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ABSTRACT

WAVELETS AND THE NUMERICAL SOLUTION OF HEAT TRANSFER

AND NEWTONIAN/NON-NEWTONIAN FLUID FLOW PROBLEMS

By

Ahmed S. Sowayan

Wavelet-based methods have demonstrated great potential for solving partial dif-

ferential equations of various types. In this work, the capabilities of wavelet-based

methods are explored by solving various heat transfer and fluid flow problems. In-

herent to these techniques are difficulties encountered in implementing the boundary

conditions. Two methods are therefore studied to implement Dirichlet boundary con-

ditions. These methods are the Fictitious Boundary Approach and the Fictitious

Domain/Penalty Formulation.

These methods are evaluated by solving a number of one-and two—dimensional

problems. A detailed description of the procedure used is provided for each method.

It is found that both methods provide an efficient and good approximation to the

solution of differential equations. The Fictitious Domain/Penalty method is, however,

found to be superior because the resulting system of equations is block circulant and

can be inverted easily. The Fictitious Domain/Penalty method also exhibits less errors



in most of the considered examples. In the Fictitious Domain/Penalty Formulation,

the resulting large system of equation is solved iteratively via the Conjugate Gradient

Method and the Preconditioned Conjugate Gradient Method. The problems modified

with the Fictitious Boundary Approach are solved using simple Gaussian elimination.

The Fictitious Domain/Penalty formulation along with the Preconditioned Con-

jugate Gradient Method are then used to solve heat conduction problems, as well as

Newtonian and non-Newtonian fluid flow problems. The fluid flow problems in the

present study are formulated in such a manner that the solution of the continuity

and momentum equations are turned to solutions of a series of Poisson equations.

This is achieved by using methods known as the Conjugate Gradient and Steepest

Descent Methods and a segregation procedure of the dependent variables. In addi-

tion, standard methods can be used to solve the nonlinear problems associated with

non-Newtonian fluid. The Picard iterative method was used here. This formulation

provide accurate results rapidly using personal computers, regardless of the geome-

try of the problem. The fluid flow problems studied consist of the lid-driven cavity

box and rotating concentric cylinders. These problems are solved for both Newto—

nian and non-Newtonian fluids. It was therefore shown that wavelets can be used to

solve nonlinear non-Newtonian fluid flow problems using Galerkin/Fictitious Domain

formulation combined with more established techniques.



I dedicate this work to my parents, my wife, and my children.

iv



ACKNOWLEDGMENTS

It would not have been possible to complete this work without the help of many

people. I am so grateful to my advisor Dr. André Bénard for introducing me to

the exciting world of wavelets and PDEs. Also, I am thankful for his guidance,

support, and understanding throughout my research. His stimulating comments and

arguments have been a constant source of inspiration. I would like to express my

appreciation and thanks to my committee members: Drs. Alejandro Diaz, Michael

Frazier, Craig Somerton, and John McGrath.

I also truly thank the “General Organization for Technical Education and Voca-

tional Training (GOTEFT)” in The Kingdom of Saudi Arabia for supporting me and

sending me to this exciting country to pursue my higher education. I also would like

to thank the “Saudi Arabian Cultural Mission to the USA.” in Washington DC. for

their endless help in communicating with GOTEFT.

The Saudi Student House (SSH) in Lansing, Michigan has given me a wonderful

time to be able to deal with the frustration encountered in the Ph.D. research. I

am also grateful to the stafl of the Islamic Center of the Grater Lansing Area for

providing a warm and a comfortable atmosphere for the worship services, which kept



me on track with my research.

I also would like to thank my familial members who are too many to list, but I

shall attempt anyway. First and foremost to thank are my parents, Salih (dad) and

Hussah (mom). My brothers, Mohammad, Abdallah, Abdulaziz, Suliaman, and Ali

are also to be thanked. My sweet sisters, Norah and Muznah, are also thanked for

their true trust in me to finish this work. I am also truly thankful for my beloved wife

Galya Sulim, who tirelessly helped me, understood me, and encouraged me during

the course of the last ten years. I am deeply grateful for you Galya. I also thank my

sweet daughters Sarah and LeeAnn whose wonderful smiles and noise kept me going

toward completion of this work. Last but not least, all thanks be to Allah for his

guidance.

vi



TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xi

1 Introduction 1

1.1 Problem Statement and Objectives ..................... 1

1.2 Motivations for Using Wavelet Functions .................. 3

1.3 Wavelets and the Solution of Partial Differential Equations ........ 5

1.4 Dissertation Outline ............................. 7

2 Review of Wavelet Functions and the Solution of Differential Equa-

tions 9

2.1 Introduction .................................. 9

2.2 Daubechies Wavelets ............................. 10

2.3 Application of Wavelet Functions ...................... 11

2.4 Properties of Wavelets ............................ 12

2.5 Examples of Orthogonal Wavelet Functions ................ 14

2.6 Wavelet-Based Methods for Solving Differential Equations ........ 17

2.7 The Wavelet-Galerkin Method .................., ...... 19

2.7.1 Connection Coefficients .......................... 21

3 Solving Differential Equations Using the Wavelet Galerkin Method 24

3.1 Overview of the Wavelet-Galerkin Method ................. 24

3.2 Brief Review of the Fictitious Boundary Method in one-dimension . . . . 25

3.2.1 Example I: One-dimensional Poisson equation .............. 27

3.2.2 Simple Harmonic Oscillator ........................ 31

3.3 Application Of the Fictitious Boundary Method in Two Dimensions . . . 35

3.3.1 Two Dimensional Steady State Heat Conduction Problem ....... 40

3.4 The Penalty Formulation ........................... 46

3.5 Fictitious Domain/Penalty Formulation ................... 47

3.6 Solution of problems with the Fictitious Domain Penalty method . . . . 51

3.6.1 One-Dimensional Poisson Equation .................... 51

3.6.2 Simple Harmonic Motion Equation .................... 56

3.6.3 Steady State Heat Conduction Equation ................. 57

3.7 Summary ................................... 65

vii



4 Solving Newtonian Fluid Flow Problems Using a Wavelet Galerkin

Method 67

4.1 Introduction .................................. 67

4.2 Governing Equations ............................. 68

4.3 Fictitious Domain Method for Fluid Flow Problems ............ 71

4.4 Penalty Formulation of the Governing Equations ............. 72

4.5 Wavelet-Galerkin Method and Discretization of the Governing Equations 76

4.6 Solution of the Resulting System of Equations ............... 79

4.7 Solution Methods ............................... 80

4.7.1 A Conjugate Gradient Method (CGM) .................. 80

4.7.2 The Steepest Descent Method (SDM) ................... 83

4.8 Examples ................................... 84

4.8.1 Lid-Driven Cavity Problem ........................ 85

4.8.2 Flow between concentric cylinders .................... 87

4.9 Discussion and Summary ........................... 96

5 Solving Non-Newtonian Fluid Flow Problems Using Wavelet

Galerkin Method 97

5.1 Introduction .................................. 97

5.2 Governing Equations ............................. 99

5.2.1 Constitutive equations ........................... 100

5.2.2 Governing equations in scalar form .................... 101

5.3 Fictitious Domain/Penalty Formulation of the Governing Equations . . . 102

5.4 Wavelet-Galerkin Method and Discretization of the Momentum Equations 107

5.5 Solution of the Resulting System of Equations ............... 110

5.5.1 Picard Iteration Method .......................... 111

5.5.2 Calculation of the Viscosity Function 17’" ................. 112

5.6 Examples ................................... 114

5.6.1 Flow Between Rotating Concentric Cylinders .............. 115

5.6.2 Lid-Driven Cavity Problem ........................ 118

5.7 Discussion and Summary ........................... 119

6 Conclusions 122

6.1 Summary and Contributions ......................... 122

6.2 Findings of the Study ............................ 123

6.3 Future Research Topics ............................ 124

APPENDICES 126

A Construction of Generalized Wavelet Systems 127

A.1 Construction of The Filter Coeflicients ................... 128

A2 Construction of the Scaling Function .................... 131

A.3 Wavelet Multiscale Representation of Functions .............. 133

B Incorporation of the boundary measure function Haw“ 139

viii



C Algorithms
142

BIBLIOGRAPHY
144

ix



LIST or TABLES

3.1 Performance of PCG method and CG method ............... 65



1.1

1.2

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

LIST on FIGURES

Schematic representation of the theoretical and computational progress

that lead to solution of viscoelastic flow problems............

Schematic of the reasoning behind the use of wavelet functions to solve

PDE’S....................................

Daubechies D6 scaling (left) and wavelet functions (right). ........

Illustration the numerous areas where wavelets have been applied.....

Meyer scaling and wavelet functions (a,b) and Coiflet scaling and wavelet

functions (c,d). ..............................

D8 scaling and wavelet functions (a,b) and D12 scaling and wavelet func-

tions (c,d)..................................

Solution of the one-dimensional Poisson equation using the Fictitious

Boundary Method at two resolution levels. ...............

Error (u — uexad) in the wavelet solution for difl'erent levels of dilation

using the Fictitious Boundary Method. .................

Solution of the differential equation describing a simple harmonic oscillator

using the Fictitious Boundary Method. .................

Error (:1: — mama) in the wavelet solution for different levels of dilation

using the Fictitious Boundary Method. .................

In the fictitious boundary method, a domain of arbitrary shape w is en-

larged in all directions to form a new domain {2 of simple geometry

suitable for computations with an insulated boundaries.........

Geometry and boundary conditions used for solving the two-dimensional

heat conduction example. ........................

Nonzero entries of matrix A (Level=5)....................

Temperature contours at different levels of dilation using the Fictitious

Boundary Method. ............................

Error (u—uemct) contours for different levels of dilation using the Fictitious

Boundary Method. ............................

3.10 In the Fictitious Domain method, a domain w of arbitrary geometry is

embedded into an auxiliary, simple domain (2 with periodic boundary

conditions..................................

3.11 Nonzero entries of matrix A (Level=4)....................

3.12 Fictitious domain/penalty solution of the 1D Poisson Equation. .....

3.13 Error (u — new“) in the wavelet solution of the one—dimensional Poisson

equation at different levels of dilation...................

xi

11

12

15

16

32

33

36

37

39

41

42

44

45

48

53

54

55



3.14

3.15

3.16

3.17

3.18

3.19

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

5.1

5.2

5.3

5.4

5.5

Solution to the Simple Harmonic motion equation using the Fictitious

Domain/Penalty Method shown at various levels. ...........

