"way «Var-i. ,1; .1mgmaqnnr...}1nHm: ' .H-i.» T3 “5931': 11*“ jg} ,! L, 'zjwtafgfiw _-.:. 2, . - I24-1-Lw: _- E '.§..ili:1i' fig ””1, ’1'"- ‘iJIVP : * !‘ M1‘*‘.t;=d’:»o‘ [' PM {12‘ {1? tit ‘66.; [tidy . “1“ ‘éfi:é '1' $3“? $1, ‘.. P.“ flip": ”th .Iiu -.= 3 ‘ 30¢ ii"... {'1‘}. dfiflzm‘ . {rhlfiim -}£t '. u‘i’l‘h ”If n l 1- .L H ‘ 1‘3 {Nah " ; i1. ‘ I; :' NW1"; 1 '. 7' JE§%%$51’*¥§ :7 ‘ :‘l ‘00. (“tlfiv‘i'fu'ah } . :ég‘vg Egg-g ’3‘ ' ”it" lat fizofih‘i I 'kfiififi: ;: ‘gz‘flvéa‘, ”.1 g .. k“, 1 I43?“ IF , 0‘ 31511111.: 41;, 1",": ’iszlé W. ';-‘I'}'I- :‘Wi, vé NF)“. i“ LII-fat) ~ 7? 95“}:th .1 . ': Muir-1‘ $‘1"3.fl‘ i '< - , . ‘izslsv l: ,ug‘étL ”is“. 3‘ 1 1“ mu‘ur‘ -. 1; 5". 431.111“: . ' . 4 :r '31),” g” N . ‘ K Le ’34. “It 3;. . y. u... .A. 52-. ~ ‘.—.— .152 “13“; 4“!qu vw-rr 1112'..." ‘fi’fll a. 'v ’IW-r‘ _ I ’ a-w um. m- m-n- ;3; ”may ‘ . -. . .. 2 .-:I_‘. g. 1}. "IiI‘J .._. :1?" ,A. .n. ‘3’”. .4 1 l ”‘d‘l‘ ling}! L L a. h. V“ (.1... .‘ 2‘ I t 5'“: .i‘ ' Mg. ”12% 1:392?“qu “"3 141.1251 1:111 ‘ I’é" fgp, 9,911.1 1111; 111; . h“ s I . u 1', I :g "“2 .9 :f!‘ '_!I‘k.h.§k xi Eidr‘ii‘i‘"'1fl"q}iié 2:1! 35- .‘ .4- s.— 9.. .3... i 3- 253° H I r 2 at” N a. n 4 - I '- v'J» N nah-Ir” 2..-... 1:24: ’3‘ m. ..... ".2: .. .1 . .1” -. taro .-.‘_ub' «- n;wfi;‘ =3: - aria: ." :1]: .5. 3.... ~ -, .- - .... v». - .‘_.4~vlv.-‘~ .2. 'r“ t’i . .3 : I ,I 'V 3 ‘..‘ “!k’”!‘ “H'h” l: . :Ih: ’; ‘ _ ' ;: S1,; . W o l [(f l . .3: J 5,133“- ’- "2 | 5: iflififiwfim" :‘Q‘i’fidé‘ -g I: 11:31: ’ *—<~p.—J—.m w..— 9. - _,,.. . .- .4. NM ,9 A an- - ._ g .1 .7; I'm '." - .- ,— m - . ‘II 'D.‘ 2 ”3"” 2.1.4:“? 1g: 3;, .: 2 2% "’7' . . , .1 .. .‘ " 2.. 1 ~. .. 1.2-4“... 39-9.--. .’fi.—a 23.2 7.5;;0‘} v 3....»- - «J'LTS. ,1..- . mm, IllIll/ll“!llllllllllllllllllllllllllllll 4 080 6125 .2 2? 3;: g: LIBRARY Michigan State University This is to certify that the thesis entitled Amen/o OUTPUT STAGE FOR A Cmog OPERATIONAL AMPL‘FlEK presented by mAN\St—t P. KAmAT‘. has been accepted towards fulfillment of the requirements for {WASTE—K 0F SClENCEdegreein ELecmtcAL K COMPUTER Elocer-‘Efi’rroq— Vt/Z/ / ”a Major professor/ Date [21/ fl / ?(/ 0-7639 MS U is an Affirmative Action/Equal Opportunity Institution PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE AUG 'daUQWQ '41 11m c-JCIRCIDmDuepss-p.“ A NEW A NEW OUTPUT STAGE FOR A CMOS OPERATIONAL AMPLIFIER By Manish Purushottam Kamat A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Electrical Engineering 1999 ABSTRACT A NEW OUTPUT STAGE FOR CMOS OPERATIONAL AMPLIFIERS By Manish Purushottam Kamat CMOS technology is dominant in the modern world due to its power efficiency. Therefore Mixed-Signal ICs demand analog building blocks to be designed using CMOS transistors. An operational Amplifier is one of the important analog building blocks. The output stage of a CMOS Operational Amplifier presents a special problem in its design for high output currents and rail-to—rail output voltage swings. This thesis presents a new approach to design the output stage for a CMOS Operational Amplifier. Also presented in this thesis is an instructional manual for Analog 1C Layout using a computer program called LASI. lwould like to “odd also like nicrstanding l have done this i Bandmpadh ya} ACKNOWLEDGEMENTS I would like to thank Dr. Gregory M. Wierzba for his guidance in the dissertation. I would also like to thank Dr. Jacob Baker of University of Idaho, Boise, for his help in understanding LASI. I would like to thank my parents without whose help I could not have done this work in my Master’s degree. I would also like to thank my friend, Sruti Bandyopadhyay, for her help in editing the figures in this dissertation. iii LBTOFTABL UflOFHGl 1 INTRCH)[ 1.1 IVRODL I: BACKGR U Basso I 2 CONVExy 31 DGRODE 2.2 Mm; 23 Snu13g~ 3AflWm TABLE OF CONTENTS LIST OF TABLES ................................................................................. vi LIST OF FIGURES ............................................................................... vii 1 INTRODUCTION AND BACKGROUND“- - -- _- -- - - -- - 1 1.1 INTRODUCTION ......................................................................................................... 1 1.2 BACKGROUND .......................................................................................................... 2 1.3 THESIS OUTLINE ....................................................................................................... 2 2 CONVENTIONAL CLASS AB OUTPUT STAGE ....... 4 2.1 INTRODUCTION ......................................................................................................... 4 2.2 FUNCTIONING OF CLASS AB COMPLEMENTARY-PAIR OUTPUT STAGE ...................... 6 2.3 SIMULATIONS FOR CLASS AB COMPLEMENTARY-PAIR OUTPUT STAGE .................... 9 2.4 EFFECT OF RL ON THE OUTPUT VOLTAGE SWING ..................................................... 10 3 A NEW OUTPUT STAGE - -- -- 11 3.1 INTRODUCTION ....................................................................................................... 1 l 3.2 FUNCTIONING OF THE OLD OUTPUT STAGE ............................................................. 1 1 3.3 CURRENT STABILITY .............................................................................................. 14 3.4 A NEW OUTPUT STAGE ............................................................................................ 14 3.5 EXPECTATIONS FROM THE NEW OUTPUT STAGE ...................................................... 17 4 LEVEL 1 SPICE PARAMETER EXTRACTION FOR MOSFETS ................. 18 4.1 INTRODUCTION ....................................................................................................... 18 4.2 PARAMETER EXTRACTION FOR NMOS ................................................................... 18 4.2.1 Test circuit ..................................................................................................... 18 4.2.2 Extraction of K Fly and ano ........................................................................... 18 4.2.3 Extraction of GAMMA (21V) ........................................................................... 20 4.2.4 Extraction of LAMBDA (AN) .......................................................................... 21 4.3 TABLE OF LEVEL] MODEL PARAMETERS FOR NMOS ............................................. 22 4.4 PARAMETER EXTRACTION FOR PMOS .................................................................... 22 4.5 TABLE OF LEVEL] MODEL PARAMETERS FOR PMOS ............................................. 22 5 DESIGN OF THE NEW OUTPUT STAGE - - 23 5.1 INTRODUCTION ....................................................................................................... 23 5.2 CALCULATION OF MOSFET SIZES ......................................................................... 25 5.2.] Current delivering transistors ....................................................................... 25 5.2.2 Amplifiers for positive and negative half of the input signal ........................ 26 iv 5.3.3 F611; .‘-.24 TM! 5.3 FRIQL'IS. 5.4 SPICE Sl. 5.2.3 Feedback circuitry ......................................................................................... 27 5.2.4 Two-stage OPAMP ........................................................................................ 29 5.3 FREQUENCY COMPENSATION .................................................................................. 31 5.4 SPICE SIMULATIONS .............................................................................................. 32 6 TESTING AND ANALYSIS OF THE OP-AMP CIRCUIT - - -34 6.1 INTRODUCTION ....................................................................................................... 34 6.2 TESTS ..................................................................................................................... 34 6.2.1 DC operating point and power dessipation .................................................. 34 6.2.2 DC characteristics ......................................................................................... 34 6.2.3 Frequency response ....................................................................................... 35 6.2.4 Output impedance .......................................................................................... 35 6.2.5 Common-mode rejection ............................................................................... 35 6.2.6 Power supply rejection .................................................................................. 35 6.2. 7 Short circuit current ...................................................................................... 36 6.2.8 Transient response ........................................................................................ 36 6.2.9 Capacitive loading ........................................................................................ 36 6.2.10 Change in the power supply values ............................................................... 36 6.2.11 Temperature dependence .............................................................................. 37 6.2.12 Harmonic distortion ...................................................................................... 37 6.3 ANALYSIS ............................................................................................................... 37 7 LAYOUT OF THE OPAMP - A AA 39 7.1 INTRODUCTION ....................................................................................................... 39 7.2 LAYOUT WITH LASI ............................................................................................... 39 8 CONCLUSION AND FURTHER IMPROVEMENTS - 40 9 APPENDIX A ------ AA A - - . A AA A A A _- A A -43 10 APPENDIX BAA A __ A -- ...... A .... A ......... AA57 11 APPENDIX C ...... _ ..... A AA A A AA A - 82 12 APPENDIXDA - A - AAAAAAAAAA A AAAAAA AA86 13 APPENDIX E A A -- 109 14 APPENDIX F A A A - - - A -- 112 15 BIBLIOGRAPHY _ . - 231 TABLE 11: IT TABLE 3.1: Ti' TABLE-1.1: Ll TABLE 4.2; 11 TABLE 5.1: T IABLE 5.2: T TABLE 6.1: $1 LIST OF TABLES TABLE 2.1: TRANSISTOR SIZES IN CONVENTIONAL OUTPUT STAGE ......... 9 TABLE 3.]: TRANSISTOR SIZES USED IN THE OLD OUTPUT STAGE .......... 12 TABLE 4.1: LEVEL 1 PARAMETERS FOR NMOS A- ...... - A21 TABLE 4.2: LEVEL 1 PARAMETERS FOR PMOS A A- - A - -A A A AA A 22 TABLE 5.1: TRANSISTOR SIZES IN THE OUTPUT STAGE A -- A AA A AAA-32 TABLE 5.2: TRANSISTOR SIZES IN THE TWO-STAGE OP-AMP -- - 33 TABLE 6.1: SPECIFICATIONS OF THE NEW OP-AMPAAAAA - - AA AA38 vi F.g11e1.210ut_, Figure 3.3: Sch. Figure 2.4: Che? Figure 3.1: Sch.I 551183.21 SCL‘. Figure 3.3: Sch. Figure 41: Test Figure-11R}: BETH? 5.1. Bl“ Figure 5.2; scu Em 5.3; so.» Figure 5.4: Sch- Es’ire 8.1: Foi- Fig-1138.1: V0} Eg‘re 8.3. Ten 1:?qu “:31 In? Figure All 01.". Figure A}. 0111 29m: A4; 0U. Fire. - . Figure :2 gm HELP A7 Sm Figure ‘47: gm Time A9 Sm Rm «.1. ‘ in Figure .410: Si :EUTCAI‘I‘ Si EQUIP. ' ~13: F; A'Bl Si Eire 3.]; M: Figure 2.1: Sch}: 1:" ‘ '~‘ ”633 \1.. li-‘A‘reB ‘ ‘ i MC in» ‘~ - 1;“:lnB \ ‘ ‘ li J' \. jphat . ‘ I b I LIST OF FIGURES Figure 2.1: Schematic of a simple output stage ................................................................... 5 Figure 2.2: Output characteristics of the simple output stage ............................................. 5 Figure 2.3: Schematic of a conventional class AB output stage ......................................... 8 Figure 2.4: Characteristics of M4 in the conventional class AB output stage .................... 8 Figure 3.1: Schematic of the old output Stage ................................................................... 13 Figure 3.2: Schematic of the conceptual pseudo-source follower ..................................... 13 Figure 3.3: Schematic of the new conceptual output stage ............................................... 16 Figure 4.1: Test circuit for Level] parameter extraction for NMOS ................................ 19 Figure 4.2: Test circuit for Lele parameter extraction for PMOS ................................. 19 Figure 5.1: Block diagram of a simple feedback system .................................................. 24 Figure 5.2: Schematic of the new output stage ................................................................. 24 Figure 5.3: Source-degenerated Amplifier ........................................................................ 28 Figure 5.4: Schematic of the two-stage OPAMP .............................................................. 28 Figure 8.1: Folded Cascode op-amp .................................................................................. 41 Figure 8.2: Voltage Reference for Folded Cascode op-amp ............................................. 41 Figure 8.3: Temperature independent current source ........................................................ 42 Figure A]: Input file for PSPICE simulations. ................................................................ 44 Figure A.2: Output file with RLOAD of 50 ohms. ............................................................... 45 Figure A.3: Output file with RLoAD of 500 ohms. ............................................................. 46 Figure A.4: Output file with Rum) of 5000 ohms. ........................................................... 47 Figure A.5: Output file with no load. ................................................................................ 48 Figure A.6: Simulation plot ............................................................................................... 49 Figure A.7: Simulation plot (cont.). .................................................................................. 50 Figure A.7: Simulation plot (cont.). .................................................................................. 51 Figure A.9: Simulation plot (cont.). .................................................................................. 52 Figure A.10: Simulation plot (cont.). ................................................................................ 53 Figure A.11: Simulation plot (cont.). ................................................................................ 54 Figure A.12: Simulation plot (cont.). ................................................................................ 55 Figure A.13: Simulation plot (cont.). ................................................................................ 56 Figure B. 1: Measurement of KPN and V-mo for a small device. ........................................ 58 Figure B.2: Measurement of Km and VTNO for a small device (cont.). ............................ 59 Figure B.3: Measurement of Km and Vmo for a medium size device. ............................ 60 Figure B.4: Measurement of KPN and Vmo for a medium size device (cont.). ................. 61 Figure 8.5: Measurement of K»; and Vmo for a large device .......................................... 62 Figure B.6: Measurement of KpN and Vmo for a large device (cont.). ............................. 63 Figure B.7: Measurement of AN for a small device. .......................................................... 64 Figure B.8: Measurement of AN for a small device (cont.). .............................................. 65 Figure B.9: Measurement of AN for a medium size device. .............................................. 66 Figure B.10: Measurement of AN for a medium size device (cont.) .................................. 67 Figure B] 1: Measurement of AN for a large device .......................................................... 68 Vii Figure 8.13: .\1 Figure 8.13: .\1 Figure 8.14131 Figure 8.15: .\1 Figure 8.16: .\1 Figure 8.17:31 Figure 8.18: .\1 Figure 8.19; .V. Figure 8.20: .\1 Figure 8.21: 3‘. Figure 8.22; .\‘. Figure 8.23: 5'. Egare82~1z M figure C1: DC 58le C2: DC 5:311? C3: DC Figure D1: D( BET-'16 DZ: D(' Fume D3: D(' 837116134: IX Fl$1116 D5: D( F1836 D6: D( Figure D7; Fr: FIE-ire D8. 1:1: F1313 D9 0;. Figure D10. C Billie D11; ~ Figure D}:: F Figure D13. F’. Figure D14 Si fl — _-‘-’- Figure B. 12: Measurement of AN for a large device (cont.). ............................................. 69 Figure B.l3: Measurement of Kpp and VTpo for a small device. ....................................... 70 Figure B.l4: Measurement of Kpp and VTPO for a small device (cont.). ........................... 71 Figure B. 15: Measurement of Kpp and VTpO for a medium size device. ........................... 72 Figure B.l6: Measurement of Kpp and V‘fpo for a medium size device (cont.) ................. 73 Figure B. 17: Measurement of Kpp and VTpo for a large device ......................................... 74 Figure 8.18: Measurement of Kpp and V‘rpo for a large device (cont.). ............................ 75 Figure B.l9: Measurement of hp for a small device. ........................................................ 76 Figure B.20: Measurement of hp for a small device (cont.). ............................................. 77 Figure B.21: Measurement of hp for a medium size device. ............................................. 78 Figure B.22: Measurement of hp for a medium size device (cont.). ................................. 79 Figure B.23: Measurement of 71p for a large device. ......................................................... 80 Figure B.24: Measurement of hp for a large device (cont.) ............................................... 81 Figure C.1: DC operating point for the new output stage. ................................................ 83 Figure C.2: DC operating point for the new output stage (cont.). ..................................... 84 Figure C.3: DC operating point for the new output stage (cont.) ...................................... 85 Figure D.1: DC operating point test. ................................................................................. 87 Figure D.2: DC operating point test (cont.) ....................................................................... 88 Figure D.3: DC operating point test (cont.) ....................................................................... 89 Figure D.4: DC operating point test (cont.) ....................................................................... 90 Figure D.5: DC transfer characteristics with no load. ....................................................... 91 Figure D.6: DC transfer characteristics with load. ............................................................ 92 Figure D.7: Frequency response with Cc = 10 pF ............................................................. 93 Figure D.8: Frequency response with Cc = 8 pF ............................................................... 94 Figure D.9: Output impedance. ......................................................................................... 95 Figure D.10: Common-mode gain ..................................................................................... 96 Figure DJ 1: CMRR. ......................................................................................................... 97 Figure D. 12: Power Supply Rejection Ratio (PSRR) for V35. .......................................... 98 Figure D. 13: Power Supply Rejection Ratio (PSRR) for VDD. ......................................... 