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ABSTRACT

EXTENSION OF THE NUCLEAR MASS SURFACE FOR NEUTRON-RICH

ISOTOPES OF ARGON THROUGH IRON

By

Zachary Paul Meisel

Nuclear mass measurement has maintained an important position in the field of nuclear

physics for a little over a century. Nuclear masses provide key evidence of the structural

transformation of nuclei away from the valley of β-stability and are essential input for many

simulations of extreme astrophysical environments. However, obtaining these masses is often

a challenging endeavor due to the low production cross sections and short half-lives of the ex-

otic nuclei which are of particular interest. To this end, the time-of-flight mass measurement

technique has been developed to obtain the masses of several nuclei at once to precisions of

1 part in 105 with virtually no half-life limitation.

This dissertation contains a description of the experiment, analysis, and results of the

second implementation of the time-of-flight nuclear mass measurement technique at the

National Superconducting Cyclotron Laboratory. 18 masses were obtained for neutron-rich

isotopes of argon through iron, where the masses of 48Ar, 49Ar, 56Sc, 57Sc, 64Cr, 67Mn,

and 69Fe were measured for the first time. These newly obtained masses were applied to

outstanding problems in nuclear structure and nuclear astrophysics, resulting in significant

scientific advances.

The measurement results for 48Ar and 49Ar, which were found to have atomic mass

excesses of −22.28(31) MeV and −17.8(1.1) MeV, respectively, provide strong evidence for

the closed shell nature of neutron number N = 28 in argon. It follows that argon is therefore

the lowest even-Z element exhibiting the N = 28 closed shell. The masses of 64Cr, 67Mn, and



69Fe, which were found to have atomic mass excesses of −33.48(44) MeV, −34.09(62) MeV,

and −39.35(60) MeV, respectively, show signs of nuclear deformation occurring around the

N = 40 subshell. In addition, we find 64Cr is substantially less bound than predicted by

global mass models that are commonly used in nuclear astrophysics simulations, resulting

in a significant reduction in the predicted strength and depth of electron capture heating

in the accreted neutron star crust due to the rather abundant A = 64 mass-chain. The

reported value for the atomic mass excess of 56Sc, −24.85(59)+0
−54 MeV, which contains an

asymmetric systematic uncertainty due to potential isomeric contamination, results in a

smaller than expected odd-even mass staggering in the A = 56 mass chain. Depending on

the choice of theoretical models for electron capture transition strengths and energies, this

could lead to strong Urca cooling in accreted neutron star crusts, due to the large amount

of A = 56 material predicted to be present on the surface of accreted neutron stars.



To Jayda.
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spectrograph (b) (Adapted from [28] and [34].). Following the rigid-
ity measurement at the base of the S800 (See Section 2.4.), the beam
was steered ∼150◦ into the S800 focal plane. Cathode readout drift
counters (CRDC) were used for beam tracking (See Section 2.5.1.), a
fast-timing scintillator was used for the TOF-start (See Section 2.3.),
an ionization chamber was used to measure energy loss (See Sec-
tion 2.5.2.), and an aluminum plate (‘ion catcher’) was used in con-
junction with a hodoscope to detect isomers of isotopes with atomic
mass A & 40 (See Section 2.5.3.). . . . . . . . . . . . . . . . . . . . 51

Figure 2.11 Photograph of detectors within the S800 spectrograph focal plane
(center) with insets of the ion catcher and hodoscope (left) and fast-
timing scintillator mounted to two photomultiplier tubes (See Sec-
tion 2.3.) downstream of the first cathode readout drift counter
(CRDC) (right). Note that the ion catcher and fast-timing scintilla-
tor were not installed in the focal plane at the time the center image
was taken. (Center photo credit: Shumpei Noji.) . . . . . . . . . . . 52

Figure 2.12 Demonstration of the energy-loss ∆E versus time-of-flight TOF par-
ticle identification method (‘PID’). Since ∆E ∝ A2 and TOF ∝ A/Z,
where A is the atomic mass number and Z is the atomic number, an
idealized ∆E vs. TOF PID is represented by plotting A2 versus A/Z
for several combinations of A and Z. It is apparent that each A,Z
combination occupies a unique location in the PID matrix. (For the
PID from this experiment, see Figure 2.3.) . . . . . . . . . . . . . . 55

Figure 3.1 Raw time spectra accumulated during the time-of-flight mass mea-
surement experiment (gray-filled histograms) and linear time-calibration
spectra (red-filled histograms) for the corresponding TAC–ADC time
signal. The timing signals (a) through (i) are MCP–Clk, XFD–Clk,
S3U–Clk, S3D–Clk, S3U–S3D, XFU–XFD, S3U–XFU, S3D–XFD,
and XFU–Clk, respectively. The black-dashed vertical lines in (c)
indicate the peaks used for time calibration. Each spectrum is a his-
togram of counts per ADC channel (See Section 2.3 for information
on data acquisition.). Note that the full-scale range for (a) through
(f) and for (i) is ≈ 50 ns while the full-scale range for (g) and (h) is
≈ 100 ns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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Figure 3.2 Spectrum of counts per channel for the S3D–Clk ADC for the full
set of experimental data. Red-dashed horizontal lines indicate the
number of mean counts per channel and the expected statistical de-
viation from the mean. The semi-periodic deviations from the mean
are evidence of nonlinearities in the time-to-channel relationship for
this TAC–ADC combination. . . . . . . . . . . . . . . . . . . . . . 60

Figure 3.3 Residual from the linear time-calibration for the linear (cyan circles)
and nonlinear (black crosses) time calibrations for the XFD–Clk (a),
S3U–Clk (b), S3D–Clk (c), and XFU–Clk (d) timing signals. It is
apparent that significant nonlinearities existed in the time-to-channel
response of the four TAC–ADC combinations, particularly in the case
of the XFU–Clk timing signal. Since the XFU–Clk spectrum was
discarded (See Figure 3.5.), this was not an issue. . . . . . . . . . . 62

Figure 3.4 Spectra used to identify a timing jitter for the Clock Down TOF
(See Equation 3.5) using the nonlinear time calibration. The left
panel shows the nonlinear time-calibrated Clock Down TOF vs the
Direct Down TOF and it is apparent that jitters on the order of
several nanoseconds are present. The right panel shows the linear
time-calibrated Clock Down TOF vs the Direct Down TOF and no
jitters are present, implying that the jitter in the left panel is due to
the nonlinear time-calibrated Clock Down TOF. . . . . . . . . . . . 63

Figure 3.5 Spectra used to identify a ∼1.25 ns timing jitter in the XFU–Clk
timing signal. The left panel contains the spectrum created by taking
the difference between the XFU–Clk and XFD–Clk timing signals for
events of 45Ar, which in principle should contain only one peak with
a width of ≈180 ps. The left-panel inset shows the existence of a
∼1.25 ns jitter in one of these two timing signals. The right panel
and its inset demonstrate the lack of any jitter in the spectrum created
from the XFD–Clk and S3D–Clk timing signals, where the existence
of two peaks in the main figure in the right panel is due to the fact
that two different integer number of clock pulses could have elapsed
during the 45Ar flight-time. In order to demonstrate the lack of a
jitter in the right panel, the globally determined rigidity correction
(See Section 3.7.) had to be applied to the spectrum to remove the
∼2 ns spread caused by the rigidity-spread of 45Ar events. It is
apparent that the signal which contained the jitter must have been
the XFU–Clk timing signal. Note that the grass-like background are
random coincidences, which were much more prevalent in the A1900
signals due to the higher rate at that point in the beam line. . . . . 65
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Figure 3.6 Spectrum used to identify the several nanosecond timing jitter in the
XFU–XFD timing signal. The inset highlights the unphysical time-
difference recorded for ≈8% of non-background events, where light-
travel time in the plastic scintillator limited the possible time-window
for valid events. Note that the double-hump feature in the main
peak was not problematic, since it was counteracted by the opposite
double-hump feature present in the S3U–S3D spectrum; i.e. when the
XFU–XFD and S3U–S3D times were employed to make a scintillator
position correction to TOF (See Section 3.2.), their combined time-
shift produced a single narrow-peaked distribution free of any double-
hump-like features. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 3.7 Demonstration of the principle of clock pulse correction for ‘Clock’
times. Since the clock pulses arrived at random times with respect
to the scintillator signals, it is clear that different integer numbers of
clock periods could have elapsed during an ion’s time-of-flight. In this
example, either 12 or 13 clock pulses could have elapsed during an
ion’s 500 ns flight time. As such, two clock times would be possible
for the events of such an ion and a correction would be required to
obtain a single TOF for events of that ion. . . . . . . . . . . . . . . 70

Figure 3.8 Spectra employed for ‘Clock Down’ time clock pulse correction. The
time difference between a direct TOF, here ‘Direct Up’, and a clock
time, here ‘Clock Down’ (panel e), results in multiple peaks (panels
a–c) spaced by the clock period τ=40 ns. Narrow gates around the
peaks were used to remove background and to determine the clock
pulse correction that was to be added to a given event. Panel d
demonstrates the fact that events of an ion with a single direct TOF
could result in multiple clock TOFs. The black histograms in panels
a–c and e are gated on events of 45Ar, while the red histograms are
for all events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 3.9 Schematic illustrating the need for a scintillator position correction
to the main TOF component. The desired time difference (the true
TOF) is the difference in ion-impact times for the A1900 and S800
scintillators. However, for a Down TOF, the main component recored
for TOF would be the difference in signal generation times at the
A1900 and S800 scintillators. To obtain the true TOF from the
recorded TOF, a correction of +0.5× (TXFU−XFD − TS3U−S3D) had
to be applied to the main recorded TOF. . . . . . . . . . . . . . . . 73

Figure 3.10 Rigidity corrected ‘Direct Up’ TOF distribution for 45Ar events be-
fore (red-filled histogram) and after (black unfilled histogram) appli-
cation of the scintillator position correction to TOF given in Equa-
tion 3.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
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Figure 3.11 Spectra used to identify a timing jitter for the Direct Down TOF
(See Equation 3.2). The left panel shows the Direct Up TOF vs the
linear time-calibrated Clock Down TOF, where it is apparent that no
jitters were present. The right panel shows the Direct Up TOF vs
the Direct Down TOF, where jitters are present, implying that the
jitter was due to the Direct Down TOF. . . . . . . . . . . . . . . . 78

Figure 3.12 Energy loss in individual ionization chamber segments versus the sum
of energy loss in the full ionization chamber for a subset of the full
data-set. Events in the region where surplus events were present in a
single ionization chamber energy loss segment(∆E1 segment < 150 or
> 3100) were excluded from the analysis. . . . . . . . . . . . . . . . 79

Figure 3.13 Energy loss in the ionization chamber and in the S800 fast-timing
scintillator for a subset of the full data-set. A subset of 45Ar events
are shown for comparison. Events outside of the region bounded by
the two black lines were excluded. . . . . . . . . . . . . . . . . . . . 81

Figure 3.14 Particle identification matrix produced by LISE++ simulations using
the time-of-flight mass measurement experimental set-up, where the
results for the thick and thin targets (See Section 2.2.1.) have been
combined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 3.15 A demonstration of one method of identifying nuclei within the energy
loss time-of-flight, ∆E–TOF particle identification matrix. Nuclei at
certain A/Z, such as 2.5 (solid black line) and 2.6 (dashed black
line), are expected to be vertically aligned as was demonstrated in
Figure 2.12, so an educated guess can be made as to which vertically
aligned nuclei correspond to which A/Z. Since ∆E ∝ A2, with a
small Z and velocity dependence, it is expected that lines of constant
Z lay along a diagonal shallow slope (diagonal red lines). An educated
guess can be made as to which sloping line is which Z and then it
can be checked if the resulting identification matrix is consistent; e.g.
here 50
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Figure 3.16 Comparison of the three PID gates looked into for the mass mea-
surement data analysis pipeline. A ‘generous’ hand-gate (red lines),
‘conservative’ hand-gate (black lines) which closely traced the main
outline of PID blobs, and automated gate (brown lines) drawn on a
PID transformed into Z and A/Z were each employed and the results
were compared. The inset shows the gates in more detail for isotopes
of argon through vanadium. . . . . . . . . . . . . . . . . . . . . . . 86
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Figure 3.17 Impact of the choices of three gates on the rigidity-corrected TOF
distribution of 45Ar (The gates are shown in Figure 3.16.). The ‘gen-
erous’ hand-cut (red thick-lined histogram), ‘conservative’ hand-cut
(blue medium-lined histogram), and automated cut (thin black-lined
histogram) had minor deviations in the total number of counts and
had no measurable difference in their mean or standard deviation.
The left panel highlights the slight increase in total counts the gen-
erous cut provided, while the log-scale on the right panel highlights
the small high-TOF tail which was removed by the conservative cut. 87

Figure 3.18 Demonstration of the proportionality between Z and
√
∆E/TOF

(right panel) and between A/Z and TOF (left panel). ∆E and TOF
were the mean values obtained from the TUpDir vs ionization chamber
∆E for the nuclei corresponding to each Z and A. . . . . . . . . . 89

Figure 3.19 Particle identification matrix where ∆E and TOF have been em-
ployed to obtain Z and A/Z. A projection onto the Z-dimension
yielded a one-dimensional histogram which could be gated on as a
Z-cut (See Figure 3.20.). . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 3.20 Projection onto the Z-dimension of the PID that was transformed
into Z vs A/Z coordinates (See Figure 3.19.). Gaussian fits to each
peak are delineated by color. The thick-dashed and thin-solid verti-
cal lines of the same color indicate the ±2.5σ and ±3σ locations for
the Gaussian fit, respectively. The symbols of the same color for a
given peak indicates the locations at which the ratio of the number of
counts in that peak to the number of counts in the neighboring peak
(as determined by the Gaussian fits) is 10,000:1 (triangle), 1,000:1
(square), and 100:1 (circle) to give a feel for potential contamination
from neighboring-Z nuclei (Note that the majority of this contamina-
tion is rid of by the cuts on non-dispersive microchannel plate position
[See Section 3.5.3.] and the local rigidity correction procedure [See
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Figure 3.21 Subsection of the non-rigidity corrected particle identification matrix
(with a cut on the non-dispersive position of the microchannel plate
detector described in Section 3.5.3) showing isotopes of iron and man-
ganese. The black outline traces the majority of events attributed to
fully ionized 66Fe, the dotted outline is the same shape shifted in
TOF to mimic the effect of changing to a 25+ charge state in the
gold foil at the S800 target position (Note that these events should
not have been within the acceptance of the spectrometer, since a large
change in p/q would be suffered due to the charge-change.), and the
dashed line mimics the same thing for electron-pickup prior to or at
the A1900 fast-timing scintillator. It is apparent that there was not
a significant amount of 25+ charge state production for 66Fe. . . . 95

Figure 3.22 The left panel shows a subsection of the PID, where example PID
gates have been drawn around 69Co (black-dotted line), 72Ni (red-
dashed line), and 75Cu (solid-blue line). The right panel shows the
same PID subsection, where events identified as 69Co (black dots),
72Ni (red dots), and 75Cu (blue dots) have been corrected for their
magnetic rigidity, Bρ. It is apparent that the overlap between nuclei
in the non-Bρ corrected PID (gray ovals) leads to improperly Bρ-
corrected events in the Bρ-corrected PID, which may be interpreted
as charge states when they are in fact not. The misidentified events
wind up being located near events of the nucleus to which they prop-
erly belong because the TOF–Bρ relationship varies smoothly with
Z and A/Z (See Section 3.7); however, the correction for neighboring
nuclei is different enough that the improperly corrected events are not
quite in-line with the properly identified events. These misidentified
events are not problematic, since they are removed from the TOF
distribution, as described in Section 3.6. . . . . . . . . . . . . . . . 96

Figure 3.23 The upper four panels compare the high-gain and low-gain corner
signals for each event for the upper left (UL), upper right (UR),
lower right (LR), and lower left (LL) corners of the MCP, where the
pedestals have been subtracted. It is clear that the high-gain signal
is saturated for all but the weakest of low-gain signals. The lower
four panels show the low-gain and high-gain corner signals recorded
for each event on the four MCP corners, where the high-gain signal
(thin black-lined histogram) has been corrected to overlay the low-
gain signal (thick red-dashed histogram). Figure 4.20 of [35] shows
similar MCP corner signal gain-matching results for that work. . . 99
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Figure 3.24 Panel (a) shows the mask with a distinctive hole pattern (5 mm hole-
spacing) which was placed in between the incoming ion and gold foil
in order to only allow electrons to be created from certain locations
for calibration runs. Panel (b) shows the image created on the MCP
by electrons generated from a 232Th α-source. Panels (c) and (d)
show the image created by the electrons generated by the 82Se pri-
mary beam, where the beam was tuned to four separate positions to
achieve the mask-coverage shown (The mask position is indicated in
Figure 2.7.), where the low-gain corner signals were used for panel
(c) and the combined high-low gain signals were used for panel (d).
Since only the relative position was relevant, the effort was not made
to achieve the exact 5 mm hole-spacing of the mask in the MCP
image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 3.25 Projection onto the Y (dispersive) dimension for MCP-positions ob-
tained from the α-source hole-mask measurement (Figure 3.24b) for
the column of holes with < X >∼ 0 mm (left panel) and onto the
X (non-dispersive) dimension for the row of holes with < Y >∼
−15 mm (right panel). The peak resolution and statistics were af-
fected by the size of the corresponding hole (seen in Figure 3.24b).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 3.26 Projection onto the Y (dispersive) dimension for MCP-positions ob-
tained from the 82Se primary beam hole-mask measurement (Fig-
ure 3.24c) for the column of holes with < X >∼ −8 mm (left panel)
and onto the X (non-dispersive) dimension for the row of holes with
< Y >∼ 0 mm (right panel). The peak resolution and statistics were
affected by the size of the corresponding hole (seen in Figure 3.24c). 103

Figure 3.27 Demonstration of the correlation between high energy-loss (∆E) PID
events and the microchannel plate (MCP) non-dispersive position.
The left panel shows a subset of the PID containing isotopes of cal-
cium, scandium, and titanium, where ‘main’ events are within the
purple box and ‘top-hat’ events are within the red-dashed box. The
right panel shows the location of the ‘main’ (purple dots) and ‘top-
hat’ (red dots) events on the MCP, where it is clear that the relatively
high ∆E events corresponded to larger non-dispersive positions. . . 108

Figure 3.28 Side (a) and upstream (b) views of the collimator intended to protect
the microchannel plate detector (MCP) during beam tuning. We
determined that beam fragments likely scattered on the right-wall
(looking from the upstream direction) of the collimator opening (See
Figure 3.27.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
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Figure 3.29 Particle identification matrix before (red dots) and after (black dots)
the cut on the microchannel plate detector non-dispersive position,
X < −11 mm. The reduction in relatively high-∆E events for indi-
vidual nuclei is apparent, though it is less clear for the high-statistics
events. The relationship between the high-∆E events and X is shown
in more detail for isotopes of calcium, scandium, and titanium in Fig-
ure 3.27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 3.30 The five rows show the successive steps taken in the local rigidity
correction procedure to remove contamination from neighboring nu-
clei in the PID and determine the slope of the TOF vs YMCP of a
single nucleus, here 68Fe. The upper left panel shows a histogram of
TOF vs YMCP for events identified as 68Fe, where the black points
are the resultant graph obtained by applying ROOT’s TProfile class
to the histogram. The black line is a linear fit to the graph. The
upper middle panel shows the resultant rigidity-corrected TOF vs
YMCP histogram after removing the linear trend found in the upper
left panel, pivoting about YMCP=0. The upper right panel shows
the projections onto the TOF-dimension of the uncorrected (red his-
togram) TOF vs YMCP relationship, which was not easily visible on
the same scale for 68Fe, and rigidity corrected (black histogram) TOF
vs YMCP relationship, where the blue line is a Gaussian fit to the
rigidity corrected histogram. The second row contains the same in-
formation as the first, but after applying a cut to only include data
within ±4σ of the mean of the rigidity corrected TOF distribution
determined in the first row. The following rows contain the same
information after applying cuts to only include data within 3, 2.5,
and 2σ, respectively, of the mean rigidity corrected TOF, where the
mean and σ were determined by the Gaussian fit in the previous row.
Appendix B contains similar plots for all isotopes of elements with
11 ≤ Z ≤ 29 observed in this experiment. . . . . . . . . . . . . . . 113

Figure 3.31 Residual between the TOF vs YMCP slope determined ‘locally’ (i.e.
by-isotope) and the ‘global’ value determined from the fit with Equa-
tion 3.15 to all local slopes with 18 ≤ Z ≤ 26 and A/Z > 2.44. It
is apparent that the majority of isotopes were fit within 1% (Note
that the average slope was ≈ 0.40 ps/mm, as seen in Figure 3.32.)
and that there was a significant statistically-distributed systematic
scatter for each element as a function of A/Z. . . . . . . . . . . . . 117
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Figure 3.32 TOF vs YMCP slope as a function of mass number A for observed iso-
topes of argon, potassium, calcium, scandium, titanium, vanadium,
chromium, manganese, and iron (18 ≤ Z ≤ 26), respectively, as de-
termined by ‘local’ by-nucleus fits (data points) (See Section 3.6.)
and fits to the locally-determined slopes that employed the ±2σ cut-
off (See Figure 3.30.), where the black data points were included in
the fit and the blue points were not. It is apparent that in general
the locally determined slopes for the 3σ (circles), 2.5σ (squares), and
2σ (triangles) cut-offs were in agreement. The by-element fit along
a single isotopic chain as a cubic function of A is shown by the red
lines, where the upper and lower lines indicate the extremes obtained
for upper and lower limits of the fit-parameters, and the orange band
indicates the ±1σ confidence interval. The black line shows the trend
of the rigidity-correction slope along an isotopic chain as determined
by the global fit (See Equation 3.15.) to all locally-determined slopes
of nuclei with A/Z > 2.44 and 18 ≤ Z ≤ 26. . . . . . . . . . . . . . 119

Figure 3.33 Examples of global rigidity-corrected (See Section 3.7.) TOF distribu-
tions for some m

q (TOF)-calibration nuclides (unfilled histograms) and

nuclides whose mass was evaluated (filled histograms). The Gaussian
fits which are shown demonstrate the Z-dependent skewness present
in the TOF distributions. See Appendix C for final TOF distributions
of all nuclides involved in the mass-fit and mass evaluation. . . . . 121

Figure 3.34 ‘Down Clock’ TOF mean values (See Section 3.2.) obtained with dif-
ferent rigidity corrections shown as a difference to the values obtained
with the global rigidity correction as functions of the atomic mass
number to nuclear charge ratio A/Z. Shown are TOFs obtained via
the local (black circles), by-element (cyan squares), and global (red
lines) rigidity corrections (See Sections 3.6 and 3.7.), using the ±3σ
range for observed nuclei with 18 ≤ Z ≤ 26 and A/Z > 2.44. The
average deviation between global and local TOFs and between global
and by-element TOFs was 2.3 ps and 0.3 ps, respectively. . . . . . . 122
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Figure 3.35 Difference in TOF between the global rigidity-corrected ‘Clock Down’
and ‘Direct Up’ TOFs, with their uncertainties added in quadra-
ture, after correcting for the trivial offset between the two (See Sec-
tion 3.2.), using the ±3σ range for observed nuclei with 18 ≤ Z ≤ 26
and A/Z > 2.44. The left, middle, and right panels show the TOF
difference as a function of the atomic mass number to nuclear charge
ratio A/Z, nuclear charge Z, and nuclear mass A, respectively. Note
that the TOF differences do not correspond to final mass differences,
since each mass-TOF surface was fit separately, ultimately yielding
similar mass results (See Section 3.9.5.), albeit with different uncer-
tainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 3.36 Number of observed events (indicated by the color) for observed nuclei
with 18 ≤ Z ≤ 26 and A/Z > 2.44, within the ±4σ TOF distribution
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of the Down Clock time (See Section 3.2.). Note that only nuclides
with ≈ 500 events or more are plotted. . . . . . . . . . . . . . . . . 124
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observed nuclei with 18 ≤ Z ≤ 26 and A/Z > 2.44, using the global
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Section 3.2.) with the ±4σ TOF distribution range. . . . . . . . . . 125

Figure 3.38 Standard deviation of final TOF distributions in picoseconds (in-
dicated by the color) of observed nuclei with 18 ≤ Z ≤ 26 and
A/Z > 2.44, using the global rigidity correction (See Section 3.7.) for
the Down Clock time (See Section 3.2.) with the ±4σ TOF distribu-
tion range. The average standard deviation of the TOF distributions
was 80.8 ps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 3.39 Map of nuclei observed in the TOF mass measurement analysis (with
sufficient statistics to obtain a TOF value) in terms of atomic mass
number to nuclear charge ratio A/Z and nuclear charge Z. Solid
black circles indicate reference nuclei, open blue circles indicate nu-
clei with masses known in the literature, but not to sufficient precision
to qualify as reference nuclei, and red stars indicate nuclei with un-
known mass as of the completion of the data analysis. (Compare to
Figure 4.34 of [31].) . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 3.40 Mass–TOF surface of reference nuclei where the linear dependence of
mass over charge m/q on TOF has been removed. Solid white points
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Figure 3.41 Residual of the fit to reference nuclei using the function m
q (τ) =

a0 + a1 ∗ τ , where τ = TOF − 〈TOF〉 and z = Z − 〈Z〉, with TOF
being the time-of-flight, Z being the nuclear charge, and the averages
of these being taken over the set of reference nuclei. Reference nuclei
are identified by element by their symbol and the text label indicates
the reference nucleus mass number A. Thick colored error bars show
the statistical uncertainties. Thin black error bars show the sum in
quadrature of the statistical uncertainty and the systematic uncer-
tainty (9 keV/q) applied in the case of the best-fit (See Figure 3.47),
which was used for the mass evaluation. . . . . . . . . . . . . . . . 136

Figure 3.42 Same as Figure 3.41 but for the fit function m
q (τ) = a0+a1 ∗τ+a2 ∗z. 136

Figure 3.43 Same as Figure 3.41 but for the fit function m
q (τ) = a0 + a1 ∗ τ +

a2 ∗ z + a3 ∗ τ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 3.44 Same as Figure 3.41 but for the fit function m
q (τ) = a0 + a1 ∗ τ +

a2 ∗ z + a3 ∗ τ2 + a4 ∗ z2. . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 3.45 Same as Figure 3.41 but for the fit function m
q (τ) = a0+a1 ∗ τ +a2 ∗

z + a3 ∗ τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ . Note that this fit was one of the fits
used to evaluate the extrapolation ‘function-choice uncertainty’ (See
Section 3.9.4.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 3.46 Same as Figure 3.41 but for the fit function m
q (τ) = a0 + a1 ∗ τ +

a2 ∗ z + a3 ∗ τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ + a6 ∗ z3. Note that this fit
was one of the fits used to evaluate the extrapolation ‘function-choice
uncertainty’ (See Section 3.9.4.). . . . . . . . . . . . . . . . . . . . 137

Figure 3.47 Same as Figure 3.41 but for the fit function m
q (τ) = a0 + a1 ∗ τ +

a2 ∗ z + a3 ∗ τ2+ a4 ∗ z2+ a5 ∗ z ∗ τ + a6 ∗ z4. Note that this was the
fit function ultimately used for the mass evaluation. . . . . . . . . . 138
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Figure 3.50 Same as Figure 3.41 but for the fit function m
q (τ) = a0+a1 ∗ τ +a2 ∗
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Figure 3.51 Residuals of the fit (with Equation 3.17) to the time-of-flight of cali-
bration nuclei (See Section 3.9.1.) as a function of the mass number
to nuclear charge ratio A/Z. Isotopes are labeled with their mass
number and symbols indicate the elements (solid circle for argon,
solid square for potassium, solid triangle for calcium, open circle for
manganese, and open square for iron). Calibration masses were fit to
within 9 keV/q without any systematic trends. The gray band shows
the average systematic mass uncertainty included for reference nuclei
as described in Section 3.9.2.(From [36].) . . . . . . . . . . . . . . . 143

Figure 3.52 Residuals of the fit in keV (with Equation 3.17) to the time-of-flight
of calibration nuclei (See Section 3.9.1.) as a function of the mass
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with their mass number and symbols indicate the elements (solid
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Figure 3.54 Mass distributions resulting from the Monte Carlo TOF-perturbation
procedure for isotopes of argon through vanadium (18 ≤ Z ≤ 23)
which were observed in the TOF mass measurement (See Figure 2.3.)
and which were not reference nuclei for the mass fit (See Section 3.9.1.).
The ‘RMS’ value was the standard deviation of the mass distribution
in keV and was chosen as the ‘Monte Carlo uncertainty’ for the eval-
uated masses. The vertical red line indicates the evaluated mass from
the mass fit function (Equation 3.17.) without perturbations to the
reference nuclei TOFs. . . . . . . . . . . . . . . . . . . . . . . . . . 149
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Figure 3.56 Mass–TOF surface, where the linear dependence of mass over charge
m/q on TOF has been removed, for reference nuclei (black-outlined
white-filled circles connected by the white planes) and the fit (color
indicates keV/q) to the reference nuclei with the mass-fit function,
m
q (τ) = a0+a1 ∗τ+a2 ∗z+a3 ∗τ2+a4 ∗z2+a5 ∗z ∗τ+a6 ∗z4. Note
that the averages over Z and TOF, used to construct z = Z−〈Z〉 and
τ = TOF − 〈TOF〉, were taken over the set of reference nuclei (See
Section 3.9.1.). The red-outlined white-filled circles show the location
of nuclei whose mass were evaluated with the final mass-fit function,
Equation 3.17 (in this case, the same function as the fit shown), in
m/q–TOF–Z space. Note that all points lay on the function surface,
though the plotting program does not extend the graphing of the
surface far enough in some cases. . . . . . . . . . . . . . . . . . . . 152

Figure 3.57 Same as Figure 3.56 for the mass-fit function, m
q (τ) = a0 + a1 ∗ τ +
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Figure 3.58 Same as Figure 3.56 for the mass-fit function, m
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a2 ∗ z + a3 ∗ τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ . . . . . . . . . . . . . . . . . . 154

Figure 3.59 Same as Figure 3.56 for the mass-fit function, m
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a2 ∗ z + a3 ∗ τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ + a6 ∗ z4 + a7 ∗ τ4. . . . . . . 155

Figure 3.60 Same as Figure 3.56 for the mass-fit function, m
q (τ) = a0 + a1 ∗ τ +
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Figure 3.61 Statistical uncertainty in keV for nuclei whose mass was evaluated in
the time-of-flight mass measurement. Colored boxes indicate nuclei
whose mass was evaluated, with the color reflecting the uncertainty in
keV, boxes with red circles indicate reference nuclei used as calibrants
for the mass–TOF relationship (See Section 3.9.1.), boxes with ×’s
indicate the most exotic isotope for that element with a known mass
prior to this experiment, and the black boxes indicate stable nuclei. 158

Figure 3.62 Same as Figure 3.61, but with the color indicating the systematic
uncertainty of evaluated nuclei in keV. . . . . . . . . . . . . . . . . 158

Figure 3.63 Same as Figure 3.61, but with the color indicating the Monte Carlo
uncertainty of evaluated nuclei in keV. . . . . . . . . . . . . . . . . 159
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uncertainty of evaluated nuclei in keV. . . . . . . . . . . . . . . . . 159

Figure 3.65 Same as Figure 3.61, but with the color indicating the total uncer-
tainty of evaluated nuclei in keV, where the total is the sum in quadra-
ture of the statistical, systematic, Monte Carlo, and function-choice
uncertainties. Note that 56Sc has an additional systematic uncer-
tainty due to the presence of a β-decaying isomer (See Section 4.3.1.)
which is not included in this figure. . . . . . . . . . . . . . . . . . . 160

Figure 3.66 Residual of the fit to reference nuclei (See Section 3.9.1.) using the
function m

q (τ) = a0+a1∗τ+a2∗z+a3∗τ2+a4∗z2+a5∗z∗τ+a6∗z4,
where τ = TOF−〈TOF〉 and z = Z−〈Z〉, with TOF being the time-
of-flight, Z being the nuclear charge, and the averages of these being
taken over the set of reference nuclei, where the TOF was rigidity cor-
rected by-element (See Section 3.7.). Reference nuclei are identified
by element by their symbol and the text label indicates the reference
nucleus mass number A. Thick colored error bars show the statistical
uncertainties. Thin black error bars show the sum in quadrature of
the statistical uncertainty and the systematic uncertainty (9 keV/q)
applied in the case of the best-fit (See Figure 3.47), which was used
for the mass evaluation. . . . . . . . . . . . . . . . . . . . . . . . . 163

Figure 3.67 Same as Figure 3.66 but using the by-isotope (local) rigidity correc-
tion to TOF (See Section 3.6.). Note that 54Ca is not present in
the set of reference nuclei for this case since it did not have suffi-
cient statistics (> 5, 000 counts) to have a locally-determined rigidity
correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
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Figure 3.68 Same as Figure 3.66 but using the global rigidity correction(See Sec-
tion 3.7.) for the ‘Direct Up’ TOF (See Section 3.2.). . . . . . . . . 164

Figure 3.69 Residual of the fit to reference nuclei (stars), where a reference nucleus
was defined as one with a literature mass with an uncertainty less
than 400 keV, using the function m

q (τ) = a0 + a1 ∗ τ + a2 ∗ z +

a3 ∗ τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ + a6 ∗ z4, where τ = TOF − 〈TOF〉
and z = Z − 〈Z〉, with TOF being the time-of-flight, Z being the
nuclear charge, and the averages of these being taken over the set of
reference nuclei, where the TOF was rigidity corrected globally (See
Section 3.7.). Reference nuclei are identified by element by their color,
where isotopes of the same element are connected by lines for clarity,
and the text label indicates the reference nucleus mass number A.
The uncertainty shown is the statistical plus the mass-perturbation
distribution from the Monte Carlo procedure. . . . . . . . . . . . . 164

Figure 4.1 Rigidity-corrected time-of-flight (TOF) distributions for reference nu-
clei (unfilled histograms) used to calibrate the

mrest
q (TOF ) relation-

ship to obtain new masses from the TOFs of 48,49Ar (green-filled
histograms), 52−57Sc (red-filled histograms), 59−64Cr (blue-filled his-
tograms), 67Mn (orange-filled histogram), and 67−69Fe (gray-filled
histograms). Note that the TOF spectra for argon, scandium, and
chromium isotopes with respect to reference TOFs are highlighted
separately in Figures 4.20, 4.33, and 4.23, respectively. . . . . . . . 167

Figure 4.2 The Segré chart with the absolute value of the mass excess devi-
ation in keV (indicated by color) between the 2012 Atomic Mass
Evaluation [1] and the liquid drop model as represented by the semi-
empirical mass formula given in [37]. The black boxes indicate the
stable nuclei for orientation. The root mean square RMS deviation
is indicated by the text box. . . . . . . . . . . . . . . . . . . . . . . 171

Figure 4.3 The Segré chart with the absolute value of the mass excess deviation
in keV (indicated by color) between the 2012 Atomic Mass Evalua-
tion [1] and the 1995 Finite Range Droplet Model (FRDM) [2, 38].
The black boxes indicate the stable nuclei for orientation. The root
mean square RMS deviation is indicated by the text box. . . . . . . 173

Figure 4.4 The Segré chart with the absolute value of the mass excess deviation
in keV (indicated by color) between the 2012 Atomic Mass Evalua-
tion [1] and the Weizsäcker-Skyrme WS3 mass model [5, 39]. The
black boxes indicate the stable nuclei for orientation. The root mean
square RMS deviation is indicated by the text box. . . . . . . . . . 175

xxix



Figure 4.5 The Segré chart with the absolute value of the mass excess deviation
in keV (indicated by color) between the 2012 Atomic Mass Evalua-
tion [1] and the 10-parameter Duflo-Zuker mass formula [4, 40]. The
black boxes indicate the stable nuclei for orientation. The root mean
square RMS deviation is indicated by the text box. . . . . . . . . . 177

Figure 4.6 The Segré chart with the absolute value of the mass excess deviation
in keV (indicated by color) between the 2012 Atomic Mass Evalua-
tion [1] and the Hartree-Fock-Bogolyubov HFB-21 mass model [3, 41].
The black boxes indicate the stable nuclei for orientation. The root
mean square RMS deviation is indicated by the text box. . . . . . . 179

Figure 4.7 Difference between mass excesses obtained in this experiment and
global mass models FRDM (1995), HFB-21, WS3, and Duflo-Zuker
(10-parameter), as well as experimental values listed in the 2012
Atomic Mass Evaluation as a function of mass over charge A/Z. . . 183

Figure 4.8 Same as Figure 4.7, but as a function of atomic number Z. Note that
multiple nuclei are represented for each Z, so that experimental 1σ
uncertainties are overlapping. . . . . . . . . . . . . . . . . . . . . . 183

Figure 4.9 Same as Figure 4.7, but as a function of nuclear mass number A. Note
that multiple nuclei are represented for A = 67, so that experimental
1σ uncertainties are overlapping. . . . . . . . . . . . . . . . . . . . 183

Figure 4.10 Distributions of mass excess deviations, weighted by our one standard
deviation measurement uncertainty and binned in 2

3σ-wide bins, from
masses obtained in this experiment for global mass models FRDM
(1995), HFB-21, WS3, and Duflo-Zuker (10-parameter), as well as
experimental values listed in the 2012 Atomic Mass Evaluation. . . 184

Figure 4.11 Mass excess deviation (indicated by color) from the 2012 Atomic Mass
Evaluation vs Z and N , weighted by our experimental uncertainty.
The same information projected into a one-dimensional histogram
presented in Figure 4.10. . . . . . . . . . . . . . . . . . . . . . . . . 185

Figure 4.12 Mass excess deviation (indicated by color) from the 1995 FRDM
global mass model vs Z and N , weighted by our experimental un-
certainty. The same information projected into a one-dimensional
histogram presented in Figure 4.10. . . . . . . . . . . . . . . . . . . 185

Figure 4.13 Mass excess deviation (indicated by color) from the HFB-21 global
mass model vs Z and N , weighted by our experimental uncertainty.
The same information projected into a one-dimensional histogram
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Figure 4.14 Mass excess deviation (indicated by color) from the WS3 global mass
model vs Z and N , weighted by our experimental uncertainty. The
same information projected into a one-dimensional histogram pre-
sented in Figure 4.10. . . . . . . . . . . . . . . . . . . . . . . . . . 186

Figure 4.15 Mass excess deviation (indicated by color) from the 10-parameter
Duflo-Zuker mass formula vs Z and N , weighted by our experimental
uncertainty. The same information projected into a one-dimensional
histogram presented in Figure 4.10. . . . . . . . . . . . . . . . . . . 186

Figure 4.16 Two-neutron separation energy S2n along isotopic chains of argon,
scandium, chromium, manganese, and iron for this experiment, the
2012 Atomic Mass Evaluation, and global mass models. The gray
lines and points indicate S2n for Z ± 1. . . . . . . . . . . . . . . . . 190

Figure 4.17 Empirical shell gap ∆n [42] along isotopic chains of argon, scandium,
chromium, manganese, and iron for this experiment, the 2012 Atomic
Mass Evaluation, and global mass models. . . . . . . . . . . . . . . 191

Figure 4.18 One-neutron separation energy Sn along isotopic chains of argon,
scandium, chromium, manganese, and iron for this experiment, the
2012 Atomic Mass Evaluation, and global mass models. The upper
and lower trends are for even and odd N isotopes, respectively. . . 192

Figure 4.19 Empirical pairing gap PGn [43] along isotopic chains of argon, scan-
dium, chromium, manganese, and iron for this experiment, the 2012
Atomic Mass Evaluation, and global mass models. The gray points
indicate the pairing gap trend for one Z lower, for context. . . . . . 193

Figure 4.20 Rigidity-corrected time-of-flight distributions for reference nuclei (un-
filled histograms) used to calibrate the

mrest
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obtain masses from TOFs of 48Ar and 49Ar (red-filled histograms).
(From [36].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

xxxi



Figure 4.21 Dn [44] as a function of neutron number N near N = 28 for sulfur
(dot-dash line), argon (solid line), calcium (dotted line), and titanium
(dashed line). The previously known [1] argon trend (solid line, open
circles) is shown along with results from this experiment (solid line,
solid circles). E(2+1 ) energies for argon isotopes [45–47] are shown for
comparison (crosses). The peak at N = 28 followed by a reduction
in Dn for N > 28 as compared to N < 28 indicates the presence of a
closed shell. From shell-model calculations we conclude the transition
from Dn ≈ 3 MeV for N < 28 to Dn ≈ 1.5 MeV for N > 28
corresponds to the transition from filling the f7/2 orbital to filling

the p3/2 orbital.(From [36].) . . . . . . . . . . . . . . . . . . . . . . 198

Figure 4.22 The Dn [44] trend near N = 28 for argon from currently known
masses [1] (open circles) and the masses presented in this dissertation
(solid circles) is shown along with shell-model calculations employ-
ing the SPDF-MU Hamiltonian [48] (solid squares) and the SDPF-U
Hamiltonian [49] (open squares). E(2+1 ) energies [45–47] are shown
for comparison (crosses). (From [36].) . . . . . . . . . . . . . . . . 199

Figure 4.23 Rigidity-corrected time-of-flight distributions for reference nuclei (un-
filled histograms) used to calibrate the

mrest
q (TOF ) relationship to

obtain masses from TOFs of 59−64Cr (red-filled histograms). . . . . 202

Figure 4.24 Trend along the chromium isotopic chain for S2n (upper panel) for
this experiment (red-filled circles) and the 2012 Atomic Mass Evalu-
ation [1] (black-open circles), E(2+1 ) [45, 50, 51] (middle panel), and
B(E2) [52, 53] (lower panel). Note that the full mass uncertainties
were used to calculate S2n, resulting in similar error bars for each
point since each chromium mass had the same systematic uncertainty
and similar interpolation uncertainties. . . . . . . . . . . . . . . . . 203

Figure 4.25 Schematic of an accreted neutron star cross section. The Urca cooling
(See Section 4.3.2.) layer separates heat generated deep in the crust
by nuclear processes from the shallow layer where carbon is thought
to be ignited for superbursts. See the text for a brief description of
the labeled layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
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Figure 4.26 The upper panel shows the effective temperature of a neutron star as
a function of time, from the time an accretion outburst ends until the
neutron star crust has returned to thermal equilibrium with the core.
The central panel shows thermal profiles at various time snapshots
throughout the duration of an accretion outburst, where the time
associated with a given contour increases in the vertical direction,
since the crust is being heated out of equilibrium. The discontinuity
at low density for the contour just prior to accretion turning on is
due to the boundary condition set for the atmosphere temperature
during accretion. The small kink at ≈ 1010g/cm3 is due to electron
capture heating and the large bump at ∼ 1013g/cm3 is due to deep
crustal heating. The lower panel shows thermal profiles at various
time snapshots after an accretion outburst has ended, where the time
associated with a given contour decreases in the vertical direction,
since the crust is cooling back into equilibrium with the core. The
symbols on the thermal profiles in the central and lower panels in-
dicate the thermal profile snapshot that belongs to a given point in
time along the cooling curve shown in the upper panel. . . . . . . . 212

Figure 4.27 Same as Figure 4.26, where an impurity parameter Qimp. = 30 was
used instead of Qimp. = 5. It is apparent that the increase in the
impurity parameter drastically slows heat diffusion. . . . . . . . . . 213

Figure 4.28 Same as Figure 4.26, where an Urca cooling layer [54] with a lumi-
nosity of 1037 erg/s (at 0.5 GK) has been included at a density of
2.94×1010g/cm3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Figure 4.29 Effective temperature as a function of time of the neutron star XTE
J1701-462 as observed [55, 56] after accretion turned off (at day 0)
as compared to dStar [57] simulations. Note that the observational
points labeled ‘?’ and ‘(?)’ have been called into question due to sus-
pected brief accretion outbursts [58]. The baseline simulation (solid
black line) mimicked the parameters employed by [58], the short-
dashed black line simulation added a 1036 erg/s (for 0.5 GK) Urca
cooling layer to the baseline simulation, the long-dashed black line
simulation added a 1037 erg/s (for 0.5 GK) Urca cooling layer to the
baseline simulation, the black dot-dash line changed the impurity pa-
rameter from the baseline simulation to 30, and the dotted red line
changed the impurity parameter to 30 and included a 3× 1036 erg/s
(for 0.5 GK) Urca cooling layer. More details on input parameters
are provided in the text. . . . . . . . . . . . . . . . . . . . . . . . . 216
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Figure 4.30 Effective temperature as a function of time of the neutron star EXO
0748-676 as observed [59] after accretion turned off (at day 0) as
compared to dStar [57] simulations. The only parameters varied
between the simulations shown were the core temperater Tcore, the
crust impurity parameter Qimp., and the Urca cooling strength, with
the exception of the simulation corresponding to the thick green line
whose shallow crustal heating was reduced to 0.15 MeV/u (from the
default value of 0.3 MeV/u). Note that the blue diagonally-hashed
band is the inferred core temperature from observations of EXO0748-
676 after a long quiescent phase where it is thought the crust reached
thermal equilibrium with the core [59]. More details on input param-
eters are provided in the text. . . . . . . . . . . . . . . . . . . . . . 219

Figure 4.31 Schematic demonstrating the origin of electron capture heating for
odd-A (left panel) and even-A isobaric chains, where the vertical di-
rection indicates the energy of the system, which rises with depth due
to the increasing electron chemical potential µe. Each panel considers
the system energy at the depth where µe = QEC(Z,A) = ME(Z,A)−
ME(Z − 1,A). In the odd-A case, QEC(Z,A) < QEC(Z − 1, A), so
once the initial electron capture happens (1), nothing further happens
until the nucleus sinks to the depth where µe = QEC(Z − 1, A). At
this point, it is possible that electron capture to the ground state is
strongly hindered, as it could have been for the first electron capture
in the sequence (for instance, due to a large difference in spin between
the initial and final state), so electron capture may not ensue until it
is energetically possible to electron capture into an excited state of
the nucleus with Z−2 protons (2). Electron capture into the excited
state (3) will be followed by de-excitation (4) which deposits heat into
the crust. For the even-A case, heating can be more significant due
to the odd-even mass stagger that results from the pairing force (the
5th term of Equation 4.1). In this case, after electron capture onto
an even-even nucleus (1), it is immediately energetically favorable to
electron capture into the even-even nucleus with Z−2 protons, which
results in heat deposition into the outer crust. Often QEC(Z,A) is
greater than QEC(Z−1, A) by several MeV, so electron capture into a
high-lying excited state is possible (2). The subsequent de-excitation
(3) enhances the energy deposition into the neutron star crust, often
by several MeV [60]. . . . . . . . . . . . . . . . . . . . . . . . . . . 223
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Figure 4.32 Integrated heat release (in units of MeV per accreted nucleon u) from
electron capture for an A = 64 mass element as it is buried to deeper
depths of the neutron star crust by accretion. Note that the time
required for a surface fluid element to reach these depths depends on
the accretion rate; for our chosen accretion rate of Ṁ= 26, 400 g/cms2

(1/3 the Eddington accretion rate), the time to sink from the surface
to the depths shown is on the order of centuries. The calculations cor-
responding to the black and red lines employed the 1995 FRDM [2]
and HFB-21 [3] global mass models for nuclei with unknown masses,
where the 2012 Atomic Mass Evaluation [1] was used otherwise. Cal-
culations indicated by solid lines included the mass of 64Cr presented
in this dissertation. The first two heating events are labeled by their
corresponding electron capture sequence. . . . . . . . . . . . . . . . 226

Figure 4.33 Rigidity-corrected time-of-flight distributions for reference nuclei (un-
filled histograms) used to calibrate the

mrest
q (TOF ) relationship to

obtain masses from TOFs of 52−56Sc (red-filled histograms). . . . . 229

Figure 4.34 ∆QEC(Z,A) for odd-odd A = 56 nuclei using ME(56Sc) from this
experiment and ME(56Ca) from FRDM’95 or HFB-21 (black stars),
compared to global mass models [2, 3] and mass-differences predicted
from recent energy density functional calculations [61, 62] (open shapes).
A low ∆QEC is essential for the existence of an Urca cooling pair in
an even-A mass chain. . . . . . . . . . . . . . . . . . . . . . . . . . 231
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Figure 4.35 (a) Net energy released from (positive values) or deposited into (neg-
ative values) the neutron star crust as a function of depth for a fluid
element made of A = 56 material as it sinks into the neutron star
crust. Lines from the energy curves to the reaction sequence indicate
which heating or cooling event corresponds to which nuclear reaction
when employing the HFB-21 [3] mass model for the 56Sc and 56Ca
masses. Differences between the amount of heating or cooling and the
depth at which it occurs are due to the different value of ME(56Sc)
used in the calculation. ME(56Sc) found in this experiment results
in Urca cooling for the A = 56 mass-chain, as given by the HFB-21
mass model but not the FRDM’95 [2] mass model. Note that the
56V and 56Ti masses used are from [1]. (b) Integrated energy per
accreted nucleon released from (negative values, blue-shading) or de-
posited into (positive values, red-shading) the neutron star crust for
an A = 56 fluid element as a function of depth. It is apparent that
cooling from one pair of nuclei overwhelms heating from electron cap-
tures. (c) Schematic of an accreted neutron star cross section. The
Urca cooling layer separates heat generated deep in the crust by nu-
clear processes from the shallow layer where carbon is thought to be
ignited for superbursts. . . . . . . . . . . . . . . . . . . . . . . . . . 232

Figure 4.36 Energy level diagram for the A = 56 mass-chain at a depth where
EF ≈ |QEC(

56Ti)|. The large low-lying Gamow-Teller (GT) transi-
tion strength for 56Sc allows 56Ti(e−, νe)56Sc to occur for this condi-
tion. Whether or not electron capture EC onto 56Sc directly follows
depends on the choice of mass model. EC on 56Sc into the lowest en-
ergy level Exs in

56Ca that can be entered via a GT transition occurs
at EF ≈ |QEC(

56Ti)| for the FRDM mass model [2], but not for the
HFB-21 mass model [3]. In the latter case, Urca cooling occurs for
the 56Ti–56Sc pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
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Figure 4.37 Schematic demonstrating the origin of Urca neutrino cooling in even-
A isobaric chains, where the vertical direction indicates the energy
of the system, which rises with depth due to the increasing electron
chemical potential µe. The figure considers the system energy at the
depth where µe = QEC(Z,A) = ME(Z,A)−ME(Z− 1,A), where Z
and A are even. In order to maintain an Urca cycle, electron capture
from the Z to Z−1 isobar must be relatively strong while the electron
capture from the Z − 1 isobar to the Z − 2 isobar must be hindered.
Since even-even nuclei have a ground state spin-parity Jπ = 0+, this
condition can only be achieved if the first allowed Gamow-Teller (GT)
transition into the Z−1 isobar is at a relatively low-lying excited state
energy, while the first allowed Gamow-Teller transition into the Z−2
isobar is at a relatively high-lying excited state energy such that it
cannot be immediately captured into following the transition from
(Z,A) → (Z − 1, A) [54]. If the (Z − 1, A) excited state with spin-
parity Jπlow is significantly thermally populated, nuclei will be drained
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Chapter 1

Introduction

This dissertation discusses the results of experiment e09039 performed at the National Su-

perconducting Cyclotron Laboratory, a time-of-flight mass measurement that resulted in an

extension of the known nuclear mass surface for neutron-rich isotopes of argon through iron.

