

This is to certify that the

dissertation entitled

Characterization of the Genes Encoding Glutamine Synthetase I and Glutamine Synthetore II from Bradythirdrium japonicum

Todd A Carlson

has been accepted towards fulfillment of the requirements for

Ph. D degree in Bischemistry

Major professor

Date 8/14/86

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

RETURNING MATERIALS: Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

CHARACTERIZATION OF THE GENES ENCODING GLUTAMINE SYNTHETASE I AND GLUTAMINE SYNTHETASE II FROM BRADYRHIZOBIUM JAPONICUM

By Todd A Carlson

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Biochemistry

1986

ABSTRACT

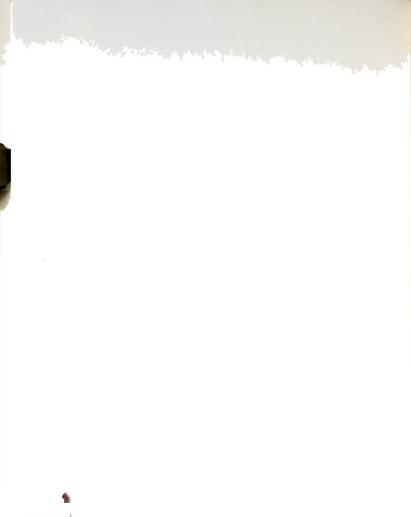
CHARACTERIZATION OF THE GENES ENCODING GLUTAMINE SYNTHETASE I AND GLUTAMINE SYNTHETASE II FROM BRADYRHIZOBIUM JAPONICUM

Ву

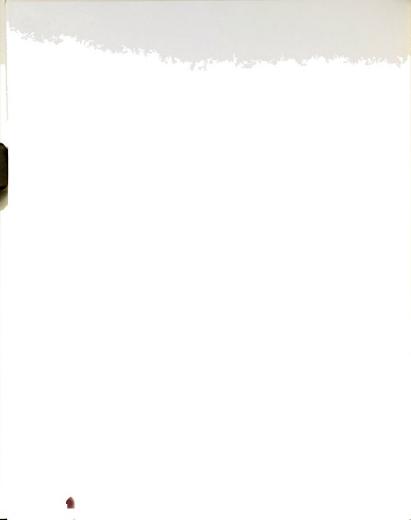
Todd A Carlson

Bacteria of the genera Rhizobium and Bradyrhizobium are able to fix nitrogen in symbiotic association with leguminous plants. The repression of bacterial glutamine synthetase (GS) allows newly fixed nitrogen to be exported from the symbiotic bacteroids to the host plant. Therefore, the regulation of GS is an important part of the development of an effective symbiosis. In this dissertation, I describe the isolation and characterization of the genes encoding the two GS isozymes, GSI and GSII, from Bradyrhizobium japonicum, the soybean symbiont. The gene encoding GSI, glnA, was identified in a genomic library using a fragment of the Escherichia coli glnA gene as a hybridization probe. The B. japonicum glnA gene was found to have extensive homology to E. coli glnA, and when expressed in E. coli, produced large amounts of a GS with properties identical to that of GSI of B. japonicum. SI nuclease protection experiments indicate that qlnA is constitutively transcribed from a single promoter. The gene encoding GSII, glnII, was identified in a cosmid library using a mixed oligonucleotide hybridization probe based on a partial amino acid sequence determined from purified GSII. Amino acid sequence comparisons revealed extensive homology between GSII and eucaryotic glutamine synthetases, suggesting that GSII evolved as the result of a eucaryote to procaryote gene transfer event. Quantification of qlnII mRNA in

TOASIZHA


INTERPOLATION OF THE STATE OF T

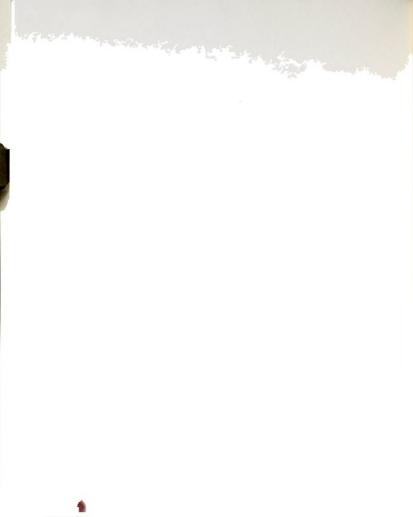
nutrient limited cultures demonstrates that \underline{glnII} is transcriptionally activated in response to nitrogen starvation or nitrogen limited growth. The site of transcriptional initiation upstream of \underline{glnII} was mapped by S1 nuclease protection. The \underline{glnII} promoter has no homology to the \underline{glnA} promoter but has homology to \underline{B} . $\underline{japonicum}$ \underline{nif} promoters in the RNA polymerase binding region. Promoter structure and gene expression are discussed with respect to possible models of \underline{glnII} and \underline{nif} regulation during symbiotic nitrogen fixation.


ACKNOWL EDGMENTS

I would like to thank a number of people for their advice and assistance. My foremost thanks go to my advisor, Barry Chelm, for providing expert advice and guidance when needed, and for not providing advice and guidance when not needed. I also thank the members of my quidance committee for their suggestions and criticisms. I would also like to acknowledge all the members of the Chelm lab for freely supplying advice, assistance, and RNA samples. I am grateful to Larry Reitzer, Boris Magasanik, Benjamin Mifflin, Howard Goodman, Gloria Coruzzi, and Tom Adams for the communication of results prior to publication. Technical assistance was provided by Tony Bleeker and Hans Kende for the HPLC analysis; Mike Shimei and Jan Watson for oligonucleotide synthesis and purification; Bob Haselkorn, Lee McIntosh, and Rob McClung for plasmids; and Ron Davis for sequence analysis. I acknowledge the DOE Plant Research Laboratory, the Biochemistry Department. and Michigan State University for financial support of my graduate studies. Finally, and most importantly, I extend thanks to the members of my family, especially my father and my wife, for their constant support and encouragement.

TABLE OF CONTENTS

	PAGE
List of Tables	v
List of Figures	vi
CHAPTER 1 Introduction	1
CHAPTER 2 Characterization of the Gene Encoding Glutamine Synthetase I (glnA) from Bradyrhizobium japonicum	
Introduction	11
Materials and Methods	13
Bacterial Strains and Media	13
Materials	13
B. japonicum Genomic Library Construction	14
Hybridization Methods	14
Plasmid Complementation and GS Assays	15
Nodule Bacteria Isolation	16
S1 Nuclease Protection Analysis	17
Results	17
B. japonicum Library Screening	17
Localization of the glnA homology	18
Complementation Analysis	18
Measurements of GS activity	23
Promoter Sequence and Expression Analysis	25
Discussion	31

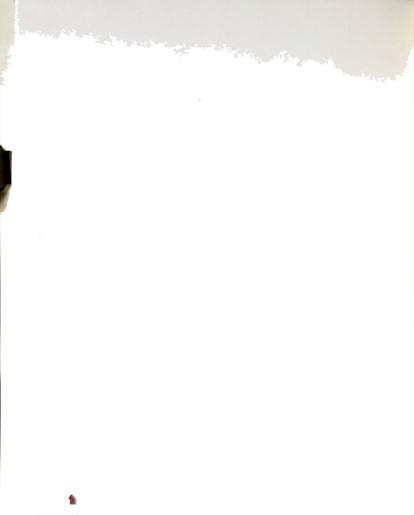


The state of the s	774
	PAGE
CHAPTER 3 Apparent Eucaryotic Origin of Glutamine Synthetase from the Bacterium <u>Bradyrhizobium japonicum</u>	II
Introduction	35
Materials and Methods	36
GSII Purification and Protein Methods	36
Oligonucleotide and DNA Methods	37
Complementation Analysis	38
Resluts and Discussion	38
CHAPTER 4 Transcriptional Control of <u>glnII</u> , the Gene Encodin Glutamine Synthetase II of <u>Bradyrhizobium</u> <u>japonicu</u>	g m
Introduction	51
Materials and Methods	55
Promoter Mapping	55
Bacterial Cultures	56
RNA Purification	57
Results	57
Promoter Mapping	57
Sequence Analysis	58
glnII Promoter Characterization	63
Discussion	70
CHAPTER 5 Summary and Conclusions	75
LIST OF REFERENCES	81

LIST OF TABLES

TABLE		PAGE
1	Complementation of \underline{E} . \underline{coli} ET8051 \underline{glnA} deficiency by plasmids carrying the \underline{B} . $\underline{japonicum}$ \underline{glnA} gene	24
2	GSII Purificaton	39
3	The Statistical Significance of Amino Acid Sequence Homologies Between <u>B. japonicum</u> GSII and Other Glutamine Synthetases	49

LIST OF FIGURES


FIGURE		PAGE
1	Restriction Endonuclease Map of the $\underline{\text{B}}.$ $\underline{\text{japonicum}}$ $\underline{\text{glnA}}$ Region	20
2	Localization of $\underline{\text{glnA}}$ by Heterologous Hybridization	22
3	Identification of GSI by Sedimentation Centrifugation	26
4	The Sequence of the 5' End of the $\underline{B}.\ \underline{japonicum}\ \underline{glnA}$ Gene	27
5	S1 Nuclease Protection Analysis of \underline{B} . $\underline{japonicum}$ \underline{glnA}	30
6	$\underline{\mathtt{B}}.\ \underline{\mathtt{japonicum}}\ \underline{\mathtt{glnA}}\ \mathtt{Promoter}\ \mathtt{Sequence}\ \mathtt{Comparison}$	32
7	GSII Purification: SDS-Polyacrylamide Gel Electrophoresis Analysis	41
8	GSII Amino Terminus Sequence and Mixed Oligonucleotide Probe	42
9	Identification of GSII by Sedimentation Centrifugation	44
10	DNA and Amino Acid Sequence of $\underline{\text{glnII}}$ and GSII	45
11	Homology Matrix Comparing GSII With <u>Phaseolus</u> <u>vulgaris</u> GS	47
12	Homology Matrix Comparing GSII With <u>Anabaena</u> GS	48
13	S1 Nuclease Protection Mapping of the glnII Promoter	60
14	DNA Sequence Upstream of glnII	61
15	B. japonicum Promoter Sequence Comparison	62
16	B. japonicum Minimal Media Growth Curves	66
17	Comparison of glnA and glnII Transcription	68

CHAPTER 1

Introduction

Bacteria of the genera Rhizobium and Bradyrhizobium are unique in their ability to fix nitrogen in symbiotic association with leguminous plants. During the development of this symbiosis, the bacteria undergo metabolic and morphologic transformations to become bacteroids, the intracellular "organelles" where nitrogen fixation occurs. Concurrent with this bacterial cell differentiation, root cells at the site of infection develop to form nodules, the multicellular organs which provide the specialized environment required for rhizobial nitrogen fixation. The legume-rhizobium symbiosis is species specific and is presumably coordinated by a series of complex interactions between the procaryotic and eucaryotic symbionts. The formation of effective nodules, therefore, can be viewed as a developmental pathway requiring the regulation of many genes and enzymes in both the bacterium and the host plant. A complete understanding of nodule development is necessary in order to develop fully the tremendous potential of the rhizobiumlegume symbiosis. Because of the bacteroid's role in nitrogen fixation. the regulation of plant and bacterial nitrogen metabolism is of special interest

In the bacteroid, atmospheric nitrogen is reduced to ammonia by nitrogenase, a complex enzyme system consisting of component I, which contains the active site of dinitrogen reduction, component II, which is involved in electron transport, and a set of nitrogenase specific cofactors. The coordinated expression of at least 18 genes (designated as nif genes) is required for the synthesis of nitrogenase and its associated cofactors in Klebsiella pneumoniae (Roberts & Brill, 1981) and presumably also in Rhizobium and Bradyrhizobium species. All known nitrogenases are oxygen labile. Bacteria which fix nitrogen in aerobic environments have developed various mechanisms for protecting their nitrogenase from O2 inactivation. Rhizobia depend on the plant encoded, oxygen binding protein leghemoglobin, which maintains a very low concentration of free oxygen in the nodule, thus protecting bacteroid nitrogenase from O, inactivation. Breaking the triple bond of dinitrogen is a very energy expensive process, requiring approximately 12 molecules of ATP and six electons for each N, fixed (Mortenson & Thorneley, 1979). The plant provides a respirable energy source for the nitrogen fixing bacteroids in the form of dicarboxylic acids (Ronson et al., 1981). The oxygen required for bacteroid respiration is transported through the nodule by facilitated diffusion using leghemoglobin as a carrier protein (Bergersen, 1980). Thus, leghemoglobin serves the dual function of protecting the oxygen labile nitrogenase and transporting oxygen for bacteroid respiration.

In order for rhizobium to function as an effective nitrogen fixing symbiont, it is necessary for the bacteroid to export fixed nitrogen for utilization by the host plant. Isotopic tracing studies indicate that as much as 94% of the nitrogen fixed by bacteroids in legume root

In the bectared, stangeless bettaggeness polyces to denote attracement, a sense because the sense.

nodules is exported to the plant (O'Gara & Shanmugam, 1976). The primary pathway of ammonia assimilation is by the coordinated activity of glutamine synthetase (GS) and glutamate synthase (GOGAT: Tyler, 1978). GS catalyzes the production of glutamine from glutamate and ammonia. GOGAT produces two molecules of glutamate from glutamine and 2-ketoglutarate. During the development of nitrogen fixing bacteroids. GOGAT activity remains relatively constant but GS activity is repressed in concert with the derepression on nitrogenase (Brown & Dilworth, 1975; Robertson et al., 1975; Upchurch & Elkan, 1978). As a result, the ammonia formed by the nitrogenase complex is exported from the bacteroid to the plant cell where it is assimilated by a very abundant, nodule specific glutamine synthetase (Brown & Dilworth, 1975; Cullimore et al., 1983; Evans & Crist, 1984; Lara et al., 1983; McParland et al., 1976; O'Gara & Shanmugam, 1976; Upchurch & Elkan, 1978). Because GS is the first enzyme of the ammonia assimilation pathway, its regulation is critical in the control of overall nitrogen metabolism. Some bacteria use glutamate dehydrogenase (GDH), which catalyzes the formation of glutamate from 2-ketoglutarate and ammonia, to assimilate ammonia present at high concentrations (Tyler, 1978). In many strains of rhizobia, however, GDH is only used for glutamate catabolism and GS/GOGAT is the only pathway of ammonia assimilation (Howitt & Gresshoff, 1985; Ludwig, 1976; O'Gara & Shanmugam, 1976; Vairinhos et al., 1983).

The regulation of GS in rhizobia is unusual when compared to non-symbiotic nitrogen fixing bacteria, such as <u>Klebsiella pneumoniae</u>, which activate both GS and nitrogenase during nitrogen starvation. It has been suggested that the ability to simultaneously activate ammonia

nodules is experted to the plant (o'Care & Shamoure 1975). The prisons pathway of amounts assimilation is the the coordinates activity production (nitrogenase) and repress ammonia assimilation (GS) is an adaptation of rhizobial nitrogen metabolism necessary for symbiotic nitrogen fixation (Ludwig & Signer, 1977; 0'Gara & Shanmugam, 1976). Although the export of ammonia by bacteroids is logical in terms of their role as symbiotic nitrogen fixing "organelles," it is not immediately apparent how rhizobia could have evolved this apparently altruistic behavior. Kahn et al. (1985) have suggested that bacteroid nitrogen fixation is not altruistic but rather is necessary for self feeding. According to their model, nitrogen in the nodule is used as a carrier of carbon into the bacteroids, entering as amino acids and excreted as ammonia. The purpose of nitrogen fixation is to replace the nitrogen that has been utilized by the plant to ensure a continual flow of carbon into the bacteroid. Thus, nitrogen fixation is a response to carbon rather than nitrogen starvation.

The excretion of nitrogen is not unusual among diazotrophic bacteria. Some species of <u>Bradyrhizobium</u> are able to fix nitrogen <u>explanta</u>, but the reduced nitrogen is excreted into the culture medium and not utilized for growth (Evans & Crist, 1984; Ludwig, 1980a; O'Gara & Shanmugam, 1976; Upchurch & Elkan, 1978). Some actinomycetes can fix nitrogen in a symbiotic association with non-leguminous plants similar to the rhizobium-legume symbiosis (Akkermans & Roelofsen, 1980). The filimentous blue-green algae <u>Anabaena</u> fix nitrogen in terminally differentiated cells termed heterocysts (Haselkorn, 1978). The heterocysts "sacrifice" themselves in order to fix nitrogen for the benefit of other cells in the culture. The development of specialized nitrogen fixing cells is characteristic of nitrogen exporting diazotrophs. In contrast to rhizobial bacteroids which repress GS and export ammonia, <u>Anabaena</u>

production (altrugances) and repress assents example took took edeptation, of relatebook offeren

heterocysts produce large amounts of GS and export fixed nitrogen in the form of glutamine (Thomas $\underline{\text{et}}$ $\underline{\text{al}}$., 1977). This observation supports the conclusion that the regulation of GS is an important component of bacteroid metabolism.

