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ABSTRACT

LARGE AND SMALL SAMPLE PROPERTIES OF

MAXIMUM LIKELIHOOD ESTIMATES FOR THE

HIERARCHICAL LINEAR MODEL

by

Dina Bassiri

The multilevel character of educational data have

implications of a general methodological nature. Interest in

these methodological problems has recently been stimulated

by the development of the E.M. algorithmic approach to

variance component models. The EM algorithm produces

maximum likelihood estimates for variance components with

known large sample properties. That is, the estimates are

consistent, asymptotically efficient with known large sample

normal distributions. However, at present little is known

about the small sample behavior of the parameter estimates.

The primary purpose of this Monte Carlo investigation is

to understand the properties of maximum likelihood estimates

in small and moderate samples using a two stage hierarchical

linear model with standardized normal predictors at both

levels of hierarchy (i.e., using a standardized two-stage

hierarchical linear model). Specifically, this research will

investigate the effects of variance estimation via the EM

algorithm on properties of parameter estimates at the
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second stage of the hierarchy, that is, the macro or fixed

effects, yoo, Y01 , Ylo , and Y11 . These are the regression

coefficients in the equations for the mean and slope at the

second stage of the hierarchy. A secondary purpose is to

evaluate the robustness and power of asymptotic z-tests of

the macro parameters under various conditions determined by

the number of groups, the group size, and the effect size.

The following are the major conclusions drawn from the

investigation. (1) Macro estimators are unbiased,

consistent, and asymptotically efficient with asymptotically

known normal distribution. (2) Error estimates of macro

parameters are considerably affected by the number of

groups, but not so much by the group size. (3) Precision of

macro parameters is directly proportional to the number of

groups and inversely proportional to intraclass correlation

coefficient. Increasing group size increases precision as

well. Yet, the effect of one is not proportional to that of

the other. (4) Micro parameter variance estimator for the

slope and intercept of the first stage regression model are

biased but consistent and asymptotically efficient. Increa-

Sing the number of groups has a determinative effect on the

Parameter variance in slopes, but parameter variance in

intercepts is more influenced by group size. (5) Within

group error variance estimates ( o2 ) are unbiased, consis-

tent, asymptotically efficient and are considerably more

affected by group size than by the number of groups.



Dina Bassiri

(6) The precisions of variance components estimates, in

contrast to that of the macro parameters, are directly

related to intraclass correlation coefficient. (7) Depar-

tures of empirical type I error rates from nominal alpha for

tests of macro parameters are typically within 99% confi-

dence intervals. When outside the probability intervals,

empirical significance levels are all liberal. No pattern

developed between empirical type I error rates and number of

groups, group size or effect size. (8) For all macro parame-

ters, power increases as total sample size, number of

groups, group size, or effect size increase. However, group

size has a consistent determinative effect on power over the

number of groups.
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CHAPTER I

STATEMENT OF THE PROBLEM

Science's main job is to "explain" natural phenomena by

discovering and studying the relations among variables. In

the behavioral sciences, variability is itself a phenomenon

of great scientific curiosity and interest. In their

attempts to explain the variability of a phenomenon of

interest (often referred to as the dependent variable),

scientists study its relations or covariations with other

variables (referred to as the independent variables). Educa-

tional researchers seek to explain the variance of school

achievement by studying its relations with intelligence,

aptitude, social class, race, home background, school atmos-

phere, teacher characteristics, and so on. Various analytic

techniques have been developed for the purpose of studying

relations between independent variables and dependent

variables, or the effects of the former on the latter

(Pedhazur, 1973).

Perhaps the most powerful method of doing this is the

regression analysis, whose simplest form is one in which the

effect of an independent variable on a dependent variable is

being studied (Pedhazur, 1973). Under this simple conception

the two parameters of interest are the slope and intercept



which are usually called regression coefficients. The test

statistic used for either of the regression coefficients is

the Z-test (or t-test if the sampling variance, 0: , is

replaced by its unbiased estimator). So long as we deal with

a situation where the variables have the same level of

aggregation (e.g., both at individual or group level) and

where our measurement processes are assumed to be error

free, there is no real drawback to this approach.

But in educational research many, if not most, data have

multilevel characteristics. For example, students are nested

within classrooms, and classrooms are nested within grade

levels which are themselves nested within schools, dis-

tricts, or program sites. Thus, we can have variables of

different levels, describing students, classes, schools and

so on. Variables such as family background, prior achieve-

ment, parental educational level, and the like are indivi-

dual (or micro) variables identified with students and

variables such as whether the school is public or private

are group (or macro) variables. In a multilevel problem we

want to investigate the relations between variables at dif-

ferent levels of hierarchy as well as interactions across

levels.

There has been a great surge of interest in educational

statistics over the past decade to search for appropriate

statistical methods for hierarchical, multilevel data. As a

result of this search, a general approach to the problem of

multilevel data which is referred to as hierarchical linear



models (HLM) by Sternio (1981) has emerged.

The basic idea of a hierarchical linear model is fairly

simple. When data are available at two levels of aggrega-

tion, for example, on students and the schools to which they

belong, the model is specified in two sets of equations:

one within schools, and one between schools. The within-

school model is defined separately for each school with

student level predictors and a student level outcome

variable. This is a familiar linear regression model with

one major exception; the within-school parameters, regres-

sion coefficients, are allowed to vary randomly across

schools. This conception poses a second or between-school

model. The between-school model then regresses the within-

school regression coefficients on to the school level

predictors.

Two sets of parameters evolve from this formulation:

micro parameters, or random effects, and macro parameters,

or fixed effects. Research interest has focused on estima-

tion of both micro and macro parameters. As Raudenbush

(1988: 87) has pointed out:

"Two fundamentally different types of problems have

motivated the development of these HLM models. In the

first type, interest focuses on the micro parameters or

random effects. One seeks to estimate, for instance, a

regression equation for a particular school, the effect

size for a particular study, or the growth rate of a

particular child when the data available for that

school, study, or child are sparse. The empirical Bayes

approach strengthens estimation for each unit by utili-

zing data from many similar units: schools, studies, or

children. In the second type of application, attention

focuses on the macro parameters, or fixed effects. One

asks why some kinds of schools have smaller regression

slopes than others, why some studies report larger



effects than others, and why some children grow faster

than others."

The conception that "micro" parameters vary randomly

across the population of groups as a function of "macro"

parameters not only justifies the "slopes as outcomes" idea

(Burstein, 1980), but also introduces a new source of varia-

tion in micro parameters referred to as random effect varia-

nce or parameter variance. This is the variance among the

micro parameters themselves which is distinguished from the

sampling variance resulting from using a sample within each

macro unit to estimate these parameters.

The new advances in analyzing multilevel data have

evolved from statistical theory stimulated by the seminal

contributions of Lindley and Smith (1972), Novick, Jackson &

Thayer (1972), and Smith (1973), who developed Bayesian

estimation procedures for hierarchicaly structured data

When the variance components (i.e., sampling and parameter

variance) are known, estimates for the micro and macro

parameters can be derived from alternative estimation theo-

ries: least squares, Bayesian, and maximum likelihood (see

for example Raudenbush, 1984). The crucial difference bet-

ween Bayesian/ maximum likelihood approach and least squares

approach is the difference in assumptions.

In most applications, however, these variance components

have to be estimated. Unfortunately, no simple closed-form

estimate is available. However, a variety of numerical

approaches to maximum likelihood estimation of covariance



components are available among which EM algorithm (Dempster,

Laird & Rubin, 1977) is especially conceptually appealing.

The EM algorithm produces maximum likelihood estimates

for variance components with known large sample properties.

That is, the estimates are consistent, asymptotically

efficient with known large sample normal distributions. The

fact that the sampling distributions are known becomes espe-

cially important when inferences are to be made based on the

parameter estimates. The test statistic for a macro regres-

sion coefficient is a Z-test (asymptotic z-test or t-test

if the variance components are replaced by their maximum

likelihood estimates). But before asymptotic results become

exact, the number of levels of each random factor must

increase to infinity (Miller, 1977). That is, for example,

both the number of schools (call it K) and the number of

pupils (call it n) within each school must approach

infinity.

At present little is known about the small sample beha-

vior of these parameter estimates. To date it is not clear

how large n and K have to be in order for estimates and

their standard errors to become acceptable, thus justifying

the use of large sample theory.

The goal of this research is to understand the proper-

ties of maximum likelihood estimates obtained from small

and moderate samples, and to evaluate their implications for

research design. Because anlytic study of these properties

becomes intractable in the case of unknown variances and



covariances, empirical studies are needed. Clearly to gain a

comprehensive understanding of the inferential strength of

hierarchical linear model, and to understand the small sample

properties of its parameter estimates, many simulation

studies are needed. In other words, alternative HLM methods

with different model specifications and assumptions, or at

least the most interesting and realistic ones, have to be

studied.

This research will take the initial step and will

address these issues by considering. the two-stage

standardized hierarchical linear model. Specifically, this

research through simulated data generated for different

values of K and n, will investigate the effects of variance

estimation via EM algorithm on inferences about parameters

at the second stage of the hierarchy, that is, about the

macro or fixed effects.

The following chapters will review the literature with

respect to statistical approaches to multilevel data,

discuss maximum likelihood parameter estimation, present the

method used for investigating the small sample properties of

parameter estimates, and provide results and discussion of

their implications for research design.



CHAPTER II

REVIEN OF THE LITERATURE

A long-standing problem associated with educational

research has been the failure of many quantitative studies

to attend to the complexity of data usually produced by

hierarchical, multilevel educational field research

(Cronbach, 1976; Haney, 1980; Burstein, 1980; Cooley, Bond &

Mao, 1981; Rogosa, 1978).

Cronbach (1976) remarked that the majority of studies of

educational effects carried out until 1976 conceal more than

they reveal, and that "the established methods have gene-

rated false conclusion in many studies." (P. 1)

Uni-level Techniques
 

Traditionally, statistical approaches have attempted to

adopt uni-level techniques to multilevel situations. This

can often be done by using aggregation or disaggregation. A

student (micro) variable, such as intelligence, can be

aggregated to school level by assigning to a school the

average intelligence of its students. A school (macro)

variable, such as whether it is public or private, can be

disaggregated to the student level by assigning to each

student the type of school. But as de Leeuw and Kreft (1986)

pointed out "the operations of aggregation and disaggrega-

tion are highly nontrivial, both from the methodological and



from the statistical point of view". Conceptually, by aggre-

gating, a change in the meaning of the variables occurs.

Statistically this means we are ignoring all within-school

variation which sometimes results in dramatic increase in

the correlation between aggregated variables. Robinson

(1950) showed that not only does the correlation fluctuate

as a function of grouping but that the sign may even be

different at different levels. As a result we no longer can

make inferences on the student level without committing the

‘ecological fallacy' (Alker, 1969; Cronbach and Webb, 1975;

Hannan, 1971; Robinson, 1950). This refers to the practice

of interpreting correlations between aggregated variables as

if they were correlations between variables measured on

individuals (i.e., cross level inference). This is the most

commonly cited flaw in any early methodological treatments

of hierarchical data.

On the other hand if we disaggregate, we have to take

into account the fact that students within the same school

do not respond independently to school level variable. But

the traditional linear models require the assumption that

subjects respond independently to educational programs. Also

by ignoring the nested structure of data we will misestimate

the precision of parameter estimates, resulting in serious

inferential problem (Aitkin, Anderson & Hinde, 1981; Knapp,

1977; Walsh, 1947).

In the late 19605 and early 1970s, the topic of

aggregation and proper choice of analytic units (using the



student versus using the group) gained popularity in

educational field research (see Burstein, 1980 for a review

of these issues). This increased interest may be viewed as a

natural by-product of the then growing emphasis in

educational research on evaluation of social and educational

programs; evaluations that had to be designed and analyzed

in such a way as to take into account the ever-present

natural hierarchy found in all school systems. With the

awareness that students within a class and teachers within a

school cannot be considered truly independent and that

responses -to treatment may rightfully vary dramatically

across groups, came an increased interest in how to deal

with non-independence and differential effects for distinct

population groups often labeled aptitude-treatment interac-

tions (Cronbach and Webb, 1975).

Up to the early 19708, then, considerable research had

been done on the effects of aggregation on bias and

efficiency under various grouping strategies. However,

little of this research was grounded in practical

applications.

As Burnstein (1980) in his concluding remarks on choice

of units of analysis points out, if the goal is to learn

something about the effect of educational process on student

achievements, the "discussion, about the choice of an

appropriate unit are simply unnecessary digressions" (p.

196). The emphasis should be on choosing an appropriate

analytical model that accounts for the relationship among



variables observed at both levels of aggregation. Rogosa

(1978: 83) remarked, "no one level is uniquely responsible

for the delivery of and the response to educational

programs.... confining substantive questions to any one

level of analysis is unlikely to be a productive research

strategy". Burstein and his associates (Burstein, Linn &

Capell, 1978; Burstein, Miller & Linn, 1979; Burstein,

1980) argue that when relationships between the dependent

and independent variables are different in different groups,

single level analyses at either the individual or aggregate

level will produce misleading results. For example, conduc-

ting analyses at the individual level without regard for

group membership might lead to spurious null effects or to

spurious large effects; in either case, the actual effects

will only be uncovered through within-group analysis. Thus,

these researchers advocate conducting selected within-class

analyses and using the results of these regressions in

aggregate level analyses. Cooley et al. (1981) reached the

same conclusions and pointed out : "We must not ignore the

possibility of variation among groups (e.g., classrooms or

schools) in estimating a variable's effect. Examining this

variation can reveal grouping effects or specification

error, ignoring it will conceal them." (p. 74)

Such criticisms of single level analyses suggest that

multilevel approaches are needed in many settings. Such

models would aim simultaneously to discover: 1) what is

happening within macro units; 2) what differences there are

10



between macro units; and 3) how those differences influence

the quality of what is going on within the macro units. To

be valid, statistical analyses must account simultaneously

for effects at both levels.

Multilevel Techniques With Random Intercepts

and Fixed Slopes
 

In the mid-seventies, the problem of aggregation bias

was resolved by analyzing multilevel data with multilevel

techniques. some of these alternative analytical strategies

are: the separate between-group and pooled within-group

analyses as suggested by Cronbach (1976), and Cronbach and

Webb (1975); a two-stage hierarchical analysis proposed by

Keesling and Wiley (1974), and Wiley (1976); and a "full

model" analysis suggested by Keesling (1977). All three

strategies obtain their estimators through ordinary least

squares (OLS) technique, but they differ in the approach by

which the estimators are obtained. Notice that in the case

of random intercepts, OLS is an appropriate estimation

method only when balanced designs are considered.

Schmidt and Houang (1983) compare and contrast these

three approaches with respect to parameter estimation. They

concluded that these strategies differ in the way that the

relationship between the between-group effects and the

within-group effects are conceptualized. Analytically they

showed that all three procedures give the same estimate for

the within-group regression coefficient. With respect to

the between-group regression coefficient, the estimate

11



obtained by Cronbach's approach is different but related to

that of Keesling's. As far as the third approach is

concerned (i.e., Keesling and Wiley's two-stage analysis),

no estimate for the between group regression coefficient is

available in this case. These differences reflect different

conceptualizations in the three strategies. That is, where

in the Cronbach's and Keesling's approaches the individual

level variables are conceptualized to have direct impact on

the outcome variables, in the Keesling and Wiley's their

influence are indirect and mediated through other group

level variables. This difference in conceptualization of the

situation sets a criterion for choosing among these three .

multilevel techniques (Schmidt and Houang, 1983).

The model proposed by Wisenbaker and Schmidt (1979) may

be viewed as the extension of these multilevel techniques

to their multi-variate form. The application of a "compo-

nents of covariance structure" method (Schmidt, 1969) to the

proposed, multivariate random effects model (with random

intercepts and fixed structural parameters) allow the

simultaneous estimation of between-group and within-group

effects and their standard errors via maximum likelihood

procedure. The model potentially permits different specifi-

cations for the relations at two levels of hierarchy.

Although these analytical strategies accounted for

aggregation bias, however, the other technical problem,

i.e., misestimated precision, remained unresolved. The

problem is that these methods allow for random intercepts,

12



but they assume constant within-group slopes. The technical

consequences of ignoring slope heterogeneity when in fact it

exists are inefficient estimation of regression coefficients

and negatively biased standard errors of regression coeffi-

cient, which inflate type I error rate.

Cronbach (1976) cites three sources of variation in

within-class slopes: 1) sampling variability and stability

problems due to small class sizes when the process operating

in the classes are basically the same; 2) differences in the

selection factors operating to form the classes; and 3)

differences in causal processes going on in the classrooms.

If we can rule out chance effects and different selection

rules as reasonable explanations, the variation in within-

class slopes become a potent source of information to

researchers and policy makers.

Tate and Wongbundhit (1983) argued that random

coefficient models with random slopes and intercepts are

more appropriate than random coefficient models with only

a random intercept for multilevel analysis in educational

research. De Leeuw and Kreft (1986) further added that

random coefficient models are more general and that fixed

constants are special random variables. They argued that

"whether something is random or fixed should be decided by

considering what would happen if we replicate the experi-

ment. Would it be realistic to suppose that regression

coefficients stayed the same under replications? If not,

then random coefficients are appropriate" (p. 59).