This chapter will serve to briefly motivate nuclear mass measurement and justify the use

of the time-of-flight technique. The second and third chapters will describe the methods

employed in the measurement and the data analysis, respectively. It was anticipated that

these chapters will be of the greatest potential use for future practitioners, and so an attempt

was made to provide a thorough explanation that could be understood by an introductory

graduate student. The fourth chapter contains the mass measurement results, including com-

parisons to theoretical predictions, along with detailed discussions of the implications that

the newly measured masses have for nuclear structure and nuclear astrophysics. This and

the fifth chapter, which provides a brief outlook on the future of time-of-flight mass mea-

surements, were written to be interesting to specialists interested in the scientific results.

Nonetheless these two chapters contain sufficient introductory material so that non-experts

should be able to take away the salient details. Finally, the appendices contain more details

which are likely to only be of interest to future practitioners of the time-of-flight technique,

including a brief discussion of lessons learned and suggestions to take into consideration for

future measurements that are similar to the one presented in this dissertation.
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1.1 Nuclear structure

In the early days of nuclear physics research, it was recognized that nuclear masses provided

important insight into the fundamental structure of nuclei. The father of nuclear mass spec-

trometry, Francis Aston 1, remarked in 1927 [65],

“The accurate determination of these divergences [from the whole-number rule] is of funda-

mental importance since it is one of the few avenues by which the problem of the structure

of nuclei of atoms can be approached . . . ”.

Though the whole-number rule 2 today is a footnote in history, the role of nuclear masses as

an avenue to understand the problem of nuclear structure is as prominent as ever [66]. The

basic reason behind the fundamental connection between nuclear masses and nuclear struc-

ture is that the nuclear forces which bind nucleons together and reduce their summed mass

also describe the way in which constituent nucleons arrange themselves within a nucleus.

Shortly after the discovery of closed shells in nuclei [67], the mother of nuclear structure,

Maria Goeppert-Mayer, pointed out that nuclear masses, or more specifically their binding

energies, could be used to identify the presence of these closed shells [68]. A striking example

of this is provided by the so-called two-neutron separation energy, which is simply the mass

difference between two isotopes of an element which differ in constituency by two neutrons

(See Section 4.1.2 for a more in-depth explanation.), shown in Figure 1.1 for isotopes of neon

through titanium. The clear patterns which emerge in the two-neutron separation energy

can ultimately be traced back to the interplay between the forces at work within nuclei.

1As described in Section 1.3, though J.J. Thompson was the first to perform mass spec-
trometry, Aston was the first to systematically apply the technique towards the study of
nuclear masses.

2The ‘whole number rule’ states that nuclear masses are integer multiples of the mass
mass of hydrogen.
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Perhaps more intriguing than the presence of these trends in nuclear mass differences is

their disappearance for exotic nuclei. One prominent example of nuclear mass differences

indicating a shift in nuclear structure is the discovery of the ‘island of inversion’ at neutron

number N = 20, which was identified by an anomalous trend in the two-neutron separation

energy for the sodium isotopes [69] as compared to elements with higher atomic number

(which is apparent in Figure 1.1).
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Figure 1.1: Energy required to remove two neutrons from a nucleus as calculated by mass
differences S2n (See Equation 4.3.) for neutron-rich isotopes of neon through titanium. Clear
patterns emerge, particularly the rapid drop-offs after N = 20 for phosphorous P through
titanium Ti and N = 28 for isotopes of potassium K through titanium. (From [6].)

The nuclear mass measurements presented in this dissertation were utilized to explore the
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evolution of nuclear structure for neutron-rich isotopes of argon through iron, as discussed

in detail in the fourth chapter of this dissertation. In particular, Section 4.2 highlights the

advances which were made regarding the N = 28 shell closure and the island of inversion

near N = 40.

1.2 Nuclear astrophysics

One could argue that the birth of nuclear astrophysics can be traced back to the consideration

of nuclear masses. Informed by early experiments of Francis Aston, Sir Arthur Eddington

noted that the energy corresponding to the difference in mass between a helium nucleus

and four protons sufficed to provide the energy reserve required to sustain heating in stars

over their surmised lifetime [70]. The deep relation between stars and nuclei, in particular

the masses of nuclei, continues to present day, where precise nuclear mass data is essential

to accurately calculate the nucleosynthesis and nuclear energy release occurring in extreme

astrophysical environments, such as in supernovae and on neutron stars [71].

To date, nuclear masses have played an important role in understanding the microphysics

of the majority of the astrophysical sites of interest to the nuclear astrophysics community.

Examples can readily be found where the study of nuclear masses directly advances the

understanding of rapid neutron-capture (r-)process nucleosynthesis [72–74], nucleosynthesis

in neutrino-driven winds following core collapse supernovae [75], the energy generation and

abundance yield from the rapid proton-capture (rp-)process that takes place on the surface of

accreted neutron stars [23, 76, 77] , and the energy generation and general structure of both

accreted [78] and non-accreted [79] neutron star crusts, to name just a few recent examples.

The sensitive dependence of predictions produced by simulations of many astrophysical sce-
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narios on nuclear masses in part derives from the fact that mass differences, namely Q-values,

determine the temperatures or densities at which nuclear reactions can ensue. Additionally,

the balance between forward and reverse rates in nuclear reaction networks depends expo-

nentially on nuclear mass differences [71]. Figure 1.2 demonstrates the impact of varying the

mass-difference between the rp-process waiting-point nucleus 68Se and its proton-capture

daughter 69Br on the predicted light curve for type I X-ray bursts (See Section 4.3 for an

overview of the relevant astrophysics.) [7]. In this example the required uncertainty in the

nuclear masses involved is on the order of kT , where k is Boltzmann’s constant and T is the

environment temperature, as is the case for most reactions in the r- and rp-processes, where

reaction rates depend exponentially on the Q-value [71]. For the case of electron captures

in the neutron star crust, nuclear energy generation and the depth at which it happens are

of primary interest. Since mass differences in this case determine the depth at which energy

can be released and the maximum possible heat release (See Section 4.3.2.), masses must be

known with a precision of an order of magnitude or so less than the typical nuclear mass

difference. As such, uncertainties on the order of several hundred keV or better need to be

achieved.

As with the prior section, a more detailed discussion of the aforementioned topics is left

for the Results chapter (Chapter 4). There it is discussed how the nuclear masses resulting

from the measurement described in this dissertation impact results of model calculations of

electron capture reactions occurring within the accreted neutron star crust. Section 4.3.2

in particular demonstrates the implications of the mass measurement results reported in

this dissertation for the nuclear heating and cooling processes that take place in the outer

neutron star crust.
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Figure 1.2: Demonstration of the 68Se–69Br mass difference Sp impact on a calculated X-ray
burst light curve. The black lines demonstrate the uncertainty in the X-ray burst light curve
for a 69Br mass uncertainty of ±300 keV, where it is possible that significant two-proton
capture occurs on 68Se to make 70Kr. An uncertainty reduction to ±42 keV makes it clear
that proton emission of 69Br primarily occurs rather than proton capture after the 68Se(p, γ)
reaction occurs in this calculation of the rp-process reaction network. (Adapted from [7].)

1.3 Overview of nuclear mass measurement

The first indication that quantum systems were special with regard to mass came with

Einstein’s postulate of mass-energy equivalence [80], now codified by the well known relation

E = mc2. This fundamental relation describes the fluidity with which mass can be converted

into energy, and thus it is so that the sum of the masses of nucleons that make up a nucleus

do not necessarily equal the mass of the nucleus itself, as first demonstrated by Aston [65].

This phenomenon is known as nuclear binding and the energy that is liberated due to the

reduced mass of a nucleus with respect to the sum of its nucleons is known as the ‘binding

energy’. Though early attempts to predict nuclear masses via the so-called ‘liquid drop’
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model performed remarkably well [81], to date no mass model exists with the power to

accurately predict nuclear masses within sufficient precision and in many cases predictions

from various models are widely discrepant [82, 83].3 Thus experimental mass measurements

are crucial to provide data for applications that require accurate nuclear masses.

Experimental mass spectrometry began just over 100 years ago when J.J. Thomson first

observed ‘positive rays’ [84], which we now know to be positively charged ions [85]. In

the past century numerous methods have been employed to obtain nuclear masses [42, 86–

88] 4. Currently, the leading mass measurement techniques which are recognized to give

accurate and precise masses of radioactive nuclei employ storage rings [9, 89, 90], Penning

traps [8, 91], multi-reflection time-of-flight [11, 92], and direct time-of-flight [6]. Each method

has its strengths and weaknesses, so the aforementioned techniques can be thought of as

complementary ways to approach the mapping of the nuclear mass surface.

Penning trap measurements obtain nuclear masses by measuring the resonant frequency of

the nucleus of interest orbiting within a few cubic-centimeter volume, confined by a strong

magnetic field and hyperbolic electrodes [8]. The resonant frequency is converted into a

nuclear mass for the nucleus of interest by comparison to the resonant frequency of an atom

or atomic cluster of known mass which is nearby in magnitude to the expected mass of the

nucleus of interest [93]. Penning trap mass spectrometry requires that nuclei of interest be

inserted into the trap at low velocity. This means that nuclei must either be produced with

a low initial velocity, as with the isotope separation online (ISOL) method, or be slowed

down from their initially high velocity and guided into the trap [8]. Regardless of the exact

3A few leading global mass models are described and compared to experimental results
in Section 4.1.

4Note that many of these techniques actually directly obtain ion masses and then the
nuclear mass is derived by correcting for electron masses and binding energies. However, for
simplicity we will refer to the nuclear mass as what is being measured.
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technique used, Penning trap mass measurements tend to take on the order of hundreds of

milliseconds per measurement, where 8.8 ms is the shortest half-life measured thus far [94],

and, provided on the order of a hundred events survive the measurement before undergoing

radioactive decay, a typical precision of δm/m ∼ 10−7 is commonly achieved for radioactive

nuclei [8].

Storage rings are used to measure nuclear masses either via the isochronous mass spec-

trometry (IMS) method or the Schottky mass spectrometry (SMS) method. In both methods

several exotic nuclei are injected into a ring in which their orbit is confined via magnetic

fields. Nuclei with well known masses are injected simultaneously and are used for calibra-

tion [9]. IMS employs isochronous ion optics (See Section 2.2.3.), where the flight time per

turn is measured with fast-timing detectors and directly relates to the mass. This technique

takes on the order of milliseconds for a single event measurement and a typical precision of

the order δm/m ∼ 10−6 is commonly achieved [10] (Though, shorter times can be achieved at

the cost of precision [9].). SMS is used to obtain nuclear masses by making non-interfering

revolution-frequency measurements via capacitive pickups. In order to obtain a resolved

frequency measurement, SMS requires that the ion beam be electron cooled to reduce its

momentum spread. This process takes on the order of seconds, but is capable of yielding

typical precisions of δm/m ∼ 10−7 [9]. Both IMS and SMS require on the order of one hun-

dred events per nucleus to produce a precise mass measurement, provided several reference

nuclei are also observed with higher statistics.

Multi-reflection time-of-flight (MR-TOF) mass measurements employ a method similar

to IMS, where the flight time of an ion is measured over a long flight path, however with

MR-TOF the path length consists of several turns within an electrostatic trap [92]. Ions are

injected into the trap and confined by electrostatic mirrors, typically for tens of milliseconds,
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until they are finally allowed to exit and terminate their flight path on a microchannel plate

detector [95]. Nuclei with experimentally known masses [1] are used to calibrate the rela-

tionship between mass and time-of-flight. Roughly a thousand events are needed for nuclei

that are to be used for calibration purposes and of the order of a hundred events are needed

for a mass measurement [96]. The MR-TOF technique is relatively new, as it is typically

employed as a beam-purification mechanism for Penning trap mass measurements [11, 97].

A direct time-of-flight (TOF) mass measurement, the focus of this dissertation, employs

a method which is similar to IMS, where the flight time of an ion between two fast-timing

detectors is converted into a nuclear mass by comparison to the flight times of nuclei with

known masses. In contradistinction to IMS, the flight path for direct TOF measurements is

not a closed loop and thus only a single flight time is determined for a single beam particle.

This technique is very rapid, taking on the order of microseconds, but is limited to a typical

measurement precision of δm/m ∼ 10−5 [6]. Similar to storage ring mass measurements,

direct TOF requires hundreds of events for a single nucleus to yield a precise mass with

the caveat that several nuclei with well known masses must also be observed with higher

statistics (See Section 3.9.).

The choice of a mass spectrometry technique is determined by the precision requirement

to answer the scientific question at hand and by the applicability to the nucleus of interest

given its half-life, production mechanism, and associated beam intensity. To answer the

question of applicability, one must consider the limit in precision a given technique has due

to systematic considerations as well as the limit in precision due to statistical considerations,

i.e. the number of measurement-events available for the nucleus of interest and its calibrants.

While the systematic limit to precision is inherent to a technique, ample statistics are de-

termined by the efficiency with which nuclei and calibrants are produced and transported
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Figure 1.3: Comparison of typical observation times for a single event and ultimately achiev-
able precision for the main nuclear mass measurement techniques currently employed for
radioactive nuclei. Typical values are shown for Penning traps (PT) [8], storage rings em-
ploying Schottky mass spectrometry (SR-Sch) [9], storage rings employing isochronous mass
spectrometry (SR-IMS) [10], multi-reflection time-of-flight devices (MR-TOF) [11], and di-
rect time-of-flight measurements (TOF) [6].

to the measurement device. Transport efficiency is also impacted by the number of nuclei

which survive radioactive decay during transport. Though a direct TOF mass measurement

is clearly lacking in achievable precision (typically δm/m ∼ 10−5) with respect to other com-

mon techniques, it is a more efficient method as it allows for the simultaneous measurement

of hundreds of nuclei and accepts continuous beam with high transmission efficiency. As is

apparent in Figure 1.3, the swift measurement time renders decay losses to be negligible. Due

to the reliance of direct TOF mass spectrometry on reference nuclei with well-known masses

(See Section 3.9.), it must be noted that this technique is primarily useful for extending the
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known nuclear mass surface beyond the limit achieved by other means.
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Figure 1.4: The trend in exoticity ǫ, which quantifies the relative accessibility of a nucleus
for mass measurement, as a function of the ratio of nucleons A to protons Z for neutron-rich
isotopes of neon, titanium, iron, and tin. When experimental values [12] are unavailable,
theoretical β-decay half-lives and the neutron drip-line used in [13] were used. Filled shapes
indicate nuclei with experimentally known masses [1]. (From [6].)

In order to quantify the experimental reach of direct TOF mass measurement, hereinafter

referred to as TOF mass measurement, with respect to other techniques, we can assign to

each nucleus a quantity known as exoticity ǫ [6]5. Exoticity accounts for the difficulty in

production of a nucleus, which is related to its isotopic distance from stability dNstab and

the drip-line dNdrip, and the time available to measure a nucleus, which is related to the

β-decay half-life Tβ :

ǫ = log10

∣

∣

∣

∣

∣

dNstab

Tβ(dNdrip + 1)

∣

∣

∣

∣

∣

, (1.1)

5An alternative metric, but similar in spirit, the so-called “relative isobaric distance from
stablity”, is employed by [42].

11



where, when experimental data are not available, we adopt β-decay half-lives (in seconds)

and a drip-line defined in [13]. To give a feel for how ǫ evolves in the nuclear landscape, the

trends in ǫ for neutron-rich isotopes of neon, titanium, iron, and tin are shown in Figure 1.4.

It is apparent that nuclei with ǫ ≈ 1 are at the current frontier of mass spectrometry and

nuclei with ǫ ≈ 5 are on the neutron drip-line (as defined by [13]). Since Tβ ∼constant

for very exotic nuclei, typically around tens of milliseconds [12], ǫ is primarily dominated

by neutron-richness with respect to stability6. The comparison of ǫ with the measurement

precision for Penning trap and TOF mass measurements in Figure 1.5 makes it clear that

though Penning trap measurements are orders of magnitude more precise, the TOF method

reaches the more exotic isotopes. Figure 1.6 shows the exoticity of nuclei participating in the

astrophysical rp-process, r-process, and neutron star crust nuclear reaction networks, where

a distinction is made between nuclei whose mass is either known or not known experimentally

as of [1]. From this figure it is evident that, in order to experimentally determine the masses

of nuclei participating in extreme astrophysical processes, mass measurement techniques that

probe very exotic nuclei such as the TOF mass measurement approach are required.

6This feature is well suited to describing the experimental reach of TOF mass mea-
surement because such measurements are typically not limited by half-lives, but rather are
limited by the production of nuclei of interest and reference nuclei, which rapidly decreases
for increasing distance from stability [6].
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1.4 TOF mass measurement

1.4.1 TOF mass measurement principle

The relationship between time-of-flight TOF and nuclear rest mass mrest arises from the

equation of motion for a charged massive particle through a magnetic system. The two

counteracting forces that act upon the nucleus as it traverses a system with fixed magnetic

rigidity Bρ are the Lorentz force FL and the centripetal force Fc. Thus we obtain the

following relationship:

Fc = FL

γ(v)mrestv
2

ρ
= qvB

→ mrest =
1

v

q(Bρ)

γ(v)

mrest =
TOF

Lpath

q(Bρ)

γ

(

Lpath
TOF

) , (1.2)

where the Lorentz factor γ is a function of velocity v, which is in turn the ratio of flight-path

length Lpath to flight time TOF. It follows that, in principle, the simultaneous measurement

of an ion’s TOF, charge q, and Bρ through a system of known Lpath yields mrest.

However, in practice neither Lpath nor the ion optical dispersion used to determine Bρ

(See Section 2.4.) are known with sufficient precision. Furthermore, only a measurement of

Bρ relative to the central ion optical axis is performed. Instead, the
mrest

q (TOF) relationship

is determined empirically by measuring the TOF of calibration or reference nuclei [6]. The

reference nuclei must have well-determined masses, typically from previous Penning trap

mass measurements, and no isomeric states [98] that are so long-lived that they would
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survive the flight-path (See Section 3.9.). Additionally, to reduce systematic errors, the

reference nuclei must have a similar charge to mass ratio m/q and nuclear charge Z and be

measured in the same experiment as the nuclei of interest. The dissimilarity in m/q and

Z between reference nuclei and nuclei of interest gives rise to systematic uncertainties that

must be accounted for, as discussed in Section 3.9.4.

Equation 1.2 provides an estimate for the precision with which TOF must be measured

in order to achieve a given mass uncertainty, independent of concerns regarding systematic

effects : δm/m ∝ δTOF/TOF→ δTOF∝ δm/m×TOF. For the typical values encountered

in the experiment described in this dissertation, TOF≈500 ns and m ≈50 GeV, to achieve

an uncertainty (not including systematic effects) of 100 keV for a given nucleus, its TOF

must be determined with a precision of δTOF≈1 picosecond. It is apparent that to achieve

a mass measurement uncertainty of a few hundred keV, effects must be controlled for that

systematically impact the TOFs of nuclei on the order of a picosecond. This fact provides a

substantial challenge for experiment design and data analysis (See Chapter 3.).

1.4.2 Previous TOF mass measurements

To date, three facilities have employed the time-of-flight TOF technique to obtain nuclear

masses [6]: the Time-of-Flight Isochronous Spectrometer (TOFI) at Los Alamos National

Laboratory (LANL) [20], the Spectromètre à Perte d’Energie du Ganil (SPEG) at the Grand

Accélérateur National d’Ions Lourds (GANIL) [21], and the TOF setup at the National Su-

perconducting Cyclotron Laboratory (NSCL) which employs the S800 Spectrograph [22].

TOFI, which was in operation from 1987–1998 [99, 100], employed isochronous ion optics

(See Section 2.2.3.), obtaining the mass over charge m/q of ions from a precise TOF mea-

surement. In addition to a precise TOF measurement, the mass measurements at GANIL
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(which took place between 1986–2012 [101, 102]) and NSCL (which have taken place from

2006–present [29, 31, 36, 78]) included a precise measurement of beam particle’s magnetic

rigidity in order to cope with the large momentum spread of the nuclear beams produced

there. Together, these three facilities have provided over 280 nuclear masses [6].

TOFI measured the TOF of nuclei produced via spallation over a ∼14 m flight path for

typical flight times of ∼600 ns. Timing measurements were performed with microchannel

plate detectors and energy loss measurements for particle identification (See Section 2.5.2.)

were performed with either a solid-state detector telescope, a gas ionization detector, or a

Bragg spectrometer. SPEG measured the TOF of nuclei produced via projectile fragmen-

tation over a ∼115 m flight path for typical flight times of ∼1 µs. Timing measurements

were performed with the accelerator RF or an avalanche counter and a plastic scintillator

and energy loss measurements for particle identification were performed with an ionization

chamber and plastic scintillator. NSCL measured the TOF of nuclei produced via projectile

fragmentation over a ∼60 m flight path for typical flight times of ∼500 ns. As described in

Chapter 2, timing measurements were performed with plastic scintillators and energy loss

measurements were performed with an ionization chamber. For comparison, a schematic of

each of the three measurement setups is given in Figure 1.7 and some of the main character-

istics are given in Table 1.1. The nuclei whose mass was measured, with mass uncertainties

ranging from ∼100–1500 keV, by each of the three TOF setups (excluding the NSCL mea-

surement presented in this dissertation) are shown in Figure 1.8.

The following chapters are devoted to the most recent TOF mass measurement at the

NSCL. A detailed description is given of the experimental technique in Chapter 2, the analysis

in Chapter 3, and the results in Chapter 4.
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TOFI

SPEG

NSCL

Figure 1.7: Schematics of the TOFI, SPEG, and NSCL TOF mass measurement setups.
Letters indicate the following components: C collimator, D dipole magnet, ∆E energy loss
detector, EF electrostatic filter, H hodoscope, MF magnetostatic filter, P position detector,
PB primary beam, Q quadrupole magnet, QT quadrupole magnet triplet, S sextupole mag-
net, ST stopper, T timing detector, TG production target, TKE total energy detector, and
W wedge. (From [6].)
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Facility Solid Angle [msr] δp/p [%] Bρmax [T.m] Lpath [m] m/δmachieved

TOFI 2.5 4 0.9 14 2600

SPEG 4.9 6 1.44 116 4000

NSCL 20 1 4 60 5500

Table 1.1: Quantities of interest which describe main characteristics of the TOFI, SPEG,
and NSCL TOF mass measurement setups.

Figure 1.8: Nuclei measured by TOF mass measurement setups at TOFI, SPEG, and NSCL
(as of 2013) as indicated by neutron number N and proton number Z. For reference, the
neutron and proton closed shells at 8, 20, 28, and 50 are indicated. Note that several nuclei
have been measured by more than one facility. (From [6].)
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Chapter 2

Experimental setup

The masses of several neutron-rich nuclei were determined for the first time via the time-of-

flight mass measurement technique. The contents of this chapter describe the experimental

technique and the following chapter discusses the data analysis procedure used to obtain

the masses. The experiment, NSCL experiment E09039, took place at the National Super-

conducting Cyclotron Laboratory (NSCL) 11–20 November 2011 and the data analysis was

concluded Fall of 2014.

2.1 Overview of NSCL TOF mass measurement setup

The time-of-flight mass measurement set-up at the NSCL [22, 31] consisted of measuring

the flight time between the A1900 and S800 focal planes (See Section 2.3.), the relative

magnetic rigidity at the S800 target position (See Section 2.4.), and energy loss and tracking

information in the S800 focal plane (See Section 2.5.) for ∼200 nuclides simultaneously over

the course of ∼100 hours [29]. The nuclei of interest, neutron-rich isotopes of argon through

iron, were produced by fragmenting a 82Se beam alternately on one of two beryllium targets,

where a thin target generally produced nuclei with experimentally known masses and a thick

target generally produced the more neutron-rich nuclei of interest (See Section 2.2.1.). A

wedge degrader was employed in the intermediate image of the A1900 fragment separator

(See Section 2.2.2.) to remove low atomic number nuclei that were not of interest for this
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experiment to limit the overall beam rate (See Sections 2.2.3 and 2.5.1.). A schematic of the

set-up is shown in Figure 2.1 and the scheme for the data-acquisition electronics is shown in

Figure 2.2. The following sections in this chapter describe components of the aforementioned

setup in more detail.

Figure 2.1: Schematic of the time-of-flight mass measurement set-up at the National Su-
perconducting Cyclotron Laboratory (NSCL). The coupled K500 and K1200 cyclotrons [26]
provided a 140 MeV/u 82Se32+ beam which was alternately impinged on beryllium targets
of 517 mg/cm2 and 658 mg/cm2 thickness. The secondary beam fragments were transported
through the A1900 fragment separator [27] where a 7.2 mg/cm2 Kapton wedge degrader re-
moved the high flux of low-Z nuclei that would otherwise have complicated fragment identi-
fication. The time-of-flight TOF was measured by fast-timing scintillators (See Section 2.3.)
at the A1900 and S800 focal planes and a relative measurement of magnetic rigidity was
performed at the base of the S800 spectrograph (See Section 2.4.). Beam fragments were
identified using the TOF and the energy-loss information from the ionization chamber lo-
cated in the S800 focal plane [28] (See Section 2.5.2). Note that the A1900 timing signal was
the TOF ‘stop’ signal and the S800 timing signal was the TOF ‘start’ in the experiment data
acquisition (See Section 2.3.1.). (From [29].)
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Figure 2.2: Diagram of electronics scheme used for the time-of-flight mass measurement
(NSCL experiment E09039). Timing and charge signals were obtained from photomultiplier
tubes (PMTs) located in the A1900 and S800 focal planes as well as from the microchannel
plate detector (MCP). The four charge signals were obtained from the MCP corners were
amplified by two different gains. Detection rates on all detectors were monitored by scalers.
An S800 timing signal was generally used as the event trigger, though the MCP was used as
the event trigger for the mask-run made to assess the beam position-measurement resolution.
(Contact the author for an electronic form of this figure.)
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2.2 Production and transport of nuclei

Nuclei were produced via in-flight projectile fragmentation [103]. In this process a stable

atom is impinged upon a stable target at high velocity, the reaction products, ‘fragments’,

of interest are collected and separated-out from all fragments by a beam analyzer, and the

fragments of interest are sent on to an experimental end-station. For the time-of-flight mass

measurement reported here, a 82Se beam was accelerated by the National Superconducting

Cyclotron Laboratory (NSCL) coupled K500 and K1200 cyclotrons [26] to 140 MeV/u and

impinged upon a beryllium target. Fragments (See Figure 2.3.) were analyzed by the A1900

fragment separator [27] and transported to the focal plane of the S800 spectrograph [34], as

seen in Figure 2.1 1.

2.2.1 Fragment production

82Se was chosen as the primary beam from the list of those available at the NSCL [104] since

it gave the highest yield for the neutron-rich isotopes of argon to iron that were the focus

of the time-of-flight mass measurement [105]. The electron cyclotron resonance (ECR) ion

source delivered 82Se [106] in a 13+ charge-state to the K500 cyclotron, which accelerated

82Se13+ to ∼12 MeV/u. The selenium beam was injected into the K1200 cyclotron, stripped

to a 32+ charge state by a carbon foil [107], and accelerated to ∼140 MeV/u. Together the

coupled cyclotrons [26] provided a 82Se32+ primary beam on the production target with an

intensity of ∼30 pnA (particle nanoamps).

1The numbers following devices labeled K, A, and S in the above description denote the
maximum kinetic energy for a proton KEp,max as determined by the device’s maximum

magnetic rigidity Bρmax using the non-relativistic formula KEp,max = p2

2mp
=

(qpBρmax)
2

2mp
,

where mp and qp are the proton’s mass and charge, respectively, and p2 is it’s momentum
squared.
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The primary beam was impinged upon a beryllium target to produce a cocktail beam of

various isotopic species, ‘fragments’, via a mechanism in which it is thought a primary beam

nucleus has some nucleons scraped-off to form a compound nucleus which then evaporates-

off several more nucleons during deexcitation 2. Beryllium was used as the target material

because it has a relatively large fragment production cross section per energy lost through

atomic interactions, due to a small electrons/atom ratio, and a high melting point, which

means it can withstand the large energy density deposited by the primary beam [103, 113].

Two beryllium targets were alternately employed: a ‘thin’ target used to produce less-neutron

rich nuclei used as calibrants in the mass measurement (See Section 3.9.) and a ‘thick’ target

used to produce the more neutron-rich nuclei of interest. The thicker target on average

produced more exotic nuclei since a beam particle typically experienced more beam-target

interactions than in the thin target. The thin target was nominally 517 mg/cm2, though

it was measured to be 515.813 mg/cm2, and sustained beam-on-target for ≈11 hours. The

thick target was nominally 658 mg/cm2 (NSCL target ‘658a’), though it was measured to

be 675.057 mg/cm2, and sustained beam-on-target for ≈91 hours. The combined yield of

both targets is shown in Figure 2.3. No appreciable target degradation was observed over

the duration of the experiment.

2.2.2 Fragment separation

Fragments, which exited the target with a typical energy of ∼ 90 − 100 MeV/u, were for-

ward focussed and were collected in the A1900 fragment separator [27] with >90% collection

efficiency [103]. Fragment separation was achieved via the Bρ-∆E-Bρ method [114–116],

2This production mechanism is typically described via the abrasion-ablation model [108–
111], though it should be noted that recent studies show this model may be deficient in
describing the production of some neutron-rich nuclei via projectile fragmentation [112].
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where the rigidity Bρ settings of the first and second halves of the A1900 were used for

selection of momentum over charge Bρ = p/q (slits were set to ±0.5% momentum accep-

tance) and a 7.2 mg/cm2 Kapton (C22H10N2O4) wedge degrader [115, 116] was placed at

the intermediate image (A1900 ‘I2’ position [117]) to discriminate ions by energy loss ∆E.

The wedge degrader was chosen to be as thin as possible to maximize transmission of the

fragments of interest [117] and minimize Z-dependent TOF-perturbations, but thick enough

to limit the beam rate at the first S800 focal plane cathode readout drift counter (CRDC)

(See Section 2.5.1.) by removing low-Z fragments with a similar mass-to-charge m/q ratio

to the fragments of interest [103, 115].

2.2.3 Fragment transport

Achromatic ion optics were chosen to provide a focused beam on the timing scintillators at

the A1900 and S800 focal planes [22, 31, 103, 115, 118, ch.9,sec.2.3]. The total flight-path

for ions between the scintillators was ≈60.57 m. The ion optics of the S800 spectrograph

analysis line were set to ‘dispersion matching mode’, providing a momentum dispersion

just before the entrance of the S800 (the ‘target position’) of δp/p ≈ 1%/11 cm [34]. The

active height of the MCP detector located at this position was ≈10 cm (See Section 2.4.5.),

limiting the momentum acceptance to δp/p ≈ ±0.45%. Magnetic elements in the A1900,

transport line, and S800 were tuned to optimize transmission of 63Cr and 65Mn, which were

ultimately transmitted with ∼50% and ∼65% efficiency, respectively. The full set of nuclei

delivered over the course of the mass measurement is pictured in Figure 2.3. Isochronous

optics, which are set such that an ion’s time-of-flight TOF is independent of it’s path-

length (i.e. also it’s momentum) [118, 119, ch.9,sec.3.1-3.2], were also previously explored

however they were found to yield worse TOF resolution than the achromatic setting by
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∼ ×2 [120]. The dispersion produced by the achromatic ion optics at the S800 target

position was ∼0.04 ns/mm (See Section 3.6.), which corresponded to ∼ 120 ns/T.m.

Figure 2.3: Particle identification (See Section 2.5.2.) plot of nuclei produced in the time-of-
flight (TOF) mass-measurement experiment, where the color indicates production intensity
(counts per 100 picoseconds×10 ionization-chamber-adc-units) and TOF was not rigidity-
corrected (See Sections 3.6 and 3.7.). Nuclei located to the right of the red-line had no
known experimental mass prior to the mass-measurement reported here; 50Ca, 54Ca, 65Fe,
and 69Fe are labeled for reference.

2.3 Timing measurement

The dispersion matched ion optics mode [31, 121] was chosen to provide achromatic transport

(See Section 2.2.3.) of ions from the A1900 [27] focal plane to the S800 [34] focal plane (See

Figure 2.1.), where the foci at the timing detectors, due to the achromatic nature of the
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ion optics [103], had a sub-centimeter spread 3 in the plane perpendicular to the beam line.

Flight times TOF were obtained for ∼200 nuclei, ranging from atomic number 14 ≤ Z ≤ 30

and atomic mass to atomic number ratio 2.35 / A/Z / 2.72. A typical TOF was ∼500 ns

and the total span of TOFs of observed nuclei was ∼ 50 ns (See Figure 2.3.).

2.3.1 Method overview

The method developed by [22, 31] was used to measure the time-of-flight TOF for nuclei

in the mass measurement experiment. Two 1 cm-tall×1.5 cm-wide×0.25 mm-thick BC-418

plastic ultra-fast timing scintillators from Saint-Gobain Crystals [30] were each coupled to

two Hamamatsu [122] R4998 1 in-diameter head-on photomultiplier tubes (PMTs) [123, ch.9]

(housed inside of their modified [31] H6533 assembly), which were biased to ∼ −2 kV, via

small plastic light guides and optical grease, as pictured in Figure 2.4. The signal from each

PMT was split, sending one signal through a Tennelec TC455 Quad CFD (constant fraction

discriminator) followed by a Phillips 710 leading edge discriminator (LED) to be used for

timing and sending the other signal directly to a Phillips 7166 QDC (charge-to-digital con-

verter) to assess scintillator light-output for position and atomic number Z information. To

maintain the quality of signals generated by the PMTs in the A1900 as they were transported

to the data acquisition electronics on the top floor of the S800 vault, PMT signals were sent

through RG-8/U type coaxial cables from Belden (model 7810A) which provided a delay of

∼3.84 ns/m [124]. These particular coaxial cables, which were insulated and jacketed with

high-density polyethylene and shielded with a bonded aluminum foil that was surrounded

by tinned copper [124], were chosen as they were found to maintain the quality of timing

3The 1σ spread in the dispersive position on the first CRDC in the S800 focal plane (See
Section 2.5.1.) was ≈0.7 mm.
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signals with minimal signal attenuation [22, 31]. The length of the delay cables (∼520 ns)

was such that the timing signals from the A1900 PMTs reached the timing electronics after

the signals from the S800 PMTs so that the S800 signals could be chosen to provide the

‘start’ for an event and the A1900 signals could be chosen to provide the ‘stop’ for an event.

This inversion was necessary because beam transmission from the A1900 to the S800 was not

100% (See Section 2.2.3.), and this scheme prevented the electronics from having a ‘start’

that did not have a corresponding ‘stop’.

Figure 2.4: Photograph of a single BC-418 ultra-fast timing scintillator from Saint-Gobain
Crystals [30] coupled to two R4998 head-on photomultiplier tubes (PMTs) via small plastic
light-guides and optical grease. An aluminum frame helped hold the PMTs to the scintillator
and allowed for a collimator to be mounted on the upstream side to protect the PMTs from
stray beam. (Photo Credit: Milan Matoš and Alfredo Estradé [31].)

Various combinations were made of the timing signals to create several time differences

to be used in the data analysis. A single time-difference was recorded by using one timing

signal as the ‘start’ and another as the ‘stop’ in an Ortec 566 TAC (time-to-amplitude

converter) and sending the TAC output to an Ortec AD413A Quad ADC (analog-to-digital

converter). Direct time differences between timing detectors and timing differences with

respect to a stable clock were measured. Referring to the two PMT signals accompanying

a single scintillator as “up” (U) and “down” (D), the S800 PMTs with the prefix “S3”,

the A1900 PMTs with the prefix “XF”, and the clock (Ortec 462 Time Calibrator) used to
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provide random ‘stop’ signals as “Clk”, the following time differences were recorded: S3U–

S3D, XFU–XFD, S3U–XFU, S3D–XFD, MCP–Clk (discarded due to an electronics glitch),

XFU–Clk, XFD–Clk, S3U–Clk, and S3D–Clk, where the first signal in the pair is the ‘start’

and the second is the ‘stop’. A veto was put in place to reject any TAC ‘stop’ signal from

the clock that arrived within 10 ns of the TAC ‘start’ in order to avoid a previously found

glitch in the electronics for start-stop time differences <10 ns [31].

The difference between two time-differences made with a clock-induced ‘stop’ signal di-

rectly yields the true time-difference with respect to the ‘start’ signals, offset by an integer

multiple of the clock period (40 ns). These so-called clock times are for each nuclide dis-

tributed randomly across the full-range of the ADCs in order to cancel-out any systematic

effects from nonlinearity in the ADC channel-to-time mapping. The direct TOF measure-

ments were used to correct for the fact that a different number of clock pulses could have

occurred for multiple events of a single isotope’s transit from the A1900 to the S800. For

example, a TOF using the “down” PMT signals for the TAC ‘start’ signals and clock pulses

for the TAC ‘stop’ signals would be constructed as:

TD,Clk = TS3D−Clk − TXFD−Clk +NDτ, (2.1)

where TS3D−Clk is the S3D–Clk time span, TXFD−Clk is the XFD–Clk time span, ND is the

number of clock pulses that occurred during the event’s TOF, and τ is the period of the

clock (for this experiment, 40 ns). The procedure for performing the clock-pulse correction,

as well as a description of other corrections, to generate the actual TOF for a given event

is described in Section 3.2. Time-differences were recorded between PMTs of the same

scintillator (e.g. S3U–S3D and XFU–XFD) to allow for a correction of the measured TOF
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for different light transit times from different scintillator ion-impact positions (See Figure 2.5

and Section 3.2.). Details on the cuts and corrections made to timing signals and an estimate

for their dead-times are given in Section 3.1, and details of event-TOF construction are given

in Section 3.2.

Figure 2.5: Simplified picture of four measured beam events of the same isotope which would
yield different times-of-flight TOFs without the scintillator position correction. Here four
events (a, b, c, and d) of the same isotope follow different paths from the scintillator in
the A1900 to the scintillator in the S800, where the flight path has been simplified to a
straight line. Assigning a direct flight time TOFdirect=50 ns and noting that the light-travel
time across the 1.5 cm scintillator is dt = 1.5

c/n
= 79 ps, where n = 1.58 is the refractive

index of BC-418 [30] and c is the speed of light in vacuum, the direct-down TOF TS3D−XFD
for the four events would be TD,a = 50.000 ns, TD,b = 49.921 ns, TD,c = 50.079 ns, and
TD,d = 50.000 ns without a scintillator position correction. Applying the correction described
in Section 3.2.2, +0.5× (TXFU−XFD − TS3U−S3D), corrects all four flight times to 50.000 ns.

2.3.2 Timing detector resolution

The choice of timing detectors, namely BC-418 scintillators coupled to Hamamatsu R4998

photomultiplier tubes (PMTs) in a Hamamatsu H6533 assembly, was made due to their

fast response time and superb timing resolution. The coupling [123, ch.8,sec.III] of the

scintillator, which nominally had a rise time of 0.5 ns [30], and PMT, which nominally had

a rise time of 0.7 ns and electron-transit time spread of 0.16 ns [122], were found to have a

combined rise time of 1.5 ns for a 140 MeV/u 136Xe beam [22, 31]. The signal rise time was
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expected to depend on the beam species, since scintillator response depended on the energy

and atomic number Z of the detected particle [125, 126], so timing signals were processed

through a constant fraction discriminator (CFD) to remove this effect. After transmission of

the discriminator output signal from the detector location to the central electronics setup,

a leading-edge-discriminator was used to restore fast-rising signal for input to the time-to-

amplitude converter (TAC).

The bias was optimized for each PMT to give the minimum time resolution at the lowest

current possible. A larger PMT bias decreased the relative spread in electron-transit time

within the PMT [123, ch.9,sec.IV B]. In addition, increasing the PMT bias increased the

timing-signal amplitude while keeping the rise time near-constant and thus created a steeper

signal. The steeper signal was less sensitive to electronic noise/jitter and thus produced

a higher-fidelity timing signal. (Factors which affected the signal/noise due to scintilla-

tor photon-count are discussed in detail in Section 2.3.3.). However, the voltage was not

increased beyond this optimum value in order to keep the operating current as low as pos-

sible to increase the lifetime of the PMT. The optimum voltages for the four PMTs were:

VS3U = −1900 V, VS3D = −2000 V, VXFU = −1800 V, and VXFD = −2000 V. After

the voltage adjustments, the CFD settings had to be altered to remove the timing-signal

dependence on the ion-impact position. This was achieved by changing the CFD-settings

(zero-crossing and threshold) until a linear relationship was obtained between the charge-

collected from one PMT (via the QDC) and the time-difference between the two PMTs for

a given scintillator, as detailed in [31, sec.2.21]. Timing measurements were also found to be

sensitive to temperature changes, likely due to thermal-response of materials in the PMTs,

TACs, and ADCs [31, sec.3.3.2]. Thermocouples monitored vault temperatures and tem-

peratures on the ADCs and reported them to the data acquisition event-by-event via the
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Experimental Physics and Industrial Control System (EPICS). Ultimately we found that the

random variations in temperature only slightly broadened the TOF-resolution. To avoid the

introduction of systematic errors, a temperature correction to TOF was not applied.

The time-resolution of the timing detectors was found to be σtiming−detectors ≈ 30 ps [22,

31]. Note that the TOF resolution, ∼ 81ps (See Section 3.8.), was poorer due to the spread

introduced from the beam line ion-optics and from the finite position resolution of the mi-

crochannel plate detector (MCP) (See Sections 2.4.4 and 3.5.2.) used for the ion-rigidity

correction.

2.3.3 Timing measurement efficiency

The efficiency for detecting a timing-signal was primarily influenced by the scintillator light-

output due to ion impacts, the light-collection efficiency of the scintillator and light guide

combination, and matching of the wavelength emission range of the scintillator with the

acceptance range of the photomultiplier tube (PMT). Since the scintillator efficiency is sen-

sitively related to the timing signal strength, it is directly related to the timing resolution

(See Section 2.3.2.).

Scintillator light-output is primarily dependent on energy deposited within the scintil-

lator by ionizing radiation [123, p.229]. Näıvely this would lead one to choose a thick

scintillator for the timing measurement, however the scintillator thickness had to be kept

at a minimum to minimize energy loss, which introduces Z-dependent perturbations to

the ions’ TOF. Employing the ATIMA energy loss model in LISE++ [127], we found the

average energy loss within the fast-timing scintillator of ions produced in this experiment

(〈Z〉 ≈ 23) was ≈ 0.5 MeV/µm, and thus a total energy loss of ∼125 MeV/event. The

photon yield of BC-418 is 67% that of anthracene [30] (C14H10), meaning BC-418 yields
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∼11,000 photons/MeV (See Tables 8.1 and 8.3 of [123].). However, this value is for energy

deposited by electrons; ions require more energy deposition to yield the equivalent number

of photons, where the typical reduction factor for plastic scintillators is ∼ ×0.1 [123, 128,

p.229], resulting in ∼140,000 photons/event. Long-term exposure to air and typical ambient

light (∼10’s of hours) can degrade scintillator performance due to coloration and break-

down of the scintillator polymer, reducing fluorescence by a factor of ∼ ×0.1; though this

is dependent on the scintillator material, exposure time, and fluorescence wavelength [129].

Since the scintillators used in this experiment were subjected to long-term oxygen and light-

exposure (during testing), their light-output was likely reduced to ∼14,000 photons/event

prior to beam exposure. Previous studies [130–132] have demonstrated the rapid drop-off in

scintillator light-output that occurs after prolonged exposure to radiation. Tests of plastic

scintillators similar to BC-418 found scintillator light-output experienced no reduction af-

ter exposure to 50 Gray, ∼15%-reduction after 600 Gray, and nearly 100%-reduction after

14,000 Gray, where γ-rays were the ionizing radiation [132]. Separate tests of plastic scintil-

lators similar to BC-418, where the radiation source was heavy ions, found a 50%-reduction

after exposure to 25,000 Gray [130, 131]. Our average beam-rate on the A1900 scintillator

during the experiment was ∼2×104 particles/second. Using estimates of scintillator degra-

dation from [132] and [130, 131], the scintillator light-output would be reduced by 50% after

∼150 hours and ∼1,000 hours, respectively. Since the total beam-on-scintillator time was

<150 hours (See Section 2.2.), we estimate the scintillator light-output was at no time less

than 50% of the aforementioned estimated value of 14,000 photons/event; i.e. a conserva-

tive estimate for photons produced in the A1900 scintillator for a given beam-event would

be ∼7,000 photons/event. Since the S800 scintillator used for timing experienced a much

lower beam-rate, it was likely not subject to beam degradation and can be conservatively
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estimated to have produced ∼14,000 photons/event.