99 Figure D. 14: Short circuit current. .................................................................................. 100 Figure D. 15: Transient Response for a 7V pusle. ........................................................... 101 Figure D. 16: Effect of capacitive loading (CLOAD = 100 pF). ......................................... 102 Figure D. 17: Effect of the change in the power supplies. .............................................. .103 Figure D.18: Effect of the change in operating temperature. .......................................... 104 Figure D.19: Effect of the change in operating temperature on the currents ............... 105 Figure D.20: Harmonic distortion for lKHz test signal. ................................................. 106 Figure D.21: Harmonic distortion for lOKI-Iz test signal. ............................................... 107 Figure D.22: 4.5 Vp-p output sine wave for lKHz test signal .......................................... 108 Figure E.l: Layout of the op-arnp. .................................................................................. 110 Figure E.2: Layout of the op-amp along with bonding pads. .......................................... 1 1] viii 1 Introduction and background 1.1 Introduction In the modern world, the CMOS technology is dominant over the bipolar technology due to its several advantages in digital IC design. One of such advantages is reduced power dissipation. Many times there is a need to fabricate analog circuit blocks on the same chip that includes digital cirCuitry, thus giving rise to a mixed-signal system on a single chip. In such situations, it is costly to combine both, the CMOS and the bipolar technology, on a single fabrication run. Therefore there has been a strong attempt, in the past few years, to design analog building blocks using only CMOS transistors. One of the important analog building blocks is an operational amplifier. Designing an output stage for a CMOS op-amp that delivers high output current and provides rail-to-rail output voltage is a major challenge to an analog designer. Many ideas were proposed in the past two decades to improve the performance of the CMOS output stage ([3], [7], [8], [9], [10], and [11]). Most of the articles make use of the concept of a pseudo-source follower amplifier in designing the CMOS output stage. This thesis presents a different topology of the CMOS output stage but uses the concept of pseudo-source follower amplifier. Also it makes a strong attempt to eliminate all the capacitors used in the previous output stages that are generally incorporated to improve the frequency response. 12 Backgro A course l'nitersity, wax were expected ' map posed This created a C1103 output . 13 Thesis “it the 873861. Tnis Chapter three this thesis. 11 g. the Ltt'cl 1 S FACUIations. ( how the siZeg Fe 511111113110: Stage Op-amp Show; the Ta 1 .2 Background A course in CMOS Analog IC Design (EB 832), offered at Michigan State University, was an important stimulant for the topic of this thesis. In this course, students were expected to design a CMOS op.amp as the semester project. The output stage of the op-amp posed many problems in achieving the required specifications for the op—amp. This created an interest, by the author of this thesis, to conduct this research on the CMOS output stage. 1 .3 Thesis outline The thesis explains the design of a conventional CMOS output stage in the second chapter. This chapter also explains the disadvantages of the conventional output stage. Chapter three illustrates the design of the output stage in [3], which is the foundation of this thesis. It also gives the conception of the new output stage. Chapter four shows how the Level 1 SPICE model parameters are extracted from BSIMl model for use in hand calculations. Chapter five explains in detail the design of the new output stage. It shows how the sizes of the transistors and other components were calculated. Chapter six shows the simulation tests conducted on the new output stage along with the accompanying two stage op-amp. It also presents an analysis of the behavior of the op-amp. Chapter seven shows the layout of the chip. Layout is performed using the software package called LASI, which is an acronym for Layout System for Individuals. The Micro-electronic research group at the University of Idaho developed LASI and it is free when used for academic purposes. Chapter eight presents the conclusion and future research for improvements of the CMOS output stage. The appendices contain all the simulation files and pun-touts. . larou: uszrtg 1.. and printouts. Also attached in the appendices is the instructional manual for analog IC layout using LASI. A bibliography is presented as the last chapter in this thesis. 21 lntrodu A simpip he output of sage needs u: then ON and Pair output st; 1’1 A Signif tum‘entiona] 03:81" Stage bliied SUCh ii cum Due 1 Suffers from ‘1 2 Conventional Class A8 output stage 2.1 Introduction A simple complementary-pair output stage gives unwanted crossover distortions in the output of operational amplifier. This is due to the fact that the input to the output stage needs to reach the threshold voltage of the current delivering transistors to turn them ON and thus deliver current to the load. The schematic of a simple complementary- pair output stage is shown in Figure 2.1 and its typical characteristics are shown in Figure 2.2. A significant improvement over the simple complementary-pair output stage is the conventional Class AB complementary-pair output stage. The key design part of this output stage is the biasing of the current delivering transistors. These transistors are biased such that they are not completely OFF in their quiescent state but conduct a small current. Due to this, crossover distortion is greatly reduced. Nevertheless this output stage suffers from a limited output Voltage swing that is 2V to 3V below the rail-to-rail voltage. VDD fi— NMDS I—% PMDS i—- V88 Figure 2.1: Schematic of a simple output stage vuur A 0 V _11. _ _ _ :\Crossover‘ Distortion | | U V 1 + VIN Figure 2.2: Output characteristics of the simple output stage 2.2 Functioning of Class AB complementary-pair output stage The schematic diagram of a Class AB complementary-pair output stage is shown in Figure 2.3. The gate of M1 is biased at a certain DC level and M1 acts as a current mirror. M2 and M3 act as constant voltage sources as long as M1 is in saturation. M2 and M3 are diode connected NMOS and PMOS respectively and conduct current supplied by the current mirror Ml. Therefore the voltages across their drains and sources remain constant. M5 and M6 are current delivering MOSFETS connected in a common-drain configuration (source follower). They are biased by the voltages across drains and sources of M2 and M3 such that a small quiescent current flows through them when the output voltage is at zero (Vom- = 0V). This is done to avoid the crossover distortion problem in the output of the operational amplifier. Due to the common-source nature of NMOS M4 and source-follower configuration of M5 and M6 the output is 180° out of phase with the input. When VIN starts rising in the direction of positive voltage, the gate drive of M4 increases and thus its conductance increases. Therefore the drain to source voltage of M4 starts decreasing. This is shown in Figure 2.4. This increases the gate drive of M6 and M6 starts sinking more and more current through the load resistor as Vom goes in negative direction. Finally a point is reached when M4 enters the triode region of its characteristics and the output voltage changes in a non-linear fashion. A similar non- linearity can be seen on the negative excursion of VIN. This non-linearity is due to M1 entering its triode region. It is int; case it occurs . 0:113th C1111: due to .\11 e: therefore the 1' The to: truthematieal ortput range. It is important to note that non-linearity in the first case is abrupt but in the second case it occurs gradually. This phenomenon can be explained as follows. In the first case only M4 changes regions but current in the branch does not change. In the second case due to M1 entering the triode region, current in the branch changes gradually and therefore the voltages driving source follower transistors change gradually. The voltages at which the non-linearity creeps in can be found by doing a mathematical analysis and an attempt can be made to determine the maximum linear output range. El vy.“ A-“ FEW VDD v-BIAS It’- M1 p..— F4 AEVDUT 2" I; VIN__ |:— M4 V33 Figure 2.3: Schematic of a conventional class AB output stage ID A V635 V684 IDo fvsm V638 f/vcm VD: Figure 2.4: Characteristics of M4 in the conventional class AB output stage 2.3 Simulal Acome 1111111111U111CU1‘ hand calculat: . Hand calculat; llOSFETs us. c(liftplertterttar' 2.3 Simulations for Class AB complementary-pair output stage A conventional AB complementary-pair output stage is designed to deliver a maximum current of +/- 25 mA. In the quiescent state M5 and M6 conduct 100 [LA in hand calculations. It is assumed that the DC input voltage from the previous stage is -3V. Hand calculations set the current through M1 at 1011A. Table 2.1 gives the sizes of all the MOSFETS used in the circuit. SPICE simulations of the conventional class AB complementary-pair output stage are shown in Appendix A. Table 2.1: Transistor sizes in conventional output stage MOSFETs Sizes (11111) Ml 10.67/2 M2 19/2 M3 110.18/2 M4 2.77/10 M5 190/2 M6 1102/2 24 Effects 11 is Obs aparticular so 116 can suppl; “1131 11.; interesting. \' mm}: the chi from 1116 plots As 111 is a C SUfficient you 2.4 Effect of RL on the output voltage swing It is obvious that, as RL goes on decreasing the current required through it to attain a particular voltage goes on increasing. There is a limit to the maximum current M5 and M6 can supply. Therefore better swings are obtained for larger RL. What happens to the currents flowing through M5 and M6 when R1, is infinite is interesting. V3 follows V3 in the linear region of transfer characteristics. When RL is infinity, the drain current of M5 should equal drain current of M6 in magnitude. It is seen from the plots that for VIN = + 5V V954 is very small and M4 is deep in the triode region. As M1 is a current mirror, a constant current flows through M1, M2, M3 and M4. Due to sufficient voltage across the drains and sources of M2 and M3, M5 and M6 are ON and are conducting equal currents of 151 HA. As VIN is reduced M4 slowly comes out of the triode region and V934, V3 and V3 start rising. This makes Vsm reduce in magnitude thereby reducing current through M1 by a small amount. This happens due to slope of the MOSFET characteristics in the saturation region. As this current reduces V335 and V366 start decreasing and a point is reached when there is insufficient gate drive for M5 and M6 to conduct and the current through them becomes zero. 10 2.1 V - Jfi‘.‘”— .——_ 31 Introd: The res Solid-State C stage for CM udosoure. quiescent cur the output 513 31’ Functil The ou Two amphfie 1161an “a negative Titer configurallor 131165 of the 3 A new output stage 3.1 Introduction The research in the present thesis is based on a paper published in IEEE Journal of Solid-State Circuits in January 1999[3]. This paper proposes a compact rail-to-rail output stage for CMOS operational amplifiers. The output stage designed in this paper uses a pseudo-source follower along with a conventional source follower. Controlling the quiescent current in the driving transistors is a key design constraint. The schematic of the output stage is shown in Figure 3.1. 3.2 Functioning of the old output stage The output stage essentially works as the conceptual circuit shown in Figure 3.2. Two amplifiers, Amp-P and Amp-N, are used to process the positive and negative half of the input waveform. A negative feedback is provided around each amplifier. Due to the negative feedback, the output impedance is greatly reduced. Due to the common source configuration of the driving transistors, the output voltage can theoretically reach the values of the supply voltages while still keeping the transistors ON. The detailed functioning of the output stage can be explained from Figure 3.1 as follows. The sum of the currents flowing through Mp2 and Mn3 should always be constant as both currents flow into the current sink Mn5. When the input voltage at VIN Starts going positive the gate overdrive of Mp2 reduces and that of Mn3 increases. This increases the source to drain voltage of Mp6, which in turn increases the gate overdrive 0f Mp7. Thus Mp7 provides high currents to the load connected at the output of the stage. 11 Vom going positive increases the gate overdrive of Mp2 thus increasing the current through it, which in turn reduces the current flowing through Mn3 thus providing negative feedback. A similar action takes place when the input voltage is in its negative half cycle. At this time Amp-N is active. Table 3.1 shows the sizes of all the transistors and capacitors used in the old output stage. Transistor sizes are in urn/um. Table 3.1: Transistor sizes used in the old output stage MOSFETs smut/11) MOSFETs Sizesm/p.) MOSFETs Sizes(ulu) Mp1 115/5 Mn5 115/8 MnlO 65/8 Mnl 55/8 Mp6 60/5 Mp1 1 75/5 Mp2 115/5 Mn6 30/8 Mnll 60/8 Mn2 55/8 Mp7 1440/5 Mp12 75/5 Mp3 240/5 Mn7 1150/8 Mn12 60/8 Mn3 115/8 Mp8 190/5 Mp13 65/7 Mp4 125/5 Mn8 170/8 Mnl3 50/10 Mn4 55/ 8 Mn9 6/40 Ccl 3.5pF Mp5 240/5 MpIO 120/5 Cc2 3.7pF 12 it“ ’11-: - -~.A—.« r VIN i POSITIVE-HALF ERROR AMPLIFIER NEGATIVE-HALF ERROR AWLIFIER i QUIBSCENT CURRENT STABILIZATION CIRCUIT Figure 3.1: Schematic of the old output stage Amp-P I VDD I j VDUT VSS # . .J >4 Amp-N Figure 3.2: Schematic of the conceptual pseudo-source follower i3 Cunent aufhor has inci and pulldowr cutentdelive' *tshold v01: . @mgnxtol al'OTded. For E3116 VOTIClge (=1 the thin to s.' 3181111310 Fla". Overdme 01 f Clfluent. Map Gm =¢ 3.3 Current stability In this circuit, quiescent current stabilization circuitry needs special attention. The author has included this circuitry to take care of the random threshold voltages of pull-up and pull-down transistors (Mp6 and Mn6). These devices are responsible for driving the current-delivering transistors, Mp7 and Mn7. The author argues that a small change in the threshold voltages of these devices may overdrive the current-delivering transistor thus giving rise to a high quiescent current. With the added circuitry this situation can be avoided. For understanding this let us suppose that Mp6 overdrives Mp7. Mp8 senses the gate voltage of Mp7 and current in that branch increases. The increased current increases the drain to source voltage of Mn9. When this voltage equals VTMpro-l-VTMnro both MnlO and MplO fire-up and current in their branch grows tremendously. This increases the gate overdrive of Mp12 and the gate of Mp7 is pulled up thus reducing the output quiescent current. Mathematical calculations show that the current stabilization circuitry does not let the currents in Mp7 and Mn7 rise beyond IQMAX where, W 13. /L. IQMAX = —g—9'xvrirpro xvii-LP); (3'1) LMn(p)8 3.4 A new output stage The new design is based on the same concept of pseudo-source follower but a different topology is used to reduce the number of components in the output stage. Figure 3.3 depicts the conceptual design of the new output stage. The input voltage is applied at VIN. Mnol and Mpol are positive and negative half amplifiers respectively. Both the 14 amplifiers me. going posititc' oterdnte oft he amplifier ieec'hack into neg tire. The: amplifiers make use of active loads made-up of current sources Ip0 and mo. As VIN starts going positive the output of amplifier Mnol starts going negative thus increasing the gate overdrive of the upper output transistor. Due to this Vom increases which is fed back to the anlplifier Mnol through the controlled current source Ipl, thus bringing negative feedback into the picture. A similar explanation can be given when the input starts going negative. Then amplifier Mpol and controlled current source of Inl are operational. 15 MpXVDUT 1 1 t—— 1 :}———VEUT Inl: M901 MnXVDUT ‘ Ll VIN—i—IHJ “"0 30 :13 Figure 3.3: Schematic of the new conceptual output stage 16 3.5 EXP” The first thus the are: eliminate the of the output uhch will b reduce the ou 3.5 Expectations from the new output stage The first objective to be achieved is the reduction in the number of transistors and thus the area consumed. Also the author of this thesis feels that it is important to eliminate the capacitors in the output Stage as they may degrade the frequency response of the output stage for capacitive loading. The old output stage uses two capacitors, which will be eliminated completely in the new circuit. An attempt will be made to reduce the output impedance of the output stage. 17 4.1 Introd The SF damage of mobilit) deg: paruneters 11 These pm. BSD“ 111on 42 Pararr 4.2.1 T951 4 Level 1 SPICE parameter extraction for MOSFETs 4.1 l ntroduction The SPICE model that is being used in this thesis is called the BSIMl model. The advantage of the BSIMI model over low-level models is that short-channel effect and mobility degradation is modeled more accurately. In the BSIMl model values of Level 1 paramaers like threshold voltages, trans-conductance etc. are not specified explicitly. These parameters are useful in hand calculations and therefore should be extracted from BSIMI model using simple circuits and test signals. 4-2 Parameter extraction for NMOS 4. 2. 1 Test circuit The test circuit used for the NMOS parameter extraction is shown in Figure 4.1. Different Level 1 parameters depend on V95, V65 and VBS. For example, the threshold Vohage of a MOSFET depends on VDS and V35 [4]. The effect of the three voltages on the I-‘eVel 1 parameters depends on the size of MOSFETS. Therefore we have classified MOSFETS as small, medium and large. Levell extraction is performed on MOSFETS of all three sizes. The three sizes considered are 3u/2p. (small size), 1011/1511 (medium size), SOP-’30}; (large size). The final values of the parameters are found by averaging the Values for the individual device sizes. All the simulation plots are attached in Appendix B. 18 F1. VSB NMDS + F— “ VDS + *— —:l- 1 (vorioble) + I 1 < m U) i I II} Figure 4.1: Test circuit for Levell parameter extraction for NMOS PMDS J _ -Ilh-. _:£__JE:_——“_+ __ VSD - + VSG I VBS Figure 4.2: Test circuit for Levell parameter extraction for PMOS 42.2 EXTFE Agra the DC turret X ‘ 1111 tercel This is the e W“ by (4. a“ not Straig MOSFET “ aF'PFOximak. The - HV Cmge 4.2.2 Extraction of Km and Vmo A graph of VID versus Vgs is plotted for different values of VDS. The equation for the DC current through an NMOS device can be written as given in (4.1a). W K ,/1,, = E g” (VGS-Vmo) (4.1a) W K 810 e= — P” 4.1b P L 2 ( ) X — int tercept = ano (4.1c) This is the equation of a straight line with a slope given by (4.1b) and x-axis intercept given by (4.1c). The plots are shown in Appendix B. It is obvious that the plotted lines are not straight but are curved. This happens due to the change in threshold voltage of the MOSFET with V95. Also the mobility of electrons in the channel changes with VDs. We approximate the lower portion of the curve to a straight line and calculate Km and V10. The average values of Km and VTo are written on the plots in Appendix B. 4.2.3 Extraction of GAMMA (7N) Now that we know Vmo, if we change the bulk-bias we will see the VID versus VGs curve intercepting the x-axis at a different value. The threshold voltage, considering the body effect, is given by (4.2) in Level 1 SPICE model. 