Error (:1: — rem“) in the Wavelet Galerkin Fictitious Domain/Penalty

Method solution of the Simple Harmonic Oscillator equation......

Illustration of the nonzero entries of matrix A (Level=4)..........

Temperature contours at different levels of dilation using the Fictitious

Domain/Penalty Method. ........................

Error (u—uexact) contours for diflerent levels of dilation using the Fictitious

Domain/Penalty Method (5 = 10‘“). ..................

Convergence of the solution using the Conjugate Gradient method.

In the Fictitious Domain method, a domain w of arbitrary geometry is

embedded into an auxiliary, simple domain (2 with periodic boundary

conditions..................................

Domain and boundary conditions for the lid-driven cavity problem. . . .

Comparison of the velocity vectors between SDM and CGM for the driven

cavity problem (level=4)..........................

Position of the zero velocity point in both SDM and CGM (level-=6). . .

Comparison in the residual history of both SDM and CGM for level=5. .

Iterations required for the PCG solver along the SDM iteration for the u

component of the velocity. ........................

Iterations required for the PCG solver along the SDM iteration for the 1)

component of the velocity. ........................

Streamlines obtained by the SDM for the driven cavity problem (level=6,7).

Residual history of the SDM at various levels for the lid-driven box. . . .

Decomposition of the tangential velocity into Cartesian coordinate system.

Velocity vectors obtained by the SDM for the flow between two concentric

cylinder problem (level=5,6)........................

Streamlines obtained by the SDM for the flow between two concentric

cylinder problem (level=5,6)........................

Streamlines obtained by the SDM for the flow between two concentric

cylinder problem (level=7,8)........................

Comparison of the velocity magnitudes of the wavelet and exact solutions

at the crossection y = 0, (0 = 0, 7r in polar sense). ...........

Comparison of the velocity magnitudes of the wavelet and exact solutions

at the crossection y = O, (0 = 0, 7r in polar sense). ...........

Velocity vectors for the flow between two concentric cylinder problem (n =

0.8). ....................................

Comparison between the wavelet and exact solutions at the crossection

y = 0, (0 = 0, 7r in polar sense)(n = 0.8). ................

Velocity vectors for the lid-driven cavity problem (level=5). .......

Streamlines for the lid-driven cavity problem (level=6), left Newtonian

fluid, and right non-Newtonian fluid. ..................

Residual history of the Picard iteration method...............

xii

57

58

60

62

63

71

86

86

87

88

89

90

91

91

92

9'3

93

94

94

95

116



A.1 Haar Scaling and Wavelet Functions .................... 136

A2 Multilevel representation of the function f (1:) = sin(27r:z:) ......... 137

xiii



Chapter 1

Introduction

1.1 Problem Statement and Objectives

The objectiveof this study is to develop and adapt a methodology based on wavelets

to solve non-Newtonian fluid flow problems. Wavelet functions are considered be-

cause of their potential ability to capture solutions with sharp gradients such as those

encountered in non-Newtonian viscoelastic fluid flows. It is also demonstrated that

wavelet-based methods have the capabilities of solving large problems, such as en-

countered in non-Newtonian flow problems, with modest resources.

The amount of work required to compute a solution for the most elementary vis-

coelastic flow is considerable. This is due to the large number of dependent variables,

coupled governing equations, and the presence of steep stress gradients. For example,

a two-dimensional problem require six variables: two velocity components, pressure,

and three stress components, and in some formulations three additional rate of strain

components.
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Figure 1.1: Schematic representation of the theoretical and computational progress

that lead to solution of viscoelastic flow problems.

A first step toward solving viscoelastic fluid flow problems, therefore, consists in

developing a solution procedure for generalized non-Newtonian fluid flow problems

within the context of wavelets and multiresolution analysis. This will further one’s

understanding of the capabilities of wavelet-based methods and multilevel techniques.

The steps required to achieve this goal are shown in Figure (1.1), where the various

building blocks required are put in a pyramided form, with the most important ones

at the bottom. The following overall steps are required to solve the problems of

interest in this work:

0 To study, understand, and develop wavelet-based methods for solving partial

diflerential equations in the context of fixed scale analysis

0 To study various methods for the imposition of boundary conditions (espe-



cially the Dirichlet boundary conditions) in the context of the wavelet Galerkin

method

0 To apply a wavelet-based method to common engineering problems such as

heat conduction problems, Newtonian, and non-Newtonian fluid flow problems

(nonlinear)

The very recent discovery of wavelet functions, and their use for solving nonlinear

engineering problems makes this study very novel. It should also be noted that the

techniques presented in this dissertation have the following advantages:

There is no need to generate a complex computational grid in the case of irreg-

ular domain

The numerical implementation of the methodology is relatively simple, and

independent of the geometry of the problem

These techniques can be applied to any number of dimensions

0 Their extension to nonlinear problems is straightforward, as shown below

1.2 Motivations for Using Wavelet Functions

Problems with sharp gradients are typically difficult to analyze, and a fine grid is

required to capture the gradient. The discretization of these problems leads to a

very large number of degrees of freedom. Classical methods such as finite element

or finite difference method sufler from large memory requirements, especially when



three-dimensional problems are considered. In view of this large memory requirement,

new techniques are needed for tackling such large problems. Wavelet-based methods

can provide an alternative since they were recently demonstrated to provide low

in-core memory, bounded condition number of the resulting system of equations,

efficient preconditioning, and to provide an accurate solution. For example, ordinary

differential equations problems, when solved with a wavelet—Galerkin technique, give

rise to a circulant matrix [1, 2, 22], e.g.

a1 (12 03 a4 a5

a5 0.1 (12 a3 a4

0 = (14 a5 a1 02 a3 (1'1)

(13 a4 a5 (11 (12

02 a3 a4 a5 01

' 'NxN
  

which requires only N entries for storage rather than NxN and which can be inverted

easily and rapidly with techniques such as a Fast Fourier Transform or a Fast Wavelet

Transform. Similar benefits appear when wavelets are used for solution partial dif-

ferential equations.

The reasoning behind the proposed approach is depicted in the flow chart shown

in Figure (1.2). This flow chart can be interpreted as follows: the current formulation

significantly reduces the computational process required and allows to solve relatively

large problems using desktop computer capabilities. Solving large problems requires,

however, the use of an iterative solver, e.g. Conjugate Gradient methods. Also, using
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Figure 1.2: Schematic of the reasoning behind the use of wavelet functions to solve

PDE’S.

periodized wavelet functions results in the efficient and rapid solution of the resulting

system of equations. The efficiency and rapidity found in solving this system of

equations come from the well-behaved stiffness matrix, i.e. it has a bounded condition

number, and it also allows good preconditioning of the resulting system of equations.

1.3 Wavelets and the Solution of Partial Differen-

tial Equations

Practical uses of wavelets were initially developed in the field of signal and image

processing. It was soon realized also that ordinary diflerential equations could be

solved using wavelets. The application of wavelet-based methods to the numerical



solution of partial differential equations (PDE’s) has now been studied both from the

theoretical and computational point views in a number of publications.

The literature on wavelet-based methods applied on the solution of PDE’s can be

divided into four major trends [16]:

1. Adaptive techniques in which wavelets are used to detect where the grid has

to be refined or coarsened to optimally represent the solutions. Two of these

methods are the

o Wavelet Element Method (WEM) [39, 40]

o Wavelet Finite Difference Optimized Method (WFDOM) [23]

2. Solutions to PDEs are also achieved via the construction of some basis function

by shift-invariant refinable spaces, which is often referred to as multiresolution

analysis [8, 25].

3. Wavelet collocation methods which are based on the use of the autocorrelation

function of some orthogonal compactly supported wavelet functions. In this

trend the compression properties of wavelet are used [5].

4. Wavelet-Galerkin methods, in which scaling function bases may be used as

alternative bases in Galerkin methods. In these methods different versions of

the fictitious boundary/domain techniques are presented [2, 15, 29, 43].

This last category has exhibited potential for solving large problems very effi-

ciently. The work presented in this dissertation is based on the fourth trend, which is



the wavelet-Galerkin Method. It is worthwhile mentioning that the implementation

of the boundary conditions of solving PDE’S in this trend can be subdivided into:

0 Appending boundary conditions via the so-called Capacitance Matrix Method

[1,2,31,42]

o Appending boundary conditions using Fictitious Domain/Lagrange Multipliers

[15,16,25]

0 Implementing boundary conditions via Fictitious Domain/penalty method [22,

20,37,43]

A wavelet Galerkin formulation for solving non-Newtonian fluid flow problems has

not been presented to date in the literature. However, wavelets have been used to

solve various partial differential equations. It is therefore worthwhile to review in the

next chapter wavelets and some of the related papers to this study as they provide

the background for this work.

1.4 Dissertation Outline

This dissertation is divided into six chapters and two appendices. In chapter two,

the wavelet functions in terms of their construction, properties, and use are presented

briefly along with their use to solve differential equations. In chapters three and

four, various techniques and implementations of the Dirichlet boundary conditions in

the context of wavelet-Galerkin method are presented. These techniques are used to



solve engineering problems such as heat conduction problems, Newtonian and non-

Newtonian fluid flow problems in chapters five and six. Conclusions of the study are

provided in chapter seven.



Chapter 2

Review of Wavelet Functions and

the Solution of Differential

Equations

2. 1 Introduction

Wavelet functions have generated significant interest from both theoretical and ap-

plied research over the last few years. The name wavelet comes from the requirement

that they should integrate to zero, waving above and below the x-axis. A number of

ideas in the field of wavelet analysis come from work done in subband coding, group

theory, and coherent states in physics [44]. The unifying concepts for understanding

wavelets were provided recently by Meyer, Mallat, Daubechies, Battle, and many

others. Since then, the number of applications where wavelets have been used has

exploded.



Many different types of wavelet functions have been presented over the past few

years. In this research, the Daubechies family of wavelets will be considered due to

their useful properties. These properties are presented in the next section.

2.2 Daubechies Wavelets

Daubechies wavelets are compactly supported functions. This means that they have

non zero values within a finite interval and have a zero value everywhere else. This

makes them quite useful for representing solutions of partial differential equations.

Their orthogonality, compact support, and their capability of providing an.exact

representation of polynomials of a fixed degree allow the proper calculation of regions

of strong or sharp gradient.