The study of GS regulation in rhizobia is complicated by the presence of two species of GS, designated GSI and GSII (Darrow & Knotts, 1977). GSI, in all respects, is typical of procaryotic glutamine synthetases. It has 12 subunits of 59,000 daltons and is post translationally modified by a regulatory system similar to that of $\underline{\mathbf{f}}$. $\underline{\mathbf{coli}}$ GS in which any or all of the 12 subunits can be repressed by the adenylylation of a specific tyrosine residue (Darrow, 1980; Darrow & Knotts, 1977; Ludwig, 1980b). Furthermore, GSI will cross-react with antibodies raised against $\underline{\mathbf{f}}$. $\underline{\mathbf{coli}}$ GS (Tronick $\underline{\mathbf{et}}$ $\underline{\mathbf{al}}$., 1973). Although the synthetic activity of GSI is regulated by adenylylation, the enzyme is produced at a relatively constant level (Ludwig, 1980b). The gene encoding GSI, termed $\underline{\mathbf{glnA}}$, has been isolated from $\underline{\mathbf{Rhizobium}}$ $\underline{\mathbf{meliloti}}$ and is homologous to the $\underline{\mathbf{glnA}}$ gene of $\underline{\mathbf{f}}$. $\underline{\mathbf{coli}}$ (Somerville & Kahn, 1983).

Whereas GSI is similar to glutamine synthetases from all bacteria, GSII is found only in the Rhizobiaceae family, which includes the genera Rhizobium, Bradyrhizobium, Agrobacterium, and Phyllobacterium (Fuchs & Keister, 1980). GSII is encoded by a gene distinct from the gene encoding GSI (Darrow, 1980; Somerville & Kahn, 1983). The structure of GSII (8 subunits of 36,000 daltons) is characteristic of eucaryotic glutamine synthetases (DeVries et al., 1983). DeVries et al. (1983) demonstrated that GSII of Rhizobium leguminosarum will cross-react with antibodies raised against Pisum satuvum GS and suggested that the gene encoding GSII may be of eucaryotic origin. However, this hypothesis was

references produce large examina of its and enquirible afficient to the form of glutarian (Thomas and a 1977) of this observation temporal to

not confirmed by Cullimore and Miflin (1984) who found that <u>Rhizobium phaseoli</u> GSII would not cross-react with antibodies raised against <u>Phaseolus vulgaris</u> GS and that a partial cDNA clone of the gene encoding <u>P. vulgaris</u> GS had no detectable homology to <u>R. phaseoli</u> genomic DNA. Thus the origin of GSII remains a mystery.

GSI and GSII are differentially regulated in response to a number of different stimuli, including nitrogen source, carbon source, oxygen concentration, and symbiotic development (Cullimore et al., 1983; Darrow et al., 1981, Fuchs & Keister, 1980; Ludwig, 1980b; Rao et al., 1978). GSI activity is regulated by the adenylylation cascade system. In contrast, there is no known regulation of GSII by post translational modification. Therefore, changes in total cellular GSII activity are presumably due to the regulation of transcription of the gene encoding GSII or translation of its mRNA.

It is not yet clear what function GSII serves in rhizobial nitrogen metabolism. A \underline{R} . meliloti gln \underline{A} deletion strain, which has no GSI, grows normally, indicating that GSII alone is able to satisfy all of the ammonia assimilation needs of the cell (Somerville & Kahn, 1983). This is in contrast to a report by Ludwig (1980b) who found that GSII did not function in ammonia assimilation. Darrow \underline{et} al. (1981) have suggested that GSII provides extra ammonia assimilatory capacity during nitrogen limited growth. This conclusion is based on the observation that GSII is induced in \underline{B} . japonicum when grown on poor nitrogen sources, such as amino acids, or good carbon sources, such as succinate and gluconate. The concentration of oxygen in the culture medium also seems to affect the regulation of GSII. Rao \underline{et} al (1978) found that, at 0_2 concentrations below 0.40%, GSII levels decline dramatically in concert with the

puterning fail count new (8005) within the amouting on beautings for

adenylylation of GSI. The repression of GSII at low oxygen concentrations may be especially significant since similar conditions exist in root nodules. In all cases that have been examined, GSII repression is concurrent with an increase in GSI adenylylation. The simultaneous repression of GSI and GSII suggests the presence of a general nitrogen regulatory system which can control both gene transcription and protein modification.

The regulation of bacterial nitrogen metabolism has been most extensively studied in the enteric bacteria Klebsiella pneumoniae and Escherichia coli (Alvarez-Morales et al., 1984; Magasanik, 1982). In these bacteria, GS and other enzymes, responsible for the catabolism of various nitrogen sources, are under the control of a complex regulation system, termed Ntr. Ntr regulated genes include angl (arginine uptake), hisJQHP (histidine uptake), hutUH (histidine utilization) and nif (nitrogen fixation). This group of coordinately regulated, unlinked genes is sometimes referred to as the Ntr regulon. All genes activated by the Ntr system require the Ntr specific sigma factor, σ^{60} , which substitutes for the normal sigma factor and directs RNA polymerase binding and transcriptional initiation at Ntr promoters (Hirschman et al., 1985; Hunt & Magasanik, 1985), σ^{60} is the product of the rpoN gene (formerly designated glnF and ntrA). All Ntr activated genes have DNA sequence homology in the region 10 to 30 base pairs (bp) upstream of the RNA start site. The consensus sequence (-27 CTGGCAC-N₅-TTGCA -10) defines the Ntr promoter (Dixon, 1984b; Ow et al., 1983).

RNA polymerase and σ^{60} alone are insufficient for transcription from Ntr promoters. An additional nitrogen regulatory protein, NRI, is required. NRI is the product of the <u>ntrC</u> gene (also designated <u>glnG</u>;

Reitzer & Magasanik, 1983). NRI is a dimeric protein which binds double stranded DNA at the sequence 5'-TGCACCAAAAA, 1985). The mechanism by which NRI activates Ntr promoters is not completely understood. It has been suggested that the partial homology between the NRI binding sequence and the Ntr consensus promoter (TGCA) is responsible for the direct interaction of NRI with the DNA at the RNA polymerase binding site (Hunt & Magasanik, 1985). In addition, Reitzer and Magasanik (1986) have shown that NRI binding sites upstream of glnA are required for Ntr promoter activation. The function of these upstream activating sequences is independent of their exact position and orientation relative to the RNA polymerase binding site. Position independence is unusual for cis-acting regulatory sequences in procaryotes but is typical of eucaryotic enhancer elements.

The key to the control of the Ntr system seems to be regulating the amount and activity of NRI (Bueno et al., 1985). The gene encoding NRI, ntrC, is in the complex glnA-ntrBC operon, located downstream from glnA (the gene encoding GS), and ntrB (also termed glnL) which encodes another nitrogen regulatory protein, NRII. This operon is transcribed from three differentially regulated promoters (Alvarez-Morales et al., 1984). Upstream of glnA is an NRI dependent Ntr promoter and a standard promoter which is regulated by catabolite repression (Dixon, 1984b; Reitzer & Magasanik, 1985). In the intergenic region between glnA and ntrB is another standard promoter which can be repressed by the DNA binding activity of NRI (Hawkes et al., 1985; Reitzer & Magasanik, 1983). Thus NRI autoregulates its own production by both promoter activation and repression. NRI has also been implicated in gene regulation by antitermination (Ames & Nikaido, 1985). The conversion of NRI

Asian a Magazanik, 1983). Ital is a clearer protein which bind panel stranded ONA at the acquence a Minglithin Torinch-1 (Ames a Minglithin 1985). The mechanism by units Mill activates Mir promoter is not

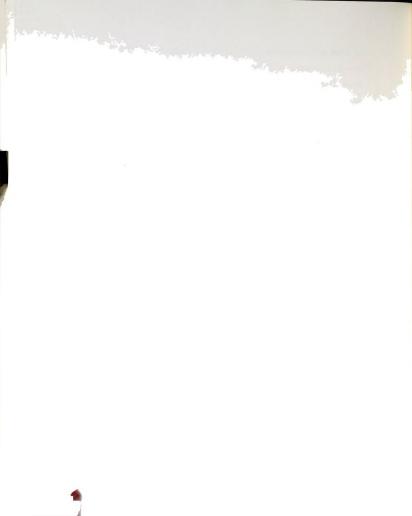
THE PARTY OF

from an activating to a repressing form is central to the control of the entire Ntr system (Bueno $\underline{\mathbf{et}}$ $\underline{\mathbf{al}}$., 1985). This conversion is carried out by NRII, perhaps by a covalent modification of NRI. NRII, in turn, is regulated by two other proteins, a uridylyltransferase and the PII protein, encoded by the $\underline{\mathbf{glnD}}$ and $\underline{\mathbf{glnB}}$ genes respectively. The activity of these proteins is controlled by the intracellular ratio of glutamine to 2-ketoglutarate which is an indicator of the cell's nitrogen nutritional status (Bueno $\underline{\mathbf{et}}$ $\underline{\mathbf{al}}$., 1985). The reversible uridylylation of PII also regulates the adenylyltransferase responsible for the modification of GS (Stadtman & Ginsburg, 1974). Thus the Ntr system is able to regulate nitrogen metabolism at both the transcriptional and post translational levels.

One of the operons induced by the <u>K. pneumoniae</u> Ntr system is nifLA. The products of the nifl and nifA genes are regulatory proteins with homology to NRII and NRI respectively, and are responsible for the regulation of the nifl genes (Buikema et al., 1985; Dixon, 1984a; Drummond et al., 1986). nifl promoters, like Ntr promoters, require the Ntr specific sigma factor and have the consensus Ntr promoter sequence (Benyon et al., 1983; Ow et al., 1983). nifl promoters, however, require the product of the nifA gene instead of NRI as an additional activating factor (Ow & Ausubel, 1983). All nifl genes also have a distinct upstream activating element (5'-TGT-N $_{10}$ -ACA-3'; Alvarez-Morales et al., 1986; Buck et al., 1986) Thus, there are two classes of σ^{60} dependent promoters, Ntr and nif. Both classes share the σ^{60} RNA polymerase binding site. Differences in the Ntr and nifl upstream activating sequences presumably account for their differential regulation.

yer an activating in a represent form at central to also confront on the matter Mir system (Auson of also, 1975). This convertion is carried out y MRII, purhaps by a covalyet and fraction of MRI. 1881, in turn, in The molecular mechanism of nitrogen regulation in rhizobia is not as well understood as the Ntr system of the enteric bacteria. The nif genes from both Rhizobium meliloti and Bradyrhizobium japonicum have been isolated and were found to have promoter structures characteristic of Klebsiella pneumoniae nif promoters, including σ^{60} binding sites and upstream activating sequences (Adams & Chelm, 1984; Alvarez-Morales, et al., 1986; Ausubel, 1984; Buck et al., 1986; Fuhrmann & Hennecke, 1984). These observations indicate that rhizobia have a nif regulatory system homologous to K. pneumoniae. A number of rhizobial mutations that block nif expression also alter the regulation of GSI and GSII, suggesting that the regulation of nitrogen fixation is tied in with general nitrogen metabolism (Donald & Ludwig, 1984; Kondorosi et al., 1977; Ludwig, 1980a; Morett et al., 1985). To date, no nitrogen regulated promoters, other than nif, have been characterized from rhizobia.

In this dissertation, I describe the isolation and characterization of the genes encoding GSI and GSII (glnA and glnII respectively) from Bradyrhizobium japonicum, the soybean symbiont. These genes were chosen because the regulation of GS is central in the control of nitrogen metabolism. Furthermore, the presence of two differentially regulated enzymes which catalyze identical reactions despite extensive structural differences is unprecedented. Thus a comparison of the glnA and glnII genes and their regulatory elements will be of interest. Finally, these genes will serve as molecular probes for the characterization of GS expression. Differences between GS regulation in B. japonicum and other bacteria may reflect adaptations of nitrogen metabolism necessary for symbiotic nitrogen fixation.


CHAPTER 2

Characterization of the Gene Encoding Glutamine Synthetase I (glnA) from Bradyrhizobium japonicum

Introduction

In free-living <u>Bradyrhizobium</u> <u>japonicum</u>, ammonia is assimilated primarily by the coordinate activity of glutamine synthetase (GS) and glutamate synthase (Brown & Dilworth, 1975; Vairinhos <u>et al.</u>, 1983). However, in bacteroids, the differentiated symbiotic form of these bacteria, GS activity is repressed in concert with the derepression of nitrogenase activity (Brown & Dilworth, 1975; Upchurch & Elkan, 1978). The ammonia formed by the nitrogenase enzyme complex is then exported to the plant cell cytoplasm, where it is incorporated by plant assimilatory enzymes (Brown & Dilworth, 1975; Evans & Crist, 1984; Lara <u>et al.</u>, 1983; O'Gara & Shanmugam, 1976; Upchurch & Elkan, 1978). Therefore, the regulation of the rhizobial genes involved in nitrogen metabolism is an important part of the bacterial developmental process which leads to symbiotic nitrogen fixation.

The study of GS regulation in rhizobia is complicated by the presence of two GS species, designated GSI and GSII (Darrow & Knotts, 1977). GSI is very similar to the single GS enzyme found in most other

Gram negative bacteria. It is a polymeric enzyme consisting of 12 identical subunits of 59,000 daltons, is relatively heat stable, and is regulated by a reversible adenylylation cascade system (Darrow, 1980; Darrow & Knotts, 1977). In contrast, GSII has eight subunits of 36,000 daltons, is heat labile, and is not known to be modified after translation (Darrow, 1980; Darrow & Knotts, 1977). These proteins are products of different genes (Darrow, 1980; Somerville & Kahn, 1983) and are differentially regulated in response to changes in nitrogen source (Ludwig, 1980b), carbon source (Darrow et al., 1981), and oxygen concentration (Darrow et al., 1981; Rao et al., 1978).

The mechanisms by which rhizobia regulate GSI and GSII activities are not well understood. In a variety of rhizobial species, glutamine auxotrophs have been isolated which have very low GS activity and are ineffective in symbiotic nitrogen fixation (Donald & Ludwig, 1984; Kondorosi et al., 1977; Ludwig, 1980a). The complex pleiotrophic phenotypes of these strains suggest that they have mutations in a general nitrogen regulation system. Such regulatory systems have been described for other bacteria (Magasanik, 1982). To study directly the mechanism of GS regulation during nodule development, I isolated the genes encoding GSI and GSII from B. japonicum, the soybean symbiont. With cloned genes it will be possible to characterize those factors involved in the regulation of GS expression. In this chapter, I describe the characterization of the gene encoding GSI, designated glnA. I determined that the rhizobial glnA gene is highly homologous to the E. coli glnA gene and is constitutively transcribed from a single promoter. The sequence of the glnA promoter has weak homology to the E. coli consensus promoter and is distinct from the differentially regulated nif SI Takes Gram negative bacteria. A identical subspection

identreal su regulação.

promoters of the same organism. The isolation and characterization of this gene has been reported (Carlson <u>et al.</u>, 1983; Carlson <u>et al.</u>, 1985).

Materials and Methods

Bacterial Strains and Media. The E. coli K-12 strain ED8654 (galK galT trpR metB hsdR $_k$ supE supE) was used for routine plasmid construction and maintenance. The phage lambda recombinant library was constructed and amplified on E. coli K802 (lacY metB galT hsdR $_k$ galK supE). Plaque hybridization, complementation, and GS assay studies used the glutamine auxotroph E. coli ET8051 Δ (rha-glnA) hutC $_k$ rbs Nal r , which contains a deletion of the entire glnA region (Fisher et al., 1981). E. coli strains were grown at 37 0 C in either LB medium (Davis et al., 1980) or M9 medium (Miller, 1972) with 0.4% glycerol. B. japonicum strain USDA 110 was grown at 30 0 C in minimal salts arabinose medium (MA) (Ludwig & Signer, 1977) with trace elements (O'Gara & Shanmugam, 1976); modified Bergersen's medium (Bergersen, 1961) with 0.2% xylose and 10 mM of the designated nitrogen source (MBX); formate medium (Manian & O'Gara, 1982) with 2.5 mM (NH $_4$) $_2$ SO $_4$; or anaerobic yeast extract xylose medium (YEX; Adams et al., 1984) with 10 mM KNO $_3$.

Materials. Genomic DNA from B. japonicum was purified by phenol extraction (Marmur & Doty, 1962). Plasmid DNA was isolated from E. coli by CsCl ethidium bromide equilibrium centrifugation (Clewell & Helinski, 1972). Phage particles were prepared by two rounds of CsCl block

density gradient sedimentation (Davis et al., 1980), and phage DNA was then extracted by formamide treatment (Davis & Thomas, 1974). DNA restriction endonuclease fragments to be used for cloning, DNA sequencing, S1 nuclease protection analyses, and hybridization probes were isolated by separation on and elution from polyacrylamide gels by the method of Maxam and Gilbert (1980). Unless otherwise stated, recombinant plasmids are derivatives of pBR322 (Bolivar et al., 1977).

B. japonicum Genomic Library Construction. B. japonicum DNA, partially digested with the restriction endonuclease Mbo I, was ligated to the BamHI sites of the cloning vector λ BF101 (Maniatis et al., 1982). The vector DNA had been digested with Sal I in addition to BamHI to cleave the stuffer fragment and thus lower the background of intact vector in the library. The ligated mixture was packaged into lambda phage particles (Hohn, 1979) and plated on E. coli K802; 1.4×10^5 plaques were obtained. Assuming an estimated genome size of 10,000 kilobase pairs (kbp) for B. japonicum USDA 110 and a minimum insert size of 6 kbp, a complete representation of the genome (P=0.99) would be expected in less than 7,700 recombinant phage.