1N=ano+7/v(\/Vsa+¢ f) (4.2) 20 In (4.3) we R] can calculate 42.4 Extra lbs small-Si l I: ~ 1.2.. “here ID is resistance. \\ of Va; by F resistance b}| UMBDA t 4'3 Table I Table l In (4.2) we know the values of VTN, Vmo, V53 and {/2 (the flat-band voltage). Hence we can calculate GAMMA (yN). Simulations are shown in Appendix B. 4.2.4 Extraction of LAMBDA MN) The small—signal resistance of a MOSFET is given by (4.3) below. 1 112/1N r: (4.3) Where ID is the DC current flowing through the MOSFET and r is the small-signal resistance. We can obtain the small-signal resistance of a MOSFET for a particular value of V55 by plotting ID versus VDS for that value of V05. Multiplying the small-signal resistance by the DC bias current and then taking the inverse will result in the value of LAMBDA (AN). 4.3 Table of Leve|1 model parameters for NMOS Table 4.1 gives Level 1 model for NMOS. Table 4.1: Level 1 parameters for NMOS Parameters Value V'mo . 0.8V Km 37p.AN GAMMA(7N) 0.7 LAMBDA (AN) 0.069 21 A simil circuit is shox 4.5 Table Levell 4.4 Parameter extraction for PMOS A similar circuit as in Figure 4.1 is used for PMOS parameter extraction. This circuit is shown in Figure 4.2. Simulations are shown in appendix B. 4.5 Table of Leve|1 model parameters for PMOS Levell model for PMOS is shown in Table 4.2. Table 4.2: Level 1 parameters for PMOS Parameters Values VTpo -0.85V KP? lSttA/V GAMMAO’P) 0.54 LAMBDA (11p) 0.05 22 5.1 Introdu After it an performei elements con feedback nett circuits can t Figure 5.1. F i“ipedance. We BA 1' lhe System 5m“ (A) vat R” an ind; . MERLTI 5 Design of the new output stage 5.1 Introduction After the conceptual understanding of the new output stage some hand calculations are performed to design the individual elements of the output stage. The individual elements consist of amplifiers for the positive and negative half of the input signal, feedback networks and current delivering transistors. Each of the positive and negative circuits can be simplified as a fundamental feedback system block diagram as shown in Figure 5.1. For a system like this (5.1) and (5.2) give the voltage gain and the output impedance. G = l+fl4 (5.1) _ 20 low — ”/34 (5.2) Where BA is the open-loop gain of the entire system and 20 is the output impedance of the system without feedback. Here we can see that if [3:1, having maximum open-loop gain (A) will fetch us Gzl and Zour as small as possible. An attempt is made to make A for an individual amplifier as high as possible. The feedback network is designed such that [321. The schematic of the output stage is shown in Figure 5.2. 23 VBIAS-P VIN Gain = A Feedback Gain = 3 IOUT Figure 5.1: Block diagram of a simple feedback system tel L oJ._ MFn3 lMp3‘ Mnl Mop l‘ H MFnE I ._: Mf-‘pe 4| - VODUT J‘ . J J:— Mpl :1] Mn2 "—L‘ ”00 MFp3 CFJP_ VBIAS-N Figure 5.2: Schematic of the new output stage 24 5.17“ . h'l film "I. 52 Calcu 52.1 Curr First matimum CL matimum w NMOS at th gate to sourc V05 (V56) II 5.2 Calculation of MOSFET sizes 5.2.1 Current delivering transistors First attention is paid to the current delivering transistors. Set the target for the maximum current delivered as 60mA and quiescent current as 300uA. Theoretically, the maximum voltage that can appear across gate and source (V05 and V50) of PMOS and NMOS at the output is 10V (VDD — V33). But from the author’s experience, maximum gate to source voltage for both the transistors is a little more than half of the rail-to-rail. V53 (V30) of 6V is assumed for hand-calculations and turns out to be close in the simulations. Equations for the DC current through NMOS and PMOS are given in (5.3) and (5.4) respectively. W K I Q = If!" (VGS _ V1702 (5-3) W K I Q = T'f’olso — VTP )2 (5'4) After substituting the estimated voltages and the parameters from the Table 5.1 we obtain the width to length ratios of the output transistors as given below. l”. = fl (5.5a) L Mon 5” (W) = 4524,11 (55b) L Mop Si“ 25 The next step have a quies: we obtain fol V63!“ :1.lt VSG Mm : 10k We have to Bizsing volt‘ Simulations ; Sizes are adj The cOllSisrs 0. £3163 0f 3 the CmTe mndfal 333on them M‘Dm Ms.) A DC. The next step is determining the biasing gate voltage required for both the transistors to have a quiescent current of 300p.A. Using (5.3), (5.4), (5.5a) and (5.5b) for this purpose we obtain following biasing voltages. VOW, =1.168V (5.6a) VSGMOP =1.06V (5.6b) We have to make sure that the output of the previous stage is biased at these voltages. Biasing voltages greater than these would result in more current. It is found from simulations that these sizes of transistors cause more quiescent current. Therefore these sizes are adjusted after doing the simulations. 5.2.2 Amplifiers for positive and negative half of the input signal The positive amplifier consists of Mp1, Mp2 and Mp3 and the negative amplifier consists of Mnl, Mn2 and Mn3. The input signal to the output stage is applied to the gates of Mp1 and Mnl. The feedback circuitry provides inputs to Mp3 and Mn3 changing the current flowing through them, thus providing a negative feedback. For the sake of hand-calculations we assume that the quiescent currents flowing through Mp2 and Mp3 are of the same magnitude. The same rule applies to Mn2 and Mn3. Here we assume that the DC current through Mp2, Mp3, Mn2 and Mn3 is IOuA and input voltage to the output stage is 0V with respect to ground. Also let the biasing voltages at the gates of Mp2 and Mp3 be 3.2V and for Mn2 and Mn3 it is -3.2V. Here we need to note that the DC current through Mp1 equals the sum of the DC currents through Mp2 and Mp3. A 26 similar stater (5.3:. and (S.- (W) - I K L 1,,“ ll ll] 1 l— - — \th,“ ll similar statement holds true for the negative amplifier configuration. Use of the equations (5.3) and (5.4) gives us the following values. (BL) =__6# (5.7a) L Mp1 100” (Z) =_l_5-l.l_ (5.7b) L Mnl 100/1 [K] {91.) = .128. (5.7c) L Mp2 L Mp3 10” (K) {K} = _5L‘_ (5.7c) L Mn2 L Mn3 10” 5.2.3 Feedback circuitry The feedback circuit is of special importance. It determines B for the system in Figure 5.1. The feedback circuits for positive and negative amplifiers are nothing but source-degenerated single transistor amplifiers. A simple source degenerated amplifier is shown in Figure 5.3. As the resistors take a lot of space on the chip they are replaced by diode connected transistors as can be seen from Figure 5.2. It is found from calculations that if the source—degenerated amplifier is designed to have a gain of 0.33, the beta of the circuit becomes unity. The equation of the gain for the source-degenerated amplifier is given in (5.8). Gain = -—g"'—'5D— (5.8) (1+ ngS ) 27 VDD RD VDUT O: NMOS ____;;q VIN RS v vss vss Figure 5.3: Source-degenerated Amplifier 1933 “CD 9J3 MCCI l—é’ CC VDUT MR4 [1&3 "C t: rue MR5 [17% MEAq—SaLJrfi—fllae ? Figure 5.4: Schematic of the two-stage OPAMP ET - a: 9,5: Eat. pm 28 TWl main fume: and Plow-c Offset Vol: Consism 0 t1T‘u'lsl 310T: in figure b N. L The sizes of the transistors used for source-degenerated amplifier are given below. PK =7_# (5.9) L prr 5.” K _____15” (5.10) L prz 100” K) =££ (5.11) L pr3 10” =1 (5.12) = fig (5.14) l ] =95- (5.13) l 5.2.4 Two-stage OPAMP Two-stage op-amp is used to provide high gain for the whole op—amp circuit. The main function of the output stage is to deliver high current, reduce the output impedance and provide rail-to-rail voltage swing. The two-stage op-amp controls the voltage gain, offset voltage and the slew-rate of the circuit. The two-stage op-amp in this design consists of a differential amplifier followed by a cascode amplifier.AA simple voltage reference is used to bias the current source of the differential stage and the cascode transistors. The schematic of the two-stage OPAMP with the voltage reference is shown in Figure 5.4. It consists of a voltage reference that biases the current source of the differential amplifier and the loads of the cascode stage. We plan to have a total current 29 "Sffll of 20m flowp that we has- I cilierential s l transistors or using (5.15) Gain = ~ (“'1 \ julAIMLa “left Iran: 10 is [he tot. “Rode sta affine leads of 2011A flowing in the differential stage and SuA in the voltage reference. Let us assume that we have a gain of 50 from the differential stage. It is always good to have a differential stage with a low gain to avoid offset voltages due to the mismatches in the transistors of the differential pair. We can calculate the sizes of the differential transistor using (5.15) and are given in (5.16). Gain =—2—-—* 3Y— *£fl- (5.15) (AN +1?) L mums) In [K] — £43. (5 16) L mums) 10” ' Where transistor model parameters can be substituted from Table 4.1 and Table 4.2 and ID is the total current flowing in the differential amplifier. We assume that the input of the cascade stage is biased at -3V. From this information we can calculate the sizes of the active loads in the differential stage. They are as shown in (5.17). L szmzs) lot“ The size of the current mirror can be calculated by using the nMOS current equation. We assume that the gate of the current mirror is at 3.2V. The size of the current mirror is given in (5.18). Similarly (5.19), (5.20), (5.21) and (5.22) give sizes of the transistors of the cascode stage. L MCD My 30 [2‘1] =_35” (5.20) L MCCl 10p [K] =15fl (5.21) L MCC2 10]! (ll) :1”. (5.22) L M18 10” 5.3 Frequency compensation Frequency compensation is a very important step in op-amp design. This step decides if the op-amp is going to be stable at all the frequencies by improving its phase margin. [2] gives a method for compensating different kinds of OPAMPs. A capacitor of 10pf is used to compensate this OPAMP as shown in Figure 5.4 This capacitor creates a dominant pole. A negative zero, which can be troublesome, is also developed as a side effect. In order to eliminate this zero a resistor is added in series with the capacitor. The value of the resistor can be calculated by using (5.23), which is also given in [7]. 1 Z = 1 CC " RC gmlB This resistor is replaced by an nMOS device in the actual design, which is biased in the (5.23) triode region. 31 ,_ a ma-“Ti(.r .. I .. 5.4 SPICE l Table sizes of the with these 51 sizes were at circuit is she l l In“? LI 5.4 SPICE simulations Table 5.1 gives the sizes of MOSFETS in the output stage and Table 5.2 gives sizes of the MOSFETS in the two-stage op-amp. PSPICE simulations were performed with these sizes of MOSFETS to check operating points of individual elements and the sizes were adjusted to get the appropriate results. The operating points for the simulated circuit is shown in the output file in Appendix C. Table 5.1: Transistor sizes in the output stage MOSFETS Sizes (um! um) MOSFETS Sizes (um/pm) Mop 1437/5 Mn3 5/10 Mon , 577/5 pr1 7/5 Mpl 6/ 102 pr2 15/ 100 Mp2 15/10 pr3 4/10 Mp3 15/ 10 anl 7/ 10 Mnl . 18/102 an2 6/10 Mn2 5/10 an3 6/5 32 Table 5.2: Transistor sizes in the two-stage op-amp MOSFETS Sizes (um/11m) MOSFETS Sizes (um/um) MR1 8/10 M2B 3/ 10 MR2 8/10 MCD 35/ 10 MR3 4/11 MCCl 35/10 MR4 4/1 1 MCC2 45/ 1 0 MRS 3/9 M18 5/ 10 MIA 104/10 MC 4/27 MlB 104/10 CC 10pf M2A 3/10 33 6.1 lntrod Now characteristt ' test results a Orderasthe 6.2 Tes 62.1 DC (almost 261‘ “Hit in about the 0 6.2.2 D OPAMP ii “sz111 a}: are ShOWn 6 Simulation-based Analysis of the op-amp circuit 6.1 Introduction Now that the circuit is designed it is necessary to test it for its different characteristics. We can use different test methods for measuring PSRR, slew-rate etc. The test results are shown in Appendix D. The files attached in the appendix are in the same order as the test described in this chapter. 6.2 Tests 6.2.1 DC Operating point and power dissipation As can be seen from the output file the DC output voltage for zero input is -0.03V (almost zero). Therefore the input offset voltage is almost zero. Power dissipation of the circuit in the quiescent operating state is 6.45 mW. The output file also gives information about the operating regions and the currents through each transistor. 6.2.2 DC characteristics In this test, the differential signal is swept from —5V to 5V and the output of the OPAMP is observed without any load connected to it. The output voltage is non-linear without any load but becomes more nearly linear by connecting a resistor. Both the cases are shown in the attached probe output. 34 ’i-‘IM- 6.2.3 Fre In t frequencie: gain of thz margin is l of Spf. the 624 Co In t Ollipm of ( "Olfige 501 the outpur 6.2.5 (:0 In an AC Sig 2310, C03 [Cl-NR . 612.6 p: tare .. ta. 6.2.3 Frequency response In this test the output of the opamp is observed for an AC exitation at different frequencies. Gain curves and phase curves are plotted and it is found that the Open loop gain of the OPAMP is 86.7 dB, the cross over frequency is 1.147 MHz and the gain margin is 63°. The dominant pole is at around 40-50 Hz. With a compensation capacitor of 8pf, the cross over frequency becomes 1.35MHz and phase margin 53°. 6. 2.4 Output impedance In order to calculate output impedance, an AC voltage source is connected to the output of OPAMP and the inputs are gounded. A plot of the ratio of the value of the voltage source and the output current is plotted in the probe output file. It is observed that the output impedance is resistive till nearly lOKHz. The value is 15 ohms and this is very low as compared with other op—amps. 6. 2. 5 Common-mode rejection In order to calculate the common-mode gain both the inputs are tied together and an AC signal is applied. An ideal OPAMP is supposed to have a common-mode gain of zero. Common-mode gain of this circuit is —0.35 dB. Also common-mode rejection ratio (CMMR) is 87dB. 6. 2. 6 Power supply rejection In this test the inputs of the circuit are grounded and one of the power supplies is made variable by including an AC voltage source in series with the supply voltages. It is 35 .8.” ‘ ‘II seen that the (VDD and Vt 6.2.7 Shor A 18 measured \\ on the posit: Irar Califid the II 6.29 Ca; The I he 0m131.11 . Iii. en; f 0f po‘Wer seen that the power supply variation gain is around 6-7 dB for both the power supplies (V DD and V58)- 6. 2. 7 Short circuit cunent A large amplitude sin wave is applied to the input and the output current is measured with a small load (5 ohms). It is found that the short circuit current is +79 mA on the positive side and —95 mA on the negative side. 6. 2.8 Transient response Transient response is a little distorted and the slew-rate is 2V/us. This test is called the transient response and is conducted by giving a large step input to the circuit. 6. 2.9 Capacitive loading The effect of capacitive loading is observed by connecting a 100pf capacitor at the output and plotting the frequency response. This test should not give any peak in the response. 6.2. 10 Change in the power supply values The power supplies are varied from +/-5V to +/-10V and the output characteristics are plotted in PROBE. It is observed that the characteristics are distorted for power supplies other than +/-5V. 36 "ruv .. 62.1 1 Tem The plotted. It ' temperature 6.2. 12 Ha r T1311 3 peak Volta; using two I. the Simula: “‘31 the to: 6.2.11 Temperature dependence The temperature is swept from -20°C to 50°C and the DC characteristics are plotted. It is observed that a small off-set is developed due to the change in the temperature. 6.2. 12 Harmonic distortion Transient analysis is performed using a sine waveform of lKHz frequency and peak voltage of 0.45V. The OPAMP is put into a non-inverting feedback configuration using two resistors such that the non-inverting gain is 10. A fourier statement is added to the simulation file to find the harmonic components of the lKHz test signal. It was found that the total harmonic distortion produced by the op-amp was 0.058%. A similar test was perforemed using a test signal of 10KHz frequency and a peak voltage of 0.45V. 6.3 Analysis It is seen that there is a scope for improvements in the frequency response and the transient response. Also the power dissipation is not reduced as was expected. Power dissipation is highly dependent on the quiescent current in the output stage. By reducing this current a lower value for the power dissipation can be obtained. Transient response depends on the power dissipation of the differential stage. As this power dissipation increases the transient response improves because more current is available to charge the compensation capacitor. These issues must be looked into while designing a better OPAMP with the new output stage. Specifications of the designed op-amp and its comparisn with the old op-amp are given in Table 6.1. 37 Table 6.1: Specifications of the new op-amp Specifications With old output stage With new output stage Power dessipation 4mW 6.45mW Rail-to-rail voltage +/- 4.6V +/- 4.45V Open loop gain 78dB =87dB Phase margin 65° 63° Unity-gain frequency 0.8MHz 1.35MHz CMRR - 87dB PSRR - 6-7 dB Short circuit current 60mA +79mA and -95mA Slew-rate 8V/us 2V/ps Harmonic distortion (lKHz) -70dB -l9dB Output Impedance 1582 Area 0.65 mm2 0.3 mm2 38 7.1 lntror layer. process 3.11 example if voltage rna Oil-Set vo‘; IEChniques 12 Lay 7 Layout of the OPAMP 7.1 introduction Layout of analog integrated circuits needs a special care as the parasitic effects and process gradients affect analog circuits far more than they affect digital circuits. For example if the two transistors of the differential pair are placed far apart, their threshold voltage may be mismatched giving rise to an off-set voltage in addition to the systematic off-set voltage [7]. This type of unwanted effect can be minimized by proper layout techniques. 