13



Boyd and Iversen (1979) discussed a "separate equations"

approach in which both intercept and slope are allowed to be

random. But their estimation procedure is ordinary un-

weighted least squares for both sets of coefficients, which

ignores the information provided by the random coefficient

model. I

One class of multilevel approaches in which random

coefficients are estimated (Burstein and Miller, 1980;

Cooley et al., 1981), first estimates relationships within

each school; then these regression coefficients serve as

outcome variables for an assessment of the importance of

school policies and practices. Again, this approach is not

free from problems. Raudenbush and Bryk (1986) discussed

some of the technical difficulties associated with slopes-

as-outcomes approach. Among these problems are weak statis-

tical power to detect real differences in slopes, the need

for a multivariate formulation so that several regression

coefficients per unit can be studied, and the need for a

statistical model which matches the complexity of hierarchi-

cal, multilevel character of most educational field research

data.

Additional problems with Cooley et al.'s proposed model

is that all random variation in the effects of macro units

is assumed to be explained by the predictors included in the

model, so that the only unexplained variation results from

sampling of micro units (i.e., unsystematic or sampling

variation). In traditional analysis of variance terms, such
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a model is a fixed effects model. Assuming the model is

completely specified, there is no drawback to this approach.

However, when the model specification is incomplete, which

will commonly be the case, the parameter estimates of regre-

ssion coefficients and their standard errors are

untrustworthy.

The Multilevel Technique With Random Intercepts

and Random SIopes:HLM

 

A general approach to the problem of multilevel data

(Aitken and Longford, 1986; de Leeuw and Kreft, 1986;

Goldstein, 1986; Mason, Wong & Entwisle, 1984; and Rauden-

bush and Bryk, 1986) incorporates the idea of "slopes as

outcomes" without its various deficiencies. This general

approach with random effects at each sampling level has

been proposed under a variety of names: variance component

models (Harville, 1977), mixed model ANOVA (Elston and

Grizzle, 1962), regression with random coefficients (Rao,

1972; Swamy, 1973; Rosenberg, 1973; and Dielman, 1983),

Bayesian estimation for linear models (Lindley and Smith,

1972; Smith, 1973,Dempster, Rubin & Tsutakawa, 1981; and

Morris, 1983), multilevel linear models (Mason et al.,

1984), mixed linear models (Goldstein, 1986), and hierarchi-

cal linear models (HLM) (Sternio, Weisberg & Bryk, 1983)

have all been used. The present study employs the term

hierarchical linear models, labeled HLM for convenience.

The HLM has a hierarchical structure in the sense that

parameters at a lower level of aggregation (i.e., micro
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parameters) are assumed to vary over a population of groups

as a function of the parameters at the next higher level

(i.e., macro level). Micro parameters may be as diverse as

means, proportions, variances, linear regression coeffi-

cients and logit linear regression coefficients (see Rauden-

bush, 1988). Through such models, it is possible to assess

the strength of relationship between macro predictors and

micro parameters. This quality along with the "slopes as

outcomes" idea enables investigators to go beyond traditio-

nal questions (e.g., why do more schools have higher

achievement than others ?) and ask more fundamental

questions about why structural relationships vary across

groups. This class of questions (e.g., why is the effect of

social class or race stronger in some schools than others ?)

reflect the "slopes as outcomes" conceptualization popula-

rized by Burstein (1980). The HLM model identifies both

slope and intercept heterogeneity and tries to explain them

via related macro predictors.

Not only do such models enrich the class of research

questions asked about educational effects occuring within

and between educational units, they solve problems of

aggregation bias and misestimated precision long associated

with multilevel data.

Estimators of micro and macro parameters are available

through empirical Bayes methods. The empirical Bayes

estimates of the micro parameters (also called shrinkage or

Stein estimators) provide an improvement over the least
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squares estimators. This improvement is most pronounced when

some or all groups have sparse data and when there is

heterogeneity among micro parameters, some of which can be

explained by group characteristics.

Estimation of the micro parameters can be improved by

shrinkage of least squares estimates around a grand mean

(known as "unconditional shrinkage") in the first situation

and by shrinkage toward a conditional expectation (known as

"conditional shrinkage") in the second situation.

The empirical Bayes approach also yields estimates for

macro parameters. This estimator, which is recognizable as

the generalized least squares estimator, weights each OLS

estimate of micro parameters proportional to its precision.

Estimation of macro parameters are of great importance

not primarily because these improve estimation of micro

parameters, but because it enriches the class of research

questions asked about educational effects which goes far

beyond what was plausible prior to the advent of HLM models.

Research interest has focused on estimation of both

micro parameters and macro parameters each addressing funda-

mentally different type of questions. Studies with the goal

of improving micro estimators (by either conditional or

unconditional shrinkage) include Laird and Ware, 1982;

Raudenbush and Bryk, 1985; and Sternio, et al., 1983 for the

first type of shrinkage and Braun, Jones a Rubin, 1983; Der

Simonian and Laird, 1983; Novick, et al., 1972; Novick and

Jackson, 1974; Rubin, 1980 and 1981; and Shigemasu, 1976 for
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the second type of shrinkage. However, numerous investiga-

tors have recently found that the macro parameters them-

selves may be of greater interest (Aitkin and Longford,

1986; Aitkin, et al., 1981; de Leeuw and Kreft, 1986; Gol-

dstein, 1986; Laird and Ware, 1982; Lee, 1986; Mason, et

al., 1984; Raudenbush and Bryk, 1985 and 1986; and Sternio,

et al., 1933).

The HLM model has broad applicability in educational

research. The study of individual growth (Laird and Ware,

1982; Sternio, et al., 1983; Bock, 1983), the measurement of

change (Bryk and Raudenbush, 1987 ); contextual effects in

cross-national fertility research (Mason et al., 1984), and

research synthesis or "meta analysis" (Raudenbush and Bryk,

1985) are examples of HLM's broad applicability.

The major problem with this development is the

mathematical complexity of Bayesian covariance components

estimation. Fortunately, a variety of numerical approaches

to maximum likelihood estimation of covariance components

are now available.

Estimation gf Dispersion Matrices:
   

Estimation of dispersion matrices in multilevel linear

models with fixed and random effects (i.e., mixed models)

can be complex, particularly in an unbalanced case. The

traditional 'ANOVA' approach is essentially the only method

in use for balanced data. This method consists of equating

the observed sums of squares and cross-products matrices to

their expected values. For unbalanced data, the 'ANOVA'
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approach leads to biased estimators of variance components.

Henderson (1953) developed analogous techniques to correct

this deficiency. Searle (1968, 1971a, and 1971b) gives

excellent descriptions of Henderson's methods and indicates

various generalizations. One problem with Henderson's method

for estimating variance and covariance components is that

the methods are not necessarily well defined. Moreover,

except for balanced data cases, little is known about the

properties of the Henderson estimators, other than that they

are unbiased and translation invariant. It is known that,

at least in particular cases, there are biased estimators

that have uniformly (assuming normality) smaller MSE's than

the Henderson estimators (see Klotz, Milton and Zacks,

1969). The discovery by Seely (1975) and by Olsen, Seely,

and Birkes (1976) proved that, at least in the case of most

unbalanced mixed or random effects models having one random

factor, there exist estimators that have uniformly smaller

variance than the Henderson estimators. These locally best

estimators are related closely to maximum likelihood estima-

tors (Hocking and Kutner, 1975).

Maximum likelihood and related procedures, which are

reviewed by Harville (1977), have received increased atten-

tion in the past ten years. However, maximum likelihood

approach has been somewhat ignored by practitioners because

of computational complexities and because it takes no

account of the loss in degrees of freedom (df) from the

estimation of fixed effects, leading in some instances to
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large biases and large mean squared errors (Patterson and

Thompson, 1974). Improved computational procedures are now

available, and Patterson and Thompson (1971, 1974) have

devised a modified ML approach known as 'resticted maximum

likelihood', that adjusts automatically for losses in df. As

Harville (1977:320) states:

" Certain deficiencies of various other methods are not

shared by maximum likelihood. In particular, the maximum

likelihood approach is 'always' well defined, even for

the many useful generalizations of the ordinary ANOVA

models, and, with maximum likelihood, nonnegativity

constraints on the variance components or other

constraints on the parameter space cause no conceptual

difficulties. Moreover, the maximum likelihood estimates

and the information matrix for a given parameterization

of the model can be obtained readily from those for any

other parameterization".

Asymptotic Properties 22 Maximum Likelihood Estimates
 

The attractive features of maximum likelihood estimates

of variance-covariance components, discussed by Harville

(1977), are important. The maximum likelihood are functions

of sufficient statistic and are consistent, i.e., they

converge to the population values as the sample size becomes

indefinitely large. Their joint distribution is approximated

by the multivariate normal distribution with mean equal to

the population value and variance-covariance matrix equal to

the negative inverse of the matrix of second derivative of

the likelihood function. Moreover, the maximum likelihood

estimators are said to be asymptotically efficient (in the

sense described by Miller, 1973 and 1977) attaining the

Cramer-Rao lower bound for the covariance matrix under mild

regularity condition . There is, however, no guarantee or
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unbiasedness or efficiency in small samples.

In order to obtain asymptotic results in the mixed

model, the number of levels of each random factor must

increase to infinity. More often in the analysis of variance_

a conceptual sequence of experiments with the number of

levels of each of the random factors increasing to infinity

is considered. Hartley and Rao (1967) were the first to

attempt an asymptotic theory that would be truly appropriate

for the more complicated of the ordinary ANOVA models. They

proved that under certain restrictions the estimates were

consistent and asymptotically normal as the size of the

experimental design increased. However, one of their

assumptions is that the number of observations at any level

of any factor must remain less than some fixed constant for

all designs in the sequence. This assumption eliminates many

crossed designs where the number of observations at a given

level of one factor is proportional to the number of levels

of another factor.

An alternative way of obtaining asymptotic results in

the mixed model is by considering repetitions of a given

experiment. Anderson (1969, 1971) considered maximum

likelihood estimates in a more general class of models

(multivariate models where the covariance matrix has linear

structure) and proposed a different solution; he proved that

the estimates were consistent and asymptotically normall as

the entire design was repeated. Miller (1973) developed an

asymptotic theory for the ordinary ANOVA models which, while
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it is similar to that presented by Hartley and Rao (1967),

it does not exclude any cases of real interest. He consi-

dered asymptotic properties of the maximum likelihood esti-

mates for a large class of design sequences whose size

increases to infinity; this class of design sequences con-

tains all sequences treated by Hartley and Rao and most

sequences which could occur in practice. In other words he

took the basic model of Hartley and Rao, rewrote it in the

form used by Anderson and proved consistency and asymptotic

normality of the estimates in the model.

Raudenbush (1988) in his paper entitled ,"Educational

Application of Hierarchical Linear Models: A Review"

provides a comprehensive review of HLM model with respect to

estimation theory and application. In his concluding remarks

he states, "despite the clear potential of such models,

important questions about their statistical properties

remained unanswered. The questions concern small sample

properties, implications for research design and robustness

of violations of assumptions" (p. 111). This research will

take the initial step and will address questions about small

sample properties of the estimators and their implications

for research design by considering a two-stage standardized

hierarchical linear model.
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CHAPTER III

TWO STAGE HIERARCHICAL LINEAR MODEL (HLM)

In this chapter, a mathematical model for the general

two-stage hierarchical linear model (HLM) is presented. This

is followed by the description of parameter estimation when

variance components are known and when they are unknown.

Then the logic of EM algorithm along with the steps involved

for the implementation is discussed. Finally, the effects of

estimating variance components on macro or fixed parameters

is described.

For reasons of simplicity and clarity, a two-stage

'hierarchical linear model is considered although the

statistical theory permits more (see Goldstein, 1986). The

basic idea of HLM is reasonably simple. We begin by

supposing that the researcher has data at two levels of

aggregation, for example, on students and the schools to

which they belong. The model is specified in two sets of

equations: one within schools, and one between schools. Our

fundamental assumption is that the outcome variable in some

way depends on the student level predictors and that the

micro regression coefficients may vary systematically as a

function of the school level predictors. The within school

model is defined separately for each school. This is a
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familiar linear regression model, with student level

predictors, and with a student level outcome variable. The

between-school model then regresses the within-school

regression coefficients on to the school level predictors.

The present study restricts attention to the case in which

variation in the outcome variable, Y, is to be explained as

a function of one student (micro) level predictor, x, and

one school (macro) level predictor, W (theoretically there

is no limit as to the number of Y, X and W). In this case

of a simple univariate regression model the within-school

model (or micro model) becomes

Yij II “1 + 81 xij '5‘ R11 (3.1)

and

2

Rij~N(0.Oj)

where

Yij is the outcome score for student 1 in school j;

where j = 1,..., n

“j and 31 are the micro level regression coeffi-

cients within school j;

Xij is the micro level predictor for student 1 in

school j; and

RLj represents random error, assumed independently

normally distributed with zero mean and variance

2

0'3 '

By centering the micro level predictor around its

respective group mean, x21 , “1 represents the mean on the
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outcome variable in school j. Equation (3.1) is a standard

linear "full rank" regression model with one major

exception; the within-school parameters, u and B are

1 j

allowed to vary randomly across schools. This conception

poses a second or between-school model.

The between-school model (or macro model) may be either

unconditional (involving no macro level predictors) or con-

ditional (involving macro level predictors). The uncondi-

tional model is:

“j ' “+U0j’ (3.2)

B - 8 + Uj 11, (3.3)

U ~ N (0. T“).
0.1

Ulj ~ N (0, TB),

cov ( U U ) ' T
Oj’ lj H8

that is, p1 and 31 are viewed as a functions of their

respective grand mean across all schools plus random error.

Under this simple model, TU and 1 represent the parameter

8

variances in U01 and U11 respectively. That is, they signify

the variability in the true intercept and slope across the

population of schools, and that THE signifies the covariance

between them. Treating W as potential determinant of u

1

and 31 , leads to the following conditional between-school

model:

“3 - Yoo + Y01 Wj + "03 (3.4)
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8j - 710 + Yll Wj + Ulj (3.5)

and

U ~ N ( 0 . T )

ulW01

U11 ~ N ( 0 , TBIW )

cov ( UOj , UIj ) - TUBIW

where THIW and-rBIW are the conditional parameter variances

in 00;) and U11 respectively, and TIJBIW is. their conditional

covariance. The micro errors are assumed independent of the

macro errors. Equations (3.4) and (3.5) represent the

effects of macro predictor W on the two micro parameters,

pj and 31 . These two equations combined with equation

(3.1) define a multilevel model that can be written equiva-

lently as a single equation by substituting (3.4) and (3.5)

into (3.1):

(3.6)

+ (U + X U + R )

Y 0:1 ij 13 1111 ' Yoo + Yo1wj + Yloxij + Yllxijwj

The brackets in equation (3.6) enclose error terms that

complicate the expression considerably, as they do its

estimation. The presence of macro error terms in (3.4) and

(3.5) make (3.6) a mixed model, because it contains fixed

coefficients (the y'S) and random coefficients ( the U's ).

The model shown in equation (3.6) is quite general in

that a number of familiar models can be derived from it. If

the macro errors are suppressed, the hierarchical linear

model (3.6) becomes equivalent to an ordinary regression
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model (or fixed effect specification) that includes student

level variable Xij , school level variable, W1 , and their

interaction effect, and its estimation poses noX W ,

113

special problem. Under this model we assume that all of the

variation in the micro parameters, p1 and sj , has been

perfectly explained by knowledge of the macro level

variable, Wj , whereas equation (3.6) allows for error. When

random effects remain (i.e., 051 and/or U13

zero), application of ordinary least squares to (3.6) is

are not equal to

inefficient, and the estimated standard errors are too

small. Another model that has received some attention is

"random intercept regression model". This model considers

the within-school intercepts, “j , as random, but the

regression slopes, 83’ as fixed. Some variant of this model

has been employed by Aitkin et al. (1981), Cronbach (1976),

Keesling (1977), Keesling and Wiley (1974), and Wisenbacker

and Schmidt (1979). There are hypothesis tests in each case

to decide whether or not it is justifiable to make these

simplifications (Raudenbush and Bryk, 1986). Mason et al.

(1984) provide a detailed discussion of the relationship

between the general hierarchiacl linear model (3.6) and

other simplified sub-models of potential interest that can

be derived from it.

Estimation Under Known Variance Components
 

Estimates for the parameters in HLM models assuming

known variance components can be derived from alternative

estimation theories: least squares, Bayesian and maximum
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likelihood (see for example Raudenbush, 1984). Using matrix

notations to generalize the model, equation (3.1) becomes;

YJ -X16j+Rj, (3.7)

and

Rj” N (0) 21):

where

2

221- c.1 Inj,

51 u R1

Y ' 1 9 9 = j , and R - i

J . J B j - ’

Yn j Rn

J j    

and equations (3.4) and (3.5) will be reduced into a single

equation of the form,

 

ej - pa + 111, (3.8)

and

U3 ~ N ( 0. I).

where

r T

T _ u uB

Tue TB

- U

“a! E 9 and U1. 0:]

B
Uij

Under the Bayesian approach, assuming variance compo-

nents are known, the minimum mean squared error point esti-

mators for micro and macro parameters are;

C
D I

>
9

C
D
) *
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and

4 -1 A

ue ( £11) ( 2X1 9 ) . (3.10)

where

_ -1

81 is the ordinary least squares estimate of 8j for each

school with sampling error of

A a 2 ' -1 3

var ( 61 81 ) oJ ( X1 X1 ) Vj .

and.l represents a "multivariate ratio" of the true para-

1

meter variance in 81 to the total observed variance in

81 . This ratio signifies the reliability of BJ as an esti-

mator of school j's slope. It follows that 8j . (X5X3)-1x3Yj

is normally distributed with a mean of “8 and variance Vj + T

A

i.e.,

A

n s a A .) ‘var ( 81 9:1 ) + var ( ej ) V3 +-T' jvar ( 6

J

The empirical Bayes estimator, u; is a generalized

least squares estimate of 8 , where the outcome vector

8 (i.e., OLS estimates of micro regression coefficients)

3

is weighted by its precision. The empirical Bayes estimator

a: is a weighted combination: first of 8j ,

derived for each school based only on the student data from

the OLS slopes

that school; and second, from the estimated mean slope u; ,

for the population of schools. That is, 6: is a vector

the elements of which are somewhere between the elements

contained in 81 derived entirely from within the macro unit

j, and the elements u; the estimated mean vector for the
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entire sample.