<u>Hybridization</u> <u>Methods.</u> Lambda library plaques were prepared by standard procedures (Maniatis <u>et al.</u>, 1982) with E. <u>coli</u> ET8051 grown in LB plus 3 mM glutamine, 10 mM $MgSO_4$ and 0.2% maltose. Phage DNA from plaques was transferred to cellulose nitrate sheets as described by Benton & Davis (1977). Hybridization with nick-translated DNA probes were carried out for 24 h at 45° C in 40% formamide, 2x Denhardt solution (Denhardt, 1966), 5x SSPE (1x SSPE is 180 mM NaCl, 10 mM NaPO $_4$ [pH 7.7],

dentity gradient redirentation (faviation optracted Tay, forthering

nottefetton

1.0 mM EDTA), and 0.2 mg of sheared and denatured salmon sperm DNA per ml. The filters were then washed at room temperature twice for 15 min in 2x SSPE, 0.1% sodium dodecyl sulfate (SDS) followed by two 15 min washes in 0.25x SSPE, 0.1% SDS. Southern transfers of restriction endonuclease fragments separated by agarose gel electrophoresis (Southern, 1975), were hybridized and treated in a similar fashion. Hybridization signals were detected by autoradiography at -70° C.

Plasmid Complementation and GS Assavs. Plasmid complementation of glutamine auxotrophy was tested in E. coli ET8051 with various plasmids constructed from the expression vector pUC8 (Vieira & Messing, 1982). The cells were streaked on M9 glycerol defined medium agar plates with 0.5 mM isopropylthio-B-D-galactoside (IPTG), which is included as a synthetic inducer of the lac promoter (Vieira & Messing, 1982). This medium contains NH_A^{+} as the sole nitrogen source. GS activity was determined on cell-free extracts of B. japonicum USDA 110 grown to the late log phase in MA medium or E. coli grown to the stationary phase in LB broth plus 1 mM IPTG, 80 ug of ampicillin per ml, and 3 mM glutamine. Cell-free extracts were prepared by the procedure of Tronick et al. (1973), with the following minor modifications. Cells were suspended in 5 volumes of grinding buffer (10 mM imidazole-hydrochloride [pH 7.0], 1.0 mM MnCl₂) and disrupted by two passes through a French pressure cell at 12,000 lb/in². The streptomycin sulfate precipitation was omitted. To separate GSI and GSII, cell-free extracts were loaded over a continuous gradient of 5% to 20% (wt/vol) sucrose prepared in grinding buffer and centrifuged for 4 h at 45,000 rpm in a Beckman SW 50.1 rotor at 40C (Darrow, 1980). The gradient fractions were assayed for total glutamine 1.0 PM EDIA), and 0.2 my of planters and depolars column appears. The (literappears, then health as

**

Synthetase activity by the Y-glutamyl transferase assay as described by Shapiro & Stadtman (1970), with Mn $^{2+}$ as the activating cation to measure GSII and both adenylylated and non-adenylylated forms of GSI (Darrow & Knotts, 1977). Heat inactivation was carried out by incubation of the crude extract at 58°C for 30 min. One unit of enzyme produces 1 umol of Y-glutamylhydroxamate in 1 min at 37°C . Protein concentrations were determined by a modification of the Lowry procedure (Markwell et al., 1978) with bovine serum albumin as a standard.

Nodule Bacteria Isolation. The total bacterial population from frozen soybean nodules was prepared as described previously (Adams & Chelm, 1984). This preparation can be separated into three developmental fractions by centrifugation through a discontinuous sucrose gradient (Ching et al., 1977). This procedure has been adapted in our laboratory for use with a zonal ultracentrifuge rotor as follows. The total bacterial fraction from 50 g of nodules was loaded on top of a discontinous sucrose gradient and centrifuged at 40,000 rpm for 4 h at 4° C in a Beckman 14 Ti zonal ultracentrifuge rotor. The gradient had been prepared by sequentially loading 90, 140, 160, and 275 ml of 45%, 50%, 52%, and 57% sucrose (wt/vol in 50 mM KPO $_{A}$, [pH 7.5]), respectively, from the outer edge of the zonal rotor. The fractions containing each of the bacterial forms from three separate gradients were combined, and each of the three combined fractions was rerun through a second similar gradient. The peak fractions from these second gradients constituted the doubly purified nodule bacteria, transforming bacteria, and bacteroids.

synthetase activity by the registers are an endoughed by Shapiro & Stadinso (1970), with Mos²⁴ or the ectivating exited to measure 5511 and both adequiplated and non-anomalous force of 651 (Darrow & Knotts, 1977). Most inactivation has carried out be

Market State of the State of S

S1 Nuclease Protection Analysis. Transcriptional initiation sites were mapped by a modification of the S1 nuclease protection technique of Berk and Sharp (1977). The 360 basepair (bp) Sall fragment, subcloned in pBJ93 was purified and 5' end-labeled with T4-polynucleotide kinase (Maniatis et al., 1982). The two labeled strands were separated by boiling in 80% formamide for 5 min followed by electrophoresis for 2 days at 40°C on an 8% polyacrylamide gel (Maniatis et al... 1982). The slower-migrating fragment on this gel was determined to be the coding strand by DNA sequence analysis. The 5' end-labeled coding strand DNA was precipitated with 20 ug of RNA, suspended in 10 ul of hybridization buffer (Adams & Chelm, 1984), boiled for 10 min, and allowed to hybridize for 3 h at 58° C. The sample was then added to 0.3 ml of S1 digestion buffer (Adams & Chelm, 1984) containing 40 units of S1 nuclease (PL Biochemicals) and incubated for 30 min at 37°C. The digestion was stopped with 75 ul of 2.5 M ammonium acetate, 50 mM EDTA and precipitated with 0.8 ml of ethanol. The pellet was washed in 80% ethanol and suspended in electrophoresis sample dve (Maxam & Gilbert, 1980). The resultant DNA fragments were separated on denaturing 6% polvacrylamide gels (Maxam & Gilbert, 1980).

Results

B. japonicum Library Screening. A genomic library, constructed in the E. coli phage lambda vector \(\text{\text{AFI01}}\), was screened for recombinant phage carrying B. japonicum GS genes by plaque hybridization with an E. coli GS probe. A 600 bp \(\text{BamHI-EcoRI}\) restriction endonuclease fragment

The party of the last

from the middle of the <u>E</u>. <u>coli glnA</u> gene was subcloned from p811 (Fisher <u>et al.</u>, 1981) to yield p8J6 and used to probe cellulose nitrate transfers of lambda library plaques formed on <u>E</u>. <u>coli</u> ET8051. This strain carries a deletion of the <u>glnA</u> gene and thus eliminates background hybridization of the <u>E</u>. <u>coli</u> probe to the <u>E</u>. <u>coli</u> chromosomal DNA within the plaques (Fisher <u>et al.</u>, 1981). Several copies of the library were screened; two different phage, λ 6IA and λ 6IG, were isolated. Restriction endonuclease mapping of these two phage indicated that they contain a 6.5 kbp overlapping region of rhizobial DNA with the cloned fragments in opposite orientation with respect to the lambda vehicle, indicating that, at least in the region of overlap, they contain a contiguous portion of the <u>B</u>. <u>japonicum</u> genome. The restriction map of the combined 11.8 kbp region of the cloned DNA is shown in Figure 1.

Localization of the glnA Homology. To localize the region of λ 6IA and λ 6IG that is homologous to the <u>E. coli glnA</u> probe, DNA from the recombinant phage λ 6IA was purified and analyzed by Southern blot hybridization. Three restriction endonuclease fragments of the <u>E. coli glnA</u> gene, representing the 5' end, middle, and 3' end of the gene hybridized with approximately equal efficiency to λ 6IA DNA. Each probe, however, hybridized to different regions of the cloned DNA (Figure 2). The location and direction of transcription of the <u>B. japonicum</u> GS gene as shown in Figure 2 is inferred from these results by analogy to the structure of the <u>E. coli glnA</u> gene (Backman et al., 1981).

<u>Complementation</u> <u>Analysis</u>. To confirm the presence of a GS gene in these recombinant phages, several subclones that contained the entire

Blatt of (1881 . In 19

entruis

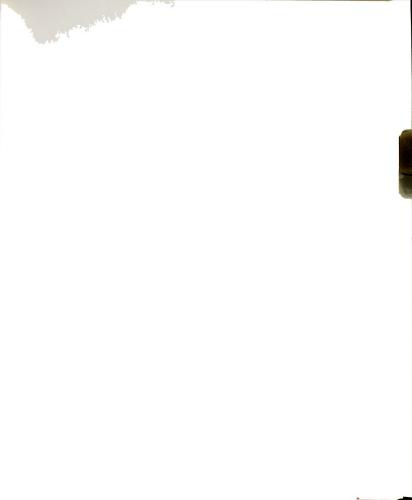


Figure 1. Restriction Endonuclease Map of the B. iaponicum glnA Region. EcoRI (E), BamH (B), Sazi (S), Xhol (X), and Egll (B9) restriction endonuclease sites are indicated. The hatched bars show the regions of the B. iaponicum genome isolated in the recombinant phage AGIA and AGIG. The bars at the bottom of the figure indicate the regions that were subcloined into the expression vector pUGS, with the arrows indicating the direction of transcription from the lac promoter. The position of the glnA gene is indicated by the cross hatched arrow.

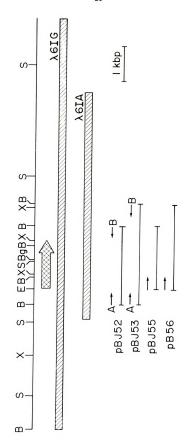
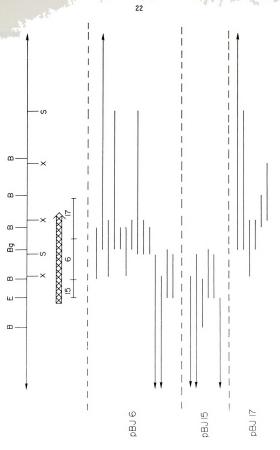



Figure 2. Localization of \underline{alnA} by Heterologous Hybridization. Restriction endonuclease sites for \underline{LcoR} (E), \underline{alnA} (B), \underline{adNo} (No. 10 MM. The lower cated. The top line is a restriction map of the isolated \underline{B} . Again, \underline{adNo} . The lower portion of the figure indicates the \underline{B} . Analogonic monomic propertion of the figures that hybridize to the probes from the \underline{S} and, middle, and $\underline{3}$ and of the \underline{E} . Coij \underline{alnA} gene shown above (pBJS), pBJS and pBJJ7 respectively; Carlson et \underline{al} . 1983). The position \underline{alnA} the regions of homology to the three \underline{E} . \underline{coil} probes.

region of homology were constructed in the F. coli expression vector pUC8 (Figure 1). These plasmids were transformed into E. coli ET8051 to test their ability to complement glutamine auxotrophy. A plasmid contianing the E. coli glnA gene, p811, and the cloning vector, pUC8, were also tested as positive and negative controls, respectively. The ability of these plasmids to relieve glutamine auxotrophy was determined by comparing the sizes of colonies on M9 defined medium agar plates (Table 1), ET8051(pBJ52A), ET8051(pBJ53A), ET8051(pBJ55), and ET8051-(pBJ56) all have the cloned gene in the correct orientation for lac promoter mediated transcription, and all yield colonies that are nearly the size of the positive control, ET8051(p811). However, ET8051(pBJ52B) and ET8051(pBJ53B) have the gene cloned in the opposite orientation. ET8051(pBJ52B) vields very small colonies detectable only under a dissection microscope. ET8051(pBJ53B) and ET8051(pUC8) do not yield visible colonies under these growth conditions. These results confirm that a B. japonicum GS gene is located as indicated in Figure 2 with the 5' end of the gene near the EcoRI restriction endonuclease site.

Measurements of GS Activity. To confirm further that the gene isolated on the basis of <u>E. coli glnA</u> homology encodes a functional GS and to determine which <u>B. japonicum</u> GS gene had been cloned, GS activity was measured in the complemented <u>E. coli</u> and compared with the GSI and GSII activities of <u>B. japonicum</u>. Cell-free extracts of ET8051(pBJ52A) contain high levels of GS activity. The GS specific activity in these cells is 5.9 units per mg protein as compared with 0.15 units per mg protein for the positive control, ET8051(pBI1). The negative control, ET8051(pUC8), had no detectable GS activity (less than 0.001 units per

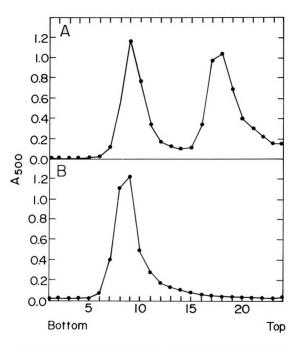
region of homology wore in

e e e propins

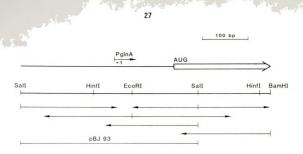
Table 1. Complementation of \underline{E} . \underline{coli} ET8051 \underline{glnA} deficiency by plasmids carrying the \underline{B} . $\underline{japonicum}$ \underline{glnA} gene.

Plasmid ^a	Relative Growth ^b
pBJ52A	+++
pBJ52B	+
pBJ53A	+++
pBJ53B	-
pBJ55	+++
pBJ56	+++
p811	++++
pUC8	-

 $^{^{\}rm a}$ pBJ plasmids carry fragments of the <u>B. japonicum glnA</u> region as indicated in Figure 1. Control plasmids pB11 and pUC8 are described in the text.


b + to ++++ indicates relative growth on M9-glycerol-IPTG agar plates; - indicates no growth.

mg protein). This clearly indicates that the isolated region of the B. japonicum genome encodes a GS enzyme. The high specific activity obtained in the cells complemented by the rhizobial gene is presumably due to unregulated overexpression of this gene from the lac promoter in the expression vector. The B. japonicum enzyme can be shown to be GSI by two criteria. Sucrose gradient sedimentation of B. japonicum cell-free extracts yields two peaks of GS activity, with the larger GSI sedimenting faster than the smaller GSII (Darrow, 1980). The GS encoded by the rhizobial DNA carried in ET8051(pBJ52A) cosediments with B. japonicum GSI (Figure 3). In addition, GSI can be distinguished from GSII by its relative heat stability (Darrow & Knotts, 1977). I find that the cloned rhizobial enzyme retains 100% of its activity when heat treated. These data are in agreement with the identification of this gene as the structural gene for GSI; because of its analogy with the E. coli gene, I term it glnA.


Promoter Sequence and Expression Analysis. The heterologous hybridization data and the complementation studies described above confirm that the 5' end of the gene is near the EcoRI site (Figure 2). I have characterized this region by sequencing the 554 bp region indicated in Figure 4. The coding region of the amino terminus of GSI was located by its homology to the previously sequenced glnA genes of E. coli (Covarrubias & Bastarrachea, 1983) and Anabaena sp. strain 7120 (Tumer et al., 1983). A single long open reading frame that encodes greater than 73 amino acid residues is indicated in Figure 4. The amino acid sequence of B. japonicum GSI, predicted from this reading frame starting with the first AUG initiation codon, has 43% and 55% homologies

And the state of t

Panel A shows the separation of GSI by Sedimentation Centrifugation. Panel A shows the separation of GSI and GSII of B. $\underline{iaponicum}$. The larger GSI sediments further than the smaller GSII. Panel B shows that the GS from \underline{E} . \underline{coli} $\underline{E18051}$ $\underline{C18051}$ 0 cosediments with GSI of \underline{B} . $\underline{japonicum}$

GTCGAC TTCCTGCCCA AGGTGAAGAT CGAGATCGTG ATCGGCGACG ATCTGGTCGA -280 GCGCGCCATC GACGCGATCC GCCGCGCTGC GCAGACCGGT CGCATCGGTG ACGGCAAGAT TITCGTCTCC AACATCGAAG AGGCGATCCG CATCCGAACC GGCGAATCCG GGCTGGACGC TATCTGAGCC GGGTGCTATC CCGCATTTTG CGACACTCTG ACAAGAAATA AGGCTGCTTC -100 GGCGGCCCGA ATTCGTTTGT GCGGTCGCGC GCGAACTCGC CAAAAGCGAG AATAATCCTG CTCATCTGGA AACCGACCCG CAGAGCCAAA AGGGGTATGC ATG AAG ACC GCC AAA GAC KTAK GTC CTG AAA TCG ATC AAG GAC AAC GAC GTC AAG TAC GTC GAC CTG CGC TTC I K D N D V K V ACC GAT CCG CGC GGC AAG TGG CAG CAT GTG ACG TTC GAC GTC AGC ATG ATC G K W 0 Н ٧ F Т D ٧ S T D Р R GAT GAA GAC ATA GGG GCC GAA GGG ACG ATG TTC GAC GGC TCC TCG ATC GCC I G Α F G T M F D G S S GGC TGG AAG GCG ATC AAC GAG TCC GAC ATG TGC CTG ATG CCG GAT CC WKAINESD M C I M

-336

Figure 4. The Sequence of the 5' End of the B. japonicum qlnA Gene. The open arrow shows the beginning of the glnA coding region as predicted from the translated open reading frame in the DNA sequence below. The arrows below the restriction endonuclease map illustrate the DNA sequencing strategy. The asterisk indicates the approximate location of the site of transcriptional initiation (PglnA). The 390 bp SalI fragment used for the S1 nuclease analysis was subcloned as pBJ93.

to the amino termini of E. coli and Anabaena GS, respectively.