The Daubechies scaling function is given by the following relation:

(15(9)) = ak¢(2x — k) (2.1)

where N is an even positive integer number that determine the number of non-zero co-

efficients, k is an integer that translates the scaling function ¢(a:), and the coefficients

ak are called the filter coeflicients. A wavelet function is defined by

N-l

m) = Z(—1)"b~-1_k¢(2x — k) (2.2)

k=0

The relation between the coefficients ak and bk is given by

10
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Figure 2.1: Daubechies D6 scaling (left) and wavelet functions (right).

bk = (—1)k+1aN_1_k (2.3)

Additional information on the construction of these type of wavelets is presented in

Appendix (A). Figure (2.1) shows the scaling function and the associated Daubechies

wavelet of six filter coefficients D6, which has support on [0,5], i.e. the genus for

this wavelet is 6. Within the Daubechies family of wavelets, there are subclasses of

wavelets distinguished by the number of filter coefficients.

2.3 Application of Wavelet Functions

Wavelet functions are used in a variety of areas in science and technology. Figure (2.2)

indicates the areas where wavelets have been used. In the context of this dissertation,

wavelet functions are used to represent the solution of partial differential equations.

Wavelet functions have a very important property, which is the localization in
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Figure 2.2: Illustration the numerous areas where wavelets have been applied.

both frequency (or scale) via dilation and in time (or space) via translation. This

localization is often advantageous in many cases. Like Sines and cosines in Fourier

analysis, wavelets are used as basis functions in representing other functions. The

representation of functions with peaks can be done more efliciently with a localized

function having a compact support. Many classes of functions can then be represented

by wavelets in a more compact way. For example, functions with discontinuities and

functions with sharp spikes usually take substantially fewer wavelet basis functions

than sine-cosine functions to achieve a comparable approximation.

2.4 PrOperties of Wavelets

As seen above, there are many properties of wavelet functions that make them unique.

These properties are presented below and commented upon briefly.
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o Orthogonality

The wavelet transform in orthogonal wavelets is a unitary transformation (i.e.

its adjoint is its inverse). Consequently its condition number is equal to 1. Also

the orthogonality property links the L2 norm of a function to the norm of its

wavelet coeflicients.

0 Compact support

This implies that they have non zero values within a finite interval and zero

everywhere else.

0 Rational coefficients

For computer implementations, it is of use if the filter coefficients ak and bk

are rational or dyadic rational. On a computer, multiplication by a power of 2

corresponds to shifting bits, which is a very fast operation.

0 Symmetry

This prOperty is important in signal processing applications and the solution of

differential equations.

0 Smoothness

The smoothness of wavelets plays an important role in compression applica-

tion. Smooth basis function are desired in numerical analysis applications where

derivatives are involved and often must be continuous up to a given order.

0 Number of vanishing moments of the wavelet functions

13



This property determines the convergence rate of wavelet approximations of

smooth function.

0 Analytical expressions

Explicit analytical expression for wavelet or scaling functions are not always

available.

2.5 Examples of Orthogonal Wavelet Functions

The most simple examples of orthogonal functions are the Haar scaling and wavelet

functions shown in Figure (A2). A more interesting example is the Meyer wavelet

and scaling function shown in Figure (2.3). These functions belong to C°° and have

faster than polynomial decay. These wavelets are not compactly supported, but their

effective support is [-8,8], i.e. their Fourier transform is compactly supported. Their

effective support means that they do not have a zero value outside the interval [-8,8]

but have a very small value. The scaling function and wavelet are symmetric around

0 and -1/2 respectively, and the wavelet has an infinite number of vanishing moments.

Coiflets wavelet shown in Figure (2.3) are compactly supported with order N

(N = 1, 2, .., 5). They are nearly symmetric with compact support of (6N — 1). The

most frequently used wavelets are the original Daubechies wavelets. They are a family

of orthogonal wavelets indexed by N E Z, where N is the number of vanishing wavelet

moments. They are supported in an interval of length (2N — 1). A disadvantage of i

this class of wavelets is that they are not symmetric or antisymmetric except when

N = 1. Figures (2.1, 2.4) show different Daubechies wavelet and scaling functions.
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2.6 Wavelet-Based Methods for Solving Differen-

tial Equations

Among the first researchers to use wavelets to solve differential equations were

Amaratunga et al. [1, 2], who solved the one-dimensional Helmholtz equation (

uu(x) + au(T) :2 f (x) ), and the two-dimensional Poisson equation ( outlay) +

uyy(:z:, y) = f (:13, y) ) using the wavelet Galerkin method. Daubechies compactly sup-

ported wavelets were used in these papers, and this allowed refining the solution in

regions of high gradient, e.g. stress concentrations without having to regenerate the

mesh for the entire problem.

The solution to the one-dimensional Helmholtz equation, via the wavelet Galerkin

method with periodic and non-periodic boundary conditions, was compared to a sim-

ple finite difference solution. It was found in reference [2] that the rate of convergence

of the wavelet solutions compared extremely favorably to the finite difference solu-

tions.

Qain et al. [31] presented a numerical method for the solution of partial dif-

ferential equations using the so-called capacitance matrix method. It was found in

reference [31] that the numerical solutions has a convergence related to the genus of

the Daubechies wavelet basis function. The rate of convergence was also found to

be independent of the geometry. The method in reference [31] was tested for two-

problems. First, the unsteady, two-dimensional Navier-Stokes equations which were

written in the stream function vorticity formulation. In this case a rectangular do-

main was chosen. The second problem was the periodic Helmholtz equation (2.4),
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which has the form

(A + a)U = F (2.4)

where a is constant and A is the Laplacian differential operator. In this case an

L-shape domain was used to illustrate the idea of using the method of wavelet capac-

itance matrix method.

Weiss [42] solved numerically the flow of an inviscid, incompressible, two-

dimensional fluid based on compactly supported wavelets (wavelet Galerkin method).

Weiss applied this method to study the long-time evolution of non periodic Navier

Stokes flow in an L-shape region.

Restrepo et al. [34] solved the wave equation by the wavelet Galerkin approach.

A comparison of the wavelet Galerkin method to the standard finite difl'erence and

the Fourier pseudo-spectral methods was made. The comparison was based on the

computational efficiency, which is the reciprocal product of the wall clock time and the

storage requirement. It was found that the wavelet Galerkin method is comparable

to the finite difference method, requiring less storage but more time than the finite

difference. The Fourier-pseudo spectral method is found to be the most efficient

method for solving the wave equation.

Glowinski et a1. [22, 20, 43] presented a new formulation for the solution of Dirich-

let boundary value problems. This formulation is called the fictitious domain/penalty

method. This method eliminates the difficulties associated with generating a com-

plex mesh in the case of an irregular domain. This is based on the fact that one
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can expand the boundary measure under the chosen basis which lead to a fast, ap-

proximate calculation of the boundary integral. Also in the papers by Glowinski et

al.[22, 20], a multigrid preconditioner is presented for the conjugate gradient method,

which provides an efficient solver for the linear system arising from a wavelet-Galerkin

discretization of a Dirichlet boundary value problem. The preconditioner was chosen

to be a wavelet-based multigrid method for solving an elliptic equation, however over

the fictitious domain and with periodic boundary conditions. The Neumann problem

is solved in reference [20] with a slightly diflerent formulation than with the Dirichlet

problem.

A formulation using Lagrange multipliers to enforce the boundary conditions was

presented in [15, 16] to solve large topology optimization problems. This study was

tested by solving problems with Simple geometry. Approximate solutions for the

resulting system of equations in [15] were achieved via a preconditioned conjugate

gradient method. It was shown in [15, 16] that the rate of convergence of the con-

jugate gradient method is independent of the problem size by using an appropriate

preconditioning matrix.

2.7 The Wavelet-Galerkin Method

As discussed above, a number of methodologies are available for solving differential

equations. The wavelet-Galerkin method is briefly discussed here since it will be used

later.
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For a partial differential equation of the form

G(V,VI, V1,“. . .) = 0 (2.5)

An approximate solution is defined as

t

V = Z G. ¢(:z: — k) (2.6)

kz—s

where s and t are integers that are the translates of d>(x — k). The solution in this

case is projected onto the subspace spanned by

<I>(s,t) = {¢(x — k) : k = —s, . . .,t} (2.7)

The coefficients Ck in the expansion equation (2.6) are found by substituting the

expression l7 into the partial differential (2.5) and again projecting the resulting

expression into the subspace @(s, t). The coefficients Ck, are found by evaluating the

following relation:

/°° an: — k)G(V, v,, v“, . . . ) d2: = o (2.8)

In this study, we used a class of compactly supported scaling functions that are

introduced by Daubechies [13]. The field variables are projected into the subspace

of the trial function. When a test function from the same space is used, a system of
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algebraic equations for the coefficients of the field variable results. This is achieved

by evaluating the integral (2.8), and making use of the orthogonality property for the

scaling function. To evaluate expression (2.8), we must evaluate integrals of the form

/¢(:z:) ¢x(z — k1) . . . ¢(:c —- k2) . . .dx (2.9)

and the results of these computations (2.9) are called the connection coefficients.

2.7.1 Connection Coefficients

Using the wavelet Galerkin method to solve the governing equation requires the com-

putation of integrals of the forms

03:2 = / was) «5339) dx (2.10)

033.13.“: = /am 7'29) if: dz (2.11)

where the superscript d,- refers to the number of differentiations with respect to a:

of the scaling function q5(:c). These formulas are called two-term and three-term

connection coefficients. The name of these inner products, connection coefficients,

was coined by Latto et al. [26]. Latto et al.[26] developed an exact computational

method for evaluating these inner products [35]. This method replaces a quadrature

problem by a linear algebra problem, namely solving a simultaneous linear system of
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equations instead of calculating integrals. Following the convention in [26], one refers

to the inner products as connection coefficients as

02,2): ($2.232) =1: 22(2: (2.12)

C°3°.=(¢.,¢.¢>i) =/_: «52(2:)aw)¢.(z)dx (2.13)

C2301: ((1524),,- ¢z) =/: ¢k($ 9W)¢z($) d1: (2.14)

It should be noted that the translates of (9(2) is conventionally defined as

2(1) = (WE " 3)

Using integration by parts along with some change of variables, the following rela-

tionships for the connection coeflicients are found:

0222 =22. (2.15)

and

03:12 ___ (_1)d1 Com,d2+d1 (216)

22



where the superscript d,- refers to the number of differentiations with respect to a: of the

scaling function ¢(:r), m and l are translation integers. The connection coefficients

depends on the choice of the basis function. They can be calculated prior to the

solution and then used as input data. Software and algorithms are available in the

literature for evaluating the connection coefficients [10, 26, 35].
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Chapter 3

Solving Differential Equations

Using the Wavelet Galerkin

Method

3.1 Overview of the Wavelet-Galerkin Method

The use of wavelets as bases in a Galerkin-type method to solve differential equations

requires a computational domain of simple shape e.g. a square in two-dimensions.