The properties of these estimators are reviewed by Efron

and Morris (1975) and Morris (1983). Such estimators are

conditionally. biased, i.e., the bias is largest for ej

. * .

values far from the average. However, in general ej is a

more precise estimator (i.e., it has smaller expected mean

squared error) than 81 its OLS counterpart.

Sternio (1981) reasoned, however, that the precision of

*

61 could be improved even further by shrinking estimates

8j , not toward a grand mean u; , but toward a

conditional mean ij* . This is obtained by regressing

61 onto a macro parameter W as follows,

8 - W + U , 3.11

1 1" .1 ‘ )

where

Y

00 1 nj 0 o

' Y s W -

Y“ 3 o o 1 w

10 3

Y11  

Under this formulation the empirical Bayes estimators or

equivalently the posterior means for micro and macro

Parameters are:

A

* *

6 - A 6 - l1 j j + ( I j : WjY ,1 A (3.12)

- z ' A- - Z ' A- e o

where

Aj-(TIW)(TIW+V )'1
J
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These results generalize to the case of multiple X's and

multiple W's. The posterior dispersion ofea and ‘Yare given

in equations (3.14) and (3.15) respectively (Raudenbush,

1988:91).

D I - _ t
93 11 VS] + ( I 1:1)3j (I 11) , (3.14)

where

s - w (z w' A'1 w )'1 w'

.‘l :l .‘l .‘l J 3'

and

13* - (z w' A“1 w )‘1 (3 15)
Y .1 J j ' '

It is worth noting that the crucial difference between

the three alternative estimation theories: least squares,

Bayesian and maximum likelihood is the difference in

assumptions. With regard to 8 , the Bayesian and maximum

likelihood method lead to identical result but different

from least squares. This is because the least squares method

makes no assumptions about the prior distribution of a

On the other hand, both Bayes and maximum likelihood assume

normality of the 83 in order to derive e; . With regard to

Y all three approaches effectively assume no prior dis-

tribution and therefore produce identical results (Rauden-

bush, 1984).

Estimation Under Unknown Variance Components

So far we have assumed that the variance components are

known. In most applications however, these will not be given
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and have to be estimated. For balanced data it has been

common practice to equate the observed sums of squares and

cross-products matrices to their expected values (called

"ANOVA" approach). Estimating variance components from

unbalanced data is not as straight forward as from balanced

data. Henderson (1953) developed analogous techniques

dealing with variance component estimation from unbalanced

data. However, his method is computationally cumbersome when

a mixed model is assumed and when the number of classes is

large. Searle (1971a, Chapter 10) discussed problems with

the ANOVA approach when applied to unbalanced data.

As can be seen in the survey article by Searle (1971b)

there are many approaches to variance components estimation

from unbalanced data; many of them of a rather specialized

nature and many which depend on some form of balance or

symmetry in the problems addressed. The need for general

procedures for. handling unbalanced problems is quite well

known to the statisticians.

A complete Bayesian analysis can be performed by

specifying a joint prior distribution for all the parameters

involved.( 8 , y ,‘T and V in our case), combined with the

likelihood function for regression coefficients (here 8 and

Y ) in order to obtain a joint posterior distribution for

the four parameters. This distribution then has to be

integrated with respect to the variance-covariance compo-

nents (here 'r and V ), thus removing the nuisance parame-

ters, so that the posterior distribution of 8 and 'y can be
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calculated (Lindley and Smith, 1972). While theoretically

satisfying, this approach is computationally complex.

As a practical alternative Sternio, et al. (1983)

followed the general strategy of Dempster, et al. (1981) and

developed an empirical Bayes analysis. The empirical Bayes

approach consists of first deriving Bayesian estimates based

on known variances and then substituting maximum likelihood

estimates for the unknown variances and covariances in the

estimation formulas. Similarly, they generated maximum

likelihood estimates for unknown variance-covariance compo-

nents via EM akgorithm (Dempster, et al., 1977), and then

replaced the true parameter values in their model by these

estimates.

As Harville (1977: 320) points out, ".... except in

relatively simple settings (cases), the computation of

maximum likelihood estimates requires the numerical solution

of a constrained non-linear optimization problem". For

unbalanced data maximum likelihood estimates of variance

components are not available in closed form and one has to

resort to iterative solutions to obtain them.

A variety of numerical approaches to maximum likelihood

estimation of variance-covariance components are available.

Among them EM algorithm is specially gaining prominence.

Dempster, et al. (1977), review many areas where the EM

algorithm has successfully been applied, or has potential

applications. These include missing value situations, aplli-

cations to grouped, censored or truncated data, variance
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component estimations, iteratively reweighted least squares,

fixed mixture models, hyperparameter estimation and factor

analysis. They also derive theorems showing the monotonic

behavior of the likelihood function and the convergence of

the algorithm. some of the applications include Aitken,

et al. (1981), Dempster, et al. (1981), Laird and Ware

(1982), Mason, et al. (1984), Raudenbush and Bryk (1986),

Rubin (1980), and Sternio, et al. (1983). Other numerical

approaches to maximum likelihood estimation of covariance

components are the iterative generalized least squares

(Goldstein, 1986) and the Fisher scoring method (Longford,

1985; de Leeuw and Kreft, 1986).

All these three iterative methods avoid the inversion of

large matrices. Thus, they are computationally more feasible

than Newton-Raphson, which requires inversion of large

matrices at each iteration. S.J. Haberman, one of the

discussants of the paper by Dempster et al. (1977), pointed

out that the numerical stability and simplicity of

implementation of the EM algorithm are in its favor. The

Newton-Raphson and scoring algorithms are not especially

difficult to implement. However, convergence of the EM algo-

rithm is often slow. In contrast, the Newton-Raphson and

scoring method are superior from the point of view of rate

of convergence near a maximum since they converge quadrati-

cally rather than linearly. However, they do not have the

property of always increasing the likelihood, and can in

some instances move toward a local minimum. Consequently,
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the choice of starting value may be more important under

Newton-Raphson and scoring method (Dempster, et al., 1977).

The £23 3.9; EM Estimation

The EM algorithm of Dempster, et al. (1977) provides an

iterative method of finding the maximum likelihood variance

estimates. The EM algorithm is a very general method for

finding maximum likelihood estimates. . In the variance

estimation situation, the EM algorithm alternates two steps

in each iteration. The E ("expectation") step finds the

posterior expectation of the sufficient statistics based on

the complete data (in our case y, e ) given the observed

data (in our case y) and given current estimates of parame-

ters (in our case r and o; ). The M ("maximizing") step

then uses the expected sufficient statistics to produce new

ML parameter estimates of variance components. Each step of

the EM algorithm increases the likelihood. This sequence of

alternate steps guarantees convergence to a local maximum of

the likelihood function. If data is normally distributed,

the local maximum will also be the absolute maximum since

the normal likelihood is unimodal.

One difficulty with EM algorithm is that it may require

many iterations to converge (Sternio, 1981). Thus, it is a

slow process of maximum likelihood estimation particularly

with poor starting values (Mason, et al., 1984). None-

theless, in favor of the EM algorithm are simplicity in

implementation and numerical stability.
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The process of the EM algorithm along with the computa-

tional details are provided by Dempster, et al. (1981) to a

special version of the model considered in this research.

They considered the model in which there are no macro pre-

dictors (covariates) related to micro parameters, i.e.,

2

W = I and in which the 21 have the special formz):j - o In

where o2 is equal across all individuals. Sternio (1981)-has

broaden this appraoch to include estimation of r and 02 in

more general cases and provides a unified discussion of

theory and computation in such cases. Bryk, Raudenbush,

Seltzer, and Congdon (1987) have extended this approach even

further to general mixed model in which the full rank

j , and the

assumption that micro parameters are random are no longer

assumption of the within-group predictor matrix X

required. Hence, relaxing these two restrictive assumptions

broadens the range of application of the model (Braun, et

al., 1983; Rubin, 1983).

To illustrate the logic of EM algorithm, consider the

simple conditional univariate HLM model prescribed in

equations (3.7) and (3.11). The logic of EM works like this:

First, assume that r and a; are known. Equations (3.12)

through (3.15) provide posterior means and dispersions of Y

and 8.1 . Next, suppose that y and 81 were known i.e., Rj

and U1 had been observed and we want to estimate 1 and a;

It can be shown easily that the following two equations

(3.16) and (3.17) are maximum likelihood estimates for T

2

and Oj respectively.
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'r- It" 21130:; (3.16)

A2 I. 1

EM algorithm utilizes the dependence of estimators 8j

and Y on knowledge of dispersion matrices and the dependence

of ML estimators of these matrices on knowledge of 8j and

7 via an iterative process with the following steps:

(1) Generate reasonable starting values for the unknown

variances, q; and T . Perhaps as suggested by Raudenbush

(1988), the within-group and between-group residuals from

ordinary least squares regression can be used.

(2) These starting values are substituted into equations

(3.12) and (3.13) yielding starting values of 8; and YE.

(3) To derive new estimates for T and o; , substitute

the sufficient statistics-ZUJUS and R3 R1 in equations

(3.16) and (3.17) by their posterior expectations.

These posterior expectations are derived by Dempster, et

al. (1981) and are as follows:

E{(R'R) Y}-E{(Y )IY}

ii

-(Yj-X

1' x13:
* 1*

)'(Yj '- x381) + E {(83 - :1

)'(Y1 - X181) + tr(Xj'Xj DBj

)' ( Y - XjBj

)‘x'x (e - 8*)IY}
j j J j

)

B

8

L
h
a
s
a
.
»
—

J

' (Y3 " x3

and

* *

to: 11er.1 Y) - 2: 0303 + {{Ajvj + “351 ”3}

2

(4) The new estimates of dj and T are then used in a

* i:

repetition of step 2 to yield new value for 8j and yj

37



The process iterates until estimates converge to any degree

of accuracy required.

The estimated variance components after one iteration

are then the maximum likelihood estimates of the variances,

conditional on the values of the‘ structural. parameters

(i.e., regression coefficients). The proof of convergence to

the maximum likelihood estimates is given by Dempster, et

al. (1977).

Effects of Having £2 Estimate Variance Components

Best linear unbiased estimators of the fixed and random

effects (i.e., macro and micro parameters respectively) of

mixed linear models are available when the true values of

the variance components are known. If the true values are

replaced by estimated values, the mean squared errors of the

estimators of the macro and micro parameters increase in

size (Kackar and Harville, 1984). Clearly the magnitude of

this increase is unknown to us. Another problem resulting

from this situation is; that the. parametric family

distribution of micro and macro parameter estimates will

remain unknown. Thus, any statistical inference concerning

these parameters, if not impossible, will be inaccurate.

Fortunately, we can use large sample theory to find

asymptotic distributions of macro parameter estimates. But

finding an analogous sampling distribution for micro parame-

ters is not possible (Dempster, et al., 1981), because we

cannot simultaneously maximize the joint likelihood function
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2

of all four parameters ( 8 , y , r and.o ). The data

3

simply will not support the estimation of so many parame-

ters. But the focus of the present research is on the effect

of variance estimation on inferences about macro parameters.

Of course, when variance components are unknown, substi-

tuting their maximum likelihood estimates ; and. d: in the

definition of £1 and then estimating 'y* by replacing

A1 for 81 in equation (3.13) is a natural idea. That is,

following empirical Bayes approach of first deriving

Bayesian estimates based on known variances and then substi-

tuting ML estimates for the unknown variances in the estima-

tion formulas. The resulting empirical Bayes estimator,

7* is a true maximum likelihood estimator. Therefore,

this estimate shares the desirable properties of maximum

likelihood estimators. But maximum likelihood estimators

rely on large sample theory. According to large sample

theory we know that:

1. y*- (2 w; 231 NJ)”1 2 W3 331 81 .

A

is the maximum likelihood estimate of Y* if A is the

maximum likelihood of A . This is the case since functions

of ML estimates are ML estimates of the same functions of

the parameters.

2. Under regularity condition the large sample distribu-

tion of ML estimates of Y*for K‘+ m with n's fixed is as

follows

-1

Mir (xv; A;wj>
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where (2 W5 A31 wj ) is the Cramer Rao lower bound for

’“k

the covariance matrix of 7

But for n, K + m with n's/N fixed

(2 “5 A31 wj )'1 = (2 W5 T-l wJ )'1

since

A31 - ( Vj +:"c)-l = a: ( X3 X1 )-1+ 1' -1= 1-1

as

2 -1
c1 (x5 x3) + 0

thus 7* is indeed asymptotically efficient. It is clear

that we can use the asymptotic distribution of y* for

confidence interval and hypothesis testing:

* _ ASY ' -1 '1

(Y Y) ~ N 0 . (2 W3 Aj Wj )

or

(v; - vh / 3.2. 7;) A§Y N < o. 1 )

where subscript h refers to the elements in the Y vector

i'e" ( Yoo' 701’ Y10’ Y11 ) '

Thus, even though the estimates of the macro parameters are

numerically computed, their large sample properties are well

defined which facilitates the large sample hypothesis

testing and interval estimation.

The EM algorithm yields estimates of dispersion matrices

r and 2 which, in conjunction with Y* , maximize the

marginal density of Y . In other words, EM estimates of T
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and 2: (i.e., maximum likelihood estimates of 'r and 2: )

when substituted into the equation (3.13) make‘f*a true

maximum likelihood estimator. These asymptotic properties of

ML estimates are of value only if there is reason to believe

that the data are extensive enough that the properties hold.

For these properties to hold exactly it is sufficient that

the number of groups (K in our case), approaches to infinity

(Miller, 1977). However, it would be interesting to observe

the behavior of the estimates as K and n (i.e., number of

individual within each group) each increase to infinity.

This does not imply that K and n be of the same order of

magnitude (Miller, 1977). In the present research, the main

question we set out to investigate concerns the small sample

behavior of the macro estimators (i'e"YOO’ YOI’ Ylo , and

Y11 ). The purposes of this study are three:

(1) To check on the EM algorithm, we can look at the

properties of the macro estimators and make sure that the

algorithm behaves as expected. That is, the macro estimators

are consistent, unbiased, asymptotically efficient, and with

known and asymptotic normal distribution. Also it is worth-

while to look at how well the EM algorithm does at estima-

ting the variance components. Again, this concerns the bias,

consistency and asymptotic efficiency of thse estimators. A

side concern with this algorithm is its rate of convergence

under varying combinations of K and n. This question is

addressed through examining the total number of iterations

prior to convergence to ML estimates.

41



(2) Investigating the effect of variance estimation on

inferences about macro parameters with respect to both

robustness and power.

(3) By constructing data sets that differ in the number

of K and n, we investigate how different combinations of K

and n affect the properties of the macro estimators as well

as the inferences about them.

Specific questions of interest concentrate on estimation

and hypothesis testing. The key issue in the estimation

phase concerns the bias, consistency and efficiency of the

macro estimators, y , and the effect of different combina-

tions of K and n on these properties. For hypothesis testing

interest centers on the type I errors and power.
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CHAPTER IV

METHOD

The procedures employed in the study to answer the

research questions presented in the previous chapter will

now be discussed. The chapter begins by presenting

standardized two-stage hierarchical linear model. Next, a

description of the population parameters and the manner in

which they were chosen will be given. In the third section

details are presented about the computer routine utilized to

generate the data. The fourth section looks at the analysis

routines. Finally, the measures of biasedness, consistency,

efficiency, type I errors and power will be described.

Standardized Two-Stage Hierarchical Linear Model

This model which is special case of the two-stage HLM

model presented in the preceding chapter is adopted for

generating data in the present research. The standardized

HLM takes the same exact form of equations (3.1) through

(3.5) for the unconditional and conditional case but with

somewhat different assumptions. That is, the micro and macro

predictors both are assumed to be standardized normal

variables with mean of zero and variance of one. Clearly,

this reduction in the number of unknown parameters

simplifies the data generation process.
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Within-School Model
 

11 J 13 ij.

and

Rij ~ N ( 0, 1 ).

Between-School Model (unconditional)

u = u + U .
J 03

Bj=é+ U13 ,

and

U0j ~ N ( 0. Tu)’

Ulj ~N(O,TB).

cov ( U01, Ulj ) = TuB.

Between-School Model (conditional)
 

“j ' Yoo + Y01 Wj + U03,

Bj ' Y10 + Y11 wj + ”13’

and

UOj ~ N ( O, Tulw )!

cov ( UOj’ Uljlw ) = TuBIw.
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Further we assume that the micro and macro predictors

are each a unit normal random variable, i.e.,

x N ( 0, 1 ).
ij”

w. .. N 0. 1 .J ( )

and that Xi R U and Ulj are mutually independent.

3 ' ij ' 03

This implies that cov ( Ubj' Ulj )= 0 , and that the

dispersion matrix I is diagonal (but we will still

investigate estimates of this covariance between macro level

errors).

