWIQOO'WXW'WXQm0):)

, 'IOIfDBG'XmeIp(r")IO)I0IP,I-)ln)(nIPa(P)I0)(Qm+Q.g+mx+m2)
-2 2

n n (Q;,,+co1)flm(££g+coa)(§£g+coz)

Next the 3'; sum is manipulated.

I0|P.(?"')I m)ImIG(coI)Pp(7')I O)I0lP.,(?)IH)IOIP,(7")I 0)
 

 

 

 

8,2 = _ a, 2“, (0mg - (00(an - waXQng - (02)

_ 2' 2' (0|Pa(?)|m)Im|P,(F")I 0)I0|P.(?"')I n)InIP,(F')I 0)

m n (am, — wz)Q..,(Q.., - an) (27)

_ 2' 2, I0IPp(?')I m)IImIP.(F'")I 0>I0|P,(?")| n)IIIIP,,,(?)I 0)

m O (0;, + (00(5):, + 09(5):, + (00')

_ 2, 2' I0|P,(r'')Im>ImIP.,(r))I0)II0|Pn(r')In)<an(r"')I0).

m n (52;, +w2)(n;,, + 01)!),
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_ 2,2,I0IP.(f'"')Im)(mIG(coI)P,(f')IO)IOIP,(f)ln)(an,(P")IO)[a..,+(m-m,)]
 

 

 

 

m " (Qua: ”39(ro —(°°)(Qns - c090“,

_ ,2, (OI PBIF') mIImI P,(?"’)I O><OI P, (7")! n)(n|13,(f)| O)[Q,,,, 440;, + 0,,)]

m u (an, + 0),)(QL, + m,)(().’,, + (no) 9m, (28)

_ _ 2, 2. (OI is, (POI mIImIGIn.)1wO>IOI 13. PI n><nI n, (PI exp... + a, - a, -m.)

m n (Que ’CDIIIQ»: ‘ moXQn -mz)Q.n,

_, ,I0IPnIF'lmeIP.(P"')IO)IOIP,(f")In>(nIi>,(r)|0>(n.,+9.3,+0,+,,,,)

'“ “ (d,+n,)(o;,+mz)(9;,+m.)n,,

Result

The preceding work has shown that the 48 terms inside the {} brackets ofEquation

(14) are equal to the 48 terms ofthe second hyperpolarizability density ofEquation (15).

Thus, substituting the second hyperpolarizability density into the brackets of Equation

(14) yields the result:

63“”, (f,f',f";-coa;a),,m2)

6R? ' (29)

... jd‘r’mzxymfij',‘

 

rrr,frrr;_m a “D I ,(D 2 ,0)T65(?m:§x) °
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APPENDIX C: EFFECT OF CREATION AND ANNIHILATION

OPERATORS ON MULTI-ELECTRON WAVEFUNCTIONS

Multi-electron wavefunctions can be represented as Slater determinants or as

occupation number wavefunctions. When an occupation number wavefunction is used,

the single-electron states that comprise the multi-electron wavefimction are placed in a

conventional order. In this work, the ordering ofthe single electron states will be in

terms of energy. The occupation number wavefunction can be written as a product of

creation operators acting on the vacuum state. The creation operator product also is

placed in a conventional order.

lnm may ' 'nnlmfl> = (a1(lsa))m”(al(lsg))msfi---(al(nlrnp))nm| Z) (1)

The wavefirnction is written in terms ofn with the understanding that n is either 0 or 1.

Thus, Equation (1) can be rewritten neglecting creation operators raised to the zeroth

power.

In,”my ° °nnhnfi> = a*(lsu)a*(ls;,)' ' °a*(nlmn)l E) (2)

The electrons in the multi-electron wavefimction must be indistinguishable.

Therefore, when the electrons are placed in a different order into a multi-electron state,

the differently ordered state is still a valid wavefunction, though the sign ofthe function

may change depending on how and how many electrons were exchanged. The

anticommutation rules for electron operators allow for the proper accounting of the sign

of the multi-electron state when electrons are exchanged.
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{alual}: aInan + anam= 0

{amaan} =aman+anam=0 (3)

{alnan} = afuan + again = 6m

Specific examination ofthe anticommutation relations for the creation operators yields

the proper sign ofthe wavefimction under electron exchange.

a3, a}; = — a1 a3, (4) “1

Therefore, in the occupation number formalism, the relationship becomes

aman|®)= —a;arnlg>=>lnmnn>=-Innnm>° (5)

 Thus every time the order of a pair of creation operators is reversed, a sign change results. 9;

When a creation operator operates on a multi-electron wavefunction, the number of

particle exchanges required to place the operator in standard order must be determined so

that the correct sign of the function can be found. Consider the operator aI operating on

the wavefunction Inm nu). (In the examples, standard order is alphabetical order.)