7.2 Layout with LASI Layout of this chip is performed by using software named LASI. The Micro- electronic Research group in University of Idaho has developed this software. It is available on-line and free when used for academic purposes. Individual transistors and capacitors were laid out as cells of rank one and larger circuits were developed by using these cells. Thus a method of hierarchical layout was used. The layout is shown in Appendix E. 39 An ( tn[3] we! response 2 were com voltage sit 0f460 0hr h w- Cascode C thereby n tmnsistors illC meUe 15mg a V1 Vohage re Voltage re be PTOVid in the ref a IOIdeG‘ freqUEm‘ 8 Conclusion and further improvements An output stage with fewer components and more current delivering capacity than in [3] was designed but power dessipation increased. The slew-rate and the transient response are not satisfactory. The two capacitors that were used in the old output stage were completely eliminated without degradation in the frequency response. Output voltage swing is not significantly improved. The new output stage can drive a resistance of 460 ohms [3]. It was found that the transient response could be improved by including a folded cascode OPAMP (Figure 8.1) instead of a two-stage OPAMP to drive the output stage, thereby reducing the value of the compensation capacitance. Also the sizes of the transistors in the output stage need to be redesigned to adjust the poles and the zeros in the frequency response. Current mirrors of the folded cascode stage can be biased by using a voltage reference circuit given in [5] and is shown in Figure 8.2. Use of this voltage reference makes all the current mirrors in the circuit have a wide swing. The voltage reference of Figure 8.2 needs a temperature independent current source that can be provided by a circuit given in Figure 8.3. Use of this circuit minimizes the variations in the reference voltage due to the changes in temperature. One more advantage of using a folded cascode amplifier is that it improves the power supply rejection and makes frequency compensation easier. 4O ”45:13]” E SE] 12:1 Cr 3, STE I _ 1 :i l VINA—L— VINB V83 ]_—DUT .__. VB] *‘1 l 1 1J 1%: :Pl Figure 8.1: Folded Cascade op-amp 1t VDD Vp/Lp Vp/Lp [Ht—4H1 -——|t— Vp/Lp Wp/4Lp VB4 d: :pr/Lp *— ‘ V83 __,L_,_J.__ __l:—(‘)p/Lp Wn/4Lrt_. .___ VFW/Ln —EI lit—— vea I Q P - —1 H (fL Vn/Ln I? Wn/Ln v v v 'vss Figure 8.2: Voltage Reference for Folded Cascode op-amp 41 4xV/L L5__l LL; it L if .flLJW Figure 8.3: Temperature independent current source 42 9 Appendix A SPICE simulations for the conventional class AB output stage 43 """"*"AB-PUSHPULL OUTPUT STAGEitittttwtitii' ""TAKING INTO CONSIDERATION BODY EFFECT*"'*‘*' ‘****'POWER SUPPLIES AND BIAS VOLTAGES'**‘****"‘ VDD 7 0 5V V83 4 O ~5V VBIAS-P 6 0 3.7V VBIASN 1 0 -3V '*"'**‘MOSFETS AND OTHER COMPONENTS*********"*’ M1 5 6 7 7 CMOSP W=10.67U L=2U M2 5 5 3 4 CMOSN W=19U L=ZU M3 2 2 3 7 CMOSP W=110.18U L=2U M4 2 1 4 4 CMOSN W=2.77U L=lOU MS 7 S 8 4 CMOSN W=19OU L=2U M6 4 2 8 7 CMOSP W=1102U L=2U «sour 8 o 500 4——— at Mew; U *iifiifitittfiMOSFET MODELStttfiiiititifiiitfitfitifitiit .MODEL CMOSN NMOS LEVEL=1 VTO=O.8 GAMMA=0.S LAMBDA=0.05 KP=50U PHI=O.6 .MODEL CMOSP PMOS LEVEL=1 VTO=-0.8 GAMMA=O.5 LAMBDA=0.05 KP=15U PHI=O.6 itiiifitfifitTEST SIGNALSQQG‘tfifiiittitfiflitfifiiitiittti .0? '.DC VBIASN -5 S 0.1 “.PROBE ataattaaatEND OF SIMULATIONttttttitttifiiiiitttttt .END Figure A.l: Input file for PSPICE simulations. 44 Rour’ = 50:]. NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) -3.0000 ( 2) —1.7458 ( 3) .0097 ( 4) -S.0000 ( 5) 1.8182 ( 6) 3.7000 ( 7) 5.0000 ( 8) .0013 "*‘ MOSFETS NAME M1 M2 M3 M4 M5 MODEL CMOSP CMOSN CMOSP CMOSN CMOSN ID -1.16E-05 1.16E-05 -1.16£-05 1.16E—05 1.458—04 VGS -1.30E+00 1.818+00 —l.76£+00 2.00E+00 1.828+00 VDS —3.18E+00 1.818+00 -1.76E+00 3.ZSE+00 S.OOE+00 VBS 0.00E+00 -S.01E+00 4.99E+00 0.00E+00 -5.00E+00 VTH -8.00E-Ol 1.SOE+OO -1 59E+00 8.00E-01 1.608+00 VDSAT —S.OOE—01 2.128—01 -1 618—01 1.208+00 2.218—01 GM 4.64E-OS 1.105-04 1.448—04 1.938-05 1.318-03 GDS 5.008-07 5.322—07 5.33E~07 4.99E-07 5.79E~06 GMB 1.SOE—OS 1.168—05 1.53E—OS 6.248-06 1.38E-04 CBD 0.00E+OO 0.00E+00 0.00E+OO 0.00E+00 0.00E+00 CBS 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGSOV 0.00E+00 0.00E+OO 0.00E+00 0.00E+00 0.00E+00 CGDOV 0.00E+00 0.00E+OO 0.00E+00 0.00E+00 0.00E+00 CGBOV 0.00E+00 0.00E+OO 0.00E+00 0.00E+00 0.00E+00 CGS 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGD 0.00E+00 0.00E+00 0.00E+OO 0.00E+OO 0.00E+OO CGB 0.00E+00 0.00E+OO 0.00E+00 0.00E+OO 0.00E+00 NAME M6 MODEL CMOSP ID —1.18£—04 VGS -1.75E+00 VDS -S.OOE+00 VBS S.00E+OO VTH -1.60E+00 VDSAT —1.SlE-01 GM 1.562-03 GDS 4.74E-06 GMB 1.658-04 CBD 0.00E+00 CBS 0.00E+00 CGSOV 0.00E+00 CGDOV 0.00E+00 CGBOV 0.00E+OO CGS 0.00E+OO CGD 0.00E+00 CGB 0.00E+00 Figure A.2: Output file with RLOAD of 50 ohms. 45 RON ’ 573011. NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) -3.0000 ( 2) -1.7458 ( 3) .0097 ( 4) -5.0000 ( 5) 1.8182 ( 6) 3.7000 ( 7) 5.0000 ( 8) .0059 "" MOSFETS NAME M1 M2 M3 M4 M5 MODEL CMOSP CMOSN CMOSP CMOSN CMOSN ID -1.16E-05 1.16E-05 -1.16E-05 1.16E-05 1.388-04 VGS -1.30E+00 1.818+00 -1.76E+00 2.00E+00 1.BIE+00 VDS -3.18E+00 1.813+00 -1.76€+00 3.ZSE+00 4.99E+00 VBS 0.00E+00 -S.OlE+00 4.99E+00 0.00E+00 -S.01E+00 VTH -8.00E-01 1.6OE+00 -1.59E+00 8.00E-01 1.60E+00 VDSAT —S.00E-01 2.12E-01 -1.6lE-01 1.208+00 2.16E-01 GM 4.64E-05 1.10E-04 1.44E-04 1.93E-05 1.28E-03 GDS 5.00E-07 5.32E—07 5.33E-07 4.99E-07 5.53E-06 GMB 1_503-05 1.16E-05 1.53E-05 6.24E-06 1.35E-04 CBD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CBS 0.00E+OO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGSOV 0.00E+00 0.00E+00 0.008+00 0.00E+00 0.00E+00 CGDOV 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGBOV 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGS 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGB 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NAME M6 MODEL CMOSP ID -1.26E-04 VGS -1.7SE+00 VDS -S.01E+00 VBS 4.99E+00 VTH -1.6OE+00 VDSAT -1.S6E-01 GM 1.628-03 GDS 5.06E-06 GMB 1.71E-04 CBD 0.00E+00 CBS 0.00E+00 CGSOV 0.00E+00 CGDOV 0.00E+00 CGBOV 0.00E+00 CGS 0.00E+00 CGD 0.00E+00 CGB 0.00E+00 Figure A.3: Output file with Rm“) of 500 ohms. 46 NODE VOLTAGE NO DE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) —3.0000 ( 2) -1.7458 1 3) .0097 ( 4) -S.0000 ( 5) 1.8182 ( 6) 3.7000 ( 7) 5.0000 ( 8) .0090 * " " * MOSFETS NAME M1 M2 M3 M4 M5 MODEL CMOSP CMOSN CMOSP CMOSN CMOSN ID ~1.16£-05 1.16E-05 —1.lGE-05 1.16E-05 1.34E-04 VGS ~1.30E+00 1.81E+00 -1.76E+00 2.00E+00 1.81E+00 VDS -3.1BE+00 1.81E+00 -1.7GE+00 3.25E+00 4.99E+00 VBS 0.00E+00 -S.OlE+00 4.99E+00 0.00E+00 —5.01E+00 VTH -8.00E-01 1.608+00 -1.59E+00 8.003-01 1.6OE+00 VDSAT -S.00E-01 2.12E-01 -1.61E-01 1.ZOE+00 2.128-01 GM 4.64E-OS 1.1OE~04 1.44E-04 1.93Ee05 1.26E-03 GDS 5.008-07 5.328-07 5.33E—07 4.99E-07 5.368-06 GMB 1.50E-05 1.168-05 1.53E-05 6.24E-06 1.33E-04 CBD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CBS 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGSOV 0.00E+00 0.00E+00 0.00E+00 0.00B+00 0.00E+00 CGDOV 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGBOV 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGS 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGB 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NAME M6 MODEL CMOSP ID -1.32E-04 VGS -1.7SE+00 VDS -S.OlE+00 VBS 4.99E+00 VTH -1.6OE+00 VDSAT -1.6OE—01 GM 1.65E-03 GDS 5.28E-06 GMB 1.7SE-04 CBD 0.00E+00 CBS 0.00E+OO CGSOV 0.00E+00 CGDOV 0.00E+00 CGBOV 0.00E+00 CGS 0.00E+00 CGD 0.00E+00 CGB 0 . 00E+ 0 0 Figure A.4: Output file with Rm“) of 5000 ohms. 47 Roof = 0051. NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) -3.0000 ( 2) -l.7458 ( 3) .0097 ( 4) -5.0000 5) 1.8182 ( 6) 3.7000 ( 7) 5.0000 ( 8) .0095 "" MOSFETS NAME M1 M2 M3 M4 M5 MODEL CMOSP CMOSN CMOSP CMOSN CMOSN ID -1.16E-05 1.16E-05 -1.16E-05 1.16E-05 1.33E-04 VGS -1.3OE+00 1.81E+00 -1.76E+00 2.00E+00 1.81E+00 VDS -3.18E+00 1.81E+00 —1.76E+00 3.ZSE+00 4.99E+00 VBS 0.00E+00 -5.01E+00 4.99E+00 0.00E+00 -5.01E+00 VTH -8.00E-01 1.60E+00 -1.59E+00 8.00E-01 1.60E+00 VDSAT -5.00E-01 2.12E-01 -1.61£-01 1.20E+00 2.12E-01 GM 4.64E-05 1.10E-04 1.44E-04 1.93E-05 1.26E-03 GDS 5.00E-07 5.32E-07 5.33E-07 4.99E-07 5.32E-06 GMB 1.50E-05 1.16E-05 1.53E-05 6.24E—06 1.33E-04 CBD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CBS 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGSOV 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGDOV 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGBOV 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGS 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CGB 0.00E+OO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NAME M6 MODEL CMOSP ID -1.33E-04 VGS -1.768+00 VDS -S.OIE+00 VBS 4.99E+00 VTH -1.59E+00 VDSAT -1.60E-01 GM 1.66E-03 GDS 5.32E-06 GMB 1.75E-04 CBD 0.00E+00 CBS 0.00E+00 CGSOV 0.00E+00 CGDOV 0.00E+00 CGBOV 0.00E+00 CGS 0.00E+00 CGD 0.00E+00 CGB 0.00Et00 Figure A.5: Output file with no load. 48 fl; ‘IOQOI'IOOGOAB_PUSHPULL omm STAGEOQOOIOCIQOCOOI Date/Time run: 07/09/99 18:49:48 Temperature: 27.0 (A) ABPUSHPULL1.dat i ____________________________________________________________________________ :1 1.2V] 2 30M'1 3 8.0VT a. l 3 I i f VIN: -3.2021v. vour: .735v E 1 ; -352V. . roa sour: so onus ; ' 0.8v1 ZOmA- I I 6.ov~ I 0 av IOmAA I I ov1 0A4 4.ov{ 4 2 -o.4v« -10ma1 f 5 2,0vi =~2.7979v vour: -.704v I -0.8V< -20mx« E f 5 .—1.08v 3 >>: : -1.2v-‘ -30mA4 ov+- ---------------- . -------------------------------------- a ------------ 4 -5.ov -4.ov -2.ov ov 2.0V 4.0V 6.0V 0 v18) [2 - mmsi . ID(M6) v17) - V(Sl varxsu Date: July 09. 1999 Page 1 Time: 19:07:39 Figure A.6: Simulation plot. 49 I) .1 .......'...AB‘PUSHPULL ompm STAGEOOOOOOOOQOIOOI Date/Time run: 07/09/99 19:17:17 , Temperature: 27.0 I (A) ABPUSHPULL1.dat 1] 2.0v1 2 5.0111» 3 e. ' -------------------------------------------------------------- 7 . F013. 4901” fans}. : l I 3 I 1 : 1 1 1.0V W' s 1 6. : 0v. : . ox< 4.ov{ - s 1 4. e s: . -1.ov l ; vrzii=-2.85v. v1u=-1.425v - 2.0vi -2.0V( J J >>j ~3.ov -S.OrnA ov+ ————— -6.0V -4.ov -2.ov ov 2.0V 4.0V 6.0V E) 13 V18) [2 I ID(MS) . ID(H6) [E] vt7) - v15) 1 _ VBIASN Date: July 09. 1999 Page 1 Time: 19:23:15 Figure A.7: Simulation plot (cont.). 50 Date/Time run: 07/09/99 19:24:08 ‘ #6- ..IIOQItQOOAB-PUSHPULL OUTPUT STAGEIOI'IQOI'tttI. Temperature: 27.0 I (A) ABPUSHPULL1.dat 3 . i :1 4.0V1‘ 2 600%]. 3 8.0V‘T """""""""""""""""""""""""""""""""""""""" 1 ’ F09. Rev? .: suoo cum; : I I " ; 3 400m»: 1 i I l a “ 3 ; : ; ‘ 1| 2.0V41 ' 6.0V“ |> Q 200uA1 . F 7 i I 1 - , ; 1 .i ov~ OA‘ 4.0V« 1 . 1i 5 1 :l % —200uA- : N=-2.85V VOUT=-1.866V fl . ‘1 ‘ ' ' .a r f ’L/ w -2_0v4 2.0V‘ . . . . . l. . . . . . . . . A . . . . . . . . ’1 ‘i ‘ . ‘*?\\~1~_____;_*y____ . . H -400uA+ ; ’ 8 O'SGMA w >>T ' : ._ -4.ov« -600uAd ov-» ----- -———————<<1 -------- , ------------ Y ------------ r ------------ 1 ------------ u -6;_qv -4.ov -2.ov ov 2.0V 4.0V 6.0vé :lJ o V(8) [:j - ID(MS) . ID(M6) [i] a V(7) - V(5) ; VBIASN 1 Date: July 09, 1999 Page 1 Time: 19:28:50 Figure A.8: Simulation plot (cont.). 51 h‘ A 7 littttt'tttAB_PUSHPULI-‘ OUTPUT STAGEO'i'iQIIDOIOCi Date/Time run: 07/09/99 19:36:36 Temperature: 27.0 ’ (A) ABPUSHPULL1.dat . 4.0v‘ 200uA1 8.0V+ --------------------------------------------------------------------------- N - OUT: ‘2 vouw=2.53y-VIN=-3.1sv ’9“ R °° . 151.7UA 1 I : 2.ovJ 100uA1 6.0V4 ‘ , VIN: -,2 . alsv VIN=—1..96V l —2.0V~ —100uA« 2.ov§ l | l I , j >>; -4.ov ~200uAJ 0V4— ..... ' -6.0v -4.ov -2.ov ov 2.0V 4.0V 6.0V 0 we) [2] a 10045) 0 ID(M6) a V(7) - V(5) ‘ VBIASN Date: July 09, 1999 Page 1 Time: 19:41:10 Figure A.9: Simulation plot (cont.). 52 .10 H tttififitl'tIAB_PUSHPULL OUTPUT STAGEitfitQ'tfiiiiti' Date/Time run: 07/13/99 12:54:41 Temperature: 27.0 q (A) ABPUSHPULLl .dat l1 zoom» 2.2v 0A+ --------------------------------------------------------------------- 1 2 3 . - . . 1 ' \ Curvt-AE Human. ~12. stem decvuma . Z-OV‘ ; VIN = -3.15v 100nm «mu ' 1.8v« 7 FOR R00? = INFINITY. 2 0A~ -auAJ I I'GVT I VIN = -4.16v, . ~ 2 -100“. . . . . . = : 1.4V« V . . . KEV: —2.9v ' ‘ ' fi‘ ' i -2oomulJ 1.2vJ ‘v ------------ v ------------ r---- --------- . ------------ 4' -6.0V -4.ov -2.ov ov 2.0V 4.0V 6.0V 0 mum o mom [2] - vm - we) . we) - V(2) a mun) vamsn Date: July 13, 1999 Page 1_ Time: 13:07:49 Figure A.10: Simulation plot (cont.). 53 X. ”4... . Tutu-0...! ,. .ml! 5 .OOOtOQiItOAB_PUsHPULI-' OUTPUT STAGEIGIICCO..OOQCt Date/Time run: 07/13/99 12:54:41 (A) ABPUSBPULLl.dat Temperature: 27.0 Date: July 13, 1999 Figure A.11: Simulation plot (cont.). 54 9 . ..................................................................... 1 11 8.0V 0A 3 4.0V? —\ _‘ g 7 . vm: -3.1sv vouw: 2.5466V . ‘ 7 Li I . . 4 . I ' l i i :- ‘ ' 'l 6.ov~ 2.0v4 W i} . ll ! l -SuA4 I FM: «Tao-v- : 903;” : 4.0w ov~: i ‘ vm: .-2.848V vou'r; -1.978V 3 ~10uA« fl 2.0V1 -2.ov{ i = -2.85v : . as omuc REGION . ovJ -15uA« -------------------------- . ------------- , ------------ , ------------ 4 -6.0V -4.ov -2.ov ov 2.0V 4 ov 6.0V [1] o vm - VlS) . mom 1:} a vm vans»: Page 1 Time: 13:18:03 ll “; litififiiilI'AB,pUsHPULL OUTPUT STAGEQOOOOII'QOOOO' Date/Time run: 07/10/99 14:07:59 Temperature: 27.0 (A) ABPUSHPULL1.dat : 8.0V-r """"""""""""""""""""""""""""""""""""""""""""""""""" l l l i \ V0543 6.1232V 1L \ / I : \\ l l ~‘ I :0 R T I 5:- I 6.0V“ . f . . . . K .OU / j 1 l l I I l ' | 1 l . . 1 2.0V{ . . . . . . . VDSSAT4= 0.967V . . . . . . . . . . . . J ov+ ------------ r """"""""""" r ------------- v ----------- 1 ------------- V -------------- 4 -6.0V -4.0V -2.0V 0V 2.0V 4.0V 6.0V! 0 V(2) - V(4) i VBIASN i Date: July 10, 1999 Page 1 Time: 14:22:08 Figure A.12: Simulation plot (cont.). 55 A :3 OOII'DiI'.CAB_pUSHPULL OUTPW STAGEOOOOIOOCQIIQOI Date/Time run: 07/10/99 14:40:18 Temperature: 27.0 i (A) ABPUSHPULL1.dat ? ' l 60m 1- ----------------------------------------------------------------------------------- ’ i l l Sko't (\'(‘,\;\' (uv'flr‘k ' RWT'HIL 25.88 ma Date: July 10, 1999 Page 1 Time: 14:44:02 Figure A.13: Simulation plot (cont.). 56 10 Appendix B Extraction of LEVEL 1 SPICE parameters 57 Date/Time run: 'TEST CIRCUITS FOR DIFFERENT TRANSISTORS 03/27/99 19:00:29 Temperature: 27 . 0 S H N a a a 3 L---—--_-_-L---___---_L--_-------L----------L---------- a 3 a 8 04 0V SQRT 03V . I .‘g'fl' .-" I ' O . I ‘4l'a.‘-' :’ I I '. I." -‘ I 16" J \: I ' I I ' [,r ”'I ' "’ I g ,_ I I , ,. I I ' c5331." ' - ' I ' spon- 5 285 a 3 "’/ ' I ' - ”'l"ltl”o ’rr/ . I $101..” ”I” ’4’ . I ’._: t ,. ,’ . J ." .,/" I 12” . “n: . "/' I . :',’:" “/0, I I ' 1. i.' ' (r ' I ,1]? ,.-" I I ,ngII/ _,/” I . . {L'I' I”, . l . swpz- 5.3 9 2-3 ,Isg. . - :4". . : ' c.7313.” : am .I . . “(ff/1" . . . I . awlmpz - 5.137 2-3 . I J11"- ' I l I ’I,”'I‘ e I I fli” I I ,:;;" I I 45"," I I “‘9' I I 1,0’ I | A‘s” I I I " I J I In , , l I I I I I I I I I I I . I I I I I — . ————-- - — -—re—~~ -, ’—»«— ~ ~-—~——--~——»—l O‘I' , .. -_._,_,_ ‘1 0V fif I’ 1.0V 2.0V ' 3.0V I I.ov s.ov somuznuun vm.:o.8v "* II\ Date: March 28. 1999 Page 1 Time: 13:52:06 Figure B.5: Measurement of K»; and Vmo for a large device. 62 'TBST CIRCUITS FOR DIFFERENT TRANSISTORS Date/Time run: 03/28/99 13:52:23 Temperature: 27.0 (J) testtrmiatorl . dac 2mT"-----------~--------—-------~------------------~-------------------—--------—-----------------------. I i : II/I. - soc/30b ; ; vs: - 2v ,3; 20m4 . . . . . .‘,;:::.I : K9” 3 364 pa- ,3;, : I . V; I 4,3,}: "’ lz/JI a I’ = mu; - 3 v : 16m; - VT“ = I. 3{?8.v x. I I ”a I I .5:::’:" I /’1 : ,3;;3109: - 5.566 3:3/3’ ; : ,3;: _ ,// : I 4”."1’ ’ ‘/, : 12“, J] . . . . . ”.137; »’ . .g///.’“ . : . SLOPE = 5.727 2-3 , ,r-I’ . i " I i : I I saw: : I I i I l I : 1 «a: : I I i I I I : : 0+ - — —-—— r - 4 0V 4.0V 5.0V " SQRTiID(H1)I VGS Date: March 28, 1999 Page 1 Time: 13:58:02 Figure 13.6: Measurement of K»; and Vmo for a large device (cont.). 63 Data/Till. run: 03/27/99 18:26:23 'TEST CIRCUITS FOR mm TRANSISTORS Tamaratuta: 27 . O (C) taattramiatorednt 250m7-~----------------~--,-v---------------~13»----—----------------------------~-------------------7 . 35:33 noon: onseoox‘ , . . ; INL- 30/20 ' . " ; . apdxrzou- (rm-mnnm' (vnsz-vnsn . ; VSB- 0V / . _ ~I : I A 7. Oc”‘{ . VGS {Eff : LAHBDA- .osagjflw -4 """ . 200“ J. />"_5"'f"" . : : ,2,» f'” ’ : I ,r’”// . u : /’ ,- , ‘ : ‘ ,. / vas . 3V .3 .: 150M-: - - 9’ ,4 LAMBDA- .0666J.____ .- ~ -.-~-’- T” ‘1' ; 1oou4 / mm- .0325 j, - —47 ~ -3- ‘ ' 'v E I’ll’l'lf :1. I E I ,5!" / m- .109 _ -_ .'_.—- ~—~ '; sou... ’I-QJI'.‘ / . J -__ —r----~ . . I : [95; /, .3 ********** " . : i i/fx‘.’ / . . . I ,1 mm- 166 VGS’ L5" 1 : : ~M ' flm—rfi - - - if: - _ 7 z: — _' .— __Y"_ . __ _ .34.. _: ‘ _ A___‘.—. -.’ ’ _;—._’— T’. _- _;_ "'T;'.—_'- .. — “4 av 1.0V 2.0V 3.0V 4.0V 5.0v '— mun) vns Data: larch 27. 1999 Page 1 Tina: 18:33:43 Figure B.7: Measurement of M for a small device. 64 . . 1e ..: .n'n 1.. .5 .(. 6-." x \l a . 9 t... 'TEST CIRCUITS roa DIPPBRBNT TRANSISTORS Data/Tina tun: 03/27/99 18:36:36 Tamparatura: 27.0 (B) taattranaiatora.dac 33m noon: on? m J” : u/L - 30/20 . ’1/ - . : m - 2v " EEWION - (ID2-ID2)/ID1.(VDsz-VDSI)I . WW 2 - 0443‘! ,,, . I W I" ”in ' E ZOOuA [3. ,g' , , . . 933391: ‘95}3h.fi,7, ' .__’H E I I ‘ ,.,_ 4.. / ., Mr-” ,.-,_.- E E \ i\ \ ------_---------------_-- 100m: ”'" VGS. 2.5V // 1" l I . A- M. ' LAHBDA .1457 ‘-,_. -- -- ~‘“ ‘ . 5M 0 . . . - a I Wg'fl . . . . . : / 1,..—--—'- I I, ,’/”<—-—‘ I ' vcs- 2v 1 '. . . mm- .2637 ;__________*__,,_v..._..,...~~--~~—~ -- ; -W—M—fi-W | I r “.3. .. .—_ .33: 4:;53223::'1"“ “7.." 22:3”. _ :. ..-.-__~ _;_ __ #:2172sz " ‘f— " g T'::T; 5;.-. HT... .__’ L-’ A. I. ’.‘;:~1:;_;—;.l.‘____{ 1.0V 2.0V 3.0V 4.0 5.0V 3 c U <+ ---.--------L---—--------J------o---'-----_------L------------ ID(I1) Data: latch 27. 1999 Page 1 Tina: 18:48:52 Figure B.8: Measurement of km for a small device (cont.). 65 1:2.) "PEST CIRCUITS FOR DIFFERENT TRANSISTORS Unto/Til. run: 03/27/99 18:50:39 Tamparatura: 2‘7 . 0 (C) taactranaiauaradat 15MT""-"'-""""'"""""'""""""""""“"""::_'_",‘.'«""""""""""°“'"""""""" : 33m: cuos 300:: ,1/ "’ ’ ; l/L- 10011511 " 1 vsa- 0v , : E 3: 0.04:} / / 5 100054: . , r,./’ 1 / vss- 3.5V _ i / MD» .0305 I inflammwwwr—w ‘“' “W” : : I «L'“’" '— ,__. . 2 : x 3 I ' / mm: .0016 V -/ 1 1 , - 1.. - -11 _ .__.: sous-E /’ - , : - . : : mm- .007 __ ____ __ h _; l '. '_‘_.___~___.'._—————""-—’_ —.—_——' I I MDA- .0517 VGS' 3V : 1 z'nmnn- _055 vcs- 1.5V : 0 _‘_ 7 _ , I _ - .. _.__..._. _ _._ -___.M ."___....1_. . ,_ - .._ -____.___._~____' | I -m ~ —~ — 1 r —r -=»- ~—- -~"*-*-------t 0v 1.0V 2.0v 3.0V 4.0V s.ov " 10011) E Data: latch 27. 1999 Paga 1 Tina: 18:59:01 Figure B.9: Measurement of M for a medium size device. 66 3:: 7;: R t'. . 1 I”. 'An_ In“. If. v 'TBST CIRCUITS FOR 01m TRANSISTORS Data/Tina run: 03/28/99 13:16:56 Wratura: 27.0 (P) taatttanaiatora.dat 150M - --------------------------------------------- p- ------------------------------------------------------ I / | I I, g : 381113 3501331.: cues BOOK ; I ' ‘1' ' ; H/L - IOU/150 /' i : 2 I 00 o“‘ / ‘_,.,,--7—~- -.. n+4 __._.. -: / “fl“ ______ I ' / ' Mg’wflflfl i I I/ fry!” , : I K‘r/fl’ : : , , If” . . : 100M .0: . . . . . '3’ . [,5/ E : ./ /_./ VGS I 4V 1 I ‘ ' _ M . / LAMBDA .031,” '__#__~_,H__,_,. ‘ : / ’_ ,. ”I’M” : : , ~ 5“ : I l ” , I ,’ I: I : , ,' : I ,' " ’ I : ' " ' mm - .0023 ___,,_._.__.' —-7—~7-»~7-«—- -- -; I ’I' / #:-H_.—-- _H_______.,_..——-———-—' M..— ' 5011A1 ’ ' / - " ” J - - I I / / , I I : , , . ’ : E f:",/ mm - .0059 M _V _____ _____.__“__ ; "f ,’ fl _, g 1,- - - ,_.--~»*-————~_ ”'“—‘““" : I I. I’ / I- I : xiii!" xxx}. : : /§’l-’/ .- ' ' um - .0532 ' “35.3.11“ . I '{’:// 1" 7__— _ __-_— ________‘___ _ _ ._ _______« _.____ _ ___‘_ . ‘ 47/ ’l -v/ ' ' .2"? I ”1” ‘ I ; y’j- mm - 0656 V68 ' 2.v ' I /’ —-—-—-*—*~" ' """‘—“" *"“"-"""“ ' ““"“", 0A 7 V V Y I W 1.0V 2.0V 3.0V 4.0V 5.0V 0 IDlll) VDS Data: latch 20, 1999 Paqa 1 Tina: 13:29:05 Figure B.10: Measurement of In for a medium size device (cont.). 67 1M2; \..... Date/Tine tun: 'TEST CIRCUITS FOR DIFFERENT TRANSISTORS 03/28/99 13:34:14 Temperature: 27.0 300uA 200uA 100uA n---—-----_—------L-----------_..