In order to generate data we need to define the

following parameters:

1. c = TB/Tu, so T6 = c TU' (4.1)

2 §2=52 (62/52)
XY Y

where

E is pooled within group slope;

5¥y is pooled within group correlation coefficient;

3; is pooled within-group (unconditional) variance

in Y ; and

6: is pooled within variance in X

But

6; = 1,

and

3; = TB+ §2+ var (R) (4.2)
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so that

EZ= < Biyl ( 1 - Egy >>< cru + 1 ). (4.3)

= '2
3. d Tu/(Tu + oy ), (4.4)

where d is the intraclass correlation of Y.

By substituting expression (4.3) into expression (4.2)

we will get:

32 = c1u + < Biy/c 1 - Exy >>< c1y +1)+1,
u

and by substituting 32 into (4.4) and solving for Tu we

Y

will have:

Tu = d/(Cl-d ) ( 1 - a ) - cd). (4.5)
2

KY

This expression implies that the larger the intraclass

correlation the larger the parameter variance T and that
u I

the larger the pooled within-group correlation the smaller

the I“ . That is, Tu is directly related to d , but

inversely to 52

KY

But Tu and T8 are both positive quantities, therefore

c is constrained to be in the following range of values

0 < c < (( 1 - d )/d )( 1 - Eiy ). (4.6)

Also the conditional parameter variance in intercept and

slope are:

Tulw 3 Tu( 1 - pfiw ),
(4.7)
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and

_ _, 2 oTBIW _ TB( 1 pBW ), respectively (4,3)

The above specification of the standardized hierarchical

linear model reduces to five parameters. These parameters

are C , d , pxy , puw

can generate a large number of samples under these known

and 98W ; if predetermined, one

population parameters and investigate the properties of

resulting statistics (i.e., point estimates of and their

standard errors) by observing their sampling distributions.

Parameters of the Study
  

In order to investigate the small sample properties of

the macro parameters (i.e., YOO , Y01 , Y10 and Y11 ,

two more parameters need to be added to the list of five

model parameters previously mentioned. These two parameters

are: number of groups, x.and group size, n . This adds up

the number of parameters considered in the present study to

total of seven (K, n, d, and c ).

pxy"pflw' pBW'

The first three parameters (K, n and d ) are specially

of great concern in the present study because of their

significant implications in sampling and design of a study.

In a two-stage random sampling (or two-stage cluster

sampling using sampling design terminology), the coefficient

of intraclass correlation ( d ) measures the homogeneity of

the elements within clusters. For a fixed total sample size

of N = nK, the larger the intraclass correlation, the larger
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the number of groups (K) and the smaller the number of

individuals within groups need to be sampled for optimum

efficiency in design given fixed cost. In contrast, the

smaller the d , the fewer the number of groups and the

larger the number of individuals within groups the better

the precision (Kish, 1983).

However, to consider asymptotic properties of macro

estimators it is sufficient that only K converges to

infinity (Miller, 1977). Accordingly, we may occasionally

define the population solely in terms of levels of K, on

other occasions in terms of varying combinations of K and n,

and still on some occasions redefine it in terms of all

three parameters. Now the values assigned to each of these

parameters will be given.

(A) Number of Groups, K; Small to moderate to large groups

with K = 10, 30, 60 and 150 are simulated in this study.

(gl‘ggggg'§i524 n; Situations with n = 5, 25, 60 and 150 in

each group are simulated.

In deciding the values of K and n, the main concern was

to select those values that provide us with reasonable

ground to investigate the small sample properties of the

macro parameters of interest. The other concern was to have

a reasonable coverage of those combinations of n and K which

occur in real research situations.

These realistic situations include; 1) the study of

growth model (Bock, 1983; Goldstein, 1986; Laird and Ware,

1982; and Sternio, et al., 1983) in which K is small and n
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ranges from small, moderate to large; 2) school effects

research (Aitken and Longford, 1986; Raudenbush and Bryk,

1986), where K is moderate or large and n is either small or

moderate; and 3) sociological and contextual research

(Mason, et al., 1984; and Wong and Mason, 1985) in which K

is small to moderate and n is large.

3) Intraclass Correlation of 3, d L Two values of d =.10
 

and .25 are considered. These two values appear to be of

reasonable magnitude based on the following grounds. The

intraclass correlation of Y may be large if Tu is large

compared with 5; , and zero only when T = 0 , that is
u

when there is no variation in outcome variable among schools

in the population of schools, which will rarely happen in

practice (see expression 4.4) . But as a general rule,

intraclass correlations in educational research are small

positive values, mostly under .15 (Kish, 1983).

The range of the values are chosen to reflect the

values often obtained from educational field research. In

the school effect research conducted by Raudenbush and Bryk

(1986) the actual value of intraclass correlation was .177.

The mid point of the values considered in this Study is

.175.

4), g) and _6_)_ Correlation Coefficients o_f pxy _,_p and pBW .

uW-’-

For each of these correlation coefficients two values are

considered. These values which are considered to be of

moderate and almost high magnitude (considering educational

field research data), are .25 and .75.
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11.52513 9; TB 52 Tu L c a Two values of c =.10 and .50 are

considered in this study. Both fall within the range of

permisable values for c given by expression (4.6). Two

interrelated factors have affected the selection of these

two values: First, as a general rule, regression coeffi-

cients have considerably greater sampling variability than

sample means( Burstein and Miller, 1980; Wiley, 1970).

Mathematically, the total variability in intercepts and

slopes can be decomposed into two parts; parameter variance

and sampling variance. Logically it follows that the parame-

ter variance in intercept is of larger magnitude than that

of slope. Second, in many applications one would expect that

much of the observed variation in slopes to be sampling

variation. For example, in the school effect research

conducted by Raudenbush and Bryk (1986) which utilized a

sample of 10231 students in 176 schools, student samples per

school ranged from 10 to 70, and samples less than 45 were

rare, and the value of c was equal to .10. Consequently,

this value is chosen in this study to act as a baseline, and

will be compared to a less realistic but certainly not

impossible larger value of c i.e., .50.

__Design o_f m eta—av

Considering the number of factors (total of seven) and

number of levels in each factor (K and n each have 4 levels,

and the remaining 5 factors each have 2 levels), if we were

to include all factor combinations in our study, we would

5 2

have a ( 2 x 4 ) design matrix with a total of 512 possible
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cells, which is unmanagable given the large cost of

implementing the EM algorithm.

As a practical alternative, this study adopted a

fractional factorial design by which only a fraction of

factor combinations of a complete fractional design will be

considered. Specifically, this study has adopted a "one-

half" randomized block fractional factorial (RBFF).

Kirk (1968:386-87) made the following comment concerning

fractional factorial designs: "the use of a fractional

design can lead to a sizeable reduction in the number of

treatment combinations that must be included in a study.

This is accomplished by confounding main effects with higher

order interactions ..... however, if certain information

concerning the outcome of the experiment is of negligible

interest, an experimenter can employ confounding so as to

sacrifice only this information."

As a result of treatment-interaction confounding,

considerable ambiguity may exist in interpreting the results

of such experiments. This is the case since every sums of

squares can be given two or more designations referred to as

"aliases". To minimize this ambiguity, careful attention

must be given to the alias pattern of a proposed design.

Treatments are customarily aliased with next to highest-

order interactions which can be assumed to equal zero. This

is accomplished by using the highest-order interaction as

the "defining contrast" which is used to divide the treat-

ment combination into two blocks. The higher order interac-
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tions are then pooled to form a residual error term. "If

these pooled interactions are insignificant, a complete

factorial design would have been a better design choice for

the data than the fractional factorial design. On the other

hand, if some of the interactions are significant, the

present analysis (i.e., fractional factorial design) offers

the advantage of a larger number of degrees of freedom for

experimental error and a within-all error term" (Kirk,

1968: 394).

Designs with mixed treatments (or factors), i.e., having

unequal number of levels, present special problems with

respect to layout and analysis (see Kempthorne, 1952: 419).

But this is the case in the present study which contains

mixed treatments of the form 25 x 42 design. As a

reasonable alternative this study, adopted a RBFF- 25 design

for the five factors with two levels (i.e., c , d , p ,

xy

puw , and 08w ), and to compensate for the two remaining

factors, K and n each with four levels, every two blocks of

the design layout of RBFF- 25 was crossed with different

level combinations of K and n.

Next, steps involved for laying out one-half replication

of a type RBFF- 25 fractional factorial will be discussed.

(1) Choose a defining contrast. Following Kirk's guideline

the highest order interaction (i.e., five order interaction)

is chosen in this study as the defining contrast. The 32

treatment combinations ( 25 = 32 ) of a complete factional

design can be reduced to one-half of that by the use of the
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defining contrast.

(2) Confound an interaction with between-block variation.

The interaction which serves as the confounding interaction

must be insignificant and also different from the defining

contrast. For this purpose the interaction between qu and

paw is chosen which is thought to be insignificant. For

confounding an ‘interaction with blocks see Kirk (1968,

Chapter 9). As a result of this process, the 16 treatment

combinations are assigned to two blocks of eight

combinations each.

For simplicity the five factors are assigned the

following notations:

A = puw

B - p8w

C = pxy

D = d

E = C

If (ABCDE) is used as the defining contrast and (AB) as

confounding interaction, the design shown in Table 4.1 will

be obtained. Levels of each factor are denoted as zero and

one. Where zero corresponds to the low value and one to the

high value.

All treatments and interactions except AB (the

confounding interaction), its alias CDE, and the defining

contrast ABCDE are within-block effects. All main effects

are aliased with four-factor interactions. The alias
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pattern for this design appear in Table 4.2.

A careful examination of the alias pattern in Table 4.2

reveals an interesting feature of this one-half fractional

factorial design. The incomplete five-treatment design con—

tains all of the treatment combinations of a complete four-

treatment design. This implies that the computational proce-

dures for a one-half replication of a 25 design are identi-

cal to those for a complete replication of a 24 design.

That is, by ignoring one of the treatments, the analysis of

an incomplete-design can be carried out as if all the treat-

ment combinations were included in the experiment. The

choice of which treatment to ignore is arbitrary (Kirk,

1968).

As mentioned earlier, different combinations of K and n

will be crossed with the blocks,contained in the RBFB- 25

design. There are a total of 42 different combinations of K

and n, each referred to as a "trial" for convenience. Within

each trial the first K by n level combination will be

crossed with "block 0" of the RBFF design and the second K

by n level combination will be crossed with "block 1". Table

4.3 contains all different combinations of K and n, their

designated block, along with the trial number.

By using a one-half RBFF- 25 design and by crossing this

design with particular combination of K and n a total of 128

(16 cells x 8 trials = 128) treatment combinations will

result. Notice that although levels of K are crossed with

both blocks of the design matrix, levels of n are not.
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Specifically samples of size 5 and 60 occur only in "block

0" and 25 and 150 in "block 1". Thus, each trial consists of

either the two lowest levels of n, 5 and 25 (call it n'), or

the two highest levels 60 and 150 (call it n").

As a result of this design with sixteen varying

combinations of factors A, B, C, D, and B, we obtain sixteen

different parameter values for yr andyul. as shown in

01

Table 4-4. With regard to .Yl the total number of parameter

0

values reduces to half of this size since 1L“) is defined

only in terms of C, D, and 8. Thus, it is not affected by

the high and low values of A and B. Irrespective of the

design 1‘00 is pre-fixed at zero.

Description 2; the Generation Routine
  

In generating data the present study make use of five

sufficient statistics. Generally speaking, sufficient

statistics are useful in that they reduce the number of

observations, say from n to r statistics ( where r s n ).

This is because these r statistics contain all the

"information" about 9 (iae., parameters of the study) that

the n observations contain (Graybill, 1976). If r is

appreciably less than n , as it is in the present study

(i.e., r = 1/n), then the very fact that we have to consider

only r , rather than n simplifies our data generation

routine.

The five sufficient statistics are 23x , 22x2, 23R ,

2

ER , and ZXR . Assume that,
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iid

x N(0.1).

RiEdN(o,1),

and

pxago

(i.e., the population correlation coefficient is zero).

The generation procedure is composed of the following

steps:

(1) Generate

XXj ~ N ( 0, n ).

(2) First generate 2(Xj - §-)2 ~ x2(n_1) and then compute

xx; = zc xj - i.)2 + ( ZXj)2/n

(3) Generate

ZRj ~ N (0, n ).

(4) First generate £(Rj - i.)2 ~ x2(n_1) and then compute

ZR; = 2(1:j - i.)2 + (XRj)2/n.

(5) To generate ZXR first generate t with ( n-2 ) degrees

of freedom, then compute

r - t / (t + n - 2)1/2,
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and finally compute

2X1 Rj = (n - 1) r Sx SR + ZXjRj/n

(note: t = Z/(x2 /(n-2))1/2 )

n-Z)

After completing the steps involved in generating the

2

sufficient statistics, we can actually compute ZY , zY and

2 KY . But before doing so we need to generate three more

random variables which are contained in the conditional

between-group model. These random variables, which are part

of the expression for“j andggj and thus part of Y1" are

J

Also we need to assign values to the fourWj, U and U

01 11'

macro parameters of interest. Assignment of values to the

slopes, 7' and 711 are accomplished through the following

01

expressions:

V T
y =

pull u
01

Y ‘ngVJ/—?—
11 8

who is assumed equal to zero, and Y10 is assumed equal to

E . Now proceed with the steps in generation routine.

(6) Generate

w. r N , .J ( 0 1 )

(7) Generate

U ~N(09T

03 ulw)°
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(8) Generate

1&1 ~ N (0, TBIW).

Also notice that prior to generating Uoj and Ulj we need

to assign values to the five model parameters; i.e., c ,

d , p , p and p . The final step in

xy uW 8W 2

generation routine is to compute ZY , EY’ and ZXY .

(9) Compute

BY = EC “j + Bj Xij + Raj )

- ““j + Bj inj + ZRij.

Compute

2
Z a
Y 2(uj+Bjxij+Rij)

Exij + 2R2 + 2 u 8 Ex +
2 2

+8 1:1 11' 11J .1

a nu

X Z2 111 Rij + 28j Xij Rij'

CONPUCB

ZXY = u Ex. + 6 2x2 + 2x R ..
j 11 J 11 ij i]

The generation program, completes each of the nine steps

as one observation is formed. The sample size chosen is five

so five such vectors Y compromise one sample. Thus, begin-

ning with the first "trial", values of 10 and 5 will be

assigned to K and n respectively of "block 0" in the RBFF-Z5

design, and similarly values of 10 and 25 to K and n of

"block 1". Then, starting with the cell one of the design

layout, first the remaining five parameters will be assigned
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values (according to zero and ones), and then the nine data

generation steps will be completed and repeated for five

replications. This process will be repeated for each and

every 16 cells as one trial is completed. A total of 80 (16

cells x 5 observations) data points will be generated upon

the completion of this trial. Next, we move to the second

trial, assign values to K and n and repeat the same cycle as

in the first trial. This process continues until all eight

trials are completed and a total of 640 (80 sample points in

each trial x 8 trials) sample points is generated. In other

words 128 ( 16 cells x 8 trials) distinct samples each

containing five replications wil be generated.

Along with the generation of sample points, the

generalization program will compute two indices of disper-

sion in macro parameters. These indices are the mean squares

within and the Cramer Rao lower bound which is

- E ( azlog L/By'y) -1,

and equal to the asymptotic dispersion of y* i.e.,

( 2w; Agle )‘1.

The first analysis routine (i.e., HLM program) accepts

both raw data and summary statistics of the sample means and

sample covariance matrix. Considering the efficiency of

summary statistics, for each sample, the mean and the

covariance matrix is computed to be used as input in the

analysis phase.
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Monte Carlo Techniques
 

As recognized by Hammersley and Handscomb (1964), a

Monte Carlo method is a general technique with different

areas of application, for solving a model by using a random

(or pseudo-random) numbers. One application is the

generation of sampling distribution. Through repeated

sampling under known population parameters, one can

investigate the properties of estimators by observing their

empirical (sampling) distribution.

The present study is a Monte Carlo study aimed at

generating sampling distributions of the macro estimators.

These empirical distributions are then compared to the

nominal distribution (in this case the normal distribution)

obtained under asymptotic theory (i.e., when K and n

converge to infinity).

A Fortran program is used to generate a total of 640

sample points; five observations for every 128 experimental

conditions.

Random Number Generation
 

The use of random number is considered to be an integral

part of a Monte Carlo study. Random numbers are of two

types: purely random numbers and pseudo-random numbers.

However, for a computer based Monte Carlo study the purely

random numbers are inefficient compared with pseudo random

numbers. There are two advantages in using pseudo-random

numbers: (1) the computer itself can generate sequence of
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numbers by applying an algorithm, and (2) the same sequence

of numbers can be reproduced exactly for the future use.

Pseudo-random numbers are generated sequentially from a

completely specified algebraic formula. At best which at

best they behave as if they are random (i.e., uniformly

distributed and mutually independent). These algebraic for-

mulas are devised in such a way to resist any significant

deviation from randomness. However, there are many statisti-

cal tests that can be used to determine if this is the case.

Typically run tests, serial tests, and various Chi-square

tests for independence are applied to relatively short sec-

tions of the pseudo-random sequence. See Knuth (1969) for

discussions on many of these tests.

Two subroutines, GGNML and GGCHS from the International

Mathematical and Statistical Library (IMSL) were used to

obtain a sequence of pseudo-random normal (R), distributed

N (0,1), and Chi-square random deviates with n degrees of

freedom respectively. Once the procedure is started by an

initial number, called the seed, each new seed number will

be determined from the previous one.

