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ABSTRACT

DEVELOPMENT OF NOVEL COMPUTATIONAL TECHNIQUES FORHE STUDY OF
BIOMOLECULAR SYSTEMS USING MOLECULAR DYNAMICS SIMUIATION

By
Vahid Mirjalili
In this dissertation, we have developed novel cdatmnal techniques that have been
effectively utilized to extend our knowledge of fmims and lipid membrane systems.
Application of molecular dynamics combined with hgweveloped techniques and protocols to
study protein structure refinement and interactiohsamino-acid analog pairs within lipid
membranes are studied. A robust protocol for strectefinement of proteins from a given
homologous model is designed and optimized that testrained molecular dynamics followed
by optimal subset selection and structure averagiigs protocol is tested on CASP8 and

CASP9 targets, and later successfully applied t&EZ0 in blind prediction manner.

In order to understand physical characteristicspeptide interactions embedded in bilayer
membrane, we have used umbrella sampling technigfhemodel amino acid side-chain analog
pairs to study their association free energy whikced in membrane bilayer. As a result of
convergence issues observed in such simulationgadb#ayer deformation, a novel enhanced
sampling technique is developed which biases thesitye of water in a cylinder, thereby

effectively imposing bilayer deformation. Applyinigis method to a DPPC bilayer, we were able
to study free energy of pore formation in membrdmayers, and showed that while the
undergone mechanism is different from currentlystng methods, the mechanism by our

proposed method is closer to the natural pore foiomanechanism.
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Chapter 1

I ntroduction



1.1 Background

The useof computational techniques for study of biologisistemsis rapidly increasing
Molecular dynamics (MD) simulation is among the mofluential computational methods tt
has given insights into physical behaviorcomplex biological system3.he increasing use «
MD simulation in biological science is indied by the rapid increase of number of rese
article published in recent years. In 2014, mo@ntB000 research articles are publishec

scientific journals that have usMD in biological science (Google SchaolaeeFigure 1-1).

25000 35000

Num. of Articles
15000

0 5000

1950 1960 1970 1980 1990 2000 2010
Year

Figure 1-1 Number of research articles that have used moledytzamics in biological scien.

MD simulation can be used tanalyze conformational dynamics anthe kinetic and
thermodynamic properties of proteins, nucleic a@dd lipid membranes. While experimer

techniques have limitations extractin¢ fine details of such systems, MD simulations hasen



widely applied to analyze properties of these systfl-3] In recent years, MD simulations are
considered a necessary stage prior/posterior forpeing advanced experimental studies, which
indicates the significance of results obtained frdnD simulations.[4-6] Yet, computer
simulations have gone beyond the limitations ofesxpental research. Scientists have used
computer simulations to study how certain enzyne@gtrto antibiotics.[7] The molecular-level
insight obtained from computer simulations can lfieecévely used in future medicine to

understand how bacteria become resistance to aiiti

In this dissertation, we have developed novel cdatmnal techniques that have been
effectively utilized to extend our knowledge of s and lipid membrane systems. This
chapter provides an introduction of MD and othempatational techniques that are utilized.
Then, later chapters focus in more details on fh@i@ation of such techniques combined with
newly developed techniques and protocols to studtem structure refinement and interactions

of amino-acid analog pairs within lipid membranes.

1.2 Molecular Dynamics Simulation

Molecular dynamics (MD) simulation solves time euan of a set of discrete particles by
solving the Newton’s equation of motion in claskit&chanics. A molecular force-field defines
the level of interactions among particles and tleawironment. The notion of discrete particles
determines the resolution at which the physicakesysis described. With advancement of
modern computers, study of biological systems omédgtic details has been made feasible.[8]

Given a set of atomic coordinateg ), atomic forces are determined from the derivatioé a



given set of potential energy functions, whichaséd on pairwise interactions of particles. From

these forces, acceleration of each atom can be wmohaccording to equation 1-1

F=-V\U=mga 11
wherem is the mass of atomand a, is its acceleration. By numerical integration ogquation

1-1, atomic velocities and their new coordinatas loa determined.

1.3 Molecular Force-Field

A molecular force-field is a set parameters usedifi@erent potential energy terms. There are a
number of force-fields for biological systems, amdiderstanding their differences and
application is essential. CHARMM[9-11], AMBER[12ROMOS[13], and OPLS[14, 15] are
among the most widely used force-fields for biotagisystems, however, a number of force-
fields also exist at different resolutions.[16-Mhile the set of potential energy functions used
in different force-fields are different, they arengrally categorized as bonded interactions and
non-bonded interactions. We used CHARMM force-f@]dhroughout this dissertation. The
latest version of CHARMM force field[9] has the lfmhing energy terms as given in equation 1-

2

V(R = Y K,(b—-by)*+ D K,(0-6,)*+ D K, (A+cospy-o)+ 12

bonds angles dihedrals
ZK(()(O)_O)O)Z + Zkus(blig)_bliao)z + ZUCMAP((D’T)
improper Urey—Bradley residues

whereK,, Ky, K,, K, andKyg are the force constants for bonds, valence andilesdral angles,
improper angles and Urey-Bradley term, respectivEhe CMAP[19] term is a two dimensional
spline-based energy function that was introduceithfirove backbone treatments of proteins in

MD simulations.



The non-bonded term contains the Lennard-JonesafidCoulomb terms in the following form

as given in equation 1-3

min 12 min 6 q q 1-3
Vnon—bonded = z gij (]_] _2(;j + z —

nonb. pairs rij rij nonb. pairs grij

min min
. R™+R
where ¢; = /s¢; and R = ’

== and (¢, R™) are atomic LJ parameters. In the

Coulomb termg; is the charge of atom and ¢ is the permittivity of free space; in both terms

represent the distance between atoarsd;.

1.4 Treatment of solvent molecules

Biomolecules are naturally embedded in a solvemtrenment and they interact directly with
water molecules. Therefore, accurate treatmentobfests is necessary to derive physical
conformations of such systems. Approaches for rireat of solvent molecules have two
categories; one in which solvent molecules areieitlgl present in the system, and they interact
with the solute through non-bonded interactionsilgviis approach stands as the most accurate
representation of a biological system, one of tle@nncomputational bottlenecks in inclusion of
solvent molecules in the non-bonded calculatiortkas the cost of non-bonded calculations can
be dominated by solvent-solvent interactions. Assallt, a second approach has been developed
that treats the solvents as a continuum environmemd utilizes the net effect of solvent

molecules on the solute.

1.4.1 Explicit treatment of solvent molecules

In explicit solvent MD simulations, solvent moleeslare represented with a water model. Ref

[20] lists 46 distinct water models. In this digaéion, TIP3P[21] is used in all explicit solvent



simulations. TIP3P contains 3 particles that regmesne oxygen atom and two hydrogens for a
water molecule. Although, there are some models lhae a higher number of particles per

water molecule, however, they make the non-bondetpatations more costly.

1.4.2 Implicit treatment of solvent environment

Explicit MD simulation of biomolecules uses the fndstailed information of solvent atoms,
which makes it costly. An alternative way is to m@m solvent molecules, and only include the
solvent degrees of freedom, and instead estimatengh effect of solvent environment on the
solute atoms.[22] To do that, free energy cosiobfaging the solute should be calculated, which
has three components, i.e., electrostatic, nonrpalad cost of cavity formation, as given in

equation 1-4

AGg,, = AGyg +AG o poiar 1-4
Figure 1-2 shows the schematic diagram of decompgosilvation free energy into its
electrostatic and non-polar components in a theymaahic cycle. In this diagram, the solute
molecule is transferred from vacuum (white areapdtvent environment (gray area) in two
different thermodynamic paths. Since free energngk is a path-independent thermodynamic

property, the change in free energy from directeitisn (the first path) and step-by-step

insertion (the second path) should be equivalestaitth other. In step-by-step insertion path, first
the atomic charges in the solute are turned ofAG...), then the uncharged solute is inserted

from vacuum to solvent environment, resulting im+pmlar solute-solvent and solvent-solvent

interactions AG ). Finally, the charges in the solute are turned&@:.>°)

non- polar
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Figure 1-2 Schematic diagram of decomposing solvation freeggn@ a thermodynamic cyc

The electrostatic component of solvation free energgakulated by Generalized B« (GB)

theory, using the formulation proposed by Stilhk[23] as follows

(. 1-5
AGdec:—k( 1 ! jz 4%,
&€

solute  Esolvent i r2+aa eXp(—rV )
I ! daja;

oue ' Exoner are the dielectric constants of the solute and estlvenvironments

where ¢

respectively.c, represents the Born radius of ati, which isaverage distance of atai to the

solventexposed surface of the solute. The more buried i is, the larger Born radius it h
The main computational cost in the GB term is spenBorn radii calculation. Several methc
have been proposed that estimate | radii in different ways[24-27that differ in computation:
complexity, and accuracyn one category of such methods, a numerical iatan has to be
performed over atomic molecular volume to obtainrBradii[25, 26] The latest GBMV(GB

Molecular Volume) formulatiof26] is shown to have very good accuracy compared isson-



Boltzmann (PB) theory in computing the self-polatian energies for solute atoms.[26] Born

radii in GBMV are calculated as follows

1

o, =

1-2/2)1, +1,

1 1 1

==_= = av
) Rl 47[ soluté‘jr>R,» r4 1-6
1/4
[ Lay
R ar solute,r>R r

wherer is distance of grid points to atom i, alncindl; are integration terms ofto atomi to the

4" and " power, respectively.

The non-polar component of solvation free energgdnation 1-4, accounts for cost of cavity
formation in solvent, as well as van der Waals (Yyditeractions between solute and solvent. In

most GB implementations, this term is approximdtgdolvent-accessible surface area (SASA)

A(3non—polar = Zyl ' SA‘% 1-7

where the scaling factgrrepresents the surface tension coefficient.

1.4.3 Implicit membrane model

In an implicit membrane environment, the dielectanstant is not homogenously uniform. A
schematic diagram of variation of the dielectriostant across membrane is shown in Figure 1-

3.
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Figure 1-3 Schematic diagram of variation of dielectric constacross membrane bila.

Therefore, a special treatment is needed to accfaneffects of heterogeneous dielec
environment on atomic Born radii and solvation freaergy. Heterogeneous Dielectr
Generalized Born (HDGB2B, 29] is an extension of GBMWor implicit membrane
environmentswhich models dielectric constant across bilay@mral as a function of distan
from bilayer centerZ. Further, Born radii calculation is alcomputed as a function of dielect

constant, and the HBB energy formulation given according to equation 1-8

1-8

1 1

AGye pipcs = —K - X
Coite  Esolvent (gi 7gj )

D G:9; :
J

' L+ (5i)“1(51)eXp(_rij 4o, (&) (51))

i

and the equation for Born radius is modified a®fet

1-9
@ (6,5,) = : +

3,
CoA+C| . |,
3¢, +2¢,

E
e, +1
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The nonpolar contribution is also modified by scaling ti@-polar term bya continuous profils

S(z). The shape aof(z) and S(z profiles as adopted from Sayadi and F&iy[ as shown in

Figure 1-4
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Figure 1-4 The dielectric profile (A), and nepolar scaling profile (B) for HDGB moc

1.5 Free Energy Calculatit

In order to estimate free energy landscape of ambe@ynamic reaction along a react
coordinate using molecular simulation, one neecsufficiently sampleconfigurational spacto
reach equilibrium conditions between two thermodyitastates.In molealar simulation o

liquid environment, Gibbs free ene can be stated as follows

AG =AU + pAV —TAS=AH —TAS 1-10
where AU, AV, and AS are the change in internal energy, volume and pytad the systenr
respectively, angh and T are pressure and temperattEntropy of a thermodynamic system
directly related to the total number of configuoat accessible to[31] As the system size ge

10



larger, the number of accessible configurationsobesxs larger; as a result, sampling all
configurations with traditional MD simulations tcstemate free energy becomes infeasible.
Therefore, enhanced sampling methods for free grealgulations have been developed, which
can be classified into three general categoriesdified potential, modified sampling, and

modified dynamics.[3]

In this dissertation, umbrella sampling[32] is usedfree energy calculation, which belongs to
the first category. In umbrella sampling, the ptisdriunction is modified to bias sampling along
a specific thermodynamic direction, also known fas rteaction coordinate)( The choice of
reaction coordinate is critical for this method.eTieaction coordinate should drive the system
from one desired state to another. The reactiomdooate is divided into equal bins, and the

system is simulated with additional potential fuoictfor each bin

, 1-11
Uumb(gt) = % Kurrb(gt_ §i )

where Kymp is the force constant. Multiple biased systemsrare with different equilibrium
value of reaction coordinate for tHe bin (). Free energy along the reaction coordinate can be
recovered from the ensemble of biased samplinggusieighted histogram analysis method

(WHAM)[33]. Energy of the unbiased system can b#tem as

Epioses (R") = Epiagea (R™) =U s () 1-12
Given energy of a particular configuration, thelability of finding the system having reaction

coordinate’ is

J.5(§ — &,)eXP(=BE piaeg (R™))dR™ 1-13
.[exp(_ﬂEunbiased (R"))drR"

p(s) =

11



where =1/k; T . substituting for unbiased energy, the probabdistribution can be recovered

from biased sampling as follows

p()=C eXF(ﬂU urrb(‘f)) Ppiased (£) 1-14
where constanC is added due to integration. Then, potential oaméorce (PMF) can be

obtained from the probability distribution of reiact coordinate given above

W(S) =—kgTINp(&) =C—U ;1 (&) —KgT IN Pyigeea (£) 1-15
=C—U ;1 (&) +Wiiasea (£)

1.6 Dissertation Scope

The theoretical backgrounds described in previemiians provide a valuable tool to study
biological systems. In this dissertation, MD sintidas have been used for two main tasks,
protein structure refinement and characterizingidepnembrane interactions within membrane

environment. In the next section, a brief desaiptf tasks is provided.

1.6.1 Proten Structure Refinement

Refinement of protein structures using computatiomethods has remained a challenging task.
Given a low resolution 3-dimensional model of atpimo from homology modeling, the goal is to
further refine the structure towards a high-resotut native-like model.[34] Successful
refinement of protein targets using computatioeahhiques can have a huge impact on future
biological and pharmaceutical research. Criticatessment of techniques in protein Structure
Prediction (CASP) is a biennial world-wide competit which provides a benchmark for
researchers to effectively test their method on pestein targets. The refinement category of

CASP, called CASPR, selects the best homology msottein tertiary structure prediction

12



groups as input for refinement. Over the past reuatl CASP, refinement has remained a

difficult task, with most participating groups shiog little to no improvement.[35, 36]

The challenge in protein structure refinement ie falds; sampling conformational space of a
given protein model, and model scoring and seladtiom a bag of sampled conformations.[37]
Divers approaches involving a combination of physiased[37-40] and knowledge-based[41-
43] approaches have been employed to addressadhalbenges using Monte Carlo (MC) or MD
simulations. For model selection, a number of spifunctions have also been proposed[44,
45], such as DFIRE[45, 46], Seder[47], and RW-pl8§[ However, structure selection still
remains a difficult task since scoring function® arot accurate enough for discriminating
models at close resolutions. Therefore, effortsmiproving protein models would make the

model qualities worse on average, even with long $tBulations of up to 100s.[34]

We established a robust protocol, which for thetfitme showed positive improvement on
average over CASP targets.[37, 38] Given an initialdel, we used harmonic restraints on
selected ¢ atoms, and ran explicit solvent MD simulationshgsCHARMM36 force-field. An

ensemble of conformations is obtained from MD saiohs, which then for structure selection,
we scored the models, and selected a subset basedaptimized criterion. Finally, the average
structure from this subset was shown to have ctamgigmprovement from the initial model. The
details of our protocol is given in chapter 2, tiesults of our method applied to CASP10 for

blind prediction is provided in chapter 3, and issaf CASP11 in chapter 4.

1.6.2 Understanding peptide-membraneinteractions

Membrane proteins play critical roles in cellulaiogesses and signaling pathways that are

crucial for cell survival. The rapidly increasingmber of experimental structures of membrane

13



proteins has shed light on their biological impoda However, experimental techniques for
understanding behavior of peptides and proteing tiavitations, especially when dealing with

bilayer membranes. As a result, computational agugres provide valuable tools.

In the second part of this dissertation, we charasd the peptide-membrane interactions.
Previously, experimental data for free energy semion of amino acids into membrane bilayer
was characterized.[49] Then, MacCallum et al. oladithe insertion profiles of amino acid side-
chain analogs into membrane bilayer through moégcdlynamics simulations.[2] The free

energy profiles of insertion of amino acid sideiohanalogs provided a valuable source for
understanding polarities and behavior of side-clamialogs in bilayer environment, as well as a
benchmark for comparison and parameterization ofprgational tools for membrane, such as
implicit membrane models. While, the mentioned Esidjave very useful biological insights on

the interactions of peptides with membrane, thelyndit consider the interactions of amino acids
with each other within membrane environment. Thaesfin the first attempt to address amino
acid interactions within membrane, de Jong et Jatfinsidered different pairs of amino acid

side-chain analogs in three different environmentster, n-octanol, and decane. These
environments have different polarities, and decd@mnsome extent represents the hydrophobic
region of membrane bilayers. However, the intecastiof amino-acid pairs in a real bilayer have

not been addressed so far.

Knowing the importance of such interactions for enstinding proteins structure and function,
we tried to characterize the interactions of amana side-chain analog pairs within membrane
environment. Considering all possible pairs of avacids could be very expensive, therefore,
we only selected four amino acids, i.e. Phe, Vat,&d Asn. These four amino acids resemble a
wide range of amino-acid sizes and polarities. & p& each side-chain analog is placed in

14



bilayer at different distances from bilayer nornfd), and their association is studied using
umbrella sampling molecular dynamics by pullingnthapart at a fixed Z. Due to the polarity of
some of the side-chain analog pairs placed in éilapterior, water defect and membrane
deformation was observed for some cases. Whilethksnomena are described in later chapters
in detail, however, convergence issues are raisadighboring windows are not sampling the

same flat/deformed bilayer states.

As a result of bilayer deformation in neighboringhrellas, it is necessary to address the effect
of amino acid side-chain analog pairs on bilaydpmheation. Therefore, in order to study this
physical process, we developed a new biasing patehat can effectively deform bilayer. The
number of water molecules in a cylinder along thkayer normal axis is computed in a
continuous, rather than discrete fashion, usingnaosh switching function. Then, number
density of water molecules is computed, and used agw reaction coordinate in umbrella
sampling. Full description of this biasing potehéiad its applications in studying density driven

processes are provided in chapter 5.
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Chapter 2
Protein Structure Refinement through Structure Selection and Averaging

from Molecular Dynamics Ensembles

Vahid Mirjalili, Michael Feig

Adapted from

Journal of Chemical Theory and Computation,
V2, p. 1294-1303, 2012
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2.1 Abstract

A molecular dynamics (MD) simulation based prototmi structure refinement of template-
based model predictions is described. The protaceblves the application of restraints,
ensemble averaging of selected subsets, interpolattween initial and refined structures, and
assessment of refinement success. It is foundstiamicrosecond MD-based sampling when
combined with ensemble averaging can produce mtelénat consistent refinement for most

systems in the CASP targets considered here.

2.2 Introduction

Much progress has been made towards predictingettiary structure of proteins from their
amino-acid sequence.[50-52] By far the most suctess been found with template-based
modeling (TBM) methods[53-55] where information rfroknown experimental structures is
utilized. Traditionally, TBM would use a single holagous protein for which a structure is
available, but the best methods combine structunfakrmation from multiple templates in a
variety of different algorithms.[50, 56-60] Usingich methods, structures for most soluble
proteins can be obtained today with high accuragylomg as sufficiently close structural
templates can be found in the Protein Data Bankj&lertheless, the resulting models for non-
trivial cases often retain structural errors wigspect to experimental structures that limit the us
of such models in further studies. For example, Fédfiived structures are often problematic as
drug design targets[62, 63] or as starting strestdior detailed mechanistic studies via molecular

dynamics simulations and other computational metlj6d]

Structure refinement methods aim at the furtherrawpment of TBM-based models towards

experimental accuracy.[35, 36, 65] Because TBMetlanodels already utilize knowledge from
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related structures, most refinement algorithms tiaate been proposed rely on physics-based
techniques, in particular molecular dynamics (MDydations.[65-68] Although successful
examples of MD-based refinement have been repamtélae past,[40, 51, 60, 66-72] consistent
success appears to be hindered by a combinatimsuificient sampling,[60, 73, 74] force field
inaccuracies,[67, 75] and an inability to relialdgntify refined structures that may be generated
during the course of an MD simulation.[60, 70, B-7To address these issues, statistical
potentials[41, 68, 79, 80] and optimized force dg§67, 81, 82] have been used as well as
effective sampling techniques such as replica-exgbO, 41, 66, 71] and self-guided Langevin
dynamics[83] simulations. In some studies it wassjlale to generate improved structures by as
much as 0.5 A in root-mean-square deviation (RM8D)ne out of five models,[40, 41] but
reliable identification of a single refined strucuremained difficult. Recently, Fan et al.[71]
have shown that by mimicking the electrostatic @ffewith chaperone Hamiltonian replica-
exchange MD simulation can generate refined strastdor 10 out of 15 targets with
improvements of more than 1 A RMSD for the secopdducture elements, but again reliable
selection of refined structures without knowleddetlte native state remained challenging.
However, on average models selected based onististdtpotential function, Distance-scaled
Finite Ideal gas REference (DFIRE),[44, 84] coull improved by 0.25 A from the initial

models.[71]

A common observation is that unrestrained MD sitoies of template-based models almost
invariably end up drifting away from the nativeustiure.[66, 70] Refinement is more likely to
occur when structures are restrained,[66, 70] batdrawback of using restraints is that the
degree to which structures can be refined is lidnitEBhe most extensive test of MD-based

refinement published so far involved simulationstod00us for CASP8 (Critical Assessment
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of techniques for protein Structure Prediction) &WSPI refinement targets.[70] In that work
from the Shaw group, the final structures wereimproved on average but refinement could be
achieved by using a cluster-based selection metihadach 1% in terms of GDT-TS (Global
Distance Test-Total Score)[85] for conformations@&sted from simulations exceeding € in
length. Better structures with sometimes much msaeificantly improved GDT-TS scores were

generated in these simulations but could not betiftked reliably.[70]

Finally, Zhang et al.[81] used a fragment-guided kDbhnique, in which different fragments of
target proteins were restrained to their homologdamplates. Using this technique,
improvements in GDT-HA (GDT-High Accuracy) scoregere possible for targets with initial

GDT-HA scores of greater than 50. However, for CBS&1d CASP9 targets average
improvement was limited to only 0.6% in terms of GBIA and the improvement in RMSD was

insignificant.