allnmnn)= aramanl®>= (-1)ama,an|@) =(-1)(-1)aLaI.aII@> = Inmnnnr) (6)

The a: operator needed to be exchanged twice to place it in conventional order. Thus, a

factor of (-1)2 is included in the final wavefunction. The two following examples further

illustrate the concept.

a: l nm nu nr>= 31 aman arTl Q): (’l)31’am an araang): —| Ilm Ill] 11: m)
(7)

aLInmnnnx)= apamanarlg>= (-1)2 amanaparlg) =)Inmnnnpnr>

The factor of -1 can be written using the notation (—1)S’ where Sp indicates the number of

operator exchanges, i. e. particle exchanges, needed to put the operator a; into

conventional order.
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A similar situation arises when an annihilation operator is applied to a multi-electron

state. The anticommutation relations yield

anal. = -a.I..a.. m ¢ n

(8)

anan=1- anan 111:1].

Consider the effect of the annihilation operator a. on the examples in Equation (7),

a.|n...n.. mu.) a.a...a..a.aslg> (-1)aLa.ana.aslg) (-1)2 amana.a.a.I@) If}

=(-l)2 aman(1—aral’)a$Ig>: amanas|®>+(-1)3amanararaslg) (9)

=amana3|$>+(-1) a...a..a.a.a.|@)= a...a..a.|®>+0=lnmn..n.)

 a.n...n..n,.n.>= aramanapa.I@)= (-l)ama,anapa,|®)= (-1)2 amana.a,.a.IQ>

=(-1)3amanaPaYaTI®)= (__31) amanap(1-arar)lg>
(10)

= -a...a..aplg> + 0 = -In...n..np>

where a,|®> = 0. Therefore, the same set of operator exchanges is needed when

determining the sign ofthe multi-electron wavefimction when an annihilation operator is

applied. The effect of a creation operator upon an arbitrary occupation number

wavefunction can be written as

aXInrnzmm‘“) = (...1)Sllmm...m +1...) m = 0 (11)

The restriction on the occupation number m = 0 should be noted since the application of

the operator gives zero when m = 1, i. e., the complete destruction of the multi-electron

state. The effect of an annihilation operator upon an arbitrary occupation number

wavefunction can be written as

a‘lmnz...n‘...> =(-1)S"|n1n2'°-n..-1'°°) n‘ =1 (12)

Similarly when 11,, = O , the annihilation operator gives zero.
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The matrix element of an arbitrary single-electron number-conserving operator can be

calculated using Equations (11) and (12).

(n'.n'2°"n'x'°'n'i'“Ialaxlmnzmmmm'°')

= (—1)S“S"(n'.n'2'"n'..°°'n'i'“Innnzmnx-1'°'m+1'">
(13)

_ SA’SK

— (-1) 8n'1-m 8n'z-nz ' ' .8n".n.¢—l . . 'Sn'xmrl ' . '

Note that (—1)S“S" in Equation (13) has been written identically as (—1)S*'S" .
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APPENDIX D: RELATION OF POLARIZATION PROPAGATOR

DERIVATIVE TO POLARIZABILITY DENSITY DERIVATIVE

The derivation relating the derivative of the polarization propagator to the first-order

nonlinear polarization propagator is suggested by the relationship found by Hunt et a1.”

between the nuclear-coordinate derivative ofthe polarizability and the hyperpolarizability

density,

aaw(f;f',m)/6Rf = Idf"Bw5(f;f',co,f",0)ZKT51(f”,RK). (1)

The hyperpolarizability density can be expressed in terms of the quadratic polarization

propagator.

amazemwuw")=[pat]:[w’).]:[p(r'),]:11:22:20»um"). <2)

There are no linear polarization propagators in Equation (2). The purpose of this

appendix is to demonstrate that the linear polarization propagators'that arise from taking

the derivative ofthe polarizability density cancel each other to yield an expression with

only the quadratic polarization propagator.

The polarizability density written in terms of the polarization propagator is.

aus(ffr":w) = -A§,‘§,<%|P(f).li<><l'|p(f’)..|'<’>r1¢:fi3(w) (3)
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The derivative ofthe polarizability density with respect to any arbitrary parameter is

WWW)

( K

%p(f).lx><l'lp(f').lx'>n:::1(w)+among““WVWIW \
' K, (4)

2 ;. +0»!p(f).lx>‘a%'v(f').lx'>ntzii(w)+<Mp(fl.lv<><l’|P(?')ai—>Ifiii3(‘°)
an

- . -. ,6rli:fi3(w)
K+<>~|p(r),lx)<>~ |p(r )..|K >—--——a,1  

)

Upon substitution of the polarization propagator derivative, the polarizability density

becomes

aaaafifi'w)

an

2 2 {%p(f>.lx><>~'lp(f').lx'>r1256»)+<Mp<f>.%"><l'lp(f').lx'>n:::1(w)
LN K.K'

+<>~lp(f).lx>a<a:'lp(f").|x'>n:::i(w)+<KIp(?).|v<><>~'Ip(f').a—an9n::£(w)} <5)

-,2,20.1p<i>.lx><>ulp(r').lx'>

 

2[23,131n2;2:;::(w,0)+§,c....n2::(w)+,2,c...n22(m) .