The two methods discussed below use the fairly old idea of extending the (typically

complicated) domain into a larger auxiliary domain of simple shape. Both methods

differ in the implementation of the Dirichlet boundary conditions and the methodol-

ogy used for extending the domain.

The first method is called the “Fictitious Boundary Approach” and was intro-

duced in [27, 28], while the second method is named the “Fictitious Domain Penalty
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Formulation” and was developed in [22, 20, 43]. In this chapter both techniques are

briefly presented followed by solved examples.

3.2 Brief Review of the Fictitious Boundary

Method in one-dimension

A differential equation of the form

L(u(a:)) = 0, in w, x 6 [0,8] 3 E Z (3.1)

subject to u(0) = a and u(s) = fl

is considered, where L is a second order linear differential operator. The so-called

“Fictitious Boundary” method consists of extending the domain (1) of the solution

u(x) ([0, 3]) to Q with an interval wider than u), for example [—t, s + t]. The weak

form of the new problem is then

/L(ua($))v(:r)d:c = 0 in Q where v E V (3.2)

where V is H 1 for example. It is subjected to the boundary conditions

32a 02a
62: lx=—t= “51‘:- lx=s+t= 0 SJ 6 Z (3.3)
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where ua(:r) is the approximate solution to (3.1). The left end point where a: = —t,

corresponds to the first point on the first test function, conversely :1: = s+t corresponds

to the last point on the last test function.

A wavelet expansion for u is defined as

21 . .

ua($) = 201222232: — k), k, j e z (3.4)

k=l

where ()6 is the Daubechies scaling function [13] with six filter coeflicients (N = 6),

and the unknown dk’s are the wavelet expansion coefficients. The domain to of the

solution of u(:z:) is [0, s] and is widened to a new domain (2. The test functions 21’s are

chosen to be 22(2) 2 (M232 — l), where l is an integer called the translate of ’U(.’L‘). The

solution to (3.1) in Q has assumed fictitious boundary conditions of the form (3.3).

The boundary conditions given by equations (3.3) should have a minimal impact on

the solution within the domain [0, s] for this methodology to be accurate.

Substituting the values of u and v in (3.2) results in simultaneous algebraic equa-

tions in dk’s. The solution of ii in the original domain to is achieved by imposing the

original boundary conditions in (3.1), i.e. appending them to the resulting system of

equations

meal.-.) = a'=Zd.2%¢(2ij.=o—k) (3.5)
I:

21.22:.) = a = 2 (1.2222122, — k) (3.6)

I:

It should also be noted that in evaluating equation (3.2), certain integrals must
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be evaluated. These integrals are referenced to in the literature as the connection

coefficients C21,”? [26, 35] and defined as

Cm = [(221 (21¢ - k)¢“2(2j2: - l)d2: (3.7)

where d1 and d2 refers to the number of differentiation of the scaling function 45(3)

with respect to x. Equation (3.7) is called the two-term connection coefficient. The

connection coefficients depends on the choice of the basis function and not on the

problem. As disscused in the previous chapter, they can be calculated prior to the

solution and then used as an input data.

3.2.1 Example I: One-dimensional Poisson equation

To illustrate the “Fictitious Boundary Approach” method, the following simple dif-

ferential equation is considered:

u”(a:) = f(:z:) :1: 6 [0,1] (3.8)

subject to u(0) = a and u(1) = 6. The weak form of equation (3.8) in Q is

/_ u’(:c)v'(:c)d:z: = — f(a:)v(x)d2: \7’ v(:z:) E H1 (3.9)

t -—t

where 21(2) is the test function. The boundary conditions in the new domain (2,

which is a: E [—t, 1 + t], are given in equation (3.3).
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The expansion of u and f (x) are chosen to be

21' .

= 2 (1.222213; — k) (3.10)

k=1

2' _

= 2: 2222212: — k) (3.11)

1:21

where

ek=/f()(2jx—k)dx

which results from the orthogonality condition of (M232: — k) [13]. The test functions

v’s are chosen to be 'u(:r) = d)(2jrr - l). Substitution of the wavelet expansions (3.10)

and (3.11) into (3.9) yields

21' Z (1.03,): = — Z 202;," (3.12)

i l

where C?kand C10,? are defined as

Czk=/¢((2jx—i)¢(2’x—k)d$ (3.13)

Clok0=/¢(2jx—l)¢¢(2jx—k)dx (3.14)
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Due to the orthogonality of the scaling function and its translates, equation (3.14)

gives

. . 1 ifl = k

03;? = / N211: — z)¢(2’:v - k)dx = 51k =

0 otherwise

Also a change of variables C3,}: = Cfifi is used to simplify equation (3.12) into

Edict—Ii = 6]; (3.15)

where k can vary from 1 to 21.

The system of equations given in (3.15) for different values of k is equivalent to

the following system:

Anannxl = bnxl (3.16)

where n = 2j. The entries of A, X,and b are

AiJc = 02:1;

bk = 9k

Xi : d1



The matrix A is sparse and symmetric. To obtain the correct solution in the

domain [0,1], the boundary condition equations must be included in (3.16). One

approach is to force the solution to satisfy

ua(:l:|I=0) = a = ng’éaamxzo —— 2')

and

u.(x|.=1) = a = Z d.2%'¢(2"xl.=1 - 2').

The system (3.16) then becomes

Amannxl = bmxl , m = n + 2 (3.17)

and Amxn is now a rectangular matrix, i.e. an overdetermined system of equations.

A possible approach to solve the rectangular system (3.17) is with a least square

method [36]. Another approach is to replace the equations from the system (3.16)

that are related to the boundary points, for example, equation (3.5), by the boundary

conditions equations. The first approach is used below.

In the least square method, the system given by (3.17) is multiplied by the trans-

pose of A. This yields a new system of equations that can be solved using Gaussian

elimination, i.e.

Anannxl : bnxl
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where

Anxn : AnxmAmxn

and

bnxl = Anmemxl

The solution to problem (3.8) is shown in Figure (3.1) at different values of j, the

dilation level factor. The following parameters were used in this example oz 2 0, fl = 1,

and f (:13) = 1. The error in the wavelet solution is shown also for different levels of

dilation in Figure (3.2).

It can be noted from Figure (3.2) that the solution error diminishes as the dilation

level j increases. The solution obtained with a level equal to 6 exhibits a very small

81'TOT.

3.2.2 Simple Harmonic Oscillator

A simple harmonic oscillator can be described by the following differential equation:

if(t)+w,2,:r(t) = 0 tE[0,1] (3.18)

with 33(0) = 0.117(1) = 5
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Figure 3.1: Solution of the one-dimensional Poisson equation using the Fictitious

Boundary Method at two resolution levels.
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where can is the natural frequency of the system motion. Following the procedure

outlined above, one can obtain the discretized form of equation (3.18) in wavelet

space as

Zd-C‘" +de —0 319
. 1 k—i a? 10“ (° )

where k is chosen to vary from 1 to 2i. The system of equations in (3.19) for different

values of k is equivalent to the following system:

Anannxl : 0 (320)

where n is equal to 2i. The entries of A and X are

1,1

A1,): = Ck—i

To obtain the solution in the domain t E [0, 1], the boundary conditions in equation

(3.18) are included in system (3.20) by forcing the discretized solution to satisfy

xa(t|¢=0) = a = Zd,2%¢(2it|.=o — 1) (3.21)
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20(1),:1) = 5 = Z d,~2%q>(21'1|,_._I — 2‘) (3.22)

The system of equation given by(3.20) then becomes

Amannxl : bmxl (323)

where m = n + 2, and A is rectangular. The system can be converted to a square

matrix so that it can be solved. To do this, Lu et a1. [27, 28, 29] suggested that some

of these equations in (3.23) could be eliminated since they are not required in order

to obtain a solution in the domain of interest.

Figure (3.3) shows the solution to this problem (3.18) at different values of j the

dilation level factor. This example is tested for the following parameters: a = 1,

fl = O,and 02,, = 7.57r. The eliminated equations are associated with k = 1 and

k = 21', i.e. the equations at the edge of the extended domain. The error in the

wavelet solution is shown in Figure (3.4).

3.3 Application Of the Fictitious Boundary

Method in Two Dimensions

The formulation of this method in two-dimensional problems is similar to the ap-

proach used for the one-dimensional problems discussed previously. For a differential
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Figure 3.3: Solution of the differential equation describing a simple harmonic oscillator
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equation of the form

L(u(a:,y)) :2 0 inw (3.24)

andu = g in 80)

where L is a linear second order differential operator. The domain 02 is a domain of

arbitrary shape that is enlarged into 0, a new domain of simple shape e.g. a square.

This procedure is illustrated in Figure (3.5). In the following example, 02 is a domain

that fits in a square of dimensions [0, 3] x [0, s] that is enlarged to 9 which is a square

with boundaries defined by [-—t, s + t] x [—t, s + t] where s and t are integers.

The problem given in (3.24) can be written in its weak form and consists in finding

11 E V(Q) such that

[2L(u(a:, y))v(z,y)dxdy = O Vv(:c, y) E V(§2) (3.25)

subject to the boundary conditions

611(2', y)

an Ian: 0 (3.26)

where V is H1 for example, and 21(23, y) is the test function which was chosen to be

WI, 11) = ¢(2j$ - p)¢(2jy — q).
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Figure 3.5: In the fictitious boundary method, a domain of arbitrary shape (.0 is

enlarged in all directions to form a new domain 0 of simple geometry suitable for

computations with an insulated boundaries.
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A wavelet expansion for u(:r, y) can be defined as

2.1

00(2, y) = Z d,,k2j¢(2ix — i)(b(2jy — k) 2:, y e [0, s]2 (3.27)

i,k=l

Substituting the expansion of it given by equation (3.27) and the test functions v’s

into (3.25) yields a discretized equation in wavelet space in terms of the connection

coefficients Cfl’d’. The solution in the original domain 02 is achieved by imposing the

original boundary condition in wavelet expansion, i.e. forcing the solution to satisfy

ua(xl6w1y|6w) = Z di,k2j¢(2jxlaw — Z)¢(2jy|0w _ k) (328)

1']:

3.3.1 Two Dimensional Steady State Heat Conduction Prob-

lem

In this example, the steady state heat conduction equation with constant properties

is solved in the square domain shown in Figure (3.6). The problem is stated as

,

V2u(:c, y) : 0 in 0)

subject to

u(x, 1) = 1

) 1' (3.29)

11(1), 0) = 0

u(0, y) = O

HO. 9) = 0
J
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u(:z:,l)=1 (1’1)

 

”(01y)=0 u(11y)=0

V’u(I. y) = f(Ly)

  ‘

'7
 

u(:r,0) = 0 I

Figure 3.6: Geometry and boundary conditions used for solving the two-dimensional

heat conduction example.