A transcriptional start site upstream from the glnA coding region was identified by using the S1 nuclease protection technique of Berk and Sharp (1977). These experiments used the 5' end-labeled coding strand of the 390 bp SalI fragment cloned in pBJ93 (Figure 4), which contains the coding region for the first 19 amino acids of GSI plus 331 bp of DNA upstream of the initiation codon. RNA for these hybridizaton experiments was purified from B. japonicum grown on various nitrogen and carbon sources. In addition, RNA samples isolated from the total nodule bacteria preparation before further fractionation and from the doubly purified nodule bacteria, transforming bacteria, and bacteroid fractions were analyzed. The results of the S1 protection analysis are shown in Figure 5. All nine rhizobial RNA types tested produced a single protected fragment whose 5' end maps to 131+2 bp upstream from the initiation codon. There is no evidence of transcriptional initiation upstream of the region analyzed, as this would yield complete protection of the hybridization probe. From these data I conclude that glnA is constitutively transcribed from a single promoter, although minor modulations in the levels of transcription are observed. These hybridization reactions were carried out at conditions of probe excess, so that the amount of protection is proportional to the amount of input RNA. Thus, differences in the level of glnA mRNA are indicated by the relative amounts of the protected DNA fragments (Figure 5). I estimate that the glnA transcription varies no more than 3 to 5 fold in free-living cells grown with various nitrogen sources, and that the glnA gene in fully differentiated bacteroids is repressed 5 to 10 fold from the expression level in free-living cells.

A transpriptions:

the many residence of the state of the state

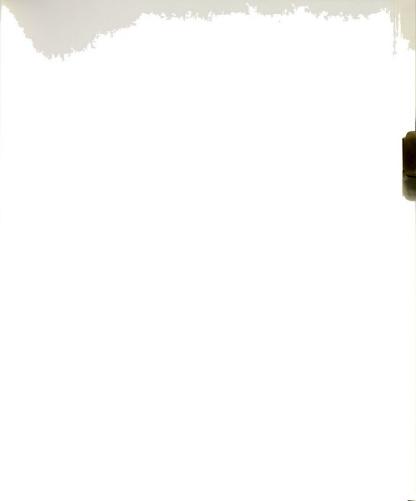
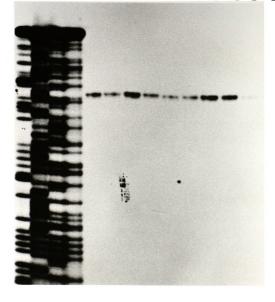



Figure 5. S1 Nuclease Protection Analysis of B. japonicum glnA. G, A>C, T+C, and C indicate lanes with Maxam and Gilbert sequence reactions on the labeled coding strand of the 232 by Sall-Hinf! fragment (Figure 4). S1 nuclease protection experiments used the 390 by Sall fragment with the following RNA_types: MBX medium with glutamate (U), MBXglutamate-NN $_4$ * (UN), MBX-NN $_4$ * (N), formate-NN $_4$ * (F), anaerobic YC (AA), total bacterial population from nodules (TN), nodule bacteria (NB), transforming bacteria (TB), bacteroids (B), and E. coli ET8051 (E).

G AC TC C U UN N F AA TN NB TB B E

A comparison of the DNA sequence surrounding the <u>B. japonicum glnA</u> promoter to promoter sequences from <u>B. japonicum</u> and <u>E. coli</u> is shown in Figure 6. Weak homology between the <u>B. japonicum glnA</u> promoter and the <u>E. coli</u> consensus promoter (Hawley & McClure, 1983) can be detected. In contrast, no apparent homology is observed between the <u>glnA</u> promoter and the <u>B. japonicum nif</u> promoters (Adams and Chelm, 1984).

Discussion

The regulation of GS is of special interest in the Rhizobium-legume symbiosis, where repression of GS activity in the differentiated bacteroid allows for newly fixed nitrogen to be exported to the plant cytoplasm in the form of ammonia, where it is assimilated by a plant-encoded, nodule-specific GS (Lara et al., 1983). In order to initiate the study of rhizobial GS regulation on the molecular level, I have isolated a GS gene from B. japonicum USDA 110. I conclude that this gene. designated as glnA, encodes the GSI protein of B. japonicum based on several lines of evidence. B. japonicum glnA is homologous to E. coli glnA throughout a region of at least 1.35 kbp, a region larger than that necessary for a gene encoding the 36,000 dalton subunit of GSII, but in good agreement with the amount of DNA necessary to encode the 59,000 dalton subunit of GSI. The enzyme encoded by the rhizobial gene, when expressed in E. coli, cosediments with native B. japonicum GSI and exhibits the same relative stability to heat, a property specific to GSI (Darrow & Knotts, 1977). We do not know whether the rhizobial GSI can

<u>E</u> .	<u>coli</u> consensus	atcTTGACattt-tg-TAtAaTc*at			
<u>B</u> .	japonicum glnA	${\tt AatccgggCTgGACgctaTctgagccgggTGcTATcccgcatttt}^{\bigstar}_{\tt gc}$			
<u>B</u> .	japonicum nifH	${\tt TaagGTGCcgggTtAGACCtTGGCAcGgCtGTTGCtgAtaagcGG\overset{\bigstar}{ca}}$			
<u>B</u> .	japonicum nifDK	$TttaGTGCtc-aTgAGACCcTGGCAtGcCgGTTGCaaAgtcttGGa\overset{\bigstar}{t}$			

Figure 6. <u>B. iaponicum glnA Promoter Sequence Comparison</u>. The upper portion is a comparison between the <u>E. coli</u> consensus promoter (Hawley & McClure, 1983) and the <u>B. japonicum glnA</u> promoter. Uppercase letters in the <u>E. coli</u> sequence indicate highly conserved bases among <u>F. coli</u> promoters. Uppercase letters in the <u>glnA</u> sequence indicate homologies to the <u>F. coli</u> consensus promoter. The lower portion is a comparison between two <u>B. japonicum nif</u> promoters (Adams & Chelm, 1984). Uppercase letters in the <u>nif</u> sequences indicate homologies between the <u>nifH</u> and <u>niffK</u> promoters. The asterisks indicate points of transcriptional initiation.

be adenylylated in \underline{E} . \underline{coli} as it can be in \underline{B} . $\underline{japonicum}$ (Darrow & Knotts, 1977).

The S1 nuclease protection data show that, in all cases which we have examined, glnA is transcribed from a single promoter. However, RNA from cells grown under a variety of conditions yield different amounts of protected fragment (Figure 5). Under the hybridization conditions used here, the amount of protected fragment is proportional to the amount of total RNA in the hybridization reaction, indicating that the glnA probe is in excess over its transcript. Therefore, the amount of protected fragment is proportional to the abundance of glnA message in each of the RNA types. Assuming that the degradation rate of the 5' end of the mRNA does not vary significantly in the different cell types, it is possible to use these results to estimate the relative activity of the glnA promoter in cells grown under various conditions. Of particular interest is the activity of the glnA promoter in the three bacterial forms found in nodules, with the bacteroid RNA having less glnA message than the RNA from either transforming bacteria or nodule bacteria (Figure 5). These data suggest that the low bacterial GS activity in nodules is at least partially due to lowered amounts of glnA transcript in the nitrogen fixing bacteroids. The mechanism of this response is unknown, although it may be due to specific repression of the glnA promoter in the latter stages of differentiation. This transcriptional control would be similar to the response of the PII promoter of Anabaena glnA, which is also repressed during nitrogen fixation (Tumer et al., 1983).

In B. japonicum, total biosynthetic GS activity is dependent on the amount of GSI and GSII as well as on the adenylylation state of GSI

be adenylylated in Europia to Eur

(Darrow, 1980; Darrow et al., 1981). I find that total GS activity is not necessarily coordinated with the regulation of glnA transcription. For example, cells grown on glutamate and $\mathrm{NH_A}^+$ have a high concentration of glnA message (Figure 5), but total GS activity is low due to the adenylylation of GSI and the repression of GSII (Ludwig, 1980b). I conclude that the constitutive glnA promoter is responsible for providing a relative constant level of GSI and contributes little to the regulation of total GS activity in free living cells. This pattern of GS regulation can be compared to that found in other procaryotes. In E. coli, glnA is transcribed from two promoters. One provides a basal level of activity, and the other is induced during nitrogen starvation (Reitzer & Magasanik, 1985). In Anabaena, glnA is transcribed from several promoters in ammonia-grown cells, but a single nif-like promoter is specifically induced when cells are derepressed for nitrogenase (Tumer et al., 1983). A situation similar to this exists in Klebsiella pneumoniae (Dixon, 1984). Thus in E. coli, Anabaena and K. pneumoniae, a single GS gene is transcribed from two or more differentially regulated promoters. In B. japonicum, however, GS regulation has been divided between two genes. Since I detect little transcriptional control of glnA, I conclude that GSI activity is primarily regulated by adenylylation. Although GSII activity, like GSI, is dramatically regulated in response to oxygen concentration and nitrogen source (Darrow et al., 1981; Ludwig, 1980b; Rao et al., 1978), there is no known regulation of GSII by post-translational modification. It is therefore likely that GSII activity is controlled at the transcriptional level. A comparison of the promoter sequences of the two GS genes of B. japonicum will be of interest.

(Barrow, 1980: Carrow et al (1881) . 1 (ind that bata' 65 to worrall)

balanthiops, all reseases den

For example,

CHAPTER 3

Apparent Eucaryotic Origin of Glutamine Synthetase II from the Bacterium <u>Bradyrhizobium japonicum</u>

Introduction

The Rhizobiaceae family of bacteria is characterized by their ability to form cortical hypertrophies on plants, and by the fact that bacteria can be reisolated from these galls or nodules (Jordan, 1984). This family includes the genera Rhizobium, Bradyrhizobium, Agrobacterium and Phyllobacterium. Another unique feature of these bacteria is that they contain two forms of the enzyme glutamine synthetase, termed GSI and GSII (Darrow & Knotts, 1977; Fuchs & Keister, 1980). GSI is typical of procaryotic glutamine synthetases with respect to enzyme structure, the modulation of activity by post-translational modification, immunological cross-reactivity, and amino acid sequence (Darrow & Knotts, 1977; Tronick et al., 1973; Carlson et al., 1985).

By contrast, GSII is distinct from all other known procaryotic glutamine synthetases in structure and immunological reactivity, and is not known to undergo post-translational modification. In these respects GSII is similar to eucaryotic glutamine synthetases (DeVries et al., 1983). I have isolated and characterized the gene encoding GSII, which

I term glnII, from Bradyrhizobium japonicum, the soybean symbiont. In this chapter, I show that the amino acid sequence of GSII, as inferred from the gene sequence, is highly homologous to plant glutamine synthetases, suggesting that this bacterial gene is of eucaryotic origin.

Materials and Methods

GSII Purification and Protein Methods. Bradyrhizobium japonicum USDA 110 was grown to mid-log phase in 2 l of MBX medium (Chapter 2) with 10 mM glutamate. Cell extracts were prepared by the method of Tronick et al. (1973) using GS Buffer (GSB is 10 mM imidazole-HCl [pH 7.15] and 1.0 mM $MnCl_2$). GS activity is expressed in units of umoles of Y-glutamylhydroxamate per min as measured by the reverse transferase assay (Bender et al., 1977). Heat inactivation of GSII was carried out on undiluted extracts by incubation at 58° C for 30 min. In the extract used for purification, GSII accounted for 88% of the total GS activity. All purification steps were done at 4° C.

The extract was diluted with GSB to a protein concentration of 1 mg per ml and loaded on a 10 ml Affi-Gel Blue (Bio-Rad) column at a flow rate of 0.5 ml per min. The column was washed with 50 ml of GSB and eluted with a 50 ml linear gradient of 0 to 5 mM ATP in GSB. A broad peak of GS activity, including both GSI and GSII, eluted immediately upon the initiation of the ATP gradient. The fractions with the highest specific GS activity were combined and loaded onto a Bio-Rad Bio-Gel TSK DEAE-5-PW ion exchange HPLC column, (75 x 7.5 mm) equilibrated with GSB, at a flow rate of 1 ml per min. The column was eluted with a 40 ml

tions of the contract of the c

linear gradient of 0 to 500 mM KCl in GSB. The first and second peaks of GS activity corresponded to GSII and GSI respectively. One ml fractions for sequence determination were desalted on a 10 ml Bio-Rad P-6 column and lyophylized.

Total protein was assayed by the method of Lowry \underline{et} al. (1951). SDS polyacrylamide electrophoresis gels (Laemmli, 1970) were stained with Coomassie Brilliant Blue. Protein sequencing was performed on an Applied Biosystems Model 470A gas phase sequencer at the University of Michigan protein sequencing facility, Ann Arbor, Michigan.

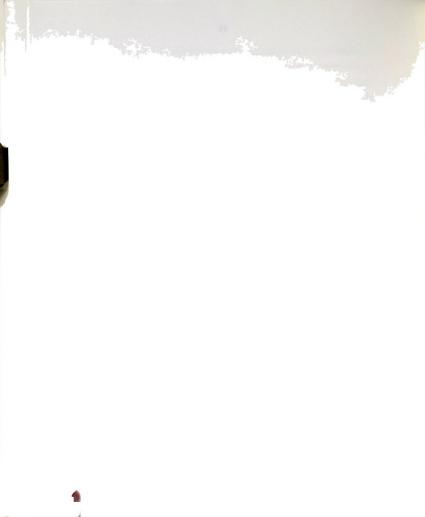
Oligonucleotide and DNA Methods. Oligonucleotide probes were synthesized by the phosporamidite method on an Applied Biosystems Model 380A DNA synthesizer. Oligonucleotides were purified by denaturing 12% polyacrylamide gel electrophoresis (Maxam & Gilbert, 1980). DNA was sequenced by the dideoxy nucleotide chain termination method (Sanger et al., 1977). Random fragments for sequencing were generated by sonication (Deininger, 1983) and subcloned into the SmaI site of M13-mp19 (Norrander et al., 1983). All regions were sequenced either on both strands or from three different fragments of the same strand. An ordered B. japonicum genomic library was constructed by cloning B. japonicum DNA, partially digested with EcoRI, into the cosmid cloning vector pLAFR1 (Adams et al., 1984; Friedman et al., 1982). Cultures containing individual cosmids were replicated onto cellulose nitrate sheets layered on LB plates. The resulting colonies were screened by hybridization (Grunstein & Hogness, 1975) with the 5' end radiolabelled mixed oligonucleotide probe (Whitehead et al., 1983; Wood et al., 1985). A STATE OF THE STA

of GS activity Convedended

int anniting

P-6, column

Complementation Analysis. Plasmids were tested for their ability to complement glutamine auxotrophy in Escherichia coli ET8051 [\triangle (rhaglnA) hutc_k rbs Nal^r] (Fisher et al., 1981) on M9 defined medium agar plates (Miller, 1972) with 0.2% glucose and 1 mM thiamine. GSI and GSII were separated by sucrose density gradient centrifugation as described previously (Carlson et al., 1985) except that the centrifugation was carried out at 50,000 rpm for 3 h.


Results and Discussion

GSII of <u>B.</u> japonicum was purified as described in the materials and methods section. The results of the purification procedure are summarized in Table 2. This preparation was greater than 95% pure as indicated by SDS-polyacrylamide gel electrophoresis (Figure 7). The amino acid sequence of the amino terminus of GSII was determined by sequential Edman degradation and was used to design a mixed oligonucleotide probe with homology to the DNA which encodes the first six amino acids of GSII (Figure 8). An ambiguity at position 16 of the oligonucleotide was not included because two of the leucine codons, UUA and UUG, are infrequently utilized in <u>B.</u> japonicum. Two cosmids, pRjcos7-20 and pRjcos13-79, were isolated from a genomic library by hybridization to the mixed oligonucleotide probe. The region of hybridization in pRjcos7-20 was localized to 5.0 kbp <u>Eco</u>RI, 1.0 kbp <u>Bgl</u>II, and 2.1 kbp <u>Sal</u>I fragments. These fragment sizes agree with those detected by hybridization to Southern transfers of total genomic DNA restriction digests.

Completent to the total and the complete the complete complete to the complete compl

Table 2. GSII Purification

Fraction	GSII Activity (units)	Total Protein (mg)	Specific Activity (units mg 1)	Purification Factor	Percent Yield
Extract	149	48	3.10	(1)	(100)
Affi-Gel Blue	39.1	0.89	43.9	14	26
DEAE HPLC fraction 17	9.92	0.12	82.7	27	6.7

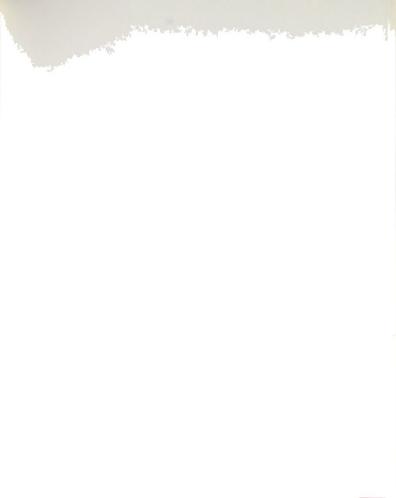


Figure 7. GSII Purification: SDS-Polyacrylamide Gel Electroprocedure as described in the methods section were separated on a 10% gel. The major band in DEAE HPLC fractions 17-21 represents GSII. The large and small molecular weight markers are bovine serum albumin and ovalbumin, respectively. GSI eluted in fractions 22 through 25 and produced a single band on a similar polyacrylamide gel. 16 17 18 19 20 21 22 23

A STATE OF THE PARTY OF THE PAR

Figure 8. GSII Amino Terminus Sequence and Mixed Oligonucleotide Probe. The first 31 amino acid residues of \underline{B} . $\underline{Japonicum}$ GSII, as determined by protein sequencing, are shown. The first 5 amino acids of the enzyme were used to design the structure of the mixed oligonucleotide probe as indicated. Asterisks indicate positions of discrepancies with the GSII amino acid sequence as determined from the DNA sequence.