Here, we are presenting a structure refinementopobtthat combines MD-based sampling in
explicit solvent using the latest CHARMM (ChemistityHARvard Molecular Mechanics) force
field[9], a scoring protocol that identifies the shmative-like structures, and ensemble averaging
to mimic the conditions under which experimentaliciures are obtained. Using this protocol,
we are able to consistently refine CASP8 and CASB@ets with relatively modest

computational resources.

In the following, the computational methods arecdiégd before results are presented and

discussed.

2.3 Methods
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We have performed all-atom molecular dynamics (MDyulations for 26 refinement targets
from CASP8 and CASP9. The targets used here asdestare listed in Table 2-1. The initial
structures were provided by the CASP organizers @pilesent predicted models of high
accuracy for the respective targets that were siéanduring CASP. Along with the initial
coordinates, the CASP organizers also providednmétion for many targets about regions that
refinement should focus on. This information wasdukere to apply restraints on the remaining
parts of the structure considered to be accuratetadrgets where a refinement residue range was
not provided during CASP we determined a residstramt list during the respective CASP
rounds when knowledge of the experimental strustun&s not yet available under the
assumption that the core secondary structure elsnaga likely to be more correct than other
parts of the structure. The resulting list of rasits for each target is given in Table 2-1. For 16
targets the restraint regions were selected base€@iASP suggestions, and for the remaining 10

targets restraints were based on core secondaoigie elements.

For each initial structure, missing hydrogens wérglt using the HBUILD module in
CHARMM.[86, 87] The protein structures were thervated in a cubic box of water with a
minimum distance of 10 A between any protein atowh the edge of the box. The systems were
neutralized by addiniya™ or CI~ as counterions to balance the overall chargeofAthe systems
were equilibrated by minimization followed by heatithrough short simulations over 1 ps at 50
K, 100 K, 150 K, 200 K, 250 K, and 298 K. Subsedysnduction simulations were carried out
at 298 K and 1 bar pressure in the NTP (constamtoen of particles, temperature, and pressure)

ensemble over different simulation lengths up t0 26.
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Table 2-1 CASP8 and CASP9 refinement targets used herestasases with the total number of
residues and €&RMSD of the initial models from the respective imatstructures. Restraint
regions denote residues for which harmonic redgairere applied to maintain structures near
their initial structures. The targets were sortegoading to increasing RMSD values. The
regions suggested by CASP are shown in bold.

Target | # off RMSD | GDT- Restraint regions
res.| (A) HA

TR592 | 105| 1.26 72.9| 17-29;36-46,58-67,76-121

TR453 | 87 1.47 71.3| 5-34,45-91

TR432 | 130| 1.65 77.5| 1-84,93-130

TR462a| 75 1.76 57.1  1-5;10-16;21-30,;35-42;50-58&6;64-75

TR594 | 140 | 1.82 67.0| 1-71,82-101;114-140

TR614 | 121 | 1.87 71.5| 11-33;53-64,75-109

TR435 | 137 | 1.89 67.9] 15-19;26-27;38-66,75-87;92-94,98:103-133,;137-151

TR530 | 80 1.99 69.1| 36-44,56-74,80-115

TR488 | 95 2.11 75.0| 1-11;17-95

TR469 | 63 2.18 63.5| 3-7;11-28;33-50;54-65

TR462b| 68 2.42 48.9| 76-83;88-91;97-106;114-124,127-128%:136;140-143

TR389 | 135| 2.64 63.3] 10-15;22-34,49-55,68-73;81-82;109:106-126

TR464 | 69 2.73 59.8| 18-37,44-56,;61-86

TR569 | 79 3.01 52.2| 1-25;44-49,62-79

TR454 | 192 | 3.24 42.3| 5-24,29-34;40-44,50-71,77-107;118:187-167;176-196

TR567 | 142 | 3.44 58.3| 4-21,28-47,55-59;67-74,90-101;109-145

TR574 | 102 | 3.58 40.0| 28-35;49-57,71-73;79-81,85-91,97-106

TR557 | 125 | 4.06 46.8| 1-11,21-40;49-52,73-100;107-125

TR429a| 79 4.31 54.§ 22-37;44-57,68-80;89-93;98-100

TR517 | 159 | 4.64 53.6| 1-62,89-159

TR606 | 123 | 4.85 52.6| 56-144

TR429b| 76 4.98 30.3] 101-104;108-111;115-122;128-154;162-1

TR624 | 69 5.19 35.9| 5-11;16-20;34-51,57-73

TR568 | 97 6.15 35.8| 62-77,91-94,107-108;124-158

TR622 | 122 | 6.47 51.9| 1-96

TR576 | 138| 6.85 45.3| 25-56;66-119

The CHARMMS36 force field[9] was used in combinatiaith the TIP3 water model[88]. The
CHARMM36 force field was recently introduced as emproved version of the previous

CHARMMZ22/CMAP force field[89, 90]. The main diffemees are improved sampling of
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backbone propensities in better agreement withraxeatal data, in particular NMR J-coupling
data, and improved side chain torsions, also taovgagreement with experimental data.[9] In
all simulations, periodic boundaries were appliad particle-mesh Ewald summation was used
to calculate electrostatic interactions using a gpacing of 1 A. Direct-space electrostatic and
Lennard-Jones interactions were truncated usingitatsng function between 8.5 A and 10 A.
All simulations used holonomic constraints on bondgolving hydrogens so that a 2 fs
integration time step could be used. Simulationsewaarried out with and without restraints

according to Table 2-1. Restraints were appliedugh a harmonic force on,Gtoms with a

force constant of kcal/mol/A”.

Because part of our refinement protocol involvesraging over structural ensembles, a second
set of simulations was carried out to allow sidaich in the averaged structures to relax while
maintaining the backbone geometries. This was aptshed by resolvation of the refined
structures followed by minimization over 5000 stepsl two short MD simulations at 10 K and
100 K, each for 40 ps. During these minimizatiod aMD simulations, all ¢ atoms were
restrained with a force constant of ﬂQﬁl/mol/Az. The quality of the structures before and

after the final refinement simulations was assessety the MolProbity structure validation web

service[91].

All of the systems were initially setup using CHARNB6, 87] and the MMTSB (Multiscale
Modeling Tools for Structural Biology) Tool Set[92Production simulations were carried out
using NAMDI[93]. Analysis was carried out using andmnation of CHARMM, the MMTSB

Tool Set, and custom scripts and programs.
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2.4 Results

Molecular dynamics simulations were carried outtfer CASP8 and CASP9 refinement targets
starting from the template-based models providednduthe respective CASP rounds for the
CASPR refinement competition. Simulations were mith and without restraints and over

different lengths of 24 ns, 200 ns, or eight tirBass to compare the effect of different amounts
of sampling. The conformations sampled for eaclgetaduring these simulations were then
subjected to different selection and averagingquais with the goal to obtain refined structures.

Each protocol and the corresponding results areritbesl in more detail in the following.

2.4.1 Final and Best Structures

The most straightforward MD-based refinement protagould consist of simply considering
the final structure at the end of a given MD ruables 2-2 and 2-3 show the change in RMSD
and GDT-HA, respectively, relative to the nativeustures for the final structures under
different conditions. We show here changes in B®MSD and GDT-HA[94] values because
they emphasize different aspects. GDT-HA represttdraction of residues in the model that
are within a short RMSD cutoff from a referenceusture. Improvements in GDT-HA
characterize to what extent the fraction of higlaldy parts of a given structure is increased
while ignoring parts of a structure that are of pgaoality. RMSD changes capture the entire
structure including bad parts of the structuree®ftGDT-HA and RMSD are highly correlated
but in some cases, we find refinement in one mealut not in the other and vice versa. The
first observation from the results in Tables 2-21 &3 is that without restraints most of the
structures move away from the native structure,essignificantly, despite the relatively short
simulation length of 24 ns. However, for the fevees where the final structure is refined, the

improvement can also be quite significant, by atdo#t for two targets. The occasional success
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but overall failure with unrestrained MD simulatgis consistent with similar findings by other

groups.[70] When restraints are applied during $nns of the same length, the number of
refined targets increases from 5 to 9 (out of tofaR6 cases considered here) but while the
restraints prevent large deviations away from thgve they also limit to what extent structures

can be improved.
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Table 2-2 Changes in RMSD (A) from the experimental struetrlative to the RMSDs of the initial
models during MD simulations with and without rastts over different simulation lengths. For akkes,
the ARMSD for the final conformation and the overall kst RMSD are given. Improved cases with
negativeARMSD values are highlighted in bold.

NO
RESTRAINTS WITH RESTRAINTS
Target 24 1S A s por— o0 s

Final Best | Final Best | Final Best | Final Best

TR592 0.42 @ -005 | -0.07 -0.18] -0.12 -0.16] -0.12 @ -0.20
TR453 0.34 0.08 0.16 -0.09] 0.17 -0.10] 0.44 -0.09
TR432 1.39 | -012 | -0.13 -0.30] -0.26 | -0.34] -0.18 @ -0.31
TR462a] 0.53 0.04 0.44 0.04 -0.04 -0.26] 0.42  -0.07
TR594 1.37 0.13 0.75 0.0p 0.05-0.12] 0.34 0.00
TR614 1.11 0.03 0.40 -0.13] 0.25 -0.11] 0.08  -0.13
TR435 0.13  -031 ] 0.30 0.03] 0.07 -0.08] 0.78 0.03
TR530 | -0.27 -064 | 0.18 -0.27]| -0.22 -0.40] 0.26 -0.35
TR488 1.29  -0.08 | 0.00 -0.25] -0.16 -0.23] -0.13 | -0.26
TR469 0.72 -014 | -0.02 -0.19| -0.09 -0.20] 0.15 -0.19
TR462b|] 0.23 | -0.16 | 0.10 -0.11] -0.02 : -0.14}] 0.17  -0.11
TR389 0.81 0.01] -0.27 -062] -0.11 -051] 0.31  -0.62
TR464 0.89 -014 | -0.02 -0.16| 0.03 -0.15] -0.12 @ -0.23
TR569 0.46 -003 | -024 -050| -0.26 -0.47] -0.28 -0.69
TR454 0.89 -031 | 0.06 -0.15| -0.10 -0.19] -0.12 @ -0.20
TR567 | -1.00 -146 | 0.02 -0.18] -0.03 -0.11] -0.06 @ -0.20
TR574 1.82 0.15 1.07 0.0 0.09-050}] 1.16 -0.40
TR557 | -001 | -0.75 | -058 | -0.67] -0.35 -0.57] -061 -0.84
TR429al 2.32 @ -1.19 | 0.20 -0.20] -0.08  -0.21] -0.03 -0.26
TR517 3.05 0.03 0.50 -0.12] 0.15 -0.17] 0.46 @ -0.12
TR606 1.76 0.01 1.63 -0.28| 0.58 -093] -0.80 -151
TR429b| -0.35 | -0.59 | -0.02 -0.17] -0.04  -0.25] 0.01  -0.23
TR624 | -090 | -1.83 | -0.21 -0.68] -0.03 : -0.37] -0.63 . -0.89
TR568 0.59 0.13 0.07 -0.31] 0.32 -0.10] 0.29  -0.43
TR622 0.20 0.03 0.23 -0.05] 0.06 -0.72] 1.63  -0.32
TR576 1.01 0.51 0.74 04p 070 0.7 0.28 0.90
Avg. 0.72  -026 | 0.20 -0.19] 0.02 -0.27| 0.14 -0.33
#better 5 15 9 21 15 25 11 23
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Table 2-3 Changes in GDT-HA from the experimental structtglative to the GDT-HA values of the

initial models during MD simulations as in Tabl@ 2kmproved cases with positivesDT-HA values are
highlighted in bold.

NO
RESTRAINTS WITH RESTRAINTS
24 ns 24 ns 8 x3ns 200 ns

Final Best Final | Best | Final Best | Final  Best

TR592 | -10.5 6.2 4.5 8.3 4.1 6.4 5.7 9.1
TR453 -5.5 4.0 -40 @ 58 1.7 4.0 0.9 5.8
TR432 -22.7 14 -25 50 3.9 4.8 2.5 6.4
TR462a] -6.0 1.3 -1.3 57 1-03 73] -10 7.3
TR594 -23.8 -4.5 -0.7 3.8 0.9 21 | -0.7 4.1
TR614 -16.2 -1.1 00 46 04 28 | -14 6.3
TR435 -6.2 0.2 -49 02 ] -16 13 ] -85 1.8
TR530 -1.6 2.8 -0.9 31 1.3 44 | -2.8 31
TR488 -1.3 6.6 24 6.6 5.0 5.8 5.3 7.1
TR469 -16.7 -4.8 -24 20| -16 28] -56 3.2
TR462b] 15 8.5 -1.1 . 22 0.7 40 | -15 2.6
TR389 -18.9 -7.3 -69 -19 58 -0p -73 -1{9
TR464 -4.7 3.3 00 54 ] 04 36 15 6.2
TR569 -7.0 3.2 00 60 1.3 57 ] -06 7.6
TR454 -11.6 . 13 -1.3 | 23 1.3 3.0 0.3 4.0
TR567 -3.0 1.6 -04 @ 438 25 4.2 2.8 5.3
TR574 -7.9 251 17 4.2 3.2 3.7 0.7 6.4
TR557 1.0 1.2 2.2 14 3.8 6.6 5.2 9.0
TR429a] 04 10.5 28 121] 56 11.7] 89 145
TR517 -1.6 24 -1.9 30 2.0 36 | -24 30
TR606 -7.9 -2.2] 18 47 | -04 35| -14 57
TR429b) 2.6 7.9 -0.7 26 00 46| -1.0 43
TR624 6.9 11.2 4.4 6.2 04 4.0 2.2 6.2
TR568 -8.0 3.9 1.0 3.9 0.3 34 0.3 4.6
TR622 -14.1 00] 27 6.0 4.8 6.0 2.5 7.4
TR576 -11.6 -4.2 -1.1 20| -07 05 ] -13 2.9
Avg. -7.5 2.2 -0.3 | 45 1.2 4.2 0.3 5.5
#better 5 18 9 25 18 25 13 25

Extending the sampling to 200 ns further incredsesnumber of structures that were refined at
the end to 11 (according to RMSD) or 13 (accordm&DT-HA). However, even better results

were found when the average final structures froemynshort simulations (8 x 3 ns) were
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considered with now more than half of the strucduseing refined. The use of multiple short
simulations is expected to improve sampling ovesiragle long simulation[41, 95] and our

results suggest that increased sampling does ¢eimaptroved success with refinement. This is in
agreement with previous findings.[70] It is intdneg to note that when selecting the average
final structure from the 8 x 3 ns simulations, ieady find an average improvement in GDT-
HA score by 1.2, comparable to the results repoltedhe Shaw group after much longer

simulations.

As shown in Figures 2-6 and 2-7 (supplementary risliethe RMSD and GDT-HA scores
fluctuate significantly during the simulations am¢hile the final structures are often not
improved, there are improved structures at othmesi during the simulation for many targets.
Tables 2-2 and 2-3 also show the improvement in RM8d GDT-HA for the best structures (in
terms of RMSD or GDT-HA) that were sampled durihg simulations. Without restraints, only
about half of the targets are refined at some phining the trajectory, but with restraints refined
structures are found for almost all of the targetgarticular during the longer 200 ns simulation
and during the multiple short simulations. The agermaximum improvement in terms of GDT-
HA is again similar to the values for the simulagdrom the Shaw group after abouti) This
finding raises the possibility that such long siaiidns may not be necessary to achieve

refinement and that other methodological factory bemore critical.
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Table 2-4 Changes in RMSD (A) and GDT-HA upon selecting attites with the lowest DFIRE score
and correlation coefficients of RMSD or GDT-HA vBRMSD or DFIRE. Correlation coefficients larger
than 0.30 (RMSD) or less than -0.30 (GDT-HA) amghlighted in bold.

200 ns 8 x3ns

A Correlation A Correlation
Target RMASD GDT- | RMSD/GDT-HA RhﬁSD GDT-| _ RMSD/GDT-HA

HA vs IRMSD vs DFIRE HA | vsiRMSD | vs DFIRH
TR592 | -0.06 0.5 0.10/0.02 0.04/-0.1¢ -0.06 | 0.2 0.16/-0.09 | 0.35/-0.27
TR453 0.16 0.3 0.95/-0.33 0.19/-0.17f 0.30 | -1.4 | 0.89/-0.43 0.35/-0.30
TR432 | -0.12 2.1 -0.03/0.02 0.06/-0.11 -0.04 | 04 -0.25/0.24  -0.01/-0.1f7
TR462a] 0.21 4.7 0.51/-043 0.25-051| 0.31 | -0.7 | -0.11/-0.21 -0.16/-0.p4
TR594 0.18 2.0 0.61/0.07 0.30/-0.25]| 0.07 | -1.4 | 0.50/-0.06 0.17/-0.11
TR614 0.38 -4.2 | 0.05/-0.02 0/2@32] 0.29 | 0.7 | -0.03/-0.01 0.080.33
TR435 0.20 -2.7 | 0.95/0.15 @ 057/0.03] 0.08| -3.1| 0.71/-0.37 0.34/-0.21
TR530 0.96 -3.4 | 0.93/-0.55 -0.02/-0.03 0.03 | 0.3 0.16/-0.14 0.15/-0.2f
TR488 | -0.13 2.9 -0.20/0.23 0.01/-0.14 -0.10 | 0.3 -0.24/0.24 0.06/-0.1}
TR469 0.09 -3.2 | 046/-0.27 0.11/-0.24 -0.04 | -0.8 | -0.10/-0.12 0.22/-0.2p
TR462b] 0.30 -3.3 | 057/-043 -0.15/0.04] 0.02 | -1.5| 0.43/-0.48 0.24/-0.23}
TR389 0.30 -7.1| 0.71/-0.22  0.27/-0.194 -051 | -5.8 | 0.08-0.49  0.62/-0.28
TR464 | -0.13 0.4 -0.37/0.18 0.12/-0.03 0.04 | -2.2 | -0.14/0.00 -0.06/0.¢7
TR569 | -0.37 3.8 -0.45/0.21 0.01/-0.14 -0.03 | 0.0 | -0.70/0.08 0.18/0.00
TR454 | -0.09 0.1 0.37/-0.16 0.35/-0.37 | -0.19 | 0.8 0.13/-0.07 0.09/-0.1p
TR567 | -0.05 0.7 |-0.10/-0.11 -0.07/-0.09 -0.02 | 0.7 0.05/-0.20  0.05/0.01
TR574 1.08 2.0 0.64/-0.03 0.15/-0.24 -0.09 | -2.0 | 0.32/0.22 0.48/-0.18
TR557 | -0.56 6.0 -0.30/0.36 -0.16/0.00f -0.03 | 1.6 -0.66/0.34 -0.20/0.06
TR429a] -0.14 9.7 0.20/-0.09 0.32/-0.32 | 0.06 | 65 0.36/-0.04 0.04/-0.23
TR517 0.03 -1.3 | 0.48/0.00 0.43/0.01] 0.01| 11 0.51/-0.12 0.45/-0.15
TR606 | -0.96 0.4 -0.04/0.08 0.80/-0.14| -0.26 | -2.2 | 0.43/-0.02 0.55/-0.01
TR429b] -0.09 1.0 0.19/-0.06 0.41/-0.27| -0.10 | 0.3 0.71/-0.50 | 0.48/-0.44
TR624 | -0.44 1.8 |-0.46/-0.05 0.06/-0.05] 0.32 | -2.2 | 0.16/-0.03 -0.12/0.95
TR568 0.03 2.6 -0.14/0.15 0.02/-0.2¢ 0.14 | 16 0.36/-0.20  0.29/-0.26
TR622 0.04 3.9 0.82/-0.23 0.77/-0.28| 0.27 | 0.8 | -0.23/-0.06 0.09/0.01
TR576 0.29 -2.5| -0.22/0.040.40/-0.10] 0.84 | -4.9 | 0.47/0.03 @ 0.07/-0.09
Avg. 0.04 0.7 0.24/-0.06 0.21/-0.1¢ 0.05 | -0.5| 0.15/-0.10 0.18/-0.15

2.4.2 Lowest-scoring Structures

Since refined structures were generated during rbghe simulations, the next question we
investigated was whether application of a scorimgcfion to an ensemble of structures extracted

from the MD runs would allow us to identify the masative-like, and therefore refined
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structures. Table 2-4 shows the change in RMSDGDd-HA with respect to the experimental
structures when selecting the conformation with ldveest DFIRE score. We chose DFIRE as
one of the best-performing scoring functions trest heen widely applied in structure prediction
applications.[44, 84] The results indicate thaesthg structures based on the lowest DFIRE
score has similar performance or is even slighttyse than simply taking the final structures.
This is not entirely surprising when considering torrelation coefficients between RMSD or
GDT-HA and the DFIRE score. Although the correlatimoefficients largely have the correct
sign (positive for RMSD, negative for GDT-HA), thamall magnitude — with a few exceptions
— suggests that it would be difficult to reliabBlect a single structure. We also considered other

scoring functions (data not shown) and found simiésults.