It should be pointed out that u(:r, 1) = 1 is enforced on the top corners shown in Figure

(3.6). The test function is chosen to be v(x, y) = (15(230: — p)¢(2jy — q). Substituting

the expansion of it given by equation (3.27) and 1) into the integral equation (3.25)

yields the following discretized heat equation:

21' 21'

Z dk,,,C;:},, + 2: (4,0,2, = 0 (3.30)

k=1 (:1

This equation can be written in a matrix form as

Anannxl : O (331)
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Figure 3.7: Nonzero entries of matrix A (Level=5).

where n = (2j)2, and A = A1 + A2. The entries of the matrices Aland A2 are

A1 0;}, and A2,, =Cgf, (3-32)
k,p _

To illustrate the structure of the system of equations, the nonzero entries of the matrix

A are shown in Figure (3.7) by adding non-symmetric off-diagonal entries.

The final system of equations that will provide the solution in the domain of

interest is obtained by replacing the equations (3.30) associated with the points (13),, yb)
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which are in 0w by the following equations:

u($bayb) :
9 Where (Eb : E and yb = l

2] 2] (3.33)

and g = 2,. d.,k2i¢(2ixb — z')¢(2jyb — k)

Appending these boundary conditions (3.33) to the original system has, however, the

detrimental effect of destroying the nice properties of the matrix shown in Figure

(3.7).

In this example, 9 has the values shown in Figure (3.6). Figure (3.8) shows the

temperature contours for different levels of dilation. The errors contours are shown

in Figure(3.9). One might notice that the solution is not perfectly symmetric, and

this is simply due to the asymmetric of the scaling function gb(2j:r — i)¢(2jy — k), as

seen in Figure (2.1).
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Figure 3.8: Temperature contours at different levels of dilation using the Fictitious

Boundary Method.
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Figure 3.9: Error (u—uemct) contours for different levels of dilation using the Fictitious

Boundary Method.
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3.4 The Penalty Formulation

The penalty formulation method arose from the theory of constrained minimization.

In this method, a functional I is to be minimized on a space V subject to the constraint

Bu = g, (3.34)

where B differential operator taking V into another space Q. For a Dirichlet problem,

the operator B is equal to 1.

This problem can be viewed as one of finding the minimum of I in some constraint

set K = {'0 EVle = g}. The idea behind penalty methods for constrained mini-

mization problems is to append to the functional being minimized a penalty term,

which gets larger in magnitude the more severely the constraint Bu = g is violated.

In other words, if a function 22 is tested as a candidate for a minimizer of I, the further

7) is away from satisfying the constraint, the greater the penalty must be paid.

A new functional IE is therefore introduced as

1

15(1)) = 1(1)) + E1901), 2) E V (3.35)

where P(v) is a penalty functional. P must satisfy certain conditions in order to be

considered as penalty functional. These conditions are listed in [4]. It was shown in

[4] that us will be a solution to the following variational problem:

1

< 61(u5),v >v +E < 6P(u5),v >v= 0, V7) 6 V (3.36)
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where 6 is the variation.

Implementation of the boundary condition by the penalty formulation has the

advantage of introducing no new variables to the system of equation. On the other

hand, other methods to implement the boundary conditions such as with Lagrange

multipliers require additional unknowns to the system of equations.

3.5 Fictitious Domain/Penalty Formulation

The Fictitious Domain Penalty Method to the boundary value problem (3.37) is used

in light of work done in [22, 20, 43]. This method consists in first embedding the

domain w into a simple geometry, named the domain 9, as shown in Figure (3.10).

The Galerkin method is then used to solve the governing equations in the large domain

9 with periodic boundary conditions. A modified functional is used with a penalty

term added to the weak form of (3.37) to ensure the implementation of the original

boundary conditions. This requires the transformation of some integrals of the form

fwu(:r, y) (13 to f“ u(x,y)dQ.

The problem to solve can be expressed with

L(u(:1:,y)) = 0 in w E R (3.37)

Bulaw = 9

where L is a linear second order differential operator, B is an Operator associated

with the boundary conditions. For a Dirichlet problem, B is equal to 1.
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u(:1:, u) Ian periodic
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Figure 3.10: In the Fictitious Domain method, a domain w of arbitrary geometry is

embedded into an auxiliary, simple domain 0 with periodic boundary conditions.
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The differential equation given by (3.37) and its boundary conditions are repre-

sented in terms of wavelet functions defined in the bigger domain Q. The solution to

original problem in w is achieved by adding a penalty term in w to the weak formula-

tion of (3.37) in Q. The penalty term involves a penalty parameter 5 which is chosen

to be a positive but small number i.e. 8 << 1 in order for the solution to converge to

the desired solution in w.

The form of (3.37) that is minimized in the fictitious domain penalty formulation

is given by

I(u,v) = LL(ua(x)) 11(33) d1: + ‘2}; a (Bun — g)2v(:r)dx (3.38)

Taking the variation of [(u, v) (61(u, v) = 0), yields

/ L(ua(x)) v(:r) d3: + :/ (Bua — g) v(a:)d:r = O for v 6 H1362) (3.39)

9 8w

where H1162) is the space of H1(Hilbert space) functions in O which are periodic in

:r and v is the test function which was chosen to be the Daubechies scaling function

with six filter coefficients. This minimization procedure will be discussed in more

detail in chapter four.

It was shown in [43] that in the limit when 8 ——> 0, ua converges to the original

solution u, the desired solution, which satisfies the boundary conditions in 0w. The

second integral term of equation (3.39) is evaluated in the larger domain by using the
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following formula [43]:

f ds=/ f Haw” d!) (3.40)
6w R2

where Haw” is called the boundary measure function [43] (see Appendix B for an

expression of Haw“).

In one-dimensional problems, the fictitious domain is a line of length 23', where

j is a fixed integer that specifies the level of dilation in the approximation. It will

be referred to each unit in this line by point k. In the two-dimensional case, it was

assumed that the fictitious domain 9 is a square of dimensions 2j x 23'. This is done

without loss of generality because any domain can be mapped with a simple change

of variables.

Equation (3.39) can be written in terms of the boundary measure function “aw“

ofw [22,43] as

l 1f9 L(ua(:r)) m) dx + E Luau. — g) v(:c)||6w|| dz = 0 W e 11,,(9) (3.41)

an and g are expanded in terms of scaling function. The test function 1) is chosen to be

¢(2j:c — k) for one-dimensional examples and is chosen to be ¢(2j:z: — p) (M2321: — q) for

two—dimensional problems. The expressions of ac, g, and v are then substituted into

the weak/fictitious penalty formulation equation (3.41). This will yield a discretized

form of (3.37) in terms of the connection coefficients 0:25;".
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3.6 Solution of problems with the Fictitious Do-

main Penalty method

The same examples as in the previous sections are used for the purpose of comparing

the Fictitious Boundary method and the Fictitious Domain Penalty method.

3.6.1 One-Dimensional Poisson Equation

For the one-dimensional Poisson equation (3.8) the weak penalty fictitious domain

formulation is

, , 1 '

fnu (:1:)v (2:)dx + E f()(uh‘) — g)v(z)||3w||d:r = fnf(x)v(x)dx (3.42)

Taking 22(3) = (25(2ja: — k), g(:r) = Z, g,2%¢(2jx — 2'), and substituting the wavelet

expansions (310,311) for u and f (3:) yield the following discretized Poisson equation:

. 2' 3d,. ifk c 8w . ggk ifk c 8w

21 2 30,12, + = (2.2% + (3.43)

i=1
0 elsewhere 0 elsewhere

where 7 is chosen to be equal to 1. Since the solution is periodic in Q, the connection

coefficients Cfi’?’ have non zero values for Daubechies scaling function with three

vanishing moments when

—4_<_k—z'g4 (3-44)
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OI'

k—4gz‘gk+4 (3-45)

Also, the summation in equation (3.43) can be simplified as

_ k+4 1d,. k c 6w . 19;. k C 6w
21 Z d,C,1’_1,.+ 5 = (2sz + ‘ (3.46)

i=k‘4 O elsewhere 0 elsewhere

or in matrix form

1 1 . .

Am", an1+ EPan an1 = rnx1+ Esnxl, where n = 2’ (3.47)

where r, and s are the forcing vectors, P is diagonal matrix of entries of either

one or zero, and X contains the unknown coefficients d’s. The matrix A has the

structure shown in Figure (3.11). A is a circulant matrix with entries of the connection

coefficients 0:13,. The entries of the vector 3 are simply a, 5, or zeroes.

This problem was solved with the same values of a, B, and f (as) as in example

1 of the first method with penalty factor 8 equal to 10’5. Figure (3.12) shows the

solution of this problem at different level of dilation. The error of the approximate

solution is shown in Figure (3.13) at different levels of approximation.
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Figure 3.11: Nonzero entries of matrix A (Level=4).

53

 



 

—— wavelet solution

  
 

  

  
 

 
 

exact solution

Level=5 Level=6

1 . . r f 1 . - . a

0.8) 0.8 -

0.6 ' 0.6 >

3? 3?

‘5’ ‘5

0.4 - 0.4 .

0.2 - 0.2 ’

O A A A A O A A A

0 0.2 0.4 0.6 0.8 1 O 0.2 0.4 0.6

x

0.8

Figure 3.12: Fictitious domain/penalty solution of the 1D Poisson Equation.
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Figure 3.13: Error (u — uemct) in the wavelet solution of the one-dimensional Poisson

equation at different levels of dilation.
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3.6.2 Simple Harmonic Motion Equation

The Galerkin weak/penalty formulation of equation (3.18) is given by the following

expression:

f(u(:r:1:)u+wnu((z)v))d$+-/(u)v:1:()||6w||d:z:=0 (3.43)

Taking v(:1:)-- (25(2jx — k), (at): Z g,22¢((25(2333 — 2'). Substituting the wavelet

expansions (3.10) into equation (3.48) and taking the advantage of the periodicity

nature of the solution in the fictitious domain (2, allows equation (3.48) to be written

as

k+4 11 w" id).c k C 602 fig;c k C (902

Z al.-Ck;- + ”27"" + = (3-49)

i:k-4 O elsewhere 0 elsewhere

Equation (3.49) can also be written in matrix form as

1 1 j

Anxn anl + Eann anl : Esnxl Tl : 2

where s is the forcing vector associated with the boundary conditions, X contains

the unknown coefficients (1’3, and P is a diagonal matrix of entries of either one or

zero. The matrix A has a structure similar to the one shown in Figure (3.11). It is

a circulant matrix with entries made of the connection coefficients CE). The entries

of the vector 3 are simply a, B, or zeroes. Figure (3.14) shows the solution to this

example with penalty factor 5 equal to 10'7. The error in the solution is presented
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Figure 3.14: Solution to the Simple Harmonic motion equation using the Fictitious

Domain/Penalty Method shown at various levels.

in Figure (3.15).