  
+ .5... C2. Ht? (0)) + 3.. Ca 113:5 (0))

The derivative of the single electron wavefunctions in Equation (5) can be expressed as a

sum-over-states.

%= m‘kcmlno (6)
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Substitution ofEquation (6) into Equation (5) yields

6a....(f.f';w)
 

',2,c;m<mlp(2).lx><wl22(2),:2') . 1

+2,emu:22222222212)

+§,,c;..<2lp(2).lx><mlp(2).IK'> ““"(‘°)

_+n§,,cx'm<?~lP(f),|K><>~’lp(f’).lm>J ‘1

2%]11;:22:22 (a)0)

:2.2.2122222wax)x 2+2212221222c.2222) ~— .
+2C;.n.’::'t(w)+ 2:car1t::(w) (7) J.

   
  

V o

 
  

After simple rearrangements of coefficients and summations, Equation (7) becomes

 

aaaagrf'm) = 322:2 ‘2 31Cg(m|p(r)a|x)(w|p(r')B|x')2(a))

-12,‘2,tn2xcm<>~lp(f),lm><k'lp(f').lK'>rI.t2(a))

—AgggycivmwP(f).|K><m|P(T')..|K')Ht5(0))

I > >
—l§.'x.zx'm§flcrm<k

lp(f)a K (K'|p(f'x5 lm HKIK'((D)

-,§,,§,,,§,<klp(f),lK><>~'|p(r'..)K>[%n‘9]:n:3:1222(20) (8)

-,§,,§,m§,cm<klp(f),lKK><2'Ip(r'). lK'>112?(2))

32,2, 3,,cm<2|p(f).lK><2'lp(2).IK>n2:2(w)

-A213,,,§,c22<klp(f).lK><>~'|p(f').|K'>n::t'(w)

— 2 2 2 Chmp(f).|K><>~'|2(2'),|K'>nt:21(w)-
1,1’ K,K' km:
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Since A, N, K, K', m and k are dummy indices, they can be reassigned different labels. In

the sixth term, let m be interchanged with 7. (m <—> 72). In the seventh term, In (-> N. In

theeighthterm,k—>K’andx'—)m. Intheninthterm,k—>xandr<—>m.

2222:2222)=-3333,E2Ec;..(m|2(2).)K><2'Ip(2').IK> 2122(2)

2(2)-3,2,2,cm<2|p(2).lm><>»'|p(f').lK'>n2 .2

—2,2,2,2.2212(2).)K>(m(p(2'),IK>n22(2) 1 i,

-,§,,§,,,§,,Cm<2lp(f),lK)<2'l2(2'),lm>n2.23(w)

-,§,,2,,,2,,<2|p(f).lK><2'|p(2’),lK')[-al‘9]:r1:221:21(2 o) (2) EE

-,2,,2,,2,c2(m)p(2).K|22 |p(r),IKn 2(2)>122

-,2,,2,,_2,,c...(2)p(2)Kl K><m|p(r).IK>n22(2)

> mu):

>

 

 
 

- 222CI...)(7~lp(f) IK (7V |P(r'mrl)..| 323(0))

- 222Ec...<>»lp(r) lm><>~' 19(2')..|K' 1125(0))-

Common quantities can be factored from terms (1 and 6), (2 and 9.), (3 and 7) and (4 and

8) in Equation (9).

 22222.2) =—222[C;m+C...](mlp(f),lK)(?~'|P(?').|K')Hizfi3(w)

322ng>3E[c...+c;..](llp(r),|mm><72 '|P(f').|'<')flfi:23(°3)

_222[c;.m+c,,.]().|p(r),| x (m|p(r'),|x')n:;::(m) (10)>

-2 2 2E[me+C;2]<’~|P(r),K|><1|P(r).|m> 1125(0))

-,2 ,2, ,2, (2(2)lK><2'Ip(f').lK{2,22]: r22:2 (20)
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Because ofthe orthonormality condition placed upon the perturbed wavefunctions

Cu, + CL; = O , the sum ofcoefficients in the [] brackets is zero.3 Therefore,

 6222222“) = -,2,,§,,2,<2I2(2).IK>(2I2(22).IK'>[%] n22;2:(2,o) (11)

Thus, the derivative of the polarizability has no dependence on linear polarization

propagators.

 

‘ K. L. C. Hunt, J. Chem. Phys. 90, 4909 (1989).

2 K. L. C. Hunt, Y. Q. Liang, R. Nimalakirthi, and R. A. Harris, J. Chem. Phys. 91, 5251

(1989)

3 Chapter 2, pg. 32.
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