The 2.1 kbp Sall fragment with homology to the oligonucleotide probe was subcloned in both orientations in pBR322. The resulting plasmids, pBJ196A and pBJ196B, were tested for their ability to complement glutamine auxotrophy in E. coli ET8051. ET8051(pBJ196A) grew well on defined medium plates with ammonia as the sole nitrogen source and yielded extracts with 0.82 units of GS activity per mg of protein. This GS activity was completely heat labile, a property specific to GSII, and cosedimented with the GSII activity of B. japonicum in sucrose density gradient centrifugation (Figure 9). These data indicate that the gene encoding B. japonicum GSII, glnII, is located entirely on the 2.1 kbp SalI fragment insert of pBJ196A. ET8051(pBJ196B), ET8051(pRicos7-20), and the control strain, ET8051(pBR322), gave no detectable growth on defined medium plates and produced no detectable glutamine synthetase activity (less than 0.001 units per mg protein). Apparently the complementation observed with ET8051(pBJ196A) is due to qlnII expression from the tet promoter of the vector, in agreement with the gene orientation as indicated by sequence determination.

In order to determine the precise location of the glnII gene, I sequenced the 2.1 kbp SalI fragment cloned in pBJ196A. The DNA sequence contains a single long open reading frame which encodes GSII (Figure 10). The subunit molecular weight of GSII predicted by the complete inferred amino acid sequence is 36,904 daltons, in good agreement with 36,000 daltons as determined by SDS-polyacrylamide gel electrophoresis (Darrow, 1980). The amino terminus of GSII matches the protein sequencing data in 28 of 31 positions (Figure 8). The discrepancies at positions 24, 29, and 31 are presumably due to inaccuracies in the final cycles of the protein sequencing.

The 2.1 kbp Sall Fraggate antig probe was subcloped Will

Andreas of the state of the sta

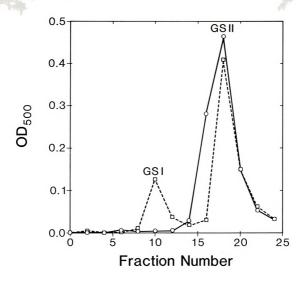


Figure 9. Identification of GSII by Sedimentation Centrifugation. The dashed line shows the separation of GSI and GSII of \underline{B} . $\underline{japonicum}$. The larger GSI (fraction 10) sediments further than the smaller GSII (fraction 18). The solid line shows that GS from \underline{E} . \underline{coli} ETB051(pBJ196A) cosediments with GSII of \underline{B} . $\underline{japonicum}$

ATG ACC AAG TAT AAG CTC GAG TAC ATC TGG CTC GAC GGA TAT ACG CCG ACT CCG AAC TTG CGC GGC AAA ACT CAG M T K Y K L E Y I W L D G Y T P T P N L R G K T O ATC AAG GAA TTC GCG TCG TTC CCG ACG CTC GAG CAC GTT CCG CTC TGG GGC TTC GAT GGC TCC TCC ACC CAG CAG I K E F A S F P T L E H V P L W G F D G S S T O O GCC GAA GGC CAC AGC TCT GAT TGC GTG CTG AAG CCA GTC GCC GTC TTC CCG GAC GCC GCG CGC ACC AAC GGC GTG A F G H S S D C V I K P V A V F P D A A R T N G V CTC GTG ATG TGC GAA GTC ATG ATG CCC GAT GGC AAG ACC CCG CAC GCC TCC AAC AAG CGC GCC ACC ATT CTC GAC I V M C F V M M P D G K T P H A S N K R A T I L D GAC GCC GCC GCC TGG TTC GCC TTC GAG CAG GAA TAC TTC TTC TAC AAG GAC GCC GCT CCG CTC GCC TTC CCG ACC DAGAWEGEEDEYEFYKDGRPLGFPT TICC GGT TAT CCG GCG CCG CAG GCC CCG TAC TAC ACC GCC GTC GCC TTC TCG AAC GTC GCC GAC GTC GCC CGC AAG S G Y P A P O G P Y Y T G V G F S N V G D V A P K ATC GTC GAA GAG CAT CTC GAC CTC TGC CTC GGC GGC GGC ATC AAC CAT GAA GGC ATC AAC GGG GAA GTC GGG AAG I V E E H L D L C L A A G I N H E G I N A F V A K CONTROL TO A CAN ATT THE CONTROL THE CONTROL THE CONTROL THE CAN AND CONTROL THE CONTROL T G O W E F O I F G K G S K K A A D E M W M A R Y L ATG CTG CGC CTG ACC GAG AAG TAC GGC ATC GAC ATC GAG TTC CAC TGC AAG CCG CTT GGC GAC ACG GAC TGG AAC M L R L T E K Y G I D I E F H C K P L G D T D W N GGC TCC GGC ATG CAC GCC AAC TTC TCG ACC GAG TAC ATG CGC ACG GTC GGC GGC AAG GAG TAC TTC GAG GCG CTG G S G M H A N F S T F Y M R T V G G K F Y F F A I M A A F D K N I M D H T A V Y G P D N D K R I T G AAG CAC GAG ACC GCG CCG TGG AAC AAG TTC AGC TAC GGC GTG GCC GAC CGC GCC TCG ATC CGC GTG CCG CAC K H F T A P W N K F S Y G V A D R G A S I R V P H THE THE GIT AND AND GOD THE ANG GOD THE CITY GAA GAD GOT COD COD AND TOG CAG GOD GAD COD THE CAG ATO S F V N N G Y K G Y L E D R R P N S O G D P Y O I GTT CGC AGA TCC TGA VRRS-

Figure 10. DNA and Amino Acid Sequence of $\underline{\mathbf{glnII}}$ and GSII. The DNA sequence of $\underline{\mathbf{glnII}}$ is shown starting with the ATG initiation codon and ending with the TGA termination codon. The predicted amino acid sequence of GSII is shown with single letter amino acid codes.

The comparisons of the <u>B. japonicum</u> GSII amino acid sequence with <u>Phaseolus vulgaris</u> root GS (Gebhardt <u>et al.</u>, 1986) and <u>Anabaena</u> 7120 GS (Tumer <u>et al.</u>, 1983) are shown as homology matrixes in Figure 11 and Figure 12. These matrixes were generated using the analysis program of Pustell and Kafatos (1984) with parameters set so that each letter within the matrix represents a match of 47% or greater over a span of 23 amino acids. It can be seen that GSII has only limited homology to the bacterial GS but extensive homology to the plant GS.

GSII was compared to a variety of glutamine synthetases using the method of Lipman and Pearson (1985) which optimizes the alignment between amino acid sequences and quantitates the significance of the similarity (Table 3). Despite extensive homology among most procaryotic glutamine synthetases, as indicated by the ability of their genes to cross hybridize, the homology between GSII and a typical bacterial glutamine synthetase of Anabaena is only marginally significant. In contrast, GSII has extensive homology with all eucaryotic glutamine synthetases that we have examined. Because all suggested cases of convergent evolution result in similarities of enzyme function without extensive sequence homology (Bannister & Parker, 1985), and because GSII is found only in the Rhizobiaceae (Fuchs & Keister, 1980), we conclude that the B. japonicum glnII gene is the result of a eucaryote to procaryote gene transfer event. We suggest that a plant served as the source of the progenitor glnII gene because of the plant pathogenic nature of the Rhizobiaceae.

The presence of the glnE in the Rhizobiaceae is the first evidence of gene transfer to symbiotic bacteria from the eucaryotic host. Another suggested example of eucaryote to procaryote gene

The comparisons of the five according volcaria wood

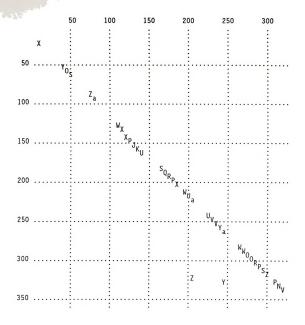


Figure 11. Homology Matrix Comparing GSII With Phaseolus vulgaris Root GS. The \underline{B} . $\underline{iaponicum}$ GSII amino acid sequence is plotted along the x axis and is compared to the amino acid sequence of $\underline{Phaseolus}$ vulgaris root GS plotted along the y axis. The homology matrix was plotted using the following parameters: range=11, scale factor=0.75, minimum value plotted=47%, compression=5. Each letter represents a 2% range of homology for that region of the matrix (A=100%-99%, B=98%-97%,... Z=50%-49%, a=48%-47%).

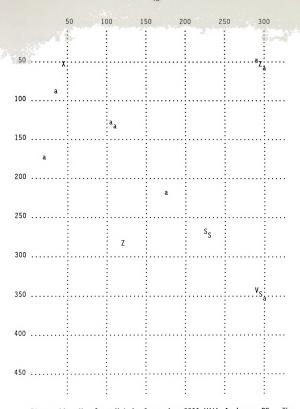


Figure 12. Homology Matrix Comparing GSII With Anabaena GS. The B. japonicum GSII (x axis) is compared to Anabaena GS (y axis). The homology matrix was plotted as described in Figure 11.

Table 3 The Statistical Significance of Amino Acid Sequence Homologies Between B. <u>Japonicum</u> GSII and other Glutamine Synthetases^a

Glutamine Synthetase Source	% Identity to GSII	Similarity Score	z Value ^b
Bradyrhizobium japonicum	100	1719	208.4
Phaseolus vulgaris ^C	43.8	663	77.3
<u>Pisum sativum</u> ^d	46.6	642	73.9
<u>Medicago</u> <u>staiva</u> ^e	43.8	674	78.9
Nicotiana plumbaginifola ^d	42.6	667	74.0
Anabaena 7120 ^f	24.4	114	8.83

^a All scores are from optimized alignments calculated with ktup = 1 and 1000 randomized sequences using the method of Lipman and Pearson (1985).

b The z value equals the similarity score minus the mean of the similarity scores of the randomized sequences divided by the standard deviation of the scores of the randomized sequences. A similarity score is considered significant if its z value is greater than 10. Z values less than 3 are not significant.

C Gebhardt et al., 1986

^d Coruzzi <u>et al</u>., 1986

e Tischer et al., 1986

f Tumer <u>et al</u>., 1983

transfer, involving bacteriocuprein of <u>Photobacterium leiognathi</u> (Bannister & Parker, 1985), has recently come under dispute (Dunlap & Steinman, 1986).

Although sequence homology suggests the origin of the glnII gene, questions pertaining to the mechanism, frequency, or function of gene transfer between symbionts or pathogens and hosts cannot be directly addressed. Since plant GS genes are known to contain introns (Tischer et al., 1986), B. japonicum glnII had to evolve further by the loss of the introns, or the gene transfer must have occurred prior to the development of introns in the plant genes. In addition, there is no obvious reason why the aquisition of a eucaryotic gene would confer a selective advantage on a plant symbiotic bacterium. GSII is not known to serve an essential function, acting only to provide extra ammonia assimilatory capacity during growth under nitrogen limited conditions (Darrow et al., 1981). Nevertheless, it appears that the ability to acquire genetic information from eucaryotes can be a source of genetic diversity in the evolution of bacteria.

- transfer, involving becterforupress of installed arter to the state st

4 9

CHAPTER 4

Transcriptional Control of glnII, the Gene Encoding Glutamine Synthetase II of Bradyrhizobium japonicum

Intoduction

In bacteria, nitrogen is generally assimilated in the form of ammonia by the coordinated activity of the enzymes glutamine synthetase (GS) and glutamate synthase. When nitrogen becomes limiting, the cell's ammonia assimilatory capacity is enhanced by an increased synthesis and activity of GS. Nitrogen starvation also causes the induction of a number of other enzymes responsible for the production of ammonia from alternative nitrogen sources such as nitrate and amino acids. In the case of severe nitrogen starvation, diazotrophs have the ability to produce ammonia through the reduction of dinitrogen by the activity of the enzyme nitrogenase.

The large number of genes and enzymes involved in nitrogen metabolism are carefully regulated by a complex nitrogen regulatory (Ntr) system (Magasanik, 1982). Two genera of nitrogen fixing bacteria, Rhizobium and Bradyrhizobium are unique in that their ability to fix nitrogen is limited, for the most part, to the highly differentiated symbiotic form termed bacteroids which are found within the root nodules

of leguminous plants. These bacteria are also unusual because as much as 94% of the fixed nitrogen is exported from the bacteroid and is assimilated by the plant symbiont (O'Gara & Shanmugam, 1976). The purpose of this study is to investigate the mechanisms by which \underline{B} . $\underline{japonicum}$ regulates the unusual physiology of symbiotic nitrogen fixation.

Nitrogen regulation has been best characterized in the enteric bacteria E. coli and K. pneumoniae (Magasanik, 1982; Alvarez-Morales et al., 1984). Genes that are regulated by the Ntr system have the unusual promoter sequence -27 CTGGCAC-N₅-TTGCA -10 (Dixon, 1984b; Ow et al., 1983). Transcriptional activation of Ntr promoters requires the RNA polymerase core enzyme, an Ntr-specific sigma factor (σ^{60}). and the regulatory protein NRI, encoded by the ntrC (glnG) gene (Hirschman et al., 1985; Hunt & Magasanik, 1985; Merrick & Gibbins, 1985). binding activity specific DNA for the 5'-TGCACCAAAATGGTGCA-3' (Ames & Nikaido, 1985). The DNA binding function of NRI has been implicated in transcriptional activation (Reitzer & Magasanik, 1986), repression (Reitzer & Magasanik, 1983; Hawkes et al., 1985) and antitermination (Ames & Nidaido, 1985). The conversion of NRI from its DNA binding form to its Ntr promoter activating form seems to be central to the control of the Ntr system (Bueno et al., 1985).

One of the Ntr activated operons of \underline{K} . pneumoniae is nifLA. The nifA gene product is a regulatory protein with homology to NRI (Buikema et al., 1985; Drummond et al., 1986) and is required for the activation of the genes encoding the nitrogenase enzyme complex (nif genes; Dixon, 1984a). nif promoters, like Ntr promoters, require the Ntr-specific sigma factor and have the σ^{60} consensus promoter sequence (Ow et al.,

of legislates plants. Those engined the efficients as as as as a second that the films.

1983). In addition, <u>nif</u> promoters have the upstream regulatory sequence 5'-TGT-N $_{10}$ -ACA-3' which is required for efficient <u>nifA</u> dependent transcriptional initiation and is presumably responsible for the differential regulation of <u>nif</u> and Ntr promoters (Alvarez-Morales <u>et al.</u>, 1986; Buck <u>et al.</u>, 1986). The complex interactions among the Ntr promoters and regulatory proteins result in the effective regulation of bacterial nitrogen metabolism.

There is evidence that \underline{B} . $\underline{japonicum}$ has a nitrogen regulatory system which is homologous to the Ntr system of the enteric bacteria. GSI of \underline{B} . $\underline{japonicum}$ is regulated by an adenylylation cascade system homologous to the Ntr regulated adenylylation of GS in \underline{E} . \underline{coli} . The best evidence for the existence of an Ntr system in \underline{B} . $\underline{japonicum}$ is from the characterization of the \underline{nif} promoters. \underline{B} . $\underline{japonicum}$ \underline{nif} promoters are very similar in structure to the \underline{nif} promoters of \underline{K} . $\underline{pneumoniae}$. Both have the σ^{60} recognition sequence (Adams & Chelm, 1984; Fuhrmann & Hennecke, 1984) and the upstream \underline{nif} activation sequence (Alvarez-Morales \underline{et} \underline{al} ., 1986; Buck \underline{et} \underline{al} ., 1986). Furthermore, the \underline{nifA} gene product of \underline{K} . $\underline{pnuemoniae}$ is able to activate transcription from \underline{B} . $\underline{japonicum}$ \underline{nif} promoters (Alvarez-Morales & Hennecke, 1985).

The conservation of nif promoter sequences indicates extensive homology between the Ntr systems of B. japonicum and K. pinuemoniae. However, there may be differences in these systems which allow B. japonicum to express the unusual metabolism of a symbiotic nitrogen fixing bacterium. A number of studies report the characterization of mutations in japonicum and japonicum that affect both the Ntr dependent GS regulation and the effectiveness of symbiotic nitrogen fixation (Donald & Ludwig, 1984; Konderosi et al., 1977; Ludwig, 1980).

S'-TET-N₁₀-ACA-3', which seriotion

an shill

The complex phenotypes of these strains suggests that they carry mutations in the Ntr system. Recently, several genes have been isolated from \underline{B} . $\underline{japonicum}$ with homology to the \underline{K} . $\underline{pnuemoniae}$ \underline{nifA} gene (Adams & Chelm, 1986; Fischer \underline{et} \underline{al} ., 1986). Mutations in some of these genes have similar pleiotrophic phenotypes.

Bacteria of the Rhizobiaceae family are distinct from all other bacteria by having a second form of GS, designated GSII (Darrow & Knotts, 1977), which seems to have been acquired from plants by a eucaryote to procaryote gene transfer event (Carlson & Chelm, 1986). The level of GSII activity is regulated in response to nitrogen and carbon source (Darrow et al., 1981; Ludwig, 1980b) and oxygen concentration (Rao et al., 1981). Because GSII is not known to be post translationally regulated, the gene encoding GSII, glnII, is presumably regulated by an Ntr promoter. One possible role of the B. japonicum Ntr system is the repression of GS activity in nitrogen fixing bacteroids (Brown & Dilworth, 1975; Cullimore et al., 1983; DeVries et al., 1983). This repression is presumably responsible for the observed export of ammonia from bacteroids during symbiotic nitrogen fixation (O'Gara & Shanmugam, 1976). To date, no Ntr promoters have been characterized from B. japonicum. In Chapter 3 I described the isolation of the gene encoding GSII (glnII) of B. japonicum. In this chapter, I describe the characterization of the structure and expression of the Ntr regulated glnII promoter and discuss its potential role in the regulation of nitrogen metabolism in B. japonicum.