3.6.3 Steady State Heat Conduction Equation

Equation (3.29) can be written in a weak/penalty form as

Bu 8'0 Bu 61) 1

[(5555: + 07/537 ) dxdy + E f(u(:r,y) — g)||8w|| datdy —- O (3.50)
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Figure 3.15: Error (:1: - mama) in the Wavelet Galerkin Fictitious Domain/Penalty

Method solution of the Simple Harmonic Oscillator equation.
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u and 9 can be written in wavelet space as

21

240:, y) 2 2: 4.4214034 — 04423.4 — k) (3.51)
i,k=l

and

9(1', 11) ’-‘-‘ Z 94,42’¢(ZJ$ - z')¢>(2’y — ’6) (3-52)

i,k=l

Substituting expression (3.51) and (3.52) into equation (3.50) and taking v(:r, y) =

(15(2303 - p)¢(2jy -— q), yield the following discretized heat equation:

q+4 P+4 551d” if (p,q) C (90) 19” if (p, q) C 30)

Z dk,pC;'_lk + Z dq,(C;:_ll + = E

k=q-4 l=P-4 0 elsewhere 0 elsewhere

(3.53)

Equation (3.53) can be written in matrix form as

ARXanx1+§Pananl = is“), where n = 22f (3.54)

01'

AX = b (3.55)

where A = A + P, and b = is. The matrix A is block circulant and has the structure

shown in Figure (3.16).
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Figure 3.16: Illustration of the nonzero entries of matrix A (Level=4).
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Figure 3.17: Temperature contours at different levels of dilation using the Fictitious

Domain/Penalty Method.
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Figure 3.18: Error (11 — new“) contours for different levels of dilation using the Fic-

titious Domain/Penalty Method (5 = 10‘s).
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Figure 3.19: Convergence of the solution using the Conjugate Gradient method.
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The diagonal blocks of A have a structure similar to the one shown in Figure

(3.11). The penalty matrix P is a diagonal matrix of entries zero or 1. The vector

3 has entries of zero or gm which could be found from equation (3.52). For this

example the same boundary conditions values of example (3) of the first method are

used, therefore the entries of the vector 3 is either zero or 5,17.

The system of equation (3.54) was solved iteratively using the standard conjugate

gradient method [36] (see Appendix (C) for algorithm). Iterations were stopped

when the residual, define as Mfg—bl, was found to be 10‘7. Figure (3.17) shows the

temperature contours at different levels of dilation. The error contours are shown

in Figure(3.18). The residual history is shown in Figure (3.19) for different levels of

approximation. It can be noted from Figure (3.19) that the solution converges rapidly

with the first fifty iterations.

The system of equations given by (3.54) is also solved with the preconditioned

conjugate gradient method. Different preconditioners were tried to implement the

preconditioned conjugate gradient scheme. The selection of the preconditioner ma-

trices is based on two aspects. First, they must be positive definite. Second, they

must not require significant effort to invert. Some of the preconditioners tried are:

. M=A+c [1 1 1---1]T><[1 1 1...”

o M = A + diagQ)

o M = diag(A)

where M is the preconditioner matrix, c is a constant chosen in such a way to make

M positive definite, A and A are defined previously. All these three preconditioner
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are positive definite and easy to invert. Of these, the only preconditioner that gives

a reasonable reduction in the calculations is when M = diag(A). Table (3.1) shows

the performance of this preconditioner in preconditioned conjugate gradient (PCG)

method against the standard conjugate gradient (CG) method without a precondi—

tioner (see Appendix (C) for algorithm).

Table 3.1: Performance of PCG method and CG method

 

 

 

  
 

 

 

 

 
 

 

 

 

I Level CG Iterations PCG Iterations

I: 42 27

E 110 [ 62 ]

[ 6 242 l 127 |

f 7 F102 T256 ]

f8 [ 776 | 370 ]
 

 

3.7 Summary

Two methods for solving differential equations with Dirichlet boundary conditions

using a wavelet—Galerkin method are reviewed and discussed, namely the so—called

“Fictitious Boundary ” and “Fictitious Domain/Penalty” methods. Evaluation of

the two methods is performed by solving several one- and two-dimensional examples

using fixed scale expansion of the unknowns. For each problem the error is computed

so that the accuracy of the solution can be evaluated. It is found that the Fictitious

Domain/Penalty method shows better agreement with the exact solutions than the

Fictitious Boundary method as it introduces less computational errors due to the

methodology used to implement the boundary conditions in the extended domain.
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Also, the Fictitious Domain/Penalty method is superior since the resulting system of

equations is block circulant. The Fictitious Domain/Penalty method is amenable to

its use within the framework of multiscale techniques.
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Chapter 4

Solving Newtonian Fluid Flow

Problems Using a Wavelet

Galerkin Method

4.1 Introduction

In this chapter the formulation and discretization of the equations governing the

behavior of Newtonian fluids using a wavelet-Galerkin are presented. The fictitious

domain/penalty method, which was presented in chapter three, is used to formulate

the modified governing equations. Formulation of these problems using this method

allows efficient and accurate solutions since the fictitious domain'penalty method

introduces less computational errors than the fictitious boundary method. Also, this

method allows solution to large problems using modest resources such as a personal

computer. In this chapter, we consider the solution of a creeping flow problems,
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i.e., flow with low Reynolds number which is defined as Re 2 E}, where L and v are

characteristic length and velocity, )1 is the viscosity. The methodology is evaluated by

solving various examples. Those examples are the lid-driven cavity fluid flow problem

and flow between rotating concentric cylinders.

4.2 Governing Equations

The description of the motion of a continuous medium is based on the conservation

of mass, conservation of momentum, and the conservation of energy. The associated

equations of state and constitutive relations are also essential for quantifying the

motion of a continuous media. To reduce the complexity of the problem, certain

assumptions are considered. These assumptions are as follows:

0 Steady state fluid flow

0 Incompressible flow

Isothermal flow

0 Two-dimensional flow

Creeping flow (Re 3 O).

The equations of interest for a flow under the previous assumptions are provided

below [6]. The first equation is given by conservation of mass

V-sz (4.1)



We then have the conservation of momentum

pv-Vv+V-T+Vp=0, (4.2)

where p is fluid density, v is the fluid velocity, 7' is the shear stress tensor, and p is

the pressure. The momentum equation can be written in dimensionless form as

Rev-Vv+V-T+Vp=0 (4.3)

OI‘

V-T+Vp=0 ifRezo (4.4)

where Re is the Reynolds number and is defined as Re = %L, where L and v are

characteristic length and velocity, and p is the dynamic viscosity.

For Newtonian fluid flow the shear stress tensor 7’ is given by

7' = -u’7 (4.5)

where is ’7 is called the rate of shear strain tensor. For two-dimensional problems ’7 is

1: (W) + (Vv)T (4.6)
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or in Cartesian coordinates

. 7n ’ny

1: (4.7)

”7.1/1 Vyy

and

244 04 + 494
‘ 8 8 8

7: I I y (4.8)

Q2 @ .31

By + 61: 28y

where u and v are the :1: and y-components of the velocity vector v.

The substitution of equations (4.5,4.8) into equation (4.4) results in the following

equation of motion in scalar form. The continuity equation is given by

Bu 81)

and the x-momentum and the y-momentum are written as

6211 8211 0p

I“? 5372') - '5; - (4-10)

(922) 621) 8p

14$ 5y?) — 8—3; - (4-11)
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Figure 4.1: In the Fictitious Domain method, a domain 02 of arbitrary geometry is

embedded into an auxiliary, simple domain Q with periodic boundary conditions.

4.3 Fictitious Domain Method for Fluid Flow

We consider a fluid governed by equations (4.9,4.10,4.11) in a closed domain called

(4.12)



This problem is solved in a larger periodic domain (2 subject to periodic boundary

conditions in 89 as shown in Figure (4.1). The original boundary conditions are

applied via a penalty formulation. This method was discussed in chapter three.

The essence of this method is illustrated in Figure (4.1). In the implementation

process, the fictitious domain Q consists of .2" points in both a: and y directions, where

j is the level of dilation. The dots in the bottom diagram of Figure (4.1) represent

the points where the original boundary conditions in 60) are applied using a penalty

formulation.

4.4 Penalty Formulation of the Governing Equa-

tions

The weak form of equations (4.9,4.10,4.11) in the fictitious domain are as follows:

Bu 00

[9(5; + 5;) 1141311) d0 = 0 (4.13)

8211 6221 0

[1045“; + a; -' 55—)w1($,y)d9 = 0 (4.14)

82v 62v 6

[004555 + 6?) — 5;) 101(33, y) (19 = 0 (4.15)
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where w(:r:, y), w1(:r,y), and w2(:r,y) are the test functions and 10,101,102 6 Vp. A

typical choice for VP is H1(Q) and the space 140(9) is defined by

V,,(f2) = {w(:r, y) E H1(Q) : w(:r, y) is periodic on 60} (4.16)

To reduce the order of differentiation on the variables (11, v, p), integration by parts

for equations (4.14,4.15) is needed, that is

 

:0 (due to periodicity) =0_(due to periodicity) ‘

Bu Bu

p—wl [if —fy f pig—Eldxdy+ /p—'w1 3’: d2:

fy 8:1: 6 a ”By

) (4.17)

=0 (due to periodicity)

— 1.132186121122114 (,pr 1:: 44 +f f pig-""61“?! = 0 .

Therefore, the weak form of the x-momentum equation is

Bu 8w] Bu Owl “0101

—— dQ= —dQ .

#1582: 62: +_8y 0y—) 0:1: (418)

Similarly, the weak form of the y-momentum equation is

012 3102 80 ng pawg

—— d9: — dQ ’ 4.