-----l 0V 33133 MODEL: couos aooxf’ , " w/L - sou/300 /’ vsa - 0v _£ // ') {0.th ' ’ ,’ ' rl. /’ / . *- - ”J.” --_ / ’47wr_,,4 3 IDiHl) (G) testtzanaiators.dat 350m 7 ------------------------------- , ----------- ---------------------------------------------------------- LAMBDA I .0439 ' .0434 m” ' -_99.99.--_1_--__-._I,_ .- -._4—~* ' :3 I I '____ ___._ i é__'__ F '~— '_'. — ~ ‘H .1 i. ,‘ I ~/ 77 - — r W'—“ '7 'r'.’ / /" lfi' /' vcs - 1 5v :;"/,.--" LAMBDA - .056 . ' . ‘.‘>/"_ _-- _ ._ ._ _ ,__ AA,_———- ~— ____.—__.__— ————- _____.__.__-—...4_-_ -- -0“ —;- r-..-_a-_1.- 12:-n ' - t‘..LY.‘?—.L". .31.:Irz-u-a.a.msx=::r::r—=n snag-u" nun-.3. u-_._v—_;—'-‘--1 '. 77- . a: x - _ _ ~ ' -..>..-‘..- _ ";M$‘.:"‘. ' 5.0V 2.0V 3.0V A.-----_--.o_-—-_- Date: larch 28. 1999 Page 1 Time: 13:40:54 Figure B.ll: Measurement of AN for a large device. 68 é’l 'TBST CIRCUITS FOR DIM TRANSISTORS Date/Tine run: 03/28/99 13:41:15 Temperature : 27.0 (B) teattranaiatoradat 30M7----------------------------------------------;;;;-—---------------------~----—-----------------------' I . /" I I ’l ,f I : II/L - soc/300 ’ / 2 : l // I : vs; - 2v ‘ / 2 35m.: .AI.OO°.“3 . . /I . . . . f I _ I / I I / I ’ 'W-e.‘ ‘ a M . / _____r- t J l ’ ‘FP—_,’r_’_,__—-—-"" - : : f- 'I' : 200M1 ’- ; : . I / I : r / . . VGS . 3 .5V : 150m «5 - / ~ / wwigfitfii. “p-11“... " 7‘ 7" . g f ’ ’/ - if,” 1,--- ‘ """ - - I E (,x . . ./' ~ 5 I I," ' .‘I . | I .' ,6 l : ’7“ r'. //1. : 100m“. /' mm -'.os1'6 ___ -04.”: : ."II "I ’ . _______.———————~—b—-~ _‘ .fl _ __ : ; ,"fx’. l/ 11”,.---_—r— ,P--._...-. : : /I /' ’ ”I " : j '1 I . : /./‘/' I, ’I/‘- o : 50“.; ’64-’34 mm - ..0569 . __J ' 'I'I‘ I, / "a n -._—‘—-H ' , /.-,-_; a ._._1 - a m M . : ’Ifi‘yi-f," / ,,/ v” : : ’597 x"! veg-2v ; , _ _ _ ”a“ -_ --- mm; -061__ _ - __ - -_ -_— —. —- .. : x/i/"fl’. . ' : 0A Ti V T V I 4 0V 1.0V 2.0V 3.0V 4.0V 5.0V a 10011) VDS Date: larch 28. 1999 Figure B.12: Measurement of in for a large device (cont.). 69 Time: 13:46:40 31! ‘3 ¥ I... 'TEST CIRCUITS FOR DIFFERENT TRANSISTORS Date/Time run: 03/28/99 17:05:58 Temperature: 27.0 (N) teattranaiatora.dat I I I-H I “' . r\\ “““““ H I ‘s __ L\‘ \1“ ‘-\“ I ~.. '-._ -.,\ - I . l ‘x_ "“m \, SLOPE I SORT (K' W/2L) ' “Fr. ““5 h “. I ‘~._ "~.. F\\ ‘\x ”a “. . . , NIL l3U/2U I \\.\ ‘~- ‘ ‘~.\ I ‘\ ‘-.. "a. “~~ \. “a 7‘. : \\ vas - 0v l \ -".' “ V‘u - . I ~\\ ‘*a‘ I \ ‘.\‘. \ -.‘ 10”.: ‘~. . \ ._ ‘ , I .\\ x '1 N . \‘ “ \- \\‘-‘ “‘4 x 1‘ ‘ .\‘ \ \_\-A ~\ ‘ \\ “.“\ \.~ ~ I. \\‘ \ ‘ '\\ ‘s “ ‘xm ‘ x ‘ KPP 7. 20.0% NA ‘ . - V'- I“:~ VT'O I c.0033“; In 8 4L-------------_------- ------------------- ‘ r O C 90RTI¢ID(X1)) ISI'T ------------------------------------------------------------------------------------------------------ I I I I I I I I I I I I I I I I I I I I I I l I l I l I l I I I I I I l I I I I I l I I I I I I I I I I l I I I I I I I I I I I I -S.0V -4.0V -3.0V -2.0V -1.0V 0V Date: March 28, 1999 Page 1 Time: 17:13:39 Figure B.l3: Measurement of Kpp and VTpo for a small device. 70 Dace/Tine run: 03/28/99 17:14:52 "PEST CIRCUITS FOR DIFFERENT TRANSISTORS Temperature: 27 . O I I I I I o. _ I ~'\\ I"‘\ ‘\ \ ;\,‘\\\‘\\yns - -5v I \\\\‘"\.\\\ K -.‘ '\\.‘ ‘\\ "\:\, . ‘.\‘ ‘\‘ \‘\‘ \s», ~‘\_ \\‘\ \ “ . \fl\\\‘\ 1011: ~\~ .;f“\~3.j‘\ \\~. -._ ‘—-‘_vns - -1v ' .. \ _\~ ‘ ~\*Q‘\ ‘N\'\:“ “. \: (O) toacttanaietora.dat 15m - ------------------------------------------------------------------------------------------------------- I KP? " 20'45’1—6 §§993=3.878 2-3 .yzo.a?} / ' W's —\.‘LHV N “‘9‘“?j53ig."_}‘-‘;p..‘ ves - 2v snore - 3.82 3-3 ~ ~ :5 smpe- (.227 3-3 I". ..‘. “\‘\‘.\ SLOPE: 3.723 8-3 _‘\._:“‘~:\“/ ‘ ‘ “ way -1.219v —---------_----J----------------L----—-----_r--J---- '5.0V -‘.0V 5 SQR'N-IDIKIII '5m+ """""""""" I ---------------- ' ' ' ' 'w/xl - 3'0/20' ' ' : I -------------------- r -------------------- . -------------------- 4 -3.0V -2.0V -1.0V 0V Date: March 28, 1999 Page 1 Time: 17:22:18 Figure B.l4: Measurement of Kpp and VTpo for a small device (cont.). 71 'TEST CIRCUITS FOR DIFFERENT TRANSISTORS Otto/Tim. run: 03/28/99 17:35:17 Temperature: 27 . 0 (R) toattrmistorsdat 9.0:.7--------------~---—----------------------------------------------------------------—------~---------. 3 \ i I s . . w/L - 10U/150 I ~-\._ ves -cv 6.01:1 . . ‘ : vns - -1v‘ \-‘, : : K ._ usual: I P? :vl.: 4.0fl“ . . . . . I I V‘I'INIO‘= -O.u?V: ; 93- 2.0306 3-3 ; 2.0m - - - - . i : I I v'ro - -.8677v o 4 "‘ ' T“. '——“ — -’._" ’ " ’7' "I- _"" "I ‘\ I -s.ov -4.ov -3.ov -2.ov ov a sown-10mm) vcs Date: latch 28, 1999 Page 1 Time: 17:39:08 Figure B.lS: Measurement of Kpp and VT") for a medium size device. 72 DutelTil. tun: 03/28/99 17:39:36 'TBST CIRCUITS FOR DIFFERENT TRANSISTORS Temperature: 27 . 0 (S) teactzeneiecore.dec san---------- I. I 6.0I-I 2 I ' I :\ r".- I'lo‘IqPA_ : I '1’ : 3 1?: 0.ch ; ‘oOI‘: . . . . . z I II/L- IOU/150 : : vas- 2v ; 2.01.: I pon- 2.0407 2-3 I 0 m - -1.3123v 0+ W r 1 a; r 'I -5.ov -c.ov -3.ov ~2.ov -1.ov ov a sown-1mm“ vcs Dete: larch 28. 1999 Page 1 Time: 17:0:26 Figure B.l6: Measurement of Kpp and vao for a medium size device (cont.). 73 "PEST CIRCUITS FOR DIFFERENT TRANSISTORS Date/Tine run: 03/28/99 17:50:12 Temperature: 27.0 (V) teettrensietore.det 12:—-----—-------------~----~-------—------------~-------------------»----------—------------------------~. 1 1 E 10nd: win-500nm: vas - 0v 2 and. . . . . - : : K"; I1-O8ufi ; 2 v V‘- 1 : YP°=—0-%‘I?-V : «n4: : zué E wo- -.su1v 0.; .__., _______ _ 51* . .1,-:_,." .__..__.~-_.__ “T- ...7...: __ -____ ____,,_H 1- ., I j: -s.ov -I.ov -3.ov -2.ov -1.ov ov : SQRTPIDINIH vcs Date: larch 28, 1999 Page 1 Time: 17:53:06 Figure B.l7: Measurement of Kpp and VTPO for a large device. 74 'TBST CIRCUITS FOR DIFFERENT TRANSISTORS Date/Tine run: 03/28/99 17:53:25 Temperature: 27.0 (w) teattranaietore.dat I I 101:; 2 8n; 5 I’xl“> I : \‘\- ‘ : “\\ : I \_ I 6 5 vns- -1v 1 n4 0 . e e , o . I I VIP: -—I-3Is'1-V : 5 (=05? : I Menuzfl 1 I ’13— I 410-: we -500/3ou : snore - 3.179 2-3 VBS ' 2v I I 2n-E : : . : v'm - -1.3102v 2 I ' I 0% Y fir Y K“ r I -5.0V -8.0V -3.0V -2.0V -1.0V 0V : san(-ID(H1)) VGS Date: larch 28. 1999 Page 1 Time: 17:56:07 Figure 8.18: Measurement of Kpp and V1~po for a large device (cont.). 75 _ 'TEST CIRCUITS FOR DIFPm TRANSISTORS Date/Time run: 03/28/99 16:35:19 Tamerature: 27.0 (K) tuttranaiatoradat Mj—-- “7.7 ——~———~ —_—..~-_.~—« ~———— . = mm» ,7... ___.__,,__.___,__. 7,7 ; unam- 268 ,0]. ; I g ____..-.—~--—""” I /.'.’;I , I . _ -___ fl--.—-——v-r—‘ “"‘"— . /,.'r}‘F : : 3257-;aLm———#«~ “3"" “ , ' : 2 0mm - 17 , ,‘ : I - —’“'x I I I . 7-...r"""”v’4 r ." l . -‘OMW. _,,-_o—"' -7-"'—”—"‘- '4 ' D I I .'ll' // ' : I—r‘ ‘ ’" "'_' W-W—g-W « "f. /,.”l,-":: : . mm - .1271 /_/1 x ,- .- . : / ,/ ’ I : /:«/ ' ,1 : : ,1. ’ ; . _,,,./”’” - , / , : Kiri-ta ,/ / I' /I I r’ - _ III ‘3 I 40:31 mm _111 // 7 Ix. I I / l’ '1 . I //” [I I, 'I' I : ' ,_/ . ’, f : ; VDS - 4.31/7/ "I" _ ..«-" // : :-»-~~””’imm- .096 //’/ ‘ A = 0-‘544 ; ; . l,./' . / . : 1 /4/1,,«/ ,1 x’asna 00031.: cuos 000x 1 -120“; ;,J—' ., w” . . . . . . (’7’ . ’1. v5! -. 0V . ' I ’7”! I” l I . firm" ' ’ II/L - 30/20 . I __/..’—" If . . ,3" . / . I fr“ 7, / fouxrzoa: (102-mIIIIv02-v01I'102 : : ,/"'/ / i I // l/ : : ("/// ’1', I I ”VI/I. I," . -160“ + --------------- “F:- r ---------------- 1' ------------- '- ----- v ------------------- 1 ------------------- ‘l -5.ov «.ov -3.ov -2.0v -1.ov ov a mum vns Date: larch 28. 1999 Page 1 Time: 16:46:11 Figure 3.19: Measurement of M: for a small device. 76 Date/Tim. run: 03/28/99 16:54:15 'TEST CIRCUITS FOR DIFFERENT TRANSISTORS Tcmporaturo: 27.0 V, -100uA 4 "Y"""-'-""P"" 0‘ I» :__ ._-— "‘ __ _. __»_ ‘______‘ ___ _ __, _ ‘ : ##r‘ ’ ——— _r ’4 _ ~___‘ - ‘/l.- ' VDS - _ * _”_ . _ __ _f7_ 7- _ fl-__ ,, : _. . ', 2V . 2337 IC{ . ‘ """ ,’ / 1' : - r H—< 4“ _' ‘ A‘ V 1". I’l‘, : -_ - I -—'~ _ -‘iv‘ - ,/h5 :‘4 ‘ ' " ” LAMBDA . 1739 I , //’, ’ .1 I ’ W I I i ,..- l I I _IM,J—-—-'-fl"i—fl’ I, I I F ‘M- ’ ’ l r, '” r. l ' X‘HB 1M» — - 77,7 4 I / , -50uAJ 4fi_¥ '»’r_, .. 135 I l l ‘x \ \ \ K\ _-" VI. ‘ ‘ / - . . , um. .- 30/20 (L) toattransiltorn.dat ,, 7.-» ‘ /" ) -.-. 0.36 Z'L . vss . -2v Date: latch 28, 1999 Time: 17:01:17 Figure B.20: Measurement of kp for a small device (cont.). 77 'TEST CIRCUITS FOR DIFFERENT TRANSISTORS Date/Time run: 03/28/99 17:23:21 Temperature: 27 . 0 (P) teeCtreneietox-e.dat 0m . _ .7 .j I _ ,7. ”I” : ; vcs - -1.5v mumm- o )3, ; r 7- « 7..-- --— ~ ~ 7, ~« —>- -——- ~——- 77.______, 77, —— -- — 7 — 7 ~~"" / : I LAMBDA- 0 , ’ ,’ .- . . “1°“ 1' ,l/ ‘ / l : ,__. 77 ~——-A-w«~—r~ 7—————4-——~ ,_ r.- . : (I ;/ ’{ I : I, : 2—— — —~ — ~ ~ 7 —— —*‘ 7-7 7 — 7 ~-—— 7.7.7,-.. ”’ _/ z 400:: 1 -/ x : l 4” I!" If,- : : /” I,‘ I]! e; /'/' : :,__ «—— ———— _—-—... . — __ .— . ._..,—._._ v __.—-—I . . . II1III. . _ . .. _ IIIII LI . . . II.‘ IIIII _ . 3 . . IIIII LI . . . I4 ..... . 2 a _ o llllll .II - n . 14 lllll w . u - llllllll . - . a 4‘ l. IIII . IIIII . . _ L ..... H u . .. ..... .- . _ m . I4 lllll . . c . IIIII but . . . IJ IIIII . . . . IIIILII .1 . . . II. IIIIII . . . . IIIIi T . _ . . IIIIIII . . . . p . . . IWIIII . . . v 1? O n - llq llll - u — A b o v o 8‘ ||||| . a g - > - - ~ 'J lllll . . . . . . . . IA IIIII ' ~ - . P n - o -q IIIIII . . . . p . . 4 IIIII o > . H . IJ. IIIIII u n . . > W . . . I. IIIIIII . . . . 5 I . . . . IIIIII . . . . IIIII .II _ . . .IWIIII. . . . . _ IIIIsII . . . Ii IIIII . . O . . IIIILIII . . . IqIIII I. . _ . IIII.II . . . a IIIIII \ll . . . . llllllll _ . . . 4 e IIIIII . . . . IIIIFII . . . a IIIIIIIIII .w . -.. ...... u u v u .. ..... r- u t . . I. IIIIIII .t o . . . IIIIAIIII C r! _ . . ”I.-a ...... . . U . .I‘ a - . u u . -.-v ...... u . u ( s C t - q """"" w u . IIIII . t H u . U . J ...... a . . . . . l d . r . . _ p . . . t . . .1 ...... 4 u C r .1. C N _ w l a 1 n .1 e f g a \I P M _ u . _ . . i . . . _ . - n - 1 . . . P . 4) - n u D S n U u . U H . my IIIII M H U H 1” n u . T -. ...... a- . . . . . . V IIIII L . . 4 . 5 ” H . IIIIIII “I . . . I h l u A . - lllllll — u c - fl IIIIII u n u - IIIIII u.‘ c c ' OI l‘ I- a - _ n lllll P u w u a d IIIII - - o —"0 ’hl - - . IJIIII . . _ IIIII h) C . U . II." IIIII . . . . IIIII A A . . _ _ . ....... _ _ _ . IIIII _ . r IIVIIII . . . u __ ...... . _ ..... . . IIII . I4IIII . n n u ._ ....... n . . ...... . c u u n n :4 ...... .. U n H I!“ IIIIII _ a u _ llllll P--- - — m H .. ...... n h u ...... ..- w . . . IIJ IIIII . . . . IIIIII . . . IIrIIII . . . . 9 . . . ,,..1IIII . . . 1 o > . . . IIc IIIII . I I b a a c -4 llllll I. ) 0 . . . S H u . . M 2 W . n ” vv r . . m 9 On my V1 t (I. o_ C I." a o 61;! 5 fi 3 Da I DC tra nsfer characteristics with no load Figure D.5 91 "nun-"m COMPLETE OPERATIONAL AMPLIFIER mm m ou'rpu'r semen-"n-NH" Date/Time run: 01/14/00 13:24:15 27.0 Temperature: (A) fina1_circuit.dat (active) —--—-§---——1 ----1 'f' IIIIIII ---L----d-----L---- IIIIIII lllllll — ---L~---J-----b—--o<—-n--b—~--J-I—--.L-vu—q IIIIIII --_--.----q-----p----<----->----q—---->----4-----»----4 d---ooh----4-. IIIIIII lllllll -.---..----- ---.--.-4—----.----¢.---.p---n‘.---->--.-a-----~-.-- .1 IIIIIIIIIIIII A----q ----L---.J-----L-...q.----L.--.J-.---L-.--.-.-.-k..-.4 I IIIIII ----.'--- ------'-.--q-----'----4...--r----g--..-r-_--1--.. .1 IIIIIIIIIIIIII -—.—-----t---- 0 lllllll -u—-‘---'-D—-‘-‘----- -L- u..-----b----‘.---- IIIIIII IIIIIII IIIIIII villlll pn-noqnno--.----d---o-~--u-.¢n--.-----.--—- L----J---—------J---- IIIIIII IIIIII p-..-‘----.p-uu-‘c-u.-p-o--'-o---—----'----- >----‘-----p----4-----b----.-----p---_.-_--------._ -- p.--.J----.p_--.J-----h-- .0V 5 0V 5.0mv 4.0mV 2.0mv 0V -2.0mv -0.0mV -5.0mV o V(6) D‘te :05 13:26 Time: Page 1 January 14. 2000 ith load. ics w DC transfer characterist Figure D.6 92 <'( -. IopC "’""""'THE COKPLETE OPERATIONAL AMPLIFIER WITH THE OUTPUT STAGE“"""""" 0P6 N LOOP GA , N (A) tinal_circuic.dac (active) :1 DB(V(6)) n P(V(_6)) Figure D.7: Frequency response with Cc = 10 pF. 93 For (t - OPL """""'THE COMPLETE OPERATIONAL AMPLIFIER WITH THE OUTPUT STAGE""""""" Temperature 10/21/99 00:23:15 :27. Da te/‘I‘ime run: final_circuit.dat (active) __...__ _-_- (A) f 100 T f I Y I """""" GAIf’E'SSW i III:II:Iii1iiiiiiifiil:w ll 50 ' ‘I t ----- 1 -------------- r ------- . . g‘ ------ J. -------------- .L ------- r ------- ‘ -------- r-----~. -------------- J. --------------- .‘ ------- 1 I I I 1 ' ' {CROSS (WER' =‘ $1535 '10! ’\ 1R ! ....... I ....... ; ....... I ‘ ....... I ; .} 180d e A T Y Y 7 f ------ 4 --------------- ‘r ------- » ------- ' --------------- 4 ------- « ------- 'r ------- r ------- . --------------- ; ------- 4 g -------- : ------- ~ ------- ------- ~ ------- : ---------------- ------- < I >6r7—d81 ------- 4 ------- + -------------- j -------- + ------ f ------- « ------- r ------- > ------ 1 --------------- f ------- < g -od : ' ' : ' + : t ,7 L ------ a ------- J ------- v -- ------- I -------- >— ------ v ------- 4 ------- :- ------- r ------ a --------------- 'v ------- 1 J ’ """ ‘ """" i """" r """"""" . """" * """ 7'“ """""" r """" NR """" ‘ i """"" _' """" 4 """" 1’ """""""" 1 W. """" 4 """" 1"'!5F{A‘SE"MAR"'G‘INH=3'53_Eleg'r'\eéi """ 1 ! ‘193d : f f t f t t \ ‘J (WW: ....... .............. f ........ L ...... . ....... r ....... j~ ....... L ...... «f ............... }---\.I . ...................... ............... .' ....... 1 ....... L ....... L ...... 4 ............... ; ...... .\ i I I | l l I I n ...... 4 ....... I ....... ; .............. : ........ _ ...... ; ....... I ....... ; ....... _ ....... : ............... ; ....... a j SEL>>F 2 : : 7 ' t ; ‘ _400d[ 4 1_ 1 1 1 I 1.032 10112 1.00112 1.01012 10KHz 100m: 1 014112 101m: :2 P(V(6)) Frequency 0 . “he ‘ October 21, 1999 Page 1 Tune: 00:26:31 Figure D.8: Frequency response with Cc = 8 pF. 94 IDate/Time run: 10/20/99 23:40:27 ! """""'THE COMPLETE OPERATIONAL AMPLIFIER WITH THE OUTPUT STAGE""""""" Temperature: 27.0 001Fur IAAPEDANCE (A) final_circuit.dat (active) Figure D.9: Output impedance. 95 ................ [W4 1.0x \ J 0.5x f r ------ <3 -------- *aoo'r' “=‘f ‘15' bh'm' 0 Y L 1.082 10H: 10082 1.0KHz 10KHz IOOKHz 1 ONE: 10KHz I o V(6) / I(IT) L———~—~_____, Frequency Date: October 20, 1999 Page 1 Time: 23:42:33 """""'THE COMPLETE OPERATIONAL AMPLIFIER wITH THE OUTPUT STAGE""""'“"" lante/Time run: 10/20/99 23:43:21 Temperature: 27.0 ! COMMON ”‘00? GAIN (A) final_circuit.dat (active) 9 0 fit m , I GAIN 3.: —o.3s (18 :\\L I P """" 7 """"""""" T """" " 1 ~ ------ é ------- ------- J -40 ‘ I ----------------------- ‘f ------- ‘ - - 1 r ...... ....... - A ~ ! SEL»1 E f E i 5 5 i -80 A 4 A L L A o DB(V(6)) Com/WON moo; PRIME 0d r5 ‘4 1 T ‘r r l T 1 l i l ' I ~500dw. * ‘r . . A . ‘ 1 ! 1.0Hz 10H: IOOHz 1.0KHz 10KHz IOOKHz 1.0MHz 10KHz o P(V(6)) ' Frequency Page 1 Time: 23:45:47 \ Date; October 20. 1999 Figure B.10: Common-mode gain. 96 "OOOD‘itfiiTHE 10/20/99 23 Date/Time run: r“ C max :47:35 (A) final_circuit.dat (active) COMPLETE OPERATIONAL AMPLIFIER WITH THE OUTPUT STAGE""""'*"" Temperature: 27.0 '-‘-—‘_ v L----:::::___ ........ ------. -- ...... ---------------- ................ :-—------L ............... ....................... ............... ........ *fi‘.______‘______ .4— —-—-——_——' 407\LUWH ....................................................... ‘“‘~‘-__--.---_¥ _______ ' ........................................... 4___::"3"-—- “) """""""""""""""""""""""" 30 “-------> -------------------- 1 on r v 2:33 10H: 10on 1.01012 101m: 101m: (“Menu/many) . Frequency Date. Oc tOboe-r 20, 1999 Page 1 Time: 23:49:53 Figure DJ 1: CMRR. 97 """""'THE COMPLETE OPERATIONAL AMPLIFIER wITH THE OUTPUT STAGE""""""" (A) fina1_circuit.dat ° Dawmn Figure D.12: Power Supply Rejection Ratio (PSRR) for V55. 98 """""'THE COMPLETE OPERATIONAL AMPLIFIER WITH THE OUTPUT STAGE""""""" Date/Time run: 10/20/99 23:56:03 Temperature: 27.0 F__——_—_ (A) final_circuit.dat (active) W-__.__ _.._ 1 ' 0H2 1on 10on 1.01012 101m: 100m: 1 . om: 101m; ° Dme) Frequency Date: OCtober 20' 1999 page 1 Time: 23256'51 Figure D.13: Power Supply Rejection Ratio (PSRR) for VDD. 99 """""'THE COMPLETE OPERATIONAL AMPLIFIER WITH THE OUTPUT STAGE*"*""""" Date/Time run: 10/21/99 00:04:10 Temperature: 27.0 (A) fina1_circuit.dat (active) -------------------- -:-----r----¢I---—-:---boo----------~ - ---a'-----l>---L- e-—~—u-----L----------u >-o---~-o---~-’ 0A+ . : ' ' : ' : : L I ’ (D I f I .............. .L-.---4-----p --_d-.--.t. L‘-----..‘-‘-r-'--d-‘---h-'I -----I-_---I----.I.----L- ,-¢-_-_-I..---{ l '- I I I I 1 I I - - ----- .-——L-‘. ---------- . ..... ----- : ..... : ----- '--- ..... ' ----- I—--4 ----- - qr; .......... , J _ -1 ..... ' ..... ..... :-_-L_; ..... ..... L--Ie ..... : ........... : ..... ;__I-; .......... . . . I . . I . I I . - 1-; .......... - -------'---.I ..... z ..... I” 4 ..... '--- ........... --.-..4- -- ........... I I I I I I l l I q r u —Som [ I I I l : I I I I I I I I I I I I t l I l 1 I I i I I I I I I I t l I . I I I I ----- 4 -- -}-|o-----¢~---~r----<----->---qP--oe----u—----y-----—-----»- b -----I----->---------->--p-¢--o--I----- - ----- , -; ----- ', ----- L ..... - ........... ; ..... ;---I ------- j ----------- ' ----- ------------ I I l ' . I ' I l L 3 . "‘I't -------- ----- 7""? ---------- ----- ----- f ----- * """"""" -------- ' I: : Isc - 3' 95 m. ' : : : : : :J : : }* ‘-1 """""" L1 """ l """""" 1 """ I"-(' 7 -------- I '---I """ r"~ '''' . """"""" ’v ---- r""w “““ I """ I I KG ' 3 J1 I I I V S I l I I "1(3(3rn}\ I. i I If I 4; L ; L L l l L Os 0.5ms 1.0ms 1 Sms 2.0ms O I(ROUT) Time : OctOber 21, 1999 Figure D.14: Short circuit current. 100 Time: 00:06:16 I l I I """""'THE COMPLETE OPERATIONAL AMPLIFIER WITH THE OUTPUT STAGE""""""" Datea/”1‘itne run: I— 27.0 Temperature: 10/21/99 00:29:01 .dat (active) _circuit final (A) I I 1‘ I [Ill 1 [I . . . . _ . . . . . . . . . . . . . . . . IIIII _II. F IIL; v ILII If IILII I IIhIII.I.IIFI PIIII.III.PII A . . . _ . . o . . . - . . s _ . . . . . . . . . o — . . . . . . . IIIJIIII‘IIIJI I4.III-IIII4 I IIIII d IIIIIII < IWI J. I I . o . . . . . . . . . . . . . . - . _ . I LII-,P IIL. LII PIIItIIII knoll—.Itnbl I IIIII VIIIL IIIIIIII . . o _ . g n . . - - . . . . . . . . _ . . . o . - n . g . _ i — II.‘ _ . . . . . . . . . o . u n . _ . c IIIIIIIII V It-IIIvIIIOIIIIYIII‘ IIIIIIO . _ . . _ . . _ u c . . _ - -.-u.---r---t ........ t--.-r---h ........ . . . . . . . . . . . . . . . . . g . . . n v0 all v11 IJI 1| I4I IWI I. IIIII d _ . . . . . . - a _ . . p b L r L b u . . . _ . . _ . . . . . . _ - . a . . o IIII.IIII~.I.IJIIIIYIII II‘IIII4IIII I a . . . . . . . . . . .IK- . — - -I.lells‘i.u|.nlnluxI-.L.IIITIII. IIIIIIII o . . . . . . g . . . . . . _ . . . . III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII . . . . . . — . y . - - . . . . - . . _ . . . . . . . 4-.-4----r.-Ic-.---I,I._----.---...-..f.-.-_ . . — . - o . . _ . . . . . . . . III; IIIII 1IIIJIIII JIIII.\III¢ IIIIIIII d . . _ . . . . . _ . . . IIIIIII rIIILIII. I..I .fII 5 III..-» M _ . . . . . v . . . _ . . . . . . . . 4 d ‘J _ a . . . . _ . . . . . . . . v..IIIII.IIIIIAI..IV I 5 YII . III IIIIIIIIIIIIIIIII . . . _ . . . . . c . . iIIII_.II I. IIIIIIIIIIII .IIIII.III. . . . IIIII IIIIIII 16us ldus 12us 10us Bus 8 u 2 CD V(6) Time Page 1 00:30:21 Time: October 21. 