The complex phinotypes of those vertice Suggester tions in the pit system! from B. deconfete. Chala, 1988

Materials and Methods

Promoter Mapping. Transcriptional start sites were mapped by the S1 nuclease protection method of Berk and Sharp (1977). Single stranded 5' end-labeled probes were generated by the primer extension method (Adams & Chelm, 1986). 80 ng of oligonucleotide were labeled with 10 units of T4-polynucleotide kinase (Bethesda Research Laboratory) at 37°C for 1 h in 100 mM tris(hydroxymethyl)aminomethane (Tris) -HCl [pH 7.5], 10 mM MgCl $_2$, 6 mM dithioerythritol and 100 uCi of [γ - 32 P]ATP (3000 Ci per mmole). In experiments with mixed probes, the specific activities of the 5' end-labeled oligomers were adjusted to 250 cpm per pg with unlabeled oligonucleotides prior to the elongation reaction. Labeled oligonucleotides were combined with 20 ug of single stranded M13 recombinant phage DNA, ethanol precipitated, suspended in 50 ul of Klenow buffer (10 mM Tris-HCl [pH 8.5], 10 mM MgCl₂), heated to 90°C for 10 min and allowed to hybridize for 1 h at 37°C. The oligonucleotide primer was extended with 3 units of the large fragment of E. coli DNA polymerase (Klenow fragment, Bethesda Research Laboratory) for 1 h at 37°C in 100 ul of Klenow buffer with 0.6 mM each of ATP, CTP, GTP and TTP. The partially double stranded DNA was ethanol precipitated, suspended in Sall reaction buffer (Bethesda Research Laboratory), digested with 10 units of Sall (Bethesda Research Laboratory) for 3 h at 37°C, ethanol precipated, and suspended in formamide dye buffer. The elongated primer was purified by denaturing polyacrylamide gel electrophoresis (Maxam & Gilbert, 1980), detected by autoradiography, and eluted by the crush and soak method (Maxam and Gilbert, 1980).

S1 nuclease protection experiments were carried out as described in Chapter 2, using 9000 cpm of probe hybridized with 10 ug of total cell RNA. Protected fragments were separated by denaturing polyacrylamide gel electrophoresis. Gels were dried onto filter paper by aspiration under vacuum prior to autoradiography. Bands of radioactivity from dried gels were cut out and the amount of radioactivity was determined by scintillation counting.

Bacterial Cultures. Batch cultures of \underline{B} . japonicum USDA 110 were grown at $28^{\circ}\mathrm{C}$ in 14 l fermenters (New Brunswick) with an agitation rate of 200 RPM and an aeration rate of 500 ml per min. The culture medium consisted of 50 mM 3-(N-morpholino)-propanesulphonate (MOPS), 0.03% (w/v) KH $_2$ PO $_4$, 0.03% Na $_2$ HPO $_4$, 0.012% MgSO $_4$ 7 H $_2$ O, 0.45 mM CaCl $_2$ and trace minerals and vitamins to the following concentrations (per liter): 10 mg H $_3$ BO $_4$, 1.0 mg ZnSO $_4$ 7 H $_2$ O, 0.5 mg CuSO $_4$ 75 H $_2$ O, 0.5 mg MnCl $_2$ 74 H $_2$ O, 0.1 mg Na $_2$ MoO $_4$ 72 H $_2$ O, 1.0 mg FeCl $_3$, 0.2 mg riboflavin, 0.12 mg biotin, 0.8 mg thiamine HCl, 0.48 mg inositol, 0.08 mg p-aminobenzoic acid, 0.5 mg nicotinic acid, 0.8 mg pantothenic acid, and 0.001 mg cyanocobalamine. The pH of the medium was adjusted to 6.8 by the addition of NaOH prior to autoclaving. The CaCl $_2$, vitamins, carbon source and nitrogen source were filter sterilized and added after autoclaving.

Cultures were inoculated with cells grown to stationary phase in YEX medium (Chapter 2) with 5 mM $\rm NH_4Cl$. Samples from the batch cultures were taken every 12 h. Culture density was measured by optical density at 420 nm. Protein concentration was measured on whole cell lysates by the method of Lowry et al. (1951) with the following modifications. Protein samples were prepared by mixing 0.5 ml of the bacterial culture

51 micloses protecting experiments hapter 2, ming 9000 Mil. Protected

PHA. Projected

with an equal volume of trichloroacetic acid. The protein was precipitated in a microcentrifuge and suspended in 0.1 ml of 0.3 M NaOH.

RNA Purification. Cells for RNA purifications were harvested from 1 1 samples by centrifugation, washed in 20 ml of H_2O , recentrifuged, suspended in 8.6 ml of H_2O and stored at $-70^{\circ}C$. To 8.6 mls of cell suspension was added 0.4 mls of 10% (w/v) N-lauroyl sarkosine and 1 ml of 1 M Tris-HCl [pH8.0]. The cells were lysed by two passes through a French pressure cell at 12,000 psi and immediately added to 10 gm of CsCl. The resulting mixture was layered over a 7 ml cushion of 5.6 M CsCl. The tube was filled with 0.1 M Tris-HCl [pH8.0], 0.4% (w/V) N-lauroyl sarkosine and centrifuged in a Beckman SW28 rotor at 22,500 RPM at $20^{\circ}C$ for 36 h. RNA pellets were suspended in autoclaved H_2O , extracted twice with H_2O -saturated phenol, extracted four times with diethylether, precipitated with ethanol, suspended in autoclaved H_2O and stored at $-70^{\circ}C$.

Results

<u>Promoter Mapping.</u> The site of transcriptional initiation upstream of \underline{alnII} was mapped by the S1 nuclease protection method. Single stranded 5' end-labeled probe was generated using the recombinant phage M13glnII, which has the 2.1 kbp \underline{SalI} fragment of pBJ196 (Chapter 3) cloned in M13mp18 (Yanisch-Perron \underline{et} $\underline{al.}$, 1985) oriented so that the non-coding strand is produced in the single stranded phage. Second strand synthesis was primed with the oligonucleotide TCII

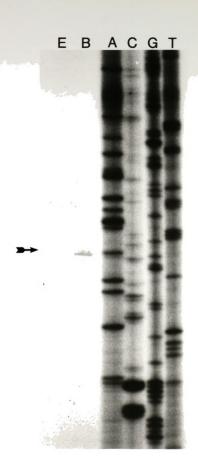
ofth an equal volume of trichleroscotic

EMA Purification

(5'-CGACGCGAATICCTTGA-3') which hybridizes to the DNA encoding amino acids 26 through 31 of GSII (Figure 10). The resulting probe, which includes about 700 bases upstream of the initiation codon of glnII, was hybridized to RNA prepared from <u>B. iaponicum</u> USDA 110 and treated with S1 nuclease. A single protected fragment of about 170 bases in length was observed. The precise location of transcriptional initiation upstream of glnII can be determined by comparing the length of the protected fragment to a sequencing ladder prepared with M13glnII and TCII. The sequence of the glnII promoter can be read directly from the gel (Figure 13).

Sequence Analysis. The DNA sequence upstream of glnII was determined from pBJ196 as described in Chapter 3 and has some interesting features (Figure 14). 40 bp upstream of the glnII initiation codon is the center of an imperfect inverted repeat. This sequence should produce a "hairpin" secondary structure in the 5' untranslated region of the glnII mRNA. Upstream of the promoter is an unusual run of 13 or 14 consecutive G-C base pairs. The exact length of this structure is uncertain due to difficulties in sequencing regions of high G-C content.

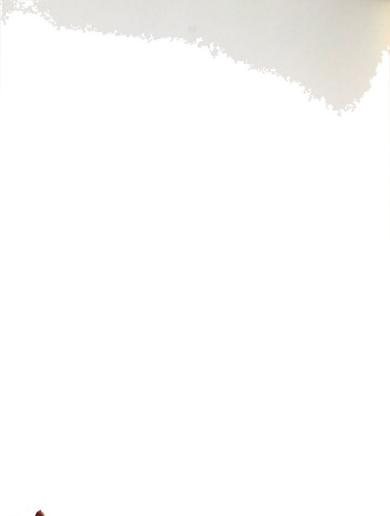
The promoter region of \underline{glnII} is shown in Figure 15. As expected, there is little homology between the promoters of \underline{glnII} and \underline{glnA} (Figure 6). This lack of promoter homology is presumably responsible for the differential regulation of the two glutamine synthetases of \underline{B} . $\underline{japonicum}$. However, Figure 15 shows that there is extensive homology between the \underline{glnII} promoter and several \underline{B} . $\underline{japonicum}$ nif promoters. This suggests that \underline{glnII} and \underline{nif} genes are regulated, at least in part, by a common mechanism. However, the differential expression of \underline{glnII} and \underline{nif}


refer Se unougrafice en esti.

Includes about.

Includes about.

Figure 13. S1 Nuclease Protection Mapping of the <code>qlnII</code> Promoter. Lanes AGGT show DNA sequence reactions (Sanger <code>et al.</code>, 1977) for the region upstream of <code>qlnII</code>. S1 nuclease protection reactions used the following RNA types: <code>E, E. coli</code> <code>FT8051; B, B. <code>iaponicum</code> USDA 110 grown to mid-log phase in MOPS buffered medium (Methods) plus 0.2% xylose and 10 mM glutamate.</code>



-280
CATCGGCAAC CTCCGGCACC GGCCGGCCTG CTCCAGAATC AGGCGTTTTC CGCGGGATTT
-220
TTGCAGTGCA GCTTCACGCA AAGGTGCGCC GCTATGACGC ACGCCGCCGG GGACGACCGG
-160
CCGCTCGCGG GGGGGGGGG GGCGGCCGCG GTGGAAAACC TCCCGCAATG CGGCCTTTTG
-100
GCACGCTAAA TGCTTGTAAA CGG*CGGCCG ATGGTGGCCG GGTACĀAĀCĞ TGĞĞĞĞĞČČČ

And the second

Figure 14. DNA Sequence Upstream of $g\underline{ln}II$. The DNA sequence was determined as described in Chapter 3. The asterisk marks the point of transcriptional initiation as indicated in Figure 13. The lines over the sequence from -55 to -24 mark the inverted repeat in the 5' untranslated region of the $\underline{gln}I$ mRNA. The region with a potential NRI binding site is marked in brackets.

ČČĞĞĞĞČČČČ AĀČCŤŤŤCGC ATCATCTACA GAGAGGCTCA ATG ACC AAG TAT AAG CTC

B. j. nifH	$\tt taaggtgCcgggttaGaCCtTGGCACGgctGTTGCTgATaagCGG\ref{eq:constraints}^{\star}$
B. j. nifDK	$\tt ttTtagtgctcatGaGaCCcTGGCAtGCcgGTTGCaaAgtcttGGa\overset{\bigstar}{t}$
B. j. nifB	${\tt caTtcgcgtcatcctcgCCacGGCAtGCaAGTTGCTaATcctCctgaa}^{\bigstar}$
$\underline{B} \cdot \underline{i} \cdot \underline{fixA}$	${\tt gcggtccCaagcgGcGgggaTGGtACaagAcTTGCTgtTctcttccc}^{\bigstar}$
B. j. glnII	${\tt ccTcccgCaatgcGgcctttTGGCACGCtAaaTGCTtgTaaaCGGt\overset{\bigstar}{c}}$
B. j. consensus	TCG-G-CC-TGGCACGC-AGTTGCT-ATCGG***
Ntr consensus	*

Figure 15. B. japonicum Promoter Sequence Comparison. The B. japonicum qlnII promoter and a variety of nif promoters are aligned to maximize homology. The B. japonicum consensus sequence was determined by matches in 3 out of 5 sequences. Homologies between the B. japonicum promoters and the B. japonicum consensus are shown as uppercase letters. Transcriptional initiation sites are shown with asterisks. The nif promoters are from Adams and Chelm (1984) and Adams et al. (1986). The fixA promoter is from Fuhrmann et al. (1985). The consensus sequence for Ntr promoters from enteric bacteria is from Dixon (1984b).

genes suggests that other sequences in these promoters are involved in transcriptional regulation. In <u>E. coli</u>, the transcription of <u>glnA</u> is partially controlled by NRI through binding at a number of NRI binding sites (see Introduction). A search of the 600 bp of DNA sequence upstream of the <u>B. japonicum glnII</u> promoter reveals only one region with better than 65% homology to the consensus NRI binding sequence of enteric bacteria (Figure 14).

glnII Promoter Characterization. The control of the glnII promoter was characterized in a series of experiments which measure changes in the amount of cellular glnII mRNA during the transition of \underline{B} . japonicum cultures from log to stationary phase. In each culture, either the carbon or the nitrogen source is added at a low concentration so that the transition to stationary phase is concurrent with the depletion of a known nutrient. Therefore, any changes in glnII transcription at this point in the growth curve can be attributed to specific physiological changes.

The activity of the <u>glnII</u> promoter was determined using quantitative S1 nuclease protection analysis so that the amount of protected fragment is proportional to the amount of <u>glnII</u> mRNA (Chapter 2). RNA for these experiments was purified from <u>B</u>. <u>japonicum</u> culture samples taken at six points in the growth curve, three before and three after the transition to stationary phase. The transcription of <u>glnA</u> was also monitored for comparison. The <u>glnA</u> S1 nuclease probe was prepared using the primer extension method described above with the oligonucleotide TCA (5'-CCCCTTTTGGCTCTGCG-3') and the template MI3glnA, which has the 391 bp SalI fragment of pBJ93 cloned in MI3mp18. This gives a 5' end-labeled

gener suggests that other suggests which

Enaccriptional requisation

partially opnical de

situs (300

single stranded probe 331 bases long and produces a 125 base S1 nuclease protected fragment.

The first culture was grown on 0.2% xylose and 1 mM NH $_4$ C1. These conditions were chosen so that the culture would deplete the nitrogen source before growing to an OD_{420} of 1.0. The growth curve of the low ammonia xylose culture is shown in Figure 16N. The results of the quantitative S1 protection assay (Figure 17N) show that there is no detectable glnII transcription in <u>B. japonicum</u> when growing on xylose and ammonia, but when the nitrogen source is depleted, the glnII promoter is activated. In contrast, glnA transcription is relatively constant throughout the growth curve. There is about a 3-fold decrease in glnA transcription during stationary phase. This type of differential regulation between the glnA promoter and GSII was observed in Chapter 2. The continued increase in the optical density of the culture following the cessation of protein accumulation (Figure 16N) is due to the production of extracellular polysaccharide (EPS) after the depletion of nitrogen in stationary phase.

Both the activation of $\underline{\text{glnII}}$ and the production of EPS seem to be the result of the nitrogen limited and carbon excess condition following the depletion of ammonia. This conclusion is supported by the results of an analysis using a similar culture grown with a low concentration of xylose (0.02%) and excess nitrogen (5 mM NH₄Cl; Figure 16C). Just as with the first culture, there is no detectable $\underline{\text{glnII}}$ transcription during growth on xylose and ammonia. However, when stationary phase is brought on by carbon limitation, the culture does not induce $\underline{\text{glnII}}$ transcription or EPS production (Figure 17C).

and case til noon behands signing

London Programme Company

prostling level but

and talenge

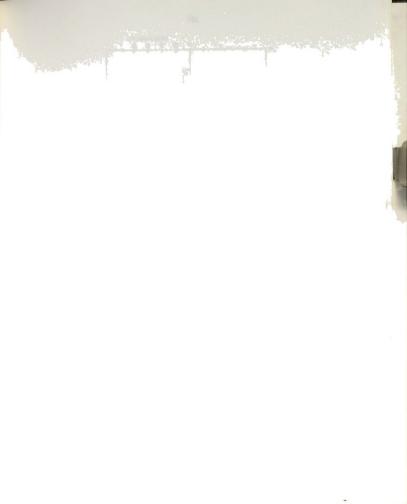


Figure 16. B. <u>Japonicum</u> Minimal Media Growth Curves. Ten liter cultures of B. <u>Japonicum</u> Winimal Media as described in Materials and Methods. The upper portion of each panel shows the growth curve for a particular culture as measured by the 0D at 420 mm and total protein concentration. The arrows show the time points when cells were harvested for Mk preparticin. The lower half of each panel summarizes the SI nuclease protection data by showing the amount of radioactivity protected by glnA and <u>GINII</u> mRNA in the six samples described above. Panel N is the growth curve for the low anylose ammonia culture (0.22% xylose and 5.0 mM NH₄CI). Panel S is the growth curve for the low sylose ammonia culture (0.02% xylose and 5.0 mM NH₄CI). Panel S is the

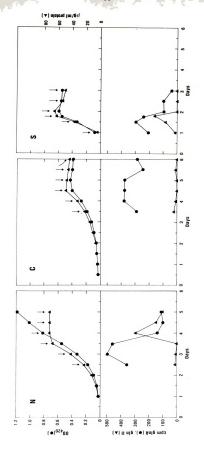
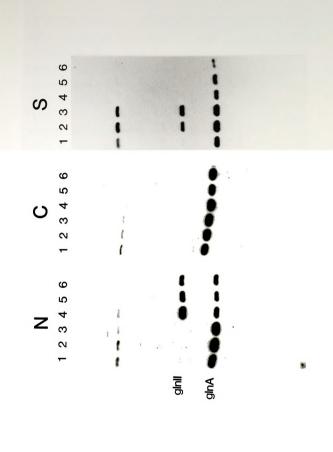



Figure 17. Comparison of glnA and glnII Transcription. The relative abundance of glnA and glnII mRNA was measured by quantitative S1 nuclease protection analysis. RNA was prepared from six samples taken from each of the batch cultures N, C, and S as indicated in Figure 16. The positions of the partially protected glnA and glnII probes are indicated. The uppermost band is full length glnA probe. No full length glnII probe was detected.