Random normal (0, n) deviates can be obtained by

transforming GGNML output according to Y (I) = R (I) x nl/Z,

for I in (1, 2, ...., K). This transformation was done in

steps (1) and (3) of the generation routine. In steps (7)

and (8) a similar transformation was performed of the form

Y (I) = R (I) x Vl/2

where V represents TuW or TBW whichever the case may be.
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Analysis Routine

Output from the generation program consists of summary

statistics for each sample. This serves as input to the

first analysis routine.

From the first routine, HLM (Bryk, et al., 1987), we

obtain a vector of the empirical Bayes estimates of the

macro parameters, 7* (as in equation 3.13), the*empirical

Bayes estimates of their dispersion matrix, DY (as in

equation 3.15), estimates of parameter variances Tu and TB ,

estimate of 02 , and number of iterations . These estimates

are numerically computed via EM algorithm. The convergence

criterion for the log likelihood function was set at .0001

with the maximum number of iterations allowed fixed at 500.

The empirical Bayes estimates of the macro parameters and

their dispersion, parameter variances and 02 , yet serve

as input to the second analysis routine.

The analysis routine computes: (1) the required summary

statistics for the estimation phase, (2) the proportion of

times the values of each test statistics exceeded its criti-

cal values for a given nominal significance level under true

null hypothesis, (3) the noncentrality parameter (ncp) as is

defined in the last section of this chapter, and (4) tabu-

lates population effect size ( y in our case ) against ncp

as a way of demonstrating power functions.
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Checking the EM Algorithm
  

As a check on the algorithm, first we might wish to

examine the properties of the numerically computed estimates

of the macro parameters,‘Y . The ML estimators are functions

of every sufficient statistic and are consistent and

asymptotically normal and efficient. Additionally, given

normal data, ML estimates of regression coefficients are

unbiassed.

Key issues in estimation concentrate on bias and effi-

ciency of an estimator. An estimator is unbiased if its

expected value is equal to the population value of the

parameter. In other words, if an estimator is unbiased, the

estimated value minus its parameter value should have zero

expectation, i.e.,

E ( 1 - v) = o

where

Y ‘ Y00’ 701’ Y10’ Y11

Thus, by deviating parameter estimate from the known

population value and averaging over the entire sample, one

can determine the degree of bias, if any, present in the

estimation procedure.

An estimator is said to be relatively efficient if it

has the smallest standard error term among the set of

unbiased estimators. Three estimates of the variance are

computed. The first is the variance of the macro estimators

estimated by HLM via EM algorithm:
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var( 11*? ) = Diag (- [W3 831 Wj )
-1

A

To the extent that variance components 1- and 71 are

misestimated due to small sample problem, the estimated

variance of macro estimators will be in error. The second

estimate of variance is the mean squares within (MSW):

s we 7* 2

MSW-121( y - y )/s

where

7* 5 Ave

Y /5

Last measure is. the average squared bias or mean square

error (MSE):

MSE .2 m?" -Y)2/5
i=1

These last two measures of variance are similar except that

MSE takes advantage of the fact that the population value

( y ) is known.

Since the maximum likelihood estimates are

asymptotically normally distributed, it is of interest to

discover whether they are asymptotically efficient in the

sense of attaining the Cramer-Rao lower bound for the

covariance matrix. This minimum variance bound is the

inverse of the Fisher information matrix and is equal to
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the asymptotic dispersion of Y*, i.e.,( 3w; 431 w )

3

Consequently, all three measures of variance are averaged

-1

over the entire sample and then compared with the asymptotic

variance of the macro parameters, i.e., diagonal elements of

matrix ( zw‘ A'1 w )-1

J i 1

these various measures of dispersion are:

Computational formulae for

K n A

1) VAR = Z 2 var ( y*) /Kn

j=11-1

where K is number of groups, and n is group size.

Average estimate for the variance of the macro estimators

estimated by HLM via EM algorithm from each sample.

K n 1* 7*

2) MSW - z 2 ( y - y )z/Kn

3:11-1

Average estimate for the variance of the macro estimators

which is based on the squared difference between the

estimates and the mean estimate.

K n A* * 2

3) MSE = z z ( y - Y ) /Kn

3-11-1

Average estimate for the variance of the macro estimators

which is based on the squared difference between the

estimators and the population parameters.

4) CRLB = Diag ( zw' A'1 w )'1
J j 1

Average of values for the minimum variance bound of the

macro estimators.
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ML estimators of macro parameters have another desirable

property, their asymptotic sampling distribution is known

and normal. That is,

ASY
( y* - y ) N O, ( 2W3 A- W. )

or equivalently

(( y; - Yh )/S.E. ( y; )> A§Y N c o. 1)

where subscript h refers to the elements in the y vector,

i.e., ( Y , Y , Y , Y

00 01 10 11

One way to assess this property is through the use of

normal probability plots. Similarly, we can determine the

degree of bias in variance components produced by FM algo-

rithm. But the estimates of variance components are un-

stable. The size of the sampling variance of these estimates

depends on the size of the parameter variances they esti-

mate, i.e., the larger the parameter variances, the larger

the sampling variance of the statistics. To stabilize these

estimates a logarithmic transformation is performed on each

of these variance components. This then is followed by

making correction for bias. Formulas for Tu , T and 02

B

are given below:

A

log :ulW - log I + 1/K .
ulW

log - log I + l/K ,

TBlw slw

log 02 - log 02 + 1/nK ,

(note: log 02 = log 1 = 0 ).
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where 1/K, 1/K and 1/nK are Cramer Rao lower bound for

A
A

A2
a

log TulW , log TBIW , and log a respectively, and are

used for bias corrections (Pitman, 1938).

2 2 2 2

(note: E (log (8 ) # logc: but E (log (S ) + 1/V) = logcz

where v is the correction for bias in 82 ). The efficiency

of these variance components will be examined by plotting

the log of the squared error estimates in'r

2 uIW ' TBIW

0 against their respective asymptotic variance, 2/K , 2/K,

, and

and 2/nK (see Bartlett and Kendall, 1946, for derivation of

these asymptotic variances). As a last check we look at the

FM convergence rate under varying combinations of K and n.

Type I Error Rate and Power
 

There are two ways to commit an error when making an

inference: (1) rejecting a null hypothesis when is true

(type I error), and (2) not rejecting a null hypothesis when

is false (type II error). Where

a probability of type I error,

probability of type II error,8

and 1 - B = power

An experimenter wants to avoid errors and select a

statistical procedure which is powerful enough to detect an

"experimental effect" if it exists and in which the level of

significance (<2) is accurate, i.e., neither inflated, nor

conservative. One empirical question is what effect does the

estimated variance components have on type I error and

power .
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Three specified significance levels .01, .05 and .10 are

considered in this study . For a given nominal alpha,

(100t1 )% of the values in a test statistic's distribution

will exceed the appropriate critical value under a true null

( Ho : y = 7*) where Ha : y = o ) with known variance compo-

nents. Actual significance level relates to the proportion

of the values in a test statistic's distribution that exceed

the appropriate critical value under true null and esti-

mated variance components. Hence, an empirical estimate

of the probability of type I error (i.e., actual signi-

ficance level under unknown variance components) is deter-

mined by counting the frequency with which the test statis-

tics ( z - ( Y* - y )/S.E. ( Y*) ) in each replication

exceeds the corresponding critical value, and the dividing

by the total number of replications.

Nominal power relates to the proportion of the values in

a test statistic's distribution that exceed the appropriate

critical value under a true alternative ( Ha : Y = 7* where

H0 : y = 0 ) and known variance components. Notice that the

null and the alternative hypotheses are the same as the

ones under robustness but have switched their position.

An empirical estimate of power (i.e., actual power when

variance components are estimated) is determined by counting

the frequency with which the observed test statistics

( z . (y*-y)/S.E.(y*) ) in each replication exceeds the

corrgggonding critical value, and then dividing by the total

number of replications. This count is made at all three

70



nominal significance levels.

Power is a function of the discrepancy between central

and noncentral distribution for a test statistics. In this

study actual noncentrality parameters (ncpi ) is defined as

the expected value of the observed test statistics i.e.,

,1, *

ncp = E ( z ) = E Y / S.E. ( Y )

OBS

where S.E. (7* ) is the standard error of the macro estima-

tors estimated by HLM via EM algorithm,

and

z .. N (ncp. 1)

0135

Actual power under noncentral distribution and unknown

variance components is simply equal to the probability of

 

z exceeding the corresponding critical values:

OBS

Actual power = P (‘ 2035 > C-V° (9/2) )

where

z - ncp = z, and 2 ~ N ( 0,1 )

OBS a

Empirical estimates of actual power are then compared to

the nominal power in which the nominal noncentrality para-

meter (ncp ) is defined as:

n

* 1!:

ncp = E ( Y /o ( Y ) = Y/OY

n

where 0(y*) is square root of the asymptotic dispersion

of y* ( i.e., the Cramer Rao minimum variance bound).
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CHAPTER V

RESULTS

The results of the study are presented in this chapter

in three sections. The first section is a check on the EM

algorithm examining the properties of the maximum likelihood

estimates of macro parameters and variance components. The

second section will address robustness and power issues and

the implication of variance estimation on inferences about

macro parameters. The last section presents the rate of

convergence of the EM algorithm under varying combinations

of K and n used in this study.

Results for Estimation Phase
 

The objective for this phase of the study is to check

the EM algorithm with respect to macro parameters and

variance components (the vector notation “Y and.jz are used
~

throughout this section to refer to the macro parameters

Yoo , Y01 , 710 and Y11 , and their estimates Yoo , YOI , Ylo

A

and'y11 respectively). The question could be phrased: Does

the algorithm behave as expected ? That is, are the macro

I
-
<
>

estimators (1) unbiased, i.e., E ( "I ) = 0; (2) asymptoti-

cally efficient; and (3) with known and asymptotic normal

distribution? Operationally this question could be phrased:
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Does the estimation get better as a function of K and n ?

That is, are the macro parameters consistent, less biased,

and more efficient ? Similar questions will be addressed

A

with regard to the variance components,r 'thq and 02 .

ulW '

Are the Macro Parameters Asymptotically Unbiased and
  

Consistent 3 The error estimates in macro parameters are
 

calculated by subtracting the estimated values {E from

their corresponding parameter values 1: . These values are

then averaged over the entire sample, 640 sample points. The

expected errors of all four macro parameters and their 95

percent confidence intervals are shown in Table (5-1) which

suggest that the maximum likelihood estimates of the macro

parameters are unbiased.

Table 5—1

Expected Errors of Estimate in the Macro Parameters*

 

Y00 Y01 Y10 Y11

.002178 .003224 -.001964 .005195

(-.OO78, .0118) (—.0088, .0148) (-.OO98, .0058) (-.0028, .0128)**

 

*From 640 replications

**95Z confidence intervals

To assess the differential effects of K, n and, d on the.

error of estimates and to examine more explicitly the

differences among levels of each factor, Tables 5-2 through
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5-5 give error of estimates in i reflecting these three

factors. In all four tables the same patterns emerged. Since

this was consistent across all four macro parameters, only

the results for the yoowill be discussed. The first eight

rows relate to the averaged within-cell error of estimates.

Generally these values considering the small number of

replications (five) tend to be small. In the lower part of

the tables absolute errors of estimates are summed within:

1) levels of d ; 2) levels of n (n' vs. n"); and 3) levels

of K. Within each level of n, error increased as d in-

creased. For example, with K = 10 under n' the absolute

error of estimates in $00 (Table 5-2) went from .517 under

low intraclass correlation to 1.013 with a high degree of

d ( d = .25). With K = 30, 60 and 150 under n' absolute

error increased from .325, .112 and .145 to .558, .276 and

.172,respectively.

This upward trend was remarkably consistent among all

macro parameters. The only difference among the four

parameters was one of magnitude. With Y00 and Y01 , error of

estimates tended to be slightly higher than for the y and

10

The reason for this difference in reduction in errors

711"

for slopes and intercepts seems to be due to the assumed

ratio of the parameter variance in slope to that of inter-

cept used to generate data. This ratio is prefixed to be

either 1/10 or 1/2 (i.e., c = .10, .50).

Having shown that error of estimates respond differently

to the levels of d , the following is an attempt to
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evaluate the effects of different levels of K and n on these

error estimates. Within each level of K, error decreased as

n increased. For example, with K = 10, 30, 60 and 150,

the absolute error in;00 dropped from 1.53, .883, .388 and

.317 to .989, .646, .355 and .252, respectiviely. This

downward trend was consistent over all four y’s. Again the
~

main difference across I was one of degree. Increasing the

number of groups substantially improved the results. Abso-

lute error for all four parameters decreased with larger

number of groups. Although the patterns are similar, reduc-

tion for Y00 and y are greater than that of 710 and

01

$11 . Moving from K = 10 to K = 150 reduces the error in $00

and $01 to almost 1/5 whereas this reduction is only 1/3

for $10 and ;11' Among the three factors the effect of K on

error of estimates is more pronounced than that of n and d.

These downward trends in d and n were compounded as

number of groups was introduced. For example, with regard to

sample size, n, the absolute error in $00 dropped only mini-

mally within each level of K (e.g., going from 1.53, .883,

.388, and .317 to .989, .646, .355, and .252, respectively).

Increasing the number of groups brought substantial improve-

ment in results. That is, the absolute error dropped from

1.53 under K = 10 to .252 under K = 150. A similar pattern

is present in the case of d . While absolute errors of

estimate decrease as d decreases under a given level of n

(e.g., dropping from 1.013, .558, .276 and .172 to .517,

.325, .112 and .145) this reduction is compounded across

79



levels of K i.e., going from 1.013 under K = 10 to as low as

.145 under K =150.

Figures 5-1 and 5-2 provide schematic representations of

error patterns in the macro parameters (symbols A-2 and *

signify frequencies 10-36, respectively, in the figures used

throughout the thesis). In these figures errors are plotted

against varying combinations of K and n when d = .10. The

plots follow the patterns described earlier in this section.

The further we move toward K = 150, the more concentrated

the errors are around zero. This suggests that ML estimates

of macro parameters are asymptotically consistent. The

errors are small for all levels of n when K = 150, and for

n = 30, 60 and 150 when K = 60, but not so when K = 10 or

30. This suggests that the latter combinations of K and n

produce less precise estimates of the macro parameters. When

intraclass correlation is increased to .25 (Figures A-1 and

A-2 in Appendix ) the exact same pattern is reproduced

except the spread of errors is magnified .

Results of multiple regression analysis applied to the

squared errors of the macro estimators support the foregoing

discussion of the differential effects of K, n and d.

Specifically when (Kn)-1and d were the assumed predictors in

the regression equations there was a significant linear

relationship between the squared errors and the two

predictors with (Kn)”1 accounting for more variability. That

-1 2

is, when (Kn) was the sole predictor. R for Yoo' YOI' Ylo
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and 731. assumed the values of .11, .15, .19, and .11,

respectively and increased to .13, .17, .21, and .13,

respectively when d was added to the equation. This finding

was consistent across all macro estimators.

However, when the effects of K and n were considered

-1

separately, K always accounted for more variability

. -1

followed by d and lastly by n (using stepwise regression

-1

analysis) except in the case of where K was followed

first by n and then by d.

Are The Macro Parameters Asymptotically Efficient 3
 

Three estimates of dispersion in macro parameters are

computed. These estimates as defined in Chapter IV are, VAR,

MSE, and MSW. Table 5-6 contains the mean value of these

three statistics averaged over the entire sample along with

the asymptotic dispersion of 72* , the Cramer Rao lower bound

(CRLB).

Across all macro parameters the three measures of

dispersion are not significantly different from each other

and from CRLB. Within each dispersion measure, the magnitude

of dispersion for Y10 and Y11 is smaller than that of yoo

and. Y01' This pattern is consistent with previously estab-

lished results. In two occasions MSW gave smaller estimates

than ACRLB (.007872 and .008636 versus .008058 and .009595

respectively) which can be attributed to sampling variance.
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Table 5-6

Measures of Dispersion in Macro Parameters*

 

Y 00 Y01 Ylo Y 11

VAR .018283 .021039 .009079 .010753

MSW .017085 .021947 .007872 .008636

MSE .018341 .021904 .008525 .008377

CRLB .016640 .019662 .008058 .009594

 

*From 640 replications. Dispersion measures are: HLM estimates

via EM algorithm, VAR; mean squares within, MSW; mean square

error, MSE; and Cramer-Rao lower bound, CRLB.

The values of MSW and MSE are very similar. This lends

credence to the notion that the estimates are unbiased since

the only difference between MSW and MSE is that one uses the

mean of the parameter estimates and the other uses the

parameter itself. Similarly, the resemblance in values of

VAR and CRLB lends itself to the notion that estimates of

macro parameters are asymptotically efficient. VAR is

different from CRLB in that it uses the ML estimates of

variance components and not the parameter variances.

To evaluate the differential effects of K, n and d on

VAR and to assess explicitly the discrepancy between VAR and

CRLB, Tables 5-7 through 5-9 provide differences between VAR

and CRLB (DIP = VAR - CRLB) as a function of K, n, and d ,

respectively.