Further considerations must be made as to the number of produced photons which would

ultimately generate a signal in the PMTs the scintillators were coupled to. Primary issues

which prevent photons from producing signals in the PMT are light escaping the scintil-

lator surface, light attenuation within the scintillator, poor light transmission across the

scintillator-PMT coupling surface, matching between wavelength ranges for scintillator emis-

sion and PMT acceptance, and quantum efficiency of the PMT photocathode. Since scin-

tillation light is emitted in all directions, some fraction of the light will escape from the

scintillator surface, since only light striking the scintillator surface at an angle greater than

the critical angle θc will be totally internally reflected, where θc = sin−1
(

n1
n0

)

. In this case

the two indices of refraction were n0 = nscintillator = 1.58 [30] and n1 = nvacuum ≡ 1, so

θc = 39.3◦. Defining the ratio of the two indices of refraction as 1/n ≡ n1/n0 = 0.63, the

percentage emitted from each of the six sides of all light produced is

F1−side(n) =
1

6
Ftotal−emitted(n) =

1

6
{1− [(n2 − 1)1/2/n]} ≈ 11%, (2.2)

where incredibly the fraction is independent of the shape of the scintillator body [133]4,

neglecting effects of light attenuation which in this case were minimal [30, 123, p.258]. Coat-

ing the scintillator surface with a diffuse reflector such as titanium oxide [30], magnesium

oxide, or aluminum oxide powder could have increased the light collection by reflecting light

that would otherwise have escaped [123, 133, p.259], however the improved light-collection

efficiency would have to be weighed against the increased variation in photon travel distance

caused by the varying number of reflections experienced by each photon. By coupling the

4Note that [133] accidentally drop a division sign moving from Equations 3 to 4 and that
Equation 2.2 is only valid for n > 1.5, as is evidenced by [133] Figure 2.
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scintillator to the PMT with a light-guide of roughly the same index of refraction (∼1.5) and

a larger area than the scintillator edge (∼ 1.5) via an optical coupling grease with a lower

index of refraction (∼ 1.45), transmission of light to the PMT was expected to be near 100%.

Since the wavelength range for light emitted from BC-418, 355 < λ < 500 nm, [30] over-

lapped with the acceptance range for the R4998 PMT [122], no light was expected to be lost

due to lack of PMT sensitivity. The quantum efficiency for the R4998 PMT in the wavelength

range 355 < λ < 500 nm ranged between 10-20%, with a quantum efficiency of ∼20% for the

scintillator’s most probable wavelength of emission, ∼390 nm. Note that radiation damage

to the scintillator material was not expected to alter the emission wavelength spectrum from

the BC-418 scintillator [132]. Given the above considerations, it was expected that of the

photons produced by beam particles within the scintillator, 2 × 0.11 × 0.2 × 100 ≈ 4% of

light would create a timing signal in the PMT. Given a PMT gain of 5.7× 106 [122], it was

anticipated that all detected photons would produce a measurable timing signal.

Taking into account the above considerations, each of the ∼14,000 photons/event in the

S800 fast-timing scintillator and ∼7,000 photons/event in the A1900 fast-timing scintillator

had a detection probability of ∼4%, meaning that the probability for obtaining a good time

signal from a given event was 100%. (Note that the probability for obtaining a good TOF

was only ∼50% due to imperfect beam transmission (See Section 2.2.3.).). The measured

timing signal efficiency for the A1900 and S800 scintillators was > 99.9% throughout the

mass measurement.
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2.4 Magnetic rigidity measurement

The dispersion matched ion optics mode [31, 121] was chosen to provide achromatic transport

of ions from the A1900 [27] focal plane to the S800 [34] focal plane (See Figure 2.1.). The

dispersion matched mode provided a focused ion beam at the A1900 and S800 focal planes

with a beam position independent of momentum and a dispersive focus at the S800 target

position, referred to as the dispersive plane, where the vertical beam position corresponded to

an ion’s magnetic rigidity [22, 31]. The rigidity acceptance was limited to δBρ/Bρ ∼ ±0.5%

by the size of our position measurement detector due to the dispersion of ∼ 11cm/% [22].

For the ion optics used in our experiment, this dispersion resulted in spread in time-of-flight

of ∼40 ps/mm.

2.4.1 Method overview

The method developed by [134] was chosen to measure beam position at the dispersive plane

because it involved placing a small amount of material in the path of the beam, ultimately

minimizing the position measurement’s influence on the ions’ times-of-flight. As shown in

Figures 2.6 and 2.7, this method consisted of sending the ion beam through a foil and guiding

the secondary electrons generated in this process to the surface of an 8 cm-wide×10 cm-tall

microchannel plate detector (MCP). The foil was a 70 µg/cm2 polypropylene (C3H6) film

sputtered with 1500 Å of gold biased to -1 kV by a Canberra Model 3002D high voltage

power supply. The MCP [123, p.286] consisted of two lead glass plates from Quantar [135]

(model 3398A), oriented in the chevron configuration to avoid feedback from heavy ions

and to prevent electrons from passing directly through channels [33], biased to a 2.35 kV

voltage. Rectangular (2×4×4.74 in3) NdFeB 35 permanent magnets from Magnet Sales and
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Figure 2.6: Cartoon of the dispersive plane position measurement system. Secondary elec-
trons generated by the ion beam passing through a gold foil were guided to a MCP by an
electric and magnetic field to measure the beam position at the foil. (From [29]).

Manufacturing [136], which had a residual flux density of 1.23 T, were placed 4 cm behind the

MCP face and 5 cm behind the foil with their poles aligned and planes parallel to the MCP

and foil to create a region of near homogeneous magnetic field between the foil and MCP (See

Figure 2.8.). The magnets were kept at a constant spacing by a steel yoke, which also helped

to create a homogeneous magnetic field. The parallel electric and magnetic fields guided the

electrons in a helical trajectory with a small radius towards the MCP surface so that there

was an accurate mapping between the beam-foil interaction position and recorded MCP

position. Upon reaching the MCP, incoming electrons from the foil created an avalanche

of electrons, due to amplification by the MCP, which reached the MCP back-plane [33].
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Figure 2.7: Photograph of the magnetic rigidity measurement setup. Two magnets were
mounted on an steel yoke plane-parallel to an 8×10 cm microchannel plate detector (MCP).
A gold foil was mounted plane-parallel to the MCP on a driver-arm so that it could be
inserted from below. A foil and hole-mask were also mounted on the driver arm below
the first foil, where hole-mask upstream of the foil in order to only allow ions to generate
electrons at certain positions for a MCP position calibration . A collimator was located
upstream to protect the MCP during beam-alignment. A hole-mask with a distinctive hole-
pattern and a phosphorescent coating was mounted on a driver arm further upstream so
that it could be inserted for beam-alignment. A camera was located within vacuum chamber
further upstream and off of the beam-axis to provide an image of the hole-mask during
beam-alignment.

The back-plane consisted of a resistive layer in which electrons drifted to its four corners,

where the amount of charge collected in each corner was used to determine an MCP-impact

position [35, 137] and therefore a foil-impact position for the beam. Additionally a timing

signal was extracted from the MCP back-plane, however it was not ultimately used due

to defects in the electronics modules used for MCP timing during the beam-time, and so

it will not be discussed further. To assist in beam-tuning, the gold foil was mounted in a

ladder-configuration on a driver arm, where a mask with a known hole-pattern was located
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on another ladder location, and another mask with a phosphorescent coating was located

on a driver arm upstream of the gold foil (which was observed by a camera located within

the vacuum chamber), and a collimator was placed upstream of the MCP to protect it from

stray beam (See Figure 2.7.).

Figure 2.8: Measured (solid circles) magnetic field as a function of distance from the left
magnet in the rigidity measurement set-up, using a magnet-surface separation of 17.5 cm,
compared to the calculated field value (See Equation 2.4.) for that magnet separation (solid
red curve). The dashed blue curve indicates the calculated magnetic field value for the
magnet separation used in the mass measurement experiment. Vertical dashed lines indicate
the position of various components used in the position (rigidity) measurement with respect
to the magnets.

One concern which should be raised about this method of position detection is that

the magnetic field from the permanent magnets may have deflected the beam fragments

and therefore impacted their time-of-flight. However, the angular deflection occurred at a

dispersive focus ion the ion optics. Since acrhomatic ion optics were used, the TOF of ions

after the dispersive focus was independent of the ion angle at this location. In any case, the

angular deflection would be rather small and it would depend smoothly on the charge-to-mass
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ratio of ions. For a relatively small impulse, tan(θ) ≈ θ ≈ δp/p =
qvB(l/v) sin(α)

mv =
qBl sin(α)

mv ,

where l is the distance over which an ion, moving at velocity v with charge q and mass m,

is subject to the magnetic field strength B from the MCP magnet-yoke which is oriented at

angle α with respect to the beam trajectory. As an example, the fragment 45Ar, q = Ze ≈

2.9×10−18 C andm = Au ≈ 7.5×10−26 kg (where e is the electron charge and u is the atomic

mass unit), which had a velocity of ≈ 0.4c (from the beam energy stated in Section 2.2.2)

and traversed the ∼ 10 cm-wide ≈ 0.22 T magnetic field region (which was oriented ∼ 70◦

with respect to the beam), would have experienced an angular deflection of ∼ 0.7 mrad. To

roughly assess the impact on TOF, we can employ the ion optical transfer matrix calculated

for the previous NSCL mass measurement [31, Their Equation 3.1.], which stated that an

angular deflection at the A1900 focus in the non-dispersive direction was related to an ion

flight-path length change as −5× 10−4 cm/mrad. If the corresponding relationship between

the non-dispersive deflection at the dispersive focus at the entrance of the S800 and the path

length is of the same order, then the expected change to the overall flight path would be

∼ 10−6 m, corresponding to a relative TOF change (since δl/l ∝ δTOF/TOF) of 10−7. Note

that not only was the alteration to TOF over one order of magnitude less than systematic

TOF effects that were controlled for, the kick had a smooth behavior with respect to m/q 5

and therefore any impact would have likely been captured in the TOF-dependent terms of

the final mass-fit function (See Equation 3.17.).

5Note that the full set of nuclei used in the final mass analysis (reference nuclei and the
most exotic evaluated nuclei) had a relatively narrow range in A/Z: 2.44 ≤ A/Z ≤ 2.72
(See Section 3.9.), further mitigating the issue of the m/q-dependent kick from the MCP
magnet-yoke set-up.
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2.4.2 Electron production

The number of electrons produced from the foil by passing ions is influenced by a number

of factors, such as beam-particle nuclear charge, beam-particle charge state, beam fluence,

beam energy, foil thickness, and foil-material nuclear charge [138–142]. The basic process of

fast-ion induced electron emission from a foil is characterized by two steps: energy lost by

the ion in the foil ionizes foil-atoms and some of the electrons freed in the ionization process

are able to escape the foil [123, 143, p. 41]. Thus, to first order, the electron yield is given

by the energy required to free an electron from the foil and the energy loss per unit length

in the foil.

At the high ion-energies employed in this experiment, beam nuclei are fully stripped

(Discussed in more detail in Section 3.4.3.) and ion-energy loss in the foil is well described

by the Bethe formula [123, p. 31]:

− dE

dx
=

4πe4z2b
mev2b

NtZt

[

ln

(

2mev
2
b

It

)

− ln

(

1−
v2b
c2

)

−
v2b
c2

]

, (2.3)

where e is the electron charge, me is the electron rest mass, c is the speed of light, zb is

the beam particle charge (which is the beam nuclear charge Zb here, since the ions are fully

stripped), vb is the beam particle velocity, Nt is the number density of atoms in the foil,

Zt is the atomic number of atoms in the foil, and It is the average ionization potential of

the foil. It is apparent from this relation that the electron yield from a foil should scale

roughly as Z2
t , so a foil material with a large atomic number is desirable to produce enough

electrons to induce a strong signal in the MCP. However, a large Zt would also cause beam

ions to have a large energy loss, and thus a large perturbation to their time-of-flight TOF.

This perturbation was minimized by using as thin of a foil as could be readily manufactured
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on-site. Additionally, the foil material chosen needed to be electrically conductive so that

it could be biased to generate an accelerating potential toward the MCP for the emitted

electrons. The aforementioned considerations lead to the choice of a 1500 Å gold layer

(≈30µg/cm2) deposited on a 70 µg/cm2 polypropylene film as the foil.

Due to the electric field generated by space-charge separation created in the wake of

a fast-ion, the foil electron yield is reduced. Rather than scaling as z2b, the electron yield

from gold scales as z1.71b [138]. Since our beam species of interest had a charge range

zb = Zb = 14 − 30 and roughly the same ion velocity, the electron yields produced for

each species were within a factor of ∼4. The relatively low beam fluence used in this

experiment, ≈ 5000 ions/sec

80 cm2 ∼ 100 ions/cm2, meant that the electron yield was not reduced

due to modification of the foil properties by beam fluence [142]. Previous studies showed

that fully-stripped nickel ions impinged at 74 MeV/u on a 30 µg/cm2 carbon foil would

produce ∼20 electrons/ion emitted at a backward angle (Note that the electrons emitted at

a forward angle will not be directed toward the MCP by the electric field in the setup, but will

rather be directed back into the foil). Using the scaling for beam energy (From Section 2.2:

∼100 MeV/u) and foil charge (79), and noting that the first ionization potentials for carbon

and gold are within 20% [144], ions studied in this experiment were expected to yield ∼50-

200 electrons/ion emitted toward the MCP. For comparison, a ∼5.4 MeV α-particle, as is

typically emitted from 228Th, would yield ≈4 electrons [140].

As discussed in Section 2.4.3, electrons produced by the beam could potentially have had

cyclotron radii up to re ≈ 1.7 mm. Given that >50 electrons/ion were expected for a typical

beam particle, we expected several electrons with relatively large cyclotron radii, and thus

a relatively poor position resolution. For comparison, a ∼5.4 MeV α-particle emitted from

a 228Th source would have typical electron total kinetic energies Te,t ≈0.1 keV [141] and
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thus potentially cyclotron radii up to re ≈ 0.17 mm. It is apparent that tests of the position

measurement set-up with an α-source were expected to yield a better position resolution

than that obtained for fast-ions in the mass measurement beam-time, in agreement with the

findings of [145]. Näıvely, this might lead one to conclude that a lower beam-energy should

have been used in order to lower the average electron kinetic energy and thus improve the

position resolution for the rigidity measurement. However, a lower beam energy would have

lead to the presence of multiple charge states for beam species (See Section 3.4.3.), adding a

significant complication to the data analysis. [146] investigated the dependence of electron

kinetic energy on the foil material, employing carbon and aluminized-mylar for 5.8 MeV

α-particles and 30 MeV oxygen-16 nuclei, and found no detectable difference.

2.4.3 Electron transport

The magnetic field and voltages were chosen to optimize transport of the electrons from

the foil to the MCP surface. Näıvely, increasing the foil voltage would continually improve

electron transport, since the acceleration induced perpendicular to the foil would overcome

any non-perpendicular velocity components. However, due to the relatively broad electron

kinetic energy distribution, the improvement in position mapping ceased at a relatively

modest MCP-to-foil potential difference [146], in this case -1 kV. The magnetic field provided

the radial confinement for an electron’s helical trajectory, where the radius of the helix was

given by the electron’s relativistic cyclotron orbit, re = pec/eBc [147], where pe is the

electron’s momentum, c is the speed of light, e is the electron charge, and B is the magnetic

field in which the electron orbits. Since the total electron energy Ee,total =
√

p2ec
2 +m2

ec
4 =

Te,t+mec
2, where me is the electron mass and Te,t is the electron’s kinetic energy transverse

to the magnetic field, re =

√

T2e,t+2Te,tmec2

eBc . The transverse electron kinetic energy depends
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not only on the angle at which the electron leaves the foil, but also on the ion charge and

ion kinetic energy which causes the electron emission from the foil [134, 141]. For the beam

energy and beam charge typical for this experiment, ≈100 MeV/u and 〈Zbeam〉 ≈ 23, we can

estimate from a similar measurement [141] that the average total kinetic energy for a given

electron was Te,total ≈ 10 keV. Note that the electron kinetic energy depends roughly linearly

on the ion energy expressed in energy per nucleon [141]. Using an electron kinetic energy of

10 keV in the direction transverse to the magnetic field, an electron mass of 511 keV, and

a magnetic field strength of 0.2 T, the resultant radius for an electron’s helical trajectory is

≈1.7 mm. This represents a worst-case for our beam-foil interaction-position measurement

accuracy, since in general several electrons will contribute to the position measurement (See

Section 2.4.2.) and most will likely not have the full initial kinetic energy in the component

transverse to the magnet and foil planes. We note our treatment is an oversimplification

since the dynamics of the helical trajectory gradually reduces the transverse component

of the electron’s velocity as it travels from the foil [134]. Additionally, the magnetic field

between the foil and MCP is not constant, as is shown in Figure 2.8, and instead is well

approximated by the formula for identical rectangular magnets facing each other in attracting

positions inside a ferromagnetic yoke from the Magnet Sales [136] catalog equation 8:

B(x) =
Br

π
(tan−1

[

AC

2x
√
4x2 + A2 + C2

]

−Br

π
tan−1

[

AC

2(2L+ x)
√

4(2L+ x)2 + A2 + C2

]

+
Br

π
tan−1

[

AC

2(R− x)
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4(R− x)2 + A2 + C2

]

−Br

π
tan−1

[

AC

2(2L+ (R− x))
√

4(2L+ (R− x))2 + A2 + C2

]

(2.4)
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where Br is the residual flux density (here 1.23 T), A is the magnet width (here 10.16 cm),

C is the magnet length (here 12.07 cm), L is the magnet thickness (here 5.08 cm), x is the

distance from the first magnet in the pair, and R is the distance between the two magnet

surfaces (14.9 cm for the experiment; 17.5 cm for the data points shown in Figure 2.8). It

is apparent that in our simple model, the electron cyclotron radius depends weakly on the

electron kinetic energy (which anyhow depends weakly on the beam energy and beam species

for the range of beam particles studied in this experiment [141]) , since the numerator in

the above relation for re is dominated by the electron mass. Thus, the primary influence

on re comes from the magnetic field strength. In principle stronger magnets would improve

position resolution 6, but obvious limitations are cost, safety of assembly of the magnetic

yoke system (See Appendix A.), and undesirable effects on nearby electronics.

2.4.4 MCP position determination

As described in Section 2.4.3, electrons were guided directly from the beam-interaction point

on the foil to the surface of the MCP and then amplified as depicted in Figure 2.9, where

the voltage applied to the MCP was 2.35 kV (The unique secondary electron production

mechanism of MCPs, the secondary electron trajectories, and the principle by which the

continuous channels act as a fixed number of dynodes is described in detail by [32]). Charges

then freely drifted in the resistive backplane, until finally reaching one of the four backplane

corners. A large number of charges was produced in the backplane for a single incident

electron and so signals were registered at all four corners of the backplane for most events.

Corner signals were amplified by “NSCL Quad Fast Amps” ( manufactured by the Electronics

6In Section 3.5.2 it is shown that a factor of two increase in field strength would have
likely resulted in a factor of two improvement in position resolution, leaving the intrinsic
resolution of the MCP as the limiting factor.

45



Shop of the National Superconducting Cyclotron Laboratory) and sent to a CAEN V792

charge-to-digital converter (QDC). To ensure weak corner signals would be detected and

strong corner signals wouldn’t saturate the QDC, each corner signal was sent through both

a low-gain and a high-gain amplification. The low-gain amplification consisted of two stages

of NSCL Fast Amps and the high-gain amplification consisted of three stages, where a single

stage offered a gain of ∼ ×7. An alternative signal processing scheme, which sent corner

signals through Tennelec TC174 pre-amplifiers to Ortec AD143A analog-to-digital converters

(ADCs) was attempted, however it was found to produce position measurements of inferior

quality, so it was not used.

Runs triggered on background were used to obtain QDC pedestals to be subtracted from

the corner signals and runs using a pulser signal sent through an attenuator with various

levels of attenuation were used for gain-matching. Attempts were made to isolate the MCP

from electronic noise, primarily by adding additional shielding (aluminum foil) to cables.

This was necessary because the rather large MCP-face (∼ 8× 10 cm2) acted as a capacitive

pick-up for nearby electronic noise. After pedestal subtraction and gain matching, the four

corner signals, upper left (UL), upper right (UR), lower left (LL), and lower right (LR), were

used to determine horizontal (X) and vertical (Y) positions via the following algorithms:

X =
UR+ LR− UL− LL

UL + UR + LL + LR
(2.5)

Y =
UL + UR− LL− LR

UL + UR + LL + LR
. (2.6)

Further considerations, such as pedestal determination, gain matching, and whether the

high or low-gain was chosen for a corner for a given event, are described in Section 3.5.

Aside from physical considerations discussed in Section 2.4.3, MCP position resolution was
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primarily determined by data analysis and so the full discussion is left for Section 3.5

2.4.5 Position measurement efficiency

The efficiency of the position measurement depended on the electron production from the

gold foil, the electron-detection efficiency of the microchannel plate detector (MCP), and the

response time of the MCP and associated electronics.

The intrinsic detection efficiency of an MCP for an incident electron is difficult to quan-

tify because previous studies have found it to depend on both electron energy and angle of

incidence [33, 148–150]. Perhaps unsurprisingly, there is a large range of measured MCP

detection efficiencies for incident electrons at a given energy. Typical values for the detec-

tion efficiency of an electron are ∼100% at 0.1 keV, ∼60-100% at 1 keV, and ∼25-80% at

10 keV [148, 149], however it has been shown at 1 keV that the angle of incidence of the elec-

tron on the microchannel plate can vary the relative efficiency from 1-100%, with the average

reduction in efficiency from non-optimum incidence angles being a factor of ∼0.5 [150]. For

our typical electron energy of 10 keV (See Section 2.4.3.), an expected intrinsic efficiency for

detection of a single electron is then ∼25%. Since we expected a beam-ion passing through

the gold foil to emit >50 electrons (See Section 2.4.2.), the efficiency of detecting an electron

on the MCP surface for a position measurement was expected to be 100%, independent of

signal processing considerations. This is in agreement with observations made by [134].

In principle detector dead-time could also be expected to lower intrinsic detection effi-

ciency. However, the quoted maximum rate per microchannel from Quantar was ∼50 counts

per microchannel per second [135]. Since the microchannel plate consisted of ∼ 106 mi-

crochannels, each with ∼25 µm diameter, spread over an active area of 74 mm×92 mm, a

single channel would only become saturated by space-charge and cause detector dead-time
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if the incident electrons came at a high-rate or in a small area. Since typical beam rates at

the MCP were ∼200 particles/second and on the order of ∼100 electrons were produced per

particle, yielding ∼20,000 electrons/second roughly spread over and area π(r2e ) ∼ 3 mm2,

we expected no dead-time due to physical properties of the MCP.

The position-detection efficiency of the MCP was measured during the mass-measurement

experiment by taking the ratio of events with good rigidity (MCP position) and time-of-flight

(TOF) measurements to events with good TOF measurements, noting that the expected

TOF-measurement efficiency was ≈100% (See Section 2.3.3.). We found an average MCP

efficiency of ≈96%. A possible explanation from the reduction from 100% is the condition

applied to detected MCP events that they have a ‘good’ position, i.e. signals from all four

corners of the resistive readout MCP-backplane that are above the threshold and below

saturation (where an algorithm is used to decide to use the high-gain or low-gain corner

signal, as described in Section 3.5). It is possible that events registered near the corners

of the MCP may have had corner signals which were below threshold or above saturation.

Alternatively, a coincident detection of a background photon could have driven a corner

signal over saturation.
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Figure 2.9: Cartoon of the MCP position determination method. An electron freed from
the gold foil by a passing beam particle strikes the wall of a microchannel (µchannel in the
diagram), creating secondary electrons. Secondary electrons are accelerated by a voltage
difference (∆V) applied across the plate (MCP) and strike the microchannel wall, creating
more secondary electrons [32]. The avalanche of electrons ultimately reaches the resistive
backplane, where charges are free to drift to the four corners of the backplane. The position at
which charge is initially injected onto the backplane, which corresponds to the position of the
microchannel and thus the position of the beam on the gold foil, is determined by comparing
the relative amount of charge collected on each of the four backplane corners. Note: A single
plate with straight channels is pictured here for simplicity. This experiment employed two
MCPs with angled channels stacked in a way known as the chevron configuration [33].
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2.5 S800 focal plane

The S800 spectrograph focal plane [28, 34] served as the end-point of the beam line in

the time-of-flight mass measurement experiment and contained several detectors which were

used to measure timing, energy loss, angular trajectory, and isomeric content of the beam

fragments, as pictured in Figures 2.10 and 2.11. In order of upstream to downstream, the

S800 focal plane contained a cathode readout drift counter (CRDC) (See Section 2.5.1.),

a fast-timing scintillator coupled to two photomultiplier tubes (See Section 2.3.), a second

CRDC, an ionization chamber with sixteen segments (See Section 2.5.2.), an aluminum plate

(‘ion catcher’), and an array of cesium-iodide scintillators coupled to photomultiplier tubes

(‘hodoscope’) (See Section 2.5.3.).

2.5.1 Beam tracking

The trajectories of ions within the S800 focal plane, which were correlated with their mo-

mentum and path length, were obtained by position measurements at each cathode readout

drift counter (CRDC) [34]. The CRDCs [151], which were spaced 1 m apart and capable

of 0.4 mm position resolution, had an active volume of 30 cm×59 cm×1.5 cm filled with

a mixture of 80% tetrafluoromethane (CF4) and 20% isobutane (C4H10) (by volume) and

horizontal (non-dispersive direction) parallel anodes with 2.54 mm pitch [28]. The vertical

(dispersive) position measurement was determined by the induced charge distribution on

CRDC anodes and the horizontal (non-dispersive) position measurement was given by the

drift-time of secondary electrons, created in an ionization avalanche near the anode wire,

to the cathode. The reliance on electron drift time for the horizontal position measure-

ment meant that this position measurement fluctuated with the gas pressure within the
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Figure 2.10: Schematic of the detectors within the focal plane (a) of the S800 spectrograph
(b) (Adapted from [28] and [34].). Following the rigidity measurement at the base of the
S800 (See Section 2.4.), the beam was steered ∼150◦ into the S800 focal plane. Cathode
readout drift counters (CRDC) were used for beam tracking (See Section 2.5.1.), a fast-
timing scintillator was used for the TOF-start (See Section 2.3.), an ionization chamber was
used to measure energy loss (See Section 2.5.2.), and an aluminum plate (‘ion catcher’) was
used in conjunction with a hodoscope to detect isomers of isotopes with atomic mass A & 40
(See Section 2.5.3.).

CRDC [123, ch.6,sec.IC]. Since CRDC fill-gas pressures were not incorporated into the data

readout, position drifts in the CRDCs would have to be determined by gating on nuclei

produced with high statistics and monitoring their position drift. This was ultimately not

done because it was found [31, ch.4,sec.3.2] that the S800 focal plane angle corrections to

TOF were redundant with respect to the S800 fast-timing scintillator position correction

(See Sections 2.3.1 and 3.2.).

The CRDCs limited the overall event rate that could be sustained in the S800 focal

plane. Due to the focused beam at the first CRDC, it was determined that rates in excess

of ∼500 particles/second would produce high enough space charge density to damage the
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Figure 2.11: Photograph of detectors within the S800 spectrograph focal plane (center)
with insets of the ion catcher and hodoscope (left) and fast-timing scintillator mounted to
two photomultiplier tubes (See Section 2.3.) downstream of the first cathode readout drift
counter (CRDC) (right). Note that the ion catcher and fast-timing scintillator were not
installed in the focal plane at the time the center image was taken. (Center photo credit:
Shumpei Noji.)

CRDC7. Näıvely one may conclude that had the CRDCs not been used, the experiment

could have been run at higher rates, i.e. the wedge placed in the A1900, which stopped low-

Z particles from being transmitted but also limited the overall rate of nuclei of interest (See

Section 2.2.2.), could have been removed. However, higher rates would have caused event

pile-up within the ionization chamber and possible degradation of the fast-timing scintillator

(See Section 2.3.3.) located in the A1900 focal plane.

7High space-charge density can cause impurities to build-up on CRDC anode wires and
can also lead to excessive currents within the readout electronics.
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2.5.2 Isotope identification

Particle identification was achieved using the time-of-flight energy-loss technique [152–154,

sec.3], where the time-of-flight was provided by fast timing scintillators (See Section 2.3.) and

energy-loss was provided by an ionization chamber [123, ch.5]. The ionization chamber had

an active area of 30 cm×59 cm with sixteen independent 2.54 cm-thick segments filled with

P10 gas (90% argon and 10% methane (CH4) by volume), allowing for redundant energy-loss

measurements with an achievable energy resolution of ∆E/E∼10−4 [28].

Upon examination of the Bethe formula (See Equation 2.3.) it is apparent that energy

loss ∆E of a fully stripped nucleus with atomic charge Z and velocity v is proportional to the

square of the charge divided by the velocity ∆E ∝ Z2

v2
. Since velocity is equal to momentum

p over mass m 8 and momentum over charge q = Z is equal to magnetic rigidity Bρ, it

follows that v2 = p2

m2 =
q2(Bρ)2

m2 =
Z2(Bρ)2

m2 . Substituting this relation into the relation for

energy loss, and taking into account that Bρ ∼constant due to the limited acceptance of the

beam line (See Section 2.4.), it is apparent that

∆E ∝ Z2m2

Z2(Bρ)2
∼ m2. (2.7)

This near proportionality between energy loss and nuclear mass-squared is readily apparent

in the non-rigidity corrected particle identification plot shown in Figure 2.3.

As described in Section 1.4.1, absent of relativistic corrections, a fully-stripped nucleus

with atomic charge Z and nuclear mass m in a magnetic system has an equation of motion

described by m
Z = Bρ

v , where velocity is simply the path length L divided by the time-of-flight

8Relativistic corrections are ignored here, but would be on the order of ∼16% since
v ≈ 0.4c. The impact of the relativistic correction on the result shown would be mitigated
by the small velocity spread of ions of interest.
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TOF along that flight path. It follows that

TOF ∝ m

Z
, (2.8)

as is apparent in Figure 2.3.

Since Z is an integer value and m (in GeV) is nearly equal to the atomic mass number

A, which is an integer, the two-dimensional plot of ∆E ∝ A2 versus TOF ∝ A
Z produces a

matrix where each point is a nucleus with a unique A,Z combination. This is demonstrated

for a hypothetical idealized case in Figure 2.12 and employed for this experiment in Fig-

ure 2.3. The uniqueness of the PID matrix allowed nuclei to be readily identified, where

the identification was confirmed by comparison to LISE++ [127] simulations and detection of

known isomers (See Section 2.5.3.).

2.5.3 Isomer detection

A system was developed to measure the decay from isomeric states of nuclei whose half-

lives were an order of magnitude less than the average time of ∼2 ms that elapsed between

focal plane event rates, but at least as long as half of the typical flight time of ∼500 ns.

At the most downstream location of the S800 focal plane, an ∼8 cm× ∼12 cm× ∼1 cm

aluminum plate intended to stop ions with atomic mass A & 40 (as determined by SRIM [155]

calculations) referred to as the ‘ion catcher’ was located ∼3 cm in front of the hodoscope,

as seen in the left panel of Figure 2.11. The hodoscope is a sodium-doped cesium-iodide,

CsI(Na), 8-crystal×4-crystal array coupled to photomultiplier tubes, where each crystal is

7.6 cm×7.6 cm and 5.1 cm thick [156, 157]. The hodoscope was expected to have a resolution

of ∼ 7% for 662 keV γ-rays [156] and a relatively high efficiency due to its nearly 2π geometric
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Figure 2.12: Demonstration of the energy-loss ∆E versus time-of-flight TOF particle iden-
tification method (‘PID’). Since ∆E ∝ A2 and TOF ∝ A/Z, where A is the atomic mass
number and Z is the atomic number, an idealized ∆E vs. TOF PID is represented by plotting
A2 versus A/Z for several combinations of A and Z. It is apparent that each A,Z combina-
tion occupies a unique location in the PID matrix. (For the PID from this experiment, see
Figure 2.3.)

coverage with respect to the ion catcher and the relatively large γ-ray absorption coefficient

of CsI(Na) scintillators [123, ch.8,sec.IIB2]. The well known microsecond isomers of 65Fe

and 67Fe [98] were used confirm the assignment of nuclei in the PID (See Figure 2.3.).
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Chapter 3

Data analysis

The data was collected in the manner described in Chapter 2, placed into so-called ‘.evt’ files,

and processed on-line during the experiment via SpecTcl [158]. Following the experiment,

the data were converted 1 to ROOT [160] ‘trees’ so that the majority of the data analysis was

carried out within the ROOT 2 framework.

The following sections describe the analysis procedure used to obtain the masses pre-

sented in Chapter 4. Development of the steps within the analysis was done in an iterative

process, by necessity. Since, as stated in Section 1.4, no effect could be left uncontrolled

for that impacted the time-of-flight of nuclei systematically by a picosecond or more, a full

analysis pipeline had to be put in place before details of each analysis step could be fully

investigated. This pipeline, whose initial form was heavily influenced by [31], consisted of

the full set of analysis procedures, from processing raw data to producing masses and un-

certainties. Briefly stated, these steps were: creating timing signals, constructing by-event

time-of flight TOF, processing energy loss information, particle identification, checking for

charge-state contamination, determining the by-event magnetic rigidity, performing a rigid-

ity (momentum) correction to the event-TOF, obtaining a global relationship for the rigidity

1The evt-to-ROOT code was created by Kathrin Wimmer [159] and modified by the author
and Karl Smith to accommodate the microchannel plate detector and fast-timing scintillator
electronics.

2Version 5.34.09 was ultimately used, though tests provided the same results with version
5.26.00, as tested on the NSCL fishtank and seaside clusters, as well as the Max-Planck-
Institut für Kernphysik cluster.
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correction, determining a final TOF for each nucleus, performing a fit to obtain the mass-

TOF relationship, and the propagation of uncertainty. The following sections describe in

detail the pipeline that was employed and its methods, as well as alternative methods that

were investigated.

3.1 Timing

As discussed in Section 2.3, timing signals were collected from two fast-timing scintillators,

one at the A1900 extended focal plane and the other at the S800 spectrograph focal plane,

which were each coupled to two photomultiplier tubes PMTs. The various signals are referred

to by their point of origin. For example, the signal from the PMT located on the ‘up’ side of

the scintillator in the A1900 extended focal plane is ‘XFU’, while the signal from the ‘down’-

side PMT of the S800 focal plane scintillator (located in the NSCL S3 vault) is ‘S3D’. The

signal from the clock, which came at regular 40 ns intervals, is referred to as ‘Clk’ and the

timing signal from the microchannel plate detector, which was not used due to an electronics

glitch, is referred to as ‘MCP’.

The timing signals were employed to create various time differences via a time-to-amplitude

converter TAC, which are referred to by (start signal)–(stop signal). The full list of time-

differences that were recorded in TACs is: MCP–Clk3, XFD–Clk, S3U–Clk, S3D–Clk, S3U–

S3D, XFU–XFD, S3U–XFU, S3D–XFD, and XFU–Clk. The raw spectra for these time

differences are shown in Figure 3.1. The purpose of the S3U–S3D and XFU–XFD times was

to give a direct measurement of the difference in light-arrival time for the two PMTs attached

to a given scintillator, which could be used to ascertain the beam-particle impact location.

3This time-difference was discarded due to an electronics glitch that caused large jitters
in the recorded time.
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The purpose of the S3U–XFU and S3D–XFD times was to give a direct measurement of the

time-of-flight for beam particles, which was essential in constructing the TOF for each event

(See Section 3.2.). The remaining timing signals, which relied on a clock for the stop-signal,

could be used to construct scintillator-position times or direct flight-times that would not be

systematically impacted by nonlinearities in the time-to-channel relationships for the TAC–

ADC combinations. The time-to-channel calibration was performed in two different ways

for TAC–ADC timing signals.

3.1.1 Linear time calibration

A linear time-calibration was obtained by recording data for known stop–start time-spans in

10 ns intervals (red-filled histograms in Figure 3.1) from an Ortec 462 Time Calibrator. The

time-to-channel calibration parameters determined from the linear time-calibration were,

in picoseconds per channel, MCP–Clk: 6.232, XFD–Clk: 6.309, S3U–Clk: 6.294, S3D–

Clk: 6.308, S3U–S3D: 6.238, XFU–XFD: 6.257, S3U–XFU: 12.586, S3D–XFD: 12.487, and

XFU–Clk: 6.304. Since the timing signals were recorded in units of channels, they were

discrete by nature. This discreteness favored certain times and thus could have introduced

artificial features into the timing signal spectra once converted into units of seconds. To

avoid this issue, for each event a uniform distribution whose width was equal to the ADC

bin-width in units of time was randomly sampled and the resulting value was added to the

time determined from the linear calibration. For example, given a time-to-channel slope s

(picoseconds per channel), a timing signal registered in ADC channel c would be converted

to a time t = [s× c] + [Uniform{0, 1} × s] (picoseconds).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 3.1: Raw time spectra accumulated during the time-of-flight mass measurement exper-
iment (gray-filled histograms) and linear time-calibration spectra (red-filled histograms) for
the corresponding TAC–ADC time signal. The timing signals (a) through (i) are MCP–Clk,
XFD–Clk, S3U–Clk, S3D–Clk, S3U–S3D, XFU–XFD, S3U–XFU, S3D–XFD, and XFU–
Clk, respectively. The black-dashed vertical lines in (c) indicate the peaks used for time
calibration. Each spectrum is a histogram of counts per ADC channel (See Section 2.3 for
information on data acquisition.). Note that the full-scale range for (a) through (f) and for
(i) is ≈ 50 ns while the full-scale range for (g) and (h) is ≈ 100 ns.
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Figure 3.2: Spectrum of counts per channel for the S3D–Clk ADC for the full set of exper-
imental data. Red-dashed horizontal lines indicate the number of mean counts per channel
and the expected statistical deviation from the mean. The semi-periodic deviations from the
mean are evidence of nonlinearities in the time-to-channel relationship for this TAC–ADC
combination.

3.1.2 Nonlinear time calibration

A second technique was used in addition to the first technique for the ‘ –Clk’ times to obtain

a time calibration that took into account nonlinearities in the time-to-channel relationship.

Since these timing signals had a stop signal (from the clock) that was random with respect

to the start signal (from a PMT) their spectra should have been uniformly filled over the

full range of possible times. Aside from expected statistical scatter, any deviations from

uniformity indicated a nonlinearity in the time-to-channel relationship for that particular

TAC–ADC combination at the channel at which the deviation existed. Figure 3.2 shows,

for the full set of data, the counts per channel for the S3D–Clk ADC, where it is clear

that deviations from uniformity existed that were beyond the statistically expected scatter

and were possibly systematic in nature. For this type of spectrum, the time at a particular

channel T (c) was equal to the sum of time-widths of the bins up to and including that channel
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c. The time width of a bin ∆t(c) was equal to the ratio of counts in that channel n(c) divided

by the total number of counts in the histogram N for the full time-span multiplied by the

full time span tspan. The full time span for randomly-filled spectra was equal to the clock

period, τClk = 40 ns±2 ps, since the ‘stop’ signal from the clock could have come any time

after the ‘start’ from the PMT signal. Therefore, the time-difference inferred for channel c

in a particular TAC–ADC combination was,

T (c) =
c
∑

0

∆t(c) =
c
∑

0

n(c)

N
tspan =

c
∑

0

n(c)

N
τClk. (3.1)

As with the case of the linear calibration, some small amount of time, randomly selected

from a uniform distribution bounded by zero picoseconds and the bin time-width, was added

to the event time in order to avoid favoring the exact times that corresponded to the mean

value of each channel.

The comparison between the channel-time derived from the linear time-calibration and

the nonlinear time-calibration is shown in Figure 3.3. It is apparent that the deviations from

linearity were significant, and thus the nonlinear time-calibration was favored over the linear

time calibration for these timing signals. For timing signals other than the ‘ –Clk’ times,

the linear time calibration was the only option and thus the nonlinearities were unavoidable

for these timing signals. Though, as shown in Figure 3.4, an issue was identified with the

nonlinear time-calibrated Down Clock time and thus the linear time-calibration was chosen

for this TOF. In principle higher-order calibrations could have been performed from the

time-calibrator spectra, however it was determined that at least a quartic fit would have

been required to adequately capture the nonlinearities and this would have resulted in a fit

with zero degrees of freedom.
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Nonlinear cal.

Linear cal.

Nonlinear cal.

Linear cal.
Nonlinear cal.

Linear cal.

Nonlinear cal.

Linear cal.

Figure 3.3: Residual from the linear time-calibration for the linear (cyan circles) and non-
linear (black crosses) time calibrations for the XFD–Clk (a), S3U–Clk (b), S3D–Clk (c),
and XFU–Clk (d) timing signals. It is apparent that significant nonlinearities existed in the
time-to-channel response of the four TAC–ADC combinations, particularly in the case of the
XFU–Clk timing signal. Since the XFU–Clk spectrum was discarded (See Figure 3.5.), this
was not an issue.
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Figure 3.4: Spectra used to identify a timing jitter for the Clock Down TOF (See Equation
3.5) using the nonlinear time calibration. The left panel shows the nonlinear time-calibrated
Clock Down TOF vs the Direct Down TOF and it is apparent that jitters on the order of
several nanoseconds are present. The right panel shows the linear time-calibrated Clock
Down TOF vs the Direct Down TOF and no jitters are present, implying that the jitter in
the left panel is due to the nonlinear time-calibrated Clock Down TOF.
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3.1.3 Cuts on timing spectra

Crosschecks were performed using physical constraints to assess the fidelity of the timing

signals. The light-travel time across the scintillators was ∼79 ps (See Figure 2.5.), therefore

all events recorded for two PMTs of a given scintillator should have had an absolute time-

difference between the two PMTs that was of this order. For example, a valid event striking

the S800 scintillator should have generated S3U–Clk and S3D–Clk time signals and the

quantity {TS3U−Clk − TS3D−Clk} should have been within a time range with a width of

∼ ±79 ps, taking into account different cable delay times. Any events which were outside

of this range must have suffered from a jitter in one of the two timing signals. Similarly,

when gated upon a single isotope in the particle identification plot (See Figure 2.3 and

Section 2.5.2.), the difference between clock times (e.g. {TS3U−Clk−TXFU−Clk}) should have

been within the reasonable time-spread expected for a nucleus’s time-of-flight, δTOF∼100 ps

after rigidity correction [31, Appendix A2]. Note that the method of gating on a single isotope

obviously required first using a timing signal or signals to generate a particle identification

plot so that a gate on an isotope could be applied; but such was the iterative nature of the

time-of-flight mass measurement data analysis. Additionally, it must noted that several clock

periods can have elapsed between registering the timing signals from the S800 scintillator

and the A1900 scintillator (See Section 3.2.). Therefore, there were several time-difference

ranges with widths of ∼100 ps in which good events were expected to lay in a spectrum.

By employing the physical constraints imposed on different combinations of the ‘ –Clk’

time differences, defects for single timing signals could be identified. Figure 3.5 shows how

the anomalous ∼1.25 ns jitter was identified in the XFU–Clk timing signal. The existence

of a jitter in the spectrum produced from the XFU–Clk and XFD–Clk time difference but
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Figure 3.5: Spectra used to identify a ∼1.25 ns timing jitter in the XFU–Clk timing signal.
The left panel contains the spectrum created by taking the difference between the XFU–Clk
and XFD–Clk timing signals for events of 45Ar, which in principle should contain only one
peak with a width of ≈180 ps. The left-panel inset shows the existence of a ∼1.25 ns jitter
in one of these two timing signals. The right panel and its inset demonstrate the lack of
any jitter in the spectrum created from the XFD–Clk and S3D–Clk timing signals, where
the existence of two peaks in the main figure in the right panel is due to the fact that two
different integer number of clock pulses could have elapsed during the 45Ar flight-time. In
order to demonstrate the lack of a jitter in the right panel, the globally determined rigidity
correction (See Section 3.7.) had to be applied to the spectrum to remove the ∼2 ns spread
caused by the rigidity-spread of 45Ar events. It is apparent that the signal which contained
the jitter must have been the XFU–Clk timing signal. Note that the grass-like background
are random coincidences, which were much more prevalent in the A1900 signals due to the
higher rate at that point in the beam line.
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lack of jitter in the spectrum produced for the XFD–Clk and S3D–Clk time difference, when

gated on 45Ar and rigidity corrected, demonstrated that the XFU–Clk had a timing jitter4.

As such, the XFU–Clk timing signal was not used in the mass measurement data analysis.

The background from random coincidences is discussed here as an aside. The grass-like

background in the left and right panels of Figure 3.5 arose from random coincidences and also

had to be omitted from the data analysis. Since the rate at the A1900 was much higher than

the rate at the S800 due to imperfect beam transmission (See Section 2.2.), there were more

random coincidences for these signals. The random coincidences are thought to have been

caused by the dead-time (signal processing time) of the TACs. If a ‘ –Clk’ TAC processed

an event (i.e. just received a ‘stop’ signal) less than 1 µs (the reset cycle for the Ortec

566 TAC) before the arrival of a new ‘start’, then it misses that ‘start’ signal even though

the particle for that event would likely be correctly registered by other detectors. The next

event arriving within the data acquisition gate would provide the ‘start’ for that particular

‘ –Clk’ TAC while the other timing signal TACs would likely be busy. This could happen

even for two signals coming from the same scintillator due to the different delay-times each

signal was subject to. Using a rough estimate of a ∼50 kHZ rate at the A1900 scintillator

and a full time-of-flight of ∼500 ns, random coincidences would be expected for an A1900

TAC with a frequency of 100×(5×10−7 ns)/(2×10−5 µs)=2.5%. By taking the ratio of total

counts to counts within the peaks of the left panel of Figure 3.5, it is apparent that the

total dead-time for the XFU–Clk and XFD–Clk timing signals combined was ≈4.7%, well

in-line with expectations (since the 2.5% estimate was for a single TAC signal). A similar

background was observed in the analysis presented in [31] (e.g. Figure 3.6 of that work.).

4Note that this demonstration required the global rigidity correction (See Section 3.7.),
as explained in Figure 3.5, which demonstrates the iterative nature of the time-of-flight data
analysis procedure and the need for a full data analysis pipeline.
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Figure 3.6: Spectrum used to identify the several nanosecond timing jitter in the XFU–
XFD timing signal. The inset highlights the unphysical time-difference recorded for ≈8% of
non-background events, where light-travel time in the plastic scintillator limited the possible
time-window for valid events. Note that the double-hump feature in the main peak was
not problematic, since it was counteracted by the opposite double-hump feature present in
the S3U–S3D spectrum; i.e. when the XFU–XFD and S3U–S3D times were employed to
make a scintillator position correction to TOF (See Section 3.2.), their combined time-shift
produced a single narrow-peaked distribution free of any double-hump-like features.
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An additional defect in a timing signal was found by employing the physical constraint

on the light-travel time in the fast-timing scintillators. As stated previously, the time-

spread between two PMT timing signals for a single scintillator was restricted to a narrow

time-window for valid events. Examination of the direct time differences for the S800 and

A1900 scintillators, TS3U−S3D and TXFU−XFD, revealed unphysical values for the XFU–

XFD timing signal. It is clear in Figure 3.6 that roughly 8% of events (that did not belong

to the background created by random coincidences) displayed a scintillator-position time

that was well outside the physical bound imposed by the time-difference that the light-

travel time within the scintillator would have produced. The double-hump feature present

in the main XFU–XFD peak, which contained events that were not cut-out from the data

analysis, was not problematic since an equal and opposite feature was present for events

recorded in the S3U–S3D spectrum5. Thus, when the two times were combined to make a

scintillator-position correction to the event TOF (See Section 3.2.), the resultant correction

was a single-peaked distribution.