A third culture was designed to study the effect of a preferred carbon source on GSII production. This culture is similar to the low xylose ammonia culture except that the xylose was replaced with succinate (0.04%). Succinate proved to be a very effective carbon source, supporting a rapid growth rate, even at this low concentration (Figure 16S). Succinate also had a dramatic effect on glnII transcription. Figure 17S shows that the glnII promoter is active during growth on succinate and ammonia but is repressed after carbon source depletion. In the succinate culture, as in the low ammonia xylose culture, EPS production parallels glnII expression. EPS accumulates during the growth phase and disappears after carbon source depletion. The pattern of qlnA expression in the succinate culture is very similar to the pattern observed in the first culture (compare Figure 17N and 17S). These data are in agreement with earlier observations (Chapter 2) that the glnA promoter is not under general nitrogen control. The glnII promoter, on the other hand, seems to be induced specifically during conditions of nitrogen limitation.

In all conditions that I have tested, \underline{glnII} is transcribed from a single promoter. There is no other partial or full length protection of the \underline{glnII} probe. However, several RNA samples gave full length protection of the \underline{glnA} probe (Figure 17) suggesting the presence of an upstream promoter. Earlier S1 nuclease protection studies using strand separated probes did not detect any transcription upstream of the primary \underline{glnA} promoter (Chapter 2). This discrepancy may be due to differences in the methods of probe synthesis although the possibility of a second \underline{glnA} promoter cannot be excluded.

Mornitoffe of the against state and anaptent for weather brist &

orthogony 1120 so source section

sylves speed coffines

CENT.OF SING

and dripegos

tea

I have previously demonstrated that the glnA gene of B. japonicum is transcribed from a single promoter which is not regulated by nitrogen source (Chapter 2). In contrast, GSII levels fluctuate greatly in response to the cell's nitrogen nutrition (Ludwig, 1980b; Darrow et al. 1981). These data suggested that glnII may be transcribed from a nitrogen regulated promoter similar to the nitrogen regulated promoter of the glnA genes in other bacteria (Dixon, 1984b, Reitzer & Magasanik, 1985; Tumer et al., 1983). In this chapter I have shown that glnII is transcriptionally regulated in response to changes in nitrogen metabolism and has a promoter distinct from the glnA promoter but very similar to B. japonicum nif promoters. These data indicate that B. japonicum has a nitrogen regulation (Ntr) system homologous to the well characterized Ntr systems of E. coli and K. pnuemoniae. glnII is the first Ntr regulated gene to be characterized from B. japonicum.

The Ntr regulation of <u>glnII</u> is best illustrated by the results of the nutrient limited batch culture experiments, which show that <u>glnII</u> is induced in conditions of nitrogen limitation. This response occurs in the low ammonia xylose culture (Figures 16N and 17N) when the cells go from a carbon limited to a nitrogen limited condition. <u>B. japonicum</u> growing on xylose and ammonia is presumably carbon limited. Xylose in not a very good carbon source since substituting even a low concentration of succinate results in a much more rapid growth rate (compare Figures 16N and 16S). Furthermore, ammonia is an excellent nitrogen source since even at low concentrations it will repress GS activity in both <u>E. coli</u> (Magasanik, 1982) and <u>B. japonicum</u> (Ludwig, 1978).

Participate of L. Ladings and L. Lad

However, when ammonia is depleted and the cells become limited for nitrogen, <u>B</u>. <u>iaponicum</u> responds by inducing <u>glnII</u> transcription. This response is not due to general starvation since a similar low xylose ammonia culture does not induce <u>glnII</u> in stationary phase (Figure 17C).

The amount of glnII transcription during exponential growth is also controlled by nitrogen limitation. However, the extent of nitrogen limitation is not controlled by the nitrogen source but rather by the relative qualities of the carbon and nitrogen sources. For example, growth on xylose and ammonia is carbon limited as previously explained. However, by substituting the relatively poor carbon source xylose with a good carbon source such as succinate, the cells become nitrogen limited and glnII is transcribed during the growth phase (Figure 17S). When the succinate is depleted, the cells are no longer nitrogen limited and qlnII transcription stops. This interpretation is supported by the observation that EPS accumulates during growth on succinate and ammonia. In most bacteria, EPS is produced during nitrogen limited growth (Harder & Dijkhuizen, 1983). The disappearance of EPS in stationary phase indicates that, unlike most bacteria, B. japonicum is able to utilize its own EPS as a carbon source (Dudman, 1977; Patel & Gerson, 1974). Apparently succinate is a sufficiently good carbon source to cause growth to be nitrogen limited even with ammonia as the nitrogen source. Similarly, carbon limited growth on xylose and ammonia can be made carbon rich by substituting ammonia with a relatively poor nitrogen source such as glutamate. Thus xylose glutamate grown cells have high levels of glnII transcription (Figure 13).

Because glnII is subject to nitrogen regulation, a comparison of the DNA sequence of the glnII promoter with well characterized Ntr

Moneyor, when amonts is deployed and the tally added altergen, it incontrue responds

deserve statement

promoters of other bacteria may show that homologous mechanisms of gene regulation are functioning in B. japonicum. A number of different DNA sequences have been shown to be important in Ntr promoters, including the consensus Ntr promoter, the NRI binding sequence and the upstream nif activating sequence. An analysis of the DNA sequence upstream of glnII reveals some similarities and some differences to these Ntr promoter features. A comparison of Figure 6 and Figure 15 shows that there is little homology between the B. japonicum glnA and glnII promoters but a large block of homology among glnII and B. japonicum nif promoters. This region of homology is similar in structure to the sequence of other bacterial Ntr promoters responsible for transcriptional initiation by RNA polymerase and the Ntr-specific sigma factor. encoded by the gene rpoN. It is therefore reasonable to conclude that the conserved sequence upstream of glnII is the RNA polymerase binding site and that B. japonicum has a gene analogous to rpoN which encodes an Ntr-specific sigma factor.

Although Ntr and <u>nif</u> genes share an Ntr specific promoter sequence, only <u>nif</u> genes have the upstream regulatory sequence. This sequence has been found upstream of <u>nif</u> promoters in many nitrogen fixing bacteria (Buck <u>et al.</u>, 1986) and may account for the differential regulation of <u>nif</u> genes and other Ntr activated promoters. In accordance with this model, I find that the <u>nif</u> activating sequence does not occur upstream of the glnII promoter.

Another feature of Ntr promoters is the NRI binding site. NRI is a DNA binding protein encoded by the gene ntr promoter activation. NRI may also bind to DNA to function as a transcriptional activator, repressor, or antiterminator. I find only

prosotors of other besteria our thou this quantossis medicipling.

regulation are functioning .

dudings of sections

In companie

twiften 3to

one potential NRI binding site upstream of <u>glnII</u> (Figure 14). It is not known if this sequence is involved in <u>glnII</u> regulation by NRI binding, or even if <u>B</u>. <u>japonicum</u> has a regulatory protein analogous to NRI. In contrast, the Ntr regulated <u>glnA</u> promoter of <u>E</u>. <u>coli</u> has five NRI binding sites involved in <u>glnA</u> transcriptional regulation (Reitzer & Magasanik, 1986). More experiments are necessary in order to determine if a similar mechanism of regulation functions in <u>B</u>. <u>japonicum</u>.

Despite extensive differences between the structures of \underline{E} . \underline{coli} and \underline{B} . $\underline{iaponicum}$ GS genes, the overall regulation of GS seems quite similar. In \underline{E} . \underline{coli} a single GS gene, \underline{glnA} , is transcribed from two differentially regulated promoters (Reitzer and Magasanik, 1985). One promoter is homologous to the consensus \underline{E} . \underline{coli} promoter and provides a constant low level of GS during growth on carbon limited media. This function is served in \underline{B} . $\underline{iaponicum}$ by the \underline{glnA} gene which is transcribed in all conditions from a promoter independent of the cell's nitrogen nutrition. The other \underline{E} . \underline{coli} \underline{glnA} promoter has multiple NRI binding sites and is activated by the Ntr system to provide high levels of GS during growth on nitrogen limited media. In \underline{B} . $\underline{japonicum}$, nitrogen starvation causes the production of high levels of GSII by means of a single inducible nitrogen regulated promoter.

Although the glnII promoter is responding to nitrogen limitation, there is evidence that other factors are involved in glnII regulation. Adams and Chelm (1986) have shown that glnII is transcribed at significant levels in bacteroids and in free living cultures grown at low oxygen concentrations, and that this transcription originates from the same promoter as the aerobic expression. glnII transcription in these conditions requires the presence of a gene, odcR (also termed odcR)

one potential Will binding site opercore of cluit (circle

known if this soquence is

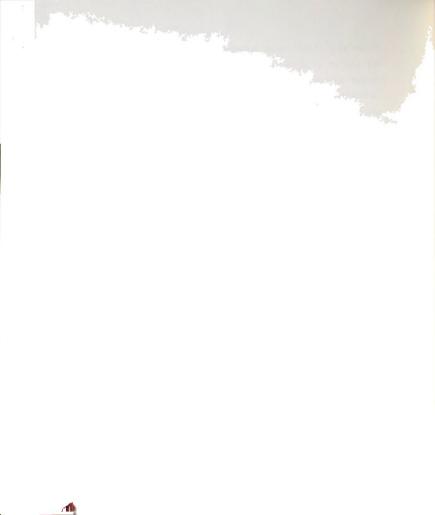
estatement. B tr nave to

ALIENTINOS

Fischer et al., 1986), which is homologous to the regulatory genes nifA and ntrC of K. pneumoniae. odcR, however, is not responsible for aerobic expression of glnII since odcR deletion strains show normal aerobic regulation of glnII. The microaerobic specific activation of qlnII is unknown in the well characterized Ntr systems of the enteric bacteria and contrasts with previous studies which reported the repression of B. japonicum GSII in bacteroids (Cullimore et al., 1983) and microaerobic cultures (Rao et al., 1978). It is not yet known if the odcR dependent transcription of glnII results in the production of functional GSII, although it is possible that GSII is more abundant in bacteroids than previously thought. odcR mutants do not fully differentiate to form nitrogen fixing bacteroids. It will be of interest to characterize the role of odcR and other nitrogen regulatory factors in the regulation of nitrogen metabolism in symbiotic nitrogen fixing bacteria. The glnII promoter, along with nif promoters, will serve as important tools in the characterization of the B. japonicum Ntr system.

Fischer Et al., 1996), which is amplejous to fig forestory

holicongo bidoros


atipo coltino

CHAPTER 5

Summary and Conclusions

Glutamine synthetase (GS) catalyzes the first step in the primary pathway of bacterial ammonia assimilation. Thus the regulation of GS is an important element in the control of overall nitrogen metabolism. The enteric bacteria regulate GS via a complex nitrogen regulatory system (Ntr) which has been the subject of extensive genetic and biochemical characterization (Magasanik, 1982). In contrast, the mechanisms controlling rhizobial nitrogen metabolism are not well understood. Rhizobial genes encoding the enzyme nitrogenase have been isolated and characterized. The concurrent activation of nitrogenase and repression of GS is apparently responsible for the export of fixed nitrogen from symbiotic bacteroids. In this dissertation, I have demonstrated the isolation and characterization of the genes encoding GSI and GSII of Bradyrhizobium japonicum, the soybean symbiont. This work will ultimately lead to a more complete understanding of the specific adaptations necessary for rhizobium to function as a symbiotic nitrogen fixing bacteria.

In Chapter 1, I discussed the isolation and characterization of the gene encoding GSI. Unlike GSII, GSI is homologous in structure and sequence to the single GS of \underline{E} . \underline{coli} . Furthermore, GSI and \underline{E} . \underline{coli} GS

are both regulated by an adenylylation cascade system. Therefore, I chose the F. coli nomenclature alnA for the gene encoding B. japonicum GSI. The most significant finding of Chapter 1 is that glnA is constitutively transcribed from a single promoter. This is in contrast to other bacteria (E. coli, K. pnuemoniae, and Anabaena) where GS is transcribed from multiple promoters. Therefore, GSI is primarily regulated post-translationally by adenylylation. The constitutive production of a reversibly modified GS presumably allows for a very rapid adjustment of total GS activity as determined by the changing needs of the cell. The glnA promoter is the first "normal" promoter to be characterized from B. japonicum. Although the glnA promoter has some homology to the F. coli consensus promoter, it appears to have little or no activity in F. coli. A similar result was observed with the Rhizobium meliloti glnA promoter. Because it is always active, the B. japonicum qlnA promoter may be useful for the expression of foreign genes in rhizobia.

GSII is not known to be regulated by a post-translational modification. Therefore, the gene encoding GSII is probably transcriptionally regulated from an Ntr-like promoter. For this reason, the isolation and characterization of the GSII gene (glnII) was of particular interest. Numerous screenings of \underline{B} . japonicum genomic libraries using heterologous hybridization probes resulted in the identification of only the glnA gene. glnII was not detected because of the limited homology between the eucaryote-like glnII sequence and the procaryotic probes. Attempts to isolate glnII by complementation of an \underline{E} . coli glutamine auxotroph were also unsuccessful. Ultimately, glnII was identified in a cosmid clone bank using a mixed oligonucleotide hybridization probe based on

are both regulated by an adequatance chose the E. coli, possections can be extended to the agent turingly.

a partial amino acid sequence determined from purified GSII (Chapter 3). This is the first report of the isolation of a \underline{glnII} gene.

Amino acid sequence comparisons revealed extensive homology between GSII and eucaryotic glutamine synthetases but limited homology between GSII and procaryotic glutamine synthetases. Based on these data, I suggest that GSII evolved as the result of a eucaryote to procaryote gene transfer event. This conclusion is supported by the observation that the GSII isozyme is found in a single family of bacteria, the Rhizobiaceae. Because bacteria of this family are characterized by their ability to form cortical hypertrophies on plants, I suggest that a plant provided the progenitor qlnII gene. Little is known of the role of horizontal gene transfer in evolution. I know of no selective pressure for the maintenance of a plant GS gene in plant pathogenic bacteria. GSII is not known to serve any special role in the development of rhizobial symbioses. It will now be possible to construct a qlnII rhizobium using site directed gene replacement mutagenesis. It will be of interest to analyze the symbiotic phenotype of a glnII mutant rhizobium. Glutamine auxotrophs have been utilized in the study of rhizobial physiology. Because there are two GS genes in rhizobia, glutamine auxotrophs generated by traditional mutagenesis techniques will generally carry mutations in regulatory genes, resulting in complex, pleiotropic phenotypes. I have shown that GSII is transcriptionally regulated to provide high levels of total GS activity during nitrogen limited growth. I predict that a glnII rhizobia would not be a glutamine auxotroph (due to the presence of a functional glnA gene) and would not grow well on poor nitrogen sources (due to the lack of a transcriptionally inducible GS).

pize oninA

The site of transcriptional initiation unstream of the glnII coding region was mapped by \$1 nuclease protection analysis. Unstream of the RNA start site is a region of homology to B. japonicum nif promoters. This conserved region is the same sequence responsible for σ^{60} dependent RNA polymerase binding in K. pneumoniae Ntr promoters. Furthermore, the alnII promoter has no significant homology to the alnA promoter. Based on these observations. I suggest that glnII and nif genes of B. japonicum require an alternate sigma factor for transcriptional initiation. analogous to the Ntr system of enteric bacteria. This model, however, does not account for the differential expression of glnII and nif genes. Presumably, sequences other than the RNA polymerase binding sites are involved in glnII and nif regulation. In K. pneumoniae, upstream activation sequences and the protein NRI are involved in Ntr promoter regulation. A similar system may function in B. japonicum. The glnII promoter will serve as a useful tool in the characterization of possible NRI-like proteins. Successive deletions upstream of glnII can be used to identify regions necessary for promoter activity. Promoter activity can be monitored in vivo GS assays or in vitro with a reconstituted RNA polymerase transcription system. Similar experiments have identified possible upstream activation sequences in B. japonicum nif promoters (Alvarez-Morales, et al., 1986).