24.3 Ensemble-averaged Structures

Next, we considered that experimental structurestlae product of conformational averaging
rather than representing single snapshots. Constguee obtained average structures from the
MD-generated structure ensembles. Figure 2-1 shtwves effect of averaging different

percentages of the MD-generated structures tha¢ werted either according to their DFIRE
score or based on their distance from the initielcsure (iIRMSD). We find that averaging

generally outperforms selecting a single structwigile averaging over the 10% of structures
with the lowest DFIRE scores results in a maximumprovement in GDT-HA by 2.6, which is

about half of what could be achieved theoreticé#llthe best conformation could be selected
from each trajectory. However, when considering RM8n even smaller ensemble of only the
1% best-scoring structures results in a maximunrdavgment by 0.04 A. Interestingly, selecting
structures according to low iIRMSD values, i.e. agarg over structures that have moved the

least from the initial structure, also results @fimement. The rationale for that finding is that
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when structures start to deviate significantly freime initial templat-based model, they a

much more likely tonove away from the native structure than towarc
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Figure 2-1 Change in RMSD with respect to native structuredAd in GD™-HA (B) upon
averaging different subsets of structures sorteditner DFIRE cores or iRMSDResults from

the 200 ns MD runs are shown in blue (circles) faoch 8x3 ns sampling in green (triangle
Open symbols denote iRMSIased selection; closed symbols refer to DI-based selection.

The observation that both DFIRE and iRMappear to be suitable metrics to identify enserr
of structures that when averaged provide structtinas are likely closer to the native ste

prompted us to consider a combination of both scéwe selecting a subset of structures tc

30



averaged. Since the range of these two scoredfeseatit, we first normalized the values by
subtracting the mean and dividing by their respecstandard deviations for a given set of
structures. We then chose values in an open arnesggas illustrated in Fig. 2-2. Given the
identity line through the origin (dashed line igFR-2), structures were chosen within a given
angle6/2, around the line to the origin and at a minimadial distance from the center of the

distribution.

To find optimal values ofp( 0), we variedp from 0.2 to 1.9 with increments of 0.1, and chahge
the angled from 30 to 200 degrees at increments of 10. Fah darget, we extracted the
structures that lie in the aforementioned regiom, #hen calculated the average structure. Figure
2-3 shows the average improvements in RMSD and GBTas functions op and6. As optimal
values that maximize both RMSD and GDT-HA we chosk.2 andd=120. Using these values,
the RMSD is improved by 0.07 A and GDT-HA scores20§. The improvements in RMSD and
GDT-HA for individual targets using this criteri@me given in Table 2-5. We find that GDT-HA
is not further improved over simply selecting thH#d of the structures with the lowest DFIRE

score but the improvement in RMSD appears to bersignificant.

A drawback of structure averaging is that furthrefinrement is necessary afterwards to generate
stereochemically good models. As an alternativetopa, we also selected the ensemble
structure closest to the subset averages. Thegdega in Table 2-8 shows that on average there
is no improvement in RMSD and there is only a srmaffrovement in GDT-HA for structures
taken from the 200 ns simulation. This suggests @wvaraging rather than selecting a single

structure is a key to the success of the refinempetbcol described here.
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Table 2-5 Change in RMSD (A) and GDT-HA upon averaging owaested subsets (see text)
with and without additional structure interpolatidkverages were calculated for all targets and
for those where the correlation coefficient of iRD8s. DFIRE is less than 0.4 (indicated by

200 ns 8 x3ns
Corr. Subset Structure Corr. Subset Structure
Target IRMSD Average Interpolation | IRMSD Average Interpolation
VS. A A A A VS. A A A A
DFIRE | RMSD GDT | RMSD GDT- | DFIRE | RMSD GDT- | RMSD GDT
-HA HA HA -HA

TR592 001 ] -014 62 | -013 4.3 0.14 -0.12 31 -0.11 | 1.9

TR453 0.14 0.09: 29 0.04 2.9 0.20 003 23 000 29

TR432 -0.03]| -019 @ 44 | -019 3.7 0.18 -0.14 3.5 -0.12 @ 37

TR462al 0.49 0.20 | 40 | 0.13 | 3.0 0.68" 0.08 | 0.7 0.03 | 0.3

TR594 -0.05 0.15 20 0.09 13 0.13 001 07 -0.01 0.7

TR614 | 045 024 39 | 0.08 42 054 033  -04| 022 07

TR435 | 059 023 -18| 0.14 -0.9 0.36] -001 -0.9 | -002 @ -0.2

TR530 -0.07 ] -016 09 | -0.16 0.6 0.11 -0.17 2.2 -015 16

TR488 0041 -012 50 | -011 4.5 -0.06 | -0.13 4.2 -0.12 45

TR469 -0.16 | -0.02 -0.8 | -0.03 0.0 0.06 -006 -24 | -0.06 @ -0.8

TR462b] -0.28 0.07 07 0.00 2.6 0.37 -0.03 2.2 -0.06 @ 33

TR389 017 | -043 -26 | -048 -15 0.27 | -014 -22 | -016 -0.8

TR464 0091 -001 11 | -0.01 0.7 0.14 003 04 0.02 0.0

TR569 006 | -029 10 | -0.27 1.0 -0.19 | -0.07 0.3 -0.06 @ 1.0

TR454 023 ] -009 17 | -0.09 1.8 0.14 -0.08 1.3 -0.07 21

TR567 023 ] -0.06 33 | -0.06 2.5 -0.04 | -0.02 3.3 -0.02 @ 2.6

TR574 -0.01 0.24 39 0.10 2.7 0.12 -0.04 1.5 -0.06 1.2

TR557 012 ] -056 42 | -049 3.6 0.33 -0.18 3.8 -0.15 @ 3.0

TR429a] 0.18 | -009 93 | -0.10 8.5 0.10 | -0.08 @ 6.1 -0.08 6.9

TR517 0.28 0.22 13 0.12 14 0.50 0.03 24 002 20

TR606 -0.19] -104 26 | -1.00 3.3 0.32 -0.01 0.2 -0.03 04

TR429b] 028 | -012 03| -013 00 | 049 | -015 17 | -013 13

TR624 -0.09] -033 40 | -0.29 3.6 -0.07 000 04 -0.01 0.0

TR568 -0.09 0.02 31 | -0.02 2.8 0.48 0.18 1.0 0.14 10

TR622 | 0.84 0.14 58 0.07 5.4 0.26 0.17 43 012 39

TR576 0.31 031 04 0.21 04 052 0.68 -1.3 052 -0.9

Avg. - -0.07 26 | -0.10 24 -- 0.00 1.5 -0.01 16
Avg. ~= -0.12 25 | -0.14 2.3 ~= -0.05 1.7 -0.06 @ 1.9
#better -- 15 23 16 23 -- 16 21 18 20
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2.4.4 Structurelnterpolation

As a result of subset averaging described aboveaneyenerate refined structures for a majority
of cases (15-16 out of 26 in terms of RMSD and 3ir2erms of GDT-HA, see Table 2-5). The
idea we followed next was that whether it would guessible to refine structures further by
extrapolating the 3N-dimensional vector between itiigal model and the refined structures.

More specifically, we consider the vector differenoetween the Lcoordinates in the initial

modeI,Rg:it), and the ones obtained from the ensemble-averagedturesRéjvg), most of

which are refined relative to the initial model. tpthat the average structure is already
superimposed to the initial model as a result of lbe ensemble average was generated. We
then tested whether a new set of coordinates admtaaccording to Eq. 2-1 would increase the

degree of refinement:

If\)’((:new) _ (1_ (1) I_?'((:init) +a If\)’éavg) -

wherea. is a scaling factor. Here,=0 corresponds to the initial model, ang1 corresponds to

the ensemble-averaged structure. Values bétween 0 and 1 would correspond to interpolation
between the initial and refined structures, valbegond 1 would be extrapolation beyond the
refined structures. Figure 2-4 shows the effecaplying Eq. 1 on the overall change in GDT-
HA and RMSD. We find the optimum value afto bea=0.6 for maximizing improvements in
RMSD, anda=1 for GDT-HA. This result was surprising as we esfjed that values @f>1 may
improve structures further. However, closer insjpecbf which targets are most affected by the
structure interpolation approach suggests thatngraloordinates according to Eq. 2-1 has a
stronger effect on the RMSD of targets where theSRMncreased during the refinement stage
(see Fig. 2-5), i.e. structures that were made evdiging the refinement. On the other hand,
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there was less of an impact on the structurescthat be refined. Hence, the overall effect is an
average improvement. It is unclear to what extéig is a general finding but as a result of
applying the structure interpolation method (with0.8) we find further improvement in terms
of RMSD. However, GDT-HA becomes slightly worse whhbe structure interpolation method

is applied.

The restraints applied during the MD simulationgeveither given by the CASP organizers or
determined by us (see Table 2-1). An interestingstjan is whether the origin of the restraint
list had an impact on the refinement success. Thenges in RMSD and GDT-HA after
refinement for the targets with CASP-suggestedaegs were -1.4 A and 2.6, respectively, but
somewhat less, -0.04 A and 2.0, respectively, lier targets where we selected the restraints.
Hence, refinement is most successful if sampling loa targeted to the regions known to be

deviating most from the native.
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245 Quality Assessment

Finally, we considered whether it is possible tedict in which cases refinement is succes
and when structures become worse as a resultioeneént. Motivated by a previous analy
using a correlatiomased metri[96, 97]we considered the correlation between the two s«
IRMSD and DFIRE, both of which are available with&nowledge of the native structure. T

rationale for using this score is that because iBNESoften correlated with RMSD (see Ta2-
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4), a correlation between DFIRE and iRMSD is inthieaof a correlation between DFIRE and
RMSD. Figure 2-5 shows the change in RMSD afteneshent as a function of this correlation
coefficient. It can be seen that all of the sigmfitly refined structures have a correlation
coefficient between -0.4 and 0.4 while higher datren coefficients larger than 0.4 correlate
with a lack of refinement. Significant correlatibatween DFIRE and RMSD (and by proxy with
IRMSD) most likely occurs when structures move bgignificant extent. It appears from this
analysis that in those cases the motion is likelp¢ away from the native structure rather than
towards it. Using a DFIRE/IRMSD correlation coeiiéiot of <0.4 as a criterion that refinement
has been successful, we identify four cases, TRAB&62A, TR614, and TR622, that are
outside this range and for which refinement wasefloee assumed not to be successful. If we
use the initial modelARMSD=0) for these targets instead of the ‘refinglictures, the average
change in RMSD from the native improves further;ad.2 (without structure interpolation) and
to -0.14 (with structure interpolation). The effeah GDT-HA is less clear, because the
improvement is actually slightly decreased for B@ ns set but it improves for the 8 x 3 ns

sampling set.
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Figure 2-5 Change in RMSD with respect to native structura asction of correlatiol
between iIRMSD and DFIRE scores with (green trias)gdend without (red squés) structure
interpolation.

2.4.6 Final Refinement of Averaged Structures

So far, the structural analysis has focused orC, coordinates. As a result of the averaging
structure interpolation procedures, the generatettares are of poor quality in terms of bc
geometries, clashes, etc. which is readily appamren submitting those models to structt
analysis tools (see Table6)- In order to generate overall high quality stawes, we performe
additional short MD simulations where th¢, atoms were constrained to maintain the owve
improvement in structure but where other atoms vedleeved to relax. The quey of the final
models was improved dramatically (see Te2-7) to result in highguality refined structure:
After the final step, the average change in RMSB stil -0.08 A, and the change in GFHA
was 2.3. For comparison with other studies, we aalculated the average improvement

GDT-TS for the final structures to be 1
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Table 2-6 Quality measures of averaged structures befavg) (and after iMD) refinement via
restrained MD simulations.

0,
. % poor N % bad % bad | MolProbity

Ramach.| Cgdev.
) bonds angles score
outliers

Clash score
Target rotamers

Avg MD Avg_j MD Avg_j MD Avg_j MD Avg MD Avg MD Avg_j MD
TR592 [ 147.8 3.0 56 42| 88 0.0/ 64 21827, 00414 00| 39 2.0
TR453 | 435.8 2.2 114 5.7| 84 0.0 77 31929 0.0|75.0 0.0| 46 1.9
TR432 [ 295.0 09|55 46| 72 08| 112 2858 0.0(76.4 00| 42 1.3
TR462a| 445.7 0.0 14.3 0.0| 15.3 4.2| 63 31946 0.0/93.2 0.0| 47 1.0
TR594 | 253.2 3.1|19.7 53[14.2 6.0| 116 5 |91.2 0.0(743 0.7 44 2.3
TR614 | 722.7 8.2 45.7:10.6| 31.0 10.6| 119 15| 100 0.0 100 6.1| 5.6 : 2.9
TR435 [ 3829 1.4|13.0 46| 7.6 0.8/ 114 3 |88.7 0.0(75.2 08| 46 1.8
TR530 [ 219.0 3.9/9.1 3.0/104 26| 63 1808 0.0/654 00| 42 20
TR488 [ 314.1 0.7|9.0: 75| 4.4 3.3| 72 31893 00(61.3 00| 43 1.8
TR469 [ 366.8 1.1|23 46| 3.4 1.7| 49 01|78.7 00754 00| 3.9 15
TR462b| 686.6 1.8 20.4 6.1 |19.7 4.6| 58 21985 00927 15| 52 21
TR389 | 537.0 4.2(17.410.1)14.0 54| 124 11|96.2 0.0(924 3.8| 5.0 2.6
TR464 | 126.5 0.0 0.0: 20| 1.5 0.0| 44 0794 0.0/50.0 0.0| 2.7 0.7
TR569 [ 320.3 2.7|8.6 1.7| 6.7 1.3| 57 31857 00753 13|43 1.6
TR454 2434 1044 15|59 05149 0 |86.7 0.0(569 05|40 1.0
TR567 | 168.4 2.2|6.7:10| 45 0.8/101 3 |750 0.0{46.3 0.7| 3.9 1.3
TR574 | 515.8 3.9(28.2 6.4]23.2 51| 94 6 {970 0.0/90.1 40| 5.2 25
TR557 [ 336.6 2.6|11.1 20| 90 25/111 5919 0.0{839 0.8| 45 1.8
TR429a| 656.00 1.6 |[26.5 44342 79| 76 6 | 10 0.0/98.7 39|53 21
TR517 [ 363.7 2.7|115 53| 89 3.8/148 8 (96,9 0.0|874 0.6| 45 2.1
TR606 |590.1 6.338.4 6.1[30.6 5.0| 118 15/95.9 0.0| 100 4.9 54 2.6
TR429b| 551.9 3.2 |14.3 6.4|28.4 81| 71 81921 0.0/96.1 40| 50 24
TR624 | 330.1 3.6|155 5.2| 9.1 0.0| 58 2 1956:00(882 00| 46 21
TR568 | 4555 2.6(11.0 2.4 |17.2 43| 87 4 1979 00(/96.8 1.1| 48 1.8
TR622 4728 55374 7.7129.3 35|110 7 975 0.0{96.6 09| 53 25
TR576 | 702.3 5.5(38.211.8/24.8 6.8| 127 13|98.5 0.0(993 15|54 28
Avg: |409.2 28 |16.0 50|145 34| 92 5 |911 00(80.3 14| 46 19
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Table 2-7 Summary of the average improvements in RMSD (A) &DT-HA for all the
attempted methods for structure selection out @ 88 and 200 ns simulation sets; Best in
trajectory is given as a reference for the maxinpassible improvement.

ARMSD (A) A GDT-HA

Method: 8 x 3 ns| 200 ns| 8 x 3 ns| 200 ns
Best in trajectory -0.27 -0.33 4.2 55
Final Structure 0.02 0.14 12 0.3
Lowest DFIRE 0.05 0.04 -0.5 07

Average over 10% lowest DFIRE] -0.03 -0.04 1.6 2.6
Average over 1% lowest iIRMSD 0.01 -0.04 14 24
Subset average from
combined DFIRE/iIRMSD scores| 200 -0.07 15 2.6
Closest structure
to subset average
Subset average and
structure interpolation
Subset average/interpolation with
correlation-based filtering

0.07 0.01 -0.6 0.6

-0.01 -0.10 1.6 24

-0.06 -0.14 1.9 2.3

2.5 Discussion and Conclusion

We are presenting here a new protocol for struatefieement that is based on MD simulations,
but adds a new scoring and averaging protocol. Ansary of the performance with different
structure selection methods is presented in TakMe Qverall, the refinement results reported
here are moderate, but what we consider most irapbis that we are able to consistently refine
the large majority of structures rather than makangignificant fraction worse as in earlier
attempts at structure refinement. The overall egfiant results are better than those reported
recently by the Shaw group despite the much shemeulations used here which may be due to
a number of different reasons. The force field thas used here is a recently updated version of
the CHARMM force field that appears to outperfornagnother available force fields in other
tests.[9] Furthermore, the use of ensemble avelnagesad of single structures appears to lead to

significant improvements that may compensate fermttuch more limited sampling compared to
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the work by Shaw et al. With respect to the sangphme find that nearly equivalent refinement
can be achieved with multiple short simulationdeatthan a single long simulation. This is
consistent with previous findings,[41, 95] but ip@int that merits further investigation since it
is generally much easier to run many short simuheatithan one very long simulation on
commonly available computer platforms. We alsomaftied here to employ an extrapolation
scheme to further refine structures —which was swtcessful so far — and an assessment
criterion to determine whether structure refinemisnsuccessful —which does appear to have

merit.

Another question is whether the refinement suctebgased by how the starting structures were
generated. The targets considered here were sklbgtéehe CASP organizers from the best
predictions during the CASP competition. While thisits the methods by which the models
were generated to a few top groups, an effort wademo avoid selecting models from only one
participating group. Hence, the models used asirgjastructures here represent some degree of
diversity in terms of how they were created. Simeesee consistent refinement across most of
the targets we assume that refinement successlépendent of the exact way the structures
were initially prepared. Furthermore, similar résdbr sampling from 200 ns simulations vs. 8 x
3 ns simulations suggests that just a few nanosiscavere enough to equilibrate the structures

sufficiently.

Finally, it would be interesting to see whetheraajed application of the protocol presented here
can be used in an iterative protocol to achieveensggnificant refinement. These are areas that

we will focus on in more detail in future studies.
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2.7 Supporting Information

Table 2-8 Change in RMSD (A) and GDT-HA for the structuresast to the subset average
relative to their respective values from the initreodels.

200 ns 8x3ns

Target

ARMSD A GDT-HA | ARMSD A GDT-HA
TR592 -0.08 3.1 -0.03 -0.2
TR453 0.15 -0.3 0.07 -0.3
TR432 -0.20 0.4 -0.11 0.4
TR462a] 0.20 2.7 0.11 0.7
TR594 0.24 -0.2 0.04 -0.9
TR614 0.44 -1.1 0.19 -2.5
TR435 0.26 -3.8 0.08 -3.3
TR530 -0.11 -1.6 -0.09 -2.2
TR488 -0.14 2.1 -0.07 0.5
TR469 0.03 -2.8 0.00 -3.2
TR462b 0.11 0.4 0.08 0.4
TR389 -0.21 -5.2 0.03 -4.9
TR464 0.03 0.7 0.04 -04
TR569 -0.30 -1.0 -0.03 0.3
TR454 -0.08 14 -0.05 -0.1
TR567 -0.05 2.6 0.01 2.8
TR574 0.79 0.7 0.14 -2.7
TR557 -0.50 14 -0.16 2.2
TR429a] -0.11 8.9 0.03 2.4
TR517 0.31 -1.0 0.07 0.8
TR606 -0.48 1.2 0.02 -2.9
TR429b] -0.13 -0.3 -0.06 0.3
TR624 -0.42 4.0 0.06 0.0
TR568 -0.06 1.6 0.22 0.5
TR622 0.21 25 0.39 -0.6
TR576 0.40 -0.7 0.72 -3.3
Avg. 0.01 0.6 0.07 -0.6
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Figure 2-6 Change in GDT-HA of all CASP8 and CASP9 target®rafefinement without
imposing restraints using C36ff.
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Figure 2-7 Change in GDT-HA vs. time for all targets with 266 simulation with imposed
restraints.
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3.1 Abstract

We used molecular dynamics (MD) simulations fousture refinement of CASP10 targets.
Refinement was achieved by selecting structuresy ftlke MD-based ensembles followed by
structural averaging. The overall performance a$ timethod in CASP10 is described and
specific aspects are analyzed in detail to proindeght into key components. In particular, the
use of different restraint sets, sampling from ipldt short simulations vs. a single long
simulation, the success of a quality assessmdsetion, the application of scoring vs. averaging,

and the impact of a final refinement step are dised in detail.

3.2 Introduction

Two decades of CASP (Critical Assessment of Tealesdor Protein Structure Prediction) have
documented significant progress with predicting strecture of proteins from their amino acid
sequences.[55, 98-102] This can be attributed éodivelopment of new techniques but an
increasing number of structures in the Protein DBdaak (PDB)[103] are at least an equally
important factor.[104-107] The most reliable mettiodprotein structure prediction is template
based modeling.[102, 105, 108, 109] The resultingl@s are often overall correct, but deviate
from experimental structures in detail with typicabt mean square deviations (RMSD) of 2-6 A
due to intrinsic errors when constructing modelseoiaon template structures.[35, 36] Therefore,
recent attention has shifted towards the refinenoériemplate-based models to improve their

accuracy and generate models that are suitablddtmgical and pharmaceutical studies.[57]

A variety of methods for the refinement of templatssed models have been proposed, with the
majority involving some combination of sampling ascbring with an emphasis on physics-

based methods, such as molecular dynamics[65, M@, 1111]. At the same time, knowledge
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based methods have also been proposed[77, 82112R,The challenges with typical structure
refinement protocols are two-fold: 1) Sampling kaprogress at least in part towards the native
structure; and 2) improved structures generatedhbysampling method have to be reliably
selected. In terms of sampling, different strategmave been explored. The application of
restraints on some regions of the protein judgedet@f higher quality than other regions often
leads to improved sampling of refined structurdd.[@ther strategies have involved enhanced
sampling methods such as replica exchange MD stionjal4] and self-guided Langevin
dynamics[83] as well as implicit and explicit satvesimulations.[111, 115] A key issue is the
quality of the force field which ultimately detemeas whether refined structures are likely to be
generated. In the past, force fields have beemagid specifically for refinement[67, 116], but
improvements in general biomolecular force field$],1118] are expected to also impact the

ability to carry out successful structure refinenen

While sampling methods are often able to geneedteed models, these are typically not found
at the end of a given sampling run but insteadtarmediate time points. The challenge is then
to find those refined structures from the ensenablstructures generated at the sampling stage.
The force fields used for sampling, while physigadiccurate, are often too noisy to reliably
identify single structures or small subsets of dtrres that are most native-like. Instead, a
number of statistical potential functions have beeed for scoring decoy structures, such as
DFIRE,[119, 120] GOAP,[121] DOPE,[122] and OPUS-P2R]. All of these scoring functions
have shown promise in selecting native-like strregufrom an ensemble, but struggle with

consistently selecting refined structures.[37, 11128]

Despite considerable efforts, effective structuenement protocols have remained elusive.