The differences portray the extent to which VAR

approximates CRLB under varying levels of these three

factors . While larger d consistently increased the

asymptotic variance and its ML estimates, the difference
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Table 5—7

Differences in Measures of Dispersion in Macro Parameters Estimated by

HLM via EM Algorithm (VAR) and Cramer-Rao Lower Bound (CRLB)

for Different Number of Groups*

 

K VAR CRLB VAR-CRLB

10 .238891 .221223 .017668

Y 30 .075480 .066246 .009234

00 60 .036600 .032476 .004124

150 .014689 .012854 .001835

10 .288704 .276495 .012209

30 .078131 .068933 .009198
Y

01 60 .039283 .034971 .004312

150 .014664 .012844 .001820

10 .124528 .108462 .016066

30 .034335 .031260 .003075
Y

10 60 .016307 .015386 .000921

150 .006406 .006052 .000354

10 .155503 .136727 .018776

30 .036303 .033094 .003209

Y

11 60 .016776 .015934 .000842

150 .006479 .006126 .000353

 

*From 160 replications of K groups.
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Table 5-8

Differences in Measures of Dispersion in Macro Parameters Estimated by

HLM via EM Algorithm (VAR) and Cramer-Rao Lower Bound (CRLB)

for Different Group Sizes*

 

n VAR CRLB VAR-CRLB

5 .138723 .108442 .030281

-y00 25 .091868 .088070 .008061

60 .065642 .065254 .000388

150 .069427 .075295 -.005868

5 .149417 .126111 .023306

.Y01 25 .099376 .092726 .006650

60 .076937 .076393 .000544

150 .095051 .098014 -.002961

5 .090942 .073461 .017481

.YIO 25 .040522 .037811 .002711

60 .020843 .021008 —.OOOl6S

150 .029270 .028880 .000390

5 .104826 .085723 .019103

YlJ. 25 .046579 .042289 .004290

60 .027006 .026608 .000398

150 .036650 .037262 -.000612

 

*From 160 replications of groups of size n.
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Table 5-9

Differences in Measures of Dispersion in Macro Parameters Estimated by

HLM via EM Algorithm (VAR) and Cramer-Rao Lower Bound (CRLB)

for Different Intraclass Correlation Coefficients*

 

d VAR CRLB VAR-CRLB

IYOO .10 .053569 .044934 .008635

.25 .129261 .121465 .007796

.YOI .10 .064928 .055877 .009031

.25 .145462 .140745 .004717

y .10 .031157 .025678 .005479

10

.25 .059631 .054902 .004729

Y]J_ .10 .036040 .031199 .004841

.25 .071491 .064741 .004081

 

*From 320 replications of d intraclass correlation coefficient.
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between the two estimates, although not statistically signi-

ficant, is reduced. This downward trend is considerably more

pronounced with an increase in K and consistent among all

macro parameters. Results for n, while generally following

the same trend, did not appear to be smallest with the

largest sample size. Under all four macro parameters, the

smallest difference occurred with n = 60. It might be

assumed that this result was due to the pattern of factor

combinations in matrix design, since n = 60 only occurs in

"block 0" and n = 150 in "block 1". Additionally, the values

of VAR and CRLB consistently get smaller proportionally with

an increase in K and decrease in d . This pattern is not

followed when n increased. This might be due to the fact

are affected by K andthat parameter variances T and T

ulw Blw

not by n. However, the situation is reversed with a2 which

is affected by sample size and not by so much number of

groups. But considering that 02 is fixed at 1 and is not

allowed to vary explains the pronounced effect of K over n

in reducing the size of the VAR and CRLB.

Schematically these close approximations between VAR and

CRLB are presented for and 711 in Figures 5-3
Y00' Y01 ' Y10

and 5-4 respectively. This is done by first transforming

VAR and CRLB as such:

/-E7§*log (VAR) + 1/K and V”?7§*log (CRLB), respectively.

The logarithmic transformation is used in order to stabilize

VAR and CRLB. When unstabilized the sampling variance of the

statistic, VAR, dependes on the size of CRLB, the parameter.
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value. The relationship although not perfect, is highly

predictable. The slope of regression lines is over .985 for

y and Y01 and over .999 for Y10 and yll . The intercepts

00

are -.03 and .13 respectively.

The preceding discussion of differential effects of K

and n and d is supported by applying multiple regression

analysis to the DIP squared calculated for each macro

-1

estimator. Specifically, when (Kn) and d were the assumed

predictors, there was a significant linear relationship

-1

between DIP squared and the two predictors with (Kn)

consistently accounting for more variability. This finding

was consistent across all macro estimators.

However, when the effect of K and n were considered

separately K-l always accounted for more variability

followed by d . n-ldid not account for more variability in

(DIP) above and beyond K-1 and d. The only exception was

for yoo wherelR2 increased from .125 to .134 as a result of

introducing n to the equation.

It is worth noting that squared multiple correlation

( R2) for the latter set of prediction equations are

consistently higher than that of former set of equations.

This may be taken as an evidence to the pronounced effect of

K over n in reducing the size of dispersion in macro

parameters. This is because the second set of equations

reflect the effect of K separate from n as is opposed to the

combined effects of K and n in the first set of equations.
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22 the Macro Parameters Have Asymptotic Normal Distribution?
  

One of the desirable properties of ML estimates is that

their asymptotic distribution is known to be normal. This

property indeed facilitates the process of inference making.

Macro estimators are distributed as:

“* ASY
( y — y ) N 0, ( 2w' 8’1 w. )

or

z =(( Y: - 7h )/S.E. ( Y: ))A§Y
 

NI...

where subscript h refers to the elements in the vector.

This property is examined through normal probability

plotting technique applied to the 2 statistics computed for

each macro parameter. This method applies a special

transformation to the vertical scale of a graph of the

assumed type cumulative distribution function. As a result,

the cumulative distribution of the assumed type will

transform into a straight line. If the 2 statistics are

indeed normally distributed the corresponding quantiles of

the model when plotted against the sample order statistics

will be nearly linear. When all sample points are considered

the sampling distribution of the z-statistics closely

approximate normal distribution over all macro parameters

(Figure 5-5). Slight deviations from linearity are due to

random sampling fluctuations. Notice that the 2 statistics

assume different range of values. These ranges are -3 to +4,

-4 to +3, -4 to +3, and -4 to +4 for'zyoo, zY , zY ,

01 10

and zY rspectively. Table 5-10 contains the mean and

11

variance of the z statistics.
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Table 5-10

Mean and Variance of the

z-Statistics for the Macro Parameters*

 

Z Z Z Z

Y00 Y01 Y10 Y11

Mean .038 .000 ~.041 .072

Variance 1.072 1.137 1.047 1.127

 

*From 640 replications.

The mean and variance of the 2 statistics for different

number of groups, group sizes, and intraclass correlation

coefficients are presented in Tables A-1 through A-3,

respectively. No pattern developed between the means or the

variances of the 2 statistics and the number of groups,

group sizes or intraclass correlation coefficients.

Are the Variance Components Asymptotically Unbiased and

Consistent 3
 

The expected errors of the variance components, 101w ,

gBIW and 02 are reported in Tables 5-11 through 5-13,

respectively. The cell values are calculated by first

deviating the estimated values from their respective

parameter values ( T and 02: 1) and then averaging
ulw ' TBlw

them over the number of replications. The 95 percent

confidence interval constructed for the expected errors of

variance-covariance components are given below:

95% C.I. for expected error of TUIW = (.0373, .0647)

95% C.I. for expected error of TBIW = (.0031, .0149)

95% C.I. for expected error of TUBIW = (-.0089, .0029)

95% C.I. for expected error of 02 = (-.0049, .0067)
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A A

The expected errors of TUIW and TBIW are significantly

different from zero i.e., THIW and TBIW are biased estima-

tors of TuIW and TBIW respectively. However, their cova-

riance estimator TUBIW is an unbiased estimator of 'TUBIW

(note: TuBlwis assumed to be zero in model specification

A

section). Finally, 02 may considered to be an unbiased

estimator of 02 since zero is included in the 95% confi-

dence interval of its expected errors. Basically the error

estimates follow a similar general pattern to that observed

for the macro parameters. That is, error consistently de-

creased as either n or K or both increased. However the

intraclass correlation coefficient did not produce a consis-

tent effect across all 16 cells.

A A

Also the size of the errors in Tehqznuidzare consistent-

A

1y smaller than that of T This is due to the assumed
ulw

parameter variance in slope to that of intercept used to

generate data which is larger for u than is for 8

Figures 5-6 and 5-7 demonstrate these patterns graphi-

cally. In these plots the variance components are first

transformed logarithmically, corrected for bias and then

plotted against varying combinations of K and n with

d = .10 . This transformation has reversed the range of the

error of estimates in TUIW and IBIW' As a result TEIW now

has larger range of errors than TUIW Even though 02 re-

lies more on n than K, it behaves better when the compound

effects of K and n are present. For example, when d = .10
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A

with n = 150, 02 is reliable even when K = 10. But when K

increases to 30, or more, 82 becomes reliable even with

n = 60.

When the intraclass correlation is increased to .25 the

similar pattern is reproduced except the spread of errors

is generally reduced ( Figures A-3 and A-4 in Appendix ).

Notice that this adverse effect of intraclass correlation

coefficient is in contrast to its effect on macro parame-

ters discussed earlier.

Once again when multiple regression analysis is applied

to the squared errors of these transformed variance compo-

nents the foregoing discussion of differential effects of K,

n, and d is supported. Specifically, a significant linear

relationship is evidenced between the squared errors of

gulw and':;8hd and (Kn)-1. The intraclass correlation

coefficient d, with negative slope across all variance

components, is significant only for;ulw . -1

When the effect of K and n are considered separately n

accounted for more variability in squared error of

A -1

Tuhl followed by K and then d. However, reverse happened

A -1

for .W3HJ' That is, K explained the most variability

-1

followed by n , but with no significant contribution from

d above and beyond the two predictors.

2 -1

When (I was considered, the predictor n acounted for

-1

the most variability followed by K . Furthermore, when the

-l 2

effect of these predictors were combined into (Kn) , R

increased from .25 to .31. However, intraclass correlation
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coefficient did not contribute to either case.

Are the Variance Components Asymptotically Efficient 3

This property is examined graphically through plotting

the squared of the transformed values of the variance

components against their respective asymptotic variance

A

(Figures 5-8 and 5-9 ). The asymptotic variance of Tu'w ,

TBIW and 02 are 2/K, 2/K and Z/nK, respectively. 02

approximates its asymptotic variance quite well, as n and K

increase. The estimates of 82 seem to be reliable for all

combinations of K and n except when both take the lowest

value i.e., n = 5 and K = 10.

The two parameter variances approximate their respective

asymptotic variances quite well except when K = 10. However,

across all levels of K estimator TUIW gives a better

approximation of its asymptotic variance than that of

TBlw

Results for the Hypothesis Testing Phase

The objective for this portion of the study is to assess

the effect of variance estimation on inferences about macro

parameters with respect to both robustness and power. To the

extent that variance components are misestimated, the

estimated macro coefficients and their standard errors will

be in error thus affecting the inferences made about macro

parameters.

The situation considered is that of four different
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Figure 5-8. Plot of transformed estimated and asymptotic

variance of E and T .

ulw Blw

Note: Symbols A-Z and * signify frequencies

10-36, respectively.
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Figure 5-9. Plot of transformed estimated and asymptotic

variance of 62,

 

Where:

1=2/n4k4 2=2/n3k4 3=2/n4k3 4=2/n4k2

5=2/n2k4 6=2/n3k3 7=2/n3k2 8:2/n4kl

9=2/n2k3 10:2/n2k2 11:2/n1k4 12:2/n3kl

13:2/nlk3 l4=2/n2k1 15:2/n1k2 16:2/n1k1

kl=10 k2=30 k3=60 k4=150

n1: 5 n2=25 n3=60 n4=150

Note: Symbols A-Z and * signify frequencies

10-36, respectively.
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combinations of K and n along with five other factors

described in Chapter IV. The design for this part of the

study allows for an assessment of robustness and power under

unknown variance components when: (1) total sample size is

considered, N; (2) the number of groups is varied (K = 10,

30, 60, and 150); (3) group size is varied (n = 5, 25, 60,

and 150); and (4) the intraclass correlation coefficient is

varied (d = .10, and .25).

The data for the first part consists of 640

replications, parts two and three contain 160 replications

each of four combinations of K and n, and the last part is

based on 320 replications each of two combinations of d.

Robustness Under Various Conditions

This section evaluates the effect of variance estimation

on tests of macro parameters based on total sample size, N,

different levels of K, n, and intraclass correlation

coefficient, d. Since the data are randomly generated via

Monte Carlo methods, random error in the data must be

considered. To take this error into account, the standard

error (8.3.) of a proportion for a sample size equal to the

number of replications is employed. The 3.3. for a

proportion is estimated by ( P(1 - P)/N)1/2 , where P is the

true value of the proportion, and N equals the number of

replications. Since the true value of P (i.e., nominal

alpha) is known, this formula is used to calculate the 8.3.

at the three nominal alpha levels considered. These are

given in Table 5-14.
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Table 5-14

Standard Errors for Nominal Alpha Levels

and Number of Replications Used in the Study

 

 

Alpha N=640 N=320 N=160

.01 .0039 .0056 .0079

.05 .0086 .0122 .0172

.10 .0119 .0168 .0237

 

With a reduction in the number of generated data sets

comes an increase in standard errors. Given known parameters

(i.e., nominal alpha levels), the standard error of a

proportion may be used to calculate confidence intervals

around the known parameters instead of probability intervals

around the sample estimates. Using the standard procedure,

95 and 99 percent confidence intervals for the three nominal

levels considered are presented in Table 5-15. Thus,

obtained alpha levels within these intervals may be

considered to be within sampling error of nominal alpha.

Total Sample Size and Robustness
 

Table 5-16 contains the actual alpha levels for all

parameters under central unknown variance components

situation when all combinations of K and n considered

together. The empirical type I error rates are consistently

exceeding the nominal error rates across all macro
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Table 5-15

Probability Intervals for Nominal Alpha Levels

and Number of Replications Used in the Study

 

a) 95% Probability Intervals

 

 

 

 

 

 

Alpha N=640 N=320 N=160

.01 (.0024, .0176) (.0000, .0210) .0000, .0255)

.05 (.0331, .0669) (.0261, .0739) .0163, .0837)

.10 (.0767, .1233) (.0671, .1329) .0535, .1465)

b) 99% Probability Intervals

Alpha N=640 N=320 N=160

.01 (.0000, .0201) (.0000, .0245) .0000, .0304)

.05 (.0278, .0722) (.0185, .0815) .0056, .0944)

.10 (.0693, .1307) (.0567, .1433) .0389, .1612)

Table 5-16

Type I Error Rates for Tests of Macro Estimators

Under a True Nu11*

e.s 01 =.Ol 0‘ -.OS 0% =.10

Y 00 0 .020“ .059 .119

Y 01 .31 .022** .066 .119

Y 10 .76 .013 .061 .112

Y 11 .16 .019** .072** .122

 

*From 640 replications with e.s. effect size.

#*Outside the 95% confidence interval.
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parameters. Especially the error rates are relatively large

01 and 111 than that of 710

most values tend to be within 95% confidence intervals. The

when testing Ybo ,y However,

exceptions are for Y and Y01 at a = .01, and for at

00 Y11

.01 and .05 alpha where all are within 99% confidence

interval but Y01 . When outside the probability intervals,

empirical alpha levels are all liberal.

Number gf Groups and Robustness
 

Tables 5-17 through 5-20 (part a) present the type I

error rates for tests of macro estimators Y00 and

' Y01’ Y10

Yll' respectively when the number of groups varied, with K =

10, 30, 60, and 150. The values for all macro parameters

tend to be within 95% confidence intervals of the nominal

alpha across all K levels. When outside the confidence

interval, empirical significance levels are all liberal.

Exceptions are for'y10 with K = 30 at .01 and .05 alpha

and for'y11 with K = 30 and 150 at .05, .10 and .05 alpha

respectively. However, these values are typically within

99% confidence interval. An unexpected finding from this set

of results is that for a given macro parameter the largest

type I error occurred randomly regardless of number of

groups .

Sample Size and Robustness

Tables 5-17 through 5-20 (part b) give the type I error

rates for tests of macro parameters-y00 . and‘rll
' Y01’ Y10

respectively for experimental conditions with n = 5, 25, 60,
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Table 5-17

Type I Error Rates for Test of Macro Parameter,'Y00 ,

Under a True Null

 

a) For different number of groups, k.*

k e.s. 0‘=.01 o‘=.05 0‘=.10

10 0 .025 .075 .119

30 .019 .075 .138

60 .013 .031 .087

150 .025 - .056 .131

*From 160 replications with e.s. effect size.

b) For different group size, n.*

n e.s. ' 01=.Ol a=.05 a=.10

5 o .025 .063 .112

25 .019 .050 .119

60 .019 .050 .119

150 .019 .075 .125

*From 160 replications with e.s. effect size.

c) For different intraclass correlation coefficients, d.*

d e.s. 9:.01 “=.05 “=.10

.10 0 .022** .047 .100

.25 .019 .072 .138

*From 320 replications with e.s. effect size.

 

**Outside the 95% confidence interval.
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Table 5—18

Type I Error Rates for Tests of Macro Parameter,1%)1,

Under a True Null

 

a) For different number of groups, k.*

k e.s. q =.Ol a =.05 a.=.10

10 .31 .025 .081 .138

30 .019 ' .056 .112

60 .025 .050 .100

150 .019 .075 .125

*From 160 replications with e.s. effect size.

b) For different group size, n.*

n e.s. a.=.01 a.=.05 a.=.lO

**

5 .31 .031 .075 .138

25 .32 .013 .050 .081

** **

6O .31 .031 .081 .156

150 .32 .013 .056 .100

*From 160 replications with e.s. effect size.

c) For different intraclass correlation coefficients, d.*

d e.s. OL=.01 01:.05 d=.10

.10 .22 .019 .053 .109

** **

.25 .41 .025 .078 .128

*From 320 replications with e.s. effect size.