1999 Transient Response for a 7V pusle. Figure D.15 101 Date/ Time run: 2!) (APACI'IIVQ LODDMJO- COIN : """""'THE COMPLETE OPERATIONAL AMPLIFIER WITH THE OUTPUT STAGE""""""" 10/21/99 00:34:10 (A) final_circuit.dat (active) Temperature: 27.0 ‘T“'_“* T f T . . L—— 2-- w ------ J -------- L ------ J: -------- I ------ I: --------------- a; -------- ~ - -- -4 -I --------------- - ------ 4 --------------- -------- r- —‘ .J'- --r ...... .1 ............... J ............... 4| ............... J ........ -o - ' if L i A r ‘- ------------- [ --------------- )--------I-------~—-----—Jl-—-'------------I. -------- L‘ - ----------------------------- [ ------ 1 -------- b ...... 1| --------------- ‘I -------- f" - - ---------------------------- )— --------------- r— ------------------------------- a '- a: --r --------------------------------------------------------------- ‘ L - - ............ - _______________________________________________ L _______________ ~ --- ............ L .............................................................. I--- I- ............... I ........ . . K r -- ----------------------------------------------- I ——————————————— e ............... é ——————————————— e -------- L‘ ‘-“--|: 'I- ------------- L'-----1--------h--9----1-----~---------s-----~-~-v-----V: ---------------------- ‘SO—L‘\ : 1 L 4' 1. T . I 032 1on mom 1. om: 10KHz 100m: 1. om: 10m: ‘3 Danna) Frequency Date: Oct—Ohm: 21, 1999 Page 1 Time: 00:34:34 Figure D.16: Effect of capacitive loading (CLOAD = 100 pF). 102 """""'THE COMPLETE OPERATIONAL AMPLIFIER WITH THE OUTPUT STAGE"""’"""" (active) Figure D.17: Effect of the change in the power supplies. 103 """""'THE COMPLETE OPERATIONAL AMPLIFIER WITH THE OUTPUT STAGE""""""" (A) Figure D.18: Effect of the change in operating temperature. 104 "“"'"'"THB COMPLETE OPERATIONAL AMPLIFIER wITII THE OUTPUT snornnnunrn Date/Tine run -20.0 Temperature 19:16 01/14/00 13: (A) tina1_c1rcuit.dat (active) . . u _ - - . . . . . . . “A. n n u H n u n u . "0--. I 0 'l I I'll ‘0' I H H .II A. A. LIIJIVIQI IJIIAI III A II1IIIAI IOIIITIIAI IYIII . . . vllI.II|-III-’II.I . . Q a H u U H n . . n . 4 . I. IIIIJIIIlIII.ITIqI IlIIaI I.II I.vII..II1I ImIIIuIIImIIIuIIII H . . . . . .fi . A . . . A . . . c rltl.|loul IHIIIAI IVIILIIIrIII.I IF! ILIILI I'll LvIIPIIII IDIII.III.— '- . c . . u u . . . . o . .III.IIA VIIITIIOI I. . . Av .fi . . . . . . . . . o . '1'-..I -W'I-“I-"nl|.' 0.- IrIU‘- 0" ‘VI-"II.A- -‘II'tl-.l.-"-|A . . . . . . . . h u n “I . . - . . . .Av . . u u n . . . . u u 4 a q 4 q q a q q 4 Av . . . . . . . . 0--. IIIII - n v . w IHIIIAI IrIILAIIIWIIIHIYIWI IIIILI tr.- L IIPIOII IhIIIrIIbIIIFIIA . . . . . . . . . . . . . . . . . . . -0 0-- ’ 0 ‘I 0 I Q C O f I” H .Y A rIILIIITIIIoIIIOI IIIIAI IVI AYIIVIIII IeIIITIIhIIIPIII . . . . . . . . . . . II. . . . . . .Av . . . . . . . . . II'I . | 'l 0 0 0' 0-- |'- l - 0 '0 - 0 0 C u u ”I J. 1 J. 11 o v. < 1. J ‘ JYII‘IIIAI I‘dllollldlltofillh . . . III.III-I LII-.. -fiIIL r I. u . . . . . . . . . . . . -II .I III I II--eI -rI tvIIrIIII I»I--.III_III..II . . . . . . . . . . . . I . H . . . . . . A . . . . . . . . . . . . . . . . . u . . . IIIHIIInI IuIIIhI IvIIJ.II “v . r . r . . . . . u n n I ..-0 I‘- I In". I“- JWI“I-IA' "II'III II- '0‘ n h u . . . . . . . .A . . n .u "I v--I.III.I I.III..- -r-I.“IIIuIIIuIII»I -IIIAI .rI cwIIrIIII I.--I.-III.-II..-II . . . . . . . . . . . .Av . . . . . . . I.‘ -0- I I 0- I l 0- Q I O O v I“ n "I A. v JIIIHAOIHIVIOI IIIISI IYI Lvtl'llll IOIIIYIICIIIVIIL . . . . . . . . I I. . . . . . o . . .I.I-IAI IfiIIa- IIIIJIIIaTIJII.‘I -xIIhI .vI .4..--VIIII IuIIIVIIAIIIvIII .F n H H n n n: H . . . . . . . . b P h - - p n u u u H n . . . . . . . . w u f . . . . . . . . IILIIIOI IYIIII IvIIL ITIILIIIOI I1IILI IrI LVIIth . . . . . . .c. . . . . . . ”IIHIIIHIIIVIII VIIIuvllnI IuIIIhI IYII. LA . . A . . . .0 . . . u . . . . 1"“4 IInIvIflu IIIIHI IAII JwIIflle II IrIILI III- I . A . . . ~ . . . . .“IIuAIInIfIwI IIIIL.I I.rI ....II.rIIII I>IIIrIILIIIrIII . . . . . . . . . . . . . . +IIJIII0I I1IIaI IIIIJIIITAIIITIOI IhIIJI 1. . . . . . . I I J‘IIVIIII IoIII II III II n n n n . .Av . . . . . . . ”I a. H. 4 VIII.III-I I.III._I -rIIInIIITAII.IvI.I I II.I . . . . . . . . . . . . . d J a I.II JwIIWIIII IdIII.III..III.IIII r . . > E H 5., . . . .v . . . . . D L! F P P F D b o u a a a o 1 u o a" 2 2 m 2 . _ 2 20mv -15nv -10nv -5mv 0V va 10mv 15mv -20mv o ID(H15) 13:21:08 Time Page 1 to: January 14. 2000 ting temperature on the currents. In opera Effect of the change ' Figure D.19 105 M: \thesis\final output stage\abopamp2.out 11/09/99 20:13:13 FOURIER COMPONENTS OF TRANSIENT RESPONSE we) DC COMPONENT - iiARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEC) 1 1.000E+03 9.995E-01 1.000E+00 -5.156E-01 0.000E+00 2 2.000E+03 2.163E-04 2.165E-04 -1.763E+02 -1.758E+02 3 3.000E+03 4.068E-04 4.070E-04 8.252E+01 8.303E+01 4 4.000E+03 2.509E-04 2.510E-04 1.633E+02 1.638E+02 5 5.000E+03 1.630E-04 1.631E-04 -9.997E+01 -9.945E+01 6 6.000E+03 5.196E-05 5.199E-05 -1.766E+02 -1.760E+02 7 7.000E+03 1.386E-04 1.387E-O4 -1.034E+02 -1.0298+02 8 8.000E+03 1.037E-04 1.037E-04 -3.267E+01 -3.215E+01 9 9.000E+03 5.626E-05 5.629E-05 6.335E+01 6.386E+01 TOTAL HARMONIC DISTORTION - 5.813578E-02 PERCENT ETDURIER COMPONENTS OF TRANSIENT RESPONSE V(lB) DC COMPONENT A 2.640906E-09 IiARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG) 1 1.000E+03 1.000E-01 1.000E+00 1.037E-06 0.000E+00 2 2.000E+03 1.746E-09 1.7468-08 -9.959E+01 -9.959E+01 3 3.000E+03 6.064E-10 6.064E-09 -8.952E+01 -8.9SZE+01 4 4.000E+03 2.917E-10 2.917E-09 -1.347E+02 -1.347E+02 5 5.000E+O3 3.043E-10 3.043E-09 -1.242E+02 -1.242E+02 6 6.000E+03 1.318E-10 1.318E-09 —7.080E+01 -7.080E+01 7 7.000E+03 7.188E-11 7.188E-10 1.781E+02 1.781E+02 8 8.000E+03 2.206E-10 2.206E-09 1.572E+02 1.57ZE+02 9 9.000E+03 1.803E-10 1.803E-O9 1.175E+02 1.175E+02 2.954990E-05 TOTAL HARMONIC DISTORTION I 106 1.923007E-06 PERCENT Fovvie r Analjsis _ T Figure D.20: Harmonic distortion for lKHz test signal. M:\thesis\fina1 output stage\abopamp2.out 11/09/99 20:46:09 POUR-1‘39. COMPONENT—S OE TRANSIENT RESPONSE V(6) DC COMPONENT - HARMONIC NO \DQOLfl-DLIJNH 019" Design rule check: Each fabrication process has its limitations. The process we will be using to fabricate our chip is called Orbit 2-micron process. This process restricts the smallest dimension it can reliably fabricate to 2p. Along with this there are other restrictions regarding how close a metal layer could be to a poly layer and what distance is allowed between two n-wells and so on. All of these restrictions are collectively called ‘design rules’. All the design rules are explained in Chapter 5. While doing layout of a chip we should always follow all design rules. LasiDrc command performs an automatic ‘Design-Rule-Check’ on your IC. This command does not check some design rules. Chapter 8 explains how to use LasiDrc and interpret it’s results. Design-rules for layout of pads: 1. Sizes of metall and meta12 of a bonding pad must be lOOuXIOOp. 2. Distance between the edges of metals of adjacent pads should be 75p 138 3. Size of the overglass of the pad must be 90uX90u and it should be centered on the pad. 4. The VIA should be at least 3p inside the meta12 Design rules for pads are depicted in Figure F.4.6. LasiDrc does not check these rules. Exercise: 1. 2. By making use of tables in Appendix A of ‘CMOS circuit design, simulation and layout’ find out total capacitance between the pad and substrate in ‘TestPad’. Go through the design rules for MOSIS in Appendix B of ‘CMOS circuit design, simulation and layout’. 139 Overglass cut in Insulation #3 Via cut in Insulation #2 lnsulalimi #3 Silicon Figure F.4.1: Cross-section of a simple contact pad 140 Figure F.4.2: Metal 1 layer of lOOquOOp. is laid out 141 Figure F.4.3: Metal 2 is laid out on Metal 1 142 Figure F.4.4: Overglass is laid out 143 Figure F.4.5: VIA is laid out 144 )00 microns 075 micron Figure F.4.6: Design rules for Pads 145 5 Layout of MOSFETS In this chapter we will first consider the layout of medium size nMOS and pMOS transistors. Later techniques for laying out small and large devices will be discussed. Layout of a nMOS: An nMOS can be directly fabricated in the p-substrate and therefore no well is needed. In the process of learning we are going to layout an nMOS of W/L of 10111211. As the width of our nMOS is going to be 101.1. the width of active layer is lOu. Now we have to calculate the length of the active layer. This length depends upon number of contacts we are going to have for connecting the source and drain of the nMOS to metall. In our example we will have two contacts for the source as well as the drain. Design rule 6.4 (Appendix B of the textbook) says that the minimum spacing between active contacts and the gate of the transistor should be 2]). and the minimum size of a contact is ZuXZu (DR 6-1)- Design rules 6.2 and 7.3 say that minimum metal and active overlap of contact is 1N» This makes the total length of the active region 211. + 2 x (2p + 2p. + 1p.) which equals 121).. The following steps will lead to the layout of a nMOS of W/L of lOuJZu. 1- C1‘eate a new cell ‘TestnMOS’ of rank one. 2- Draw an active layer box of lZquOp. (Figure F.5.1). 3- Draw n-select around the active box such that each side of n—select is 211 away from the active (Figure F.5.2). This makes the active layer n-type. 4° Draw a polyl gate of Zn width in the middle of the active layer such that the gate eXtension of the active is 2p. (DR 3.3). See Figure F.5.3. 5‘ lDraw two contacts of 2uX2p. for the drain and source such that they are 2]; away from gate and 1p. away from the active edge (Figure F.5.4). 6° We could lay metal lines on the contacts as shown in Figure F.5.5 to make the layout of the nMOS complete but generally metal lines are laid in the higher ranked cell so 7 t-hat the design could be made more compact. The bulk for the nMOS is the p-substrate and is connected to VSS (negative power supply) generally at the VSS bonding pad. While typing the SPICE file one should note down that areas of the source and drain (PD and I>8) are SitXlOu=50u2 and their perimeters (PD and PS) are 2 x (5p. + 10p.) = 3011. A130 the number of squares of drain and source, represented by NRD and NRS resIXBCtively, is two. kayo!“ of a pMOS: or layout of pMOS we have to make an n-well and a bulk connection. The other steps SiInilar to that of the nMOS. Design rule 2.3 says that the minimum distance of the sourCe”drain active to the well edge should be 511. DR 2.4 says that the minimum distance Of Well contact to the well edge should be 311. The minimum spacing between the active Of different implants should be On or 4p. As we may connect the bulk to a different potential than the source we will have 4p. between different actives. The following are the Steps derived, from the previous mentioned rules, to layout the pMOS. We are going to make a loll/2].]. pMOS. 146 Create a new cell ‘TestpMOS’ of rank one. Layout a box of active layer of size 101LX121L (Figure F.5.6). 3. Surround the active box by a p-select that makes it a p—type active layer (Figure F.5.7). ’ 4. Draw a polyl gate of Zn width in the middle of the active layer such that the gate extension of the active is 211 (Figure F.5.8). 5. Draw two 21LX21L contacts for the drain as well as the source as we did for the nMOS (Figure F.5.9). 6. Draw an active layer of lOuX4p. at a distance of 411 from the previous active layer. This will make well contact (Figure F.5.10). Draw n-select around this active layer to make it n-type (Figure F.5.l 1). Draw contacts for the well connections. Copying the contacts for either the drain or source to the well contact can do this. Also draw the n-well around this whole structure such that its overlap of the active layer of pMOS is Su and that of the active layer of well contact is 311 (Figure F.5.12). 9. Now draw the metal layers on contact without violating DR for metal to contact overlap (Figure F.5.l3). [Qt-— 90>! Now that we know how to layout medium size MOSS we will learn the techniques for very small and very large size devices. For the sake of understanding we will consider the layout of 311/211 size for a small device and 4011/21). size for large device. Also we will consider the layout of only nMOSs because layout of pMOSs are similar with a difference of only a well. Small nMOS: We can not layout an active layer for a 2111211 device as a simple box in a way we did before because then we won’t have enough space to place contacts without violating the DRs. Therefore the following technique is used for this kind of small devices. 1. Create a new cell ‘SmallnMOS’ of rank one. 2. Draw an active box of 21tX41t (Figure F.5.l4). 3. Draw two 41LX411 active boxes on both of the sides of the previous box as shown in Figure F.5.15. 4. Surround this structure by n-select such that its minimum overlap of active is 21t (Figure F.5.16). 5. Draw a polyl layer of 211 width at the center of the middle active layer such that its minimum overlap of the active is 21L as shown in Figure F.5.l7. 6. Draw 21tX21L active to metall contacts, one for each drain and source (Figure F.5.18). 7. Draw the metall lines for the drain and source connections as shown in Figure F.5.19. While typing a SPICE file for this device one has to remember that areas of source and drain are 41LX41L. Corresponding parameters in SPICE like AD and AS must be 41tX4p. = 16112 and PD and PS must be 2*(4p.+4p.) = 1611. Also the number of squares of drain and source, represented by NRD and NRS respectively, should be equal to one. 147 Large nMOS: If we attempt to layout a large size device in a same way as we did for a medium size device we will end up in using the available space inefficiently. To fit a large device compactly we will follow the technique described below. 1. Create a new cell ‘LargenMOS’ of rank one. 2. Draw an active box of 3611X1011 (Figure F520). 3. Surround the active by n-select so that its overlap of the active is 211 (Figure F.5.21). 4. Draw four polyl layers of 211 width such that the first from left and right are 511 in from active edge and there is 611 between all polyl layers (Figure F.5.22). Note: This is because we should leave some space for metall to active contacts. Active layer overlap of contacts is 111. Also contacts should be placed 211 away from the gate. Layout of a large device is somewhat difficult to understand. Therefore it is suggested that you go through this procedure once again after you finish the layout of this device. 5. Draw contact layers for contact with metall without violating DRs (Figure F. 5. 23). 6. Draw metall boxes on contacts (Figure F. 5.24). The equivalent circuit of this‘type of layout is shown in Figure F.5.25. This structure of four 10111211 devices in parallel is similar to a single 40111211 device. Adding currents from four devices can prove this. Exercise: 1 1. Layout a 40111411 nMOS in a new cell of rank one. Draw metal] connections to its terminals. 2. Layout a 31111011 pMOS in a new cell of rank one. Do not draw metal] connections. 148 Figure F.5.1 149 Figure F.5.2 150 Figure F.5.3 151 Figure F.5.4 152 \\\\\\ \\ \ . \\\\\\\M Figure F.5.5 153 l . \ . l ‘ I I \ Figure F.5.6 154 Figure F.5.7 155 Figure F.5.8 156 lil‘il' . i!!-lli|.!ll‘ Ii . .3. .\.1...l...l .2 ...—.vo._.(.o.._.=.w..2... . . ... L. I. . . 2.. é ....... .f. s. . . . .. r . . . . .1, 0...... 1.5.?th . I Figure F.5.9 1 57 Figure F.5.10 158 Figure ES.“ 159 _ _ _ . h _ u . . h m . _ in? “w... .3 .. J . u . gfluudx . u _ _ h n n u n r . h . w m . _ m _ _ m Figure F.5.12 160 .. ‘W {\wr fix. §«%\e\x§®m amused“? a». see \Wewx EK‘M‘g’. sank. sedge. § § Figure F.5.13 161 Figure F.5.14 162 Figure F.5.15 163 Figure F.5.l6 164 Figure £5.17 165 Figure F.5.18 166 Figure F.5.19 167 Helium Figure F.5.20 168 - "'2' ' Li r . ' . 1’ - . - - ‘ 'I' ' - '1 .(.« 1 I I 1 I l! q l 1 ( 1". V t i r-(: - '1 ' ' "('1 : Figure F.5.2] i o .. u 4. .1 J 34 .iwmuudffi 7.: r . c I u A :7.” Tut-.3. . A i t. . i i 11, .4 .I :4 ...-. Figure F.5.22 170 Figure F.5.23 171 \‘\ \ \‘~\ ,\ \ t /V / I,” [4’ l A /IL yr A ,,l l 1 //'/4'1/// " . ,L; 1.4 '. Figure F.5.24 172 I Drain L | Lll Ell —ll 1 [— Each Device is 10u/2u '2 Gate if Source Figure F.5.25 173 6 Layout of Resistors and capacitors Resistors: Resistors are generally made-up of n-wells. The resistance of n-well depends upon its resistivity and dimensions. In the terminology of chip layout resistance measurement is based on sheet resistance of the material and its unit is ohm/square (written as $210). The following derivation shows how we arrive at this unit. Consider the material shown in Figure F61. The resistance of the slab can be written as follows. _ p L t W The quantity p/t is called sheet resistivity (units 9/0) of the n-well and written as R0. It is characteristic for a well. If one knows the sheet resistivity of the well then one can calculate its resistance by using the ratio of its length to width. In the process we are - going to use the value of sheet resistivity is 25009/0. Therefore resistance of an n-well with length of 10011 and width of 1011 is 2500*(1001111011) = 25m. Layout of small resistors: Now we will discuss the layout of a small resistor. For laying out the resistors we do not use the box as an Object but we use the path instead. We will layout a 25m resistor as an example. 1. Create a new cell ‘Re325’ of rank one. 2. Select the Wdth command from menu]. A dialog box will show up. Enter the width of the path as 10. This sets the width of the path to be 1011 (Figure R62). 3. Now select path Object and choose Add command. Select the n-well layer. Click the mouse once at the origin. Take the mouse 10011 to the right. While you layout the path you will not see a box as you did before but you will see just a white dotted line. Now click the mouse again. After you decide the end-point of the path and click your mouse the width of the path will be visible. Now you will see that the right edge of the path is still active. Deactivate it by using aPut (Figure R63). 4. Now we want to make contacts to this n-well resistor to connect it to metall. To do this make 411X411 active boxes on both the ends of the resistive path as shown in Figure F.6.4. Along with active layers one has to draw n-select layers as shown. 