During the last round of CASP, CASP9, there weréy an few groups that were able to
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outperform a naive prediction of simply resubmdtihe initial model given by the organizers to
be refined[35]. Furthermore, refinement progress wexry modest and predictions from the most
successful groups lacked consistency as some sawggae refined significantly, while others
were made worse. Further efforts since CASP9 imchely long MD simulation by the D. E.
Shaw group[70]. In that work, it was clearly shothiat without restraints the initial models are
likely to drift away from the native structure magi refinement largely impossible. When
restraints were applied, the sampling of refinedicdtires became possible but the reliable
selection of refined structures remained a sigaficobstacle. Overall, structures selected based
on cluster size and/or energetic criteria were oapd on average 1% in terms of GDT-TS. A
similar level of performance was reported by Zhatigal.,[110] in which they combined
knowledge-based information with physics-based MBDusations and applied a fragment-
guided method with distance restraints used onaflabd local structural templates from the
PDB. Gront et al.[124] recently provided a comprediee review of refinement methods ranging
from physics based to knowledge based methods andlutled that refinement is more
challenging when starting structures are alreadhini2-3 A from the native structure. In that
paper it was also noted that knowledge-based msth@y have an advantage because they are
parameterized based on experimental structureshvdiie the target of refinement protocols vs.
physics-based methods that aim at capturing thieipraynamics at the global minima of the

energy landscape.

The distinction between (simulation-generated) garodynamics and experimentally-obtained
structures may become increasingly important asneefent methods aim to reproduce
experimental structures at high accuracy. One quaati issue is that experimental structures

reflect ensemble- and time-averaged conformatiocather than instantaneous snapshots.
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Following this idea, we have recently devised adtre refinement protocol that obtains refined
structures from ensemble averages over selectesktsuimstead of single snapshots[37]. When
this protocol was applied to ensembles from extensiD-based sampling with the recently
updated CHARMM36 force field in combination withpdicit water, significant and consistent
refinement became possible when tested on CASP&ASP9 targets. Here, we describe the

blind application of such a refinement protocolidgrCASP10.

In the following we will first describe the methddgy before presenting and discussing results

obtained during CASP10 and from subsequent posysiaa

3.3 Methods

The initial models from CASP10 were preprocessedatigging missing hydrogens using the
HBUILD module in CHARMM.[86] Protonation states d¢fis residues (if present), were
determined by visual inspection. The pKa valuestbér titratable residues (Glu, Asp, Lys, Arg)
were determined using the PROPKA web server[125] idlowed by visual inspection. All

proteins were subsequently solvated in a cubicdfoxater with at least 9 A cutoff to the edge
of the box. The systems were neutralized by addiagor CI to balance the net charge of the

systems.

The solvated systems were then subjected to malealynamics (MD) simulations with
periodic boundary conditions. The non-bonded imtgvas were cut off using the switching
method between 8.5 to 10 A, along with particledme&svald (PME) summation using a grid
spacing of 1 A for long range electrostatic intéicats. The simulations were performed under
NPT condition using Langevin dynamics at a tempgeabf 298 K with a Langevin piston to

maintain constant pressure at 1 bar. A time step fsfwas used with the SHAKE algorithm to
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fix bonds involving hydrogen atom. The CHARMMS36 ¢erfield[118] was used to model the

proteins in conjunction with the TIP3 water mod8l[8

All of the simulations used some form of restraifiteo types of restraints were used for almost
all of the targets; type 1 consisted of weak réstsawith a force constant of 0.05 kcal/maoijA
applied to all G atoms; type 2 involved strong restraints (withhecé-constant of 1 kcal/molff
applied to G atoms of only the regions that were assumed teeleble in the starting model.
For targets, where CASP organizers indicated whifions to refine, we followed their
suggestions. In other cases, we assumed that segostducture elements are likely to be more
reliable and applied restraints to those while ilegvoops flexible. Table 3-1 shows the regions
which were selected for the strong restraintssdme cases, a combination of weak and strong
restraints was used by applying strong restraintsaedected residues but weak restraints on the
rest. Due to the presence of zinc ions in TR75 fitlst set was modeled with weak restraints on

all C,s except for the region around the zinc fingers.

The heating and equilibration protocol involvedst@ges: First, simulations were carried out at
50 K using G restraints according to Table 3-1 with a forcestant of 2 kcal/mol/Aand a
force constant of 0.5 kcal/mol#&or all other G atoms. The temperatures and force constants
were subsequently increased/decreased in 10 ps &iefl00 K, 2/0.5 kcal/mol/, (200 K,
2/0.5 kcal/mol/&) (200 K, 1.5/0.2 kcal/mol/8, (200 K, 1/0.1 kcal/mol/8, (200 K, 1/0.05
kcal/mol/A?), (250 K, 1/0.05 kcal/mol/B, (298 K, 1/.0.05 kcal/mol/3, (298 K, 1/0.01
kcal/mol/A?), and (298 K, 1/0 kcal/mol/. The structure at the end of the final stage wsed

as the starting point for all of the productionsun
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Production simulations consisted of 10 or 20 regpécMD simulations, each 20 ns long and
starting from the same starting structure usingeeistrong or weak restraints (see Table 3-1).
We ran multiple short simulations instead of a Engng simulation to maximize sampling

given limited availability of computer resource®]During post-analysis we also carried out

single long simulations (200 ns) using the restrgipes listed as set 1 (Table 3-1).

Ensembles of structures were generated from thelaiions, containing 500 snapshots for each
of the MD trajectories. Structures in each repkogemble were analyzed in terms of the RMSD

from the initial model (IRMSD) and their DFIRE sesr

Following our previously established protocol[34e¢ Fig. 3-1), we began by using the
correlation coefficient between iIRMSD vs. DFIREaaguality assessment score. Replicas with
correlation coefficients greater than 0.4 were alided from subsequent analyses. From the
remaining replicas a subset of structures with doetbminimal iRMSD and DFIRE scores[37]
were then selected. Briefly, the selection critesidbased on normalized iIRMSD and DFIRE
scores to be within an angd around the identity line and outside a circlearfiusp from the
center of the distribution, corresponding to thedo left corner of the scatter plot of IRMSD vs.
DFIRE.[37] The criterion used in CASP experimentswaowever, slightly different than what
was used for testing the protocol on CASP8 and (A% gets because of additional
optimization.[37] Here, we usge1, andd=100. An average structure was then calculated from
the selected subset of structures followed byucsire interpolation. This was accomplished by
taking the point on the vector between the corredpm G, atoms in the average and the initial
model, with its distance to the initial model to®@&5 of the vector length. The coordinates of all

other atoms were copied from the initial model.
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Table 3-1 Type of restraints applied on,Catoms for the two simulation sets; strong (1
kCal/mol/A?), weak (0.05 kCal/mol/A and a combination of both. The strong force camtst
are only applied to the selected regions.

Target | Set 1: | Set 2: | Strongly Restrained Regions
20x20 ns 10x20 ns

TR644 | Combined Strong 53:56, 61:66, 71:75, 84:87, 115:119, 129:132, 140:142, 151:153

TR655 Strong Weak 21:50, 65:90, 94:141, 164:180

TR661 Weak - -

TR662 Weak Strong 5:16, 38:50, 66:79

TR663 | Combined Strong 79:140, 182:204

TR671 Strong Weak 38:54, 77:80, 85:89, 96, 108:125

TR674 Weak Strong 284:288, 300:305, 310:312, 318:320, 333:335

TR679 Strong Weak 1:24,46:145, 157:186, 198:223

TR681 Strong Weak ;(1);!(2),2451:57, 65:87, 102:118, 128:144, 153:157, 171:172,

TR688 | Combined Strong 46:54, 67:76, 89:98, 113:122, 137:145, 160:167, 182:190

14:21, 33:39, 48:59, 64:72, 81:89, 116:118, 143:147, 156:160,

TRE89 | Strong Weak | 165:160, 181:190, 197:207, 211:218, 226:234
TR696 | Weak Strong | 18:22, 27:35, 41:43, 50:51, 58:60, 69:73, 93:96, 101:105
TR698 | Strong Weak | 1:16, 36:89, 101:119
TR699 | Weak Strong | 8:11, 37:45, 53:55, 86:94, 103:135, 161, 205:206, 219:234
25:32, 40:42, 50:55, 61:64, 81:83, 100:102, 113:120, 128:132,
TR704 |  Weak Strong | 141:149, 161:166, 188:189, 193:200, 204:209, 217:226,
236:237, 242:246
TR705 | Weak Strong | 40:42, 65:67, 82:85, 90:91, 110:114, 119:126
24:27, 4560, 66:70, 99:101, 113:119, 125:129, 136:152,
TR708 Weak Strong 172:183
TR710 | Weak Strong | 27:50, 67:83, 100:117, 135:152, 168:185, 201:220
TR712 | Strong Weak | 38:79, 90:115, 130:140, 156:223
27:29, 53:71, 80:86, 91:103, 108:114, 127:139, 144:147,
TR720 Weak Strong 154:157, 162:176
TR723 Strong Weak 39:73,99:112
TR724 | Weak Strong | 135:136, 152:157, 198:202, 210:216, 232:238
TR738 | Strong Weak | 1:38, 88:90, 103:249
TR747 | Weak Strong | 24:26, 46:49, 55:59, 68:71, 80:83, 92:94, 103:109, 114:121
TR750 | Weak Strong | 1:6, 28:29, 48:57, 64:66, 78:93, 98:100, 121:137, 168:182

TR752 Strong Combined | 1:40, 51:99, 111:124, 129:156

25, 33, 63:76 (weak restraints are not applied to the zinc

TR754 Weak Strong fingers)
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Figure 3-1 Flowchart of the refinement protocol, from simidatto model selection
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The resulting structure was then solvated againtrakzed by adding appropriate charges, and
subjected to 5,000 energy minimization steps fadldwy 40 ps of MD simulation at 100 K with
restraints on all & and a force constant of 100 kcal/mdl/Ahe purpose of the final MD
simulations was to relax structural artifacts dwethe averaging procedure and generate

structures that are of high stereochemical quality.

The application of the above protocol to simulagiavith restraint sets 1 and 2 resulted in models
1 and 2 submitted to CASP. Models 3-5 were selefitad the trajectory snapshots with low
DFIRE score but outside the region of the scati@rysed for averaging with the idea that some

of these structures may be refined more extensoatypared to models 1 and 2.

All of the molecular dynamics simulations were @adrout with the NAMD molecular dynamics
package in conjunction with the MMTSB tool set[9%ich was also used for analysis along
with custom scripts. The protein structures wersuaiized via the PyMol molecular

visualization software.[127, 128]

3.4 Results

The MD-based refinement protocol described in tie¢hamds section was applied to 27 CASP10
refinement targets. The protocol was not appliecbne target, TR722, which was modeled

unsuccessfully using an entirely different procedur
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Table 3-2 Refinement results showing the best observedtstes in the trajectories, the first

submitted model, the best of five submitted modatsl best model among models 3-5.

Best in 30x20ns First submitted . Best of models 3-5
. ) Best of five models
Target trajectories model
ARMSD | AGDT- | ARMSD | AGDT- | ARMSD | AGDT- | ARMSD | AGDT-
(A) HA (A HA (A) HA (A) HA
TR644 -0.94 11.0 -0.03 2.8 -0.55 5.3 0.04 -1.4
TR655 -0.26 2.4 0.04 0.3 0.00 0.3 0.20 -0.9
TR661 -0.25 6.1 -0.03 1.9 -0.03 1.9 0.17 -2.2
TR662 -0.54 13.0 -0.20 5.3 -0.25 6.7 -0.25 6.7
TR663 -0.41 4.6 -0.12 2.6 -0.15 3.6 -0.15 3.3
TR671 -0.62 5.4 -0.01 0.6 -0.25 2.8 0.09 2.8
TR674 -0.78 7.0 0.00 4.9 -0.06 4.9 -0.06 -3.4
TR679 -0.55 4.8 0.01 0.6 -0.03 3.3 0.12 1.0
TR681 -0.13 5.2 -0.04 1.1 -0.15 5.4 -0.15 5.4
TR688 -0.14 6.9 0.01 1.5 -0.02 2.2 0.02 -0.1
TR689 -0.25 2.3 -0.10 3.5 -0.13 4.9 -0.12 2.3
TR696 -0.81 11.0 -0.13 3.5 -0.33 4.8 -0.33 4.8
TR698 -0.32 3.6 -0.02 -0.4 -0.02 -0.4 0.09 -0.6
TR699 -0.33 4.1 -0.09 4.6 -0.09 4.6 -0.07 3.7
TR704 -0.57 7.8 -0.17 3.9 -0.23 5.6 -0.23 5.6
TR705 -0.51 10.7 -0.14 6.0 -0.24 7.3 -0.24 7.3
TR708 -0.84 1.3 0.09 2.7 0.09 2.9 0.10 -2.4
TR710 -0.20 11.1 -0.04 4.3 -0.06 4.3 -0.04 2.1
TR712 -0.54 3.1 -0.08 3.4 -0.14 5.0 -0.14 5.0
TR720 -1.85 5.1 0.02 2.7 -0.99 3.2 -0.99 1.1
TR723 -0.71 11.8 -0.13 6.5 -0.39 9.7 -0.39 9.7
TR724 -1.49 8.5 -0.01 2.6 -0.48 3.7 -- --
TR738 -0.37 10.6 -0.20 6.0 -0.30 9.5 -0.09 3.5
TR747 -0.44 13.1 -0.10 0.8 -0.10 0.8 0.10 -0.6
TR750 -0.43 11.8 -0.16 4.8 -0.16 4.8 -0.04 2.5
TR752 -0.30 3.1 -0.12 1.4 -0.12 1.4 -0.05 -0.7
TR754 -0.35 2.6 0.09 -6.3 0.09 -6.3 0.09 -7.4
Avg. -0.55 7.0 -0.06 2.6 -0.19 3.8 -0.09 1.8

3.4.1 Overall CASP10 Performance

Five models were submitted for each of the targeite first and second models resulted from
ensemble averaging. The other models were seld@sdd on favorable DFIRE scores (see
methods section). Table 3-2 shows the changes gimement ARMSD andAGDT-HA, with

respect to the initial models provided by CASPtfa first submitted model and the best of all

five models, respectively. The average change irSRMor the first models is -0.06 A, and the
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average change in GDT-HA is 2.6. More importan®§,out of 27 targets improved in RMSD,
and 25 targets improved in terms of GDT-HA. Thisf@enance is similar to what we found
previously when testing the protocol on CASP8 aA&GE9 targets.[37] When selecting the best
out of five structures, the average improvementeims of RMSD is -0.19 A, and in terms of
GDT-HA is 3.8. Looking at all five models, 24 tatgare improved with respect to RMSD, and
all targets except for TR754 are improved in GDT-HAe overall best refinement case has an
RMSD value that is improved by almost 1 A (TR7200 &DT-HA improvements by nearly 10
units (TR723 and TR738). These results suggesmitatthis refinement protocol it is possible
to consistently generate significantly refined stuwes from the initial template-based models.
The only target where the predicted structure wgsifecantly worse than the starting structure

was TR754, where the presence of zinc ions presiyroabplicated the scoring with DFIRE.

Furthermore, Table 3-2 lists the best observedcsires in terms of RMSD and GDT-HA
throughout all 30x20 ns trajectories. Because #st bases were not necessarily picked out for
submission, this information provides a theoretigait of how much refinement could have
been achieved with a perfect scoring function. Bicant refinement of 1.85 A in TR720 is
observed, as well as several cases with improvesmer@DT-HA higher than 10%. On average,
improvement in RMSD is 0.55 and 7.0 for GDT-HA. @ other hand looking at the best of
five models, we see that the RMSD and GDT-HA ar@rowed by 34% and 69% of the
maximum possible improvements, respectively. Tolowowledge, no single-structure selection
protocol can achieve such a result. Interestintilgre are a few cases where the refined
structures are actually better (in terms of GDT-HAan the best single structure from the
trajectories (TR689, TR699, TR708, TR712). Thisicates that the averaging procedure used

here leads to additional refinement over just $lgdhe best structure from a given ensemble.
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Figure 3-2 shows four of the best modeled targe662, TR674, TR723, and TR738. While
most of the secondary structure elements are figethe of the loop regions were refined to
conformations intermediate between the initial niogled the experimental reference. This
suggests that refinement is proceeding towardsritie direction but it is clear that further

progress is needed to fully reach experimental racgu
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Figure 3-2 Correlation of IRMSD vs. DFIRe scores of indivitlugplicas for TR674; Set 1
(replicas 1:20) is shown with red boxes and seeglicas 21:30) with blue. Replicas with
corr>0.4 are discarded for model selection.

3.4.2 Mode Selection based on Lowest DFIRE and Highest iRM SD

For models 3-5, we selected structures with theekivDFIRE score and higher iRMSD values.
The rationale was that ideally the lowest DFIREresavould identify the most native structures
while higher IRMSD values would allow for more sifggant refinement but also risks larger
deviations away from the native. This is in cortttasthe more conservative criterion used for
the subset ensemble selection based on small iRkéBI2s. Table 3-2 shows the best structures

among the submitted models 3-5. It can be seenwhaé there are indeed some cases with
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significantly refined structures (TR720, TR723) awerall average improvement in both RMSD
and GDT-HA, there are also many cases where noemint was achieved. Although the best
of three models were analyzed here, the resultsiremferior to the single model 1 obtained

from ensemble averaging.

3.4.3 Quality Assessment using Correlation between iRM SD and DFIRE

One aspect of our refinement protocol is to esemahether a given set of samples likely
includes significantly refined structures. As dissed in more detail in our previous paper,[37]
we identified the correlation coefficient betweerrIRE and iIRMSD as a suitable metric.
Correlation coefficients above 0.4 appeared to hmretated with poor refinement
performance;[37] we applied this criterion herediscard trajectories where this condition was
satisfied from further analysis. To further assgsvalidity of this assumption, we compare in
Table 3-3 the fractions of improved structures enmis of RMSD and GDT-HA for replicas
where the correlation is less than 0.4, with thebere the correlation is greater than or equal
0.4. While the results vary greatly for individuafgets, there is on average a modest enrichment
in terms of both RMSD and GDT-HA, both by about 8#hen discarding samples from replicas
where the correlation coefficient is above 0.4. sTlsuggests that the quality assessment
procedure used here adds value and it could be inste future to guide the generation of
additional trajectories for cases where refinenapypears to be difficult as suggested by many

replicas with correlation coefficients above thé threshold.
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Table 3-3 Fraction of improved trajectory frames in replicdassified by correlation between
IRMSD and DFIRE score; Fraction of improved franresrajectories with correlation <0.4 that

are larger by 10% than fractions with correlatidr are highlighted.

Target Fraction (%) of traj. frames # replicas Fraction (%) of traj. frames
improved in RMSD with Corr=0.4 improved in GDT-HA
Corr<04 Corr=20.4 Corr<04 Corr=20.4
TR644 46.5 N.A. 0 14.1 N.A.
TR655 4.4 3.7 16 2.3 0.5
TR661 12.6 N.A. 0 8.5 N.A.
TR662 70.4 8.4 6 76.1 33.8
TR663 28.0 22.7 15 49.0 41.0
TR671 18.7 5.4 12 13.2 3.0
TR674 23.1 5.2 6 9.3 1.3
TR679 15.3 35.9 3 16.7 30.7
TR681 0.4 0.0 2 2.2 0.1
TR688 1.7 0.5 3 19.8 17.3
TR689 33.4 10.5 7 0.7 0.3
TR696 55.1 33.8 1 33.6 15.6
TR698 60.3 59.7 4 13.6 13.2
TR699 29.2 26.8 1 1.6 0.2
TR704 53.2 NA 0 37.9 N.A.
TR705 33.7 3.0 4 55.3 20.5
TR708 3.4 9.8 6 0.2 0.1
TR710 26.3 NA 0 79.4 N.A.
TR712 28.4 20.0 1 5.5 0.6
TR720 27.8 39.2 8 15.6 32.1
TR723 57.4 68.7 3 55.7 47.0
TR724 37.6 99.6 1 22.9 60.8
TR738 85.7 99.9 2 78.8 99.8
TR747 38.2 8.0 5 20.8 5.7
TR750 54.3 22.4 6 76.6 36.2
TR752 35.7 13.9 6 6.1 0.7
TR754 1.0 0.5 22 0.1 0.1
Avg. 32.7 26.0 26.5 20.0

3.44 Restraint Choice

We used different restraints out of the followidgee choices: 1) strong restraints on selected
C.S; 2) weak restraints on all,§ 3) a combination of strong restraints on setecggions and
weak restraints on the rest. The first choice isthappropriate for cases where there is specific
information about which regions require refinemdntthe case of CASP, this information was

provided for some targets. However, for other terge and more general applications of
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structure refinement methods — such information matybe available. Therefore, we evaluated
how the choice of restraints affected the resufisorder to compare results in a consistent
fashion, we used only the first 10 replicas of eseh Some targets use strong, partial restraints
for the first set with 20 replicas while for othtargets weak, complete restraints were used for
the first set (see Table 3-1). Therefore, the tatahber of replicas that were used for each
restraint type does not match among different targeurthermore, not all targets were run with
strong, partial and weak, complete restraints. €hasgets were excluded from the comparison

(see Table 3-4).