[9((912 8:1: +—8y 8y ) pay ( 19)

In the weak forms equations (4.18,4.19), we have the following linear and bilinear
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forms:

Bu(u,w1) = l(w1)

Bv(v, 1122) = [(102)

where

1(w1)= 9.05:,ng

[(2122): 917981133619

Bu(u,w1) = “[5253ng + g15§agy1 ) d9

and

_ 61)an 61) 8202

Bv(v,w2) ”‘wa 6:1: + By By )dQ

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

This problem can be reformulated as an unconstrained problem by modifying the

bilinear equations (420,421) in a penalty formulation. The quadratic functionals of
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equations (420,421) are given by references [32] and [33]

Of

-2 222 222 _/,,221(“)‘2/,,(ax) +(6y)d§2 apa do

811
2 —=-gffl(g:—t)2 g—S) (19— 0128de

The minimization of the following functionals is now considered:

0(4) = 1(a) + 51; [<4 — 40211841140

1,,(3): Iran-215- [(4 — g)? 114421140

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

where e is small positive number, [[802]] is the boundary measure [43] which is discussed

in Appendix B. The necessary conditions for the minimum of Ip(u) and 1,,(0) are

(4.31)



   

__ Bu 0(611) Bu 8(624) 8(611) 1 __

arr/”(116$ 6:17 “‘03, 33, p 82: +E(u g)6u|[6w||)dQ—0 (4.32)

It should be noted that 611 = 101 and 62) = 102, therefore the weak form of x-momentum

equation, with a penalty formulation, is given by

81181111 624 61111 [a Owl

p/fl(ax——Ba: +6—y—By )d§2+—:/fl(u—g)w1H3wlldQ= 196de (4.33)

Similarly, the weak form of the y-momentum written in penalty formulation is

81) 8__w2 82) (9—102 fay6102

,u/ 0:1: 31: +33, 37, )dQ+ i/nw— g=)w2||0w||df2 p dQ (4.34)

4.5 Wavelet-Galerkin Method and Discretization

of the Governing Equations

The first step in applying the wavelet-Galerkin method is to expand the dependent

variables 11, v, p in terms of scaling functions as follows:

N—l N—l

”(3311):: Z Uik¢(X -k) (4.35)

i=0 k:0

N-l N—l

”(33, y) = Vik¢(X — 0450/ — k) (435)

j=0 k=0
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2 l. 2 .1
.

19(1‘, 31) = EMMX - 0950’ - k) (437)

0H o a
.

Hi

where X = 21:12, Y = 213), N = 21', U,,. = 210,-,“ V,,. = 210,-. , P,,. = 21pm, and j

is the level of discretization. In the Galerkin formulation the test functions w’s are

chosen from the same space as u, v, p, i.e. w = w] = 1122 = (15(X -p)q§(Y — q) where p

and q are integer translates of the scaling functions 05(X) and ¢(Y) respectively. The

boundary conditions in equation (4.12) is also expanded in wavelet space as

90.4): 2:131 123‘ emu—040%)

(4.33)

Gm : ngpq : ff9($ay)¢(x ‘ P)¢(Y "' q)d:1:dy

The coefficients U’s, V’s, P’s are found by substituting equations (435,436,437) into

equations (413,433,434).

The discretized continuity equation is given by

p+4 q+4

Z Uiqufi, + Z Vkafik = (4.39)

i=p—4 kzq—4

where the unknowns are the coefficients Uiqandek.
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The discretization of the x-momentum equation is as follows:

 

 

 

 

 

:C“_. 25kg

#251323:_010../3(x-)(xmax/3(2— (040-044

:6, =03;

+ 4422; .0: U0. ¢(X -i)¢(-X p)dx ¢(Y- k)¢(Y- aldy/ / 3%

+ 221201 k:0 Uikllaw” ¢(X"1)¢ p)d:r (MY —k)¢(Y—-q)dy/ _ / 1,5

— 212:3250104 ”awn/4m -:)¢(X-P)d$/¢(Y-k)¢(Y-'Q)dy

:C‘IOi =6kq

— 21:12:53.)“ —4)4(X— p)dx/¢(Y— —q)dy= o

(4.40)

The delta function 6 will cancel one of the summation in each term of this equation

(4.40). For example, 6kg will eliminate the summation associated with the index k.

Also taking advantage of the compact support of the connection coefficients 0,21,-

and the periodicity of the solution in 9, equation (4.40) can be written in a simpler

form as

p+4 q+4 p+4

8 8
#( Z Uiani + 2 UpkCllk) +____[____l:HUP :2 P14101391 + ”—9qu (441)

i=p—4 kzq--4 i=p——4

Similarly, the y-momentum can be written as

pH 11 (1+4 11k +L—la:”Vp 0+4 10 [lawllG
“(Z 14ch+ Z V.WC :2 1).-,0_,.+———G,, (4.42)

i=P'4 (C:q--4 1::—-q-4

The indices p, q are chosen to vary from 0 to 21 — 1, also the coefficients qu are
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normally found from the boundary conditions of the problem.

4.6 Solution of the Resulting System of Equations

Equations (439,441,442) form a complete set of simultaneous linear equations in

terms of the unknown coefficients U’s, V’s, P’s. This set of equations can be written

in matrix form as

A B‘ v G

= (4.43)

B 0 p 0

This system of equation has been studied in the literature extensively. For exam-

ple, the work in the references [3, 7, 25, 36] solved this system direct.

On the other hand, there are number of studies in the literature that solved

this system iteratively by omitting the continuity equations and iterating over the

pressure. Some of these methods are Variant Methods, Conjugate Gradient methods,

Penalty methods, Decomposition methods, and Augmented Lagrangian methods [17,

21,18,19,41]

In this study, two methods are considered. These methods are: the conjugated

gradient method, and the steepest descent method or sometimes called the Gradient

method with fixed step size. These methods are based on decomposing the system of

equations (4.43) into a series of Poisson equations in the velocity components 11, and

This approach is considered in part because of the deveIOpment of an efficient and
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fast solver for the Poisson problems was achieved in chapter three via the wavelet-

Galerkin fictitious domain penalty method with a Preconditioned Conjugate Gradient

(PCG) solver. The system of equations (4.43) therefore requires a preconditioner for

an efficient solution. This preconditioner to deal with the presence of the penalty

entries in the diagonal of A. These entries cause problems during the inversion of A

due to their large difference with other non-penalized entries.

4.7 Solution Methods

In this section a conjugate gradient and the steepest descent methods are presented

and discussed. A comparison of the two methods is available with solving examples

with both methods.

4.7.1 A Conjugate Gradient Method (CGM)

The algorithm for solving the Poisson equations (410,411) via a conjugate gradient

method is based on the work done in [17, 18]. Such algorithm involves the following

steps:

0 Step 0: Initialization

p0 E L2(Q) arbitrarily given (4.44)
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then solve

uAvoz Vpo onw,v=gin8w (4.45)

by the wavelet-Galerkin fictitious domain penalty method in Q, i.e. solve

pH 0 11 (1+4 11 +_[__lawllUp pH 0 10 +||8w||

423 4,3,..- 2U22>4 =2 9.2+. _..~..
=P-4 k=q--4 i=P-4

(4.46)

p+4 q+4 q+4

80) 80)

..( Z 1430,11 + Z 143,011++”“14,:2 123,033+ —”5 “GP,

i=p—4 k=q—4 k=q-4

(4.47)

and set

20 = V - v0 (4.48)

0° = 2° (4.49)

Then for n > 0, compute p"+1,z"+1, y"+1 from p", z", y" as follows

0 Step 1: Descent

Zn 2

ll ”132(0) (450)
 

— (a y", y")L2(n)
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"+1 = p" — any" (4.51)

check for convergence

0 Step 2: New descent direction

z"+1 = z" — anay" (4.52)

H Zn“ ”12(9)

1" z n znni’ (4'53)142(9)

yn+1 = Zfl+l + 7713/” (4.54)

n = n + 1 go to equation (4.50).

To implement this algorithm, it is necessary to know ay". From Theorem 5.10 in

reference [17], one can evaluate ay" by solving the following Poisson equations in x

subject to homogeneous boundary conditions, that is

qu": Vy" in w, x = 0 in 6w (4.55)

ay" V - x" (4.56)

Thus each iteration requires solving two uncoupled Poisson problems.
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4.7.2 The Steepest Descent Method (SDM)

This method is easier to implement than the conjugate gradient method presented

previously. The algorithm for this method is as follows:

p0 E L2(§2) arbitrarily given (4.57)

for n 2 0, compute 13"“ by solving

,uAv“= Vp" in Q (4.58)

10"“ = p" - puV - V“ (4.59)

where N is the number of dimensions of the problem, e.g. for two dimensional

problems N = 2, p is a damping parameter which can be chosen form the range

0 < p < —,%[18]. For the examples which were solved p was chosen to be equal to 0.6.

In this method, at each iteration, one needs to solve two uncoupled Poisson problems.

In the implementation stage, it should be noted that these algorithms are written in

terms of scaling function expansions. For example, the steepest descent algorithm

can be written in scaling function coefficients as follows:

ng E R arbitrarily given (4.60)
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for n 2 0, compute PM.+1 by solving equations (446,447) via the wavelet-Galerkin

fictitious domain penalty method. Then update the pressure coefficients PM by

p+4 q+4

n 1_ n n 10 n 10

Pp: —— qu —- pp ( Uiq Cp_,- + E pk 0,14,) (4.61)

i=p—4 k=q—4

4.8 Examples

The examples that are considered in this dissertation are the lid-driven cavity problem

and flow between two concentric cylinders with the outer cylinder rotating. The first

example, the lid-driven cavity problem, was solved by both SDM and CGM methods

for low levels. It was then solved for high levels by the SDM method. The second

example, i.e., flow between two concentric cylinders, was solved via the SDM method.
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4.8.1 .Lid-Driven Cavity Problem

This problem was solved with the boundary conditions shown in Figure (4.2). With-

out loss of generality, the dimensionless viscosity p is set to equal to 1. The results are

provided by velocity vectors for low levels of dilation, and streamlines for high levels

of dilation. The streamlines are calculated by a simple linear differencing scheme.