3.2 Event TOF construction

Several methods were available to construct the time-of-flight TOF for each recorded event.

This redundancy was by design so as to provide the ability to cross-check TOF results, as

well as to provide multiple TOFs to choose from, with the reasoning being that one TOF

would contain the least systematic issues6. Aside from TOFs which were discarded due to the

involvement of problematic timing signals, the primary method of evaluating a given event-

TOF was by using it throughout the analysis pipeline to produce mass-results. The quality

5This was presumed to be an ion optical effect.
6The success of this method as employed in [31] motivated its use.
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of the mass-fit was used to choose which of the available TOFs was best. The components of

the TOF measured for a single event, the main TOF component, the scintillator correction,

and the TOF offset, are described in the following subsections.

3.2.1 Main event-TOF component

The main component of an event’s TOF was the full time-of-flight of a nucleus, absent any

other corrections. The times to choose from were the direct times, i.e. the S3D–XFD and

S3U–XFU timing signals or some combination of these two, and the clock times, which

required taking the difference between two or more clock timing signals, e.g. {TS3D−Clk −

TXFD−Clk}, and entailed a correction for the number of clock pulses that elapsed during an

event’s TOF. The main TOF components that were constructed are,

Direct Down ≡ TDownDir = TS3D−XFD (3.2)

Direct Up ≡ TUpDir = TS3U−XFU (3.3)

Direct Combo ≡ TCombDir = 0.5× (TUpDir + TDownDir) (3.4)

Clock Down ≡ TDownClk = TS3D−Clk − TXFD−Clk +Ndτ (3.5)

Clock Up ≡ TUpClk = TS3U−Clk − TXFU−Clk +Nuτ (3.6)

Clock Combo ≡ TCombClk = 0.5× (TUpClk + TDownClk), (3.7)

where Nd,u are the number of clock pulses that elapsed during the TOF time-span created

by Down,Up clock times and τ is the period of the clock, 40 ns.

The ‘Direct’ TOFs were not favored because they were subject to substantial nonlin-

earities in the time-to-channel conversion process, as discussed in Section 3.1, where the
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Figure 3.7: Demonstration of the principle of clock pulse correction for ‘Clock’ times. Since
the clock pulses arrived at random times with respect to the scintillator signals, it is clear
that different integer numbers of clock periods could have elapsed during an ion’s time-of-
flight. In this example, either 12 or 13 clock pulses could have elapsed during an ion’s 500 ns
flight time. As such, two clock times would be possible for the events of such an ion and a
correction would be required to obtain a single TOF for events of that ion.

‘Clock’ TOFs uniformly sampled the range of ADC channels, thereby removing the system-

atic impact of time-to-channel nonlinearities. This deficiency of Direct TOFs was ultimately

confirmed by employing the Direct Up TOF in the data analysis and comparing the resultant

mass-fit residuals (See Section 3.9.5.) to that obtained for the ultimately preferred TOF,

‘Clock Down’ (See Section 3.2.4.). However, as will be shown, the Direct TOFs were essential

in the process of determining Nd and Nu.

The concept that corrections Nd and Nu, which corrected for the number of clock pulses

that elapsed during an event’s TOF, were required to construct ‘Clock’ times is illustrated

in Figure 3.7. The method to determine Nd and Nu relied on taking the difference in
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Figure 3.8: Spectra employed for ‘Clock Down’ time clock pulse correction. The time differ-
ence between a direct TOF, here ‘Direct Up’, and a clock time, here ‘Clock Down’ (panel
e), results in multiple peaks (panels a–c) spaced by the clock period τ=40 ns. Narrow gates
around the peaks were used to remove background and to determine the clock pulse correc-
tion that was to be added to a given event. Panel d demonstrates the fact that events of an
ion with a single direct TOF could result in multiple clock TOFs. The black histograms in
panels a–c and e are gated on events of 45Ar, while the red histograms are for all events.

71



time between a Direct time and the Clock time for which N was required. As is clear

from Figures 2.3 and 3.8d, the majority of valid events recorded fell within an ∼85 ns-wide

time window. As such, when comparing directly measured TOFs to clock TOFs, which were

stopped at random intervals by pulses from the 40 ns-period clock, three different possibilities

existed as to the number of clock pulses that could have elapsed during an event’s TOF.

Though, as is apparent from Figure 3.8d, a single ion generally had only two clock times

available. The clock pulse correction was applied by gating on the peaks in the ‘Clock’ time

minus ‘Direct’ time spectrum, e.g. Figure 3.8e for the Clock Down time, and applying a shift

to the event Clock time corresponding to the peak it populated in the difference spectrum,

e.g. +40 ns for events in the peak in Figure 3.8a, +0 ns for events in the peak in Figure 3.8b,

and -40 ns for events in the peak in Figure 3.8c7. The shifts were chosen such that the main

peak was unaltered to minimize the overall correction applied to the data. This clock-pulse

correction method had the added benefit of removing the majority of random coincidences,

though gates were made to err on the side of inclusion of good events (i.e. accepting the

inclusion of some background) in order to not impose an artificial cut-off on TOF.

3.2.2 Scintillator position correction

The main component of a single event TOF required a small correction to account for the

systematic TOF shift associated with an ion’s scintillator impact-position (An example is

given in Figure 2.5.). As illustrated for the case of a Down time in Figure 3.9, the light-

travel time in the A1900 and S800 scintillators modified the main TOF component that was

7[31] employed an algorithm instead (which is not cited in the thesis but is in the analysis
pipeline code used for that study), however this was found to be problematic as it occasionally
applied the wrong correction to ions whose flight time was within a few picoseconds of the
40 ns clock pulse period τ .
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t#  = true time

= initial light from nucleus

= light travelling down

scintillator

= nucleus’s flight path

= scintillator + 2 pmts
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S3U

S3D

thitA

thitS
δtgapA δtgapS

tAd tSd
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Figure 3.9: Schematic illustrating the need for a scintillator position correction to the main
TOF component. The desired time difference (the true TOF) is the difference in ion-impact
times for the A1900 and S800 scintillators. However, for a Down TOF, the main com-
ponent recored for TOF would be the difference in signal generation times at the A1900
and S800 scintillators. To obtain the true TOF from the recorded TOF, a correction of
+0.5× (TXFU−XFD − TS3U−S3D) had to be applied to the main recorded TOF.

recorded and therefore this modification needed to be undone.

In the framework of this schematic, the time we wanted to record was the difference in

ion-impact times for the A1900 and S800 scintillators, TOFtrue = thit,A − thit,S. However,

the time we recorded as the main TOF component, for the case of a Down TOF, was the time

difference in signal-generation times for the A1900 and S800 down PMTs, TOFrecorded =

tXFD − tS3D. From Figure 3.9, it is evident that the A1900 PMT signal generation time

was equal to the A1900 scintillator ion-impact time plus the light-travel time across the

A1900 scintillator, tXFD = thit,A+ δtgap,A. Considering the fact that the difference between

the signal arrival time at the Up and Down A1900 PMTs was equal to the distance in

time of the ion-impact from the center of the A1900 scintillator, it is clear that for the

maximum time difference between the Up and Down timing signals δtgap,A was equal to the

full light travel time across the A1900 scintillator tspan and for the minimum time difference

between the Up and Down timing signals δtgap,A was (1/2)tspan. Therefore, δtgap,A =
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(1/2)(tspan+(tXFD−tXFU)), where one of the measured timing signals appears, TXFU−XFD =

−(tXFD − tXFU)
8. With the aforementioned relationship for tXFD, the ion-impact time at

the A1900 scintillator thit,A = tXFD−(1/2)(tXFD−tXFU)−(1/2)tspan, which can be rewritten

as thit,A ≡ tXFD + (1/2)TXFU−XFD − (1/2)tspan. The same line of reasoning provides the

ion-impact time at the S800 scintillator, thit,S ≡ tS3D + (1/2)TS3U−S3D − (1/2)tspan. Finally,

from the original relationship for the desired Down time-of-flight, TOFtrue = TS3D−XFD +

1/2(TXFU−XFD−TS3U−S3D), where the correction to TOF from the scintillator position was,

δTScint.Corr. = 1/2(TXFU−XFD − TS3U−S3D). (3.8)

Application of the scintillator impact-position correction to TOF generally altered the TOF

distributions’ means and widths on the order of tens of picoseconds, as seen for example in

Figure 3.10. This correction removed the undetectable systematic bias due to the dependence

of the main TOF component on the scintillator ion-impact position.

3.2.3 Event-TOF offset

The main component of the event-TOF was constructed with timing signals that were af-

fected by the relative cable delay each timing signal experienced. This means that the main

event-TOF component times weren’t equal to the actual flight times experienced by beam

nuclei. Thus, the choice was made to add a constant offset to all event-TOFs so that they

would have the proper physical magnitude. This was effectively a cosmetic choice, but one

that was performed nonetheless, so it will be described here.

From Equation 1.2 it is clear that
mrest

q = Bρ
Lpath

TOFtrue

√

1−
L2
path

TOF2truec
2 , where mrest is

8Of course either ‘ -Clk’ or direct timing signals could be used here.
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Figure 3.10: Rigidity corrected ‘Direct Up’ TOF distribution for 45Ar events before (red-
filled histogram) and after (black unfilled histogram) application of the scintillator position
correction to TOF given in Equation 3.8.

the ion rest mass, q is the ion charge, Lpath is the ion flight-path length, Bρ is the magnetic

rigidity of the ion optics, and c is the speed of light. It follows that the value of TOFtrue

expected for a nucleus of a given mass and charge along a flight path with a given magnetic

rigidity is

mrest

q
=

Bρ

Lpath
TOFtrue

√

√

√

√1−
L2
path

TOF2truec
2

→ mrest

q
=

Bρ

Lpath

√

TOF2true −
L2path

c2

→ TOF2true =
L2path

c2
+

m2
restL

2
path

q2(Bρ)2

TOFtrue =

√

L2path

c2
+

m2
restL

2
path

q2(Bρ)2
. (3.9)

Using Lpath=60.57 m, given in LISE++ for the distance between the A1900 extended focal
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Isotope Z A Expected TOF [ns]
45Ar 18 45 446
49Ar 18 49 477
50Ca 20 50 445
54Ca 20 54 474
57V 23 57 442
61V 23 61 467
64Fe 26 64 440
69Fe 26 69 468

Table 3.1: Expected time-of-flight for nuclei calculated from Equation 3.9 assuming Lpath =
60.57 m and Bρ = 3.95024 Tm.

plane and S800 focal plane, and Bρ=3.95024 Tm 9, from the NSCL Barney Readout [162] for

S800 dipole 1 (‘I265DS’), along with the conversion factors 1 T=1 kg
Cs , 1 u=1.66053892×10−27 kg,

and |qe| = 1.602176565×10−19 C, the expected flight times given in Table 3.1 are generated.

As expected, these TOFs agree with calculations performed in LISE++. Having obtained the

true time of flight TOFtrue, the constant offset is given by toffset=TOFtrue-TOFrecorded. For

the final data analysis the offset which was chosen was that for the ‘Clock Combo’ time

(Equation 3.7), toffset=484 ns. Though this was not the time ultimately used in the mass

fit (See Section 3.9.), this is not a major issue since, as was mentioned previously, the offset

was for purely cosmetic purposes10.

9Note that studies of the rigidity calibration of the NSCL A1900 fragment separator
magnets indicate Bρ was accurate to ±0.5% [161]. Therefore this is the expected uncertainty
of Bρ.

10A constant offset in no way affects the fits performed involving TOF later in the analysis
pipeline.
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3.2.4 Selection of the best event-TOF

The event-TOFs to choose from for the analysis were the six TOFs given by Equations

3.2–3.7 with the scintillator position correction (See Equation 3.8.) applied. However, four

of these six TOFs were disqualified on the basis of issues with their timing signals. The

‘Clock Up’ time (Equation 3.6), and therefore the ‘Clock Combo’ time (Equation 3.7), were

discarded due to the timing jitter found in the XFU–Clk timing signal (See Figure 3.5.). A

jitter was also identified in the ‘Direct Down’ TOF (Equation 3.2), as shown in Figure 3.11,

which therefore ruled out this and the ‘Direct Combo’ TOF (Equation 3.4). Therefore the

only remaining TOFs without obvious problems were the ‘Direct Up’ TOF (Equation 3.3)

and the ‘Clock Down’ TOF (Equation 3.5). Due to the issue identified with the nonlinear

time-calibration for the ‘Clock Down’ TOF (See Figure 3.4.), the linear time calibration was

chosen for this TOF. Each of these event-TOFs were employed throughout the analysis and

ultimately the ‘Clock Down’ TOF was chosen over the ‘Direct Up’ TOF as superior based

on the smaller relative systematic scatter present in the final mass fit (See Section 3.9.5).

Note that the masses obtained by using these two event-TOFs in the analysis pipeline agreed

within their uncertainties.

Thus the ‘best’ event-TOF, which was used throughout the remainder of the analysis,

was

TOFevent = toffset − TDownClk + TScint.Corr (3.10)

= TXFD−Clk − TS3D−Clk +Ndτ + 1/2(TXFU−XFD − TS3U−S3D) + toffset,

where toffset = 484 ns, τ=40 ns, Nd was determined as described in Section 3.2.1, and all

timing signals employed the linear time-calibration described in Section 3.1.1. Note that the
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Figure 3.11: Spectra used to identify a timing jitter for the Direct Down TOF (See Equation
3.2). The left panel shows the Direct Up TOF vs the linear time-calibrated Clock Down
TOF, where it is apparent that no jitters were present. The right panel shows the Direct Up
TOF vs the Direct Down TOF, where jitters are present, implying that the jitter was due
to the Direct Down TOF.

event-TOF was not the same as the TOF used to ultimately obtain the mass of the nucleus

from the mass fit (See Section 3.9.). Those TOFs are described in Section 3.8.

3.3 Energy loss

Energy loss measurements, necessary for particle identification (See Sections 2.5.2 and 3.4.),

were provided by the 16-segments of the S800 focal plane ionization chamber. A redundant

measurement was also provided by the S800 fast-timing scintillator used for the TOF ‘start’,

which was useful for eliminating events that experienced light-particle pile-up in a portion

of the ionization chamber.

78



Figure 3.12: Energy loss in individual ionization chamber segments versus the sum of energy
loss in the full ionization chamber for a subset of the full data-set. Events in the region where
surplus events were present in a single ionization chamber energy loss segment(∆E1 segment
< 150 or > 3100) were excluded from the analysis.
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3.3.1 Ionization chamber ∆E

The energy loss reading in the 16 segments of the ionization chamber were generally expected

to be in agreement for a single event and therefore, prior to gain-matching, a plot of energy

loss in two segments should produce a straight line for all valid events. Though each segment

obviously reduced the total energy of the ion, the expected energy loss for ions, using beam

energies calculated from the expected TOF (See Equation 3.9.) and specifications of the

ionization chamber (See Section 2.5.2.) in the Bethe formula (See Equation 2.3.), was ≈2–

4 MeV over the whole length of the ionization chamber for isotopes of argon through iron.

Since total ion energies were ≈100 MeV/u (See Section 2.2.2.), the energy loss per segment

amounted to a reduction in energy of ∆E/E ∼ 10−3, and was thus negligible for these

purposes. As such, the only deviations expected from agreement between energy loss in each

segment would have been due to undesired effects such as an electronics glitch or a nuclear

reaction occurring within an ionization chamber segment. Figure 3.12 shows the comparison

between the energy loss reading for single ionization chamber segments with respect to the

total energy loss within the whole ionization chamber for a subset of the full data-set 11.

Events with anomalous (too low or too high) energy loss readings for a single ionization

chamber segment were excluded from the analysis.

3.3.2 S800 fast-timing scintillator ∆E

Additionally, agreement between ion energy loss obtained from the ionization chamber and

from the fast-timing scintillator in the S800 focal plane was enforced. A relative energy loss

measurement was extracted from the charge-to-digital converter (QDC) readings from the

11∼ 1/45 of the full data-set for ease of plotting, since large files are time-consuming to
process. The cuts discussed were determined using the full data-set.
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Figure 3.13: Energy loss in the ionization chamber and in the S800 fast-timing scintillator
for a subset of the full data-set. A subset of 45Ar events are shown for comparison. Events
outside of the region bounded by the two black lines were excluded.
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two photomultiplier tubes PMTs attached to the S800 fast-timing scintillator. The ampli-

tude of the signal recorded in the QDC was directly proportional to the amount of light that

reached the PMT. This amount of light N was attenuated with respect to the number of pho-

tons generated at the beam-interaction point NPMT = Norig.×e−λ∆xi , where λ is the scintil-

lator attenuation coefficient and ∆xi is the distance light traveled from the beam-interaction

point to the PMT. However, this effect could be cancelled out by combining the QDC read-

ings from both PMTs: NPMT,1 × NPMT,2 = N2
orig × e−λ(∆x1+∆x2)) = N2

orig×Constant,

because ∆x1+∆x2 is just the length of the scintillator. Therefore, the energy loss in the

S800 fast-timing scintillator was given by ∆E ∝ Nphotons,orig. ∝
√

NPMT,1 ×NPMT,2. The

energy loss from the scintillator and from the ionization chamber are compared in Figure 3.13,

along with the agreement-cut that was applied.

3.4 Particle identification

Nuclei were identified via the method described in Section 2.5.2, where a particle identifi-

cation (PID) matrix was formed by plotting the energy loss (∆E) and time-of-flight (TOF)

of each event in a two-dimensional histogram (See Figure 2.3 or 3.15.). A gate was made

for each nucleus identified, where care had to be taken to not systematically alter the TOF

distributions of the nuclei.

3.4.1 PID verification

To assign nuclides in the particle identification matrix, several methods are available. One

approach was to compare the observed PID matrix with the one calculated in LISE++ (See

Figure 3.14.). A second method employed was to gate on a nucleus and check its observed
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Figure 3.14: Particle identification matrix produced by LISE++ simulations using the time-
of-flight mass measurement experimental set-up, where the results for the thick and thin
targets (See Section 2.2.1.) have been combined.
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Figure 3.15: A demonstration of one method of identifying nuclei within the energy loss
time-of-flight, ∆E–TOF particle identification matrix. Nuclei at certain A/Z, such as 2.5
(solid black line) and 2.6 (dashed black line), are expected to be vertically aligned as was
demonstrated in Figure 2.12, so an educated guess can be made as to which vertically aligned
nuclei correspond to which A/Z. Since ∆E ∝ A2, with a small Z and velocity dependence,
it is expected that lines of constant Z lay along a diagonal shallow slope (diagonal red lines).
An educated guess can be made as to which sloping line is which Z and then it can be
checked if the resulting identification matrix is consistent; e.g. here 50

20Ca and 75
30Zn lay along

A/Z = 2.5 (along with 30
12Mg, 35

14Si,
40
16S,

45
18Ar,

55
22Ti,

60
24Cr,

65
26Fe, and

70
28Ni) while 52

20Ca and
78
30Zn lay along A/Z = 2.6 (along with 39

15P and 65
25Mn).

84



isomeric decays against isomeric states of known nuclei. However, few known isomers were

expected in our PID (See Section 2.5.3) so it is not clear a full matrix could have been

constructed. Additionally, this method would have left open the (very remote) possibility of

misidentifying a nucleus due to a coincidental near-equality between the energies of known

and unknown isomeric states. A more reliable method however, was a guess-and-check

technique demonstrated in Figure 3.15 that takes advantage of the uniqueness of the PID

matrix (See Section 2.5.2.) and the large number of isotopes observed in this experiment.

In a ∆E–TOF particle identification matrix, nuclei at certain A/Z, such as 2.5 and 2.6, are

expected to be vertically aligned as was demonstrated in Figure 2.12, so an initial guess can

be made as to which vertically aligned nuclei corresponded to which A/Z. Since ∆E ∝ A2,

with a small Z and velocity dependence, it was expected that lines of constant Z lay along a

shallow diagonal slope. A guess could also be made as to which diagonal line was which Z.

Cross checking the two guesses with each other, and checking the consistency of all other Z

and A/Z chains leads then to a unique identification. For example, here 50
20Ca and 75

30Zn lay

along A/Z = 2.5 while 52
20Ca and 78

30Zn lay along A/Z = 2.6. Once one nuclide is identified,

the remaining nuclei could then be identified by ‘walking’ in the Z and A dimensions in the

PID matrix. Detection of known isomeric decays provides an additional cross check to verify

the final particle identification scheme. In this case a few counts of the 0.43 µs γ-decay from

the 364 keV state of 65Fe sufficed.

3.4.2 PID gates

Having identified nuclides in the PID matrix, the task remained to create a software gates

that identified which events corresponded to which nuclei. To ensure no systematic bias

was introduced to the TOF distributions, three PID gates (compared in Figure 3.16) were
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Figure 3.16: Comparison of the three PID gates looked into for the mass measurement data
analysis pipeline. A ‘generous’ hand-gate (red lines), ‘conservative’ hand-gate (black lines)
which closely traced the main outline of PID blobs, and automated gate (brown lines) drawn
on a PID transformed into Z and A/Z were each employed and the results were compared.
The inset shows the gates in more detail for isotopes of argon through vanadium.
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Figure 3.17: Impact of the choices of three gates on the rigidity-corrected TOF distribution
of 45Ar (The gates are shown in Figure 3.16.). The ‘generous’ hand-cut (red thick-lined
histogram), ‘conservative’ hand-cut (blue medium-lined histogram), and automated cut (thin
black-lined histogram) had minor deviations in the total number of counts and had no
measurable difference in their mean or standard deviation. The left panel highlights the
slight increase in total counts the generous cut provided, while the log-scale on the right
panel highlights the small high-TOF tail which was removed by the conservative cut.

explored: a ‘generous’ hand-drawn gate, a more restrictive ‘conservative’ hand-drawn gate,

and, to potentially reduce systematic errors, an automated gate drawn on a PID transformed

into Z vs A/Z space. The ‘conservative’ hand-cut was drawn to tightly conform to the

contour made by the main-body of a PID-blob formed by a single nucleus. The ‘generous’

hand-cut was drawn to include all counts which appeared to belong to a nucleus in the PID.

Practically speaking relatively few extra events were included by the ‘generous’ hand-cut

when compared to the ‘conservative’ hand-cut, and as a result no measurable change was

detected in the mean or standard deviation of TOF distributions. The automated gate also

resulted in the same 12 mean and standard deviation for TOF distributions, as seen for 45Ar

in Figure 3.17, however it was chosen over the two other methods because it had a more

rigorous definition.

12Note that ‘same’ here means identical down to the 0.1 ps level, as determined by calcu-
lations of the mean. This level of precision obviously cannot be seen in the TOF spectra.
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Creation of the automated PID gates required a transformation of the PID from ∆E–

TOF space to Z–A/Z space. The physical relationship which guided this conversion are the

proportionalities between ∆E and A2 and between TOF and A/Z described in Section 2.5.2.

From these relationships, it is clear that Z ∝
√
∆E

TOF (See Figure 3.18.), and thus ∆E and

TOF could be used to produce a Z–A/Z PID matrix. While the proportionality between

A/Z and TOF was found to hold true, it was determined that a higher order correction was

required for the relationship between Z and
√
∆E/TOF. The corrections ultimately used to

obtain a Z vs A/Z PID for the ‘Direct Up’ TOF 13 were determined empirically to be

A/Z = (TOF− 75.8)/143.1 (3.11)

Z = Zmain − Zcorr = (
√
∆E/TOF− 0.007)/0.0159− Zcorr, (3.12)

Zcorr = (1.73− 0.0064 ∗ Zmain + 0.0053 ∗ Z2
main)

+(−4.1× 10−3 + 1.× 10−4 ∗ Zmain − 1.2× 10−5 ∗ Z2
main) ∗ TOF,

where TOF is expressed in nanoseconds and ∆E is expressed in channels. The resultant

PID is shown in Figure 3.19.

A projection was made onto the Z-dimension of the Z–A/Z PID so that a gate could be

made in the Z-dimension. The upper and lower limits for the Z gates were the ±3σ obtained

from a Gaussian fit 14 to each Z-projection peak, which are shown in Figure 3.20. This gate

was then transformed back into a gate in ∆E–TOF space via Equations 3.11 and 3.12.

The upper and lower limits in TOF for the automated gate were given by the upper and

lower TOF limits for the ‘generous’ hand-cut. The resultant automated gates are shown in

13A linear relationship existed between the ‘Direct Up’ and ‘Clock Down’ TOFs, so the
same sets of PID gates could be used after applying a linear transformation.

14Information on ROOT’s fitting technique is provided in 3.9.2.
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Figure 3.18: Demonstration of the proportionality between Z and
√
∆E/TOF (right panel)

and between A/Z and TOF (left panel). ∆E and TOF were the mean values obtained from
the TUpDir vs ionization chamber ∆E for the nuclei corresponding to each Z and A.
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Figure 3.19: Particle identification matrix where ∆E and TOF have been employed to obtain
Z and A/Z. A projection onto the Z-dimension yielded a one-dimensional histogram which
could be gated on as a Z-cut (See Figure 3.20.).
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Figure 3.20: Projection onto the Z-dimension of the PID that was transformed into Z vs A/Z
coordinates (See Figure 3.19.). Gaussian fits to each peak are delineated by color. The thick-
dashed and thin-solid vertical lines of the same color indicate the ±2.5σ and ±3σ locations
for the Gaussian fit, respectively. The symbols of the same color for a given peak indicates
the locations at which the ratio of the number of counts in that peak to the number of counts
in the neighboring peak (as determined by the Gaussian fits) is 10,000:1 (triangle), 1,000:1
(square), and 100:1 (circle) to give a feel for potential contamination from neighboring-Z
nuclei (Note that the majority of this contamination is rid of by the cuts on non-dispersive
microchannel plate position [See Section 3.5.3.] and the local rigidity correction procedure
[See Section 3.6.].).

Figure 3.16. As was mentioned previously, the automated PID gates were chosen for the

remainder of the analysis since they had a rigorous definition, however the results were not

systematically impacted by this choice 15 (See Figure 3.17.).

Examination of the gates shown in Figures 3.16 and 3.20 may lead one to believe that

significant contamination existed within each PID gate which was supposed to contain only

events from a single nucleus. However, as will be shown in Section 3.6, additional rejection

was provided by the expected relationship between magnetic rigidity Bρ and TOF for each

nucleus. Contamination from the relatively high ∆E events from a lower-Z nucleus was pri-

15I.e. the mean and standard deviation of each TOF distribution was not systematically
altered on the 0.1 ps-level.
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marily removed by applying a cut on the non-dispersive microchannel plate position XMCP,

as described in Section 3.5.3.

After this constraint, the only worrisome contamination which could enter a PID gate

would be from a different nucleus that had nearly the same central value for its TOF dis-

tribution, e.g. the set of nuclei with A/Z=2.5 (See Figure 3.15.). The impact of con-

taminants with the same A/Z on the analysis depends on the difference in rest mass over

charge mrest/q. For the example of contamination in the 50Ca PID gate from 45Ar, af-

ter converting from atomic mass excess to nuclear mass (See Equation 3.16.), one obtains

∆M=
∣

∣

∣
Q×

(

M
Q (50Ca)− M

Q (45Ar)
)
∣

∣

∣
=
∣

∣

∣
20×

(

46524902.3
20 − 41878270.1

18

)∣

∣

∣
keV = 6.5 MeV. There-

fore to keep the systematic shift induced by contamination below 100 keV, the ratio of con-

taminant (45Ar) counts to good (50Ca) counts must be kept below
Ncontam
Ngood

< 1×105eV
6.5×106eV

=

1/65. . . a not so rigid constraint. Since a ±3σ cut was applied in the Z-projection his-

togram and, as seen in Figure 3.20, this limit nearly corresponded to the bounds given

by Ncounts,neighbor/Ncounts,peak < 100, contamination for nuclei with the same A/Z was

determined to be below the acceptable limit 16. The potential existence of charge state con-

tamination is addressed in the following subsection, since these could have also systematically

shifted TOF distributions.

3.4.3 Charge state contamination

As was described in the previous subsection, contamination in the PID was a major concern

as it could have dramatically altered the results for the TOF distributions of nuclei. One form

of contamination would be nuclides that were not fully ionized upon entering the fast-timing

16Note that TOF gates drastically reduced the overlap observed between Z-peaks in Fig-
ure 3.20.
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scintillator at the A1900 which maintained their charge state throughout the full flight path.

Each time an ion passes through material, it has the chance to exchange electrons with the

material and alter its charge state, where a distribution of final charges is possible depending

on the beam energy, ion nuclear charge, target nuclear charge, and target thickness [163].

Only events which maintained the same charge state from the A1900 to S800 were among

the set of possible contaminants, since a charge change after the A1900 fast timing scintillator

would have placed an ion outside of the S800 rigidity acceptance. Since an ion’s magnetic

rigidity is given by Bρ = p/q, the change in rigidity due to picking-up an electron on a fully

ionized nucleus would be
∣

∣

∣

δBρ
Bρ

∣

∣

∣
=
∣

∣

∣

(p/Z)−(p/(Z−1))
p/Z

∣

∣

∣
=
∣

∣

∣

(1/Z)−(1/(Z−1))
1/Z

∣

∣

∣
= 1

Z−1 . Therefore,

for the highest Z isotopes measured in this experiment, Z = 30, a rigidity change of ≈ 3.5%

would be experienced due to a single electron pick-up. Since this is the smallest possible

rigidity change of all measured ions expected due to electron pick-up in the MCP foil and

the acceptance of the S800 spectrograph is 5% (i.e. ±2.5%) [34], no ions changing charge

state at this position would make it to the S800 focal plane 17.

For an example of possible contamination, if 66Fe were not fully ionized for all events, such

that there were some 66Fe25+ events in the PID, then some contaminants may be present

for 66Mn25+ since ∆E ∝ A2 and A/Q ∝TOF, as demonstrated in Section 2.5.2. The mass

difference for a misidentified event would be ∆M=
∣

∣

∣
Q×

(

M
Q (66Fe25+)− M

Q (66Mn25+)
)
∣

∣

∣

=
∣

∣

∣
25×

(

61415271.3
25 − 61429098.0

25

)
∣

∣

∣
keV =14 MeV. To keep the systematic shift caused by

contamination below 100 keV, the ratio of the number of 66Fe25+ events which could

have been present in the 66Mn gate with respect to 66Mn25+ was N66Fe25+
/N66Mn25+

=

17Fully-stripped isotopes of elements with Z ≥ 39 experiencing electron pick-up within
the MCP foil would fall within the S800 spectrograph acceptance. However, the resulting
rigidity change would cause the ion to miss the fast-timing scintillator at the S800 focal plane
focus.
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1×105eV
1.4×107eV

= 1/1400.

As discussed in [163], to first order the beam energy required to produce a given charge

state after passing through material is given by the Bohr criterion. This criterion states that

in order to remove a given electron from an atom, the projectile must pass through material

at a velocity vprojectile that is comparable to the classical velocity for that electron

vprojectile = vclassical =
Zαc

n
, (3.13)

where Z is the number of protons in the projectile, c is the speed of light, n is the principal

quantum number of the electron to be removed, and α ≈ 1/137 is the fine structure constant.

The concept behind the criterion is that a perturbed electron in the orbital given by n

wouldn’t be able to catch up to the nucleus as it continues relatively unperturbed through

a medium. Thus, to first order, removal of the most bound electron from 66Fe (n = 1; a

‘K-shell’ electron) would require a projectile velocity of ∼ 0.2c, which for 66Fe is a kinetic

energy of ∼ 20 MeV/u. Note that this is a much lower energy than the beam-fragment

energies for this experiment 18.

A more careful semi-empirical/semi-analytic calculation, such as that presented in Ap-

pendix A5 of [115], could be used to estimate charge-state production. However, as de-

tailed by [164], the production of charge states is sufficiently complicated that bulk cal-

culations of charge-state production are best performed by empirically calibrated models.

We explored the possibility of using the CHARGE and GLOBAL [164] models as implemented in

18LISE++ calculations predicted a fragment energy of ∼90 MeV/u for iron isotopes. For
this beam energy the Bohr criterion relation, vprojectile > vclassical is fulfilled up to 137Ba.
Results of calculations for the beam energy required to provide fully-stripped fragments up
to a given Z for aluminum and niobium primary beams are shown as an example in Figure 8
of [9].
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LISE++ [165] to estimate expected charge-state distributions for nuclei observed in this exper-

iment to confirm our simple calculation 19. For these charge-changing events the predicted

transmission was roughly 10% of the transmission for non-charge-changing ions. However,

these charge-state production models are known to be inaccurate for beam energies be-

low 100 MeV/u [164], especially for thin materials such as the wedge-shaped degrader (See

Section 2.2.2.), A1900 fast-timing scintillator (See Section 2.3.2.), and gold foil (See Sec-

tion 2.4.2.) used in this experiment [166].

To be sure no charge states were present in significant quantities, the particle identi-

fication matrix was investigated for features in between the main ∆E–TOF distributions

for nuclei with high Z, since, as is apparent from the Bohr criterion (Equation 3.13), these

would be the most susceptible to having charge states that were not fully ionized. Figure 3.21

shows a subsection of the PID, designating the locations 66Fe25+ ions would be expected

to be located if the +1e charge state was created from electron pickup at any point up to

the A1900 fast-timing scintillator or from the gold foil at the S800 target position 20. Since

66Fe26+ had ≈ 205, 500 counts, it follows from the lack of signal above background in the

∆E space directly above 64Mn25+ that charge state production in the gold foil for iron iso-

topes was below the 0.0005% level. Similarly, considering ≈ 14, 300 66Fe26+ events had an

energy loss greater than any 66Mn25+ events (∆E & 35, 200 channels) and there is a lack

of signal above background in the ∆E space directly above 66Mn25+, it follows that charge

state production from any point upstream of the A1900 fast-timing scintillator was below

the 0.007% level. Considering the previously demonstrated contamination required to affect

19LISE++ only predicted charge-state changes to occur within the gold foil located op-
posite the MCP at the level of roughly 1/100 events for iron, 1/1000 for vanadium, and
1/10000 for calcium.

20As previously explained, events undergoing a charge change at the foil location would
have been outside of the S800 spectrograph acceptance.
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66Fe26+

66Mn25+

64Mn25+

Figure 3.21: Subsection of the non-rigidity corrected particle identification matrix (with a cut
on the non-dispersive position of the microchannel plate detector described in Section 3.5.3)
showing isotopes of iron and manganese. The black outline traces the majority of events
attributed to fully ionized 66Fe, the dotted outline is the same shape shifted in TOF to
mimic the effect of changing to a 25+ charge state in the gold foil at the S800 target position
(Note that these events should not have been within the acceptance of the spectrometer,
since a large change in p/q would be suffered due to the charge-change.), and the dashed line
mimics the same thing for electron-pickup prior to or at the A1900 fast-timing scintillator.
It is apparent that there was not a significant amount of 25+ charge state production for
66Fe.
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72Ni

75Cu

69Co

72Ni

75Cu

69Co

Figure 3.22: The left panel shows a subsection of the PID, where example PID gates have
been drawn around 69Co (black-dotted line), 72Ni (red-dashed line), and 75Cu (solid-blue
line). The right panel shows the same PID subsection, where events identified as 69Co (black
dots), 72Ni (red dots), and 75Cu (blue dots) have been corrected for their magnetic rigidity,
Bρ. It is apparent that the overlap between nuclei in the non-Bρ corrected PID (gray ovals)
leads to improperly Bρ-corrected events in the Bρ-corrected PID, which may be interpreted
as charge states when they are in fact not. The misidentified events wind up being located
near events of the nucleus to which they properly belong because the TOF–Bρ relationship
varies smoothly with Z and A/Z (See Section 3.7); however, the correction for neighboring
nuclei is different enough that the improperly corrected events are not quite in-line with the
properly identified events. These misidentified events are not problematic, since they are
removed from the TOF distribution, as described in Section 3.6.

the mass of a given nucleus was one contaminant for every few thousand ‘good’ events, we

can safely rule out the possibility of charge state contaminants in the PID.

It should be noted that the analysis of the previous NSCL TOF mass measurement [31]

found what they interpreted as evidence of charge states (See their Section 4.1.). However,

given the analysis presented in this subsection, it seems unlikely such charge states were

actually present. The signature they interpreted as charge states could have resulted from

applying the rigidity correction for a nucleus with a given Z,A/Z to events from the neigh-

boring nuclei with Z±1, above or below in terms of ∆E, that had a similar A/Z and leaked

into that PID gate, as demonstrated in Figure 3.22. This issue of misidentification would be

particularly prevalent for regions of the non-rigidity corrected PID that are crowded, such as
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the high-Z regions. The misidentified events are not problematic in the TOF determination,

since they are shifted in TOF very far from the main TOF distribution, and are thus easily

removed (See Section 3.6.).

3.5 Magnetic rigidity determination

The magnetic rigidity, Bρ, measurement, required to correct the time-of-flight, TOF, for

momentum dependence, was performed by detecting the dispersive position of the ions at

the S800 target position via the technique discussed in Section 2.4. Ions passed through a

gold foil to produce electrons, which were then guided via electric and magnetic fields to a

resistive readout microchannel plate detector, MCP. The electrons were amplified and the

total charge was collected on a resistive backplane and allowed to drift freely to the four

corners of the MCP. This charge information was then used to infer an ion-impact position

on the gold foil, and therefore a relative Bρ.

3.5.1 Position determination principle

The basic concept behind position detection on the MCP was that more charge would be

collected on the MCP back-plane corners closest to the point at which the electron impacted

the MCP face [35, 137, 145]. For example, if the upper half collected more charge than

the lower half and the right side collected more charge than the left side, then the electron

likely impacted the MCP in its upper-right quadrant. Therefore one uses the simple relations

stated in Equations 2.5 and 2.6, which calculate the position from using the four MCP corner

signals UR, UL, LR, and LL. For these relations to hold true, the corner signals as recorded

in the charge-to-digital converter (QDC) had to be pedestal-subtracted and gain-matched
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so that the same signal strength corresponded to the same amount of charge.

The pedestal to be subtracted from a corner signal was determined in dedicated runs (i.e.

runs which were not used to gather TOF data) by triggering the data acquisition system when

no valid signal was provided to the MCP and recording the highest QDC channel for which

a value was registered. The pedestals subtracted from the 4096 channel QDC spectra were,

130, 158, 183, and 163 for the high-gain UL, UR, LR, and LL signals, respectively, while the

pedestals for the corresponding low-gain signals were 185, 166, 112, and 143, respectively. In

order to be able to mix high-gain and low-gain corner signals to obtain an MCP position, a

linear calibration was obtained to convert high-gain signals to match-up with low-gain signals

(as was done in [35], shown in their Figure 4.20), so that the two would agree in the signal

strength region where both gave valid readings (above the pedestal and below saturation).

Such a conversion looked like: ULhigh,match low = offset + slope × ULhigh. The offset and

slope obtained for each corner signal were: 3.861 and 0.132 for UL, -5.633 and 0.141 for UR,

0.991 and 0.119 for LR, and 0.312 and 0.123 for LL, using the pedestal-subtracted corner

signals. These values were obtained from linear fits 21 to the portions of the graphs in the

upper half of Figure 3.23 where the high-gain signal was not saturated. The lower half of

Figure 3.23 shows the agreement between low-gain and high-gain corner signals obtained

after applying the linear conversion to the high-gain signals. For the positions that mixed

high-gain and low-gain signals, the converted high-gain signals (e.g. ULhigh,match low) were

chosen over the low-gain signals for corners when the low-gain corner signals were below the

following thresholds: 100, 500, 150, and 100, for UL, UR, LR, and LL, respectively.

The position calibration was carried out by placing a mask with a known hole-pattern 22

21Information on ROOT’s fitting technique is provided in 3.9.2.
22Holes were spaced in the horizontal and vertical dimensions by 5 mm. The large, medium,

and small holes had diameters of 2.00 mm, 1.52 mm, and 0.79 mm, respectively.
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Figure 3.23: The upper four panels compare the high-gain and low-gain corner signals for
each event for the upper left (UL), upper right (UR), lower right (LR), and lower left (LL)
corners of the MCP, where the pedestals have been subtracted. It is clear that the high-gain
signal is saturated for all but the weakest of low-gain signals. The lower four panels show
the low-gain and high-gain corner signals recorded for each event on the four MCP corners,
where the high-gain signal (thin black-lined histogram) has been corrected to overlay the
low-gain signal (thick red-dashed histogram). Figure 4.20 of [35] shows similar MCP corner
signal gain-matching results for that work.
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(a) (b)

(c) (d)

Figure 3.24: Panel (a) shows the mask with a distinctive hole pattern (5 mm hole-spacing)
which was placed in between the incoming ion and gold foil in order to only allow electrons
to be created from certain locations for calibration runs. Panel (b) shows the image created
on the MCP by electrons generated from a 232Th α-source. Panels (c) and (d) show the
image created by the electrons generated by the 82Se primary beam, where the beam was
tuned to four separate positions to achieve the mask-coverage shown (The mask position is
indicated in Figure 2.7.), where the low-gain corner signals were used for panel (c) and the
combined high-low gain signals were used for panel (d). Since only the relative position was
relevant, the effort was not made to achieve the exact 5 mm hole-spacing of the mask in the
MCP image.
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upstream of the MCP detector foil [145]. The mask, shown in the upper left panel of

Figure 3.24, was used off-line with a collimated 228Th α-source at a distance of roughly

20 cm from the foil to perform a simple test of the foil-impact to MCP-position mapping

(upper-right panel of Figure 3.24.), where the mask was located directly in front of the foil on

the source side 23. During the experiment, the 82Se primary beam was used to produce the

MCP position maps shown in the lower-left and lower-right panels of Figure 3.24, where the

lower-left panel used only the low-gain MCP corner signals and the lower-right panel used

the combined high and low gain corner signals. To obtain the primary beam mask images,

the primary beam was defocused at the foil position (but still focused at the S800 fast-timing

scintillator) and centered on four separate locations (in x,y-space) sequentially in order to

provide adequate coverage over the MCP-mask, where the positions were chosen based on

the observed MCP impact-positions during the TOF measurement events. Additionally, the

fast-timing scintillator in the A1900 was retracted in order to avoid damage due to the high

rate of the primary beam. A beam attenuator was used to ensure the CRDC rate did not

exceed the maximum allowable rate. The trigger employed for the primary beam mask run

was a valid signal for the S800 ‘Up’ fast-timing scintillator. Ultimately no improvement was

seen with the inclusion of high-gain signals and thus, since the high-to-low gain conversion

process provided more opportunities for mistaken position readings (e.g. from a faulty corner

signal), only the low-gain corner signals were used in the final analysis for the MCP position

determination.

Based on the known hole-positions (5 mm spacing) from the mask, the MCP positions

obtained using the low-gain corner signals in Equations 3.14 and 3.15 were converted to

23Collimation ensured that α’s did not directly impact the MCP surface and the distance
of 20 cm was chosen so that the source would not alter the magnetic field between the foil
and MCP or block traveling electrons.
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physical horizontal and vertical positions by the following scaling factors (obtained by com-

paring the average hole-spacing to the known hole-spacing): Xactual = 37 ∗ Xlow−gain mm

and Y actual = 47 ∗ Ylow−gain mm 24. A non-linear mapping between the recorded and the

actual X and Y positions was not performed, as a significant non-linearity was not observed.

Due to the acceptance of the beam line, the only region of the MCP which detected electrons

due to ion-impacts on the gold foil corresponded directly to the hole-mask region imaged in

Panels (c) and (d) of Figure 3.24.

3.5.2 Position resolution

The MCP-position resolution (and therefore rigidity resolution) was determined by assessing

peak widths for single columns and rows of of the hole-mask image (See Figure 3.24.).

The position measurements obtained for single rows and columns of holes are shown for

the α-source measurement in Figure 3.25 and for the measurement with the 82Se primary

beam in Figure 3.26. As was discussed in Section 2.4.2, the achieved resolution for the

α-source measurement was much better than the achieved resolution for the primary-beam

measurement 25. The assignment of a position resolution directly from the width of a hole-

mask peak was complicated by the convolution of the peak-resolution with the size of the

corresponding hole in the mask.

MCP position resolutions for the α-source and 82Se primary beam measurements were

determined by fitting 26 single-peaks obtained from one hole in the mask and removing

24Note that here X is the non-dispersive (horizontal) position and Y is the dispersive
(vertical) position at the S800 target position, in contradiction to the usual terminology of
X as the dispersive axis.

25Recall that the lower kinetic energy of electrons generated by α-particles passing through
the foil led to a cyclotron radius that was 10× smaller than electrons generated by primary
beam particles passing through the gold foil (See Section 2.4.3.).

26Information on ROOT’s fitting technique is provided in 3.9.2.
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Figure 3.25: Projection onto the Y (dispersive) dimension for MCP-positions obtained from
the α-source hole-mask measurement (Figure 3.24b) for the column of holes with < X >∼
0 mm (left panel) and onto the X (non-dispersive) dimension for the row of holes with
< Y >∼ −15 mm (right panel). The peak resolution and statistics were affected by the size
of the corresponding hole (seen in Figure 3.24b).

Figure 3.26: Projection onto the Y (dispersive) dimension for MCP-positions obtained from
the 82Se primary beam hole-mask measurement (Figure 3.24c) for the column of holes with
< X >∼ −8 mm (left panel) and onto the X (non-dispersive) dimension for the row of holes
with < Y >∼ 0 mm (right panel). The peak resolution and statistics were affected by the
size of the corresponding hole (seen in Figure 3.24c).
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the contribution to the width perceived to be from the hole-width. The (arguably crude)

relationship for position resolution used was

σMCP =
√

σ′2peak − σ2hole, (3.14)

where σ′peak is the peak width corrected for image magnification (σ′peak =
σpeak

magnification),

and σhole = hole diameter
2∗2.35 . The concept was that the hole contributed a Gaussian profile

to the peak with a standard deviation that was related to the full-width at half max-

imum by the usual relation (FWHM=2.35σ), where FWHM was chosen to be the hole

radius. The magnification was given by the average deviation from 5 mm of the hole-

spacing in that region. For example, the magnification used for a peak i, as determined

by the relative spacing from the neighboring peaks i − 1 and i + 1, in the Y -projection

was, magnification = 1/2

(

|<Y>i−<Y>i−1|
5 +

|<Y>i−<Y>i+1|
5

)

, using mean peak positions

in dimensions of millimeters.

Choosing the < Y >∼ −1.6 mm peak obtained from the α-source measurement in the

left-panel of Figure 3.25, σpeak=0.70 mm, σhole=0.32 mm, and magnification=1.01, yield-

ing σMCP(Y ) = 0.6 mm. Choosing instead the < Y >∼ −21.2 mm peak from the same

spectrum, σpeak=0.41 mm, σhole=0.17 mm, and magnification=0.91, yielding σMCP(Y ) =

0.4 mm. The same procedure for the < X >∼ 10.2 mm peak obtained from the α-source

measurement in the right-panel of Figure 3.25 resulted in σpeak=0.53 mm, σhole=0.43 mm,

and magnification=0.83, yielding σMCP(X) = 0.5 mm. For the < X >∼ −7.4 mm peak

from the same spectrum, σpeak=0.36 mm, σhole=0.17 mm, and magnification=0.92, yield-

ing σMCP(X) = 0.4 mm. Therefore, from this rather rough method of position resolution

assessment, we determined the position resolution of the MCP for the α-source test was
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σMCP(Y ) ≈ 0.5 mm, σMCP(X) ≈ 0.4 mm. Since the cyclotron radius for electrons produced

by the α-source was ∼0.17 mm (See Section 2.4.2.), we concluded that for the α-source

measurement the resolution of the MCP was the primary contribution to the position uncer-

tainty. This is consistent with the comparison to the approximate spatial resolution quoted

by the manufacturer for this series of MCP (Model 3398A): full width at half maximum

FWHM ≈ 0.79 mm [135], i.e. σMCP ≈ 0.34 mm.