62



Table 3-4 Refinement results of different restraints for thest observed structure in terms of
RMSD (A) and GDT-HA; comparing strong (1 kCal/mofj&estraint on selected residues vs.
weak (0.05 kCal/mol/A restraint on all 5, and a combination of both. Cases associated*with
indicate targets that had suggestions from CASRIaoh regions need refinement.

Strong Restraint Weak on all C, Strong + weak
Target ARMSD (A) | AGDT-HA AR('}\/')SD AGDT-HA AR('X')SD AGDT-HA
TR644 -0.94 5.1 -- -- -0.49 4.4
TR655 * -0.26 1.3 -0.14 -0.3
TR661 -- -- -0.22 3.9
TR662 -0.22 5.0 -0.54 10.7
TR663 * -0.22 3.6 -- -- -0.34 3.6
TR671 -0.21 1.7 -0.62 4.3
TR674 -0.78 3.8 -0.40 4.7
TR679 * -0.55 2.9 -0.23 2.4
TR681 -0.02 1.6 -0.13 3.5
TR688 -0.09 4.1 -- -- -0.13 5.0
TR689 -0.15 -0.2 -0.24 0.9
TR696 -0.81 6.0 -0.50 7.8
TR698 * -0.32 2.3 -0.16 -1.5
TR699 -0.32 1.2 -0.33 1.7
TR704 -0.37 45 -0.57 6.6
TR705 -0.48 8.3 -0.45 5.7
TR708 -0.84 0.0 -0.43 -0.1
TR710 -0.16 6.7 -0.19 8.8
TR712 * -0.48 2.3 -0.23 -1.9
TR720 -1.85 2.8 -0.21 2.8
TR723 -0.71 9.7 -0.35 7.8
TR724 -1.49 7.4 -0.40 3.1
TR738 * -0.34 8.5 -0.37 6.3
TR747 -0.19 3.3 -0.44 9.2
TR750 -0.26 4.5 -0.42 10.2
TR752 * -0.30 2.5 -- -- -0.24 1.0
TR754 -0.21 -0.7 -0.35 2.57
Avg. of common | 4 g 38 | -035 | 43
rows:
Avg. * Not Not
(CASP sugg.) -0.35 3.3 -0.23 1 enough enough
Avg. data data
-0.53 3.9 -0.38 5.2
(no sugg.)

Table 3-4 shows the best structures in terms of BN and GDT-HA from all the 10 replicas

for a given restraint type. Average values werewated only for the 22 targets, which have
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both strong and weak restraint sets. The analyglgests that in terms of best structures that
were generated, strong, partial restraints maydoghly equivalent to using weak, complete
restraints. Interestingly, the RMSD seems to berawgd more with strong, partial restraints
while GDT-HA scores appear to be improved more witbak, complete restraints. It is
instructive to further separate the analysis ismets where the CASP organizers suggested
regions to be refined vs. targets where no sudrnmdtion was given. We find that the degree of
refinement was actually greater for the targetsrevm® information was given, indicating that
the additional information given during CASP10 wast essential for successful refinement.
However, we also note that in the cases wherernmdton was available about which regions to
refine, the application of partial restraints clgayutperformed weak restraints on all residues.
On the other hand, targets where no information giasn resulted in significantly better GDT-
HA scores with weak, overall restraints than widintial restraints based on secondary structures.
This suggests that an optimal strategy may be ¢opastial restraints if information is available
which regions require refinement while applying weastraints for all residues otherwise.
While Table 3-4 focuses on the best structuresataigenerated, Table 3-5 shows the result of

refinement when the entire protocol is applied. dtaerall trends match those of Table 3-4.
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Table 3-5 Refinement results of different restraints using #stablished structure generation
protocol; comparing strong (1 kCal/mof)on selected residues vs. weak (0.05 kCal/nfpl/A
restraint on all ¢ and a combination of both

Strong restraint Weak on all C, Strong + weak
Target ARMSD AGDT- ARMSD AGDT- | ARMSD | AGDT-
(A) HA (A) HA (A) HA
TR644 -0.54 3.0 -- -- -0.36 3.2
TR655 * -0.05 0.0 -0.01 -1.7
TR661 -- -- -0.03 2.3
TR662 -0.03 1.3 -0.20 4.7
TR663 * 0.54 3.1 -- -- -0.11 2.8
TR671 0.02 1.1 -0.05 1.4
TR674 -0.11 3.4 0.00 5.3
TR679 * 0.03 0.1 -0.05 3.0
TR681 -0.06 -0.1 -0.04 1.3
TR688 -0.02 2.3 -- -- 0.01 1.4
TR689 -0.11 3.6 -0.14 4.4
TR696 -0.24 2.8 -0.17 4.0
TR698 * -0.01 -0.4 0.03 -1.3
TR699 -0.14 4.0 -0.04 4.2
TR704 -0.10 2.3 -0.18 3.9
TR705 -0.15 5.2 -0.14 4.4
TR708 0.11 2.8 0.08 2.2
TR710 -0.05 2.6 -0.05 4.4
TR712 * -0.08 3.5 -0.07 4.3
TR720 -0.54 1.1 0.01 2.4
TR723 -0.22 4.6 -0.13 6.3
TR724 -0.51 3.7 -0.02 2.8
TR738 * -0.20 6.1 -0.23 7.5
TR747 -0.08 0.3 -0.11 0.8
TR750 -0.11 2.9 -0.16 4.0
TR752 * -0.13 1.7 -- -- -0.10 1.0
TR754 0.16 -7.4 0.07 -5.5
Avg. of
common -0.11 2.0 -0.07 2.9
rows: Not Not
Avg. * enough | enough
(CASP sugg.) 0.01 2.0 -0.07 2.4 data data
Avg. 014 | 21 | -008 | 35
(no sugg.)
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3.4.5 Simulation Time: Single MD vs. Multiple Short MDs

Finally, we compared the sampling efficiency of te&ts of simulations in order to assess the
benefits of using multiple short simulations vsirggle long MD simulation. During CASP10 we
ran multiple short simulations because of time wesburce constraints. A single long simulation
was run after completion of CASP for over 200 nsdach target continued from the first replica
in set 1 using the same restraints as for the slortlations. We then compared the output of the
10x20 ns simulations with the results from the PO ns simulations. Note that the restraints
can be either of strong, partial type, or weak, pl@te type. Figure 3-3 shows the cumulative
minimum ARMSD and cumulative maximumGDT-HA averaged over all 27 targets for the
single 200 ns simulations and 10x20 ns simulatidime results of the 10 replicas in multiple
short simulations are combined at each time shtatseach time t, the cumulative minimum
ARMSD and maximumaGDT-HA values are calculated from the t/10 portadnall of the 10
trajectories. There is an expanding gap betweersitigde and multiple trajectories where the

multiple short simulations outperform the long siation both in terms of RMSD and GDT-HA.

Furthermore, in Table 3-6 we compare the refinenpamformance by using structures either
from a single 200 ns simulation or from multiplex20 ns simulations. We tested two selection
protocols, using the lowest DFIRE score and sulseéction and averaging followed by
structure interpolation as described above. Selgcsiructures with the lowest DFIRE score
performs poorly in both cases. However, applying protocol improves the average RMSD
with a similar level of accuracy (-0.08 A), whilket average improvement in GDT-HA is
actually slightly higher in the case of the singlg0 ns simulations (2.9 vs. 2.5 for 10x20 ns
simulations). Given the increased sampling of esdistructures with multiple short simulations,

this is somewhat surprising and warrants furtheestigation. Assuming that the differences are
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statistically significant, it may be that much lemgimulations generate a broader sampling that

when averaged result in a structure that is clwsstre experimentally averaged structures.

Normalized DFIRE

Normalized iRMSD

Figure 3-3 Subset selection based on normalized IRMSD and BEi¢res from the replicas in
set 1 with corr(iRMSD,DFIRE)<0.4 for TR674. The sabshown in the lower left corner of the
scatter-plot with green triangles are selectedatoutate the average structure and model
selection.

Table 3-6 Summary of comparing refinement results betweex2@hs simulations and single
200 ns simulations having the same restraint cmdit The results are averaged over 27
CASP10 targets.

200 ns | 10x20 ns
Best ARMSD in trajectory -0.29 -0.34
Best AGDT-HA in trajectory 55 6.0
Lowest ARMSD 0.06 0.03
DFIRE score | AGDT-HA 0.0 -0.1
Subset Avg. + | ARMSD -0.08 -0.08
Str. Interp. AGDT-HA 2.9 2.5
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(c) AGDT-HA=9.5 (d) AGDT-HA=4.9

Figure 3-4 Initial model (blue), refined (green) and natimeagenta) for (a) TR662, (b) TR723,
(c) TR738 and (d) TR674

3.4.6 Final Stage of Refinement

As mentioned in the methods section, structure amieg and interpolation cause some
unphysical conformation with bad bonds, anglesediibls and steric clashes. Therefore, an extra
stage of refinement is required to generate stbmucally acceptable structures. Table 3-7
shows the MolProbity measures for individual tasgeéfore (avg) and after final refinement

stage (MD). This final refinement had only a sn&dfect on RMSD from native and GDT-HA,
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as before this stage, the average change in RMSD®@8 A before the final stage and -0.06 A

after the final stage while the average GDT-HA wkd change during the final refinement stage.
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Figure 3-5 Sampling efficiency toward native, showing the cilative minimumARMSD (top)

and cumulative maximumdGDT-HA (bottom), comparing the single 200 ns MD slations
(red) vs. 10x20 ns MD simulations (green) averamet 27 CASP10 targets.
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Table 3-7 MolProbity results of the structure obtained frahe averaging and structure
interpolation

Target | MolProbity
Avg. | Final
TR644 | 4.16| 1.42
TR655 | 4.83| 2.33
TR661 | 4.00| 1.03
TR662 | 4.48 | 1.49
TR663 | 4.80| 2.51
TR671 | 469 | 2.52
TR674 | 4.34| 1.99
TR679 | 354 | 1.74
TR681 | 445 | 1.74
TR688 | 4.09| 164
TR689 | 4.26 | 2.00
TR696 | 4.82| 2.14
TR698 | 3.88 | 1.47
TR699 | 4.34| 2.10
TR704 | 4.72| 1.32
TR705 | 5.07| 2.36
TR708 | 4.11| 1.44
TR710 | 406 | 1.14
TR712 | 3.79| 1.82
TR720 | 460 | 1.28
TR723 | 4.44 | 1.80
TR724 | 4.87| 1.90
TR738 | 3.88| 0.88
TR747 | 3.91| 1.12
TR750 | 4.12| 1.61
TR752 | 3.02| 1.05
TR754 | 5.15| 2.59
Avg. 431 | 1.72

3.5 Conclusion

We applied a recently established molecular dynsibased structure refinement protocol to
CASP10 targets. Overall, we were able to relialeffne most of the targets both in terms of
RMSD and GDT-HA relative to the experimental stawes. The key components of our

protocol are the use of restraints during MD simaies, the selection of trajectories based on a
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guality assessment score, and the generation ofecefstructures following structure subset

selection and averaging.

We compared the results of using strong restraintselected residues vs. weak restraints on all
C.s, and concluded that using strong restraints tacteel Gs leads to improved RMSD values,

while weak restraints can improve GDT-HA measuretse.

Another question in MD based refinement is the tsoale of the simulation, and in this study
we compared the sampling in multiple short MD siatioins vs. one single long simulation, and

we observed that multiple short MD simulations rhaye a higher sampling efficiency.

Although our protocol outperformed other refinememtthods, overall, the improvements in
RMSD and GDT-HA measures in refining protein stowes are still relatively minor and it is
clear that further progress is needed. One poggiisl to take advantage of the consistent and
reliable refinement obtained here and extrapoletegathe initial direction. Another direction is
the further improvement of structure selection rodthsince for many targets significantly more

refined structures were generated than what we stdahas predictions.
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Chapter 4

Protein Structure Refinement on CASP11 Targets
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4.1 Introduction

Previously, we developed a robust protocol for Mdxdd protein structure refinement.[37] As
our protocol was tested on CASP10 targets, 23 bA7 @wases we had improvementsABDT-
HA by taking advantage of subset selection algorind structure averaging.[38] Our work has
remained state of the art solution to protein $tm&c refinement to date. However, the
improvements were still minor, reaching only uB% in AGDT-HA on average, and maximum
improvement per target was limited to 5.5%. In oridemake MD-based structure refinement a
practical approach for structure determination pdate, improvements inGDT-HA of about

20% is required. Therefore, we seek the limitatiang bottlenecks in our approach.

Computational methods for structure refinementrotgins rely on performance of two aspects:
conformational sampling and structure selectior}.[3¥erefore, improvements in both categories
are necessary. Our analysis showed that restramgese a strong limit on conformational
sampling. We realized that using weaker restrantsall G, atoms for targets in CASP10 gave
better or nearly the same performance in refinernentpared to strong restraint on selectgd C
atoms.[38] Therefore, we modified our protocol arsgd weaker restraints in MD simulations.
Applying weak restraints will greatly enhance themgling efficiency, since the protein
backbone has more freedom to respond to its ermeon Yet, we also investigated the
structure selection category, by comparing the goerénce of our protocol using different
scoring functions. Many scoring functions were ¢desed, such as ITScore[129], RW+[48],
DFIRE[46], GOAP[130], OPUS-PSP[131], DOPE[132], &eder[47]. The final protocol was

refined and optimized based on its performance ASRB, CASP9, and CASP10 targets.

4.2 Methods
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The refinement category of CASP11 provided 37 pmotargets, ranging from 62 to 288
residues. Table 4.1 shows detailed informationaofidts, such as number of residues, initial

GDT-HA, and suggestions from CASP on which regineed further refinement.

Table4-1 List of refinement targets in CASP11

Target Number, PDB Initial CASP Suggestions o
of GDT-HA | regions to refine

residues

TR217 224 4AWED 62.8

TR228 84

TR274 194 4QB7 29.0

TR280 96 4QDY 59.9

TR283 168 4CVH 41.2

TR759 62 4028 44.3

TR760 201 4PQX 57.3

TR762 257 4Q5T 70.6

TR765 76 4PWU 57.9

TR768 143 40JU 64.0

TR769 97 2MQ8 56.2

TR772 198 4QHZ 52.4

TR774 155 4QB7 37.8

TR776 219 40Q9A 62.8

TR780 95 4QDY 54.0

TR782 110 40QRL 64.8

TR783 243 4CVH 57.5

TR786 217 4QVU 47.9

TR792 80

TR795 136

TR803 134

TR810 243 Residues 137-149

TR811 251

TR816 68

TR817 265 4AWED 65.8

TR821 255 4R7S 48.3

TR822 117

TR823 288

TR827 193

TR828 84

TR829 67 N-terminal residues 2-4

TR833 108 4R03 61.3

TR837 121

TR848 138 4R4G 58.0

TR854 70

TR856 159

TR857 96 2MQC 32.8

74



As table 4-1 shows, the experimental structure®targets are released on Protein Data Bank
(PDB). The majority of targets did not have anygasiions from CASP on which regions need
to be refined further. In the following sectionsg wescribe our protocol applied to these protein

models.

4.2.1 Conformational sampling

Two rounds of MD sampling were performed for eaehngeét. In all the simulations,
CHARMM36[9] force field was used, along with TIP3[2water model. In the first round, the
initial models underwent 5,000 energy minimizatgteps, and heated to temperatures of 10, 50,
100, 200, and 298 K within 42 ps MD simulations.efhmultiple replica MD simulations in
explicit solvent starting from the given initiaksttures were run for 30 ns per target per replica.
Having 40 replicas per target, total simulationdim the first round summed up to 18 for
each target. The restraint force constant was chasée 0.05 kcal/mol/Aon all G atoms,
unless suggestions from CASP exist for that prot@irwvhich case, the restraint on suggested
regions were relaxed (no restraint) and the formestant for the remaining regions was 0.1
kcal/mol/ A2. An ensemble containing 30,000 structures was rgézak from all 40 replicas.
Then, according to our optimized/tuned subset #elecalgorithm and structure averaging
described in the next section, a final refinedctrte is obtained. This model constitutes the first

submitted model to CASP, and the starting strudiuréhe second round of refinement.

In the second round of refinement, the refined emithl structures are geometrically aligned,
and regions that have moved more than a certaeshbid are identified. For this purpose, a
moving window of size 3 residues is applied andRMSD between the two structures subject
to that window is computed. Consecutive regions tizwe RMSD more than threshold of 3 A
are identified. The selected regions are considasegotential regional targets for improvement
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in the second round. Table 4-2 shows the numbeegbns, and the range of selected regions
for each target. A set of 3 independent MD simalaiof 20 ns were run for each region, while
the residues outside the considered region weteimsd with force constant of 1 kcal/mol/A.
For each region an ensemble of 1500 conformatices generated. The same subset selection
algorithm, which was used in the first round, iplegd to each ensemble, and an average

structure for each region is obtained.

4.2.2 Subset selection and average structure

The model selection algorithm is based on our previwork, in which a subset of structures was
selected based on two scoring functions. Here, wdified the criterion for subset selection as
follows. We used iRMSD (RMSD from the initial moyleind RW+ as two scoring functions.
These scores were standardized by subtracting theasn and dividing by their standard
deviation. Then, the subset of points, which satisé following condition in polar coordinates,

are selected
S={p |r >1& 200 <6, <270}

wherer; anddi are the polar coordinates of pomtin the space formed by iRMSD and RW+
scores. The selected structures are geometricafpgrsnposed to the initial model, and an
average structure is computed. The average steuctuturther refined to remove clashes and
unphysical bonds and angles, by a MD simulatiofength 200 ps, and restraints applied to all

C, atoms with force constant 10 kcal/mdi/A
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Table 4-2 Selected regions for the second round of sampbtngdch target

Number
Target of Regions
regions

277-287; 303-313; 316-326; 326-334; 347-357; 367-376; 404-414; 435-445; 447-455; 481-

TR217 10 488

TR228 4 236-245; 245-255; 269-277; 284-290;

TR274 14 187-197; 198-206; 206-212; 213-223; 243-253; 253-259; 264-267; 267-277; 277-287; 293-
303; 309-312; 314-323; 337-347; 357-367;

TR280 6 135-145; 157-163; 176-185; 190-196; 201-206; 214-217;

TR283 11 247-254; 254-262; 273-283; 286-296; 298-308; 317-327; 331-341; 349-357; 359-363; 369-
377; 396-404;

TR759 5 46-51; 52-62; 63-73; 73-79; 89-99;

TR760 12 41-50; 50-58; 65-74; 81-91; 94-101; 109-118; 130-140; 149-157; 165-174; 187-196; 205-
208; 217-224;

TR762 12 24-29; 38-46; 49-54; 60-68; 117-127; 162-169; 183-187; 209-218; 224-229; 239-247; 254-
259; 266-274;

TR765 5 37-47; 54-64; 70-74; 76-82; 95-101;

TR768 10 24-29; 36-44; 46-56; 63-73; 82-90; 99-104; 104-111; 118-128; 137-147; 155-160;

TR769 4 6-16; 32-39; 41-48; 81-90;

TR772 14 69-77; 78-88; 99-106; 106-110; 121-131; 137-147; 153-161; 161-165; 166-174; 174-180;
193-203; 220-230; 232-240; 243-252;
31-34; 35-45; 49-56; 60-69; 69-75; 75-85; 86-95; 95-105; 121-131; 136-144; 144-153; 156-

TR774 12 166-

TR776 13 38-43; 60-66; 66-73; 73-77; 85-90; 107-117; 128-134; 135-144; 160-164; 175-180; 180-190;
228-235; 236-246;

TR780 7 40-48; 50-57; 57-67; 67-75; 81-91; 91-101; 109-119;

TR782 6 38-41; 43-48; 51-54; 60-68; 85-95; 100-107;

TR783 18 1-4; 13-23; 26-32; 42-48; 52-58; 63-73; 76-85; 91-101; 125-135; 142-145; 150-158; 158-
168; 182-189; 189-198; 199-209; 212-221; 224-232; 232-237;

TR786 15 37-44; 45-55; 67-77; 91-100; 106-114; 114-122; 125-133; 133-142; 144-150; 155-165; 170-
177; 177-185; 189-199; 223-233; 242-247;

TR792 4 6-14; 21-30; 46-56; 57-66;

TR795 9 19-28; 36-46; 61-66; 68-77; 87-92; 95-98; 102-107; 113-122; 128-133;

TR803 9 1-5; 30-38; 44-50; 50-60; 61-69; 70-80; 87-96; 101-111; 114-124;

TR810 13 137-140; 140-149; 152-159; 224-229; 233-241; 266-273; 277-285; 285-293; 293-299; 305-
310; 320-326; 348-353; 364-373,;

TR811 13 10-18; 21-31; 53-60; 60-63; 69-79; 83-88; 130-140; 155-163; 170-180; 196-205; 210-218;
230-237; 244-249;

TR816 3 25-35; 47-50; 56-62;

TR817 10 44-54; 54-62; 67-75; 122-131; 134-144; 148-158; 186-196; 200-210; 245-255; 280-288;

TR821 10 35-44; 45-55; 69-76; 82-90; 115-123; 128-136; 137-147; 156-166; 180-189; 217-225;

TR822 9 2-7; 8-17; 21-26; 31-41; 59-68; 68-73; 74-84; 99-106; 107-112;

TR823 14 5-8; 17-26; 30-35; 45-52; 73-82; 113-123; 129-136; 138-148; 148-155; 159-169; 190-200;
201-207; 243-251; 278-282;

TR827 13 31-40; 46-54; 54-64; 67-76; 84-92; 94-101; 113-118; 126-134; 137-142; 162-172; 176-181;
184-190; 191-201;

TR828 6 137-145; 145-153; 161-169; 177-185; 185-194; 205-211;

TR829 5 2-6; 23-32; 32-39; 42-52; 52-61;

TR833 4 46-53; 64-68; 92-100; 114-124;

TR837 7 8-17; 17-25; 37-44; 61-71; 75-83; 89-99; 110-115;

TR848 4 48-53; 96-106; 139-148; 155-164;

TR854 3 37-47; 64-69; 77-87;

TR856 8 1-8; 15-24; 43-53; 61-71; 83-92; 92-100; 118-126; 138-145;

TR857 0
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4.2.3 Mode submission in CASP11

For all the targets, we used the final refined nhadgained after structure averaging from the
first round of simulations as model 1. The secoratieh is taken from the consensus structure
obtained via the average of both average structuoes the first and second rounds. The last 3
models are selected from the average structuresdofidual regions in the second round of

sampling that have the highest RMSD from the ihimadel.