I have shown that, in free-living aerobic cultures, the <u>glnII</u> promoter is activated by either nitrogen starvation or nitrogen limited growth. Adams and Chelm (personal communication) have identified a possible <u>ntrC</u>-like gene which is required for induction of <u>glnII</u> in nitrogen limited cultures. Although these data are still preliminary, it appears that the <u>B. japonicum "ntrC"</u> gene is not required for <u>nif</u>

The site of brancorintional infilliation districts

region was mapped by S RNA start site This conserved

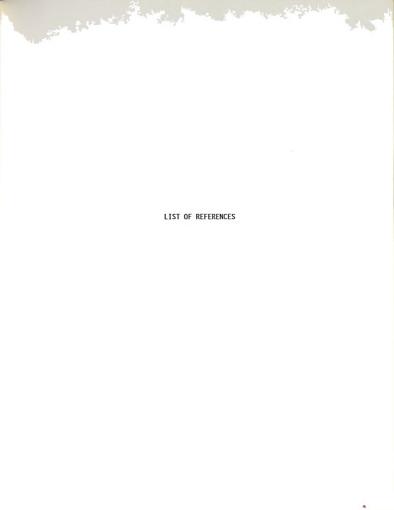
MA DOTHURS AND

gene activation as it is in K. pneumoniae. Therefore, nif regulation is not linked to general nitrogen regulation. It is not clear what factors affect the expression of the glnII promoter in microaerobic cultures and bacteroids. Rao, et al. (1978) have shown that GSII activity (and presumably glnII transcription) in a nitrogen limited culture decreases dramatically when the O2 concentration drops below 0.40%. In contrast, Adams and Chelm (1986) have demonstrated significant glnII transcription in nitrogen rich microaerobic cultures. The microaerobic induction of glnII is dependent on another regulatory gene, odcR, which is required for bacteroid development and nif activation. These data can be explained as follows. glnII transcription in nitrogen limited aerobic cultures is "ntrC" dependent. When the O2 concentration drops below a threshold level, the cells become oxygen (or energy) rather than nitrogen limited, and "ntrC" dependent glnII transcription stops. These same conditions (but not "ntrC") cause the induction of odcR dependent promoters, including nif genes. Because of the homology between the odcR and "ntrC" gene products, odcR stimulates transcription of glnII at a lowered level. Thus, glnII regulation is "normal," responding primarily to nitrogen metabolism. Alternately, it is possible that microaerobic cultures are still nitrogen limited and that the glnII promoter is inactivated by a microaerobic-specific regulatory system, possibly mediated by odcR. It would be of interest to characterize the microaerobic response of glnII in odcR mutants grown on a poor nitrogen source. The preliminary results of Adams and Chelm, which suggest that nif transcription is not activated by general nitrogen regulation, are highly significant since this model implies that the regulation of nif, and not glnII, has been modified so that B. japonicum can export fixed

cone activation as it is in <u>K. consecution</u>

contributed to general attraganter required attraction of the paperation o

nitrogen to its host plant. However, the induction of nif gene transcription ex planta does not necessarily result in the assembly of a functional nitrogenase enzyme. Further investigations are needed to determine what additional regulatory factors are involved in the development of the rhizobial-legume symbiosis.


will adopt the best plants being with the magnetic

coop ainsig as nollying

functional, mithingonara

diversals.

bet-mail

LIST OF REFERENCES

Control of the second

- Adams, T. H. & Chelm, B. K. (1984) J. Mol. Appl. Genet. 2, 392-405
- Adams, T. H. & Chelm, B. K. (1986) Manuscript in Preparation
- Adams, T. H., McClung, C. R. & Chelm, B. K. (1984) \underline{J} . Bacteriol. 159, 857-862
- Akkermans, A. D. L. & Roelofsen, W. (1980) in <u>Nitrogen Fixation</u> (Stewart, W. D. P. & Gallon, J. R., eds.) pp. 279-299, Academic Press, London
- Alvarez-Morales, A., Betancourt-Alvarez, M, Kaluza, K. & Hennecke, H. (1986) <u>Nucleic Acids</u> <u>Res</u>. 14, 4207-4227
- Alvarez-Morales, A., Dixon, R. & Merrick, M. (1984) $\underline{\sf EMBO}$ $\underline{\sf J}$. 3, 501-507
- Alvarez-Morales, A. & Hennecke, H. (1985) Mol. Gen. Genet. 199, 306-314
- Ames, G. F.-L. & Nikaido, K. (1985) <u>EMBO</u> <u>J</u>. **4,** 539-547
- Ausubel, F. M. (1984) Cell 37, 5-6
- Backman, K., Chen, Y.-M. & Magasanik, B. (1981) <u>Proc. Natl. Acad. Sci. U. S. A. 78</u>, 3743-3747
- Bannister, J. V. & Parker, M. W. (1985) <u>Proc. Natl. Acad. Sci.</u> <u>U. S. A. 82</u>, 149-152
- Bender, R. A., Janssen, K. A., Resnick, A. K., Blumenberg, M., Foor, F. & Magasanik, B. (1977) J. Bacteriol. 129, 1001-1009
- Benton, W. D. & Davis, R. W. (1977) Science 196, 180-182
- Benyon, J., Cannon, M., Buchanan-Wollaston, V. & Cannon, F. (1983) <u>Cell</u> **34**, 665-671
- Bergersen, F. J. (1961) Aust. J. Biol. Sci. 14, 349-360
- Bergersen, F. J. (1980) in <u>Nitrogen Fixation</u> (Stewart, W. D. P. & Gallon, J. R., eds.) pp. 139-160, Academic Press, London

- Berk, A. J. & Sharp, P. A. (1977) Cell 12, 721-732
- Bolivar, F., Rodriguez, R. L., Greene, P. J. Betlach, M. C. Heynecker, H. L. & Boyer, H. W. (1977) Gene 2, 29-113
- Brown, C. M. & Dilworth, M. J. (1975) J. Gen. Microbiol. 86, 39-48
- Buck, M., Miller, S., Drummond, M. & Dixon, R. (1986) Nature 320, 374-378 and Internal of the Arthur Action (1980) Internal
- Bueno, R., Pahel, G. & Magasanik, B. (1985) <u>J</u>. <u>Bacteriol</u>. **164,** 816-822
- Buikema, W. J., Szeto, W. W., Lemley P. V. Orme-Johnson, W. H. & Ausubel, F. M. (1985) Nucleic Acids Res. 13, 4539-4555
- Carlson, T. A. & Chelm, B. K. (1986) Nature in press
- Carlson, T. A, Guerinot, M. L. & Chelm, B. K. (1983) in <u>Plant Molecular Biology</u> (Goldberg, R. B., ed.) pp. 291-302, Alan R. Liss, New York
- Carlson, T. A, Guerinot, M. L. & Chelm, B. K. (1985) <u>J</u>. <u>Bacteriol</u>. **162**, 698-703
- Chelm, B. K., Carlson, T. A. & Adams, T. H. (1985) in <u>Nitrogen</u> <u>Fixation Research Progress</u> (Evans, H. J., Bottomley, P. J. & Newton, W. E., eds.) p. 217, Martinus Nijhoff Publishers, Dordrecht
- Ching, T. M., Hedtke, S. & Newcomb, W. (1977) Plant Physiol. 60, 771-774
- Clewell, D. B. & Helinski, D. R. (1972) J. Bacteriol. 110, 1135-1146
- Coruzzi, G., Tingey, S. & Walker, B. (1986) Personal Communication
- Covarrubias, A. A. & Bastarrachea, F. (1983) Mol. Gen. Genet. **190**, 171-175
- Cullimore, J. V., Gebhardt, C., Saarelainen, R., Miflin, B. J., Idler, K. B. & Barker, R. F. (1984) <u>J</u>. <u>Mol</u>. <u>Appl</u>. <u>Genet</u>. **2,** 589-599
- Cullimore, J. V., Laura, M., Lea, P. J. & Miflin, B. J. (1983) <u>Planta</u> 157, 245-253
- Cullimore, J. V. & Miflin, B. J. (1984) <u>J</u>. <u>Exp</u>. <u>Bot</u>. **35,** 581-587
- Darrow, R. A. (1980) in <u>Glutamine Synthetase</u>: <u>Metabolism</u>, <u>Enzymology and Regulation</u> (Mora, J. & Palacios, R., eds.) pp. 139-166, Academic Press, Inc., New York

h

- Darrow, R. A., Crist, D., Evans, W. R., Jones, B. L., Keister, D. L. & Knotts, R. R. (1981) in <u>Current Perspectives in Nitrogen Fixation</u> (bloom, A. H. & Newton, W. E., eds.) pp. 182-185, Australian Academy of Science, Canberra
- Darrow, R. A. & Knotts, R. R. (1977) <u>Biochem. Biophys. Res. Commun.</u> 78, 554-559
- Davis, R. W., Botstein, D. & Roth, J. R. (1980) <u>Advanced Bacterial</u> <u>Genetics</u>, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Davis, R. W. & Thomas, M. (1974) J. Mol. Biol. 91, 315-328
- Deininger, P. L. (1983) Anal. Biochem. 129, 216-223
- Denhardt, D. T. (1966) Biochem, Biophys. Res. Commun. 23, 641-646
- DeVries, G. E., Oosterwijk, E. & Kinjne, J. W. (1983) <u>Plant Sci.</u> Letts. **32**, 333-341
- Dixon, R. (1984a) J. Gen. Microbiol. 130, 2745-2755
- Dixon, R. (1984b) Nucleic Acids Res. 12, 7811-7830
- Donald, R. G. K. & Ludwig, R. A. (1984) J. Bacteriol. 158, 1144-1151
- Drummond, M., Whitty, P. & Wootton, J. (1986) EMBO J. 5, 441-447
- Dudman, W. F. (1977) in <u>Surface Carbohydrates of the Prokaryotic Cell</u> (Sutherland, I., ed.) pp. 357-414, Academic Press, London
- Dunlap, P. V. & Steinman, H. M. (1986) J. Bacteriol. 165, 393-398
- Evans, W. R. & Crist, D. K. (1984) Arch. Microbiol. 138, 26-30
- Fischer, H.-M., Alvarez-Morales, A. & Hennecke, H. (1986) $\underline{\text{EMBO}}$ $\underline{\text{J}}$. 5, 1165-1173
- Fisher, R., Tuli R. & Haselkorn, R. (1981) <u>Proc. Natl. Acad. Sci.</u> U. S. A. **78**, 3393-3397
- Friedman, A. M., Long, S. R., Brown, S. E., Buikema, W. J. & Ausubel, F. M. (1982) <u>Gene</u> 18, 289-296
- Fuchs, R. L. & Keister, D. L. (1980) J. Bacteriol. 144, 641-648
- Fuhrmann, M. & Hennecke, H. (1984) <u>J</u>. <u>Bacteriol</u>. **158**, 1005-1011
- Fuhrmann, M., Fischer, H.-M. & Hennecke, H. (1985) Mol. Gen. Genet. 199, 315-322
- Gebhardt, C., Oliver, J., Forde, B. G., Saarelainen, R. & Miflin, B. (1986) EMBO J. 5, 1429-1435

- Grunstein, M. & Hogness, D. (1975) <u>Proc. Natl. Acad. Sci. U. S. A.</u> 72, 3961-3965
- Harder, W. & Dijkhuizen L. (1983) Ann. Rev. Microbiol. 37, 1-23
- Haselkorn, R. (1978) Ann. Rev. Plant Physiol. 29, 319-344
- Hawkes, T., Merrick, M. & Dixon, R. (1985) Mol. Gen. Genet. 201, 492-498
- Hawley, D. K. & McClure, W. R. (1983) Nucleic Acids Res. 11, 2237-2255
- Hirschman, J., Wong, P.-K., Sei, K., Keener, J. & Kustu, S. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 7525-7529
- Hohn, B. (1979) Methods Enzymol. 68, 299-309
- Howitt, S. M. & Gresshoff, P. M. (1985) <u>J</u>. <u>Gen</u>. <u>Microbiol</u>. 131, 1433-1440
- Hunt, 2. P. & Magasanik, B. (1985) <u>Proc. Natl. Acad. Sci. U. S. A. 82</u>, 8453-8457
- Jordan, D. C. (1984) in <u>Bergey's Manual of Systematic Bacteriology</u> (Drieg, N. R., ed.) Vol. 1, pp. 234-242, Williams & Wilkins, Baltimore
- Kahn, M. L., Kraus, J. & Somerville, J. E. (1985) in <u>Nitrogen Fixation Research Progress</u> (Evans, H. J., Bottomley, P. J. & Newton, W. E., eds.) pp. 193-199, Martinus Nifhoff Publishers, Dordrecht
- Kondorosi, A., Svab, Z. Kiss, G. B. & Dixon, R. A. (1977) Mol. Gen. Genet. 151, 221-226
- Laemmli, U. K. (1970) Nature 227, 680-685
- Lara, M., Cullimore, J. V., Lea, P. J., Miflin, B. J., Johnston, A. W. B. & Lamb, J. W. (1983) <u>Planta</u> 157, 254-258
- Lipman, D. J. & Pearson, W. R. (1985) <u>Science</u> 227, 1435-1441
- Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) <u>J. Biol</u>. <u>Chem</u>. **193**, 265-275
- Ludwig, R. A. & Signer, E. R. (1977) Nature 267, 245-248
- Ludwig, R. A. (1978) J. <u>Bacteriol</u>. 135, 114-123
- Ludwig, R. A. (1980a) Proc. Natl. Acad. Sci. U. S. A. 77, 5817-5821
- Ludwig, R. A. (1980b) <u>J. Bacteriol</u>. **141**, 1209-1216
- Magasanik, B. (1982) Annu. Rev. Genet. 16, 135-168

Brance Land A School S. R. S. Land B. Land B. S. Land B. Land B. S. Land B. S. Land B. L

- Manian, S. S. & O'Gara, F. (1982) Arch. Microbiol. 131, 51-54
- Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) Molecular Cloning, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Markwell, M. A. K., Haas, S. M., Bieber, L. L. & Tolbert, N. E. (1978) <u>Anal</u>. <u>Biochem</u>. **87**, 206-210
- Marmur, J. & Doty, P. (1962) J. Mol. Biol. 5, 109-118
- Maxam, A. M. & Gilbert, W. (1980) Methods Enzymol. 65, 499-580
- McParland, R. H., Guevara, J. G. Becker, R. R. & Evans, H. J. (1976) Biochem. J. 153, 597-606
- Merrick, M. J. & Gibbins, J. R. (1985) <u>Nuclic Acids Res</u>. 13, 7607-7619
- Miller, J. H. (1972) <u>Experiments in Molecular Genetics</u>, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Morett, E., Moreno, S. & Epsin, G. (1985) Mol. Gen. Genet. 200, 229-234
- Mortenson, L. E. & Thorneley, R. N. F. (1979) <u>Ann. Rev. Biochem</u>. **48**, 387-418
- Norrander, J., Kemp, T. & Messing, J. (1983) Gene 26, 101-106
- O'Gara, F. & Shanmugam, K. T. (1976) <u>Biochem</u>. <u>Biophys</u>. <u>Acta</u> 437, 313-321
- Ow. D. W. & Ausubel, F. M. (1983) Nature 301, 307-313
- Ow, D. W., Sundaresan, V., Rothstein, D. M., Brown, S. E. & Ausubel, F. M. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 2524-2528
- Patel, J. J. & Gerson, T. A. (1974) Arch. Microbiol. 101, 211-220
- Pustell, J. & Kafatos, F. C. (1984) Nucleic Acids Res. 12, 643-655
- Rao, V. R., Darrow, R. A. & Keister, D. L. (1978) <u>Biochem</u>. <u>Biophys</u>. Res. Commun. **81**. 224-231
- Reitzer, L. J. & Magasanik, B. (1983) <u>Proc. Natl</u>. <u>Acad. Sci. U. S. A</u>. **80,** 5554-5558
- Reitzer, L. J. & Magasanik, B. (1985) <u>Proc. Natl. Acad. Sci. U. S. A.</u> 82, 1979-1983
- Reitzer, L. J. & Magasanik, B. (1986) Cell 45, 785-792
- Roberts, G. P. & Brill, W. J. (1981) Ann. Rev. Microbiol. 35, 207-235

Manietis, I., Fritsch, E F Cold Spring Harbor Laborat

Nortonal 1 Mg 4. 1 1 Action

anaman i

Robertson, J. G., Farnden, K. J. F., Warbuton, M. P. & Banks, J.-A. M. (1975) <u>Aust. J. Plant Physiol</u>. 2, 265-272

Ronson, C. W., Lyttleton, P. & Robertson, J. G. (1981) <u>Proc. Natl</u>. <u>Acad. Sci. U. S. A.</u> **78,** 4284-4288

Sanger, F., Nicklen, S. & Coulson, A. R. (1977) <u>Proc. Natl. Acad. Sci. U. S. A.</u> 74, 5463-5467

Shapiro, B. M. & Stadtman, E. R. (1970) Methods Enzymol 17A, 910-922

Somerville, J. E. & Kahn, M. L. (1983) J. Bacteriol. 156, 168-176

Southern, E. M. (1975) J. Mol. Biol. 98, 503-517

Stadtman, E. R. & Ginsburg, A. (1974) in <u>The Enzymes</u> (Boyer, P. D., ed.) Vol. 10, pp. 755-807, Academic Press, New York

Thomas, J., Meeks, J. C., Wolk, C. P., Shaffer, P. W., Austin, S. M. & Chien, W.-S. (1977) <u>J. Bacteriol</u>. 129, 1545-1555

Tischer, E., DasSarma, S. & Goodman, H. M. (1986) EMBO J. in press

Tronick, S. R., Ciardi, J. E. & Stadtman, E. R. (1973) \underline{J} . Bacteriol. 145, 858-868

Tumer, N. E., Robinson, S. J. & Haselkorn R. (1983) <u>Nature</u> 306, 337-342

Tyler, B. (1978) Ann. Rev. Biochem. 47. 1127-1162

Upchurch, R. G. & Elkan, H. G. (1978) J. Gen. Microbiol. 104, 219-225

Vairinhos, F., Bhandari, B. & Nicholas, D. J. D. (1983) Planta 159, 207-215

Vieira, J. & Messing, J. (1982) Gene 19, 259-268

Whitehead, A. S., Goldberger, G., Woods, D. E., Markham, E. F. & Colton, H. R. (1982) <u>Proc. Natl. Acad. Sci. U. S. A</u>. **80**, 5387-5391

Wood, W. I., Hitschier, J., Lasky, L. A. & Lawn, R. M. (1985) <u>Proc. Natl</u>. <u>Acad</u>. <u>Sci</u>. <u>U</u>. <u>S</u>. <u>A</u>. **82**, 1585-1588

Yanisch-Perron, C., Vieira, J. & Messing, J. (1985) Gene 33, 103-119

MICHIGAN STATE UNIV. LIBRARIES
31293018070635