Choosing the < Y >∼ 21.8 mm peak obtained from the 82Se primary beam measurement

in the left-panel of Figure 3.26, σpeak=1.11 mm, σhole=0.17 mm, and magnification=0.80,

yielding σMCP(Y ) =1.4 mm. Choosing the < Y >∼ −1.1 mm peak from the same spectrum,

σpeak=1.02 mm, σhole=0.17 mm, and magnification=0.94 , yielding σMCP(Y ) =1.1 mm.

The same procedure for the < X >∼ −13.1 mm peak obtained from the 82Se primary beam

measurement in the right-panel of Figure 3.26 resulted in σpeak=0.83 mm, σhole=0.17 mm,

and magnification=0.83, yielding σMCP(X) = 1.0 mm. Choosing the < X >∼ −17.1 mm

peak from the same spectrum, σpeak=0.88 mm, σhole=0.17 mm, and magnification=0.82,

yielding σMCP(Y ) =1.1 mm. Therefore, from this rough method, we determined the position

resolution of the MCP for the 82Se primary beam measurement was σMCP(Y ) ≈ 1.3 mm,

σMCP(X) ≈ 1.1 mm. Since the cyclotron radius for electrons produced by the 82Se was

∼1.7 mm (See Section 2.4.3.) and since the α-source measurement was able to achieve a

×2 better resolution, we concluded that for the time-of-flight mass measurement the large

spread in electron trajectories was the primary contribution to the position uncertainty.

Therefore potential room for improvement in a future experiment would be a reduction of

the electron trajectory spread to the order of the position resolution achieved for the α-source

by choosing permanent magnets twice as strong as those used for the current experiment

(See Section 2.4.3.).
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The ≈ 0.5 mm position resolution for the α-source test and ≈1 mm position resolution for

the 82Se primary beam was compared to previous studies [31, 35, 137, 145]. [137] achieved

position resolutions of σMCP(X) = 0.35 mm and 27 σMCP(Y ) = 0.7 mm (See their Fig-

ure 5.4.) for a similar α-source test for a circular MCP with an active radius rMCP = 2 cm2

and a magnetic field strength of ∼0.05 T. While this field is much smaller than the ∼0.25 T

field used in this experiment (See Figure 2.8.), the ∼ 20% smaller active area (recall the

experiment presented here had an 8× 10 cm2 MCP) likely helped compensate by incurring

less noise from capacitive pickup. For nearly the same conditions 28, [35, 145] found an

average position resolution of ∼0.6 mm (See Figure 4.22 of [35].) and [31] found an average

position resolution of ∼ 0.4 mm. When using a primary beam instead, [35, 145] found a

position resolution of ∼ 1.1 mm using electrons produced from a gold foil by 72 MeV/u

70Se. As such we concluded our MCP position resolution compared favorably with previous

results 29.

We used the relationship between time-of-flight (TOF) and the MCP dispersive, Y , po-

sition (See Section 3.6.) to estimate the overall contribution of the MCP position resolution

to the final TOF resolution. Since δTOF/δY ≈ 0.04 ns/mm (See Figure 3.32.), the MCP

position resolution contributed ∼ 40 ps to the overall TOF resolution. This roughly agrees

with the expected overall contribution, considering that the intrinsic TOF resolution of the

timing detectors was found to be ≈ 30 ps [22, 31] and the total TOF resolution was found

to be ≈81 ps (See Section 3.8.) 30.

27The worsened resolution in the Y -dimension was a feature of the foil-MCP geometry.
28The MCP-magnet set-ups employed by [137], [31], [35], and [145] were all provided by

NSCL’s HiRA group.
29In particular, considering the fact that the manufacturer expected a factor of two better

resolution for the smaller MCP (Model 3394A) [135].
30Therefore an increase in field strength of the permanent magnets (used in the MCP-

yoke setup) by a factor of two could have improved the TOF resolution, and therefore the
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3.5.3 Identification of scattering on collimator

Though the dispersive (Y ) position of the microchannel plate detector (MCP) was of interest

for the correction of the time-of-flight (TOF) for ions’ magnetic rigidity (See Section 3.6.),

the non-dispersive position wound up being critical for the identification of background

from collimator scattering. Revisiting the ∆E–TOF particle identification (PID) plot (See

Figures 2.3 and 3.27.), it is apparent that individual nuclei in the non-rigidity corrected PID

had high-∆E tails extending from the main group of events. This feature, shown in the

left-panel of Figure 3.27, was referred to as the ‘top-hat’ for convenience. Since this feature

was present even after enforcing agreement between the ionization chamber and S800 fast-

timing scintillator energy loss (See Section 3.3.2.), it could not be attributed to an issue with

the energy loss detection such as event pile-up. After an extensive search, a correlation was

found between the non-dispersive position on the microchannel plate detector X and the

relatively high-energy loss ∆E events in the PID, as seen in Figure 3.27.

The reason for the correlation between high-∆E and X was attributed to scattering

of the beam fragments on the collimator that was upstream of the MCP-foil set-up (See

Figure 2.7.), which was intended to protect the MCP during beam tuning. From the pho-

tographs shown in Figure 3.28, one can see how some fragment events could have scattered

on the collimator opening. The scattered events (apparently from the right wall opening,

in terms of the upstream side, from Figure 3.27) would have lost energy in the scatter-

ing event and would have therefore deposited more energy in the ionization chamber (and

S800 fast-timing scintillator), as is apparent from the Bethe formula (See Equation 2.3.). In

principle this scattering was supposed to be avoided during beam tuning, where a camera

was located inside the S800 target position vacuum chamber. However, no phosphorescent

contribution to the final mass uncertainty from statistics (See Section 3.9.4.), by ∼25%.
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Figure 3.27: Demonstration of the correlation between high energy-loss (∆E) PID events
and the microchannel plate (MCP) non-dispersive position. The left panel shows a subset
of the PID containing isotopes of calcium, scandium, and titanium, where ‘main’ events are
within the purple box and ‘top-hat’ events are within the red-dashed box. The right panel
shows the location of the ‘main’ (purple dots) and ‘top-hat’ (red dots) events on the MCP,
where it is clear that the relatively high ∆E events corresponded to larger non-dispersive
positions.
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BEAM

(a) (b)
collimator

collimator

Figure 3.28: Side (a) and upstream (b) views of the collimator intended to protect the mi-
crochannel plate detector (MCP) during beam tuning. We determined that beam fragments
likely scattered on the right-wall (looking from the upstream direction) of the collimator
opening (See Figure 3.27.).
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Figure 3.29: Particle identification matrix before (red dots) and after (black dots) the cut
on the microchannel plate detector non-dispersive position, X < −11 mm. The reduction
in relatively high-∆E events for individual nuclei is apparent, though it is less clear for the
high-statistics events. The relationship between the high-∆E events and X is shown in more
detail for isotopes of calcium, scandium, and titanium in Figure 3.27.

material was located on the collimator, so scattering could have gone unnoticed, and the

camera overheated prematurely so the beam position wasn’t as fine-tuned as was originally

desired. Investigation of the collimator scattering effect for a large range of nuclei lead to the

determination that a cut was required on the MCP non-dispersive position to only accept

events in the analysis with XMCP < −11 mm. The PID before and after the cut in the

non-dispersive direction is shown in Figure 3.29.

3.6 Local rigidity correction

The relationship between the time-of-flight TOF and magnetic rigidity Bρ, which needs to

be determined to momentum-correct TOF, was first 31 determined individually for each

31As the following section will explain, these local rigidity corrections were used to fit for
a global function of rigidity correction as a function of nuclear mass A and charge Z.
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nucleus. Since Bρ was proportional to the MCP dispersive position Y (See Section 2.4.),

this amounted to determining and correcting for the TOF-YMCP relationship. The details

of this procedure are contained in this section.

Estimates for the TOF–YMCP slope were obtained with LISE++ simulations, however the

simulated TOF values were too coarse to obtain realistic results. Though the TOF precision

limit in the LISE++ simulations was 10 ps, simulations were found to have a large variability

in predictions. For instance, different Monte Carlo runs with the same number of events

would often yield mean TOF values that were discrepant by over 100 ps 32. Therefore, the

rigidity corrections could not be performed on the basis of simulations.

An empirical approach was used to determine the relationship between time-of-flight TOF

and the dispersive position on the microchannel plate detector YMCP (which was a proxy for

magnetic rigidity Bρ and therefore momentum, since Bρ = p/q). This procedure consisted

of linearly fitting 33 the TOF–YMCP trend nuclide-by-nuclide to determine the correction

required to remove the momentum-dependence from TOF. As will be shown, an iterative

approach was applied to remove contamination from neighboring nuclides in the PID which

was present within gates for each nuclide, and which can be separated once a correction is

applied.

The procedure for determining the slope of the TOF–YMCP relationship consisted of fit-

ting the relationship between TOF and YMCP for all events identified as belonging to a given

nuclide according its PID gate (See Section 3.4.), projecting the Bρ-corrected relationship

onto the TOF dimension, fitting the projected TOF distribution with a normal distribution

32Additionally, the more realistic Monte Carlo calculations took exceedingly long for the
large set of nuclei observed, so that obtaining sufficient statistics to obtain LISE++ estimates
for an ion’s TOF and rigidity correction proved time-consuming.

33Information on ROOT’s fitting technique is provided in 3.9.2.
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to get the mean and standard deviation σ, making a cut in TOF to only include events within

Nσ of the mean rigidity-corrected TOF, and repeating the procedure for the data after the

Nσ cut was applied, for N=4, 3, 2.5, and 2. Note that the ‘pivot point’ of the rigidity cor-

rection was about YMCP = 0, though we found the mass-fit results to be insensitive to this

choice. This procedure is shown graphically for the example of 68Fe in Figure 3.30 (Similar

figures for all isotopes of sodium through copper, 11 ≤ Z ≤ 29, which were observed are con-

tained in Appendix B.). The iterative procedure was required due to the contamination from

neighboring nuclei, which is present in the upper left panel of Figure 3.30. The origin of the

contamination is explained by Figure 3.22. Briefly summarized, relatively low-TOF events of

higher-Z nuclei and relatively high-TOF events of lower-Z nuclei could leak into the PID cut

for a nucleus with a given Z,A, but the contaminants are separated in the TOF–YMCP plane

since relatively high-TOF events had relatively low-Bρ (high-YMCP) and relatively low-TOF

events had relatively high-Bρ (low-YMCP). The slope generally converged after the first

decontamination step was taken (i.e. the 4σ cut). However, the tighter cut was necessary

for isotopes along A/Z = 2.5, since for this case nuclei with Zcontaminant = Zgate ± 1 would

have a very similar TOF–YMCP distribution as compared to the nucleus of interest.

As a technical point, the TOF vs YMCP data was fit by filling a two-dimensional histogram

for each event assigned to a given nucleus, transforming that histogram into a graph via

ROOT’s ‘TProfile’ class [167], and fitting the resultant graph 34. TProfile generates a

graph by assigning a data point to each histogram bin along the horizontal axis, where the

vertical position of the data point is the geometric mean of the vertical axis histogram bins

for that horizontal axis bin and the error bar is given by the standard error of the mean

(i.e. the standard deviation divided by the number of events) for that same set of bins. The

34Information on ROOT’s fitting technique is provided in 3.9.2.
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Figure 3.30: The five rows show the successive steps taken in the local rigidity correction
procedure to remove contamination from neighboring nuclei in the PID and determine the
slope of the TOF vs YMCP of a single nucleus, here 68Fe. The upper left panel shows
a histogram of TOF vs YMCP for events identified as 68Fe, where the black points are
the resultant graph obtained by applying ROOT’s TProfile class to the histogram. The
black line is a linear fit to the graph. The upper middle panel shows the resultant rigidity-
corrected TOF vs YMCP histogram after removing the linear trend found in the upper left
panel, pivoting about YMCP=0. The upper right panel shows the projections onto the TOF-
dimension of the uncorrected (red histogram) TOF vs YMCP relationship, which was not
easily visible on the same scale for 68Fe, and rigidity corrected (black histogram) TOF vs
YMCP relationship, where the blue line is a Gaussian fit to the rigidity corrected histogram.
The second row contains the same information as the first, but after applying a cut to only
include data within ±4σ of the mean of the rigidity corrected TOF distribution determined
in the first row. The following rows contain the same information after applying cuts to only
include data within 3, 2.5, and 2σ, respectively, of the mean rigidity corrected TOF, where the
mean and σ were determined by the Gaussian fit in the previous row. Appendix B contains
similar plots for all isotopes of elements with 11 ≤ Z ≤ 29 observed in this experiment.
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‘Approximate’ option [167] was used to assign as an uncertainty to horizontal bins which

contained only one data point the average uncertainty of all other horizontal bins with more

than one count. This was inconsequential here, since very few cases had a single count per

horizontal bin, however it is an important practical point for someone performing a similar

analysis since omission of ‘Approximate’ will result in that bin being completely discarded.

Instead of generating a graph by applying TProfile to a two-dimensional histogram, a

graph could have been directly created using TOF and YMCP information from each event.

However, directly creating a graph made it hard to visualize how the TOF–YMCP space

was populated and it was found that the results obtained were the same even when only

100 events were present within the two-dimensional histogram. A test was performed where

events were randomly generated along a linear function within a Gaussian perturbation from

linearity. The generated data was fit as a graph and also fit as a TProfile applied to a two-

dimensional histogram of the data. It was found that both methods agreed even for 100

counts. An interesting result from this simulation was that ROOT underestimated the fit

uncertainty for fewer than ∼5,000 counts. As will be discussed in Section 3.7, nuclei with so

few events were not factored into the final rigidity-correction determination.

The linear relation between TOF and YMCP is apparent in the left panel of Figure 3.30,

though a higher-order dependence is apparent in the middle column of the same figure, which

contains a two-dimensional histogram of the rigidity-corrected TOF vs YMCP relationship for

a single nucleus. Uncorrected higher orders are of concern as they may worsen the resolution

of TOF, and therefore increase the statistical uncertainty of the final masses, and they may

cause TOF distributions to deviate from a Gaussian shape. The latter concern is potentially

more problematic since different isotopes populate different sections of the TOF-Bρ space

and therefore are affected differently by nonlinearities. Detector or electronics induced non-
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linearities in the microchannel plate position measurement were ruled-out since nonlinear

behavior of the significance required was not observed in the MCP position determination

(See Section 3.5.). The likely origin of non-linearities are therefore ion optics. Simulations

using 5th-order ion-optics from COSY [168] as implemented in LISE++ demonstrated that a

qualitatively similar feature was induced in the TOF–YMCP relationship from inclusion of

material in the path of the beam (i.e. the wedge degrader, fast-timing scintillators, and gold

foil at the MCP location), however the feature was much less pronounced in the simulations

than in the data.

Fits were performed to the TOF–YMCP trends to assess the presence of quadratic and

cubic terms and in all cases the quadratic and cubic fit-parameters were found to have

large uncertainties and values consistent with zero. Given that statistics were not sufficient

to determine higher order deviations, and because of the potential to introduce additional

systematic errors with weakly constrained analysis parameters, it was decided not to correct

for the higher order dependencies. The final rigidity corrected TOF distributions are very

nearly Gaussian (See Figure 3.30 and Appendix B.) justifying this choice 35. Isotopes of

elements with Z < 18 were found to span a small range on the lower portion of the MCP,

resulting in a large uncertainty in the locally-determined TOF vs YMCP slope. Ultimately

this resulted in these nuclei being discarded from the analysis (See Section 3.7.).

The slopes of the TOF–YMCP trends for isotopes of argon through iron ranged from

∼ 35.0 − 45.0 ps/mm (See Figure 3.32.) Note that, as will be shown in the following

section, the slope did not simply increase linearly in magnitude as a function of A/Z (See

Figure 3.32.).

35Additionally, a mass-fit was performed where the TOFs were corrected to third order in
YMCP and an increase in the statistically-distributed systematic uncertainty was observed
(See Section 3.9.2.).
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3.7 Global rigidity correction

In order to reduce systematic biases that affect the rigidity correction in a pathological way

and to ensure smooth behavior of the rigidity correction, the locally determined dependen-

cies of TOF on YMCP were fit to determine a global rigidity correction for TOF. The global

correction had the added benefit that it could be employed to low-statistics nuclides, whose

local rigidity correction has a large uncertainty in the TOF vs YMCP slope. This was par-

ticularly important since the lower-statistics nuclides are the most exotic, and therefore the

most interesting ones. Motivated by the success of the approach employed in the prior NSCL

time-of-flight mass measurement data analysis [22, 31, 78], the locally determined slopes of

the TOF–YMCP trends (See Section 3.6.) were fit 36 with a polynomial with nuclear mass

A and charge Z as independent variables.

The optimum global fit was found by trying numerous functions that contained various

combinations of polynomials in A, Z, and A/Z, where up to fourth-order in each variable

was explored. Additionally, multiple sets of Z-ranges were explored for the global slope fit,

e.g. omitting low-Z and/or high-Z nuclei. The procedure used to determine the local TOF

vs YMCP slope was found to be relatively unreliable for isotopes of elements with Z < 17

since their distributions in TOF–YMCP space were concentrated at the lower-limit of the

MCP (See Appendix B.). Including these nuclides made a ‘good’ global-slope fit (lacking

in systematic trends in fit residuals) unattainable. Nuclei with Z > 26 were excluded from

the analysis for the same reason. Finally, nuclei with A/Z < 2.44 were excluded from the

global slope determination because their inclusion required a more than 3rd-order A/Z term

in the correction (and still the fits were very poor), for which there was no evidence in mid-

36Information on ROOT’s fitting technique is provided in 3.9.2.
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Figure 3.31: Residual between the TOF vs YMCP slope determined ‘locally’ (i.e. by-isotope)
and the ‘global’ value determined from the fit with Equation 3.15 to all local slopes with
18 ≤ Z ≤ 26 and A/Z > 2.44. It is apparent that the majority of isotopes were fit within
1% (Note that the average slope was ≈ 0.40 ps/mm, as seen in Figure 3.32.) and that there
was a significant statistically-distributed systematic scatter for each element as a function
of A/Z.

to-high A/Z (∼ 2.5 − 2.7) nuclei. Since the mid-A/Z nuclei (e.g. ∼ 2.5) had the highest

statistics and the high-A/Z (e.g. ∼ 2.7) nuclei were the object of the mass measurement, it

was determined that exclusion of the A/Z < 2.44 nuclei provides more reliable neutron-rich

masses.

The optimum global rigidity-correction function had the same terms, albeit different
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coefficients, as in [31] (See their Equation 4.6.) for the fit to linear local rigidity corrections 37,

(

dTOF

dYMCP

)

global
= a0 + a1

A

Z
+ a2

(

A

Z

)2

+ a3Z + a4Z
2 + a5A, (3.15)

where a0 = 0.288±0.003, a1 = −0.130±0.002, a2 = 0.0202±0.0005, a3 = −0.00911±0.00005,

a4 = 0.00189 ± 0.00001, a5 = 10.0 ± 1.5. As compared to the values obtained by [31] (See

their Table 4.1.), the relative magnitude of parameter a5, which captured the A-dependency,

determined here was three orders of magnitude larger. It is suspected that this is related

to the extra energy loss of ions (as compared to the measurement described in [31]) in the

A1900 wedge degrader, since ∆E ∝ A2.

The residual of the global fit to locally determined rigidity correction slopes is shown

in Figure 3.31. Though all slopes were fit to within . 1% and no systematic trends were

observed as a function of A/Z or Z, a significant statistically-distributed scatter was present.

A direct comparison between the local rigidity-correction slopes and the global fit function

is given, along with a comparison to fits of the local correction along an isotopic chain,

for isotopes of argon through iron in Figure 3.32. It is apparent that the by-element and

global rigidity-correction slope fits were generally in agreement, and each generally fit the

locally-determined slopes well. All three rigidity-corrections were employed through the

remainder of the analysis pipeline to decide which correction was best and it was found

that the global rigidity correction minimized the final systematic uncertainty in the mass-fit

(See Section 3.9.5.). Unless noted otherwise, the following data presented used the global

rigidity-corrected TOFs.

37Note that [31] ultimately chose a quadratic local rigidity correction, since this produced
a slightly smaller scatter in their mass-fit residual (See their Section 4.2.1.). As discussed in
Section 3.6, no evidence was found in this analysis for quadratic behavior of TOF vs YMCP.
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Figure 3.32: TOF vs YMCP slope as a function of mass number A for observed isotopes
of argon, potassium, calcium, scandium, titanium, vanadium, chromium, manganese, and
iron (18 ≤ Z ≤ 26), respectively, as determined by ‘local’ by-nucleus fits (data points) (See
Section 3.6.) and fits to the locally-determined slopes that employed the ±2σ cut-off (See
Figure 3.30.), where the black data points were included in the fit and the blue points were
not. It is apparent that in general the locally determined slopes for the 3σ (circles), 2.5σ
(squares), and 2σ (triangles) cut-offs were in agreement. The by-element fit along a single
isotopic chain as a cubic function of A is shown by the red lines, where the upper and lower
lines indicate the extremes obtained for upper and lower limits of the fit-parameters, and
the orange band indicates the ±1σ confidence interval. The black line shows the trend of
the rigidity-correction slope along an isotopic chain as determined by the global fit (See
Equation 3.15.) to all locally-determined slopes of nuclei with A/Z > 2.44 and 18 ≤ Z ≤ 26.
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3.8 Final TOF determination

The final analysis step before fitting the mass–TOF surface to obtain a calibrated relationship

(See Section 3.9.) was to determine the final TOFs and their uncertainties of observed nuclei.

This consisted of identifying all events belonging to given nucleus, correcting TOF for its

magnetic rigidity dependence 38, and determining the mean of the final TOF distribution

and its uncertainty.

The means of rigidity-corrected TOF distributions and their uncertainties were obtained

via a Gaussian fit 39. The Gaussian was chosen since this provided a good fit to the data,

as can be seen in Appendix C, however, as seen in the same appendix, a slight Z-dependent

skewness was present in observed TOF distributions. This is also apparent for the example

TOF spectra shown in Figure 3.33. The Gaussian fit to obtain the mean was performed

with limiting ranges of ±4σ, ±3σ, and ±2σ of the mean TOF, where the mean and σ were

determined for each case in an iterative procedure, i.e. setting σ to determine the mean,

then determining σ, and repeating until convergence. The mean TOFs of the ±4σ and ±3σ

cases were found to agree within less than 1 ps, while the mean TOF from the ±2σ case was

found to deviate from the other two by several picoseconds without any clear trend in A, Z,

or A/Z. It was determined that the ±2σ case cut too deeply into the TOF distributions and

therefore it was discarded. Ultimately the ±4σ case was chosen for the mass-fit, though it

did not give significantly different results than the ±3σ case.

The final TOF values obtained for observed nuclei with 18 ≤ Z ≤ 26 and A/Z > 2.44

using the local, by-element, and global rigidity-corrections (See Section 3.7.) are compared

38The pivot-point for the rigidity correction was YMCP=0 mm, however other positions
were explored and were, as expected, found to only result in a global systematic shift of all
TOFs. Since all TOFs were shifted equally, there was no impact to the final mass fit.

39Information on ROOT’s fitting technique is provided in 3.9.2.
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Figure 3.33: Examples of global rigidity-corrected (See Section 3.7.) TOF distributions for
some m

q (TOF)-calibration nuclides (unfilled histograms) and nuclides whose mass was eval-

uated (filled histograms). The Gaussian fits which are shown demonstrate the Z-dependent
skewness present in the TOF distributions. See Appendix C for final TOF distributions of
all nuclides involved in the mass-fit and mass evaluation.
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Figure 3.34: ‘Down Clock’ TOF mean values (See Section 3.2.) obtained with different
rigidity corrections shown as a difference to the values obtained with the global rigidity
correction as functions of the atomic mass number to nuclear charge ratio A/Z. Shown are
TOFs obtained via the local (black circles), by-element (cyan squares), and global (red lines)
rigidity corrections (See Sections 3.6 and 3.7.), using the ±3σ range for observed nuclei with
18 ≤ Z ≤ 26 and A/Z > 2.44. The average deviation between global and local TOFs and
between global and by-element TOFs was 2.3 ps and 0.3 ps, respectively.
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Figure 3.35: Difference in TOF between the global rigidity-corrected ‘Clock Down’ and
‘Direct Up’ TOFs, with their uncertainties added in quadrature, after correcting for the
trivial offset between the two (See Section 3.2.), using the ±3σ range for observed nuclei with
18 ≤ Z ≤ 26 and A/Z > 2.44. The left, middle, and right panels show the TOF difference
as a function of the atomic mass number to nuclear charge ratio A/Z, nuclear charge Z, and
nuclear mass A, respectively. Note that the TOF differences do not correspond to final mass
differences, since each mass-TOF surface was fit separately, ultimately yielding similar mass
results (See Section 3.9.5.), albeit with different uncertainties.
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in Figure 3.34. It is apparent that the TOF values did not systematically differ. Each TOF

set was ultimately employed in the mass fit and it was found that, while the resultant mass

values agreed, the global rigidity-corrected TOF resulted in a significantly smaller scatter

in the fit residuals (See Section 3.9.5.). A smaller scatter in the mass-fit residuals was also

achieved for the global rigidity corrected ‘Clock Down’ TOF as compared to the ‘Direct

Up’ TOF (See Section 3.2.), which are compared in Figure 3.35. Note that even though

a systematic deviation is apparent in these TOFs, this did not correspond to a systematic

deviation in the final mass results, since the difference in the TOF surface (i.e. with respect

to A/Z, Z, and A) was generally captured by the mass-fit (See Section 3.9.). Recall that the

large scatter of the ‘Direct Up’ time with respect to the ‘Clock Down’ time was expected,

since it was expected that the former was subject to timing nonlinearities that the latter

mitigated (See Section 3.2.).

The final statistical uncertainties for the mean TOFs were generally below 1 picosecond,

as seen in Figure 3.37, and the average resolution of TOF distributions for observed nuclei

was 81 picoseconds, as seen in Figure 3.38. The statistics for calibration and evaluated

nuclides are shown in Figure 3.36, where the minimum number of counts required to obtain

a reasonable statistical TOF uncertainty was ≈ 500. The TOF resolution roughly agreed

with the sum of expected contributions, where a ∼30 ps resolution had been previously

attributed to the timing detection set-up [22, 31] and a ∼40 ps resolution was found to

be due to the finite position resolution of the MCP used for the rigidity correction (See

Section 3.5.2.). The remaining contribution to the TOF resolution likely can be attributed

to the deviation from linearity in the TOF–YMCP relationship (See Section 3.6.). The overall

TOF resolution achieved was comparable to that obtained from the previous NSCL time-of-

flight mass measurement data analysis (See Figure 4.31 of [31].).
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Figure 3.36: Number of observed events (indicated by the color) for observed nuclei with
18 ≤ Z ≤ 26 and A/Z > 2.44, within the ±4σ TOF distribution range that was used for
the global rigidity correction (See Section 3.7.) of the Down Clock time (See Section 3.2.).
Note that only nuclides with ≈ 500 events or more are plotted.
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Figure 3.37: Mean TOF uncertainty in picoseconds (indicated by the color) of observed nuclei
with 18 ≤ Z ≤ 26 and A/Z > 2.44, using the global rigidity correction (See Section 3.7.)
for the Down Clock time (See Section 3.2.) with the ±4σ TOF distribution range.
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Figure 3.38: Standard deviation of final TOF distributions in picoseconds (indicated by the
color) of observed nuclei with 18 ≤ Z ≤ 26 and A/Z > 2.44, using the global rigidity
correction (See Section 3.7.) for the Down Clock time (See Section 3.2.) with the ±4σ TOF
distribution range. The average standard deviation of the TOF distributions was 80.8 ps.
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3.9 Mass fit

The mass fit was the final step of the data analysis pipeline where, as described in Sec-

tion 1.4.1, nuclides with well known masses and well determined times of flight were used to

obtain a calibrated relationship between time of flight and mass. This consisted of choosing

a set of reference nuclides, finding the optimum fit function to capture the mass–TOF rela-

tionship, assessing the mass-fit uncertainty, and, in keeping with the iterative nature of TOF

mass measurement data analysis (See the introduction to this chapter.), using the mass-fit

results as a diagnostic tool to choose between otherwise equally favored options that were

available earlier in the data analysis pipeline.

3.9.1 Reference nucleus selection

Reference nuclides needed to have a well-determined mass and a lack of long-lived isomeric

states (which could have been confused for the ground state). Defining ‘well-determined’

for a mass amounted to picking a cut-off in mass uncertainty above which a nucleus would

not qualify based on the experimentally-based atomic mass excess uncertainties listed in the

2012 Atomic Mass Evaluation [1]. In addition the more recent measurements of 53,54Ca [96]

were also included. Defining ‘long-lived’ for an isomeric state amounted to picking an upper-

limit on the allowable half-life, which necessarily had to be much shorter than the overall

flight-time, where information on isomeric states was obtained from the National Nuclear

Data Center [12]. We chose 100 ns for this upper limit. Practicality imposed the constraint

that the reference mass criterion could not be so rigid as to not allow for adequate mapping

of the mass-TOF phase-space 40.

40A compromise between this constraint and the ultimately chosen reference mass criterion
resulted in the omission of titanium and vanadium nuclei from the set of results to be
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The masses 41 of the reference nuclei within the final mass-fit range, 18 ≤ Z ≤ 26

and A/Z > 2.44, are from mass measurements performed with the ISOLTRAP Penning

trap [43, 169], the LEBIT Penning trap [170, 171], the TITAN Penning trap [172, 173], the

ISOLDE multi-reflection time-of-flight spectrometer [96], the Experimental Storage Ring

(ESR) [174, 175], TOF analysis with the SPEG spectrometer [176], TOF analysis with the

TOFI spectrometer [100, 177, 178], and the previous TOF analysis at the NSCL with the

S800 spectrograph [78] (See Section 1.3 for a brief overview of the different measurement

techniques.). Potential reference masses resulting from the TOFI mass measurements were

excluded because of systematic issues identified by several follow-up studies. More recent

Penning trap mass measurements found a systematic deviation from the TOFI masses for

72−74Cu [179] and for neutron-rich isotopes of cobalt and iron [171], and systematic devi-

ations were also observed between TOFI and the ESR for neutron-rich isotopes of calcium

through nickel [180, footnote on their pg. 58]. Furthermore, as repeated in [42], [181] demon-

strated that TOFI produced inconsistent mass results for the same nuclei when employing

different spectrometer settings. Presumably these revelations and others have resulted in an

arbitrary increase of the TOFI mass uncertainties by a factor of ×1.5 as listed by the 2012

Atomic Mass Evaluation [1] and outright omission of TOFI masses from the 2012 Atomic

Mass Compilation [182]. Potential reference masses resulting from ESR mass measurements

were excluded because they were not published in refereed journals [174, 175]. Finally, poten-

tial reference masses resulting from the previous NSCL TOF mass measurement analysis [78]

were excluded to avoid amplification of any unidentified systematic biases in the NSCL TOF

published since the distance in Z from reference nuclei was too great (See Section 3.9.4.).
41Note that for all nuclei but 53Ca and 54Ca the experimentally-based evaluated atomic

mass excesses from the 2012 Atomic Mass Evaluation [1] were chosen, where [96] was used
for 53,54Ca because publication of these values followed the release of the evaluation.
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set-up that would likely occur via this sort of bootstrapping.

The resulting set of reference nuclides had literature mass uncertainties of δMlit. ≤

50 keV 42. The inclusion of additional nuclides whose Atomic Mass Evaluation mass ex-

cesses were primarily derived from storage ring and TOF mass measurements was explored

by relaxing the reference mass criterion to δMlit. ≤ 400 keV 43. The resultant scatter in the

mass-fit was substantially increased (See Section 3.9.5.).

As in the previous NSCL TOF mass measurement analysis [31], nuclei with isomeric

states that had longer than 100 ns half-lives and an excitation energy larger than 200 keV

were excluded as reference nuclei, where isomeric state half-lives were obtained from [12].

Given the constraints above, the 20 remaining nuclei available as reference masses were

44−47Ar, 47−51K, 49−54Ca, 63,65,66Mn, and 64,66Fe. The location of these reference nuclei

with respect to the other nuclei observed with 18 ≤ Z ≤ 26 and A/Z > 2.44 in terms of

A/Z and Z is shown in Figure 3.39.

The published atomic mass excesses of the reference nuclei had to be converted into nu-

clear masses. For each nucleus with atomic mass number A and atomic number Z, this pro-

cess consisted of converting atomic mass excess MEatom.(Z,A) to atomic mass Matom.(Z,A)

and then converting the atomic mass to nuclear mass Mnucl.(Z,A) by subtracting the mass

of the electrons me and adding back the energy given by their binding BEe(Z). This resulted

42In practice this meant reference nuclides had masses which were primarily derived from
Penning trap or multi-reflection time-of-flight measurements. Therefore nuclides whose mass
excesses, as listed in the 2012 Atomic Mass Evaluation, were primarily derived from TOF
or storage ring measurements were omitted as calibration nuclides.

43This less restrictive reference mass uncertainty cutoff was chosen in the previous NSCL
TOF mass measurement analysis [31], however this was motivated by the scarcity of observed
nuclei with higher-precision masses.
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Figure 3.39: Map of nuclei observed in the TOF mass measurement analysis (with sufficient
statistics to obtain a TOF value) in terms of atomic mass number to nuclear charge ratio
A/Z and nuclear charge Z. Solid black circles indicate reference nuclei, open blue circles
indicate nuclei with masses known in the literature, but not to sufficient precision to qualify
as reference nuclei, and red stars indicate nuclei with unknown mass as of the completion of
the data analysis. (Compare to Figure 4.34 of [31].)
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in the following conversion,

Mnucl.(Z,A) = Matom.(Z,A)− Z ∗me + BEe(Z), (3.16)

where me = 510.99 keV and Matom. = MEatom. + A ∗ u, with u = 931494.01 keV being

the atomic mass unit. The total electron binding energy of each element was obtained by

summing over the individual binding energies of each electron. The individual electron bind-

ing energies were taken from Table II of [144], which provides ‘binding energies (ionization

energies) of electrons in free atoms in the ground state’ to a ∼2 eV precision 44. The electron

binding energy correction was between ≈ 9− 21 keV for 18 ≤ Z ≤ 26.

The resultant mass–TOF surface to fit to obtain the calibrated m
q (TOF) relationship

(See Section 1.4.) is shown in Figure 3.40, where the linear dependence of TOF on mass

over charge m/q has been removed to better highlight the shape of the mass–TOF surface.

3.9.2 Mass fit procedure

The mass fit to obtain the calibrated relationship between mass and TOF was carried out

over the mass–TOF surface created by the reference nuclei (See Figure 3.40.) after making

two minor modifications to the data points. During the fitting routine both statistical and

systematic uncertainties were included.

First a relativistic correction was made to the TOF of nuclei to take into account the im-

pact of time-dilation 45. Referring to the measured TOF as TOFmeas., the TOF to include in

44[183] was useful for converting between the older notation used in [144] to the more pop-
ular spectrscopic notation, i.e ‘K’=1s1/2, ‘L1’=2s1/2, ‘L2’=2p1/2, ‘L3’=2p3/2, ‘M1’=3s1/2,
‘M2’=3p1/2, ‘M3’=3p3/2, ‘M4’=3d3/2, ‘M5’=3d5/2, ‘N1’=4s1/2, and ‘N2’=4p1/2 .

45Equivalently the relativistic correction could have been applied to the reference masses,
but then this would have required undoing the correction for masses obtained by evaluating
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Figure 3.40: Mass–TOF surface of reference nuclei where the linear dependence of mass over
charge m/q on TOF has been removed. Solid white points mark the nuclear charge Z and
TOF of reference nuclei while the color of the surface at that location indicates the linear
fit residual in MeV. (Note that the flat region occurs outside of the region bounded by data
points as a feature of ROOT’s ‘SURF’ drawing option.)
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the mass-fit was TOFfit=TOFmeas.×
(
√

1−
[

L2path/
(

TOF2meas.c
2
)

]

)

, where Lpath=60.57 m

is the flight-path length and c = 299792458 m/s is the speed of light [147]. At first it may be

worrisome that the correction relies on knowing the absolute path-length of the ion flight-

path, however we found that the relativistic correction had no significant impact on the

mass-fit. The reason for the lack of sensitivity to the relativistic correction is that it is

absorbed well in the mass fit function. Nonetheless, the correction was included.

The second modification to the data was to fit an effective nuclear charge, z ≡ Z − 〈Z〉,

and effective time-of-flight, τ ≡ TOF − 〈TOF〉, where 〈Z〉 and 〈TOF〉 were the average

nuclear charge Z and time-of-flight TOF of the set of reference nuclei. This modification was

performed to reduce the multicollinearity of fit-parameters [22]. This amounted to reducing

the changes in fit-parameters caused by minor shifts in data-point positions, thereby avoiding

erratic behavior, which was particularly important for the mass-fit extrapolation uncertainty

determined via a Monte Carlo technique (See Section 3.9.4.).

The two-dimensional graph of mass over charge m/q, effective time-of-flight τ , and ef-

fective nuclear charge z, where τ and z were the independent variables, was fit via ROOT’s

standard ‘Fit’ command [184] which utilizes the MINUIT function minimization package via

ROOT’s TMinuit class [185]. The ‘M’ option [184] was employed for the mass-fit, activating

the ‘IMPROVE’ command of TMinuit, which searches for other minima after a minimum

is found in an attempt to find the global minimum as opposed to a local minimum [185].

The initial uncertainty ascribed to the data points was the literature mass uncertainty added

in quadrature to the statistical uncertainty, where the latter used standard propagation of

uncertainty to translate uncertainty in TOF into uncertainty in mass over charge 46. This sta-

the final mass-fit function with measured TOFs of non-reference nuclei.
46Anyhow, even if the choice was made to leave the TOF uncertainty in the TOF-

dimension, ROOT converts uncertainties in the independent variable dimensions of data points
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tistical uncertainty depended on the fit function itself, δMstat. = (δTOF)× ∂
∂TOF

(

m
q (TOF)

)

where m
q (TOF) is the mass–TOF calibration function and δTOF is the one standard devia-

tion uncertainty of the mean TOF for a nucleus (data point). Therefore the final statistical

uncertainty assigned to each data point was determined in an iterative procedure where the

data was fit to obtain a mass–TOF calibration function, statistical uncertainties were cal-

culated for each of the data-points (corresponding to reference nuclei), and the process was

repeated until convergence.

Upon completion of the mass-fit, including literature and statistical uncertainties, the

reduced χ2 of the fit was typically much larger than one. This indicated that the uncertainty

of the reference nuclide data-points was underestimated and that some additional heretofore

unaccounted for uncertainty was present. The approach outlined in [22] was followed, where

the missing uncertainty was treated as a statistically-distributed systematic uncertainty, i.e.

one that accounted for a uniform scatter in the mass-fit residual as a function ofm/q 47. Such

an effect could have been created by many uncontrolled factors in the measurement, such as

time-dependent magnetic fields of the dipole magnets along the beam line, time-dependent

variations in the response of the timing electronics due to variations in temperature, or

unidentified biases present in the data analysis pipeline. To include this additional systematic

uncertainty, the uncertainty of reference nuclide data-points was increased uniformly, i.e.

each data point had the same systematic uncertainty δMsyst. (in keV/q), until χ2red. =

1. The mass-fit was then repeated and the statistical uncertainty was recalculated to be

consistent with the current parameters of the fit function 48. This process was then repeated

into an uncertainty in the dependent variable dimension [184].
47Analyses of storage ring mass measurements employing isochronous mass spectrometry

have employed a similar technique to assess their systematic uncertainty (See Equation 11
of [186].).

48The results of the mass-fit with and without inclusion of the systematic uncertainty
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iteratively until it converged. The fit-function resulting from this procedure was the mass–

TOF calibration function which was used to obtain masses for nuclides with unknown masses

whose TOF was measured (See the following chapter for final mass values.). This function

is presented in Section 3.9.3.

It should be noted that legitimate grievances with this approach to assessing the system-

atic uncertainty of a fit are raised by [187]. Firstly, they rightly allege that this procedure

erases any measure of goodness-of-fit that χ2red. is intended to provide; however we based

our goodness-of-fit on the value of χ2red. prior to inclusion of the systematic uncertainty.

Secondly, they maintain that for this procedure to be valid the systematic uncertainty must

be statistically distributed (i.e. independent of the value of the dependent variable), the

model must be linear in all fit parameters, and that the model must be ‘correct’ (i.e. must

accurately describe the data). Regarding the first concern, it will be shown in Section 3.9.3

that the additional scatter in the mass-fit residual (that was unaccounted for by statistical

and literature uncertainties) appeared to be independent of m/q, so this condition was met.

Regarding the second concern, Section 3.9.3 will demonstrate that the only fit functions un-

der consideration were polynomials of the independent variables, and therefore were linear

in all fit parameters. The third concern, which demanded that the model be ‘correct’ was

arguably not satisfied since no formal proof was made of the analytic form of the mass–TOF

relationship. However, we addressed this by adding a so-called ‘function-choice uncertainty’

to the final mass uncertainties which accounted for our ignorance of which of the set of

best or close-to-best fits was the ‘correct’ function (See Section 3.9.4.). For what it’s worth,

Numerical Recipes endorses the procedure of normalizing χ2red. = 1 in order to obtain some

were compared to make sure it did not drastically effect the fit results. The evaluated
mases resulting from each fit agreed within the final one standard deviation uncertainty, i.e.
including the extrapolation uncertainties (See Section 3.9.4.).
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measure of systematic uncertainty when its origins are unknown (See Section 15.1 of [188].).

The additional concern of errors in the interpolation and extrapolation from the mass-fit

function that was done to evaluate masses from TOFs is addressed in Section 3.9.4.

3.9.3 Mass fit function selection

Since the relationship between mass and TOF at the precision level required to make a mean-

ingful mass measurement was a priori unknown, the approach of [31] was followed, where

several fit functions were tried, each of which was a combination of polynomials in TOF,

nuclear charge Z, and/or a combination of these variables. The goal of this approach is to

find the minimum number of terms that reproduce the calibration mass surface without any

systematic trends in the residuals. This ensures maximum robustness against interpolation

and small-distance extrapolation. The complex nature of the mass–TOF surface (See Fig-

ure 3.40.) clearly necessitated higher orders in both TOF and Z; a step-by-step procedure

was taken to justify the inclusion of each term in the fit-function. As might be expected,

some degeneracy existed as to the benefit of including certain terms in the fit-function. This

set of ‘best’ fits was used to inform the uncertainty of masses evaluated from the mass-fit

function present from extrapolation-from and interpolation-between the mass-fit calibration

points (See Section 3.9.4.).

The approach to finding the ‘best’ mass-fit function was to start simple and to increase

complexity in a way that was motivated by the simpler fit’s fit-residuals. Since to first order

the mass over charge only depended on TOF (See Equation 1.2.), the initial fit function

chosen was m
q (τ) = a0+a1 ∗ τ , where ai indicates a fit-parameter and τ = TOF−〈TOF〉 49

(where the average over TOF was taken over the set of reference nuclei). As seen in Fig-

49See Section 3.9.2 for an explanation of using variables τ and z instead of TOF and Z.
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Figure 3.41: Residual of the fit to reference nuclei using the function m
q (τ) = a0+a1∗τ , where

τ = TOF−〈TOF〉 and z = Z−〈Z〉, with TOF being the time-of-flight, Z being the nuclear
charge, and the averages of these being taken over the set of reference nuclei. Reference
nuclei are identified by element by their symbol and the text label indicates the reference
nucleus mass number A. Thick colored error bars show the statistical uncertainties. Thin
black error bars show the sum in quadrature of the statistical uncertainty and the systematic
uncertainty (9 keV/q) applied in the case of the best-fit (See Figure 3.47), which was used
for the mass evaluation.
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Figure 3.42: Same as Figure 3.41 but for the fit function m
q (τ) = a0 + a1 ∗ τ + a2 ∗ z.
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Figure 3.43: Same as Figure 3.41 but for the fit function m
q (τ) = a0+a1 ∗τ +a2 ∗z+a3 ∗τ2.
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Figure 3.44: Same as Figure 3.41 but for the fit function m
q (τ) = a0 + a1 ∗ τ + a2 ∗ z + a3 ∗

τ2 + a4 ∗ z2.
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Figure 3.45: Same as Figure 3.41 but for the fit function m
q (τ) = a0 + a1 ∗ τ + a2 ∗ z +

a3 ∗ τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ . Note that this fit was one of the fits used to evaluate the
extrapolation ‘function-choice uncertainty’ (See Section 3.9.4.).
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Figure 3.46: Same as Figure 3.41 but for the fit function m
q (τ) = a0 + a1 ∗ τ + a2 ∗ z + a3 ∗

τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ + a6 ∗ z3. Note that this fit was one of the fits used to evaluate the
extrapolation ‘function-choice uncertainty’ (See Section 3.9.4.).
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Figure 3.47: Same as Figure 3.41 but for the fit function m
q (τ) = a0 + a1 ∗ τ + a2 ∗ z + a3 ∗

τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ + a6 ∗ z4. Note that this was the fit function ultimately used for the
mass evaluation.
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Figure 3.48: Same as Figure 3.41 but for the fit function m
q (τ) = a0 + a1 ∗ τ + a2 ∗ z + a3 ∗

τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ + a6 ∗ z4 + a7 ∗ τ3.
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Figure 3.49: Same as Figure 3.41 but for the fit function m
q (τ) = a0 + a1 ∗ τ + a2 ∗ z + a3 ∗

τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ + a6 ∗ z4 + a7 ∗ τ4. Note that this fit was one of the fits used to
evaluate the extrapolation ‘function-choice uncertainty’ (See Section 3.9.4.).
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Figure 3.50: Same as Figure 3.41 but for the fit function m
q (τ) = a0 + a1 ∗ τ + a2 ∗ z + a3 ∗

τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ + a6 ∗ z4 + a7 ∗ z ∗ τ2. Note that this fit was one of the fits used to
evaluate the extrapolation ‘function-choice uncertainty’ (See Section 3.9.4.).

ure 3.41, this simple function reproduces the masses of reference nuclei within 10 MeV, i.e. a

precision of δm
m ∼ 10−4. However, it is apparent that a strong Z-dependence is present in the

fit residuals. Therefore, the fit function was augmented to become m
q (τ) = a0+a1∗τ+a2∗z,

where z = Z − 〈Z〉 (where the average over Z was taken over the set of reference nu-

clei). The resultant factor of ∼ ×2 reduction in the mass-fit residual scatter is apparent

in Figure 3.42, however a trend is still present with a quadratic A/Z-dependence. Since

A/Z ∝ m/q ∝ TOF, a second order term in TOF was added to the function, resulting

in the form m
q (τ) = a0 + a1 ∗ τ + a2 ∗ z + a3 ∗ τ2. The improvement to the fit residu-

als, though less dramatic than the improvement from the addition of the previous term,

is seen in Figure 3.43. To remove the remaining Z-dependence, the mass-fit function was

further augmented to include a second order term in Z, expanding the function to the form

m
q (τ) = a0+a1 ∗ τ +a2 ∗ z+a3 ∗ τ2+a4 ∗ z2. The dramatic improvement resulting from the

addition of the higher-order Z term is shown in Figure 3.44, but also present in this figure is

the Z-dependent trend in the fit-residual as a function of A/Z. Therefore another term was

added to result in the function m
q (τ) = a0 + a1 ∗ τ + a2 ∗ z + a3 ∗ τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ ,
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ultimately achieving the drastic improvement to the mass-fit residual seen in Figure 3.45 50.

Though improvements were realized beyond this functional form, it was decided that the

quality of the fit merited this functional form’s inclusion into the set of ‘best’-fits which were

used to evaluate the mass evaluation extrapolation uncertainty present due to the ambiguity

in the optimum function choice (See Section 3.9.4.).