 

**Outside the 95% confidence interval.
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Table 5-19

Type I Error Rates for Tests of Macro Parameter,Y10 ,

Under a True Null

 

a) For different number of groups, k.*

k e.s. d=.01 [d=.05 d=.10

10 .76 .013 .044 .106

** **

30 .031 .094 .119

60 .006 .056 .106

150 .000 .050 .119

*From 160 replications with e.s. effect size.

b) For different group size, n.*

h e.s 01:.01 01 =.05 Oi =.10

S .73 .006 .050 .100

25 .78 .006 .075 .144

60 .73 .025 .081 .125

150 .78 .013 .038 .081

*From 160 replications with e.s. effect size.

c) For different intraclass correlation coefficients, d.*

d e.s a =.Ol a =.05 a =.10

.10 .72 .019 .059 .103

.25 .79 .006 .063 .122

*From 320 replications with e.s. effect size.

 

**0utside the 95% confidence interval.
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Table 5-20

Type I Error Rates for Tests of Macro Parameter,Y11.

Under a True Null

 

a) For different number of groups, k.*

k e.s. a =.01 a =.05 a =.10

10 .16 .019 .069 .112

** **

30 .025 .087 .150

60 .019 .038 .087

**

150 .013 .094 .138

*From 160 replications with e.s. effect size.

b) For different group size, n.*

n e.s. a=.01 d=.05 d=.10

5 .16 .006 .044 .081
**

25 .17 .031 .069 .106

60 .16 .013 .081 .138

150 .17 .025 .094** .162**

*From 160 replications with e.s. effect size.

c) For different intraclass correlation coefficients, d.*

d e.s. 0:.01 OL=.05 O(=.10

.10 .11 .025“ .081** .128

.25 .22 g .013 .063 .116

*From 320 replications with e.s. effect size.

 

**Outside the 95% confidence interval.
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and 150. For all macro parameters, actual significance

levels tend to be within the 95% probability intervals of

nominal values across all levels of n. When outside the

confidence intervals, empirical alpha levels are all

liberal. Exceptions are forY01 with n = 5 at .01 alpha and

with n = 60 at .01 and .10 alpha, and f°r111 with n = 25 at

.01 alpha and with n = 150 at .05 and .10 alpha levels.

However, all values are typically within 99% probability

intervals of the nominal alpha. Again no pattern emerged.

That is, for a given macro parameter the largest type I

error occurred randomly regardless of sample size and effect

size. The only exception is for Y01 where departure from

nominal alpha was fairly small with an increase in effect

size with n = 25 and 150.

Intraclass Correlation Coefficient and Robustness

Tables 5-17 through 5-20 (part c) report the type I

error rates for tests of macro estimators YOO , Y01 , Ylo ,

and'Y11 , respectively when the intraclass correlation

coefficient varied, with d = .10 and .25. Once again most

values tend to be within 95% confidence intervals of the

nominal alpha for both levels of d. The values outside of

this interval are all liberal. However, values not contained

within 95% confidence intervals are all within 99%

probability interval. These values are: YOO with d = .10

at a = .01; with d = .25 at a = .01 and .05; and Y11
Yo1

with d = .10 at a = .01 and .05. Again no pattern emerged
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with respect to d and /or effect sizes.

Power Under Various Conditions

The goal of this portion of the study is to evaluate the

power of the tests of macro parameters in rejecting the null

hypothesis under unknown variance components situation by

considering total sample size, N, different levels of K, n

and intraclass correlation coefficient, d. The empirical

estimates of power (P') may also be compared to the

theoretical values of power (P") obtained through nominal

noncentrality parameter discussed in Chapter IV.

Because of the way the null and true alternative

hypotheses are set up (see Chapter IV) the implementation

and discussion of power analysis will be limited only to

macro parameters YOI , and Y11 . The actual parameter

’ Y10

value of Yoo is set at zero. Thus, power analysis cannot be

applied.

Total Sample Size and Power
 

As shown in Table 5-21 the empirical power for all macro

parameters considering all four combinations of K and n

together are quite high.

0f the three macro parameters 710 consistently obtains

the highest power, followed by Y01 and Y11 . This pattern

of order in power is highly consistent with the magnitude of

the effect sizes in the macro parameters. Within each macro

parameter power is always larger at larger nominal levels.
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Table 5-21

Power for Tests of Macro Parameters*

 

e.s. p p p p p'** p"***

‘Y01 .31 .9382 .9495 .9846 .9881 .9932 .9949

'Y10 .76 .9999 .9999 .9999 .9999 .9999 .9999

'Y11 .16 .8023 .7995 .9292 .9265 .9625 .9616

 

*From 640 replications with e.s. effect size.

**Empirica1 power

***Nomina1 power

The power estimates of macro parameters are either equal

or very close to the theoretical values (differences are

statistically insignificant). Within each nominal alpha

level, empirical power is smaller than the nominal power for

YOI . The situation is reversed with respect to Yll

Number of Groups and Power

Tables 5-22 through 5-24 (part a) give empirical and

nominal power for macro parameters and Y11 ,

Y01 ' ‘Y10 ’

respectively when the number of groups varied, with K = 10,

30, 60, and 150. Again Ylo has the highest power across all

levels of K and all alpha levels. with effect size

Y01

e.s. = .31 obtains the next highest place but reaches the

same degree of power (.9999) with K = 150 at all levels of

alpha. On the other hand, Yll obtains the same power with

the same value of K but only at a = .05 and .10.
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Table 5—22

Power for Tests of Macro Parameter

Y01

 

a) For different number of groups, k.*

a: =.Ol C1 =.05 C1 =.10

k e.s. pl pt! pl p" p!** p!'***

10 .31 .2546 .2119 .4801 .4286 .6064 .5517

30 .6736 .7054 .8577 .8770 .9162 .9292

60 .9686 .9772 .9934 .9955 .9974 .9983

150 .9999 .9999 .9999 .9999 .9999 .9999

*From 160 replications with e.s. effect size.

b) For different groups size, n.*

0. =.01 a =.05 0L =010

n e.s. p" p" pl p" p! p"

5 .31 .6141 .7517 .8186 .9015 .8888 .9463

25 .32 .9406 .9564 .9854 .9898 .9936 .9959

60 .31 .9772 .9778 .9956 .9957 .9984 .9984

150 .32 .9893 .9846 .9982 .9973 .9993 .9989

*From 160 replications with e.s. effect size.

. c) For different intraclass correlation coefficients, d.*

a =.01 a =.05 0' =.10

d .5. pi. p" pl p" p! p"

.10 .22 .8997 .9265 .9713 .9808 .9864 .9913

.25 .41 .9641 .9664 .9920 .9927 .9968 .9971

*From 320 replications with e.s. effect size.

 

**Empirical power

***Nominal power
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Table 5-23

Power for Tests of Macro Parameter

Y1o

 

a) For different number of groups, k.*

d=.01 d=.05 d=.10

k e.s. p' p" p' p" p'** p"***

10 .76 .9999 .9999 .9999 .9999 .9999 .9999

30 .9999 .9999 .9999 .9999 .9999 .9999

60 .9999 .9999 .9999 .9999 .9999 .9999

150 .9999 .9999 .9999 .9999 .9999 .9999

*From 160 replications with e.s. effect size.

b) For different group size, n.*

a =.01 a =.05 a =.10

k 6-8- p' p" p' p" p' p"

5 .73 .9999 .9999 .9999 .9999 .9999 .9999

25 .78 .9999 .9999 .9999 .9999 .9999 .9999

60 .73 .9999 .9999 .9999 .9999 .9999 .9999

150 .78 .9999 .9999 .9999 .9999 .9999 .9999

*From 160 replications with e.s. effect size.

. c) For different intraclass correlation coefficients, d.*

a =.01 a =.05 a =.10

d e.s. p' p" p, p" p' p"

.10 .72 .9999 .9999 .9999 .9999 .9999 .9999

.25 .79 .9999 .9999 .9999 .9999 .9999 .9999

*From 320 replications with e.s. effect size.

 

**Empirical power

***Nominal power

117



Table 5-24

Power for Tests of Macro Parameter

Y

11

 

a) For different number of groups, k.*

a =.Ol a =.05 ‘1 =.10

k e o S . p! p" p! p" p 0 ** p"***

10 .16 .1423 .1314 .3264 .3050 .4443 .4247

30 .5040 .4840 .7357 .7190 .8264 .8159

60 .8665 .8621 .9582 .9564 .9798 .9783

150 .9996 .9997 .9999 .9999 .9999 .9999

*From 160 replications with e.s. effect size.

b) For different group size, n.*

a = 01 a = 05 a =.10

n .S. p! p" p! p" p! p"

5 .16 .2743 .3156 .5040 .5517 .6293 .6736

25 .17 .7422 .7357 .8962 .8944 .9429 .9406

60 .16 .9162 .9082 .9767 .9744 .9896 .9881

150 .17 .9767 .9693 .9955 .9936 .9982 .9974

*From 160 replications with e.s. effect size.

c) For different intraclass correlation coefficients, d.*

a =.Ol a =.05 a =.10

d .S. p! P" p! p" I)! P"

.10 .11 .6915 .6808 .8686 .8621 .9236 .9207

.25 .22 .8849 .8849 .9656 .9656 .9834 .9834

*From 320 replications with e.s. effect size.

 

HEmpirical power

***Nomina1 power
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As shown in Figure 5-10 with K = 150 the power curves

for the three macro parameters are indistinguishable. With

respect to number of groups, power is best with K = 60 and

150 and worst with K = 10 when ‘WDI is considered and best

with K = 150 and worst with K = 10 for Yll

Empirical powers are always close but smaller than the

theoretical powers for ‘le except with K = 10 and close but

larger than the nominal power for ‘Yll except with K = 150

(differences between P' and P" are atatistically

insignificant).

Sample Size and Power
 

Tables 5-22 through 5-24 (part b) give tha actual and

nominal power for macro parameters ‘y01, 710 , ands-y11 ,

respectively for groups of size 5, 25, 60 and 150. Across

all levels of n power improved relative to what it was when

levels of K was considered. This was consistent across all

macro parameters and three alpha levels (to evaluate simul-

taneous effect of K and n on empirical and theoretical power

see Tables A-b through A-6 in Appendix ). the macro

Y1o

parameter with the larger effect size gained the most power.

With each macro parameter power increased as either effect

size, group size, or alpha level increased.

As shown in Figure 5-11 again with n = 150 the power

curves for the three macro parameters are indistinguishable.

With regard to sample size, power is best with n = 25 or

, but only with n = 60 and 150 when 'Y isabove for Y 11

01

considered.
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Although statistically insignificant nominal power is

larger than empirical power for 701 except when n = 150.

The situation is reversed when Y11 is considered. That

is, empirical power always exceeds theoretical power except

with n = 5

Intraclass Correlation Coefficient and Power

Part c of Tables 5-22 through 5-24 reflects the effect

of intraclass correlation coefficient on power of the macro

parameters YOI' Y10 and Y11 , respectively. Within each

macro parameter power increased as intraclass correlation

coefficient increased. This upward trend was consistent

across all macro parameters. But this is an artifact due to

the effect size. Notice that across all macro parameters

larger values of effect size are paired with the larger

values of intraclass correlation coefficients. Obviously,

the highest power is attained by Ylo with the largest

effect size. Deviations from nominal power was consistently

small and statistically insignificant for all macro parame-

ters. Tables A-7 through A-12 in Appendix represent

differential effect of K, n, and d on empirical and nominal

powers of the macro parameters.

E5 Algorithm: Rate 9; Convergence
  

Often EM algorithm is praised for its simplicity of

implementation and numerical stability. Nonetheless, its

rate of convergence is criticized to be slow. A concern here

with this algorithm is its rate of convergence under varying
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combinations of K and n used in this study.

The convergence criterion was set at .0001 with the

maximum number of iterations allowed fixed at 500. This

limit was reached only three times out of 640; two occasions

with K = 10 and n = 5, and one occasion with K = 30 and

n = 5.

Table 5-25 reports average convergence rate of EM

algorithm with respect to sixteen different combinations of

 

K and n.

Table 5-25

Average Convergence Rate of

EM Algorithm

K=10 K=30 K=60 K=150

n=5 259.125 148.750 116.750 106.875

n=25 49.750 19.250 15.625 7.875

n=60 17.875 6.625 3.875 2.125

n=150 3.625 2.125 2.000 2.000

 

There is a clear downward trend in average number of

iterations prior to convergence to ML estimates both with

regard to K and n . Within each level of n the average
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number of iterations consistently reduced with an increase

in K. This reduction is even more dramatic as a result of n

increasing within any level of K. This is an evidence to the

pronounced effect of n over K in reducing the rate of con-

vergence in EM algorithm. However, any combination of K =

30, 60 and 150 with n = 60 and 150 results in a reasonably

small number of iterations and even more so when n = 150 is

combined with any level of K.
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CHAPTER VI

DISCUSSION

The results presented in the previous chapter provide an

indication that maximum likelihood estimators of macro para-

meters generated by the EM algorithm behaved as expected.

Conclusions based on these results will be presented in this

chapter, followed by guidelines for the researcher analyzing

multi level data and suggestions for future research.

Conclusions
 

Under the conditions considered in this study, it

appears that:

(1) Macro coefficients generated by the EM algorithm

are asymptotically unbiased and consistent. However, as a

result of prefixing parameter c = “EB/Tu to values .10 and

A A

.50 errors in Y00 and Y01 estimates tended to be slightly

higher than that of ;lo and $11 . This reflected itself in

dispersion measure where again was higher among ;00 and

;01 . Additionally, error estimates are considerably affec-

ted by the number of groups and that their precision is

directly proportional to K. But, group size (n) does not

have a consistent effect on the precision, whereas intra-

class correlation coefficient is proportionally related to

the squared error of the macro parameters.
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(2) Macro coefficients also tend to be asymptotically

efficient. Their variances when stabilized closely approxi-

mate Cramer Rao minimum variance bound. Slopes of regression

lines are over .98 across all macro coefficients.

(3) As far as variance components are concerned 32 is

extremely well behaved, while the two parameter variances

tend to have slightly positive bias. Within group variance

A

0.2

is considerably affected by group size. However, an

increase in the number of groups will farther reduce the

A A

estimated errors in 02 . On the other hand, T W is only
11 l

influenced by group size, and TBIW by number of groups. In

contrast to macro parameters precision in the variance com-

ponents is directly related to the intraclass correlation

coefficient. All three variance components approximated

their asymptotic variance quite well.

(4) Additionally, test statistics for all macro coeffi-

cients resemble normal curve except with slightly heavier

tails. This manifests itself in a larger empirical error

rates which fall beyond two standard errors from the nominal

alpha levels in less than half of the times.

(5) Furthermore, these tests maintain reasonable power

under unknown variance components, except for small sample

sizes. Specifically, macro coefficient with the largest

Y10

effect size has the lead followed by Y01 and Y11 , respecti-

vely. Notice that Y01 despite having a lower precision ob-

tains a higher power over Yll across all levels of K and n.

This is the case since YOI has an effect size which is
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double the size of that for Yll

Guidelines for the Researcher
 

The analysis of multilevel data may be undertaken with a

focus on estimating either micro parameters or macro

parameters or both. From the perspective of shrinkage

estimation, macro coefficients are merely vehicles for

improving estimation of micro effects. However, macro models

themselves may be of great importance primarily because they

enrich the class of research questions asked about

educational effects.

Design of research to optimize allocation of resources

is contingent upon the goal and scope of the study. It is

helpful to consider three different cases. In the first

case, suppose the interest is focused on the estimation of

micro parameters at school level with little or no concern

for a broader scale. With a large enough data gathered from

within a particular school (micro unit) micro parameters can

be estimated with reasonable precision i.e., sampling

variance V will be near zero. On the other hand, the micro

parameters can be estimated by utilizing data not only from

that particular school but from many similar schools

In this situation macro coefficients become a secondary

concern merely used for improving estimation of micro

parameters through empirical Bayes shrinking estimator. On

the other extreme, suppose the scope of the study goes

beyond one school system and has a potential of becoming a

national policy. This immediately entails consideration of
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more than one group at the price of reducing the within

groups allocation. In this case, estimation of macro models

are of primary and only concern. Notice that situations two

and three reflect different conceptualizations of macro

models. Nonetheless, as far as estimation of macro coeffi-

cients is concerned the two situations are identical.

Since the focus of the present study is on the macro

parameters, only situations two and three will be addressed.

Either situation is concerned with the same question: How

can research resources be allocated for the sake of estima-

ting macro coefficients ? Specifically, how many subjects

should be sampled from within groups (n) and how many groups

(K) should be selected ?

Obviously, determination of statistical power is of

primary concern as a preinvestigation procedure. Findings

from this study provide strong evidence that the tests of

macro parameters maintain reasonable power under unknown

variance components, except for small sample sizes. Tables

A-4 through A-6 in Appendix may be consulted for an expected

power value for different combinations of K and n . Further-

more, Tables A-7 through A-9 in Appendix provide power

values for different combinations of K and n along with

effect size for macro parameters in the population. However,

allocation of samples within and between macro units would

not be optimal unless implemented through maximization of

power for a given cost. That is, selection of any combina-

tion of K and n for an expected power should be done by
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minimizing total cost.