5. Draw 211x211 contacts in both the active areas (Figure F.6.5). Measurement of resistance using LASI: LASI provides a command (Res in menuZ) to measure the resistance of a path. For the purpose of using this command you need to make some changes to a file that LASI uses when you open the program. This file is named forrn.dbd and exists in the working directory (w2uchip). Open this file using notepad. This file contains numbers for all the layers LASI uses in the layout. At the end of the file type the following command Res = 2500 -800 ~1000 10 Note that there is a blank space between 2500 and -800. Similarly a blank space exists between —800, -1000 and 10. Number 2500 represents sheet resistivity of n-well. Number 800 is the end correction and 1000 is corner correction. Number 10 represents 174 the characteristic width of the path. Remember that we set the width of the path to this value. Save the file after making changes to ‘form.dbd’. Now reload LASI. Open the cell ‘Res25’. Select fGet and activate the whole resistor using the editing rectangle. Now select the Res command from menu2. Click the Load button in the dialog box and click Continue. Resistance value of the resistor will be displayed at the bottom of the LASI window. Is the resistance 25 K52 as we expected? Although total number of squares in our resistor is ten the squares at the two extreme edges can not be considered as complete squares. This is because we have placed our connections on these two squares. Therefore the end correction applies and we have to subtract 80052 from 25K52 which gives us 2420052 (the value given by LASI). Layout of big resistors: Layout of big resistors can not be done in a way similar to the smaller ones. Big resistors are laid out in a serpentine way, as we will see shortly, to use the available space ' efficiently. There are two ways to do this. Let us take an example of a 100K52 resistor for this purpose. Wayl . Create a new cell ‘Res100a’ of rank one. 1 2. Using path Object layout an n-well in a serpentine pattern as shown in Figure F.6.6. For laying out an n-well in this fashion you will have to click the mouse at the origin first then take it 10011 to the right then click it once more. Now you will see that the well appears but the right most edge of the well is still aCtive. If you try to move your mouse now you will see a dotted white line. This means that LASI is still ready to layout the path. Now take the mouse 5011 up. Click it again. Now we have laid out total of 25K52 + 12.5 K52 = 37.5K52 (without considering corner corrections and end corrections). Take the mouse 10011 to left and click. Take the mouse 5011 up and click and then take it 10011 to the right and click again. Now we have laid out mom of resistance. Now deactivate the edge of the n-well using the aPut command. 3. Now we need to make contacts for connecting this resistor to metal]. First make 411X411 active boxes at the two ends of the resistor as shown. They should be placed in the two end-squares in such a way that they are centered with the end-squares. Also draw n-select around them such that its overlap of active is 211 (Figure R67). 4. Now place 211x211 contacts on the active region (Figure F.6.8). Now measure the resistance of this resistor by using Res command of LASI as we did for small resistor. Is the resistance 100 K52? If not, can you explain the value? The resistance of the comer part is taken as 0.6*RD. In our case 0.6 of 2500 is 150052. Way2 Avoiding corners is the preferred way of laying out resistors for analog circuit where ratios of resistors are important. 1. Create another cell ‘ReleOb’ of rank one. 2. Layout 10011 n-well using path Object (Figure F.6.9). 175 3. Draw active boxes, n-select layers and contacts (Figure F610) 4. Using copy command copy this structure three times such that the spacing between n- wells is more than 1011 (Figure F611) 5. Connect adjacent n-wells in a serpentine pattern using a metall layer as shown in- Figure F.6.l2. You can not measure the resistance of the whole structure by activating it and using the Res command. Instead you have to measure the resistance of only one n-well by using the Res command and multiplying by four. What value do you get? Is it 9680052? Capacitors: Capacitors are designed using polyl and poly2 layers. The Poly2 layer follows similar design rules as the polyl layer. Design rules for capacitor formation are summarized below. Layout of small capacitors: Capacitance per unit area between polyl and poly2 is given in Appendix A (page 856) of the textbook. Typical value of this capacitance is 493 aF/11m2. We will layout 0.1972pF capacitor for the sake of understanding the layout of a capacitor. The area required for this capacitor is 2011x2011. Follow the steps given below to layout this capacitor. 1. Create a new cell ‘Cap2’ of rank one. 2. Layout a box of Poly2 of size 2011x2011 (Figure F613). 3. Layout a box of polyl of size 2411x2811 such that its overlap of poly2 on three sides is 211 each (see rule 4.3 in the above table) and the overlap of the fourth side is 611 to accommodate contacts on polyl (rule 4.5 and DR for polyl and contact) (Figure F614). 4. Layout contacts on polyl such that they are 311 away from the poly2 edge and 111 away from the polyl edge (Figure F615). 5. Layout contacts on poly2 such that they are 31.1 away from the poly2 edge and 211 away from each other (Figure F 6.16). 6. Layout metall boxes on contacts for connections (Figure F.6.17). A capacitor on chip consists not only of the capacitance between polyl to poly2 but also series resistance of polyl and poly2 and the contacts. Therefore series resistance is lower if number of contacts is higher because contacts behave like resistors in parallel. Layout of large capacitors: Large capacitors are laid out as if they are interleaved fingers. This is done to reduce the series resistance of the capacitor by adding more contacts. The layout of such a big capacitor is shown in Figure F.6.l8. This is a 1.5776pF capacitor. While laying out 176 capacitor in this fashion attention is given to the rules in the previous table. Similar rules are also given in Appendix B of textbook. Exercise: 1. Make a capacitor of value 0.788 pF. Find the area of the poly2 needed for this purpose. 2. Make a resistor of value 75K52 and place contacts. 177 fflfl‘f‘fi L => length W => width 1 => thickness f) => resistivity Figure F.6.l: The concept of resistivity 178 Figure R62 179 o .. n. .. 1. o. u. u o -. -... .,,, _- ... ... ... .. ...... ... , 0 ..... . ..... .. ... ... r. ..1.. 1. o- ......~.. ...... ... v ....... ..-,. ... . ,. . . . .. .. .... .... , ... ,,,,.,.. .-...1....., ... .. . .... ...... 1 ., . . , . ..... ..... ... . a . a. — l. - e. n. .o u o. .o a ......... ... .... . ..u ............ ....u ...:n....-... . ..1.. . ... . ... ... ... ......1 ... .. ., ... .....,.. .. . ... .... ...... . .. .. ... .. .... ............ .... ..........- ». ... ... ..... ... ....... .........,. ......., .1 . .. ....,... . .... . .. .. - ... ....,............. ...-.....1... .... ... .. ...-...... .... - ... .. .. ... ... ..............1....... ............_....,..... .......u.c-. ....... ......, . .. .... ......i.,.. .. .. .. 1 . .. .. ... . n _-—---..—-—-- — ....,. ......... ... . .. . ... . . . .. ...1n...... 1. .. 1. . .. .. . .... ... . .... ...............- . .................... ... ... ..... .1... . . ,. .i .. .1. .. . Figure F.6.3 .. .. .. s. .- — .- .- u- . <.. -. 1. . ... -. o. . .. Figure F.6.4 181 --- ... ... n\. on. ... u. . . .1- s . -o -. .o .o .-.. .. e . .. .. .o «a... .. -.-..- ._—.-v ... .1. 1. ... . .., . .... ...... .n _. ... .... ... ....... ... .... .....-._ . . ...,, .. -—-.—. .. ... .. . .. ,. e. .. -u .. ..- .- .. - .....o. .......... ...... .... ......., ,. .. . ......... ...... ... .... . .... ......... . ...... ....1.... .... ......... . ....... .1.»......... .. .......... . . .. .. . ..... .... .... ...... .. . .. ... ,. . .. .....-- -.--. ..... ..1-- .. 1...... .... .... .... . ... .. .u .. . .. . .. . ., ..,. .......... ....... ., ........... .... . ........ , ...,-........1. ... .... . . .-. —----—-—.-_._-.-.-- .4 .... .. ., . . . ....... . . ... .... ..... ........~.. ... ..., . .. . . .. . ..... .... ...... ... .... . an . ..............,.. .. . ... ..4.__‘,,,1,., ... .......... .. .. ........ . ... HM. . .. .......... o .. .. .. .. e .... . .. -. .- Figure F.6.5 ... . ,. . ... .1 ... .. ... . . o f‘fi’ -1..o . -. .. ...- ... .... .., . . 1 .—.——~._. .. . . . Figure F.6.6 183 —--..»-- .-.--.-._——.—. Leis. _.'.‘. o r‘ l >.. . .. .. . D . ---.-4-.—.—. .—»~—.—no— -’.«—~-. _.-.—..— ---—..- .--—.--.- .—- —.—.-.-1-—.- .--.-1-—.—. i:.-,.ii..i_ 4..-.1 i i.--i . 1.1.... . ... . . . _ i ..-i... ii-.. ... j . _ u - _ _ _. _ . . 1 . . _ _ _ . M . ., _ _ .- . “ .., .. . .. v ., . o .. . _ . _ _ . ._ . _. ... .. . _ _ _. a .- _ . _ m . . . . _ _ . _ . m - . ._ . _ . . ..J ... . . .. . ._ , _ u . . . _ . . Figure F .6.7 184 H . i . n . u . ..... . ....... . . I .- .,., ... .. H. . . _ .. ... .. k; .. .. . p ..fi . . . .. . . . .... .. ..... . I.l.ii| I.I, . ... H. .. , . _ .. . .... -1. ... .... f .. _ .. J H. ...: ;_ ,.¢ .. m. .7. .._.. ,. . , . L.- . . .. ._ . . _ , . . . ., .. .. _. . ... ,. . _ . . . .. - .- . . ._. . .. w . .. :_ .. _ ._ .. a. ._ . . . 4. ..h ,_ ,. . . . . ._ . J. H . . ... .... .. .. ,. . .- H_. ..H _ . .. . ..... ... ..... ... ... ...... H... ..... ...... . . _. ._ .... _. I I... .... ..... ., .. _ ,_ _ _. ....... H... H... 1 iii ..-I.i.i.i-i ..L ... . _ .. ._. .. _. I: p.—...— l . .-- '_’.‘I .—..—.—..._............._-~.... -._-—.-._—.— Figure F.6.8 185 ..... "'"‘“'""""““""‘-’-"’““"—""““"‘““‘"“"“""’""""-"""““““‘-'-'l"‘ .. .. 1.—.-.—.—.———_.—-..—.—.-.—-—--.--.-—.—.-.-o—--...—.-—-—.—.— -.__.-...._.-—..-..J. ....- . Figure F.6.9 1 ... u..- 1.. .— ... ... ... o . ... -0 . . . . o ... -.. ... o . u»- ... -0 1.. ... ... ...- _- ....... ...... ....... .... . . ..... .... .1 .. 1 ......-.. ......- , . 4W1 . .... .... .. . ....... ......... . ....... .............-.. n .... ....v........... ......1. ... .......¢ ..-............. .... .. . .......l....... ..................-... .................... ...-. ..,-. ..... Figure F.6.10 ... .- 4.- .. .— ... . - ... ... ... -« a»- 1.. ... ... ~- 1.. .... -..-uh» ........ .... ., ........ v»..- a—p- Il' . .. ,, - ............................... i l l- ------------------------------- l iif!) [i]; Figure E6.“ 188 Figure F.6.12 189 Figure F.6.13 190 Figure F.6.14 191 Figure F.6.15 192 Figure F.6.16 193 s§§§§§§§§§x §sx .\ \\\\\ Figure F.6.l7 194 ii .1 .... ill 31%"... .. . .u. . i‘.\. .4. E \ ktkhsh‘n .5. .e ~\%&N““ mww .. . u... . . . hihvul‘ _~12.‘ hawv‘ . . ‘“\“«MIA\ K.‘ . Sash: hum new \k. . . .. . \\ Eh . .. ._ .mmNhkz .s . . . . . . . . N . ....xua‘ 3...“. .4... . M‘QR‘. mw“\nmlllwnkwfl » . Figure F.6.18 195 7 Design rules check in LASI - LasiDrc In the exercise of chapter 4 you were asked to go through design rules for MOSIS process given in appendix B of the CMOS book. There are MOSIS design rules for each layer like metall and 2, polyl and 2, active, contacts etc. There are a total of fifty-three design rules. After a layout is finished it is very important to see to it that all the design rules are accurately followed otherwise there is a high probability that the fabricated circuit will not work. In case of small circuits these rules can be manually checked but in case of bigger circuits, in which checking these rules manually can be a time-consuming process, some kind of automation is needed. A LASI command, LasiDrc, provides this automation to you. Setup for LasiDrc: Using the System menu of LASI (one of the top menus) and then clicking the LasiDrc button will start the design-rule-check program. Once the program starts you will see a small LasiDrc window in top left corner of your screen. Click on the Setup. You will see a dialog box as shown in Figure F.7.1. Some of the settings like lambda size, start check, finish check and name of the report file automatically show up although you can change them. You have to fill in the name of the cell on which you want to perform the design- rule-check. Also check the ‘erase old report file’ option. Note that when you start the LasiDrc it will check only for the portion of your layout visible on the screen. In order to check for the entire layout you need to use the Fit command to make the whole layout visible on the screen. Using LasiDrc: For sake of understanding how to use LasiDrc we will take an example of an n-well with an active layer in it. We will purposely layout the ACTIVE layer such that it violates the design rule and then see how LasiDrc shows us our fault. Follow the instructions given below. 1. Create a new cell ‘WrongDrc’ of rank one. 2. Layout an n-well box of size 1011X101i. 3. Make a box of active layer in the n-well such that the overlap of the n-well of the active is 311 (Figure F.7.2). Don’t draw any select layer. Remember that select overlap of active should be 211 to indicate what type the active is. Save the work using the Save command. Fit the entire cell in the screen. Now open the LasiDrc window using the System command. Open settings and compare them to Figure F.7.3. Then click OK. Now click on GO in the LasiDrc window. You will see that a small testing window opens up and the program starts testing different areas of the screen. At the bottom of testing window the current rule being checked for will be displayed (Figure F.7.4). As soon as the program finds the violation of a design rule another window opens up and the bad area is displayed in white background. Description of the design rule will also be given along with the bad area. The program shows this violation for some time and resumes the further check. The program refers to each violation as a ‘flag’. At the end @991"? 196 of the testing the program tells you how many flags (violations) it found in your layout. In this case it will be one. 9. Now select Read in the LasiDrc window. Click OK for opening ‘LASIDRC.RPT’ using notepad. Look for the check 10 and read the description. Close the report. 10. Now select Map from LasiDrc window. It shows you the flagged area in white. Close it. The previous example shows you how to use LasiDrc effectively. In a similar way you can test any layout for design rules. Exercise: 1. Create a cell of rank one with any name. Draw an n-well of 511x511 and check your layout using LasiDrc. Is there any violation of design rules? 2. Create another cell of rank one with any name. Draw p-type active area of 511X511. Draw a contact of the 111X111 size at the center of the p-type area. Check the layout using the LasiDrc. Is there any violation of design rules? 197 tiarrieottellioDFlC ___,—____J flame or [he—ck File 2||LHIP.UP.C Slaitflic-CL ' I Fiiiisiiflierl' 5} l LanibdaSizmnum 1 I Fl .olutinn Distance 1: lit-claim W in W: 3 Area Lei! :: Area Bottom Scan Let! - ZOJHmII scan Flight 20.48uni Scan Bottom ’ 25.13"!" Scan Top ZS‘G'H" )4 Enable SCF'.’ Filt- Limit 10 J J Enable- PAUSE F‘s-1'7- Time Harm:- ot R epoil File 34 Engine Did Report File Figure F.7.1: DRC setup 198 Figure F.7.2 199 Ham-e of Cell lo [‘le WHO "‘5 D R1: Name of Che-cl. File 2| WHIP-“RC Start fix-cl. 1 I Finish Check Flemlution —_I Checking \i-r'rndows Lambda Size in urn 1 Distance Area Lelt Area Etc-11.3“. A4 ScarrFlight 13- "I“ I Scarricrp llJJimi Scan Lelt Scan Bottom ' 1--”|l||l _\d Enable SCF’Y File Limit JLJ __I Enable PSZU 3E Pause Time 5 Name- 01 FiE'pOll. File IR . PT I 515‘? Old Report File :4 Figure F.7.3 200 W _.n‘r Lanrtvda:l ' Sum E:=-1 dum R: am 1:11 alum Figure F.7.4 201 8 An Example of layout Objective of this chapter is to understand how to layout a chip using the hierarchical approach. We are going to use an example of a differential amplifier designed using the MOSIS n-well process. We will make use of the same amplifier to illustrate the SPICE file extraction in the next chapter. Differential amplifier circuit: - We are going to layout the differential amplifier shown in Figure F8]. This amplifier is designed to have an AC gain of 30 and a current of 2011A in the current mirror. The design can be verified using standard design formulas. The models for the devices used in this design are given below. .MODEL CMOSN NMOS VTO=0.5 KP=45U GAMMA=0.5 LAMBDA=0.05 PHI=0.7 .MODEL CMOSP PMOS VTO=-0.5 KP=15U GAMMA=05 LAMBDA=0.05 PHI=0.7 Instructions for Layout: Broadly this amplifier consists of three parts. One current mirror (M5), two amplifying devices (M1, M2) and two active-loads (M3, M4). We will layout one current mirror, one amplifying device and one active load in separate cells of rank one. Current Mirror Create a new-cell ‘CURRENTMIRROR’ of rank one. Draw a pMOS of size 10111511 as shown in Figure F.8.2. Remember that it needs an n-well. Read all the rules for active, polyl, n-well and contact from appendix B of the textbook. Check the layout using the LasiDrc. Amplifier Create another cell ‘AMPLIFIER’ of rank one. Draw a pMOS of size 15111511 as shown in Figure F.8.3. Check your layout using LasiDrc. Active Load Create a cell ‘ACTIVELOAD’ of rank one. Draw an nMOS of size 5111511 as shown in Figure F.8.4. Remember that this is nMOS and it does not need a well. Check the layout using the LasiDrc. Differential Amplifier _ Now create a cell ‘DIFFAMP’ of rank two. Select the Object command. Double-click on ‘CURRENTMIRROR’ once. You will see this cell on the arrowhead. It will be placed at a point wherever you click the mouse. Click the mouse near origin. In a similar fashion add two ‘AMPLIFIERS’ and two ‘ACTIVELOADs’ to the current cell. By using the cGet (cell get) and Rot (rotate) commands position the cells as shown in Figure F.8.5. Pay proper attention so as not to violate design rules. Then place metall, contact and polyl layers as shown in Figure F.8.6. Check the layout again using LasiDrc. In this chapter we laid out a complete differential amplifier using hierarchical approach. We laid out different components in separate cells of rank one. The final circuit was laid 202 out in a cell of rank two using the previous cells of rank one. The advantage of using this approach can be easily noticed. If we were to make a complete amplifier in a single cell of rank one then we have to layout every single component in the circuit. But in hierarchical layout we made only one active-load and amplifying transistor but used them twice in a cell of a higher rank. Exercise: 1. Make the circuit shown in Figure F.8.7 using LASI. You will need this layout for exercise of the next chapter. 203 CZ) VDD =5V VBIAS- 334w O__IIJM5W/L-10U/SU ® M1 W/l. -15w5u@I_O zO—I M2 W/L =15U/5u @ Vout (DC) - -3 .333v M3 W/L - SUISU @I——I M4 W/L - SUISU O VSS = -5V @ Figure F.8.l: Schematic of a differential amplifier 204 Figure F.8.2: Layout of the current mirror 205 Figure F.8.3: Layout of the differential transistor 206 Figure F.8.4: Layout of the active load 207 ..- —.-.—.-.—-—.——-- . a . . u . u o . . . . . a . . o . . o . . . . . a . u o o . . . . a . . u . . o o . u . . u . . o . u o . . . . . . u . . . . . u u u u . . . a u . . . a . . . . . . . . . n . . . u . . u . . . Ill. . n . . o v . . . . a u . o . ll! . . u . . a . . . . . u . . . . . o . . . . . . . . . . . . . . c o . u . . u . . a . . . . . u . . . . . o . a . . u . . a . . . . 0.. . . ... ... ... ... ... ... ... ... ... ... ... ... ... ... all. ... .. .. .. .r r o. . .. ... ... a. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... nos-Mod no-0 ..- a . . .— ..— ..- —.-—.--——---—-- ——v- —.v —. ... .. ....... . ....... . ...... ....... . ....... . ...... ....... . 0...... . ...... ....... . . ..... . ...... ....... . ...-... . ...... ....... . ....... . ...... ...-... . ....... u ...... ...»... . ....... . ...... ....... . ....... . loll .I'.I.I|.. ,u .1.Illl. I... ...-I. Ian‘caa.. .