4.3 Results and Discussion

The experimental structures for 22 targets areaselé in the PDB data bank. We have assessed
the quality of our submitted models by calculatthg change GDT-HA of submitted models
from those of the initial models. Larg&yGDT-HA means higher improvement in structure
quality compared to the experimental structureclieved. Table 4-3 showsGDT-HA for all 5
models for each target. The average improveme@Dii-HA for the first model is 4.31% and
for the best of five models is 4.71%. Comparing @kerage improvement of the first model to
that of CASP10 suggests that our refinement prétbes improved from what we used in
CASP10 with only 2.8% improvement. On the otherdhahe best of 5 models does not show
much difference to the first model. This indicatée shortcoming of our second round of
refinement, in which the targets had restraint witce constant 1 kcal/molfAon selected

regions.

Significant improvement in 3 targets, i.e. TR7587b5, and TR821, is observed with more than
10% change in GDT-HA. By carefully examining thésegets, we can see that the improvement
is made in the all parts of the protein includirmpgs and secondary structure elements.
Therefore, applying strong restraints on seconddrycture elements would have limited

refinement as was the case in our previous protddw initial, refined and native models for
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TR759 are shown in Fig. 4-1. This level of refinerinkas not been observed in the past. While
our results show significant improvement, it idl stot clear how our results for targets TR759,
TR765, and TR821 are compared against other grdupsuld be that other groups were also
able to achieve such high improvements. Therefar¢hrough comparison of the results in

CASP11 would give insights on the effectivenesetihement methods.
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Table 4-3 GDT-HA results and MolProbity and ClashScore measdor quality assessment of
submitted models

Target AGDT-HA
Model 1 | Model 2| Model 3| Model4 Modelb Best of|5

TR217 0.34 0.00 0.46 -0.58 0.11 0.46
TR228

TR274 -0.50 -2.70 -1.50 -0.50 -2.50 -0.50
TR280 5.70 4.90 3.60 4.20 4.90 5.70
TR283 0.30 0.30 0.00 0.50 -0.20 0.50
TR759 12.30 14.30 13.10 15.20 12.70 15.20
TR760 0.40 -1.00 0.60 0.40 -0.10 0.60
TR762 -4.00 -5.60 -6.20 -5.00 -5.10 -4.00
TR765 19.70 20.70 20.10 18.80 18.10 20.70
TR768 6.10 6.50 4.70 4.50 4.40 6.50
TR769 1.80 0.80 1.00 1.30 1.00 1.80
TR772 1.40 0.90 0.50 0.80 -0.60 1.40
TR774 3.00 2.20 1.80 3.70 2.70 3.70
TR776 6.50 5.50 3.60 4.90 4.40 6.50
TR780 4.20 2.90 1.10 2.90 1.80 4.20
TR782 8.60 7.50 8.40 9.30 8.60 9.30
TR783 5.00 5.50 3.20 2.80 3.90 5.50
TR786 4.60 3.90 4.30 4.80 3.90 4.80
TR792

TR795

TR803

TR810

TR811

TR816

TR817 -0.94 -0.94 -1.03 -1.41 -1.32 -0.94
TR821 12.16 12.75 12.26 11.96 12.26 12.75
TR822

TR823

TR827

TR828

TR829

TR833 2.30 0.90 2.80 3.00 -2.50 3.00
TR837

TR848 1.99 0.91 1.45 1.09 -1.63 1.99
TR854

TR856

TR857 3.90 3.60 2.10 4.40 3.10 4.40
Avg. 4.31 - - - - 4.71
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Figure 4-1 Comparing the initial (green) and refined (cyan)dels of TR759 to it
experimentally observed crystal struc

4.4 Conclusionand Future Wor

In CASP11 we modified our protocol by extending #®ount of sampling by molecul
dynamics simulation, using weaker restraints, amed the subset selection algorithm. A
result, we observed greater progress in strucefreement. The average imyvement in GDT-
HA for the first model was significantly higher thaur previous result in CASP10. Yet, in th
targets wehave achieved improvements of more than 10% in -HA. We believe that suc
significant improvements would be impossible usstign¢ restraints.On the other hand, tt
second round of refinement with strong refinemenselected regions which led to mode-5

did not show much difference to the first mo
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5.1 Abstract

A new reaction coordinate to bias molecular dynansinulation is described which allows
enhanced sampling of density-driven processes, aschixing and de-mixing two different
molecular species. The methodology is validateccdaypparing the theoretical entropy of de-
mixing two ideal gas species and then applied tuge deformation and pore formation in
phospholipid membranes within an umbrella sampfragnework. Comparison with previous
biased simulations of membrane pore formation ssiggeerall quantitative agreement but the
density-based biasing potential results in a dffiér more realistic transition pathway than in

previous studies.

5.2 Introduction

Advanced computational methods have long attrattecttention of biophysicists to shed light
on the behavior of biological systems. The compsterulation of proteins, membranes, and
nucleic acids are a powerful technique for undeditegy the physical characteristics of these
complex systems.[8] Despite advances in computeepahe time scales required for studying
many physical phenomena are still beyond the pibisigd for the majority of the scientific
community. However, the use of enhanced samplinghmas[133-137] can overcome such
limitations. One example where enhanced samplinghesded is the pore formation and
deformation of lipid membranes.[138-147] Pore fatiorais involved in a variety of biological
processes, such as signal transduction and smbdtaie transports,[138-140, 147] but it is also
highly-relevant in the context of toxins and antirobial peptides that induce membrane pores

to cause cell leakage and ultimately kill cells,[30, 148]
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A common strategy for overcoming kinetic barriers the use of umbrella sampling
techniques[32], where a main challenge is the &of@ suitable reaction coordinate. Geometric
properties such as distances, angles, or dihetielgeen groups of atoms have been widely
used, but some physical processes are not desaviddetly such simple reaction coordinates. As
a result, enhanced sampling simulations using sodndinates may be less effective for these
systems. For example, density-driven processesnuidlye described well by traditional reaction
coordinates. Membrane pore formation is one suockgss where the application of enhanced
sampling methods has been challenging.[149] In previous study, the pore radius was
incorporated as a reaction coordinate in a molealyaamics framework,[149, 150] and the
free energy cost of pore formation was measuredguie potential of mean constraint field
(PMCF) approach[151]. Furthermore, Bennett et &R]linvestigated the mechanism of pore
formation initially by long equilibrium MD simulatins followed by umbrella sampling where a
single phosphorous atom in one of the lipids wdke@uo the center. However, both choices of
the reaction coordinate could be problematic ag thake assumptions about how the membrane

structure deforms upon pore formation.

A natural reaction coordinate for studying membrgoee formation is the density of water
molecules within the membrane in the area where fanmation takes place. Using the water
density instead of a structural property of the roemne avoids biasing membrane structure
unnecessarily but still provides enhanced sampéiogss the key kinetic barriere. water

penetration into the membrane. Here, we are desgrithe development of a density-based
reaction coordinate and its application in umbreddampling simulations of membrane pore
formation. The method introduced here biases tmsitleof a group of atoms in a volume of

interest, such as a cylinder. Therefore, our dgisétsing potential function can be used not just
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for studying membrane pores but it is also appleatore generally for reaching a target density
for a given molecular species relative to anotlpaces in any context. This methodology was

implemented in the CHARMM biomolecular software kege[86].

In the remainder of this paper, we will provide etalled description of the density biasing
potential, followed by validation of our method tgmparing entropic components of de-mixing
free energy of two ideal gases with theoreticahesies. Then, this method is applied to a pure
DPPC membrane bilayer system to demonstrate itsnpat for estimating free energies of

membrane pore formation.

5.3 Methods

5.3.1 Density Biasing Potential

In this section, we provide the mathematical badishe density biasing potential function.
Given the coordinateg, for atomi, the total number of atoms in any arbitrary subsee of
interestV can be calculated by integrating the product wblame functionf (r) with the Dirac

delta function:s(r —g,) f (r) for all atoms:

L= [ [[26F —a) @ =Y f@) ()

where f (I') returns one insid¥ while it switches smoothly to zero on the boundarand stays

zero for all the points outside the volume (seeowgl In general, any differentiable volume
function can be used to defifi€’), however,simpler functions are preferred since they are

easier to implement in a molecular dynamics frant&wo
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The volume of interest in our study is a cylinddéthwadius R,,and heighZ , with its axis

aligned to the bilayer normal (Fig. 1A). Thereforee use cylindrical coordinates ¢

decompose the volume function into radial and acaahponents so the

N
I, = Z fragia (1) foia (Z) (2)
i1
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Figure5-1 A: Schematic representation of the biasing cyliralgmed to the bilayer normz
Thecenter of the switching region is indicated witlslded lines; B: Volume function used
axial and radial directions.

Choosing the switching function as a third degrelympomialused in CHARMM PBE(3] and

GBSWI31, 153] moduleresults in the following differentiable volume furom:

1

1 3 1 (= Ry W
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wherew andh are the switching distances for the radial andla®irms, respectively. Figure 1B
shows the shape of radial component of volume fanctthe axial component has a similar

shape.

The number density, is calculated by normalizifg, by the cylinder volume. The potential

energy is then calculated for a given value oféadgnsity, with the force constark

kK 2
U :E(pv_pt) ©))

The corresponding force components can be obtdinedthe gradient of the potential term
~ k -
F=VU :V(Pv -p) Vi, (6)

ﬁi Y ( il ( ) rad|al( ) ’ fax|a| ( ) rad|al (r) , rad|a|( ) aX|alZ|(Z|)j (7)

The details of the derivative components are prexidc the Appendix.

5.3.2 Simulation Details

5.3.2.1 Method Validation

For validation of our computational method, we istigated the mixing entropy of two noble
gas species. 200 helium atoms were placed in a 4®xf which were tagged to make two
distinguishable species with identical paramet&he box dimensions were 200x200x58 A

density biasing cylinder with a radius of 50 A walsced in the center of the box with the
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cylinder axis aligned with the z axis. The switghulistance in the radial direction was set to 1
A. The cylinder height was considered to be inéintherefore the biasing potential did not vary
along the z-axis. The number densities were nomealby the equilibrium number of particles

in the cylinder volume. In order to fully separdtee two molecular species, the reaction
coordinate in the density biasing potential wasstmtted as the difference between the
densities of the tagged and untagged species ioythrgler. In this case, an increase in the value
of the reaction coordinate can be due to eithereasing the number of tagged species or
decreasing the number of untagged ones assumingh®aotal number of particles in the

cylinder is constant on average over time.

For this system, the equilibrium value of the riactcoordinate is -6xI0 A for the fully
mixed state and 1xT0A™ for the fully separated state. Therefore, usindonatia sampling, the
reaction coordinate was varied from -5.1%1® 7.1x10° A in increments of 2.54x10A%,
Each umbrella window was simulated for 20 ns withre constant of T0kcal/mol/A° and a
time step of 2 fs. The last 16 ns from each windeve used to construct the PMF as a function

of the reaction coordinate using WHAM analysis.
A theoretical estimate of the mixing entropy footmolecular gas specidsandB is given by

AS= nR(XA Iog(XA) T Xg Iog(XB ) (8)

wherex is the mole fraction of each speciess the total number of moles, aRds the universal

gas constant. The total change in entropy is gibyen

AS, = Ny, leS(XA v XB,Vl) + Ny, VZAS(XA, V,? XB,VZ) 9

where N, ,, and Ny, are the average total number of atoms in voludgsand V, at

equilibrium, respectively. In order to compare theeoretical mixing entropy with our
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computational approach, we evaluated the theotetgtanate as a function of the mole fract
of speciesA in volumeV; in the process of going from a fully separatedesii) to a partially
mixed statei{) as shown in Fig. 2. The mole fraction is thenwested to the reaction coordine

(&) used in the umbrella sampling simulations accaydo

_ m(XAM — Xay,)
- V, (10)
A
Vl * ﬁ Vz * ﬁ
T R
X ¢ % %
%
w 2 e %
AS A ¢
xi=1, xi=0 xi=0, xi=1
B
Vige |, %, V2 %
gk KX x ¥
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Figure 5-2 Schematic representation of the mixing process f@mple twi-component nobl
gas mixture that is fully demixed (A) and partiathyxed (B)

5.3.22 Membrane Simulations
A pure membranebilayer was constructed by w-based CHARMMGUI membrane

builder[154] containing 288 dipalmitoyl phosphatidylcholineRPC) and 8376 water molecu

placed in a periodic box of size 95.2x95.2x66°. The xy dimensions were adjusted to ma
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the experimental value of 63 4or the area per lipid of DPPC in the fluid phfkg5, 156] The

z dimension was chosen large enough to avoid boynaiifacts. The CHARMMS36 force
field[157]was used along with the TIP3 water model[21]. Ledrlones interactions were cut
off at 9 A (with a switching function beginning &tA). Particle-Mesh Ewald summation[158]
was used for long-range electrostatic interactiwith a 9 A cutoff for the direct sum. A time
step of 2 fs was used in combination with the SHAK§orithm.[159] The initially flat bilayer
was heated in steps at 50K, 100K, 200K, 250K, &2#K3 each for 100 ps with a Nosé-Hoover
thermostat and barostat (target pressure of 1tbamaintain an NPT ensemble. The center of
mass of the bilayer was restrained to the plare=@twith a force constant of 100 kcal/madl/A
The final equilibrated system was then used toystndmbrane deformation and pore formation

with our density biased sampling method.

5.3.2.3 One-sided deformation of a membrane bilayer
The density biasing approach was applied to the®RRmbrane bilayer system. A cylinder

with a radius of 8 A was aligned to the bilayermatr (z) axis. The cylinder spanned from z=-2.5
A to z=+15 A, and the radial and axial switchingteinces were set to 1 A and 5 A, respectively.
Umbrella sampling simulations were performed withwlindows, increasing the number density
of water molecules per unit area in the cylindenfrl.1x1C to 2.17x1F A=, A force constant

of 9.2x10 kcal/mol/A® was used. To prevent deformation in the loweré¢aa plane potential
with a force constant of 100 kcal/mof/Avas applied to the phosphates of the lower leifflet

their distance to bilayer center was less than Balcth umbrella was simulated for 50 ns.

5.3.2.4 Poreformation in a membrane bilayer

In order to create a pore in a membrane bilayerexpanded the cylinder from the previous case

to cover both leaflets,e. from z=-18 A to z=+18 A. The radius of the cylindeas chosen as
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r=6 A, and the radial and axial switching distanoese set to 2 A and 8 A, respectively. The
parameters were adjusted based on initial trialkitions in order to achieve double-sided pore
formation. 20 umbrella windows were used to vagyiamber density of water molecules in the
cylinder from 6.7x18 A3 to 2.25x1F A3, using a force constant of 5.18%1Kcal/mol/A°.

Each umbrella was simulated for 50 ns. The totalgtion time for pore formation wasus.

5.3.25 Parameter Selection
While our method can be used for a diverse seppli@tions, the biasing potential parameters

would have to be adjusted accordingly. We will pdevguidance here how to choose the two

key parameters, height and radius, for the casecgfindrical biasing volume.

Generally, the cylinder height should encompasseaaeind beyond the region where the density
is meant to be changed. For membrane simulatiosispd cylinder height would be appropriate
to induce one-sided deformation while longer cyéirsdare necessary to induce transmembrane
pores. Furthermore, for one-sided deformations|dwer bound of the cylinder was fixed at z=-
2.5 A to let water molecules reach the bilayer eemtithout forming complete pores. In the
helium gas de-mixing simulations, the cylinder Ieigzas chosen bigger than the box size to

avoid gradients along the z axis.

The cylinder radius should be chosen large enooghat the cylinder extends beyond the pore
or deformation that is meant to be formed. Otheswike biasing potential may affect the shape
of the deformation. On the other hand, a cylindelius that is too large may not be effective in
inducing pore formation because large membranerahafiion could also satisfy a bias towards
increased water densities within the cylinder. Beeait was not entirely clear priori which

radius and cylinder height would be optimal, we dusted a series of test simulations with

varying radii and cylinder heights until pore fortima was accomplished successfully.
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Finally, the force constants and window spacingenggtimized by trial error. We found that the

final values were similar as those predicted bydttiterion given by Park and Im[97].

5.3.2.6 Implementation
The density biasing method using a cylinder-basgldmre function was implemented in the

CHARMM biomolecular software package[86], versiofDal. Although not implemented so
far, it would be easy to extend the method to otfemametries such as a rectangular box with

switching regions on each edge or a spherical gggme

5.4 Results and Discussion

54.1 Mixing entropy of two-component gas

The free energy cost of separating two noble gasiep was calculated using theoretical and
computational methods. Since the two species damical properties, there is no change in the
mean of internal energy of the system upon sepaydtie two species. Figure 3 compares
theoretical estimates of TAS according to Egs. 9 and 10 with the change in faergy
computed using the density biased sampling methbd. reference point in this figure is the
fully mixed state which has the highest entropyisT$tate corresponds to a mole fraction of
xa=0.22. If the theoretical estimate assumes a perfectifptm particle distribution to obtain the
number of particles in the cylinder (Fig 3 — theof), the AG from the simulation
underestimates the theory significantly. The agesgmmproves when the actual average
number of particles in the umbrella windows thatresponds to the de-mixed states is used in

the theoretical estimate (Fig 3 — theory B). Themaming small discrepancy is due to a non-
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negligible virial term that results from a pressuliference inside and outside the cylinc
during the umbrella simulateons in response to d&pplication of the biasing potential.
correction by addingA(PV), calculated from the average external pressuoes fimulations o
the fully mixed and fully demixed states as reported by CHARMM, brings the thecaktnd
simulation estimates in neperfect agreement. We note, that the simulatecesyss not ar
ideal gas because of weak attractive interactiosvalume exclusion effects as a result of
Lennarddones interaction potential. This would lead ton@al§ correction of the theoretic
estimate that is expected to be smaller or on #mesorder as the uncertainties in the
energies obtained from the simulations. Thereftie, simple test case lidates the densit

biasing potential introduced he
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Figure 5-3 Free energy cost of mixing two noble gas speciesfaaction of the lasing reaction

coordinates based on theory (mixing entropy) and simulatioadgfenergy calculated fro
umbrella sampling simulation Theory A is using uniform density to estimate totamber of
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particle in cylinder, whereas theory B uses theigogh average number of particles observed
during the simulations.

542 Membrane Simulations

We will now demonstrate the application of the dignbiasing approach to simulations of
membrane bilayers. As described in detail in theéhdés section, the density biasing potential
was applied to water molecules within a cylindecanpassing a section of a phospholipid
bilayer. Figure 4 demonstrates how local membrdmekiess, calculated as the average z
coordinate of the phosphorous atoms in a cylindleadius 8 A, responds to the water density in
the cylinder when varied in umbrella sampling siatans. The strong correlation reaffirms that
water density within the bilayer is a suitable teat coordinate for inducing membrane
deformations. Figure 5 shows snapshots of the mameldoilayer after 50 ns molecular dynamics
simulation with the density biasing potential setimcreasing target values. The increasing
degree of membrane deformation is readily appaedtwe note that the deformation appears to
proceed with a slight bending on both leaflets (F§), presumably because this lowers the
overall free energy for these intermediate statesvever, a further increase in the water density
results in a pronounced one-sided deformation Witk apparent perturbation on the opposing
leaflet. This is shown in Fig. 5F. Another featofehe deformation process is that it progresses
from an initially wide and shallow deformation tonarrow and deep deformation, presumably
due to a balance between the elastic propertidseaihhembrane bilayer and the free energy costs
of forming water defects within the membrane. Thefodnation of the bilayer is further
qguantified in Figure 6A, where the bilayer thickeest the deformation location is shown for
each umbrella window. The first umbrella is simethivith equilibrium flat bilayer conditions,
therefore, no deformation is observed. Howeveremotimbrellas increase the density of water

molecules, which induces a deformation in bilaygom the umbrella sampling, a free energy
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profile was obtaned by weighted histogram analysis method (WH,[33]. Figure 6B shows th
resulting potential of mean force (PMF) as a fumttcf the water density in the cylinder. /
would be expected, increasing the number of watelecnles, and thereby deforming i
bilayer, is highly unfavorable in terms of free emewith a cost exceeding 40 kcal/mol fo
onesided water defect that extes to the center of the membrane. As shown belogvctst of
forming a pore is about half so that without angtna@nts on the lower leaflet (see meth

section) the bilayer would not be expected to gtatdintain a on-side deformatiol

16 18 20

Local Membrane Thickness (A)
14

10

0.002 0.004 0.006 0.008,,0.010 0.012
Water Density (1/A )

Figure 5-4 Local membrane bilayer thickness of the upper é¢afs. water density per ut
volume from biased sampling of ¢-sided membrane deformatio
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Figure 5-5 Snapshots illustrating the c-sided deformation process from a flat bilayer state
fully deformed state at water densities of 0.004% 0.0073 (B), 0.0111 (C), 0.0143 (D), 0.01
(E), and 0.0170 A-3 (FRed spheres represent water molecules, bspheres represe
phosphorous atoms of the lipids, and lipid taiks sttrown in gree
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Figure 5-6 Average bilayer thickness in radial slabs for eactbrella window as a function
radial distance from the pore center. B: Free gnprdfile for one sided bilayer deformation a
function of water density in the cylindeéStandard error values obtathby calculating the PM

profiles over 10 2is subsets from the umbrella sampling simulatiensaown as light blu
shades.