Since the mass-fit residual for the aforementioned 6-parameter form lacked major sys-

tematic trends, beyond this point the addition of more parameters was explored with the

condition that a marked improvement in the overall mass-fit residual scatter had to be

realized without the addition of any systematic biases (beyond the normally-distributed

systematic scatter extant in the fit residuals). The metric used for the quality of the

fit was the systematic uncertainty δMsyst. which had to be added to all data points to

achieve χ2red. = 1 (See Section 3.9.2.). For the 6-parameter function shown in Figure 3.45,

δMsyst. = 22.7 keV/q. To remove the potential Z-dependent scatter remaining in the 6-

parameter function fit residual, the next highest order in Z was added to the fit, yielding

the function m
q (τ) = a0 + a1 ∗ τ + a2 ∗ z + a3 ∗ τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ + a6 ∗ z3, which

resulted in a systematic uncertainty δMsyst. = 11.2 keV/q, as demonstrated graphically in

Figure 3.46. Given the demonstrated improvement, this functional form was included in

the set of ‘best’ fits used to determine the extrapolation uncertainty due to function choice

(See Section 3.9.4.). Since the behavior of odd-powered polynomials is very different from

that of even powers, a Z4 term was explored in lieu of the 3rd-order Z-term, resulting in

50It should be noted that since TOF ∝ A/Z, z ∗ τ ∝ A. Recalling that ∆E ∝ A2 (See
Section 2.5.2.), it seems likely that this term accounts for the alteration of the ions’ flight
path due to energy loss at some point. Considering that this term was not necessary in the
prior NSCL TOF mass measurement analysis (See Equation 4.22 of [31].), and that set-up
lacked a wedge degrader in the A1900, it seems likely that the need for the z ∗ τ term was
caused by the use of the A1900 wedge degrader.
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the function m
q (τ) = a0 + a1 ∗ τ + a2 ∗ z + a3 ∗ τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ + a6 ∗ z4. In this

case the scatter of the mass-fit, shown in Figure 3.47, was reduced to a minimum for the set

of 7-parameter fit functions, with a systematic uncertainty δMsyst. = 9.0 keV/q, ultimately

making this the final mass-fit function.

The addition of an 8th term to the mass-fit function was also explored, keeping the prior

condition that the addition of an extra parameter must yield a substantial improvement

to the fit. Motivated by the concern that additional trends may be present in the A/Z

dimension, the additional terms focused on addressing any remaining TOF-dependence. In

the same vein as the investigation of higher than 2nd order Z-dependence, both 3rd order

and 4th order TOF terms were explored, as shown in Figures 3.48 and 3.49, respectively.

The fit with the τ3-term actually yielded a worse fit, where δMsyst. = 10.0 keV/q, which was

unexpected since it would seem more parameters generally should improve a fit or leave the

goodness of fit the same. At present it is not clear why the fitting algorithm does not find the

true minimum, which in this case would be a coefficient of zero for the τ3 term. The fit with

the τ4-term produced a marginal improvement, resulting in δMsyst. = 8.5 keV/q, and, since

this higher-order TOF-dependence couldn’t be ruled out, this functional form was included

in the set of ‘best’ fit functions used to produce the function-choice extrapolation uncertainty

(See Section 3.9.4.). Finally, Z-dependence of the 2nd-order TOF term was also explored by

trying the fit function m
q (τ) = a0+a1∗τ+a2∗z+a3∗τ2+a4∗z2+a5∗z∗τ+a6∗z4+a7∗z∗τ2.

The improvement to the fit, evident from the systematic uncertainty δMsyst. = 8.2 keV/q,

was not deemed substantial enough to merit the inclusion of this 8th term in the final fit

function, but this function was still included in the set of ‘best’ fit functions used to evaluate

the extrapolation uncertainty from the ambiguity as to which function was truly the best.
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In the spirit of Occam’s razor 51, the mass-fit function used to obtain the central value

of the masses in the final mass evaluation was the function

m

q
(τ) = a0 + a1 ∗ τ + a2 ∗ z + a3 ∗ τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ + a6 ∗ z4, (3.17)

which had the mass-fit residual shown in Figure 3.47 and, in a slightly more appealing form,

Figure 3.51. The same fit-residual in two dimensions is shown in Figure 3.52. In principle

this function provides a more reliable extrapolation than the higher-order functions which

were explored.

The robustness of the results obtained with the final mass-fit function (Equation 3.17)

was investigated by removing reference nuclides and repeating the mass fit. The metrics

used for robustness were whether or not the masses of the removed reference nuclides were

reproduced and whether the new mass results were significantly changed. The robustness

of the mass-fit extrapolation in the TOF-dimension was tested by removing the most exotic

reference nuclide from each isotopic chain (47Ar, 51K, 54Ca, 66Mn, and 66Fe) and repeating

the mass-fit (See Figure 3.39 to see where these nuclides are located in A/Z–Z-space with

respect to the nuclides for which we obtain new masses.). The mass-fit residuals for this case

are shown in Figure 3.53b, where it is apparent that the changes to the mass-fit residual were

minimal. To assess the robustness of the mass-fit interpolation in the Z-dimension, reference

nuclei from the calcium isotopic chain (49−54Ca) were removed from the set of reference

nuclei and the mass-fit was repeated (See Figure 3.39 to see where these nuclides are located

in A/Z–Z-space with respect to nuclides for which we obtain new masses.). The mass-fit

51Note that the method used to select the final mass-fit function, that of choosing the
minimal set of parameters to yield a good fit and exploring fits with one extra level of
complexity, is akin to the more formal process of evaluating the ‘evidence ratio’ or ‘Bayes
factor’ [189].
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Figure 3.51: Residuals of the fit (with Equation 3.17) to the time-of-flight of calibration
nuclei (See Section 3.9.1.) as a function of the mass number to nuclear charge ratio A/Z.
Isotopes are labeled with their mass number and symbols indicate the elements (solid circle
for argon, solid square for potassium, solid triangle for calcium, open circle for manganese,
and open square for iron). Calibration masses were fit to within 9 keV/q without any
systematic trends. The gray band shows the average systematic mass uncertainty included
for reference nuclei as described in Section 3.9.2.(From [36].)
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Figure 3.52: Residuals of the fit in keV (with Equation 3.17) to the time-of-flight of cali-
bration nuclei (See Section 3.9.1.) as a function of the mass number to nuclear charge ratio
A/Z and nuclear charge Z. Note that Z is shifted by 1/2 so that the colored box corresponds
to the leftward-Z value. The text labels and color indicate mass-fit residual in keV.
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Parameter Full set of Refs. Most Exotic Refs. Removed Ca-Chain Refs. Removed

a0 238378±5 2360298±4 237793±12

a1 5966.9±0.2 5970.9±0.2 5967±0.3

a2 83±2 101±2 76±2

a3 -0.44±0.02 -0.46±0.02 -0.46±0.02

a4 -25±1 -23±1 -27±2

a5 -1.6±0.1 -1.6±0.1 -1.6±0.1

a6 0.37±0.05 0.27±0.05 0.48±0.07

Table 3.2: Final mass-fit parameters for Equation 3.17 with reference masses removed from
the fit to test fit robustness.

residuals for this case are shown in Figure 3.53c, where it is apparent that the changes to

the mass-fit residual were minimal, except that the evaluated masses for the calcium nuclei

themselves were somewhat poorly reproduced. This result motivated the limitation of the

mass-fit interpolation to nuclides with Zref.±1 (i.e. masses were evaluated for scandium and

chromium, but not titanium and vanadium). Fit parameters resulting from the robustness

tests with the final mass fit function, Equation 3.17, are compared in Table 3.2, where it

is seen that the majority of variation was in the Z-dependent parameters. This variation

provided further motivation to limit the mass-fit interpolation to Zref.±1. These tests were

repeated for each of the ‘best’ fit functions which were used to assess the function-choice

extrapolation uncertainty (See Section 3.9.4.) and the qualitative conclusions were the same.

3.9.4 Mass fit uncertainty

The philosophy behind the uncertainty assignment was to be conservative and to thoroughly

investigate the ways in which systematic bias could have affected the results 52. As was

52To quote an expert on TOF mass measurement, “There are no wrong answers, just
wrong error bars.”.
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(a)

(b)

(c)

Figure 3.53: Panel (a) shows the residuals of the fit (with Equation 3.17) to the time-of-flight
of calibration nuclei (See Section 3.9.1.) as a function of the mass number to nuclear charge
ratio A/Z. Isotopes are labeled with their mass number and symbols indicate the elements
(solid circle for argon, solid square for potassium, solid triangle for calcium, open circle for
manganese, and open square for iron). Panel (b) shows the fit residuals obtained using the
same fit function as panel (a), but removing 47Ar, 54Ca, 51K, 66Mn, and 66Fe (marked by
yellow arrows) from the set of reference nuclei in order to assess the robustness of the mass-fit
extrapolation in the TOF-dimension, since they were the most exotic reference nucleus in
their isotopic chain. Panel (c) shows the fit residuals obtained using the same fit as panel
(a), but removing 49−51Ca (marked by yellow arrows) from the set of reference nuclei to
assess robustness of the mass-fit interpolation in the Z-dimension. Fit parameters for the
three fits are compared in Table 3.2.
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mentioned in Section 3.9.2, the statistical uncertainty was taken into account via standard

error analysis. An additional uncertainty was added to each mass result to take into account

the additional statistical scatter found in the fit residuals which was not accounted for by

the original statistical error bars. The remaining uncertainty to be accounted for is the

uncertainty of the mass-fit function, which is determined empirically from a statistically

limited data set. The primary contributors were the uncertainties of the fit coefficients

that were a result of the uncertainties in the calibration mass values and TOFs (referred to

as Monte Carlo uncertainty, motivated by the way it was calculated), and the uncertainty

from the choice of the general form of the fit function (referred to as the function choice

uncertainty).

The measured TOF of a reference nucleus has a statistical uncertainty. Therefore, a

calculation was performed to determine how this uncertainty propagates through the fit

function and the final results. The procedure consisted of randomly perturbing the mass of

each reference nucleus within an amount that was consistent with its systematic uncertainty

(See Section 3.9.2.), performing the mass fit, placing the fit result for each evaluated mass in

a histogram, and repeating 10,000 times. The standard deviations of the resultant evaluated-

mass distributions were referred to as the Monte Carlo uncertainty.

In order to perturb the TOF values of reference nuclei within an amount commensurate

with their full statistical scatter (which was mainly due to the systematic mass uncertainty),

the m
q (τ) relationship had to be inverted so that the mass uncertainty could be translated

into a TOF uncertainty. This was accomplished by grouping the terms of the mass-fit

function by their respective powers in TOF and employing the quadratic, cubic, or quartic

equation (depending on the highest order of TOF that was included in the mass-fit) to

obtain the solution to the equation τ
(mperturbed

q

)

. While the quadratic equation is likely

147



familiar to most readers, the cubic and quartic equations are somewhat more complicated 53

and the reader is directed to [190] and [191] for their solutions 54. Note that, to perform

the translation from mass to TOF, the roots of the aforementioned functions were solved

with the the perturbed mass over charge of the nucleus added to the constant offset term

(since we were finding the root at
mperturbed

q and not at 0). The root which provided the

physical answer (of the two, three, or four from the quadratic, cubic, or quartic equations,

respectively) was found by evaluating the function for TOF using the true mass, obtaining

TOF, and evaluating the original mass-fit function with that TOF to obtain the mass. If

the input of that process matched the output then the proper root was selected.

Thus, for each reference nucleus for each Monte Carlo event, the known reference mass

value would be randomly changed by an amount selected from a Gaussian distribution,

with the systematic uncertainty as the standard deviation, and this mass value would be

translated into the corresponding shift in TOF. A graph would then be generated with all

of the reference nuclei’s known masses preserved, but with their TOFs shifted from their

measured values by their perturbations. The mass fit was then performed. Repeating this

10,000 times for the final mass-fit function (Equation 3.17.) yielded the distributions shown

in Figures 3.54 and 3.55. Note that the ‘RMS’ indicated in these plots is the standard

deviation of the mass distribution in keV and was dubbed the ‘Monte Carlo uncertainty’.

In addition a ‘function-choice uncertainty’ was included in the uncertainty of the extrap-

olated masses, which took into account the evaluated mass results for each of the ‘best’-fits

identified in Section 3.9.3. The approach which was taken was to compare the evaluated

53I.e. they are difficult to program/debug.
54Note that a general analytic solution for the roots of a fifth-order polynomial does not

exist, i.e. their is no ‘quintic equation’, so in this case a numerical solution would have to
be devised.
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Figure 3.54: Mass distributions resulting from the Monte Carlo TOF-perturbation procedure
for isotopes of argon through vanadium (18 ≤ Z ≤ 23) which were observed in the TOF
mass measurement (See Figure 2.3.) and which were not reference nuclei for the mass fit
(See Section 3.9.1.). The ‘RMS’ value was the standard deviation of the mass distribution in
keV and was chosen as the ‘Monte Carlo uncertainty’ for the evaluated masses. The vertical
red line indicates the evaluated mass from the mass fit function (Equation 3.17.) without
perturbations to the reference nuclei TOFs.

149



Mean  5.583e+07

RMS  2.521e+02

Mass [keV]
55.83 55.832

6
10×

d
N

/d
M

a
s
s

0

50

100

150

200

250

300

350
Mean  5.583e+07

RMS  2.521e+02

Z=24 A=60 Mean  5.677e+07

RMS  2.059e+02

Mass [keV]
56.766 56.768

6
10×

d
N

/d
M

a
s
s

0

50

100

150

200

250

300

350

400
Mean  5.677e+07

RMS  2.059e+02

Z=24 A=61 Mean  5.770e+07

RMS  1.710e+02

Mass [keV]
57.699 57.7 57.701

6
10×

d
N

/d
M

a
s
s

0

100

200

300

400

500
Mean  5.770e+07

RMS  1.710e+02
Z=24 A=62 Mean  5.864e+07

RMS  1.570e+02

Mass [keV]
58.636 58.637

6
10×

d
N

/d
M

a
s
s

0

100

200

300

400

500

Mean  5.864e+07

RMS  1.570e+02
Z=24 A=63

Mean  5.957e+07

RMS  1.910e+02

Mass [keV]
59.57 59.572

6
10×

d
N

/d
M

a
s
s

0

100

200

300

400

Mean  5.957e+07

RMS  1.910e+02

Z=24 A=64 Mean  6.051e+07

RMS  2.837e+02

Mass [keV]
60.506 60.508 60.51

6
10×

d
N

/d
M

a
s
s

0

50

100

150

200

250

300

Mean  6.051e+07

RMS  2.837e+02

Z=24 A=65 Mean  6.144e+07

RMS  4.233e+02

Mass [keV]
61.44 61.445

6
10×

d
N

/d
M

a
s
s

0

50

100

150

200

Mean  6.144e+07

RMS  4.233e+02

Z=24 A=66 Mean  5.769e+07

RMS  2.528e+02

Mass [keV]
57.69 57.692

6
10×

d
N

/d
M

a
s
s

0

50

100

150

200

250

300

350
Mean  5.769e+07

RMS  2.528e+02

Z=25 A=62

Mean  5.956e+07

RMS  1.451e+02

Mass [keV]
59.561 59.562

6
10×

d
N

/d
M

a
s
s

0

100

200

300

400

500

Mean  5.956e+07

RMS  1.451e+02

Z=25 A=64 Mean  6.236e+07

RMS  2.575e+02

Mass [keV]
62.364 62.366

6
10×

d
N

/d
M

a
s
s

0

50

100

150

200

250

300

Mean  6.236e+07

RMS  2.575e+02

Z=25 A=67 Mean  6.330e+07

RMS  3.817e+02

Mass [keV]
63.297 63.3 63.302 63.304

6
10×

d
N

/d
M

a
s
s

0

50

100

150

200

Mean  6.330e+07

RMS  3.817e+02

Z=25 A=68 Mean  6.423e+07

RMS  5.403e+02

Mass [keV]
64.23 64.233 64.237 64.24

6
10×

d
N

/d
M

a
s
s

0

20

40

60

80

100

120

140

160

Mean  6.423e+07

RMS  5.403e+02

Z=25 A=69

Mean  6.048e+07

RMS  1.653e+02

Mass [keV]
60.483 60.484 60.485

6
10×

d
N

/d
M

a
s
s

0

100

200

300

400

500

Mean  6.048e+07

RMS  1.653e+02

Z=26 A=65 Mean  6.235e+07

RMS  2.536e+02

Mass [keV]
62.351 62.352 62.353 62.354

6
10×

d
N

/d
M

a
s
s

0

50

100

150

200

250

300

350
Mean  6.235e+07

RMS  2.536e+02

Z=26 A=67 Mean  6.328e+07

RMS  3.245e+02

Mass [keV]
63.284 63.286

6
10×

d
N

/d
M

a
s
s

0

50

100

150

200

250

Mean  6.328e+07

RMS  3.245e+02

Z=26 A=68 Mean  6.422e+07

RMS  4.092e+02

Mass [keV]
64.22 64.222 64.224

6
10×

d
N

/d
M

a
s
s

0

50

100

150

200

Mean  6.422e+07

RMS  4.092e+02

Z=26 A=69

Mean  6.515e+07

RMS  5.128e+02

Mass [keV]
65.152 65.154 65.157 65.16

6
10×

d
N

/d
M

a
s
s

0

50

100

150

Mean  6.515e+07

RMS  5.128e+02

Z=26 A=70 Mean  6.609e+07

RMS  6.410e+02

Mass [keV]
66.09 66.095

6
10×

d
N

/d
M

a
s
s

0

20

40

60

80

100

120

140

Mean  6.609e+07

RMS  6.410e+02

Z=26 A=71 Mean  6.700e+07

RMS  7.944e+02

Mass [keV]
67 67.005 67.01

6
10×

d
N

/d
M

a
s
s

0

20

40

60

80

100

120
Mean  6.700e+07

RMS  7.944e+02
Z=26 A=72

Figure 3.55: Same as Figure 3.54 for isotopes of chromium through iron (24 ≤ Z ≤ 26).
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Parameter z4 z3 z2 τ4 z ∗ τ2
a0 238378±5 2383359±6 238370±12 2383382±5 2383379±5

a1 5966.9±0.2 5966.9±0.3 5966.5±0.5 5966.9±0.2 5966.9±0.2

a2 83±2 65±5 91±4 84±2 85±2

a3 -0.44±0.02 -0.44±0.02 -0.41±0.04 -0.53±0.06 -0.46±0.02

a4 -25±1 -21±1 -18±1 -25±1 -25±1

a5 -1.6±0.1 -1.6±0.1 -2.1±0.2 -1.6±0.09 -1.7±0.1

a6 0.37±0.05 2.1±0.3 – 0.36±0.04 0.36±0.04

a7 – – – 0.0003±0.0002 -0.012±0.007

Table 3.3: Mass-fit parameters for the set of ‘best’ fits identified in the mass fit (See
Section 3.9.3.) as identified by their highest-order in z = Z − 〈Z〉, τ = TOF− 〈TOF〉, or a
combination of the two. The corresponding fit functions are written-out in the captions of
Figures 3.56, 3.57, 3.58, 3.59, and 3.60.

mass result for each nucleus obtained from each of the ‘best’ fits and to take the difference

between the two most extreme predictions (i.e. highest and lowest masses) of the set as

the ‘function-choice uncertainty’. Figures 3.56, 3.57, 3.58, 3.59, and 3.60 show the behavior

of the best-fit functions (where the linear m/q dependence on TOF has been removed for

clarity) with respect to the reference nuclei that were fit (black points) and the evaluated

nuclei, where the evaluated residual shown is always that for the final mass-fit function,

Equation 3.17. The large deviation seen in these functions for large distances from the ref-

erence nuclei, particularly at high-Z, ultimately provide the basis for limiting extrapolation

from calibration masses, even for nuclides with reasonable statistical uncertainties. Table 3.3

shows the fit parameters resulting from mass-fits with each of the best-fit functions.

The results for the Monte Carlo and function-choice uncertainties, as well as the robust-

ness test (See Section 3.9.3.), were used to determine at which point the mass-fit extrapola-

tion and interpolation should be cut-off; i.e. how far in TOF and Z from the reference nuclei

were the results deemed trustworthy and worth reporting. Given the deviation observed in

151



Z-<Z>

-4
-2

0
2

4
6

8

TOF-<TOF> [ns]-30 -20 -10 0 10 20 30

/q
 v

s
 T

O
F

 l
in

e
a

r-
fi
t 

re
s
id

u
a

l 
[k

e
V

/q
]

n
u

c
l.

M

-200

0

200

400

600

800

1000

1200

/q
 v

s
 T

O
F

 l
in

e
a

r-
fi
t 

re
s
id

u
a

l 
[k

e
V

/q
]

M

0

200

400

600

800

1000

Figure 3.56: Mass–TOF surface, where the linear dependence of mass over charge m/q on
TOF has been removed, for reference nuclei (black-outlined white-filled circles connected by
the white planes) and the fit (color indicates keV/q) to the reference nuclei with the mass-fit
function, m

q (τ) = a0 + a1 ∗ τ + a2 ∗ z + a3 ∗ τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ + a6 ∗ z4. Note that

the averages over Z and TOF, used to construct z = Z − 〈Z〉 and τ = TOF − 〈TOF〉,
were taken over the set of reference nuclei (See Section 3.9.1.). The red-outlined white-filled
circles show the location of nuclei whose mass were evaluated with the final mass-fit function,
Equation 3.17 (in this case, the same function as the fit shown), in m/q–TOF–Z space. Note
that all points lay on the function surface, though the plotting program does not extend the
graphing of the surface far enough in some cases.
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Figure 3.57: Same as Figure 3.56 for the mass-fit function, m
q (τ) = a0 + a1 ∗ τ + a2 ∗ z +

a3 ∗ τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ + a6 ∗ z3.
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Figure 3.58: Same as Figure 3.56 for the mass-fit function, m
q (τ) = a0 + a1 ∗ τ + a2 ∗ z +

a3 ∗ τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ .
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Figure 3.59: Same as Figure 3.56 for the mass-fit function, m
q (τ) = a0 + a1 ∗ τ + a2 ∗ z +

a3 ∗ τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ + a6 ∗ z4 + a7 ∗ τ4.
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Figure 3.60: Same as Figure 3.56 for the mass-fit function, m
q (τ) = a0 + a1 ∗ τ + a2 ∗ z +

a3 ∗ τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ + a6 ∗ z4 + a7 ∗ z ∗ τ2.
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the results for calcium isotopes when they were removed as reference masses, the choice was

made to only report results for nuclei which were within one atomic number of a reference

nucleus. This eliminated titanium and vanadium isotopes from the results. These nuclei

were particularly sensitive to the highest-order Z dependence used in the mass-fit, which

provided further justification for not reporting mass results for these nuclei. Given the devi-

ation of the results at high TOF due to different function choices, the set of reported masses

was limited to nuclei whose TOF was no greater than 10% of the full reference TOF spread

(≈ 36 ns; see the Results chapter) beyond the highest-TOF reference nucleus (≈ 511 ns; see

the Results chapter) and no more than three nuclei (in terms of the nuclear chart) away from

a reference nucleus. The uncertainty components for evaluated nuclei, whose masses will be

reported in the following chapter are shown in Figures 3.61, 3.62, 3.63, and 3.64, while their

sum in quadrature, which is the final total uncertainty, is given in Figure 3.65.

3.9.5 The mass fit as a diagnostic tool

Given the sensitivity of the mass results to nearly imperceptible differences in TOFs result-

ing from choosing different but seemingly equivalent cuts and corrections in the analysis

pipeline 55, the mass-fit residuals themselves had to be used to distinguish between many

available options in the analysis pipeline. To compare the impact of different choices in

the analysis pipeline, the mass-fit residuals will be shown using the final mass-fit function

(Equation 3.17) to highlight the different mass-surfaces that certain analysis choices resulted

in. While the best fit function for the final mass-fit wasn’t necessarily the best fit function

for the mass surface resulting from a different analysis pipeline choice, using the same fit

55Recall that a 1 ps shift in TOF corresponded to a ∼100 keV shift in the mass (See
Section 1.4.1.).
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Figure 3.61: Statistical uncertainty in keV for nuclei whose mass was evaluated in the time-
of-flight mass measurement. Colored boxes indicate nuclei whose mass was evaluated, with
the color reflecting the uncertainty in keV, boxes with red circles indicate reference nuclei
used as calibrants for the mass–TOF relationship (See Section 3.9.1.), boxes with ×’s indicate
the most exotic isotope for that element with a known mass prior to this experiment, and
the black boxes indicate stable nuclei.
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Figure 3.62: Same as Figure 3.61, but with the color indicating the systematic uncertainty
of evaluated nuclei in keV.
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Figure 3.63: Same as Figure 3.61, but with the color indicating the Monte Carlo uncertainty
of evaluated nuclei in keV.
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Figure 3.64: Same as Figure 3.61, but with the color indicating the function-choice uncer-
tainty of evaluated nuclei in keV.
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Figure 3.65: Same as Figure 3.61, but with the color indicating the total uncertainty of
evaluated nuclei in keV, where the total is the sum in quadrature of the statistical, systematic,
Monte Carlo, and function-choice uncertainties. Note that 56Sc has an additional systematic
uncertainty due to the presence of a β-decaying isomer (See Section 4.3.1.) which is not
included in this figure.
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function allows the mass–TOF surfaces to be compared directly. It should be noted that

significantly better fit residuals for these other analysis pipeline choices were not obtained in

the exploration of their ‘best’ fit function when using 7-parameters or less for the fit. In each

case the resultant mass-fit residual should be compared to the best-fit, shown in Figure 3.47.

Distinguishing between which of the TOF rigidity corrections was best, given the choices

of by-isotope, by-element, or global (See Sections 3.6 and 3.7), was not possible at a prior

location in the analysis pipeline. As such, the minimum achievable scatter in the mass-fit was

used as a metric to distinguish between the three options. The mass-fit residuals using the

by-element rigidity correction are shown in Figure 3.66, where the systematic uncertainty

added to compensate for the scatter of reference nuclei was 24.9 keV/q. The by-isotope

(local) rigidity correction fit residuals are shown in Figure 3.67, where the added systematic

uncertainty was 38.6 keV/q. Inspection of each of these mass-fit residuals shows that the

mass–TOF surface was more rapidly changing with respect to the global rigidity corrected

mass–TOF surface, as evidenced by the rapid change in TOF-dependence of the fit residual

with changing Z. As such each of these resultant mass–TOF surfaces were more difficult to

fit than the global rigidity corrected TOF mass–TOF surface, and thus the global rigidity

correction was ultimately chosen. It should be noted that the mass results obtained with

the final best-fits for each of the rigidity corrections agreed within uncertainties, though, as

noted, those uncertainties were rather large.

Finding the best of the two promising event-TOFs identified in Section 3.2 was only

achievable by inspection of the mass-fit residual. Figure 3.68 shows the mass-fit residual

when using the global rigidity corrected ‘Direct Up’ TOF (See Section 3.2.), where the

systematic uncertainty added was 18.6 keV/q. It is apparent that there was a larger overall

scatter in the fit-residuals which was a result of a more erratic mass–TOF surface (likely due
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to non-linearities in the TAC–ADC signal processing, discussed in Section 3.1), and thus a

good mass-fit was difficult to obtain. The mass results from the mass-fit to the ‘Direct Up’

TOF agreed with the mass results from the ‘Clock Down’ TOF within uncertainties, though

the uncertainty from the former was rather large.

As mentioned in Section 3.9.1, the criterion for inclusion of a nucleus as a reference mass

included the condition that its literature mass had to have an uncertainty less than 100 keV.

The mass-fit for the case when the condition was relaxed to δMliterature < 400 keV is shown

in Figure 3.69. Here a systematic offset is apparent for the elements with atomic number

21 ≤ Z ≤ 24, whose reference masses were derived from prior storage ring and time-of-

flight mass measurements, which ultimately required an inclusion of 14.3 keV/q systematic

uncertainty to account for the scatter in the residuals. Given the less reliable nature of the

extra reference nuclei included in this fit, they were excluded from the final mass-fit.
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Figure 3.66: Residual of the fit to reference nuclei (See Section 3.9.1.) using the function
m
q (τ) = a0+a1∗τ+a2∗z+a3∗τ2+a4∗z2+a5∗z∗τ+a6∗z4, where τ = TOF−〈TOF〉 and
z = Z−〈Z〉, with TOF being the time-of-flight, Z being the nuclear charge, and the averages
of these being taken over the set of reference nuclei, where the TOF was rigidity corrected
by-element (See Section 3.7.). Reference nuclei are identified by element by their symbol
and the text label indicates the reference nucleus mass number A. Thick colored error bars
show the statistical uncertainties. Thin black error bars show the sum in quadrature of the
statistical uncertainty and the systematic uncertainty (9 keV/q) applied in the case of the
best-fit (See Figure 3.47), which was used for the mass evaluation.
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Figure 3.67: Same as Figure 3.66 but using the by-isotope (local) rigidity correction to
TOF (See Section 3.6.). Note that 54Ca is not present in the set of reference nuclei for this
case since it did not have sufficient statistics (> 5, 000 counts) to have a locally-determined
rigidity correction.
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Figure 3.68: Same as Figure 3.66 but using the global rigidity correction(See Section 3.7.)
for the ‘Direct Up’ TOF (See Section 3.2.).
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Figure 3.69: Residual of the fit to reference nuclei (stars), where a reference nucleus was
defined as one with a literature mass with an uncertainty less than 400 keV, using the
function m

q (τ) = a0 + a1 ∗ τ + a2 ∗ z + a3 ∗ τ2 + a4 ∗ z2 + a5 ∗ z ∗ τ + a6 ∗ z4, where

τ = TOF−〈TOF〉 and z = Z−〈Z〉, with TOF being the time-of-flight, Z being the nuclear
charge, and the averages of these being taken over the set of reference nuclei, where the TOF
was rigidity corrected globally (See Section 3.7.). Reference nuclei are identified by element
by their color, where isotopes of the same element are connected by lines for clarity, and
the text label indicates the reference nucleus mass number A. The uncertainty shown is the
statistical plus the mass-perturbation distribution from the Monte Carlo procedure.
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Chapter 4

Results

The atomic mass excesses obtained from the time-of-flight mass measurement described in

this dissertation are presented in Table 4.1. 18 masses were obtained, where the masses of 7

nuclei, 48,49Ar 1, 56,57Sc, 64Cr, 67Mn, and 69Fe, were measured for the first time. The time-

of-flight of these nuclei with respect to reference nuclei is shown in Figure 4.1. The following

sections will discuss the comparison to results obtained from global mass model calculations

(also presented in Table 4.1), as well as discuss the advances made by applying these masses

to outstanding problems in nuclear structure and nuclear astrophysics. In principle TOF

data exists to obtain new masses for 54−60Ti, 57−63V, 68Mn, and 70,71Fe, however these

masses are not reported due to lack of reliable calibration masses. Note that at present

no masses exist in the literature for 58−60Ti, 62,63V, 68Mn, and 70,71Fe. As discussed in

Chapter 5, masses may be obtained for these nuclides in a future re-evaluation of the data

once more reference masses are available.

1Published in [36].
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Isotope This experiment AME2012 FRDM HFB-21 DZ WS3
48Ar† -22 280(310) – -21 240 -21 900 -21 889 -22 044
49Ar† -17 800(1100) – -14 880 -16 110 -15 648 -16 406
52Sc -40 300(520) -40 167(142) -39 360 -40 110 -39 241 -40 400
53Sc -38 170(570) -38 107(270) -36 840 -38 480 -37 148 -38 861
54Sc -33 750(630) -33 599(363) -32 030 -33 980 -32 623 -34 139
55Sc -30 520(580) -29 977(463) -29 170 -31 320 -29 597 -30 758
56Sc† -24 850(590)+0

−540 – -23 840 -25 230 -24 425 -25 146
57Sc† -21 000(1300) – -20 440 -22 550 -20 627 -21 115
59Cr -48 540(440) -47 891(244) -48 680 -49 160 -48 013 -48 451
60Cr -47 440(460) -46 504(213) -47 910 -48 200 -46 732 -46 779
61Cr -43 080(510) -42 455(129) -42 700 -43 710 -42 534 -42 461
62Cr -40 890(490) -40 895(148) -41 180 -41 960 -40 630 -40 445
63Cr -35 940(430) -35 722(459) -36 030 -37 290 -35 962 -35 773
64Cr† -33 480(440) – -34 950 -34 730 -33 545 -33 347
67Mn† -34 090(620) – -34 480 -34 960 -33 141 -33 294
67Fe -45 190(430) -46 069(218) -46 530 -46 940 -45 991 -45 577
68Fe -43 620(430) -43 825(365) -45 360 -45 170 -43 853 -43 665
69Fe† -39 350(600) – -40 230 -40 390 -39 156 -39 380

Table 4.1: Atomic mass excesses (in keV) obtained in this experiment compared to the
adopted experimentally-based value in the 2012 Atomic Mass Evaluation [1] and predictions
from global mass models (See Section 4.1.1.) FRDM 1995 (FRDM) [2], HFB-21 [3], 10-
parameter Duflo-Zuker (DZ) [4], and WS3 [5]. The asymmetric uncertainty included for the
56Sc mass excess is an additional systematic uncertainty from potential isomeric contam-
ination (See Section 4.3.1.). Nuclei whose masses have not been previously measured are
marked with †.
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Figure 4.1: Rigidity-corrected time-of-flight (TOF) distributions for reference nuclei (unfilled
histograms) used to calibrate the

mrest
q (TOF ) relationship to obtain new masses from the

TOFs of 48,49Ar (green-filled histograms), 52−57Sc (red-filled histograms), 59−64Cr (blue-
filled histograms), 67Mn (orange-filled histogram), and 67−69Fe (gray-filled histograms).
Note that the TOF spectra for argon, scandium, and chromium isotopes with respect to
reference TOFs are highlighted separately in Figures 4.20, 4.33, and 4.23, respectively.
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4.1 Comparison to global mass models

As described in Sections 1.1 and 1.2, nuclear masses play an important role in the fields of

nuclear structure and nuclear astrophysics. Research at the forefront of each area depends

on accurate masses of nuclei which are very far from stability [6, 66, 71]. Given the myriad

of challenges posed by measuring the masses of exotic nuclei (See Section 1.3.), calculations

often must rely on global mass models to fill the void that exists beyond the known mass

landscape 2. Though, as will be shown, global mass models have yet to reach a predictive

power better than a precision of ∼ 10−5, it is interesting to note that no reason exists a

priori that future models couldn’t achieve precisions of . 10−6 [193]. This section contains

a detailed comparison of the mass measurement results presented in this dissertation to

frequently used global mass models, where the comparison is preceded by a brief description

of the models (See Table 4.1 for a direct comparison.). The models are presented in a rough

order of more macroscopic in form to more microscopic in form, though it should be noted

that the distinction isn’t always clear 3.

2While the Atomic Mass Evaluation (2012 being the most recent version [1]) is the nearly
universally accepted source for experimentally measured masses, its releases are few and
infrequent. A compilation of recently measured (but unevaluated) masses can be found
here: [192].

3For example, the Duflo-Zuker mass model is described as microscopic in the original
manuscript [4], macroscopic-microscopic in a later paper in which Andrés Zuker is a coau-
thor [194], and neither microscopic nor macroscopic but ‘a functional of orbital properties’
in a later paper by Zuker [195] (available at [40]).

168



4.1.1 Model descriptions

4.1.1.1 Liquid drop model

The 4 semi-empirical mass formula (SEMF), originally proposed by Carl Friedrich von

Weiszäcker in 1935 [81], provided the first global model of nuclear masses. The form of

the SEMF was motivated by considering the nucleus as a drop of water, i.e. a nearly

constant-density body consisting of microscopic particles that interact over a short range

and cohesively bond into a nearly spherical shape, and thus it is also often referred to as the

liquid drop model. The conceptual basis for the drop-like part of the formula is that there

should be some bulk amount of binding resulting from the cohesive attraction of nucleons

(the ‘volume term’), a penalty in binding for the surface area since these nucleons have a

neighbor-less side where they do not benefit from cohesive binding (the ‘surface term’), and

a penalty in binding from Coulomb repulsion of protons within the nucleus (the ‘Coulomb

term’). Nuclear physics considerations bring about additional corrections, where an ‘asym-

metry term’ must account for the tendency of nuclei to prefer similar numbers of protons and

neutrons N = Z (ultimately due to the fact the proton-neutron strong interaction is gener-

ally stronger than the proton-proton interaction or neutron-neutron interaction, as well as a

contribution from the Pauli principle) and a ‘pairing term’ which accounts for the tendency

of nucleons to anti-align spins to become a spin-0 pair 5 in order that they can occupy the

same spatial state and thereby be bound more tightly.

The spherical nuclear shape assumed in the liquid drop assumption implies that the

volume of the nucleus scales with the number of nucleons as V ∝ A, therefore the radius of

the nucleus scales as A1/3 and the surface area scales as A2/3. The combination of these

4This discussion is primarily based on [37] and [196].
5Said in a more fancy way, this is ‘nucleonic superfluidity’ [197].
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considerations (along with comparison to measured masses) results in the following formula 6

for the nuclear binding energy BE(Z,A),

BE(Z,A) = avol.A−asurf.A
2/3−aCoul.

Z(Z− 1)

A1/3
−aasym.

(Z− A/2)2

A
+i∗apar.A−1/2, (4.1)

where i = +1 for even-Z and even-N(=A − Z), i = −1 for odd-Z and odd-N , and i = 0

otherwise. Typical parameters are avol. = 15.56, asurf. = 17.23, aCoul. = 0.697, aasym. =

93.14, and apar. = 12 , in units of MeV/c2 [37]. The nuclear binding energy can be converted

to atomic mass excess ME(Z,A) via the relations

BE(Z,A) ≡ Z(mp +me) +Nmn −M(Z,N)

ME(Z,A) ≡ M(Z,N)− (Z +N)mu, (4.2)

whereM(Z,N) is the mass of a nucleus with Z protons andN neutrons,mp = 938.27200 MeV/c2

is the proton mass, me = 0.51100 MeV/c2 is the electron mass, mn = 939.56533 MeV/c2

is the neutron mass, and mu = 931.494013 MeV/c2 is the atomic mass unit. Using these

parameters one obtains a root mean square (RMS) deviation from the 2012 Atomic Mass

Evaluation of 7.7 MeV (See Figure 4.2.), which is rather remarkable for a 5-parameter fit

considering the fact that nuclear masses are on the order of [A]*GeV/c2. Furthermore, it

should be noted that the best available global mass models (See the following descriptions.)

at the present only outperform this model from 1935 by a factor of ∼10!

6Note that several variations exist of the SEMF. The form from [37] is shown here.
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Figure 4.2: The Segré chart with the absolute value of the mass excess deviation in keV
(indicated by color) between the 2012 Atomic Mass Evaluation [1] and the liquid drop model
as represented by the semi-empirical mass formula given in [37]. The black boxes indicate
the stable nuclei for orientation. The root mean square RMS deviation is indicated by the
text box.

171



4.1.1.2 FRDM

The 7 Finite Range Droplet Model (FRDM) built on the success of the liquid drop model

for the macroscopic description of nuclear binding energy with both macroscopic and micro-

scopic refinements. The macroscopic refinements primarily consist of the inclusion of nuclear

compressibility (hence, ‘drop’→‘droplet’), for instance taking into account the reduction in

Coulomb repulsion and increase in surface energy from shape deformation, and modifying the

surface energy by substituting an implicit zero-range nucleon-nucleon force with an explicit

finite-range force (diffuseness). The microscopic refinements include corrections to account

for the closed shells, nuclear pairing (to account for the odd-even mass stagger), and the

Wigner effect (which is the observed enhancement in binding of nuclei with N = Z beyond

what is expected from the asymmetry term). The closed shell correction is performed via

the method of Strutinsky [199], where, roughly speaking, single particle energies are calcu-

lated with the shell model, these single particle energies are summed to get a bulk binding

energy, and the difference between the bulk binding energy for that particular nucleus and

other nuclei with similar numbers of nucleons is taken as the shell correction. The FRDM

model published in 1995 [2] has an RMS deviation from the 2012 Atomic Mass Evaluation of

654 keV (See Figure 4.3.). Note that an update exists for 2012 [200] 8,but it is not compared

here to other models since it is not yet publicly available. The 1995 FRDM mass table is

presently available here: [38].

7This discussion is primarily based on [42] and [198].
8They cite an RMS deviation from the 2003 AME of 570 keV.
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Figure 4.3: The Segré chart with the absolute value of the mass excess deviation in keV
(indicated by color) between the 2012 Atomic Mass Evaluation [1] and the 1995 Finite Range
Droplet Model (FRDM) [2, 38]. The black boxes indicate the stable nuclei for orientation.
The root mean square RMS deviation is indicated by the text box.
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4.1.1.3 WS3

The 9 Weizsäcker-Skyrme (WS) formula mass model WS3 [5] is very similar to the FRDM

mass model in concept, but differs in terms of details of the execution. The proponents

state that it has 13 independent parameters to FRDM’s 31 [5]. However, what one counts

as a parameter is somewhat difficult to define due to the complicated nature of the mass

models, particularly the very detailed microscopic corrections. The WS3 model has yet to

see widespread use in the literature, likely because of its recency, though it has an impressive

RMS deviation from 2012 Atomic Mass Evaluation of 378 keV (See Figure 4.4.). The WS3

mass table is presently available here: [39].

9This discussion is primarily based on [201].
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Figure 4.4: The Segré chart with the absolute value of the mass excess deviation in keV
(indicated by color) between the 2012 Atomic Mass Evaluation [1] and the Weizsäcker-
Skyrme WS3 mass model [5, 39]. The black boxes indicate the stable nuclei for orientation.
The root mean square RMS deviation is indicated by the text box.
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4.1.1.4 Duflo-Zuker

The 10 Duflo-Zuker mass model is comprised of a phenomenologically-motivated formula

that consists of either 10, 28, or 31 parameters. Here the focus is on the 10-parameter form,

as this is what is compared to the data presented in this dissertation. The 10-parameter

formula contains six parameters which capture the macroscopic liquid-drop aspects of the

nucleus, three parameters which microscopically account for shell corrections, and one pa-

rameter which accounts for nuclear deformation for nuclides with Z > 50 11. The parameters

themselves are determined by a fit to known masses. The 10-parameter form, which was

based on the known masses as of 1995, achieves an RMS deviation from the 2012 Atomic

Mass Evaluation of 639 keV 12 (See Figure 4.5.). The mass-table for the 28 parameter form

and for the 10-parameter form (used for comparison to data), as well as the Fortran code

used to generate the 10-parameter table, can currently be found here: [40].

10This discussion is primarily based on [42] and [194].
11 The relatively simple form, as compared to other global mass models, lends itself to

rapid computation, i.e. the mass table is calculated with 150 lines of Fortran code [40].
12The RMS for isotopes with Z ≥ 8 and A ≥ 16, to compare to FRDM fairly, since that

table only begins with 16O, is 595 keV.
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Figure 4.5: The Segré chart with the absolute value of the mass excess deviation in keV
(indicated by color) between the 2012 Atomic Mass Evaluation [1] and the 10-parameter
Duflo-Zuker mass formula [4, 40]. The black boxes indicate the stable nuclei for orientation.
The root mean square RMS deviation is indicated by the text box.
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4.1.1.5 HFB-21

The 13 Hartree-Fock-Bogolyubov (HFB)-21 mass model obtains nuclear masses by solv-

ing the many-body Schrödinger equation for nucleons interacting within a mean-field that

is generated by the nucleons themselves. The nuclear many-body wave function is rep-

resented as a Slater determinant of single-particle wave functions Φ = det{φi(xi)}. The

non-relativistic Schrödinger equation is solved for each of the single-particle wave functions

φi(xi), Hφi = εiφi. Since the potential energy portion of the Hamiltonian is a mean-field

potential, it depends on the single-particle wave functions, and thus the Schrödinger equa-

tion for each of the single-particle wave functions must be solved in an iterative fashion until

convergence is realized. The ground-state energy of the nucleus is obtained by calculating the

expectation value of the final Hamiltonian for the final wave function E = 〈Φ|H|Φ〉. Since

the single-particle wave functions are non-interacting within this framework, the nucleon-

nucleon forces included in the Hamiltonian must be modified from the forms obtained by

comparison to nucleon-nucleon scattering data to parameterized effective forces, such as the

Skyrme force (zero-range) or the Gogny force (finite-range).

To now this description applies to the Hartree-Fock (HF) method. This method, though

it reproduces the broad features of the nuclear mass surface, misses some of the empirically

observed features, such as the odd-even mass staggering and the Wigner effect (whereby N=Z

nuclei are more bound by ∼2 MeV than expected from macroscopic approaches), which are

a product of correlations between nucleons. The Hartree-Fock-Bogolyubov (HFB) method

is one avenue for dealing with these features within the HF framework by including pairing

correlations into the Slater determinant trial function. The parameters used to account for

the pairing correlations depend on the single-particle wave functions themselves. Ultimately

13This discussion is primarily based on [42] and [202].
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Figure 4.6: The Segré chart with the absolute value of the mass excess deviation in keV
(indicated by color) between the 2012 Atomic Mass Evaluation [1] and the Hartree-Fock-
Bogolyubov HFB-21 mass model [3, 41]. The black boxes indicate the stable nuclei for
orientation. The root mean square RMS deviation is indicated by the text box.

the parameters are determined by fitting to observed masses. The current state-of-the-art

HFB mass model is HFB-21, which has a 572 keV RMS 14 deviation from the 2012 AME

mass excesses [3]. Details on the HFB-21 parameters and the resultant mass table itself can

currently be found here: [41].

14It is the same for nuclei with Z ≥ 8, in order to fairly compare with the 1995 FRDM
table, which begins at 16O.
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4.1.1.6 Density functionals

As 15 with HFB, density functional theory (DFT) also aims to solve for the mass of the

many-body system, but recasts the many-body problem into an effectively one-body prob-

lem. Rather than dealing with a many-body wave function, the fundamental quantity is the

energy density, which is a function of space and time. The functional which describes the

energy density is employed in HFB calculations in the place of the Slater determinant of

single-particle wave functions. Obtaining the optimized nuclear energy density functional,

and solving the resultant HFB calculations, are outstanding problems whose solution is the

primary goal of the “Universal Nuclear Energy Density Functional” (UNEDF) collabora-

tion [204] 16. The UNEDF0 mass model has been quoted to have an RMS deviation from

known nuclear masses (as of 2010) of even-even nuclei only of 1.45 MeV [61]. Mass tables

from state-of-the-art DFT calculations are presently available here: [205].

4.1.2 Mass comparison

Here we graphically compare the masses obtained in this experiment to the masses predicted

by the FRDM, HFB-21, WS3, and Duflo-Zuker mass models, where physical parameters de-

rived from these masses are also compared (See Table 4.1 for a direct numerical comparison.).

Note that the uncertainties shown are only experimental. Though a prescription exists for

calculating the theoretical uncertainty for global mass model predictions [2], in practice this

uncertainty does not substantially deviate (i.e. /15 keV) from the root mean square devia-

tion from known masses. The magnitude of the observed deviations can be put into context

15This discussion is primarily based on [203].
16A recent work [197] made an extensive comparison between mass predictions obtained

by various DFT calculations in the context of the limits of the nuclear landscape.
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via comparison to the deviations observed from all known masses listed in the 2012 Atomic

Mass Evaluation (See previous subsection.). Using the root mean square deviations between

global mass models and known masses as a benchmark, it is apparent that deviations on the

order of several hundreds of keV are to be expected, while deviations greater than an MeV

occur for nuclear masses that are particularly poorly calculated by global mass models.