Assume the design that has been adopted for a particular

study calls for the subjects to be selected from within

micro units (e.g. schools) with moderately low intraclass

correlation coefficients ( i.e., d = .10 ). Additionally

assume that the effect size is approximately equal to .10.

The experimenter now needs to consider the same question of

optimal allocation of samples within and between units.

First consideration should be given to the cost of data

collection per group and per subject within a group. The

second consideration pertains to the power of the test. The

researcher may want a test which is powerful enough to

detect even small differences if they exist (e.g. .80 or

better). By utilizing information contained in Tables A-6

through A-12 the following combinations of K and n would

result in power of at least .81 for tests of macro parame-

ters:

1) K

n

30 2) K

150 n

60 3) K

25 n

150

5

Obviously, selection of any of these combinations is

determined by the relative cost of a unit of K and n, and by

a given budget allocation. On the other hand, with an

improvement in intraclass correlation coefficient of .25 and

of an effect size of approximately .20 one can obtain the

same magnitude of power for tests of macro parameters even

with K = 30 and n = 60. It is worth noting that the

suggested n in each set indicates the minimum allocation.
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Assuming more budget, this can be exceeded to obtain even a

higher power.

As far as the robustness is concerned the results from

this study, although of preliminary nature, indicate that

macro coefficients' tests are all liberal. Thus, inferences

about macro parameters should be made with great caution.

Suggestions for Future Research
 

The guidelines just discussed are based on a

standardized two-stage hierarchical linear model with unit

normal predictors at both levels of hierarchy. An aspect

that needs to be considered although it is quite likely that

this would not produce any radical changes in the results is

to let both predictors assume general normal distributions.

Moreover, consideration should be given to multiple

predictors at each stage of hierarchy, thereby allowing

interaction effect to be studied as well. Also, further

research should let the within group variance matrix 2

assume a general matrix form. In the present study it was

assumed that 2 is a diagonal matrix with equal diagonal

elements.

Additionally, the intraclass correlation coefficient on

micro level predictor x would be a relevant factor to be

considered. Homogeneity of groups on x assumed by the

present study reduces the mixed model to being a fixed

effect model. But in cluster sampling physical distribution

of the population is generally not random but characterized

by some homogeneity. Thus, fixing this coefficient at zero
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produces an unrealistic situation.

Although findings from this study are of a preliminary

nature, they provide strong evidence that, even for small

number of replications, tests of macro parameters are

reasonably powerful under unknown variance components,

except for small sample sizes. Nonetheless to substantiate

or refute the results of the present study with regard to

robustness to estimated variance components, consideration

should be given to a large scale study of a similar nature.

Given a larger number of replications, it is expected to

achieve some improvements in robustness.
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respectively.

Note: Symbols A-Z signify frequencies 10-35,

combinations of k and n with d=.25.

Error estimates in Y10 and Y 11 for differentFigure A-2.
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respectively.

Symbols A-z signify frequencies 10-35,Note

Figure A-3. Error estimates in transformed'r

different combinations of k and

ulw‘i1
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th d
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Figure A-4. Error estimates in transformed G for different
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Note: Symbols A-Z signify frequencies 10-35,

respectively.
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Table A—1

Mean and Variance of the z-Statistics for the

Macro Parameters for Different Number of Groups*

 

Z Z Z Z

Yoo Y01 Y10 Y11

K

Mean .004 .085 .005 .073

10

Variance 1.185 1.187 .956 1.079

Mean .070 -.087 -.104 ~.007

30

Variance 1.120 1.094 1.248 1.232

Mean .048 .001 .039 .066

60

Variance .847 1.101 1.018 1.008

Mean .031 -.001 -.102 .158

150

Variance 1.153 1.171 .971 1.195

 

*From 160 replications.
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Table A—2

Mean and Variance of the z-Statistics for the

Macro Parameters for Different Group Sizes*

 

z z z z

Yoo Y01 Y10 Y11

n -

Mean .111 .034 .004 .161

5

Variance 1.084 1.292 .990 .914

Mean .080 -.007 -.071 -.007

25

Variance 1.023 .943 1.130 1.212

Mean .009 -.034 .016 .028

60

Variance 1.018 1.235 1.145 1.105

Mean -.048 .005 -.111 .107

150

Variance 1.167 1.095 .934 ' 1.279

 wv

*From 160 replications.
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Table A-3

Mean and Variance of the Z-Statistics for the

Macro parameters for Different Intraclass

Correlation Coefficients*

 

 zY zY zY zY

00 01 10 11

d

Mean .116 .052 -.056 .043

'10 Variance .970 1.062 1.080 1.192

Mean -.040 -.053 -.025 .102

'25 Variance 1.165 1.209 1.018 1.063

 

*From 320 replications.
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Table A— 4

Power for Tests of Macro Parameter

Y *

 

01

(1:,01 d=.OS d=.10

k n .s. p' p" p' p" p'** pn***

10 5 .31 .1423 .1762 .3264 .3783 .4443 .5000

25 .32 .2005 .1762 .4090 .3783 .5359 .5000

60 .31 .2514 .2327 .4801 .4562 .6026 .5793

150 .32 .4761 .2709 .7088 .5040 .8078 .6255

30 5 .31 .3336 .4483 .5714 .6844 .6915 .7881

25 .32 .7486 .7517 .9015 .9032 .9452 .9474

60 .31 .7517 .7454 .9032 .8997 .9463 .9441

150 .32 .8106 .8315 .9332 .9429‘ .9656 .9706

60 5 .31 .6331 .7823 .8315 .9192 .8980 .9564

25 .32 .9783 .9854 .9957 .9974 .9984 .9990

60 .31 .9940 .9934 .9990 .9990 .9997 .9997

150 .32 .9951 .9946 .9992 .9991 .9998 .9997

150 5 .31 .9898 .9987 .9984 .9998 .9994 .9999

25 .32 .9999 .9999 .9999 .9999 .9999 .9999

60 .31 .9999 .9999 .9999 .9999 .9999 .9999

150 .32 .9999 .9999 .9999 .9999 .9999 .9999

 

*From 40 replications of k groups of size n with e.s. effect size.

**Empirical power

***Nominal power
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Table A- 5

Power for Tests of Macro Parameter

 

Y10

a =.01 <1 =.05 a- =.10

k n e.s. p' p" p' .p" p'** p"***

10 5 .73 .8051 .8980 .9306 .9699 .9633 .9861

25 .78 .9999 .9999 .9999 .9999 .9999 .9999

60 .73 .9999 .9999 .9999 .9999 .9999 .9999

150 .78 .9999 .9999 .9999 .9999 .9999 .9999

30 5 .73 .9999 .9999 .9999 .9999 .9999 .9999

25 .78 .9999 .9999 .9999 .9999 .9999 .9999

60 .73 .9999 .9999 .9999 .9999 .9999 .9999

150 .78 .9999 .9999 .9999 .9999 .9999 .9999

60 5 .73 .9999 .9999 .9999 .9999 .9999 .9999

25 .78 .9999 .9999 .9999 .9999 .9999 .9999

60 .73 .9999 .9999 .9999 .9999 .9999 .9999

150 .78 .9999 .9999 .9999 .9999 .9999 .9999

150 5 .73 .9999 .9999 .9999 .9999 .9999 .9999

25 .78 .9999 .9999 .9999 .9999 .9999 .9999

60 .73 .9999 .9999 .9999 .9999 .9999 .9999

150 .78 .9999 .9999 .9999 .9999 .9999 .9999

 

*From 40 replications of k groups of size n with e.s. effect size.

**Empirical power

***Nomina1 power
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Table A—6

Power for Tests of Macro Parameter

 

Y11

a =.01 0: =.05 d=.10

k n e.s. p' p" p' p" p'** p"***

10 5 .16 .0418 .0495 .1314 .1515 .2119 .2358

25 .17 .1112 .1170 .2709 .2843 .3859 .3974

60 .16 .2451 .2061 .4681 .4207 .5948 .5478,

150 .17 .2676 .2005 .5000 .4129 .6217 .5359

30 5 .16 .1492 .1788 .3372 .3783 .4562 .5040

25 .17 .3974 .3669 .6406 .6103 .7486 .7224

60 .16 .5160 .5080 .7454 .7357 .8340 .8289

150 .17 .9015 .8665 .9719 .9573 .9868 .9793

60 5 .16 .2546 .2810 .4840 .5160 .6064 .6368

25 .17 .8577 .8531 .9535 .9515 .9772 .9761

60 .16 .9656 .9573 .9925 .9904 .9970 .9961

150 .17 .9871 .9854 .9978 .9974 .9991 .9990

150 5 .16 .8461 .8888 .9484 .9664 .9744 .9842

25 .17 .9987 .9987 .9999 .9998 .9999 .9999

60 .16 .9999 .9999 .9999 .9999 .9999 .9999

150 .17 .9999 .9999 .9999 .9999 .9999 ' .9999

 

*From 40 replications of k groups of size n with e.s. effect size.

**Empirical power

***Nominal power
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Table A-7

Power for Tests of Macro Parameter

 

701*

a =.0]. 0' =..OS a =.10

d k n e.s. p! p" pt I)" pv** ptl***

.10 10 5 .22 .0735 .1251 .2005 .2981 .3015 .5871

25 .0838 .0778 .2206 .2119 .3264 '.3121

60 .1841 .1587 .3859 .3520 .5120 .4721

150 .4681 .2776 .7054 .4920 .8023 .6331

30 5 .2611 .4207 .4880 .6591 .6141 .7673

25 .6950 .7019 .8708 .8729 .9251 .9279

60 .6808 .6736 .8599 .8577 .9192 .9162

150 .8133 .8485 .9332 .9505 .9656 .9750

60 5 .5557 .7257 .7734 .8888 .8577 .9370

25 .9778 .9875 .9957 .9978 .9984 .9991

60 .9927 .9934 .9988 .9990 .9996 .9997

150 .9920 .9927 .9987 .9988 .9995 .9996

150 5 .9319 .9875 .9826 .9978 .9922 .9991

25 .9999 .9999 .9999 .9999 .9999 .9999

60 .9999 .9999 .9999 .9999 .9999 .9999

150 .9999 .9999 .9999 .9999 .9999 .9999

 

*From 20 replications of k groups of size n with d intraclass correlation coefficient

of e.s. effect size.

**Empirical power

***Nominal power
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Power for Tests of Macro Parameter

Table A-8

 

Yolak

a =.01 ‘1 =.05 a =~10

d k n e.s p! p" pl p" p 1*.” P"***

.25 10 5 .39 .2451 .2389 .4721 .4641 .5948 .5871

25 .43 .3783 .3336 .6217 .5714 .7324 .6915

60 .39 .3300 .3228 .5714 .5636 .6915 .6808

150 .43 .4801 .2676 .7157 .5000 .8106 .6217

30 5 .39 .4129 .4721 .6554 .7088 .7611 .8051

25 .43 .7967 .7995 .9265 .9279 .9608 .9625

60 .39 .8159 .8078 .9345 .9319 .9664 .9641

150 .43 .8106 .8133 .9332 .9345 .9649 .9656

60 5 .39 .7054 .8315 .8770 .9418 .9292 .9706

25 .43 .9783 .9834 .9957 .9970 .9984 .9988

60 .39 .9952 .9934 .9993 .9990 .9997 .9997

150 .43 .9969 .9960 .9996 .9994 .9999 .9998

150 5 .39 .9991 .9999 .9999 .9999 .9999 .9999

25 .43 _ .9999 .9999 .9999 .9999 .9999 .9999

60 .39 .9999 .9999 .9999 .9999 .9999 .9999

150 .43 .9999 .9999 .9999 .9999 .9999 .9999

 

...-

*From 20 replications of k groups of size n with d intraclass correlation coefficient

of e.s. effect size.

**Empirical power

***Nominal power
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Table A—9

Power for Tests of Macro Parameter

 

Y10*

a=.01 a =.05 a =.10

d k n ' e o S. ‘ p! p" pl p" p I ** p"***

.10 10 5 .74 .7224 .8599 .8849 .9554 .9357 .9783

25 .71 .9999 .9999 .9999 .9999 .9999 .9999

60 .74 .9999 .9999 .9999 .9999 .9999 .9999

150 .71 .9999 .9999 .9999 .9999 .9999 .9999

30 5 .74 .9999 .9999 .9999 .9999 .9999 .9999

25 .71 .9999 .9999 .9999 .9999 .9999 .9999

60 .74 .9999 .9999 .9999 .9999 .9999 .9999

150 .71 .9999 .9999 .9999 .9999 .9999 .9999

60 5 .74 ..9999 .9999 .9999 .9999 .9999 .9999

25 .71 .9999 .9999 .9999 .9999 .9999 .9999

60 .74 .9999 .9999 .9999 .9999 .9999 .9999

150 .71 .9999 .9999 .9999 .9999 .9999 .9999

150 5 .74 .9999 .9999 .9999 .9999 .9999 .9999

25 .71 .9999 .9999 .9999 .9999 .9999 .9999

60 .74 .9999 .9999 .9999 .9999 .9999 .9999

150 .71 .9999 .9999 .9999 .9999 .9999 .9999

 

*From 20 replications of k groups of size n with d intraclass correlation coefficient

of e.s. effect size.

**Empirical power

***Nominal power
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Table A-IO

Power for Tests of Macro Parameter

 

710*

a=.01 a=.05 d=.10

d k n e.s. pt P" p! P" p!” p"***

.25 10 5 .73 .8729 .9265 .9599 .9808 .9808 .9913

25 .85 .9890 .9854 .9982 .9974 .9993 .9990

60 .73 .9999 .9999 .9999 .9999 .9999 .9999

150 .85 .9999 .9990 .9999 .9999 .9999 .9999

30 5 .73 .9999 .9999 .9999 .9999 .9999 .9999

25 .85 .9999 .9999 .9999 .9999 .9999 .9999

60 .73 .9999 .9999 .9999 .9999 .9999 .9999

150 .85 .9999 .9999 .9999 .9999 .9999 .9999

60 5 .73 .9999 .9999 .9999 .9999 .9999 .9999

25 .85 .9999 .9999 .9999 .9999 .9999 .9999

60 .73 .9999 .9999 .9999 .9999 .9999 .9999

150 .85 .9999 .9999 .9999 .9999 .9999 .9999

150 5 .73 .9999 .9999 .9999 .9999 .9999 .9999

25 .85 .9999 .9999 .9999 .9999 .9999 .9999

60 .73 .9999 .9999 .9999 .9999 .9999 .9999

150 .85 .9999 .9999 .9999 .9999 .9999 .9999

 

*From 20 replications of k groups of size n with d intraclass correlation coefficient

of e.s. effect size.

**Empirical power

***Nominal power
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Table A-ll

Power for Tests of Macro Parameter

 

Y11*

O. =.01 _ 0' =.05 (1 =.10

d k n e.s. p' p" p' p" p'** p"***

.10 10 5 .12 .0228 .0294 .0838 .1003 .1446 .1685

25 .10 .0694 .0823 .1922 .2177 .2912 .3228

60 .12 .2005 .1446 .4129 .3300 .5359 .4483

150 .10 .3156 .1841 .5517 .3859 .6736 .4880

30 5 .12 .1112 .1469 .2743 .3336 .3859 .4522

25 .10 .3015 .2676 .5359 .4960 .6591 .6217

60 .12 .2643 .2578 .4920 .4840 .6179 .6103

150 .10 .8212 .7734 .9382 .9147 .9678 .9535

60 5 .12 .0934 .1093 .2420 .2709 .3520 .3859

25 .10 .8389 .8365 .9463 .9452 .9726 .9719

60 .12 .9082 .8869 .9744 .9664 .9881 .9990

150 .10 .9812 .9788 .9965 .9960 .9987 .9985

150 5 .12 .7088 .7881 .8790 .9207 .9306 .9582

25 .10 .9949 .9934 .9991 .9989 .9997 .9997

60 .12 .9999 .9998 .9999 .9999 .9999 .9999

150 .10 .9999 .9999 .9999 .9999 .9999 .9999

 

*From 20 replications of k groups of size n with d intraclass correlation coefficient

of e.s. effect size.

**Empirical power

***Nomina1 power
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Table A-12

Power for Tests of Macro Parameter

 

Y11*

a =.01 a =.05 a =.10

d k n e.s. p! . p" p! ‘ p" pkg”? p!!***

.25 10 5 .19 .0708 .0808 .1977 .2148 .2946 .3192

25 .24 .1685 .1611 .3632 .3557 .4880 .4801

60 .19 .2912 .2843 .5279 .5160 .6480 .6406

150 .24 .2266 .2177 .4483 .4364 .5714 ‘ .5596

30 5 .19 .1977 .2119 .4052 .4247 .5319 .5517

25 .24 .5000 .4801 .7324 .7123 .8238 .8106

60 .19 .7642 .7549 .9099 .9032 .9505 .9474

150 .24 .9515 .9279 .9887 .9808 .9953 .9916

60 5 .19 .4960 .5239 .7291 .7517 .8212 .8413

25 .24 .8729 .8665 .9608 .9582 .9808 .9793

60 .19 .9893 .9875 .9982 .9979 .9993 .9991

150 .24 .9916 .9904 .9987 .9984 .9995 .9994

150 5 .19 .9306 .9495 .9821 .9878 .9920 .9949

25 .24 .9997 .9998 .9999 .9999 .9999 .9999‘

60 .19 .9999 .9999 .9999 .9999 .9999 .9999

150 .24 .9999 .9999 .9999 .9999 .9999 .9999

 

*From 20 replications of k groups of size n with d intraclass correlation coefficient

of e.s. effect size.

**Empirical power

***Nominal power
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