Finally, we applied the density biasing method asrhe entire DPPC bilayer in order to ind
pore formation. Snapshots of thilayer after 50 ns molecular dynamics simulationishy
increasing water density biases are shown in FigSivhilar to what has been descrik
previously[152] pore formation starts by bending both leafletward. A water wire form:
initially (Fig. 7D). The lipid head groups then rearrange and therfamiliar hourglass shape
a stable pore once a critical pore radius is padsgd7E). A transition involving an initial wat

wire is consistent with results from the equilibnusimulations by ennett et g[152] The
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average number density profiles of water molecal@®ss the bilayer normal for a flat bila)
and a bilayer with a stable pore (with average maémsity of 0.0216 ) are compared in Fi
8. By integrating over the difrence between the two curves, it is found that W8er
molecules exist in the pore. This result is complaravith the 124 water molecules obtained
Leontiadou et al.[140]in which they applied mechanical stress (surtaosion) to form aore

in a DPPC bilayer.

P
LR el
It

TP
a®or g

Figure 5-7 Snapshots illustrating the pore formation processfa flat bilayer state to a stal
pore at water densities of 0.0067 (A), 0.0144 (B)159 (C), 0.0168 (D), 0.01(E), and 0.0222
A-3 (F) with coloring as in Figure-5.

We computed the pore size by assuming perfectaytial shape between -8 to z=8 A, and
uniform water density in that region. The averagenber of water molecules in the region v

found to bell7.7 in the last umbrella. The resulting pore uads found to be 8.8 A. Simil,

analyses assuming perfect cylinder for water wailt in pore radius of 4.2,

Figure 9 shows the PMF of pore formation as a fonodf water density in the aforemeoned
cylinder. Again, pore formation is energeticallyfavorable as expected. A plateau free en

of 22.2 (+/-0.4) kcal/mol is reached at a critical water dgneft0.018 £ once a stable pore
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formed. This result is close to the value of 19Kd2l/mol reported by Bennett et al. f
DPPC.[152]The agreement is excellent, especially when consigl@ifferences in force field:
We further decomposed the free energy into enthapd entropic contributions. The changt
enthalpy is estimated by computing the averagenpiateenergy of the syem and we found thi
pore formation is enthalpically favorable by 46+&akmol. The simple ¢mixing test case
above suggests that there may be an additAPV term but for a partially detixed system th
contribution is estimated to be less than 1 /mol and it is therefore neglected here. 1

implies an entropic costTAS) of pore formation of about 68 kcal/n
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Figure 5-8 Number density of water molecules across bilayemabcompared between at
bilayer and a bilayer with a stable pore (A), ameirtdifferences (B
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Figure 5-9 Free energy of pore formation as a function of wdémsity in the cylinder fror

densitybiased sampling with errorndicated as in Figure 6B. A previous result from Benne
et al. is shown for comparison.

As mentioned above, one motivation for inducing roeane pores via water density bias
rather than biasing the membrane structure direetly to avoid artifactshat could affect th
pore formation pathway and thereby the energy leofobtained from umbrella samplir
Figure 10 compares the water denslfy our reaction coordinate that imposes minimas lwa
the membrane structure, with the average distaf the two closest phosphates from the bile
center §). The latter relates to previous biased simulasitudies where the distance of a sir
phosphate group from the bilayer center was ([152] Poor correlation between the t
reaction coordinates suggests that there coulddmhamistic differences when either of the
reaction coordinates is us#éal induce pore formation. With the density biastegm, a typica
transition path (indicated in red in Fig. 10) woudlélay a transition of phosphates to the bilz
center until a critical water density is reachedwditich point there is a sharp, cocative
transition that leads to formation of a full po@n the other hand, we speculate that forming

pore by pulling down a phosphate group would follwath indicated in green in Fig. 10 wh
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phosphates approach the center of the bilayer @ar a sharp, cooperative transition could
absent. Figure 11 shows two intermediate confooomativith extreme low values that may b
intermediates on such a transition path. In thegsdocmations, the membrane exhibits la
deformations on one leafleind the water molecules are dragged into the caideg with the
lipid headgroups, as shown in Fig. 11. Since freergies are state functions, overall energie
pore formation are of course independent of thé paiten. However, the free energy file
along the transition path and any mechanistic imsgptained from such simulations dc

depend on the path taken as a result of the bigsitential.
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Figure 5-10 Average z coordinate of the two sest lipid phosphates from the bilayer cente!
water density within pore cylinder illustrating fdifent mechanisms between der-driven and
phosphatedriven pore formation bie Sampling from each umbrella is shown in differesiocs
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Figure 5-11 Intermediate bilayer states with low average distaof phosphates to the bilay
center.

The proposed method in this work applies a minioias$ to induce a pore in membrane. The
no assumption madabout the shape of the pore or the density lligtan inside the cylinde
However, the performance of this method is seresittv the choice of cylinder parameters
described above. Therefore, we believe that thishaokis more universally applicle to
membrane pore formation and deformations in respaasinteractions with other molecul
especially in cases where it is not cla priori how exactly the membrane responds to ¢

molecules.

The variation of the water density in our methodaginiscent of grand canonical ensem
methods[41, 132fhat have been widely used to simulate the mixiraggss of model flui|34,
160]. However, because dexing and bilayer pore formation processes maylitbee
thermodynamically unfavorable or kinetically hineley enhanced samplinechniques such
umbrella sampling would still be required. Furthersy a global variation of the chemi
potential for water in a membre-bilayer system may not necessarily lead to poren&bion
since water molecules could be added in the bulkon while a targeted change of a lo
chemical potential would eventually result in a hoet similar to ours but with the additior

complications of the grancanonical machiner
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Finally, while the method presented here focusesva@rcoming the kinetic barriers in creating
membrane deformations and pores, it may not fullgrass overcoming the slow relaxation
times of lipid motions. Therefore, mechanistic sgdf membrane pore formation would likely
require longer simulations and/or a combinatiorhvather enhanced sampling techniques such
as replica exchange sampling that can acceleg@terhotions to guarantee full convergence of

deformed bilayer systems.

5.5 Conclusions

We have developed a new computational techniqumat® the density of a group of molecular
species, or the difference in densities of two e groups. The method was validated for the
case of de-mixing two ideal gas species. Furtheemee applied the new biasing term in the
context of membrane pore formation. We believe thasing the water density rather than
structural properties of the membrane is less yikel introduce artifacts. Furthermore, the
density biasing approach allows the study of odedideformations which has not been
described with umbrella sampling techniques prestipuThe density biasing function is also
more broadly applicable to any system involving mhi&ing or de-mixing of molecular species
with respect to each other. Possible applicatiookide lipid raft formation, co-solvent effects,

and studies of concentration gradients in compyskesns.
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6.1 Abstract

The interactions among four amino acid analog pghsn, Ser, Phe, and Val) in the

membrane environment are investigated using ungbsampling molecular dynamics

simulations. The physical characteristics of intios among the amino acid pairs at the
bound states and transition states were analyzedl,ugeful insights are gained by
observing the differences in the relative populatod the bound state conformations at
different distances from the bilayer interface.idtshown that the distance from the
bilayer interface dictates the interactions betwiaenpolar pairs and their conformations.
Furthermore, the binding free energy obtained fedhatom explicit simulations of each

pair with respect to the bilayer normal distancealkulated. The results of this study can
potentially be used for parameterization of otheembrane models, as we have

compared the results with three implicit membrarmeiefs.

6.2 Introduction

Membrane proteins are involved in a variety of Wdall processes such as molecular
transport and signaling pathways, and they ar¢atyet of many pharmaceutical studies.
Membrane proteins are embedded in lipid bilayemt support and modulate their
activity.[161-163] As with soluble proteins, theeractions among the amino acids and
the environment are the primary determinants of brame protein structure and
function.[163] Yet, knowledge gaps remain about fimedamental nature of amino acid
interactions within the membrane environment. Eixpentally, such interactions are
notoriously difficult to probe while computationstudies have been hindered by the long

time scales and complexity of bilayer systems. &foee, many computational studies of
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amino acids in bilayer environments rely on simgédifions such as coarse-graining[164,
165] or implicit membrane[134, 166-168] models tacifitate the conformational
sampling of membrane protein systems[169-172] at ékpense of neglecting subtle

details of amino acid lipid interactions.

The association and insertion of small peptideaqoneous and lipid environments has
been the subject of several studies.[2, 170-185)driicular, amino acid insertion into
membrane bilayers is fairly well understood. Mad@al et al. investigated the insertion
of 17 amino acid side chains from the bulk waté¢o imembrane region and calculated
the distribution of amino acid analogs with resptrtthe distance from the bilayer
center.[2] The membrane insertion free energy [@®ffor each amino acid group
(aliphatic, aromatic, and polar side chains) wesengared, and it was found that the
energetic minimum of aliphatic side chains is & tlenter of the bilayer, while the free
energy minimum for aromatic side chains (Trp, Tihe) is located near the lipid
carbonyl group. Polar residues (Asn, GIn, Ser, BHmg have large positive free energies
at the bilayer center that can be resolved in pgarallowing water penetration into the
lipid bilayer.[2] Membrane deformations are espigidramatic when charged amino

acids are inserted as described most clearly @océise of arginine insertion.[2]

The energetics of amino acid interactions withia thembrane is less well understood.
Kim and Im[174] studied the interactions of transmbeane (TM) helices with lipid
bilayers. They decomposed the PMF of helix tilt larginto entropic and helix-lipid
interactions, and concluded that helix-lipid int#rans provide a driving force for helix
orientation under positive hydrophobic mismatch dtbons.[174] In a recent study,

Castillo et al.[177] studied the association of tWALP23 peptides in three lipid
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membrane systems using the MARTINI coarse grainedetfjl64]. In that study, the
peptide-peptide, peptide-lipid, and lipid-lipid em&ctions upon peptide binding were
analyzed and characterized in terms of their thelymamic behavior. They reported that
association of WALP23 peptides is favored by mdrant20 kJ/mol, without any free
energy barrier separating associated and dissdcstges.[177] In a more systematic
study by de Jong et al.[1], the dimerization of mmnacid side-chain pairs was simulated
using different force fields in watem;octanol, and decane as mimics of lipid membranes.
The general features of favoring association ofapaompounds and disfavoring
association of hydrophobic compounds in decane caatdnol were reproduced but it

remains unclear how their results transfer to ddipid bilayer environments.

In order to better understand amino acid interastio lipid bilayers, this work describes
the association of pairs of four amino acid anglagetamide (Asn), methanol (Ser),
toluene (Phe), and propane (Val) in DPPC bilayssmfextensive biased-sampling all-
atom computer simulations. The results provide @aton free energy profiles and
detailed insight into the coupling between insertedino acid pairs and membrane
deformations. Furthermore, the energy profiles wesmpared with common implicit

solvent models[24, 186, 187] to assess their ghihtreproduce amino acid interactions

within the membrane.
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6.3 Materials and Methods

Pairs of four amino acid analogs were consideredthis study: toluene-toluene,
acetamide-acetamide, methanol-methanol, and prgpapane (Fig. 6-10
supplementary materials). Molecular dynamics unddmpling simulations were used
to study the interactions among each pair at diffepositions along the bilayer normal:
z=0, 4, 8, 12, 16, 20, 24 A. The center of mass neasained to the respective z values
using a harmonic potential function with a forcexstant of 50 kcal/mol/A The center

of mass distance between the analogs was therdviaoi® 3 A to 15 A with increments
of 0.5 A. At each distance, umbrella sampling wasied out[32] using a force constant
of 5 kcal/mol/& to maintain the respective distances. Initial eyst were set up by
placing the pair of molecules inside two spheras were created inside the membrane at
different values of z. Two sets of umbrella sangplsmulations were carried out. In one
set (called forward sampling), the amino acid agslwere initially equilibrated at a
distance of 5 A, and then after 2 ns simulatioe, fthir distance was decreased to 4.5, 4,
3.5 and 3 A as well as increased to 5.5, 6, 6.55.A1In subsequent simulations. In the
second set (called backward sampling), the pair mméiglly equilibrated for 2 ns at a

distance of 15 A and then pulled to increasinglyrsr distances up to 3 A.

6.3.1 Explicit Solvent Simulations

A membrane bilayer consisting of 288 DPPC moleculas constructed and enclosed in
a periodic box with a fixed lateral size of 95.24 A 95.24 A. The non-bonded
interactions were calculated within a cutoff distarof 10 A (switched to zero between
8.5 to 10 A), and for long range electrostatic riatéions particle-mesh Ewald (PME)

with a grid spacing of 1 A was used. The simulaiorere performed using the NAMD
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molecular dynamics package[188], under NPAT coodgiusing Langevin dynamics
with a temperature of 323 K, and a constant nopnegsure of 1 bar. A time step of 2 fs
was used in conjunction with SHAKE. The CHARMM36rde field[9] was used to
model the lipids, the CHARMM General force field@EnFF)[11] for the amino acid

analogs, and the TIP3 water model[189] was used.

Initial configurations were minimized for 500 stegsd then heated and equilibrated to
temperatures of 20 K, 100 K, 250 K and 323 K fop® 2 ps, 2 ps, and 10 ps,

respectively under the restraining potentials wehbpect to the pair distance and the z
position of the pair. The overall center of masshef lipids was also restrained to zero
using a force constant of 100 kcal/mdl/Aubsequent umbrella runs were started from
the previous 2 ns production run, and equilibrated heated to 100 K, 250 K, and 323 K

with their corresponding umbrella potential.

The first 2 ns of each simulation was discarded| @@ rest of the data was used for
calculating PMFs. To assess convergence, the resinnsquared deviations (RMSD)
between the potentials of mean force (PMF) at argiistance were compared between
the forward and backward sets. Simulations weré&allyi carried out for 6 ns per
umbrella and continued in both sets until an RM3ue of less than 0.2 kcal/mol was
achieved (see Figure 6-11). For some umbrellas rdquired as much as 200 ns with
explicit solvent and lipids (see Table 6-2). Geligrapolar compounds required more
sampling because of coupling with membrane defaonatas discussed below. The total
simulation time for acetamide and methanol pairsevi®.4us and 8.Qus, respectively,
whereas for toluene and propane the aggregate aionultimes were 6.8s and 2.1us.
Finally, weighted histogram analysis method (WHABB] was used to generate a
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composite unbiased PMF from the individual umbeelldong the entire range of pair

distances.

6.3.2 Implicit Solvent Simulations
Three implicit solvent models were considered is gtudy, HDGB, GBSW, and IMM1,

the implicit membrane extension of EEF1. The inmplgolvent simulations were run
using CHARMM][86] following the same umbrella samnmgliprotocol as with the explicit
lipids and solvent but with a shorter time of 1% per umbrella that was sufficient to
satisfy the convergence criterion. All the init@lstems underwent 50 steepest descent
energy minimization steps followed by 500 adoptasi® Newton Raphson method. Then
the systems were heated to 100 K, 200 K, and 32% K00 MD steps. The production
runs were performed for 1.5 ns in each directicor. HDGB simulations, the dielectric
and non-polar profiles along the Z axis were adbjfiitem Sayadi et al.[169] (also shown
in table 6-3 supplementary materials). A scalingdaof 0.015 kcal/mol/Awas used to
obtain non-polar solvation free energies propogidio the solvent-accessible surface
area (SASA).[26] For GBSW simulations, the impliciembrane thickness was set to 28
A, and a switching length of 0.3 A was used. In ¢ase of IMM1 model, a membrane
thickness of 28 A was used. For IMM1, the aminalamialog parameters were directly
adopted from their corresponding amino acids in HieF1 model without further
modifications. With the given parameters, all thiglicit solvent models are meant to

approximate the energetics of a DPPC bilayer.

6.3.3 Bilayer Deformation Simulation

For certain separation distances and certain valtiegs membrane bilayer deformations

were observed with acetamide and methanol paies @sults section). In most cases,
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forward and backward umbrellas exhibited the sasteabior (deformed or undeformed
membrane), but in a few cases bistable behavior ebserved where forward and
backward sampling did not converge to the same statl where the membrane was
deformed in one case but not the other. In orddyet@ble to generate a complete free
energy profile we carried out additional umbrellasing simulations at a fixed distance

and z value but varying the degree of bilayer dufiron.

To connect states with different degrees of mendrdaeformation we employed a
recently introduced density-biasing approach[180this method, an imaginary cylinder
is placed along the bilayer normal axis. A volumumdtion V is defined with two
independent radial and axial components with aevafil inside the cylinder that is
smoothly switched to zero to points outside thancdr. The integral of the volume
function over all water molecules gives the numbérwater molecules within the
volume, which once normalized by the cylinder volyms used as the reaction
coordinate where low water density correspondsitoraleformed bilayer and high water
density indicates deformation. In this case, ancidr with radius 8 A was used, spanning
from z=-2.5 to z=15 A, with the switching regiontse 1 and 5 A in radial and axial
directions, respectively. Umbrella sampling wasitheed to vary the water density in the
cylinder from 1.1e-3 B to 17.1e-3 & over eight umbrella windows with a force
constant of 1.225e6 kcal/molfADue to convergence issues, we increased the mushbe
umbrellas to 16 for methanol at z=4 A. An additionestraint was applied to the
phosphates of the lower leaflet if their distanmditayer center was less than 8 A, which
prevents deformation in the lower leaflet. Densigsed molecular dynamics simulations

were carried out for 48 ns for each umbrella. Tlagewdensity biasing simulations were
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combined with the distance-based umbrella simuiatito generate 2D PMFs as a
function of the pair distanc&)(and water density} using WHAMI[33]. Final 1D PMF
profiles as a function of the pair distancg ere obtained by Boltzmann averaging
according to Eq. 1

AG/(&) = —k T |og<ex;{— %D (1)

6.4 Results and Discussion

Results from extensive biased molecular dynamicsulsitions are presented that
describe the pairwise interactions between acemmmtethanol, toluene, and propane
pairs at different distances from the center apal Ibilayer. Although the main focus of
this study is on the amino acid interactions witlynd bilayers, we observed significant
coupling with the lipid bilayer structure, which liMoe described first before continuing

to amino acid association energetics and structiatalils.

6.4.1 Membrane Deformations

Because none of the compounds are charged, walljitissumed that membrane
deformations would be modest and limited to casesrev the analogs are near the
membrane surface. However, we found significant brame deformations even for
deeply inserted acetamide and methanol pairs asrshio Figure 1. In the case of
acetamide, deep deformations of the bilayer arerobs consistently at z=4 A and z=8
A. When the acetamide pair is at the center (z&@prmations are observed in some of

the umbrellas and only at some pair distances stiggea bi-stable scenario where
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deformed and undeformed membrane states are dymiéaorable but separated by a
significant kinetic barrier. Methanol pairs alssult in membrane deformations at z=4 A
and z=8 A but not at z=0. At z=4 A, the samplingagain bi-stable with all of the

backward sampling umbrellas showing a deformed mangbwhile the membrane is
deformed only at three pair distances in the fodasampling umbrellas. The non-polar
compounds toluene and propane do not lead to watertion when inserted deeply but
when fixed at z=16 A and z=20 A the bilayer expatmlaccommodate the hydrophobic
pairs. The membrane deformation largely disappedrsn the pairs are placed even

further away from the center at z=24 A.

In order to further understand the bi-stable memdrdeformation states for acetamide
and methanol, we carried out additional densitwibig umbrella sampling simulations

along the deformation reaction coordinate for anéda and methanol pairs at z=0 and
z=4 A and at short pairwise distances where thstdiile behavior was observed. The
results are shown in Figure 2. In both cases, tates are found, separated by a kinetic
barrier. In the case of acetamide, deformed andefonthed membranes are similarly
favorable; for methanol the deformed membrane apptabe slightly more favorable

when the pair is placed at z=4 A. Water densitgibig simulations were also carried out
for additional pair distances of 5 and 6 A for aceitle in order to be able to connect the

forward and backward umbrella sampling sets (s&@\e
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Figure 6-2 Potentials ofmean force as a function of water density to réfleembrane
deformation. A: acetamide pair at z=0 and d=5.BAmethanol pair at z=0 and d=4.5

6.4.2 Association Free Energy Profiles

A main goal of this study is to obtain free enemyfiles for aminoacid side chai

analog association within lipid bilayer environmentymbrella sampling along the p
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distance reaction coordinate was carried out &reit membrane insertion depths and a
comparison between forward and backward samplingrelta runs was used to assess
satisfactory convergence. As shown in Figure 6ebhyergence, defined as an RMSD of
less than 0.2 kcal/mol between forward and backwand, was achieved for almost all
windows except for acetamide and methanol at cershiort distances and deep
membrane insertions. These cases correspond tbit#table membrane deformation
scenario described above where both deformed atefarmed membranes are similarly
favorable but transitions between the two statesret sampled in the pair distance
umbrella simulations. The additional water-densitgsing simulations described above
provide access to that transition and a combinatfdhe pair distance umbrella runs with
the water-density umbrella runs was necessary tarol complete energetic picture. In
order to do so, two-dimensional PMFs as a functérpairwise distance and water
density were constructed from the combined samgbeg Fig. 6-12 and 6-13) and then
integrated using Boltzmann averaging along the idemsaction coordinate to obtain
correct one-dimensional PMFs as a function of thie gistance. When compared to the
naive case where the pair distance umbrella rues samply combined without
considering that in fact disconnected states amgpkad, the corrected PMFs differ by
0.25-0.5 kcal/mol (see Fig. 6-12 and 6-13). Foreptpairs, distances, and membrane
insertions, such a correction was not necessargusecforward and backward sampling

umbrella appear to have reached convergence.