The deviations of the masses measured in this experiment from measured values listed in

the 2012 Atomic Mass Evaluation and from the global mass models FRDM(1995), HFB-21,

WS3, and 10-parameter Duflo-Zuker, are shown as a function of mass over charge A/Z,

nuclear charge Z, and nuclear mass A in Figures 4.7, 4.8, and 4.9, respectively. The same

mass deviations are shown projected onto the mass-deviation axis, weighted by the one

standard deviation uncertainty of our measured value in Figure 4.10. The same weighted

mass deviations are shown with respect to reference nuclei versus atomic number Z and

neutron number N for the 2012 Atomic Mass Evaluation and the global mass models FRDM,

HFB-21, WS3, and 10-parameter Duflo-Zuker in Figures 4.11, Figures 4.12, Figures 4.13,

Figures 4.14, and Figures 4.15, respectively.

From these comparisons it is apparent that the masses obtained in the experiment de-

scribed in this dissertation generally agree with the present literature values, with the excep-

tion of the chromium isotopes, for which we obtain more-bound values with the deviation

becoming smaller for increasing A/Z (The implications for this deviation are discussed in

Section 4.2.2.). The deviation from the 1995 FRDM global mass model has a marked A-

dependence, with our values being more-bound at low-A and less-bound at high-A. The

HFB-21 global mass model seems to produce systematically over-bound values compared to

our results, with the exception of the scandium isotopic chain, which is reproduced relatively

well (The implications for this are discussed in Section 4.3.2.). The WS3 global mass model
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does a remarkably good job of reproducing the masses measured in this experiment, where

nearly all values agree within one standard deviation. The 10-parameter Duflo-Zuker mass

formula does well for the higher-Z measured masses, but performs rather poorly at low-Z.

The physical implications for these mass deviations are perhaps better showcased by com-

paring mass differences 17. Arguably two of the most useful mass differences used to examine

the nuclear mass surface of neutron rich nuclides are the one and two neutron separation

energies and the quantities derived from these. The one and two neutron separation energies

are the energetic cost of removing one or two neutrons from a nucleus to form a less neutron-

rich isotope of a given element. When the energetic cost becomes <0 MeV for an isotope

of a given element, that isotope is unbound with respect to (one or two) neutron emission

and therefore does not exist for any length of time. The location where neutron separation

energies transition from positive to negative values is known as the ‘neutron drip-line’ 18.

The two-neutron separation energy S2n(Z,A) of a nucleus with Z protons and A nucleons

is obtained by taking the difference in masses between isotopes of an element with A and

A− 2 nucleons after correcting for the binding of the two extra neutrons,

S2n(Z,A) = 2 ∗MEneutron +ME(Z,A− 2)−ME(Z,A), (4.3)

where ME is the atomic mass excess. Considered along an isotopic chain, S2n is relatively

high for a neutron-magic/closed-shell nucleus and drops to a relatively low value when two

more neutrons are added. Thus, S2n provides a good model-independent signature of a

closed neutron shell and it has the advantage that it is not subject to effects from odd-even

17Note that the most interesting physics conclusions obtained from mass differences that
employed the experimental results presented in this dissertation are showcased in Sections 4.2
and 4.3.

18The drip-line as predicted by several mass models is discussed in [197].

182



A/Z

2.45 2.5 2.55 2.6 2.65 2.7

 [
k
e

V
]

th
is

 e
x
p

t.
 -

 M
E

m
o

d
e

l
M

E

-2000

-1000

0

1000

2000

3000
 UncertaintyσOur 1

AME 2012
FRDM '95
HFB-21
WS3
DZ 10param.

Figure 4.7: Difference between mass excesses obtained in this experiment and global mass
models FRDM (1995), HFB-21, WS3, and Duflo-Zuker (10-parameter), as well as experi-
mental values listed in the 2012 Atomic Mass Evaluation as a function of mass over charge
A/Z.
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Figure 4.8: Same as Figure 4.7, but as a function of atomic number Z. Note that multiple
nuclei are represented for each Z, so that experimental 1σ uncertainties are overlapping.
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Figure 4.9: Same as Figure 4.7, but as a function of nuclear mass number A. Note that
multiple nuclei are represented for A = 67, so that experimental 1σ uncertainties are over-
lapping.
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Figure 4.10: Distributions of mass excess deviations, weighted by our one standard deviation
measurement uncertainty and binned in 2

3σ-wide bins, from masses obtained in this experi-
ment for global mass models FRDM (1995), HFB-21, WS3, and Duflo-Zuker (10-parameter),
as well as experimental values listed in the 2012 Atomic Mass Evaluation.

mass staggering. However, S2n can sometimes be difficult to interpret as a signature for

a closed shell since it depends on assessing the change of the S2n slope-trend relative to

the local pattern (The parameter Dn has been recently introduced [44] to overcome this

shortcoming; it is employed to discuss the N = 28 shell closure in Section 4.2.1.).

The S2n trends for isotopic chains observed in this mass measurement are compared

for our values, the 2012 Atomic Mass Evaluation, and global mass models (1995 FRDM,

HFB-21, WS3, and 10-parameter Duflo-Zuker) in Figure 4.16. It is apparent that the new

argon masses (48,49Ar) from this experiment provide evidence for the N = 28 shell closure

in argon (This topic is explored further in Section 4.2.1.). In principle the new scandium

masses (56,57Sc) provide information on the possible presence of the N = 34 subshell closure,

which is known to be present for calcium [206] and not titanium [207]. Evidence for this

subshell closure was found to be inconclusive for scandium [208]. However, our mass excess
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Figure 4.11: Mass excess deviation (indicated by color) from the 2012 Atomic Mass Evalua-
tion vs Z and N , weighted by our experimental uncertainty. The same information projected
into a one-dimensional histogram presented in Figure 4.10.

Figure 4.12: Mass excess deviation (indicated by color) from the 1995 FRDM global mass
model vs Z and N , weighted by our experimental uncertainty. The same information pro-
jected into a one-dimensional histogram presented in Figure 4.10.

Figure 4.13: Mass excess deviation (indicated by color) from the HFB-21 global mass model
vs Z and N , weighted by our experimental uncertainty. The same information projected
into a one-dimensional histogram presented in Figure 4.10.

185



Figure 4.14: Mass excess deviation (indicated by color) from the WS3 global mass model vs
Z and N , weighted by our experimental uncertainty. The same information projected into
a one-dimensional histogram presented in Figure 4.10.

Figure 4.15: Mass excess deviation (indicated by color) from the 10-parameter Duflo-Zuker
mass formula vs Z and N , weighted by our experimental uncertainty. The same information
projected into a one-dimensional histogram presented in Figure 4.10.
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uncertainties are too large at present to provide closure on this question 19. There is an

apparent discrepancy between the S2n trend for the chromium isotopes resulting from our

mass values (59−64Cr) and those from the 2012 Atomic Mass Evaluation, which is discussed

further in Section 4.2.2. The new manganese mass from this experiment (47Mn) provides

a hint of evidence for the N = 40 subshell closure in that isotopic chain, in contradiction

to prior conclusions [43], however the rather large present uncertainty makes our result

somewhat inconclusive 20. The iron masses presented in this dissertation (67−69Fe) suggest

interesting behavior following N = 40 for the iron isotopic chain (which, as seen in the figure,

potentially mirrors the behavior of cobalt) that may be a sign of deformation in this region,

but our present uncertainties do not allow such firm conclusions 21.

The trend in S2n along an isotonic chain can be used to quantify the size of the shell gap

associated with that neutron number via the empirical shell gap ∆n [42],

∆n(Z,A) = S2n(Z,A)− S2n(Z,A+ 2)

= −2 ∗ME(Z,A) +ME(Z,A+ 2) +ME(Z,A− 2), (4.4)

where Equation 4.3 was used to go from the first line of the equation to the second. While

the trend in ∆n provides information about the disappearance or appearance of a magic

neutron number, it is unfortunately convoluted with the change in binding due to closed

proton shells. Nonetheless, the new masses for 48,49Ar provide a data point for ∆n along

19As discussed in the final chapter of this dissertation, the addition of reference nuclei
from future mass measurements may reduce this uncertainty to a level for which the N = 34
subshell closure could be confirmed or denied.

20As with the N = 34 subshell closure for the scandium isotopic chain, our data may yet
provide closure on this question once more reference nuclei become available.

21Again, the addition of reference nuclei to the mass fit may provide the necessary reduc-
tion in uncertainty.
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N = 28 which falls nicely along the already present trend, as seen in Figure 4.17. It is

interesting to note that for all isotonic chains shown the ∆n trend from the 10-parameter

Duflo-Zuker mass formula is largely featureless, while the trends for the 1995 FRDM mass

model and HFB-21 mass model seem to behave rather erratically. In contrast, the WS3 mass

model demonstrates a smooth behavior which generally represents the data well.

In analogy to the two-neutron separation energy, the one-neutron separation energy

Sn(Z,A) is obtained by inspecting the difference in binding between isotopes of an element

with A and A− 1 nucleons after correcting for the binding of the extra neutron,

Sn(Z,A) = MEneutron +ME(Z,A− 1)−ME(Z,A). (4.5)

As with S2n, Sn is higher for closed neutron-shell isotopes of an element, but in contrast

to S2n it is also sensitive to the odd-even mass staggering present due to pairing (i.e. the

5th term in Equation 4.1). Since odd-N nuclei have an unpaired neutron, the Sn trend for

odd-N isotopes of an element lays below the corresponding trend for the even-N isotopes, as

seen in Figure 4.18. The gap between the odd-N and even-N Sn trends provides and avenue

to quantify the strength nuclear binding due to pairing 22. One method of quantifying this

pairing force is the empirical pairing gap [43] PGn,

PGn(Z,A) =
(−1)(N+1)

4
[Sn(Z,A+ 1)− 2 ∗ Sn(Z,A) + Sn(Z,A− 1)] (4.6)

=
(−1)(N+1)

4
[3 ∗ME(Z,A)− 3 ∗ME(Z,A− 1) +ME(Z,A− 2)−ME(Z,A+ 1)] ,

22In addition, the change of Sn along an isotopic chain (via Dn [44]) can be used to identify
the presence of magic neutron numbers and even indicate the transition between filling one
neutron shell to another (See Section 4.2.1.).
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where N = A − Z is the number of neutrons and Equation 4.5 was used to go from the

first line to the second. While this quantity’s power to directly probe the pairing interaction

within nuclei is intriguing, the requisite involvement of several mass excesses means that

relatively high precisions are required for all or most-all of the involved nuclei to reach any

strong conclusions. It can be seen in Figure 4.19 that our masses provide evidence for a

rather low pairing gap for 48Ar, but the large uncertainty makes this conclusion somewhat

weak. Similarly, the reduction in the pairing gap after N = 40 for manganese is interesting

but inconclusive. Perhaps even more intriguing is the opposite conclusion for the pairing

gap trend following N = 40 for the 2012 Atomic Mass Evaluation as opposed to the values

obtained in this experiment. Various global mass models exhibit rather different pairing gap

behavior (See Figure 4.19.).
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Figure 4.16: Two-neutron separation energy S2n along isotopic chains of argon, scandium,
chromium, manganese, and iron for this experiment, the 2012 Atomic Mass Evaluation, and
global mass models. The gray lines and points indicate S2n for Z ± 1.
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Figure 4.17: Empirical shell gap ∆n [42] along isotopic chains of argon, scandium, chromium,
manganese, and iron for this experiment, the 2012 Atomic Mass Evaluation, and global mass
models.
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Figure 4.18: One-neutron separation energy Sn along isotopic chains of argon, scandium,
chromium, manganese, and iron for this experiment, the 2012 Atomic Mass Evaluation,
and global mass models. The upper and lower trends are for even and odd N isotopes,
respectively.
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Figure 4.19: Empirical pairing gap PGn [43] along isotopic chains of argon, scandium,
chromium, manganese, and iron for this experiment, the 2012 Atomic Mass Evaluation,
and global mass models. The gray points indicate the pairing gap trend for one Z lower, for
context.
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4.2 Nuclear structure applications

While Section 4.1.2 provided a broad comparison of the nuclear structure features probed

by the masses presented in this dissertation, the following subsections will delve into two

specific cases. Namely, the progress made in understanding the N = 28 shell closure and the

exploration of nuclear structure features, including the apparent onset of the N = 40 island

of inversion, in the chromium isotopes will be discussed. Note that the former topic resulted

in the publication [36] 23.

4.2.1 Termination of the N = 28 closed shell

Note that this subsection (4.2.1) is a modified excerpt from the publication [36]. The author

of this dissertation was the primary author of that work, however coauthors 24 contributed

to its writing.

As discussed in Section 1.1, the “magic” numbers of protons and neutrons, which enhance

nuclear binding for isotopes near the valley of β-stability, can evolve for more neutron-rich

or neutron-deficient nuclei [66, 209, 210]. The neutron magic number N = 28 has been

the subject of extensive recent experimental and theoretical investigations [48, 49, 211–213].

Since neutron-rich N = 28 nuclei are within experimental reach and are computationally

tractable for shell-model calculations, they are ideal candidates for illuminating the funda-

23 As such, the discussion of the corresponding Section closely follows the discussion of
the published manuscript.

24The full list of coauthors of [36] is: Zach Meisel, Sebastian George,
Sunghoon (Tony) Ahn, Justin Browne, Daniel Bazin, B. Alex Brown, J. Fiore Carpino,
Hank Chung, Richard H. Cyburt, Alfredo Estradé, Mike Famiano, Alexandra Gade,
Christoph Langer, Milan Matoš, Wolfi Mittig, Fernando Montes, Dave J. Morrissey,
Jorge Pereira, Hendrik Schatz, Jule Schatz, Mike Scott, Dan Shapira, Karl Smith,
Jeremy Stevens, Wanpeng Tan, Oleg Tarasov, Sarah Towers, Kathrin Wimmer,
Jack R. Winkelbauer, John Yurkon, and Remco G.T. Zegers. See [36] for their affili-
ations at the time of that work.
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mental forces at work in exotic nuclei. It is known that the N = 28 shell gap, which stabilizes

doubly magic 48
20Ca28, is absent in the Z = 14 and Z = 16 isotopic chains at 42

14Si28 [214–217]

and 44
16S28 [218–222]. Experimental information on the structure of 4012Mg28 suggests it has a

prolate deformed ground state [223], which would be consistent with the absence of a neutron

shell gap.

The existence of the N = 28 shell gap for argon is a matter of some controversy. Several

previous experimental studies have assessed the shell structure of neutron-rich argon [46,

47, 224–232]. Investigation of the energy of the lowest excited states of 4518Ar27 via β-decay

spectroscopy of 45
17Cl28 suggested a weakened, but still present, N = 28 shell closure for

argon [226]. The first 2+ state energies E(2+1 ) along the argon isotopic chain [45–47] and

information on neutron single-particle structure from transfer [228, 229] and knockout [227]

reactions are consistent with the presence of an N = 28 shell gap in 46
18Ar28. Though,

disagreement exists as to the inferred nuclear structure from measurements of the 46
18Ar28

quadrupole excitation strength, B(E2, 0+1 → 2+1 ), written as B(E2) hereafter for brevity.

Three projectile Coulomb excitation measurements, two at intermediate energies [224, 225]

and one at Coulomb-barrier beam energy [232], deduce a low B(E2), corresponding to a

reduced quadrupole collectivity. In this case quadrupole collectivity reflects a propensity for

neutrons to be excited across the N = 28 shell gap, and thus a low B(E2) may be expected

for a semi-magic nucleus. State-of-the-art shell-model calculations that properly account for

the breakdown of the N = 28 magic number in silicon and sulfur isotopes predict a markedly

higher B(E2) for 46Ar [231]. A low-statistics lifetime measurement of the 2+1 state of 46Ar

deduced a high B(E2) value in agreement with theory [230], but at odds with the three

consistent, independent Coulomb excitation measurements [224, 225, 232].

However, B(E2) measurements are not necessarily unambiguous probes of neutron shell
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structure, since they are sensitive to proton degrees of freedom and proton-neutron interac-

tions. In contrast, mass measurements, and the neutron separation energies derived from

them, directly probe the neutron shell gap in a model-independent way. The masses of 48Ar

and 49Ar reported in this dissertation, which are the first experimentally determined masses

for these nuclei 25, provide robust evidence for the persistence of the N = 28 shell gap for

argon. The times-of-flight of the newly measured argon isotopes with respect to reference

nuclides are shown in Figure 4.20.

The atomic mass excesses obtained for 48Ar and 49Ar, which are reported in Table 4.1,

were used to calculate binding energy differences along the argon isotopic chain in order to

examine the N = 28 shell closure. Given the drawbacks of the quantity which is usually

used to asses neutron shell closures (See Section 4.1.2), namely the two-neutron separation

energy S2n (See Equation 4.3.), instead a recently introduced quantity Dn [44] was used.

Dn(Z,A) = (−1)N+1[Sn(Z,A+ 1)− Sn(Z,A)], (4.7)

where Sn is defined in Equation 4.5, provides a more readily recognizable signature of a

shell closure. In a given mass region, Dn indicates the number of orbital angular momentum

projection “m” states that participate in pairing for a given nucleus. A peak in Dn at a

certain neutron number along with a change in the Dn level before and after that neutron

number indicates a shell gap [44]. The change in the Dn level is a crucial element since it

indicates a transition from filling one “m” state to filling another.

25The review of shell structure in the N = 28 region [211] lists the mass of 48
18Ar30 as

measured, though the link they cite pointing to an AME version from 2011 is no longer in
operation. The more recent 2012 Atomic Mass Evaluation [1] lists the mass of 48

18Ar30 as
unmeasured and we are unable to find experimental data for this mass after a detailed search
of the literature.
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Figure 4.20: Rigidity-corrected time-of-flight distributions for reference nuclei (unfilled his-
tograms) used to calibrate the

mrest
q (TOF ) relationship to obtain masses from TOFs of 48Ar

and 49Ar (red-filled histograms). (From [36].)
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Figure 4.21: Dn [44] as a function of neutron number N near N = 28 for sulfur (dot-dash
line), argon (solid line), calcium (dotted line), and titanium (dashed line). The previously
known [1] argon trend (solid line, open circles) is shown along with results from this ex-
periment (solid line, solid circles). E(2+1 ) energies for argon isotopes [45–47] are shown for
comparison (crosses). The peak at N = 28 followed by a reduction in Dn for N > 28 as
compared to N < 28 indicates the presence of a closed shell. From shell-model calculations
we conclude the transition from Dn ≈ 3 MeV for N < 28 to Dn ≈ 1.5 MeV for N > 28 cor-
responds to the transition from filling the f7/2 orbital to filling the p3/2 orbital.(From [36].)

198



N
24 26 28 30

 [
M

e
V

]
n

D

0

1

2

3

4

5

6
SDPF-MU
SDPF-U
AME 2012
This expt.

, NNDC2+E
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(open circles) and the masses presented in this dissertation (solid circles) is shown along with
shell-model calculations employing the SPDF-MU Hamiltonian [48] (solid squares) and the
SDPF-U Hamiltonian [49] (open squares). E(2+1 ) energies [45–47] are shown for comparison
(crosses). (From [36].)

The Dn values for argon isotopes from this dissertation show a clear signature for an

N = 28 shell closure (Figure 4.21). With the new mass excesses for 48,49Ar, it is apparent

that neutron-rich argon displays the same systematics in Dn as calcium and titanium, which

are known to exhibit an N = 28 shell gap [211]. As seen in Figure 4.21, sulfur does not peak

at N = 28 [219], which is consistent with prior conclusions that sulfur does not exhibit the

N = 28 closed shell [218]. Based on our experimental data we can therefore conclude that

argon is the lowest even-Z element with a closed neutron shell for N = 28. Furthermore,

the value of Dn at the N = 28 peak in Figure 4.21 indicates that the value of the neutron

shell gap for 46Ar is ≈ 4.5 MeV. The halving of the value of Dn for N > 28 as compared

to N < 28 is a signature of the transition between filling the f7/2 orbital, where m = 8, to

filling the p3/2 orbital, where m = 4.

This conclusion is supported by the favorable comparison to shell model calculations,
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shown in Figure 4.22. Here we compare the experimental Dn trend to the Dn trends for local

mass predictions obtained from shell-model calculations using the SDPF-U [49] and SDPF-

MU [48] interactions. In both cases there is excellent agreement between experiment and

theory. This indicates current shell-model calculations adequately describe the interaction

between core and valence neutrons around N = 28 for argon.

Therefore our new masses for 48Ar and 49Ar unequivocally show that the N = 28 closed

shell is present for argon, which makes argon the lowest even-Z element that exhibits an

N = 28 shell gap. Based on this result we can conclude that the problems of shell model

calculations in describing electromagnetic observables in argon isotopes near N = 28 are not

related to the neutron shell gap, but instead point to issues with the interaction of valence

neutrons and core protons 26.

4.2.2 Structure in the Cr isotopic chain approaching N = 40

As discussed in Section 4.2.1 in the context of the argon isotopes, the first 2+ state energies

E(2+1 ) and the quadrupole excitation strengths B(E2) in even-even nuclei, and the masses

along an isotopic chain provide complementary information about the forces at work within

a nucleus. While masses provide model independent information regarding neutron magicity,

E(2+1 ) and B(E2) convolute this information with effects such as collective excitations of

nucleons within a nucleus. Nonetheless, the general trends of these two observables are

expected to roughly mirror each other, particularly near neutron closed shells. This is

because a neutron-magic nucleus is relatively stable with respect to its isotopic neighbors (by

definition) and it should therefore have a weaker excitation from the ground state (B(E2))

26To bring the electromagnetic observables in agreement with the values predicted by shell
model calculations, the shell-model calculations discussed here would need to use weaker
proton-neutron interaction strengths in their Hamiltonians [233].
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and cost more energy, relatively speaking, to excite the magic nucleus from it’s ground state

(E(2+1 )) or to remove neutrons (S2n). This mirrored behavior is apparent in the case of

argon (See Figure 4.21), where the relationship is strong due to the presence of neutron

magic number 28.

New masses for the neutron-rich chromium isotopic chain were obtained in this experi-

ment (See Figure 4.23.), which can be used to obtain the trend in two-neutron separation

energy S2n (See Equation 4.3.). The trends for S2n, E(2+1 ) [45, 50, 51], and B(E2) [52, 53] 27

for the chromium isotopes are compared in Figure 4.24. It is apparent that the S2n trend

is different for the experimentally-based masses obtained from the 2012 Atomic Mass Eval-

uation (AME) [1] and this experiment, particularly at N = 36 and N = 38 (though they

agree within 2σ uncertainties). The discrepancy in the S2n trends primarily stems from

the ∼750 keV, ∼1 MeV, and ∼500 keV differences between our reported masses and the

experimentally-based AME values for 59Cr, 60Cr, and 61Cr, respectively. In particular, the

difference between our 60Cr mass excess and the adopted AME value causes the S2n trend to

pivot about N = 37. As seen in Table I of [98], the AME values for these nuclei are primarily

based on three separate measurements from the TOFI facility [100, 177, 178], between which

there is a ∼500 keV discrepancy for reported masses of 59,60Cr and a ∼1.5 MeV discrepancy

for the reported 61Cr masses 28.

A rigorous comparison to shell model calculations has yet to be performed to ascertain

which of the two S2n trends is consistent with expectations and to determine what the

27To convert from B(2+ → 0+) in Weisskopf units from [52] to B(0+ → 2+) to be

compatible with [53], the values from [52] were multiplied by
(2∗2+1)
(2∗0+1)

(0.0594)A4/3, where A

is the nuclear mass number [196].
28Internal discrepancies between TOFI measurements as well as discrepancies between

high-precision follow-up studies to TOFI mass measurements are discussed in more detail in
Section 3.9.1
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Figure 4.23: Rigidity-corrected time-of-flight distributions for reference nuclei (unfilled his-
tograms) used to calibrate the

mrest
q (TOF ) relationship to obtain masses from TOFs of

59−64Cr (red-filled histograms).

implications of the new masses are for the structural evolution of neutron-rich chromium

isotopes. However, a cursory examination of the S2n trend obtained from this experiment

seems to suggest a subshell closure forN = 36. Additionally, the leveling-off of S2n atN = 40

is reminiscent of the signature of the N = 20 ‘island of inversion’ provided by the sodium

S2n trend [69] 29. The likely explanation for this enhancement in binding near N = 40

for chromium is a transition from filling the fp-shell to filling the g9/2 orbital [233]. The

astrophysical implications for the newly obtained 64Cr mass are described in Section 4.3.2.

29Recent evidence for the N = 40 island of inversion has been provided by other mass
measurements [43].
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Figure 4.24: Trend along the chromium isotopic chain for S2n (upper panel) for this ex-
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since each chromium mass had the same systematic uncertainty and similar interpolation
uncertainties.
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4.3 Applications to the accreted neutron star crust

As discussed in Section 1.2, nuclear masses provide critical input to calculations of nucle-

osynthesis and nuclear energy generation in extreme astrophysical environments. The masses

of neutron-rich nuclei measured in the experiment presented in this dissertation can be used

to improve calculations of processes occurring within accreted neutron star crusts. As an

aside, it is interesting to note that the majority these very neutron-rich low-Z nuclei are too

neutron-rich to participate in the astrophysical rapid neutron-capture (r-)process, since nu-

cleosynthesis at early times in these environments proceeds near N = Z [234, 235]. The first

of the following subsections will discuss nuclear processes occurring in the accreted neutron

star crust with respect to the impact on astronomical observables. The second subsection

will focus on the application of our mass measurements to calculations of electron captures

in the neutron star crust, focusing on the implications our 64Cr mass has for crustal heating

and the potential impact our 56Sc mass may have on the newly discovered Urca neutrino

cooling layer in the outer neutron star crust.

4.3.1 Quiescent cooling neutron stars and nuclear heating and

cooling

Shortly after the discovery of X-ray bursting systems [236–238], it was proposed that they

were associated with neutron stars accreting from a binary companion [239]. While some of

the bursts from the initially observed X-ray bursting system could be explained by variable

accretion rates, the ‘type-II’ bursts with durations of seconds and recurrence times of tens of

seconds, most of the bursts, the ‘type-I’ X-ray bursts which had durations of tens of seconds

and recurrence times of several hours to days, were attributed to thermonuclear runaway of
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material accreted onto the neutron star surface [240–242]. The ultimately accepted conclu-

sion is that type-I X-ray bursts are powered by explosive nuclear burning which is triggered

by the triple-α reaction (whereby three helium nuclei fuse to become a carbon nucleus via its

Hoyle state), quickly followed by breakout from the CNO-cycle (likely via the 15O(α, γ) re-

action), and afterward proceeding through the rapid proton capture (rp-)process [243–247].

Aside from type-I X-ray bursts, accreted neutron stars exhibit a host of other observable

phenomena including X-ray superbursts [248–252], formerly accreting (cooling) quiescent

neutron stars (a.k.a. quasipersistent transients or quiescent transients) [55, 58, 59, 253–257],

quasiperiodic oscillations following X-ray bursts and magnetar giant flares [258–262], and

possibly gravity (g)-mode oscillations [263, 264]. These phenomena can be used to probe the

physical properties of neutron stars, for instance providing data which can be juxtaposed to

models of the neutron matter equation of state [54, 58, 257, 265–268].

The very neutron-rich nuclei whose mass measurement has been described earlier in this

dissertation naturally occur in the outer crust 30 of accreted neutron stars. As ashes of the

rp-process accumulate on the neutron star surface, previously deposited material is buried,

sinks into the crust, and is transformed by electron captures which are enabled due to the

rising electron Fermi energy with depth [60, 78, 269–272]. As the ashes sink further they

ultimately become so neutron-rich that neutrons can ‘drip’ out of nuclei. It is around this

point that neutron capture and neutron emission, along with pycnonuclear (density-driven)

fusion, further transform the crust composition [272–274]. The result of these processes 31

is a stratified compositional structure that is accompanied by various amounts of nuclear

30Defined in the following paragraphs.
31Note that, even for a high accretion rate (i.e. around the Eddington limit), a matter

element takes on the order of centuries to sink to the outer crust and millennia to reach the
inner crust.

205



energy deposition (heating) or release (cooling) from the neutron star crust [54, 60], each

of which, so long as accretion continues, drastically alter the thermal profile of the outer

layers of the neutron star from the isothermal state expected for an old isolated neutron

star [58, 257, 272].

The location of these heating and cooling processes (whose origins are discussed later on)

are indicated in Figure 4.25, where [275] and [25] were used to identify the radial span of the

various labeled zones. In this figure the ‘atmosphere’ refers to the gas-like (i.e. no long-range

correlations of matter) outer layer, which has densities up to ∼ 106 g/cm3, where the rp-

process occurs. The ‘ocean’ is the subsequent liquid-like (i.e. has short-range correlations of

matter) layer, which has densities up to ∼ 109 g/cm3, where carbon ignition for superbursts

and electron captures occur. The ‘outer crust’ follows, which has nuclei arranged in a lattice-

like structure with densities up to ∼ 1011g/cm3, where electron capture heating occurs

along with Urca neutrino cooling and deep crustal heating from pycnonuclear fusion of light

elements that survive thermonuclear burning near the surface. The ‘inner crust’ begins at

the point at which neutron-drip is reached and pycnonuclear fusion of heavier elements sets-

in, ultimately allowing for the existence of the exotic so called ‘pasta phases’ and reaching

densities up to the nuclear saturation density ∼ 1014 g/cm3 (i.e. 0.16 nucleons/fm3). The

depths beyond the nuclear saturation density are referred to as the core and are posited

to consist of mixtures of nucleons, electrons, and muons, and maybe even hyperons, pions,

and/or kaons.

The compositional and thermal structures of accreted neutron star crusts directly impact

the light curve observed by transiently accreting neutron stars which have gone into quies-

cence [257]. Therefore, computational models of these environments can be used to map the

phase space of unknowns involving the neutron star structure [58]. As will be shown, the role
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Figure 4.25: Schematic of an accreted neutron star cross section. The Urca cooling (See
Section 4.3.2.) layer separates heat generated deep in the crust by nuclear processes from
the shallow layer where carbon is thought to be ignited for superbursts. See the text for a
brief description of the labeled layers.
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of nuclear physics in these models is to remove free parameters (or reduce the freedom with

which the parameters can be tuned) by providing the nuclear data required to accurately

model the nuclear reactions occurring within the neutron star crust.

Software such as the open source program dStar [57] can be used to model quiescent

cooling neutron stars (with run times on the order of seconds! ) and determine which set of

inputs, e.g. composition, heating strength/depth, and cooling strength/depth, are compati-

ble with observations. In a nutshell, dStarmodels the neutron star crust as a slab of material

divided into discrete zones 32 with pressure and density as a function of depth defined by the

Tolman-Oppenheimer-Volkoff equation supplemented by various equations of state depend-

ing on the density. The crust is brought out of thermal equilibrium by accretion-induced

heating for some time and then thermally relaxes after accretion turns off. The heat sources

primarily come from the gravitational energy release of accreted material, nuclear reactions

such as electron capture and pycnonuclear fusion of material buried by accretion, and an

unknown shallow heat source which is required to match the initially observed temperatures

after accretion turns off [257]. Since both electron capture and pycnonuclear fusion only

occur for material which has been forced into a new layer, they are only ‘on’ during accre-

tion phases. The newly discovered crustal cooling source resulting from Urca cycling [54],

whose nuclear physics origin is described more in Section 4.3.2, continually operates. The

crust primarily cools via heat diffusion, whose timescale is governed by the specific heat and

thermal conductivity, which themselves depend on the crust composition [58]. The outer

crust typically cools from a heated state back to thermal equilibrium after hundreds of days,

while the inner crust takes on the order of thousands of days to reach thermal equilibrium

with the core. Note that the neutron star core is highly conductive and cools over a very

32The default zone-size is log(P erg/cm3]) = 0.05 where P is the pressure.
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long time scale, so it’s temperature can be considered fixed during the thermal relaxation of

the crust.

dStar itself has a host of free parameters whose values are generally only loosely bounded

by physical considerations for any given system. General system information can be speci-

fied such as the core mass and radius (left fixed at 1.6 M⊙ and 11 km for the simulations

shown hereafter), core temperature, accretion rate, length of the accretion outburst, atmo-

sphere temperature during accretion 33, pressure at the top and bottom of the crust, and

the pressure above which there is a ‘light element atmosphere’ [276]. Heat sources and

sinks can be specified by the pressure bounds for an outer heat source (meant to approxi-

mate electron-capture heating [60]), the pressure bounds for an inner heat source (meant to

approximate deep crustal heating caused by a complex relation between electron capture,

neutron emission, and pycnonuclear fusion [272]), and the pressure at which the recently

postulated [54] shallow Urca neutrino cooling layer exists, as well as by the total amount

of heat deposited/released by these processes. At present, compositional information is

only changed by modifying the so called impurity parameter Qimp., which is effectively the

weighted variance of the nuclear charge of nuclei making up the crust.

Qimp. = n−1
ionΣini(Zi − 〈Z〉)2, (4.8)

where ni is the number density of nuclei with atomic number Zi, 〈Z〉 is the average atomic

number of all species at the location where Qimp. is defined, and nion is the total ion number

density. The impurity parameter has a significant impact on the crust conductivity [58].

However, the utility exists within dStar to specify the nuclear abundances as a function of

33This, in effect, accounts for the mysterious shallow heat source.
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depth in order to consistently calculate the impurity parameter. In principle, this abundance

information could also be used to provide consistent depths at which the heating and cooling

processes take place, since they originate from nuclear reactions. Note that it is at this

interface that nuclear data, especially nuclear masses, are able to contribute to reducing the

parameter space (For an example, see the discussion in Section 4.3.2 on the impact of nuclear

masses on Urca cooling.).

The primary outputs of dStar are effective temperature T∞
eff. (gravitationally red-shifted,

as seen by a distant observer) as a function of time after accretion shuts off and the crust

thermal profile as a function of depth (normally specified by pressure or density) at time-steps

during and after the accretion outburst. Figure 4.26 shows the cooling curve and thermal

profiles during and after an accretion outburst for an example case, where symbols are used

to indicate which thermal profiles correspond to which moments on the cooling curve. The

central panel shows the neutron star crust being heated out of thermal equilibrium with

the core by accretion and the electron capture heating and deep crustal heating which are

turned on by accretion, since accretion buries matter deeper into the star, allowing nuclear

reactions to proceed for the buried nuclei. The lower panel shows the neutron star crust

returning to thermal equilibrium with the core (‘relaxing’). Since the outer layers are less

dense, they conduct heat faster and therefore cool quicker, which means the cooling curve

allows us to effectively see deeper into the neutron star with increasing time. The final

shape of the cooling curve is a result of the effectiveness of the heat transport along with the

location and strength of heating and cooling sources. Figure 4.27 demonstrates the effect of

reducing the neutron star crust conductivity by choosing an impurity parameter Qimp. = 30

instead of 5, as was chosen in the previous case. For this case the crust has not yet reached

thermal equilibrium with the core after 10,000 days of cooling and the knee in the cooling
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curve around 1000 days is more pronounced, since the temperature gradients are in general

steeper (due to less efficient heat transport) just prior to accretion shutoff. Figure 4.28

demonstrates the affect of introducing a strong Urca cooling layer [54], 1037 ergs/sec at

0.5 GK, at a relatively shallow depth (a density of 2.94×1010g/cm3) within the neutron star

crust. It is apparent that the Urca layer reduces heat transport from the surface to the inner

layers, ultimately increasing the temperature gradient before the Urca layer and decreasing

the temperature gradient after the Urca layer, with the net effect of more pronounced knee-

like feature in the cooling curve at ∼ 100 days. Note the interesting feature (which is perhaps

a simulation artifact) that the shallow region of the crust actually becomes cooler than the

core at late times.
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Figure 4.26: The upper panel shows the effective temperature of a neutron star as a function
of time, from the time an accretion outburst ends until the neutron star crust has returned
to thermal equilibrium with the core. The central panel shows thermal profiles at various
time snapshots throughout the duration of an accretion outburst, where the time associated
with a given contour increases in the vertical direction, since the crust is being heated out of
equilibrium. The discontinuity at low density for the contour just prior to accretion turning
on is due to the boundary condition set for the atmosphere temperature during accretion.
The small kink at ≈ 1010g/cm3 is due to electron capture heating and the large bump at
∼ 1013g/cm3 is due to deep crustal heating. The lower panel shows thermal profiles at
various time snapshots after an accretion outburst has ended, where the time associated
with a given contour decreases in the vertical direction, since the crust is cooling back into
equilibrium with the core. The symbols on the thermal profiles in the central and lower
panels indicate the thermal profile snapshot that belongs to a given point in time along the
cooling curve shown in the upper panel.
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Figure 4.27: Same as Figure 4.26, where an impurity parameter Qimp. = 30 was used instead
of Qimp. = 5. It is apparent that the increase in the impurity parameter drastically slows
heat diffusion.
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Figure 4.28: Same as Figure 4.26, where an Urca cooling layer [54] with a luminosity of
1037 erg/s (at 0.5 GK) has been included at a density of 2.94×1010g/cm3.
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dStar calculations of the surface effective temperature can then be compared to obser-

vational data of quiescent transients. The input parameters have been varied so that the

calculation results approximate observational data (See Figure 4.29.). The goal was to get

a feel for the parameter space that plausibly reproduces quiescent transient light curves 34

in order to indirectly motivate the need for nuclear data to reduce this parameter space

by, for instance, using nuclear masses to consistently calculate the crust impurity profile

and the location and strength of crustal heating and cooling processes. The sources XTE

J1701-462 [55, 56] and EXO 0748-676 [59] are used as example cases 35.

Figure 4.29 compares several cooling curves produced with dStar to observational data of

XTE J1701-462. The baseline simulation (solid black line) attempts to mimic the parameter

set employed for model A of [58] 36. The parameters for the neutron star core were: 11 km

radius, 1.6M⊙ 37 mass, 0.1 GK temperature. The accretion rate was 1018 g/s for an outburst

of 584 days (to match observations), where the atmospheric temperature during accretion

was fixed to 0.5 GK. The crust extended from pressures P of log(P [erg/cm3]) = 27 − 32.5

with an impurity parameter Qimp. = 5 (See Equation 4.8.), with 0.3 MeV per accreted

nucleon of heating (mimicking electron capture heating) extended over the pressure range

log(P [erg/cm3]) = 26.86 − 30.13 and 1.5 MeV per accreted nucleon of heating (mimicking

deep crustal heating) extended over the pressure range log(P [erg/cm3]) = 30.42−31.20. The

‘light element atmosphere’ [276] began at a column depth of 1010 g cm−2 (which corresponded

to a density of ∼ 1024 g/cm3). The neutron superfluid pairing gap (important for determin-

34A forthcoming publication by A.T. Deibel will systematically explore this parameter
space in a more quantitative manner. Detailed comparisons to observational data are also
available in [277], [58], and [257].

35There are currently six known quasipersistent sources which have been monitored for
∼1000 days or more after accretion shut-off. Each are compared in Figure 5 of [278].

36This parameter set was provided by E.F. Brown.
37M⊙= one solar mass≈ 2× 1033 g.
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Figure 4.29: Effective temperature as a function of time of the neutron star XTE J1701-462 as
observed [55, 56] after accretion turned off (at day 0) as compared to dStar [57] simulations.
Note that the observational points labeled ‘?’ and ‘(?)’ have been called into question
due to suspected brief accretion outbursts [58]. The baseline simulation (solid black line)
mimicked the parameters employed by [58], the short-dashed black line simulation added a
1036 erg/s (for 0.5 GK) Urca cooling layer to the baseline simulation, the long-dashed black
line simulation added a 1037 erg/s (for 0.5 GK) Urca cooling layer to the baseline simulation,
the black dot-dash line changed the impurity parameter from the baseline simulation to 30,
and the dotted red line changed the impurity parameter to 30 and included a 3× 1036 erg/s
(for 0.5 GK) Urca cooling layer. More details on input parameters are provided in the text.
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ing the conductivity of the deep inner crust) was the model given by [279]. For simulations

which include an Urca cooling layer, this was placed at a pressure of log(P [erg/cm3]) = 28.5

using cooling strengths given by Table 1 of [54] as a benchmark. Table 1 of [54] lists neu-

trino luminosities for several Urca pairs for a temperature of 0.5 GK, with cooling strengths

ranging between (0.46 − 24) × 1036 ergs/s for the Urca pairs identified in that study. Fig-

ure 3 of [54] predicts neutrino luminosities of ∼ 1035− 3× 1036 ergs/s for Urca cooling from

electron captures occurring on typical accreted neutron star ashes.

In Figure 4.29 it is apparent that the baseline simulation reproduces the data relatively

well, though it possibly undershoots the last observational point. It is seen that adding Urca

cooling with a strength of 1036 erg/s (for 0.5 GK) has very little impact on the resultant

light curve 38. For demonstrative purposes, the Urca cooling was turned up to 1037 erg/s

(for 0.5 GK), where a clear impact on the light curve was shown, though it clearly disagrees

with the observational data (given the initial set of assumed parameters). For the case

where Urca cooling was omitted but the impurity parameter was changed to 30 and the core

temperature was raised to 0.13 GK, there is significant extension of the cooling curve, which

seems to overshoot the data somewhat. Visually, the best reproduction of the data is given

by the red-dotted case which employs Qimp. = 30, Tcore = 0.13 GK, and 3× 1036 erg/s (for

0.5 GK) Urca cooling. The qualitative conclusion to be drawn here is that a large impurity

parameter only plausibly reproduces the XTE J1701-462 data if the extended light curve is

compensated by a reasonably strong Urca cooling layer. Additional data points extending up

to a few thousand days should be sufficient to distinguish whether this case or the baseline

best reproduces that observational data.

38Reducing shallow heating by half produced nearly identical results, so this case is omitted
from the plot for clarity.
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As an aside, it should be noted that the XTE J1701-462 data shown was obtained from

observations starting in the middle of 2007 and extending through late 2010 and it ap-

pears [280] no accretion outburst has happened since. Therefore, it is possible in principle

to extend the quiescent cooling data out to ∼ 2600 days if a follow-up observation were

made in the near future (so long as accretion doesn’t turn back on in this time). This would

be sufficient to distinguish between the high and low impurity cases. In addition, prior to

accretion turn-off, three type-I X-ray bursts were observed for XTE J1701-462, two of which

were photospheric radius expansion bursts [281] 39, where the burst rise-time was used to

infer that the bursts were powered by helium burning. In principle, one could attempt to

reproduce these X-ray burst light curves with simulations (as done with GS 1826-24 by [266])

in order to get an estimate for the surface ash composition 40. The ash composition could

then be evolved with a neutron star crust nuclear reaction network (e.g. as employed in [60]

and [54]) to obtain the crust composition profile along with the location and strength of

heating and cooling sources. Though tedious, this exercise would reduce the phase space

available to reproduce the quiescent cooling curve for XTE J1701-462.

Figure 4.30 compares several cooling curves produced with dStar to observational data of

EXO 0748-676. Aside from the core temperature, atmosphere temperature during accretion,

impurity parameter, and Urca cooling strength, the parameters chosen were the same as

for the XTE J1701-462 simulations, with the exception of the simulation represented by the

thick-green line for which shallow crustal heating was reduced by 1/2 from the default value 41.

39Recall that these bursts can be used to obtain rough neutron star mass and radius
information [244].

40 Note that the crust is composed of matter which was accreted over the past hundreds of
years, so the ashes from the bursts observed prior to accretion shutoff would not have been
buried to the outer crust depth yet.

41Note that little physical motivation existed for choosing to use most of the same pa-
rameters as for XTE J1701-462. For instance, the accretion outburst on EXO 0748-676 was
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Figure 4.30: Effective temperature as a function of time of the neutron star EXO 0748-676
as observed [59] after accretion turned off (at day 0) as compared to dStar [57] simulations.
The only parameters varied between the simulations shown were the core temperater Tcore,
the crust impurity parameter Qimp., and the Urca cooling strength, with the exception of the
simulation corresponding to the thick green line whose shallow crustal heating was reduced
to 0.15 MeV/u (from the default value of 0.3 MeV/u). Note that the blue diagonally-
hashed band is the inferred core temperature from observations of EXO0748-676 after a long
quiescent phase where it is thought the crust reached thermal equilibrium with the core [59].
More details on input parameters are provided in the text.
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It is apparent that the parameter variations have a much smaller impact on the overall cooling

curve, which is due to the smaller initial temperature gradient between the atmosphere and

the core. As before, the addition of Urca cooling appears to fit the data well, so long as

the impurity parameter is increased to higher values. For a fixed impurity parameter, the

results for including strong Urca cooling and reducing shallow heating have a similar impact

on the cooling curve. In this case it is unclear if observations at later times would allow the

different cases to be distinguished, since the variation in the predictions is roughly within

observational uncertainties. Note that X-ray bursts for EXO 0768-676 were observed just

prior to its quiescent phase [282], so in principle the same exercise described previously for

XTE J1701-426 (reproducing burst observations with simulations and combining this with

crust composition evolution simulations to obtain Qimp., heating, and cooling versus depth)

could be performed. However, as was noted previously, the crust is composed of matter

which was accreted over the past hundreds of years, so the ashes from the bursts observed

prior to accretion shutoff would not have been buried to the outer crust depth yet.

These two cases have served to illustrate the presently existing degeneracy between sets of

suitable crustal cooling simulation parameters. Rather than remove the degeneracy, nuclear

data could serve to limit the available parameter space so that more information could

be gleaned from observations. It has been demonstrated that nuclear masses are crucial to

determine the location and strength of crustal heating and cooling [54, 60, 78]. The following

section will discuss the role nuclear masses play as input to simulations which evolve the

crustal composition of accreted neutron star ashes as they are buried by accretion.

observed to last for 24 years, as opposed to 584 days.
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4.3.2 Heating and cooling in the neutron star crust associated

with electron captures

Note that this subsection (4.3.2) is a modified excerpt from the upcoming publications [283,

284]. The author of this dissertation is the primary author of those works, however coau-

thors 42 contributed to the writing of [283] and will contribute to the writing of [284].

As briefly mentioned in the previous section, the ashes from thermonuclear burning oc-

curring on the surface of accreted neutron stars are buried as further matter is accreted

and forced into lower depths of the neutron star. As the depth increases, the density in-

creases, therefore the electron number density increases, and therefore the electron Fermi

energy EFermi rises 43. Eventually the electron chemical potential µe = EFermi reaches

42The full list of coauthors for [283] and [284] is: Zach Meisel, Sebastian George,
Sunghoon (Tony) Ahn, Justin Browne, Daniel Bazin, B. Alex Brown, J. Fiore Carpino,
Hank Chung, Richard H. Cyburt, Alfredo Estradé, Mike Famiano, Alexandra Gade,
Christoph Langer, Milan Matoš, Wolfi Mittig, Fernando Montes, Dave J. Morrissey,
Jorge Pereira, Hendrik Schatz, Jule Schatz, Mike Scott, Dan Shapira, Karl Smith,
Jeremy Stevens, Wanpeng Tan, Oleg Tarasov, Sarah Towers, Kathrin Wimmer,
Jack R. Winkelbauer, John Yurkon, and Remco G.T. Zegers. See [36] for their affiliations
at the time of these works.