- cal. a ...... .....u....lul .... - ..... ...... .. .W .... o . u . . . I. .u n . . p u. » .a a . . . m ... . . .a. . . ... . w .. . .. . . o . n. . .- . .. ...-a ...... . v. .... . . .... ....... . . .... . ...... ....u.. Ia .... . .11.... ll. V..l.l...i. . .-.. ... ...... ....... . ....... o ...... ....... . ....... . ...... ...-... . ....... . ...... ....... ....... . ...... ....... . ....... . . .... ..... . . ....... . ...... ...-... . ....... . ...... ....... . ....... . II- . o c . . .. I. . II ,I .. so . . .. u u . . u u ...-I IIQI.I,.. ’. l... I ...... ...-...... ..I u.:. . ...-u ...:..~... ‘...... o 10". lo'llu I--| ...... ....... . ....... . ...... ....... ..u.... . ...... ......~ . ...-... . ...... ....... . .v..... o ...... .. .... . . ..... . ...... ...v... . ....... . ...... ....... . ....... . ...... .....,« . ....... . .— oo— -1 . ........u ..... n ......uo. ..... . .......o.. ....o . ......... ..... . ......o.. ....u . ......a.o ..... . ......... ..... . .......... ..... . ......... ..... u .......u.. ..... - ..o...e..a a..a. a ......uun. ...a. o .......... ..... o . ........ ..... . ...-...... ..... . .......... ..... . .......... ..... . ...-...... ..... o .......o.. ...... . ..... .... ..... . .......u.. ....o . .......... ..... . .......... ..... . .......... ..... o . ........ ..... . .......... .. . . .......... ....» . .......... ..... u .. ..... w. H.U_._.. ... .4 fl . . ...... ..... ...ic ..... B. .......... ....- .......... ....o ....u ...! 1.... 1...... Iiir.i ... ....;\.vbn'aol. .... i y ;. I.\ait. ... . . ..vi...ri.. L . .....i..:.0 .. . . o.vi cull ... . .nwlr.-.ak1...n Lnrbh. ..... .... ...... . ‘. .........- ..... o ......ouc ....o . ......u... .... o .......... ...A. . ......... ..... o .......... ..... . ......o.. ....a . .......c.. ...o. . .......... ..... . ......o.. ....n . .......... ..... . .......... ..... . ... ..... ..... . ......ouoa ...-u . .......o.- ..... a ..u....uuo ..... u ........ou ..... - ....-.... ..... u .......n.. ....u . .......... ....u . ......... ..... . ......u... an... . ......o.. .u... . ......... ..... . u......oou ..... . ......... ....u . Placement of. the individual transistors of the differential amplifier Figure F .8.5 208 .‘s - my §Z§Z§Lx m M“ :1, : “PVZQ ilfifiéfili Figure F.8.6: Interconnections of the transistors 209 - VDD - 5v G) M1: W/l. - sursu VBIAs-3.345v 0e) v... o___l M2: WIL = 5U/5U * vss = 5v Figure F.8.7: Schematic of a simple amplifier 210 9 Extraction of SPICE file using Lasith After your circuit is laid out you will always want to extract a SPICE file to check whether the circuit works the way you want. This can be done easily by using another program provided in LASI — Lasith. In order to use Lasith effectively we have to first label the nodes, connections and devices along with their parameters in a specific way. There are different text layers provided by LASI for different purposes that can be selected using tLyr (text layer) in menu2. These layers are given below. 1. Connector text is used to tell LASI where the connections are made from a lower- ranking cell to a hi gher-ranking cell. 2. Device text is used to label transistors. This label will be used in SPICE file to refer to that device. . 3. Parameter text is used to write parameters of the device. Parameters mean model name, length, width, areas of source and drain etc. for a transistor. 4. Node text is used to label final nodes on the connections. These nodes will appear in SPICE file along with the transistors. The following example shows how to make a layout for SPICE extraction. For this purpose we will use the layout of the differential amplifier that we made in the previous chapter. Node labeling for SPICE file extraction: Following instructions will show you how to label the layout for this purpose. 1. Open cell ‘CURRENTMIRROR’ and Fit it on the screen. 2. In menuZ select tLyr and select CTXT (connector text). After this click on the Text command to be able to type on the layout. 3. Label the connections with the connector text as shown in Figure F.9.1. The vertex of the text will be placed at a point wherever you click your mouse. If you can not see the vertex of the text press the ‘t’ key followed by the Draw command. For the drain and source connections make sure that you place the vertex on the contacts. Similarly for polyl make sure that you place the vertex on the edge of the polyl. For bulk connection place the text in the n-well but not on active area. Remember that labels of drain, gate, source and bulk are in an order acceptable to SPICE. Open ‘AMPLIFIER’ now and Fit it on the screen. Label the layout with the connector text as shown in Figure F.9.2. Open ‘ACTIVE’ and Label it with the connector text as shown in Figure F.9.3. Open ‘DIFFAMP’ now and Fit it on the screen. It looks like Figure F.9.4. Now we are going to label the MOSFETS. Using the Outl (outline) command convert all the cells to their outlines first. Then select DTXT (device text) using the tLyr command and select the Text command to be able to type on the layout. 9. Label the devices as shown in Figure F.9.5. Make sure that the vertices of the device labels are inside their respective cells. 10. Now we are going to give the parameters of each transistor on the layout. Select PTXT (parameter text) from the tLyr command. Using the Text command type the parameters of each transistor in the respective cells. Again make sure that the vertices of parameter texts are within the respective cells’ boundaries. Now the layout should look like Figure F.9.6. ”HE’S"? 211 11. The last step in labeling is placing the nodes. The nodes in SPICE file will be directly taken from the NTXT (node text) layer. Now convert your layout to a full cell view from the outline view by using the Full command. Your layout must be crowded by text now. Use the View command and deselect device and parameter texts. Now use the Draw command to redraw the screen. You will not see device and parameter labels although they still exist in the layout. Now select NTXT (node text) from the tLyr command. Using Text start typing node-labels as shown in Figure F.9.7. Notice that node 3 and 6 are on the metal layers because the metal intersects the contacts on the devices that are already labeled in a lower rank with connector text. In case of bulk connections we need to place the node text on the connector text in the cells of lower rank. Similarly for inputs of the differential amplifier (node 1 and 2) we need to place the node text on the connector text on the polyl of the cells of lower rank. Notice the placement of node 5. The node label for this node is placed on the contact to show that the drain of M1 and the drain and gate of M3 share this node. Spice file extraction: 1. Now that we have labeled the nodes and devices our layout is ready for the SPICE file extraction. We need to make two files, header and footer, for incorporating our power-supplies, transistor models and test signals. Open the text editor of SPICE. Type two files as shown in Figure F.9.8. Remember to include a carriage return after the last word of each file. These files will be included in their proper places in the final SPICE file extracted by Lasith. Using System menu start the Lasith program. You will see a small program window similar to LasiDrc in top left comer of the screen. Open Setup. You will see some of the text boxes already filled-up with default settings. Enter the name of header and footer files and enter the name of cell to be extracted (DIFFAMP) as shown in Figure F.9.9. Click OK. Now click the GO command. You will see the process of extraction in progress. If you have done errorless labeling of nodes you will get a message box saying that there were no errors. Click OK for it. Now open ‘w2uchip’ folder and open ‘diffampcir’ file. This is the SPICE file for your layout of differential amplifier. Compare it with Figure F.9.10. Summary: We saw how to label the connectors, nodes, devices and parameters with the help of the example of differential amplifier. Here are tips about how to label a layout in general. 1. . are to be made to the next higher ranked cell. This normally will be where The vertex of the connector text must be placed within a cell where the connections interconnection layers join the interconnection layers of the next higher ranked cell. Since the connector text tells LASI how cells are connected upward in the cell hierarchy connector text in the top cell is unnecessary. Within a cell, the vertex of the node text should be placed on a path or the box used for interconnection. If it is located on a cell of a lower rank it will not have any effect. Node labeling for body connections is done in a separate way than the other nodes. In this case the node label is placed exactly over the connector text in the lower ranked cell. Notice the body connections in the previous example. 212 .. ....‘fl .. 5. If two different layers are used for interconnections using contacts or via (for example polyl and metall) the node label is placed on the intersection of the two layers. 6. If an element in the layout is not an active device it does not need a labeling. Step for labeling: 1. We label the terminals of nMOSs and pMOSs in an order that SPICE expects. In order to do this we go to individual cells and label the Drain, Gate, Source, Bulk as l, 2, 3, 4 using CTXT (connector layer). To see the vertex of the text press ‘t’ on the keyboard followed by the Draw command. Next we have to label the MOS devices. The lower ranked cells are added to a higher ranked cell to make a bigger circuit. We place the names of the MOS devices on the lower ranked cells using DTH (device text layer). The third step is typing in the sizes of the devices by using PTXT (parameter text layer). Now we need to tell LASI which nodes are inputs, output and transistor terminals. For this purpose we use NTXT (node text layer) and label the nodes using the tips given before. Lastly, if this higher ranked cell is to be used in still higher ranked cell as a sub- circuit then we need to label connectors in this cell using the connector layer. In this chapter we learned how to label a layout for SPICE extraction by using different text layers. We learned this using the example of a differential amplifier, which we laid out in the previous chapter. This chapter also gave tips for SPICE file extraction. Exercise: 1. Label the layout from exercise of the previous chapter for SPICE extraction. Extract a SPICE file and run operating point test (. OP) on the circuit. 213 .... N v . . . n . v. n \ n o . x u . .Ht ... T . . c i. . . . . ,. . . . . . ... 1 .7 . Inl.’ .I.l.|.l.l.l.l.l..l..l-l-l ........ . ..... J -..—_._,,..-_--.-,_._- nllslet'l'nlo-It't'crlltllI't'nl.'l'l'.u _-- -_._._.-_.___L.‘..4 ;;u“n..-LAA._. ._ ..- . Figure F.9.1 214 Figure F.9.2 215 Figure F.9.3 216 .. \ a .. figfi m- m ‘1'- a‘é‘f‘a Figure F.9.4 217 Figure F.9.5 218 Figure F.9.6 219 I“ I: :: km! 3 -- \ V .. 55 .. V3, ;-_ " .‘Kh ;: 1.,;f§-,E '3? "f- swmsfl E - Emma, ... “ - i: L :2 ‘3‘ 1‘ I: §:&\\\x§§ :: mmmwl . ~W&V‘w¢n\\s-. 2: E‘V‘S‘g‘g‘g ”Ah“ 5* . 'l «W .H " «Sign ,. ' ..: ‘ Figure F.9.7 220 r IDIFFERENTIAL AMPLIFIER LAYOUT *HEADER FILE: CONTAINS POWER SUPPLIS *AND INPUTS VDD 7 0 5V V88 4 0 —5V VBIAS 8 D 3.345V ViDIFFERENTIAL AMPLIFIER“ LAYOUT *HEADERFILE CONTAINING MODELS FOR “TRANSISTORS ANDT .MODEL CMOSN NMOS VTO=D.S KP-lSU GANNA=D.S LANBDA=0.US PHI=0.7 .MODEL CMOSP PMOS VTO=—0.S KP-lSU GAMMA=0.5 LAMBDA=O.US PHI=0.7 *TEST SIGNALS VINl l 0 0V VINZ 2 0 0V *TESTS CONDUCTED .OP IEND 0F SINULATION Figure F.9.8 221 Figure F.9.9 222 HICIOSII'D Text Editor I :. ' " H' ” N ' ' fig ___ f ' LL m *** SPICE Circuit File of DIFFANP made by LASICKT on 05/01/99 14: E“ * START OF DIFFHEADER.CIR “DIFFERENTIAL AMPLIFIER LAYOUT “HEADER FILE: CONTAINS POWER SUPPLIS INPUTS VDD 7 0 5V V58 4 0 —SV VBIAS 8 0 45V I END OF DIFFNEADER. CIR *NAIN CIRCUIT DIFFAMP N3 5 5 4 OSN U= 5U U NS 3 B 7 7 CMOSP U- 10U L-SU I START OF DIFFFOOTER CIR *DIFFERENTIAL AMPLIFIER LAYOUT IHEADERFILE CONTAINING MODELS FOR ITRANSISTORS AND TESTS .MODEL CMOSN NMOS VTO-U.S KP=45U GAMMA=0.5 LAMBDA-0.05 PHI-0.7 .MODEL CMOSP PMOS VTO=-D.S KP=15U GAMMA=U S LAMBDA-0.05 PHI=0.7 *TEST SIGNALS VINl 1 0 UV VINZ 2 0 UV *TESTS CONDUCTED .OP :END OF SINULATI ON END OF DIFFFOOTER. CIR END Figure F.9.10 223 10 Advanced topics in Layout Now that we have learned the basics of IC layout process let us focus our attention on the special issues in layout. Before doing this we have to understand the importance of these issues. Performance of the fabricated Integrated Circuit highly depends upon uniformity of the fabrication process. A fabrication process is a batch process, which means that many wafers containing many chips go through different Steps at the same time. Due to the physical factors involved every chip on the wafer does not get the same treatment and there are gradients in different properties of a chip. Examples of properties that show gradients are threshold voltage, resistivity, thickness of layers and many others. Mostly in analog circuits ratios of components and symmetry are important issues. Techniques to layout symmetric components will be discussed in this chapter. In addition several other issues such as resistance of the active contact and width of metal lines will be discussed. Resistance of metal layers: The drawn width of a metal layer depends upon its resistivity. Although the metal layer is made up of a substance having high conductivity it has got a finite resistance. Current flowing through metal produces a voltage drop across it. Due to this phenomenon the signal becomes weaker as it passes through metal lines in our circuit. Therefore while laying out metal one should provide attention to its width. Sheet resistances of metall and meta12 are given in Appendix A of textbook. Current carrying capacity: The width of a metal layer also depends upon a phenomenon called electro-migration. If a narrow metal line conducts excessive current the momentum of electron causes metal atoms to migrate from their original positions creating spots of high resistance and subsequent failure of the connection. Current density in metall and meta12 should be below 2mA/um to avoid electro-migration. Metals connected to VDD and ground: The substrate is connected to VSS. Therefore a capacitor is formed between the substrate and any metal line connected to either ground or VDD. If metal layers connected to ground and VDD occupy as much area as possible then supply voltages will be nearly constant. Active contacts and via: Each contact and via represents a contact resistance. Values of these resistances are given in Appendix A of the textbook. To reduce this contact resistance at the place of contact one should include as many contacts and vias as possible. Then all these contact resistances will form a parallel structure and the effective resistance will be much lesser than an individual contact resistance. Consideration for temperature distribution: If there is a power device on the chip it will create a temperature gradient on the chip away from the device. If one needs to place two matched resistors in the vicinity of this device the approach shown in Figure F.lO.l should be followed. The wrong approach is 224 also shown in Figure F.lO.l. This is because we want temperature to affect both the resistors in a similar way so as to maintain the matching between the two. Guard-rings, dummy elements and common centroid geometry: _ Guard-rings are used in many places to avoid the current flowing between the parts of a component. In the resistor shown in Figure F. 10.2 guard-rings formed of p+ layer provide a means of stopping the minority current flowing between the resistive elements of that resistor. Similar guard rings are laid out around a capacitor. If we see the fr gure in Figure F.10.2 we will observe that the resistive elements on the two extreme sides of the structure do not have a same environment as the ones at the center have. For this purpose two dummy resistive elements are introduced on the other side of these original elements on the extreme side. Dummy elements are not used as resistors but they just sit there to provide same environment for all the resistive elements. This idea is shown in Figure F.10.3. Common centroid geometry is used to take care of the matching of two or more elements. Equivalent elements of two resistors that should be matched are interleaved in figure Figure F.lO.4. Due to this structure, process gradients affect both the resistors in the same way. In a similar way two or more MOSFETS can be matched. Matched capacitors: Matched capacitors are laid out in a similar way. The layout is shown in Figure F.10.5. Notice the way one capacitor is made up of two parts. Exercise: . 1. Using the concept of guard-rings, dummy elements and common centroid geometry layout two matched lOOKQ resistors in LASI 2. Using a similar concept layout two matched capacitors of any value. 225 Right Approach T1 Power Device Wrong Approach Figure F.10.1 226 Substrate biasing tu~.-‘ __ . .-..r . , .....7 , . . ‘ .;a. , , ‘23,... . p . .. ‘ . (we‘r.,w' \ l , k .‘ c , r - . . . , K .1. / r ‘ ,, _' l 3 ._ 3 ‘- .. f Figure F.10.2 227 Dummy Actual Resistor r_——_————_.-l L n-wells Figure F.10.3 228 I I i I l I l i Dummy £- R1 R2 Dummy R1 Interleaved Resistor Structure Figure F.10.4 229 Polyl Common Cenboid Protective well well biasing Figure F.10.5 230 15 Bibliography [1] P. R.Gray and R.G. Meyer, “Analysis and Design of Analog Integrated Circuits”, J ohn-wiley and sons, 1994. [2] Johns David A. and Martin Kenneth, “Analog Integrated Circuit Design”, John Wiley and Sons, Inc. 1997. [3] Sekerkiran Barbaros, “A Compact Rail-to-Rail Output Stage for CMOS Operational Amplifiers”, IEEE Journal of Solid-State Circuits, VOL. 34, NO. 1, January 1999. [4] Massobrio G. and Antognetti P., “Semiconductor Device Modeling”, McGraw-Hill, Inc. 1993. [5] Baker Jacob, Li Harry and Boyce David,”CMOS Circuit Design, Layout and Simulation”, IEEE Press 1997. [6] K. R. Laker and W. M. C. Sansen, “Design of Analog Integrated Circuits and Systems”, McGraw-Hill, 1994. [7] P. R. Gray and R. G. Meyer, “MOS Operational Amplifier Design - A Tutorial Overview”, IEEE Journal of Solid-State Circuits, Vol. SC-l7, No. 6, December 1982. [8] Brehmer, K. E. and Wieser, J. B., “Large Swing CMOS Power Amplifier”, IEEE Journal of Solid-State Circuits, Vol. SC-18, No. 6, December 1983. [9] Fisher, J. A., “A High-Performance CMOS Power Amplifier”, IEEE Journal of Solid- State Circuits, Vol. SC-20, No. 6, December 1985. [10] Nagaraj, K., “Large-Swing CMOS Buffer Amplifier”, IEEE Journal of Solid-State Circuits, Vol. 24, No. 1, February 1989. [11] Saether, Hung, Qi, Ismail and Aaserud, “High Speed, High Linearity CMOS Buffer Amplifier”, IEEE Journal of Solid-State Circuits, Vol. 31, No. 2, February 1996. 231 [12] LASI software Help. [13] José Franca, Yannis Tsividis (editors), “Design of Analog-Digital VLSI circuits for Telecommunications and Signal Processing”, second edition, Prentice Hall, 1994. 232 ""5 111‘“