The complete association energy profiles as a iomaif pair distance and membrane
insertion are presented in Figures 6-3A, 4A, 5Ad &A. These profiles include the

corrected PMF profiles for acetamide at z=0 A amdnfiethanol at z=4 A. We note that
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because the pairs were fixed at certain insertigptits the present simulations do not
provide information about the relative free enesgaong the z direction. Instead, the
PMFs are combined so that the contact pair hasdhee free energy at all values of z.
Information about membrane insertion free energgeavailable from previous studies
while adequate sampling of membrane insertion alentp separation within the
membrane would have greatly increased the needdditional sampling beyond what
we can accomplish with the resources availablestoQverall, the free energy analysis
confirms what would be expected qualitatively: batietamide and methanol have a deep
minimum when forming a contact pair inside the meank but separating the pair
becomes increasingly favorable towards the edgethef bilayer where the polar
molecules can interact with water rather than \edich other. At z=0 the acetamide pair
is stabilized by as much as 2.5 kcal/mol whilerthethanol pair is stabilized by about 1.5
kcal/mol. Toluene and propane pairs on the othadlae slightly more favorable when
separated in the membrane by about 0.25 kcal/mibé idvoring weak association at the
edge of the bilayer as would be expected for hyldobpc compounds. For all compounds
there is a ‘desolvation’ peak immediately after agafing the contact pair with an

energetic penalty of 0.5 to 1 kcal/mol.
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Figure 6-3 Potential of mean force for acetamide as a funatfquair distance at
different insertion depth into the lipid bilayeofn simulations with A) explicit solvent
and lipids B) HDGB implicit membrane C) GBSW implimembrane and D) EEF1
implicit membrane models; For each insertion dejpth,bound state was used as the
reference with an energy of zero.
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Figure 6-4 PMF of methanol as in Fig. 6-3.
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Figure 6-5 PMF of toluene as in Fig. 6-3.
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Figure 6-6 PMF of propane as in Fig. 6-3.

The pair binding free energies obtained from theFRWbfiles as the difference between
the free energy at the contact pair and at thetggepair distance considered here can be
compared to previous results for pair formatiordifierent solvents by de Jong et al[1]
with GROMOSJ[13] and OPLS[14] force fields. More siieally, we compare our
results at z=0, 12, and 24 A insertion depths ¢ovélues obtained in decane, octanol and
water, respectively. Overall, the agreement is gespkcially if one considers differences
in force fields, the oversimplification of using ade and octanol as mimics of lipid
bilayer environments, and the missing contributlore to membrane deformations with

the simple hydrophobic solvents. However, taking data at face value, it appears that
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the agreement with the OPLS results is better WBGROMOS may be overestimating

contact pair formation in decane except for propane

Table 6-1 Binding free energies in kcal/mol obtained from leotp simulations
(CHARMM) at different Z distances as the differertmetween the free energy for the
contact pair and the average energy for distancestey than 10 A. Standard errors are
given in parentheses. Values obtained at z=0, 12n8,24 A are compared with values
obtained previously in decane, octanol, and wayete Jong et al.[1].

0 4 8 12 16 20 24

254 | 178 | 065 | 017 | 015 | 003 | 018

| CHARMM | 002) | (0.04) | (0.05) | (0.03) | (0.06) | (0.03) | (0.01)
Acetamide’ GROMOS[1]| -4.21 0.06 0.13
OPLSJ[1] NA -0.31 0.04

147 | 174 | 046 | 018 | 013 | 022 | 0.24

CHARMM "1 (0.03) | (0.06) | (0.11) | (0.03) | (0.05) | (0.02) | (0.01)
Methanol ™ GroMOS | -2.72 0.10 0.34
OPLS | -137 20.19 0.32

007 | 019 | 015 | 033 | 026 | -0.68 | -0.86

CHARMM "1 0.01) | (0:02) | (0.03) | (0.05) | (0.02) | (0.03) | (0.08)

Toluene ™GROMOS | -1.09 0.21 -0.29
OPLS | -031 20.03 0.47

024 | 033 | 053 | 092 | 089 | -0.86 | -0.32

CHARMM | (0.02) | (0.03) | (0.04) | (0.09) | (0.09) | (0.05) | (0.02)

Propane ""GROMOS | -0.04 -0.38 -0.06
OPLS | -0.06 20.11 0.06

6.4.3 Contact Pair Formation of Polar Compounds

Closer inspection of the conformations of the pdate-chain pairs (acetamide and
methanol) indicate a conformational bias at thenldostate as a function of the presence
or absence of water molecules around the pair,ewtdnformational analysis of the
hydrophobic compounds, on the other hand, did eetal any noticeable difference
along the bilayer normal. We refer to the boundests the closest pair distance where
the association profile is still favorable, whileetlongest pair distance is referred to as
the free state. We observed that relative populatd different conformations of

acetamide and methanol pairs at the bound stateliagetly related to the number of
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hydrogen bonds they form with water molecules. Bystering acetamide pair
conformations at the local minimum of the free gyaprofiles (d=4 A), we distinguished
three different conformations that could form QGarid 2 hydrogen bonds within the pair.
Figure 7 shows the relative population of confoioreg that form two or one hydrogen
bond, as a function of the distance from the bilayenter. At z=0, no hydrogen bond is
formed with water molecules because the membranetisleformed, and as a result the
percentage of conformations forming two hydrogendsowithin the pair is 25%. This

value decreases as the pair moves to z=4 A, doetobrane deformation that allow the

formation of hydrogen bonds with water.
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o
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Figure 6-7 Conformational analysis of acetamide pair at thenoostate; A) average
hydrogen bonds formed between acetamide pair atet welecules as a function of
bilayer normal distance, B) fraction of conformatahat form one intra-pair hydrogen
bond, C) fraction of conformations forming two axpair hydrogen bonds

Methanol shows a shift in the contact pair distainoe 3.5 A for z values below 10 A to
a distance of 4.5 A for z values above 12 A (seg. BA). The corresponding

conformations are shown in Figure 8. At deeperrirme depths the methyl groups are
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exposed to the hydrophobic environment while gsgkriactions between the two

hydroxyl groups are maximized, leading to a sharéster of mass distance. On the other
hand, at shallower insertion depths, the hydroxglugs is exposed to the environment
while the methyl groups interact with each othetrsd they are shielded from the more

polar environment.

d=3.5 d=4.5
Figure 6-8 Conformational analysis of methanol pair at twogilole bound states; A)
average hydrogen bonds formed with water, B) foactbf conformation 1 at bound

distance 3.5 A (blue) and at 4.5 A (red). Resufisxplicit simulations are shown in solid
lines, HDGB in dashed lines, GBSW in dotted lined &MM1 in dash-dotted line

6.4.4 Comparison with Implicit Membrane Models

The data presented here is especially useful foanpeterizing simplified models of

membrane environment. Implicit membrane models heen previously parameterized
using amino acid side chain insertion free energigsso far little attention has been paid
to how well implicit membrane models can capturernactions of solutes within the
membrane. Figures 3-6 compare the association drewgy PMFs for acetamide,
methanol, toluene, and propane with HDGB, GBSW, Bl to the explicit solvent

results. Very qualitatively, the main trends arerenor less reproduced, but, in detalil,
there are quite significant differences. For exan@BSW greatly overestimates the
binding free energy of acetamide in the membrandgewthe acetamide contact pair is

still more favorable than the separated pair at4zA2 In the case of methanol, both
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HDGB and IMM1 do not find a significant favorablenting energy at z=0, only GBSW

captures the explicit lipid trend correctly. HDGBd&aGBSW do capture the shift from
favoring the hydroxyl-interacting close distancenta@t pairs at deep insertion to the
methyl-interacting longer contact pair beyond 104 2vhile IMM1 does not. For the

non-polar compounds the differences are less drarnat nevertheless significant when
compared to the explicit lipid simulations. For exyde, GBSW shows little variation as a
function of z while HDGB appears to overemphashee dttraction of hydrophobic pairs

near the aqueous phase.
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Figure 6-9 PMF profiles for acetamide, methanol, toluene, praghane at Z=0 and Z=!
as a function of the pair distance obtained froplieit, HDGB, GBSW, and EEF
models

Based on the new data from this study we attematechprove the parameterization «

the HDGB model that was previously developed in gnaup. Specifically, we adjuste
126



the dielectric profile as well as the overall seglfactory for the non-polar contribution
to improve agreement with the pair distance freergies within the membrane while
maintaining good agreement with membrane inseftie® energies of single amino acid
side chain analogs. The overall scaling factor setgo 0.02 kcal/mol/A The optimized
dielectric profile is given in Table 6-3 along withe (unmodified) non-polar profile.
Figure 9 focuses on the distance profiles at zeDzai2 A for the four analog pairs with
the original and improved HDGB model. As can benseakis possible to significantly
improve the agreement between the implicit membnamoelel and the explicit lipid
results. At the same time, amino acid insertionfil@® for 14 amino acid side-chain
analogs are in similar agreement with results fra@xplicit simulation[2] and
experimental measurements[49] as for the previoD&B parameterization (see Fig.
S5). Nevertheless, with the modified parameters, disociation free energy is now
overestimated for acetamide at z=0 while dissodidtduene is still not favorable
enough, especially for z=12 A. The use of an inipiiwdel that would allow membrane
deformations such as the DHDGB model[134] that ingyrove the agreement with the
explicit lipid results. Another possibility is theclusion of implicit van der Waals
interactions that are expected to become more itrapbin the membrane environment as

the role of electrostatics decreases due to theopidbic environment.
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6.5 Conclusions

In this study, we are presenting a detailed eniergeid structural analysis of amino acid
side chain analog interactions within lipid bilay@vironments which has received little
attention in previous studies. Qualitatively, wenfoon expected trends of polar
compounds associating strongly inside lipid bilayecompared to hydrophobic
compounds. Furthermore, we present detailed qa#imétdata about the energetics of
pair formation at different membrane insertion tispthat required a careful analysis of

the coupling between amino acid pair interactiam$ membrane deformations.

The presented data is especially useful for thedatbn and parameterization of
simplified membrane models. We show that estaldishglicit membrane models have
difficulties to reproduce the association energetilescribed here. However, it was
possible to improve the HDGB model to better repomdthe new data from this study
while maintaining good insertion free energy pesil In future studies we will aim to
further improve the implicit membrane model by ddesng membrane deformations

and implicit van der Waals terms.
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Table 6-2 Simulation time in nanoseconds for explicit simiglas of each amino-acid analog pair under diffetenbrella potential,
the simulation time listed is used in forward aadhkward directions.

3 35| 4| 45| 5 55| 6 6.p 7 7% 8 8§5 9 .5 |10 1018 | 11.5] 12| 125 13 135 14 145 1%
0O |20 20| 30| 20 | 20 | 200|120 | 20 |20 | 20 | 20| 20| 20|10 |10 | 10 [ 20| 20 |30 | 20 | 20 | 200|120 | 20 | 20
o |4 130]70|30] 50 [200)| 90 | 150 |50 |50 | 30 |30]20)20)10)10| 10 30| 70 | 30| 50 | 200 | 90 | 150 | 50 | 50
2|8 |20 20|20 | 20 | 20 | 20 | 20 |20 |20 | 20 |20 |20 [ 20|10 | 20| 10 |20 | 20 | 20| 20 | 20 | 20 | 20 | 20 | 20
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0 |20 20|20| 20 | 20 | 20 | 20 |20 (50| 20 |20 |20 | 20| 10 (10| 10 | 20| 20 |20 | 20 | 20 | 20 | 20 | 20 | 50
_ |4 1202020 |200| 30 | 30 | 20 |20 | 20| 20 |20 20| 20|10 |10 | 10 [ 20| 20 |20 | 200 | 30 | 30 | 20 | 20 | 20
2 (8 [20[20 [ 92| 40 | 20 | 20 | 20 |20 {20 | 30 [ 20|30 20|10 |10 | 10 [ 20| 20 |92 | 40 | 20 | 20 | 20 | 20 | 20
g 1212020 | 20| 20 | 20 | 20 | 20 | 20 |20 | 20 |20 | 20 |20 | 10 |10 | 10 | 20| 20 |20 | 20 | 20 | 20 | 20 | 20 | 20
g 162020 |50 | 20 | 20 | 20 | 20 |20 |20 | 20 |20 |20 |20 |10 (10| 10 |20 | 20 |50 | 20 | 20 | 20 | 20 | 20 | 20
2012020 | 20| 20 | 20 | 20 | 20 |20 |20 | 20 |20 20| 20|10 |10 | 10 [ 20| 20 |20 | 20 | 20 | 20 | 20 | 20 | 20
24120120 |20| 20 | 20 | 20 | 20 |20 | 20| 20 | 20| 20 |20 | 10 |10 | 10 [20| 20 [20| 20 | 20 | 20 | 20 | 20 | 20
0 |12 12|12 | 12 | 12 | 12 | 12 |12 |12 | 12 | 12|12 |12 |10 |10 | 10 |12 | 12 |12 | 12 | 12 | 12 12 12 | 12
4 |12 )12 |12 20 | 12 | 12 | 12 |12 |12 | 12 |12 |12 |12 |10 |10 | 10 |12 | 12 |12 | 20 | 12 | 12 12 12 | 12
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0 6 6 6 6 6 6 6 6 6 6 6 6 6 | 6 6 6 6 6 6 6 6 6 6 6 6
4 6 6 6 6 6 6 6 6 6 6 6 6 6 | 6 6 6 6 6 6 6 6 6 6 6 6
% 8 6 6 6 6 6 20 6 6 6 6 6 |20 6 | 6 |20]| 6 6 6 6 6 6 20 6 6 6
2 12| 6 6 |16 | 16 | 16 | 16 | 16 |16 |30 | 30 |30 |16 |30 |30 |20 | 6 6 6 16 | 16 | 16 | 16 16 16 | 30
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Table 6-3 Improved HDGB parameters, dielectric profié¢ &nd non-polar profileyj.

Z g(z) - old £(z) - new z v(2)
0.0 1.80 1.15 0.0 0.0000
0.5 1.80 1.15 0.6 0.0001
1.0 1.81 1.16 1.2 0.0002
1.5 1.82 1.17 1.8 0.0010
2.0 1.83 1.18 2.4 0.0050
2.5 1.84 1.19 3.0 0.0075
3.0 1.85 1.20 3.6 0.0100
3.5 1.86 1.21 4.2 0.0150
4.0 1.87 1.22 4.8 0.0200
4.5 1.89 1.24 5.4 0.0250
5.0 1.91 1.26 6.0 0.0300
5.5 1.93 1.28 6.6 0.0350
6.0 1.97 1.32 7.2 0.0410
6.5 2.00 1.35 7.8 0.0470
7.0 2.04 1.49 8.4 0.0520
7.5 2.09 1.64 9.0 0.0610
8.0 2.15 1.80 9.6 0.0720
8.5 2.22 1.87 10.2 0.0850
9.0 2.31 1.96 10.8 0.1000
9.5 2.41 2.06 11.4 0.1200
10.0 2.53 2.18 12.0 0.1500
10.5 3.23 2.28 12.6 0.1900
11.0 3.63 2.38 13.2 0.2500
11.5 4.13 2.58 13.8 0.3200
12.0 4.73 2.89 14.4 0.4000
12.5 5.43 3.42 15.0 0.5000
13.0 6.13 4.00 15.6 0.6200
13.5 6.98 5.08 16.2 0.7500
14.0 7.84 6.04 16.8 0.8753
14.5 8.80 7.50 17.4 0.9500
15.0 10.96 10.06 18.0 1.0308
15.5 14.05 13.75 18.6 1.0680
16.0 19.04 19.04 19.2 1.0921
16.5 25.85 25.85 19.8 1.1000
17.0 35.38 35.38 20.4 1.1000
17.5 45.88 45.88 21.0 1.0927
18.0 54.11 54.11 21.6 1.0690
18.5 60.79 60.79 22.2 1.0468
19.0 65.52 65.52 22.8 1.0328
19.5 69.42 69.42 23.4 1.0197
20.0 72.31 72.31 24.0 1.0130
20.5 74.07 74.07 24.6 1.0052
21.0 75.53 75.53 25.2 1.0005
21.5 76.63 76.63 25.8 1
22.0 77.14 77.14 26.4 1
22.5 77.83 77.83 27.0 1
23.0 78.22 78.22 27.6 1
23.5 78.92 78.92 28.2 1
24.0 79.35 79.35 28.8 1
24.5 79.66 79.66 29.4 1
25.0 80.00 80.00 30.0 1
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Acetamide (Asn) Methanol (Ser)

Toluene (Phe) Propane (Val)

Figure 6-10 Amino acid analogs used in this study, acetamidenfAmethanol (Ser),
toluene (Phe) and propane (Val).

131



.4 MLTLdiiiiucC ;v1cu IClIIUI

[
o
(=]

bB

([N
)
i

NONON
RS o
i

©
w

-
_—
N

(]
N

0.4 - Toluene ] Propane

RMSD  (kcal/mol)

(]
(@]

)
(]

Pair Distance (A)
Figure 6-11 Root mean squared deviation between the PMF psofdé biasec
simulations in forward and backward pullidirections.

132



4 6 8 0 12 14
Pair Distance (A)
B
< 1 Original PMF —
~ Corrected PMF —o-
S .
R
9
X N -
L
=
a _
o

4 6 8 10 12 14
Pair Distance (A)

Figure 6-12 A: 2D PMF of acetamide pair association at z=0w&ater density in biasing
cylinder; B: Corrected 1D PMF as a function of pdistance after Boltzmann averaging
along the water density reaction coordinate.

133



10

(@)}

==

Water Density (1/A%)

N

4 6 8 10, 12 14
Pair Distance (A)

Original PMF —
Corrected PMF —-

PMF (kcal/mol)

4 6 8 10 12 14
Pair Distance (A)

Figure 6-13 A: 2D PMF of methanol pair association at z=4 A arader density in

biasing cylinder; B: Corrected 1D PMF as a funcidmair distance after Boltzmann
averaging along the water density reaction cootdina

134



© lle I Leu 1 Val I Ala 1
<t 1 i
N - - 4
o B - —
C}|- " . — — /o’
ﬁr 7 ] " _-<-"-" I
p—
© 1 Ser \ Thr i Cys 1 Met
S i 1
g o - el <
© X SRS
Lo = N ... o =
W - =
=" 1< >
o < J i
T T T T T T T 1 T T T T T 0 T 10 2I0 3I0
@1 i Phe
A < Experiment
7 —— Explicit
= r ' ---- HDGB - new
oy - === = - — HDGB - old
v' ) -
0 10 20 300 10 20 3O 1O 20, 300 10 20 30

Bilayer Normal (A)

Figure 6-14 Free energy profiles of insertion of single amicaaide-chain analogs using HDGB simulations with old amgrioved
parameters compared with results of explicit sifoaand experimental measureme

135



Chapter 7

Conclusion and Per spective
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Molecular dynamics simulation is a powerful compigtaal technique that gives useful insights
to understand the physical characteristics andildétalynamical information of biophysical
systems, such as proteins, membranes, and nucieis. Molecular dynamics combined with
enhanced sampling methods, such as umbrella samphn be used to estimate the free energy

and other thermodynamic properties of such systems.

In this dissertation, we used molecular dynamidsvestigate two goals in biophysical systems.
The first goal was to improve/refine protein stuwes starting from a homology model and
develop a robust MD-based protocol for structurinesnent, and the second goal was to

understand and characterize amino-acid interactgttsn membrane environments.

A robust protocol for structure refinement of progemodels was developed. This protocol was
applied to CASP10 targets, and 23 out of 27 targeet® successfully refined. To this date, our
methodology has remained state of the art solutoprotein structure refinement. The key
winning factor in our method is optimal subset sets and structure averaging, which was
introduced for the first time in protein structuefinement. With the aforementioned success of
our method, we applied this protocol to CASP11 witimor modifications; Sampling by MD
was extended to 145, as well as changes in restraint and subsetiseledgorithm. Finally, the
outcome of this method with such modification hasuited in further improvement. Indeed,
breakthrough results are achieved, in which in 3esa we have obtained up to 20%
improvements in GDT-HA. While the results of stuwet refinement in CASP11 will be
addressed thoroughly in future, we need to undwmisthe effect of our modifications to the

protocol.
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As the second aim of this dissertation, we charaeté the association free energy of four amino
acid side-chain analog pairs (acetamide (Asn), areth(Ser), toluene (Phe) and propane (Val))
within membrane bilayer at different distances frioilayer center. Throughout this study, it was
observed that acetamide and methanol can createeparate states. The bilayer could be flat or
deformed with the same position of those analogsparhile the relative free energy between
flat and deformed state was unknown. Therefor@rder to measure the free energy difference
between flat and bilayer states with polar compsupthced at specific bilayer normal, we
developed a new computational tool to study freergy of bilayer deformation under umbrella
sampling framework. This methodology uses densftyvater molecules in a cylinder as a
reaction coordinate. With application of this metblmgy, the association free energy surface of
acetamide and methanol were corrected through Balin averaging of PMF profiles as

functions of association pair distance and watesity.

Polar compounds in this study, i.e. acetamide aethamol, showed favorable binding free
energy at bilayer center, while this effect dimir@s as the pair is moved toward water region.
On the other hand, non-polar compounds, toluenepaopane showed the opposite behavior.
This result provides a useful benchmark for undeding peptide-membrane interactions, as
well as a valuable tool for comparison and paranestion of other membrane models. In order
to improve the performance of HDGB model, we hal& ae-parameterized HDGB and
modified the dielectric profile by comparing thesasiation free energies of these analog pairs
against the obtained PMF profiles in explicit siatidns. The new HDGB dielectric profile is

made available through this study.

Prior to this study, the field of protein structusfginement had remained steady with very little

progress. We stand as the pioneers of structulzesuselection and structure averaging for
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protein structure refinement. The computationalragph developed for membrane deformation
and pore formation provides a useful tool for stoflynembrane bilayer stability under different
stress conditions. The protocols and tools develap¢his dissertation are freely available to the

greater scientific community.
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