43This is roughly demonstrated for a degenerate electron gas by considering the electron as
a particle in a box. The energy of a relativistic electron (which we can assume is relativistic
due to its small mass) is E = pc. From the uncertainty principle, we know ∆x∆p ≥ ~/2,
where ∆p is the characteristic momentum spread (uncertainty) and ∆x is the characteristic
position spread (uncertainty). By considering the momentum spread to be on the order of
the momentum, p ∝ ∆p, p ∼ ~/∆x, the electron energy is given by E ∼ ~c/∆x. Since
the environment under consideration is electron degenerate, the electrons will fill orbitals
corresponding to quantum numbers l, where the most energetic electrons (the ones at the
Fermi energy EF) will occupy the outermost orbital whose corresponding quantum number
is lF. The total number of electrons N is given by the sum of the total number of electrons
which can occupy each of the orbitals, N = 2 ∗ 1/8 ∗ 4π/3 ∗ l3F, where the factor of 2 accounts
for the fact that electrons with opposite spin can occupy the same location, the factor
of 1/8 accounts for the fact that the quantum number corresponding to the orbital radius
lF is represented by orbitals in the x, y, and z dimensions whose quantum numbers can
only be positive, and 4π/3 is the typical prefactor for the volume of a sphere. Therefore

the most energetic electrons have quantum number lF = (3N/π)1/3. A rough estimate for
the uncertainty of the electron position is given by the radius of the space in which the
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the point where it is equal to the electron capture Q-value for a nucleus at a given depth,

µe ≈ QEC(Z,A) = ME(Z,A) −ME(Z − 1,A), where ME(Z,A) is the mass excess of a nu-

cleus with Z protons and A − Z neutrons. At this point it is energetically favorable for an

electron to be forced into the nucleus, combining with a proton to become a neutron and a

neutrino, transmuting that nucleus to the more neutron-rich isobar with Z − 1 protons and

A nucleons. [60] show that this process often results in heat deposition within the neutron

star crust.

A rough schematic demonstrating the origin of electron capture heating is shown in

Figure 4.31. In odd-A mass chains, electron captures occur one at a time at the point

where µe ≈ QEC(Z,A). In some cases selection rules will hinder an electron capture from

ground-state to ground-state, since large changes in spin from initial to final states are not

favorable, so the chemical potential may need to rise to an energy larger than the electron

capture Q-value. In these cases electron capture into an excited state occurs and the energy

released in de-excitation is deposited into the crust. Due to the large number of low-lying

states for odd-A nuclei, the heating from these electron capture chains would in general

be modest. The even-A mass chains, however, can deposit significantly more energy into

the neutron star crust since electron capture into an excited state is often energetically

possible. The binding energy penalty for not having and bonus for having paired nucleons

(represented by the 5th term of Equation 4.1) causes the so-called odd-even mass stagger,

electrons could occupy a divided by the minimum number of orbitals which the electrons
fill lF, ∆x ∼ a/lF. Employing this relation for ∆x in our prior relation for EF results in

EF ∼ (~ ∗ c ∗ lF)/a ∼ (~cN1/3)/a. Since the volume of the space in which the electrons are

located scales as the radius cubed, a ∝ V 1/3, EF ∼ ~cN1/3/V 1/3. Recognizing the number

density of electrons ne = N/V , we finally arrive at the conclusion EF ∼ (~c)n
1/3
e . Noting

that the chemical potential is equal to the Fermi energy µe = EF, our relation between the
Fermi energy and the electron number density is consistent with the more carefully calculated
result presented in Equation 2.4 of [269].
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Figure 4.31: Schematic demonstrating the origin of electron capture heating for odd-A (left
panel) and even-A isobaric chains, where the vertical direction indicates the energy of the
system, which rises with depth due to the increasing electron chemical potential µe. Each
panel considers the system energy at the depth where µe = QEC(Z,A) = ME(Z,A) −
ME(Z− 1,A). In the odd-A case, QEC(Z,A) < QEC(Z − 1, A), so once the initial electron
capture happens (1), nothing further happens until the nucleus sinks to the depth where
µe = QEC(Z − 1, A). At this point, it is possible that electron capture to the ground state
is strongly hindered, as it could have been for the first electron capture in the sequence (for
instance, due to a large difference in spin between the initial and final state), so electron
capture may not ensue until it is energetically possible to electron capture into an excited
state of the nucleus with Z−2 protons (2). Electron capture into the excited state (3) will be
followed by de-excitation (4) which deposits heat into the crust. For the even-A case, heating
can be more significant due to the odd-even mass stagger that results from the pairing force
(the 5th term of Equation 4.1). In this case, after electron capture onto an even-even nucleus
(1), it is immediately energetically favorable to electron capture into the even-even nucleus
with Z − 2 protons, which results in heat deposition into the outer crust. Often QEC(Z,A)
is greater than QEC(Z − 1, A) by several MeV, so electron capture into a high-lying excited
state is possible (2). The subsequent de-excitation (3) enhances the energy deposition into
the neutron star crust, often by several MeV [60].
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whereby binding energy differences do not monotonically increase from the stable isobar by

ever-larger amounts but increase in alternating large and small steps. This stagger results in

the case QEC(Zeven, Aeven) > QEC(Zodd, Aeven), so electron captures proceed in a two-step

process. Ground-state capture of electrons with Ee < EFermi deposits EFermi −Ee worth of

heat into the crust. The second electron capture in the pair can often proceed through an

excited state, which enhances the amount of energy deposited into the crust via de-excitation

of the electron capture daughter. Nuclear reaction network calculations of rp-process ashes

sinking into the neutron star crust demonstrate that even-A mass chains in general produce

more heat in the neutron star crust than odd-A mass chains [60]. The largest amount of heat

is released in regions of the nuclear chart near magic neutron and proton numbers, where

shell effects can enhance the relative binding energy differences.

From Figure 4.31 it is clear that nuclear masses play a fundamental role in determining

at which depth (µe) electron captures ensue and the quantity of heat released 44. To this end

the previous NSCL time-of-flight mass measurement determined the mass of 66Mn for the

first time and found an unexpectedly small QEC for 66Fe. This resulted in a shallower depth

for this heating source than was previously assumed; a significant fact considering that a

considerable amount of A = 66 material is produced from X-ray bursts, X-ray superbursts,

and stable burning during accretion [64, 243, 285, 286]. Motivated by this study, we explore

the impact of the mass measurements presented in this dissertation on electron capture

heating in the accreted neutron star crust.

ME(64Cr) and electron capture heating

Note that this subsection is a modified excerpt from the upcoming publication [284].

44Note that the energies and spin-parity of excited states are also critical inputs, since
these determine the rates of energetically allowed electron capture transitions.
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The author of this dissertation is the primary author of that work, however coauthors 45 will

contribute to its writing.

The newly obtained mass of 64Cr presented in this dissertation is of special interest with

regards to electron capture heating in the outer neutron star crust. Given the waiting-point

nature of 64Ge in the rp-process 46, it is expected that a large amount of A = 64 material is

present on the surface of accreted neutron stars [64, 243, 285, 286]. Additionally, we note that

the 64Cr mass excess obtained from our measurement differs from the values given by the

HFB-21 and1 1995 FRDM global mass models by ∼ 3σ (See Table 4.1.). Therefore neutron

star crust nuclear reaction network calculations (employed in [54, 60, 78]) were performed to

see the resultant change in crustal heating in the A = 64 mass chain, where the results are

shown in Figure 4.32. Here it is seen that the reduction in binding of 64Cr 47 as compared

to global mass models reduces the shallow heating due to the 64Fe →64 Mn →64 Cr and

64Cr →64 V →64 Ti electron capture sequences, while also shifting the latter electron capture

sequence to significantly shallower depths. Note that the mass of 64V must be determined

experimentally to finally determine the depth of the 64Cr →64 V transition.

45The full list of coauthors for [284] is: Zach Meisel, Sebastian George,
Sunghoon (Tony) Ahn, Justin Browne, Daniel Bazin, B. Alex Brown, J. Fiore Carpino,
Hank Chung, Richard H. Cyburt, Alfredo Estradé, Mike Famiano, Alexandra Gade,
Christoph Langer, Milan Matoš, Wolfi Mittig, Fernando Montes, Dave J. Morrissey,
Jorge Pereira, Hendrik Schatz, Jule Schatz, Mike Scott, Dan Shapira, Karl Smith,
Jeremy Stevens, Wanpeng Tan, Oleg Tarasov, Sarah Towers, Kathrin Wimmer,
Jack R. Winkelbauer, John Yurkon, and Remco G.T. Zegers. See [36] for their affiliations
at the time of this work.

46[287] claim their mass measurement of 65As establishes that 64Ge is not an rp-process
waiting-point, but X-ray burst calculations demonstrate that their measurement precision
does not merit this claim [288].

47This is likely due to the models taking the intrusion of the g9/2 orbital into account
differently, as discussed in Section 4.2.2.
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Figure 4.32: Integrated heat release (in units of MeV per accreted nucleon u) from electron
capture for an A = 64 mass element as it is buried to deeper depths of the neutron star crust
by accretion. Note that the time required for a surface fluid element to reach these depths
depends on the accretion rate; for our chosen accretion rate of Ṁ= 26, 400 g/cms2 (1/3 the
Eddington accretion rate), the time to sink from the surface to the depths shown is on the
order of centuries. The calculations corresponding to the black and red lines employed the
1995 FRDM [2] and HFB-21 [3] global mass models for nuclei with unknown masses, where
the 2012 Atomic Mass Evaluation [1] was used otherwise. Calculations indicated by solid
lines included the mass of 64Cr presented in this dissertation. The first two heating events
are labeled by their corresponding electron capture sequence.
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ME(56Sc) and Urca cooling

Note that this subsection is a modified excerpt from the upcoming publication [283].

The author of this dissertation is the primary author of that work, however coauthors 48

contributed it its writing.

It is important to note that to this point we have ignored the possibility of β−-decay

occurring after electron capture, due to the electron degenerate environment. Recently it was

shown that the finite temperature of the neutron star crust opens up considerable phase space

for β-decay to occur, leading to the presence of so called Urca cycles at the compositional

boundaries where electron captures occur [54]. This is the dominant cooling mechanism in

the outer crust when the temperature exceeds 108 K 49.

At finite temperature, the compositional transition between one nucleus to its next-

most neutron-rich isobar takes place over a thin-shell of finite thickness (∼ 1 m). Within

this shell, both electron-capture parent and daughter nuclei are present, and both electron

capture and its inverse, β−-decay, can occur (Demonstrated pictorially in Figure 4.37.).

Alternating electron captures and β−-decay between these nuclei can then lead to a rapid

neutrino emission known as Urca cooling [290]. Whether such an Urca process is efficient

at compositional boundaries depends strongly on nuclear masses and electron capture/β−-

decay transition energies and strengths [54, 60, 78].

48The full list of coauthors for [283] is: Zach Meisel, Sebastian George,
Sunghoon (Tony) Ahn, Justin Browne, Daniel Bazin, B. Alex Brown, J. Fiore Carpino,
Hank Chung, Richard H. Cyburt, Alfredo Estradé, Mike Famiano, Alexandra Gade,
Christoph Langer, Milan Matoš, Wolfi Mittig, Fernando Montes, Dave J. Morrissey,
Jorge Pereira, Hendrik Schatz, Jule Schatz, Mike Scott, Dan Shapira, Karl Smith,
Jeremy Stevens, Wanpeng Tan, Oleg Tarasov, Sarah Towers, Kathrin Wimmer,
Jack R. Winkelbauer, John Yurkon, and Remco G.T. Zegers. See [36] for their affiliations
at the time of this work.

49Note that this process is highly temperature dependent, where the cooling luminosity
Lν,Urca ∝ T 5 [54, 289].
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The most important Urca shell cooling identified in [54] is associated with the transition

from 56Ti to 56Sc and is predicted to occur at a depth of 5.6×1010 g/cm3 (≈ 160 m from the

surface). This transition is of particular importance because it is the only one associated with

cooling in the A = 56 mass chain, and is one of the few cases where Urca shell cooling was

predicted to occur for an even mass number A. Even-A nuclei, and in particular A = 56 nuclei

tend to be produced in large quantities by X-ray bursts and superbursts, and are therefore

predicted to be present in the outer crust in large quantities [243, 285, 291]. However, the

existence of the 56Ti–56Sc Urca pair (and therefore A = 56 Urca cooling) depends strongly

on the unknown masses of 56Sc and 56Ca. In [54], cooling only occurs when employing the

HFB-21 [3] global mass model and not when employing the 1995 FRDM [2] global mass

model.

While the HFB-21 and FRDM predictions for the atomic mass excess of 56Ca ME(56Ca)

agree within ≈ 500 keV, there is a nearly 2 MeV discrepancy for the case of ME(56Sc) [2, 3].

When using the FRDM mass for 56Sc, the odd-even staggering of electron capture Q-values,

∆QEC(
56Sc) = QEC(

56Ti) − QEC(
56Sc), is very strong. This leads to a low threshold for

electron capture on 56Sc, which results in a fast electron capture that removes nuclei from the

56Ti–56Sc Urca cycle. The HFB-21 mass model predicts a much weaker odd-even staggering

of QEC, resulting in a higher threshold for electron capture on 56Sc that suppresses this

reaction, thereby confining material to the 56Ti–56Sc Urca cycle. The mass determined for

56Sc in the experiment presented in this dissertation was used to compute ∆QEC(
56Sc) to

resolve the question of whether or not 56Ti–56Sc could be an Urca pair in the accreted

neutron star crust.

As was described previously in this dissertation, the mass of 56Sc was determined exper-

imentally for the first time by a relative measure of time-of-flight (See Figure 4.33.). Aside
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from the standard set of mass uncertainties that were assigned to the measured masses (See

Section 3.9.4.), an additional uncertainty for ME(56Sc) originates from the presence of an

experimentally known β-decaying isomeric state [207, 208] that may be populated in the

fragmentation reaction producing 56Sc. 56Sc has a β-decaying low-spin (1+) state and a β-

decaying high-spin (5+ or 6+) state, but it is not known which is the ground state and which

is the isomeric state. Shell-model calculations predict an excitation energy of the isomer of

540 keV. The resolution of the 56Sc TOF peak is 100 ps, corresponding to a mass resolution

of 10 MeV, and can therefore not be used to constrain the relative population of the ground

and isomeric states. Thus, the atomic mass excess obtained in this work represents a least-

bound limit for the 56Sc ground state and we add an asymmetric uncertainty of +0
−540 keV to

our result to account for the unknown population ratio. The resulting atomic mass excess of

56Sc determined in this work is −24.85(59)(+0
−54) MeV. As seen in Table 4.1, the atomic mass

excess of 56Sc presented here is consistent with the prediction from the HFB-21 [3] global

mass model, but is more bound than the prediction from the FRDM [2] global mass model.

With our result for the 56Sc mass, QEC(
56Ti) =ME(56Ti)−ME(56Sc)= −14.4(+1.3

−0.7) MeV

is now determined exclusively from experimental data. For QEC(
56Sc) = ME(56Sc) −

ME(56Ca) we combine our new 56Sc mass with the 56Ca mass predicted by either the FRDM

or the HFB-21 mass models and find similar values of−12.0(+0.6
−1.1) MeV and−12.3(+0.6

−1.1) MeV,

respectively (uncertainty is experimental only). For the two choices of 56Ca mass, this re-

sults in a QEC staggering of ∆QEC(
56Sc) = QEC(

56Sc) − QEC(
56Ti)=2.3(+0.7

−1.3) MeV and

2.1(+0.7
−1.3) MeV, respectively. Fig. 4.34 shows evolution of ∆QEC in the A = 56 mass chain

for odd-Z nuclei as a function of Z, where we have included both of the aforementioned

∆QEC(
56Sc) in an attempt to capture the contribution of the theoretical mass uncertainty

of 56Ca. Clearly our data neither support the strong decrease towards the neutron drip
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(open shapes). A low ∆QEC is essential for the existence of an Urca cooling pair in an
even-A mass chain.

line (lower Z) predicted by HFB-21, nor the strong increase predicted by FRDM. Rather,

our data confirm the predictions of recent energy density functional based binding energy

calculations [61, 62] of a fairly constant ∆QEC along A = 56.

The absolute value of ∆QEC(
56Sc) obtained here agrees with the HFB-21 value used

in [54] that led to strong Urca cooling for A = 56 and excludes the FRDM value that

led to a suppression of Urca cooling. This can be understood by examining the energy

thresholds for electron captures, shown graphically in Fig. 4.36. The 56Ti(e−,νe)56Sc re-

action is predicted by the QRPA model used in [54] to proceed through a 10 keV 3+

excited state (consistent in energy with the ground state) of 56Sc 50. Our experimental

50It should be noted that this 3+ state is not presently seen in experimental data, but
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Figure 4.35: (a) Net energy released from (positive values) or deposited into (negative values)
the neutron star crust as a function of depth for a fluid element made of A = 56 material as
it sinks into the neutron star crust. Lines from the energy curves to the reaction sequence in-
dicate which heating or cooling event corresponds to which nuclear reaction when employing
the HFB-21 [3] mass model for the 56Sc and 56Ca masses. Differences between the amount of
heating or cooling and the depth at which it occurs are due to the different value of ME(56Sc)
used in the calculation. ME(56Sc) found in this experiment results in Urca cooling for the
A = 56 mass-chain, as given by the HFB-21 mass model but not the FRDM’95 [2] mass
model. Note that the 56V and 56Ti masses used are from [1]. (b) Integrated energy per
accreted nucleon released from (negative values, blue-shading) or deposited into (positive
values, red-shading) the neutron star crust for an A = 56 fluid element as a function of
depth. It is apparent that cooling from one pair of nuclei overwhelms heating from electron
captures. (c) Schematic of an accreted neutron star cross section. The Urca cooling layer
separates heat generated deep in the crust by nuclear processes from the shallow layer where
carbon is thought to be ignited for superbursts.
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Figure 4.36: Energy level diagram for the A = 56 mass-chain at a depth where EF ≈
|QEC(

56Ti)|. The large low-lying Gamow-Teller (GT) transition strength for 56Sc allows
56Ti(e−, νe)56Sc to occur for this condition. Whether or not electron capture EC onto 56Sc
directly follows depends on the choice of mass model. EC on 56Sc into the lowest energy
level Exs in 56Ca that can be entered via a GT transition occurs at EF ≈ |QEC(

56Ti)| for
the FRDM mass model [2], but not for the HFB-21 mass model [3]. In the latter case, Urca
cooling occurs for the 56Ti–56Sc pair.

QEC(
56Ti)=−14.4(+1.3

−0.7) MeV indicates therefore, that the transition occurs at a depth where

EF is slightly below 14.4(+0.7
−1.3) MeV. This is a shallower depth with respect to the calculation

that employs the FRDM mass model mass model for ME(56Sc). What happens next with

the resulting 56Sc nucleus depends on the threshold for the 56Sc(e−,νe)56Ca reaction. Our

QEC(
56Sc)= −12.0(+0.6

−1.1) MeV or−12.3(+0.6
−1.1) MeV indicate that the transition to the ground

state of 56Ca would be energetically possible for electrons with EF ≡ 14.4(+0.7
−1.3) MeV, with

an excess energy (with respect to the 56Ca ground state) of 2.3(+0.7
−1.3) MeV or 2.1(+0.7

−1.3) MeV

the only 56Sc level scheme information that is available is from the isomeric γ-decay of its
775 keV excited state, where all spin-parity assignments were based on the assumption that
the ground state was Jπ = 1+.
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that corresponds to ∆QEC. However, the transition is predicted to go to an excited state

in 56Ca at 3.4 MeV [292], which is not energetically possible. As a consequence, the only

destruction mechanism for 56Sc at EF ≈ 14.4 MeV is β− decay and a strong 56Ti–56Sc Urca

cycle ensues at this depth, 6.0×1010g/cm3. The resulting strength of the cooling or heat-

ing as a function of depth in the neutron star crust model of [54] when employing different

masses for 56Sc is shown in Fig. 4.35. For context, Fig. 4.35 shows the location of the Urca

cooling layer with respect to the proposed locations of the carbon ignition layer that powers

superbursts [249, 268] and the general region of deep crustal heating [272, 277].

We note that shell-model Gamow-Teller strength distributions calculated with the GXPF1A

effective interaction predict a strong transition from the 56Sc ground state to the 56Ca ground

state. However, this conclusion assumes a spin-parity Jπ=1+ ground state for 56Sc while,

as noted previously, experiment has yet to determine whether the low-spin or high-spin

long-lived state in 56Sc is the ground state [207, 208].

Therefore, the mass measurement of 56Sc presented in this dissertation removes the mass

model ambiguity in the conclusions of [54] concerning the possible existence of a 56Ti–56Sc

Urca neutrino cooling layer in hot accreted neutron star crusts. With our new 56Sc mass,

strong Urca neutrino cooling occurs at the 56Ti–56Sc boundary within the model framework

of [54], regardless of which mass model is used for the remaining unknown masses. A strong

56Ti–56Sc Urca neutrino cooling layer makes shallow neutrino cooling in the crust of accreting

neutron stars a strong and robust effect due to the copious production of A = 56 material

in superbursts and other thermonuclear burning processes at the neutron star surface. In

addition, with the new experimental mass of 56Sc, the depth of the 56Ti electron capture

transition, and the associated location of a 56Ti–56Sc Urca neutrino cooling layer, can now be

determined on the basis of experimental data. The remaining nuclear uncertainties related
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to a 56Ti–56Sc Urca cooling layer in accreting neutron stars are the 56Ca mass excess, the

excitation energy of the final state populated in the 56Sc(e−, νe)56Ca reaction, and, most

importantly, the spin-parity of the 56Sc ground state.

However, an important consideration regarding even-A Urca pairs is the possible thermal

population of excited states, which is not taken into account in the model of [54]. While

the finite temperatures open-up phase space for β-decay, as quantified by the Saha equation

they should also lead to the thermal population of excited states. These excited states could

have a much stronger electron capture transition strength, thereby rapidly draining nuclei

from the Urca cycle. In fact, as shown in Figure 4.37, it is virtually a requirement that there

be a low-lying excited state in the electron-capture daughter of the Urca pair that has a

significant electron capture strength (Since the electron capture transition in the figure from

0+ → Jπlow is strong, it is presumed that the transition from Jπlow → 0+ will be strong as

well.). Thus, whether or not Urca neutrino cooling is present for an even-A pair not only

depends on ∆QEC as discussed previously, but also on the competition between Urca cycling

and draining of nuclei from the cycle via electron capture on a thermally populated excited

state in the odd-odd nucleus.

The criterion for a strong even-A Urca pair then has an inherent contradiction. A low

excited-state energy (relative to kT , where T is the environment temperature and k is Boltz-

mann’s constant), in the odd-odd nucleus of the Urca pair is preferred to open-up sufficient

phase space to increase the rate of β−-decay. However, a high excited-state energy of the

low-Jπ state (through which electron capture into the odd-odd nucleus proceeds) is preferred

so that this state will not be significantly thermally populated so that it can undergo electron

capture and drain the Urca cycle. Here a rough attempt is made to find the possible excited

state energy window in which these two criteria could be balanced, while neglecting time-scale
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Figure 4.37: Schematic demonstrating the origin of Urca neutrino cooling in even-A isobaric
chains, where the vertical direction indicates the energy of the system, which rises with depth
due to the increasing electron chemical potential µe. The figure considers the system energy
at the depth where µe = QEC(Z,A) = ME(Z,A)−ME(Z− 1,A), where Z and A are even.
In order to maintain an Urca cycle, electron capture from the Z to Z − 1 isobar must be
relatively strong while the electron capture from the Z−1 isobar to the Z−2 isobar must be
hindered. Since even-even nuclei have a ground state spin-parity Jπ = 0+, this condition can
only be achieved if the first allowed Gamow-Teller (GT) transition into the Z − 1 isobar is
at a relatively low-lying excited state energy, while the first allowed Gamow-Teller transition
into the Z − 2 isobar is at a relatively high-lying excited state energy such that it cannot
be immediately captured into following the transition from (Z,A) → (Z − 1, A) [54]. If the
(Z−1, A) excited state with spin-parity Jπlow is significantly thermally populated, nuclei will

be drained from the Urca cycle by transition from this state to the (Z − 2, A) 0+ ground
state if there is a strong GT transition.
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considerations (discussed later on). Figure 4.38 shows what is coined here as the ‘Even-A

Urca window’, which is just the product of the relative probability of the (Z−1, A) → (Z,A)

β−-decay and the relative thermal population of the ground state of (Z − 1, A) as a func-

tion of the excited state energy through which the (Z,A) → (Z − 1, A) electron capture

proceeds, where Z and A are even. The relative probability of β−-decay used was the di-

mensionless portion of the rate for β−-decay in an electron-degenerate environment given by

Equation 14 of [289] 51. The relative population of the ground state is obtained by transform-

ing the Saha equation (which ultimately results in the Fermi distribution). It is apparent

that their product peaks at higher excited state energies for higher temperatures. Note that

this simple model does not take into account the time-scales involved in the Urca cycling

and the electron capture which drains the Urca cycle. Since the finite temperature contin-

ually replenishes the thermal population of the excited state, Urca cycling which is much

slower than the electron capture onto the thermally populated excited state would be rather

ineffective. In fact, for the case of 56Ti–56Sc, where QEC(
56Ti) = 14.4 MeV at 0.5 GK, it

appears the actual window found in a full reaction network peaks around Exs ≈ 400 keV,

with a substantial reduction in the overall cooling [293].

As the prior discussion has demonstrated, nuclear masses play a prominent role in the

determination of the heating and cooling associated with electron captures in the outer

neutron star crust. However, as was also demonstrated, precise knowledge of the spin-parity

and energy of excited states of nuclei involved in the electron capture process is required

to accurately calculate the strength and location of heating and cooling processes within

the neutron star crust. Though theoretical models exist to obtain information on electron

51P (β−)Z−1,A ∝ exp(me
kT

|EF−QEC(Z,A)|
QEC(Z,A)

), where EF is the electron Fermi energy, me is

the electron mass, k is Boltzmann’s constant, and T is the temperature.
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Figure 4.38: The relative probability of β−-decay occurring from the ground-state of an odd-
odd nucleus in an Urca pair (blue-dotted line) multiplied by the relative thermal population
of the ground state of that same nucleus (black-dashed line) is coined here as the ‘Even-A
Urca window’ (thick red-solid line) for a temperature of 0.5 GK. Also shown is the ‘Urca
window’ for a temperature of 0.1 GK (thin red-solid line). The functional forms which were
used are explained in the text.

238



capture thresholds and transition strengths, they are often found wanting when confronted

with data [294]. Nonetheless, the local calculations provided by the shell model (particularly

calculations using the GXFP1A interaction) tend to perform relatively well, and a large-scale

set of calculations for the nuclei involved electron captures in the neutron star crust would

provide valuable information for reaction network calculations. Since the maximum amount

of heating/cooling possible for any given electron capture transition is determined by mass

differences, in principle this information could be used to narrow the set of nuclei for which

high-quality excited state information is required.
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Chapter 5

Future prospects

The results presented in this dissertation are proof of the potential time-of-flight TOF mass

measurement has as a tool for operating at the frontiers of nuclear physics. TOF mass

measurements are a vital tool for extending the limits of the known nuclear mass surface,

providing over 280 nuclear masses to date (See Section 1.4.2.). By operating in a comple-

mentary fashion with Penning trap mass spectrometry, this powerful technique is poised

contribute to the solution of unsolved problems in both nuclear structure and nuclear as-

trophysics. As current generation facilities push to more exotic nuclei with Penning trap

measurements, the TOF technique can be used to push a few nucleons further by leveraging

the Penning trap results as calibration masses. In fact, previously collected TOF data can

be re-analyzed to reduce extrapolation uncertainties and provide masses for nuclei whose

masses were previously too poorly constrained to be worth reporting. When next generation

facilities come online, TOF mass measurement will be one of the essential methods employed

to explore the limits of the nuclear landscape.

When provided with additional calibration nuclei due to future Penning trap mass mea-

surement results, the data set described in this dissertation can be re-analyzed to improve

the precision of nuclei whose mass was reported and obtain masses of nuclei whose cur-

rent uncertainty was too large to be worth reporting. In fact, as discussed in the previous
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chapter 1, an improvement in precision for our 57Sc mass could settle the question as to

whether the N = 34 subshell terminates at this isotopic chain or in calcium. A reduction

in the uncertainty for the 67Mn mass reported here would allow firmer conclusions to be

drawn regarding the strength of the N = 40 subshell closure for manganese. Improvements

in the precision of the reported masses of iron isotopes, and the ability to report masses

of the even more neutron-rich species observed, could allow quantitative conclusions to be

drawn about the apparent signature of nuclear deformation observed in the present data set.

Furthermore, the availability of calibrants in the Z = 21 − 24 isotopic chains would allow

useful information to be extracted for the observed titanium and vanadium isotopes. For

instance, the mass surface near 62Ti could be investigated directly, where a previous study

of production cross section systematics inferred an enhancement in binding [295]. Each of

these exciting prospects may be realized in the near future, given the active state of the

Penning trap community.

The advent of the Facility for Rare Isotope Beams (FRIB) promises to provide a wealth

of previously unobserved nuclei. As with current radioactive beam facilities, TOF mass mea-

surement can be employed to provide masses for some of the most scarcely produced nuclear

species in order to help answer outstanding questions in nuclear physics. Figure 5.1 shows

the predicted FRIB production rate 2 for nuclei beyond the currently known mass landscape,

along with proposed astrophysical reaction paths. So long as charge state contamination can

be overcome for higher-Z nuclei 3 and more radiation-resistant detectors can be developed

1See the figures in Section 4.1.2 which demonstrate the points made in this paragraph.
2Note that the production rate prediction shown employed the KTUY mass model [296],

the EPAX 2.15 fragmentation cross-section parameterization [297], the LISE++3EER model
for production cross sections from the projectile fission of 238U, and LISE++v9.2.68 for
beam transmission efficiency [127].

3A currently approved experiment at the NSCL contains a proposed method for ridding
of unwanted charge states whose main concepts are briefly discussed in the final appendix
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to cope with high beam intensities, significant gains are expected in astrophysics, regarding

nuclei involved in neutron star crust processes and the astrophysical r-process, as well as

nuclear structure, particularly regarding the evolution of the N = 82 and N = 126 shell clo-

sures. However, a necessary condition is that higher precision mass measurement techniques

must also make gains towards more exotic nuclei 4, as their measurements provide critical

calibration points. Together these complementary methods are likely to expand the known

mass surface several more nucleons beyond the current limit for each element, potentially

doubling the size of the set of known masses. Such a large expansion will undoubtedly be

a significant aid to the development and improvement of theoretical mass models, which, as

can be seen in Figure 5.1, will still be relied upon to bridge the gap between known masses

and the neutron drip-line.

of this dissertation.
4The primary concern for the Penning trap method is its long measurement time. The

present length of a single ion measurement, ∼ 100 ms, means that only roughly one of every
thousand nuclei with ∼10 ms half-lives make it to the Penning trap. The present record
for the shortest lived nuclide measured by Penning trap mass measurement has an 8.8 ms
half-life [94].
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Figure 5.1: Predicted FRIB production rate [63], where color indicates particles per second,
with respect to nuclei with known masses in the 2012 Atomic Mass Evaluation [1] and
reaction network paths for the astrophysical rp-process [64], astrophysical r-process [24],
and neutron star crust processes [60]. For orientation, stable nuclei are shown as black
squares and the two-neutron drip-line calculated from FRDM is indicated by the rightmost
black-line contour. For reference, the masses measured for the first time presented in this
dissertation are indicated by black stars. Nuclei produced at a rate of > 10−3 pps would
have sufficient statistics for a TOF mas measurement determination, while nuclei produced
at a rate of > 1 pps could serve as calibration nuclei, so long as they had a well-known mass
(for instance, from Penning trap measurements).
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Appendix A

Magnet-yoke assembly

The following is the procedure that was used to mount the permanent magnets, used to

guide electrons from the foil to the MCP (See Section 2.4.), to the steel yoke that holds the

magnets in position (See Figure 2.7.):

1. Mounting the frame around the magnet:

• A two-piece aluminum frame was made to act as a holder for the magnet. The

frame had three threaded holes for non-magnetic ‘lowering bolts’ and two smooth

holes for non-magnetic ‘guide rods’, as seen in Figure A.1.

Figure A.1: Cartoon of the frame which was clamped around the magnets used in the rigidity
measurement set-up in order to facilitate placement of the magnets on the steel yoke.
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• The following steps were taken for both magnets.

(a) The two pieces of the frame were placed on either side of the magnet, centered

longitudinally.

(b) The two pieces of the frame were bolted together to tightly clamp the magnet

between the two frame pieces.

(c) ‘Lowering bolts’ were inserted fully into lowering holes with bolt-heads on the

side of the magnet which was opposite that of the side that would ultimately be

placed flush to the yoke. Care had to be taken to make sure that the two

magnets were oriented correctly with respect to each other so that they

produced a nearly uniform magnetic field in the electron-drift region.

• A possible improvement would have been to add a guide-rod hole to the frame

piece which lacked one. This likely would have helped in the frame lowering

procedure since three points make a plane.

• The lowering bolts initially had feet on the side opposite to the bolt-head, however

these were removed since they added the complication that the lower-bolt could

turn within the foot, ultimately working its way out of the foot.

2. Mount magnet with frame to base:

• The magnet-yoke primarily consisted of three iron plates: a cross-piece which was

used to connect the two other plates and two plates with shallow indents that

had roughly the area of the magnet and were used as the magnets’ base plates,

as seen in Figure 2.7.
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• The challenge was to gently lower the magnet onto the base plate. As seen in

Figure A.2, spacers were employed to assist in safely lowering the magnet to the

base plate.

Figure A.2: Cartoon of the magnet being lowered onto the yoke piece that served as the
magnet base plate. Miscellaneous parts were used as spacers to prevent the magnet from
rapidly attaching to the base plate. Guide rods were used to assist in placing the magnet in
the proper location. Bolts located in the frame were used to slowly lower the magnet onto
the base plate in a well-controlled manner.

• The following steps were taken for both magnets.

(a) Guide rods were threaded into the base plate.

(b) Spacers were placed on the base plate at the location where the magnet would

ultimately be placed.

(c) The frame was lowered so that the guide rods went through the guide rod holes in

the frame and the magnet was rested on the spacers. Note: There were several

spacers so the lowering could take place incrementally, with a small gap
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between the magnet’s starting location and it’s closest possible distance

to the base-plate. As seen in Figure A.2 there were also spacers employed below

the lowering bolts. This was because we did not have bolts that were long enough

to touch the base plate while the magnetic attraction to the base plate was weak.

(d) With the magnet at rest on the spacers at a sufficient distance from the base

plate, the lowering bolts were lowered so that their feet rested on the base plate.

(e) The top spacer was then removed and the lowering bolts were turned (so that they

started to be removed from the frame) until the magnet was nearly touching the

next spacer. The bolts were loosened in an order that avoided tilting the frame,

so that it did not bind on the guide holes. This procedure was repeated until all

spacers were removed.

(f) Finally the magnet was lowered onto the base plate by loosening the lowering

bolts all the way. Note that final alignment had to take place just prior

to lowering the magnet fully onto the base plate.

• Note of caution: The magnets are fragile! (e.g. We could not hammer them

into place for final adjustments [without breaking a piece off].)

3. Connecting the base plates by connecting plate:

• The full magnet-yoke consisted of the two magnets mounted to their base plates,

an iron connecting plate to which the base plates were mounted, two aluminum

L-plates which acted as the feet for the yoke, and a non-magnetic platform which

was the base of the entire yoke.

• The yoke assembly employed a vice, where the usual jaws were replaced by alu-
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minum plates, to slowly bring together the magnets on their base plates so they

could be connected by an iron connecting plate an non-magnetic platform, as seen

in Figure A.3.

Figure A.3: Cartoon of the magnet-yoke assembly process. The two magnets mounted on
base plates were connected to the jaws of a vice via aluminum plates. The vice was slowly
closed to align the connecting plate with the base plate attached to the fixed vice jaw (“1”
in the figure). Finally the non-magnetic platform was lowered onto the base plates and the
aluminum feet, which were fastened to the platform, were fastened to the magnet base-plates
(“2” in the figure).

(a) The flat aluminum plate was attached to the vice’s movable jaw.

(b) The aluminum ‘L-plate’ was mounted to one of the magnet’s base plate and the

L-plate was fastened to the outside of the vice’s fixed jaw, where a wooden spacer

separated the magnet from the vice body, as seen in Figure A.3.
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(c) With the vice fully opened and wood spacers in place, the connecting plate was

mounted to the flat aluminum plate on the vice’s movable jaw. Note: The

second base plate and magnet were not mounted to the connecting

plate at this time.

(d) The connecting plate was slowly put into place below the first magnet base plate

by closing the vice jaws. Once in position, the connecting plate was fastened to

the first base plate.

(e) The L-plate was removed from the first magnet-base plate and the connecting

plate, now connected to the first magnet-base plate, was lifted away from the vice

set-up.

(f) The second magnet base plate was mounted to the L-plate, where a wood spacer

separated the magnet from the vice body.

(g) The connecting plate, attached to the first magnet-base plate, was fastened to the

aluminum flat plate on the movable vice jaw, with the vice fully opened and with

wood spacers in place.

(h) The vice jaw was slowly closed to move the connecting plate in place underneath

the second magnet-base plate (“1” in Figure A.3).

(i) The connecting plate was fastened to the second magnet-base plate.

(j) The platform, with aluminum feet attached, was lowered into place and the feet

were fastened to the magnet-base plates to complete the yoke assembly. The

completed yoke is pictured in Figure 2.7.

(k) Finally, the magnetic field in between the magnets was checked to assure the

magnets were positioned in an aligned configuration, to assure a nearly uniform
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field in the region between the two magnets.
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Appendix B

Local TOF–YMCP corrections

Note: These figures are available online (https: // people. nscl. msu. edu/ ~ meisel/

files/ LocalLinSlopeCorrAll. pdf ) (or by request) separately since there are so many.

Each figure takes one pdf page, so inclusion of all nuclei makes for a ∼200 page appendix

section! However, I would like them to be available since they may be of use for a future

similar data analysis.

The figures show the step-by-step process followed for the local rigidity correction for

each isotope of the elements 11 ≤ Z ≤ 29 observed in this experiment sorted alphabetically

by symbol: aluminum (Al), argon (Ar), calcium (Ca), chlorine (Cl), cobalt (Co), chromium

(Cr), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), sodium

(Na), nickel (Ni), phosphorous (P), sulfur (S), scandium (Sc), silicon (Si), titanium (Ti),

and vanadium (V). These figures correspond to Figure 3.30 within Section 3.6, where the

sub-plots of the figure and the analysis procedure which generates these sub-plots is described

in more detail.

The five rows show the successive steps taken in the local rigidity correction procedure

to remove contamination from neighboring nuclei in the PID and determine the slope of

the TOF vs YMCP of a single nucleus, here 68Fe. The upper left panel shows a histogram

of TOF vs YMCP for events identified as 68Fe, where the black points are the resultant

graph obtained by applying ROOT’s TProfile class to the histogram. The black line is a
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linear fit to the graph. The upper middle panel shows the resultant rigidity-corrected TOF

vs YMCP histogram after removing the linear trend found in the upper left panel, pivoting

about YMCP=0. The upper-right panel shows the projections onto the TOF-dimension of

the uncorrected (red histogram) TOF vs YMCP relationship, which was not easily visible on

the same scale for 68Fe, and rigidity corrected (black histogram) TOF vs YMCP relationship,

where the blue line is a Gaussian fit to the rigidity-corrected histogram. The second row

contains the same information as the first, but after applying a cut to only include data

within ±4σ of the mean of the rigidity corrected TOF distribution determined in the first

row. The following rows contain the same information after applying cuts to only include

data within 3, 2.5, and 2σ, respectively, of the mean rigidity-corrected TOF, where the mean

and σ were determined by the Gaussian fit in the previous row.

To save space, these figures are now located here: https://people.nscl.msu.edu/

~meisel/files/LocalLinSlopeCorrAll.pdf, or they can be obtained by request from Zach

Meisel.
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Appendix C

Global TOF–YMCP corrections

Note: These figures are available online (https: // people. nscl. msu. edu/ ~ meisel/

files/ FinalTOFprojectionByElementRigidityCorrection. pdf and https: // people.

nscl. msu. edu/ ~ meisel/ files/ FinalTOFprojectionGlobalRigidityCorrection. pdf

) (or by request) separately since there are so many. Each figure takes one pdf page, and

there are two figures per nucleus, so inclusion of all nuclei makes for a ∼200 page appendix

section! However, I would like them to be available since they may be of use for a future

similar data analysis.

These figures contain the final TOF distribution of nuclei with 18 ≤ Z ≤ 26 alphabetically

by element symbol (argon (Ar), calcium (Ca), chromium (Cr), iron (Fe), potassium (K), man-

ganese (Mn), nickel (Ni), scandium (Sc), titanium (Ti), and vanadium (V).) after the globally

determined magnetic rigidity correction (https://people.nscl.msu.edu/~meisel/files/

FinalTOFprojectionGlobalRigidityCorrection.pdf) and after the magnetic rigidity cor-

rection determined by fitting to local rigidity correction slopes along an isotopic chain. The

left panel shows the mean and standard deviation of the TOF distribution and their uncer-

tainties using a 4, 3, and 2 σ range from the mean TOF, the central panel shows the TOF vs

YMCP distribution before (black histogram) and after (colored histogram) the rigidity cor-

rection, and the right panel shows the rigidity corrected TOF distribution and the Gaussian

fit using the 2σ range. See Section 3.7 for more details.
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To save space, these figures are now located here: https://people.nscl.msu.edu/

~meisel/files/FinalTOFprojectionGlobalRigidityCorrection.pdf and here https://

people.nscl.msu.edu/~meisel/files/FinalTOFprojectionGlobalRigidityCorrection.

pdf , or they can be obtained by request from Zach Meisel.
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Appendix D

Potential TOF mass measurement im-
provements

Though the experiment described in this dissertation was planned with great care, the gift of

hindsight makes it possible to suggest alternative choices which could have been made for the

experimental set-up (described in Chapter 2) that could have possibly yielded improvements.

The emphasis here is on “possibly”, as most of the following statements, though they are

given justifications, have not been verified by an experimental test and are more speculation

than fact. As such, each of the suggestions should be given careful consideration before

they are implemented in a future time-of-flight mass measurement to be sure they do in fact

have the potential to improve the measurement results. The improvements generally fall

into the categories of improving the timing measurement technique, improving the rigidity

measurement technique, and employing an alternative solution to cope with high beam rates

as opposed to the inclusion of the A1900 wedge degrader.

The timing measurement as it was performed is described in Section 2.3. It was noted in

that section that one concern for the timing measurement was the degradation of the BC-418

scintillators due to prolonged beam bombardment. This concern could be addressed in future

measurements by either taking precautions to begin the measurement with pristine BC-418

scintillators, performing a detailed study of the degradation of BC-418 scintillators under

beam bombardment, or replacing the scintillator-photomultiplier tube timing detection set-
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up with a more radiation-damage resistant one. The first solution would entail obtaining new

scintillators from the manufacturer [30], in order to ensure maximum light output and thereby

reduce the contribution of signal noise to the amplified timing signal, and then storing the

scintillators in an oxygen-free (e.g. in dry-nitrogen or under vacuum) dark environment in

order to prevent fluorescence degradation, which would reduce light output and increase the

relative contribution of signal noise to the amplified timing signal. The second solution would

consist of sacrificing several new scintillators in a careful study of light-output degradation of

BC-418 under bombardment of high-energy heavy-ions 5, in order to determine the maximum

sustainable beam rate so that maximum statistics could be achieved. The third solution

would be to consider employing thin diamond detectors as timing detectors instead, which

generally have competitive timing resolution and superior radiation hardness. However, a

single-crystal detector would have to be used since the timing detector must be as uniform

in thickness as possible, so as to not introduce systematic effects in the time-of-flight due

to variable energy loss, and it would have to be large enough in area to accommodate the

beam-spot. Such diamond detectors are potentially an expensive proposition, assuming they

are available at all.

The magnetic rigidity measurement as it was performed is described in Section 2.4. Per-

haps the most certain improvement to the rigidity measurement would be a factor of two

increase in the field strength of the yoke-magnets which, as described in Section 3.5.2, would

have improved the microchannel plate position resolution by ∼ ×2 and thereby improved

the ultimate timing resolution by ∼ 25% 6 and therefore reduced the Monte Carlo mass

5Section 2.3.3 discusses similar studies, however none were performed at the high-energy,
relatively high-Z conditions experienced in the described time-of-flight mass measurement.

6This calculation uses a nominal time-spread due to position-spread of 36 ps, obtained
from the time-of-flight magnetic-rigidity slope (See Section 3.6.), and a total final time-spread
of 80 ps (See Section 3.8.).
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uncertainty (See Section 3.9.4.) as well as the statistical TOF uncertainty. Another im-

provement would be the inclusion of diagnostic features of the rigidity measurement set-up

that would help identify the issue of beam scattering on the collimator that went undetected

in this experiment, as described in Section 3.5.3, and ultimately cost valuable statistics. This

issue could be mitigated by painting the collimator with a fluorescent coating, such that it

would shine during beam-tuning should the beam steer astray and begin scattering on the

collimator slit inner-wall. Alternatively, an active collimator, such as a thick scintillator

with a metal backing on the downstream side, could be employed so that scattering on the

collimator is easily identified. Finally, a systematic study could be performed to find the

minimum foil thickness that would still conduct electricity, so as to hold a negative bias and

repel electrons which are freed by passing beam particles, but would induce the smallest

achievable perturbation to the ion time-of-flight via energy loss.

The final and likely most substantial improvement would be to eliminate the wedge

degrader from the A1900, which was used to remove low-Z contaminants, as described in

Section 2.2.2. The low-Z contaminant removal was necessary in order to avoid damaging

the cathode readout drift counters and, as a secondary consideration, avoid signal pile-up

in the ionization chamber that would have caused confusion in the particle identification

(See Section 2.5.). However, as was mentioned in Sections 3.7 and 3.9.3, inclusion of the

wedge degrader complicated the relationships between time-of-flight, magnetic rigidity, and

nuclear mass. Rather than employing a wedge degrader, a beam attenuator could have

been used, though this would have reduced the rate for all beam species and not just the

rate of the undesired low-Z nuclei. However, perhaps the aformentioned improvement in

the statistical uncertainty expected from an increased yoke-magnet field would compensate
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for the loss in statistics 7. Alternatively, the reason for the extant rate limitation could

be removed; i.e. the gas-detectors in the S800 focal plane could be removed or be left

unused (without fill-gas or bias). This is not unrealistic, given that the cathode readout

drift counters ultimately went unused in the data analysis 8, and alternative detectors could

be employed for the energy loss that was provided by the ionization chamber. For instance,

a silicon detector could sustain a somewhat higher rate and avoid pile-up (though these

detectors are not without their rate limitations). The silicon detector would have the added

advantage of providing charge state information, if used within a stack of silicon detectors,

via ∆E–E charge state discrimination [298] 9. Though, an additional complication would be

identifying nuclei that underwent a charge change betwen the fast-timing scintillators since,

as described in Section 3.4.3, isotopes of elements with Z ≥ 39 could change charge at the

foil and fall within the acceptance of the S800 spectrograph (though it is unlikely they would

be focussed on the proper location, i.e. the fast-timing scintillator, at the S800 focal plane

focus). These events could possibly be identified by observing the change in the relative

fraction of an ion’s total TOF that the MCP to S800 scintillator time-span contributed.

Charge state information at the MCP location could possibly be obtained via a more recent

method which was developed to identify beam charge states. For this recent technique the

ion charge is gleaned from the number of secondary electrons ejected from a foil through

which the ion passed [299].

To reiterate, each of the above suggestions have not been vetted in detail to assure that

7Given the fact that the statistical uncertainty made the smallest contribution to the
overall mass uncertainty in all cases (See Section 3.9.4.), sacrificing statistics to mitigate a
source of systematic uncertainty would likely yield a net improvement

8The small beam-spot on the drift chambers’ front faces removed the possibility of per-
forming a position calibration via use of a hole mask with a known hole-pattern.

9Use of this technique is planned for and described in detail in the accepted NSCL ex-
periment proposal e12022 (M. Famiano).
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they would provide an overall improvement to the time-of-flight mass measurement set-up.

However, it is the author’s belief that each of the ideas presented in this appendix are worth

considering prior to performing the next time-of-flight mass measurement at the National

Superconducting Cyclotron Laboratory.
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[174] M. Matoš, Isochronous Mass Measurements of Short-Lived Neutron Rich Nuclides at
the FRS-ESR Facilities, Ph.D. thesis, Universität Giessen (2004).
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