For example, from point 11 to point n + 1 the stream function has the form

1 1

wn-H — wn‘‘- 2(yn+1 — yn)(un + “n+1) _ 5(xn-H " $n)(vn + vn+l) (4-62)

where w is the stream function, u is the x-component of the velocity, and v is y-

component of the velocity. The residual criterion for termination of the computation

is defined as

 

Residual = Z (122+1— Pg.) (4.63)

i,j=0

The residual history is provided for the SDM method. A comparison of the residual

history for both SDM and CGM is provided for level=5.
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Figure 4.2: Domain and boundary conditions for the lid-driven cavity problem.
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Figure 4.3: Comparison of the velocity vectors between SDM and CGM for the driven

cavity problem (level=4).
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Figure 4.4: Position of the zero velocity point in both SDM and CGM (level=6).

4.8.2 Flow between concentric cylinders

The boundary conditions shown in Figure (4.10). This problem was solved using

SDM because it is easy to implement. In applying the boundary conditions for the

velocity components u, u, it should be mentioned .that the tangential velocity (r09)

is analyzed into two components in the :r, and y directions. This is done because

the solution is based on a Cartesian coordinate frame and not on a polar coordinate

frame. This problem has an exact solution with the following assumptions:
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Figure 4.5: Comparison in the residual history of both SDM and CGM for level=5.

o Steady state fluid flow

0 Incompressible flow

0 Fully developed flow

The exact solution for this problem is as follows:

 

 

C
V9 = Clr + 72 (4.64)

Wiri - ”0T0

V i- V o o i

02 = ( 90" 2 92’ )7" T (4.66)
_ 2

Ti To
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Figure 4.6: Iterations required for the PCG solver along the SDM iteration for the u

component of the velocity.
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Figure 4.7: Iterations required for the PCG solver along the SDM iteration for the 2)
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Figure 4.8: Streamlines obtained by the SDM for the driven cavity problem

(level=6,7).
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Figure 4.9: Residual history of the SDM at various levels for the lid-driven box.
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-u

H

V9  1
Figure 4.10: Decomposition of the tangential velocity into Cartesian coordinate sys-

tern.

‘

where V9,, is the outer tangential velocity, V9,. is the inner tangential velocity, To is the

outer radius, and r, is the inner radius. The results for this example are in terms of

velocity vectors and streamlines. The wavelet solution for this example shows some

radial flow in some regions of the domain especially when lower levels considered, this

might be due to the representation of the boundary is not accurate. The represen-

tation for the boundary in this example is achieved via the Haar wavelet system. A

better representation is to use a smoother wavelet function, e.g., Daubechies wavelets.
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Figure 4.11: Velocity vectors obtained by the SDM for the flow between two concentric

cylinder problem (level=5,6).
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Figure 4.12: Streamlines obtained by the SDM for the flow between two concentric

cylinder problem (level=5,6).
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4.9 Discussion and Summary

In this chapter, the solution of viscous fluid flow problems is achieved via the wavelet

Galerkin method. The modeling of this problem is simple, since it does not require

geometric decomposition of the computational domain. The solution methods consid-

ered, for examples SDM, gives good results compared to the exact solution as shown

in Figure (4.14,4.15). For the lid-driven cavity problem, the solution agrees well with

other solutions found in the literature, e.g., reference [9].

Figures (4.6,4.7) show the iterations required, at each step of the SDM, to solve

the resulting system of equations by the Preconditioned Conjugate Gradient (PCG)

method which was used in chapter three. For the 1) component of the velocity in

Figure (4.7) the number of iterations for the PCG slightly decreases as the SDM

iterations continue. On the other hand, for the u component of the velocity shown in

Figure (4.6) there are nearly four regions in the plots (4.6). Those regions are: in the

beginning, there is a constant number of iterations, then there is a dramatic decrease.

Then this is followed by a slightly gradual increase in the number of iterations. The

last region is a constant number of iterations. The residual behavior of the SDM is

very similar for the examples which were solved.

Both solution methods, the SDM and CGM, give very similar results for the

problems considered. However, the residual of the SDM is gradually decreasing as we

iterate over the pressure. Conversely, the residual of the CGM decreases dramatically

the first few iteration but then keep decreasing very slowly. It seems that the CGM

is slightly costlier to implement.

96



Chapter 5

Solving Non-Newtonian Fluid Flow

Problems Using Wavelet Galerkin

Method

5.1 Introduction

Fluids that are not described by the Newtonian relations are commonly encountered

in a wide variety of industrial processes. Some examples of non-Newtonian fluids are

motor oils, blood, high molecular weight liquids, pastes, and polymers. The process-

ing, operations, and transportations of such fluids are vital and essential problems in

the food, plastics, chemical, petroleum, and polymer industries.

Non-Newtonian behavior is identified in a number of different ways. Most of these

fluids have a viscosity that is dependent on the shear rate. A decreasing viscosity with

an increase in the shear rate, which is known as “shear thinning”, is the most common
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behavior of such fluids. Elasticity and memory of the fluid (recoil for example) are

observed in many situation for these fluids. In these fluids, differences in the normal

stress components are also encountered in many flows. This lead to well-known effects

such as rod climbing, known as Weissenberg effect, and the curvature of the free

surface in an Open channel flow. A comprehensive list and discussion of these and

other non-Newtonian effects are explained in the book by Bird el al.[6].

Non-Newtonian fluids are divided into two distinct categories:

0 inelastic fluids or fluids without memory

0 viscoelastic fluids, in which memory effects are significant

The inelastic fluids can be viewed as a generalization, in some sense, of the New-

tonian fluids. The viscosity in this category depends on the rate of deformation of

the fluid and, thus, allows for the shear thinning effects to be modeled. Viscoelastic

fluids, on the other hand, represent a significant departure from the Newtonian limit

in terms of both the physical behavior and computational complexity. The primary

difficulty in solving these flow problems is to account for the “memory” of the fluid.

In other word, the motion of the fluid particles depends not only on the present stress

rate but also on the deformation history of the fluid particles. In this study only the

first kind of the non-Newtonian fluid, that is the inelastic fluid, will be considered.
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5.2 Governing Equations

The governing equations for a non-Newtonian fluid differ from a Newtonian fluid in

the constitutive relationship between the stress tensor and the rate of strain tensor.

The quantification of a non-Newtonian fluid flow is based on the conservation of

mass, conservation of momentum, and the conservation of energy. In this chapter,

a number of assumptions will be considered to reduce the complexity of the flow

conditions. These assumptions are:

c Steady state fluid flow

0 Incompressible flow

Isothermal flow

Two-dimensional flow

Creeping flow

The equations of interest for a flow under the previous assumptions in Cartesian

coordinates and vectorial notations are as follows [6]:

o conservation of mass

V-v=0 (5.1)

0 conservation of momentum

pv-Vv+V-T+Vp=0 (5.2)
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where p is fluid density, v is the fluid velocity, T is the shear stress tensor, and p is

the pressure. The momentum equation can be written in dimensionless form as

Rev-Vv+V-T+Vp=0 (5.3)

01'

V-T+Vp=0 ifRezO (5.4)

where Re is the Reynolds number and is defined as Re = 1%, where L and U are

characteristic length and velocity, 770 is the zero shear rate viscosity.

5.2.1 Constitutive equations

There is no mathematical model that can actually cover all non-Newtonian fluids

under all flow situations, unlike the Navier Stokes equations, which cover all New-

tonian fluids. However, among the numerous constitutive models and for different

types of non-Newtonian fluids, some are more popular than others. As mentioned

previously, the viscosity in the non-Newtonian fluids have a dependency on the shear

rate. This dependency leads to complex constitutive equations. The simplest and the

most familiar non-Newtonian viscosity model is the power-low model which has the

form

17 = m(2I‘)"’l (5.5)
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r = [% (1:1)] % (5.6)

where I‘ is the rate of strain tensor ’7 which is defined as

Bu 6v 6n

- 72:2: 73:31 2— '7; + _

1: = 6x a a” (5.7)

611 6v 6v

71/1: 7.111; 733 + 5} 25:1;

and m is a parameter called the consistency index with units of Pa - s" and n is

dimensionless exponent. When n = 1 and m = p, the Newtonian fluid is recovered.

If n < 1, the fluid is said to be shear thinning and if n > 1, the fluid is said to be

shear thickening. The shear stress is given by the following relation:

7' = - WI (5.8)

where 17 is the non-Newtonian viscosity which is a function of the magnitude of the

shear strain tensor[14].

5.2.2 Governing equations in scalar form

The continuity equation is given by the following equation:

611 011

a; + "a; — O (5.9)
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Substitute equation (5.8) into equation (5.3) gives

Rev-Vv-V-n'1+Vp=O (5.10)

where n is the non-dimensional non-Newtonian viscosity 1) = 1136' Therefore, the x and

y-momentum components in dimensionless form

Bu 011 a Bu 6‘ Bu 6v 8]) _

Re(u5;+v5;)— [55(2n—)+— "(7+— )] +— —0 (5.11)

+ — = o (5.12)

221222-2211+1221}?

where Re, m, 770 are defined previously.

5.3 Fictitious Domain/Penalty Formulation of the

Governing Equations

The governing equations given by (5.11,5.12) are formulated using the fictitious do-

main method which was discussed in chapters three and four. A non-Newtonian fluid

flow problem described by equations (5.11,5.12) is considered in a closed domain 62
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subject to the boundary conditions

v = g in 06) (5.14)

This problem is solved in a larger, but simpler, periodic domain 9 subject to

periodic boundary conditions in 812 as it is shown in Figure (4.1). The original

boundary conditions are applied via a penalty formulation as discussed before in

chapters three and four.

The continuity equation (5.9) is treated as an additional constrained and will be

formulated, to be related to the pressure p, also in a penalty fashion as

-ep+V-v=0 (5.15)

where e is small positive number i.e. 5 << 1. The weak formulation of the governing

equations (5.11,5.12) for low Reynolds number Re z 0) is derived as follows:

—/9 [5152394256133 3912622243:—w.(scy)=de 0 (5.16)

_/[63zed—3+ 3%))4. gang—v)] 1122(2: y)dQ+/g:—-,w2(:r y)dQ=0 (5.17)

where w1($,y) and w2(:r,y) are the test functions and w(:c,y) 6 VP. Typical choice
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for Vp is H162) and the space V,,(Q) is defined by

VP(Q) = {w(:r, y) E H1(Q) : w(x,y) is periodic on 69} (5.18)

To distribute the differentiation equally among the variables (11,12) and the test

functions 1121 and 102, integration by parts for equations (5.16,5.17) is needed. For

example, the x-momentum equation (5.16) is integrated as follows:

:0 (due to periodicity)

611

— / 2175—1111(x, y)dy + L, 2172—:6‘”acid!)

an 17

:0 (due to periodicity)

 

N

’ 6a 611 ,,,
_ [9171;(55+5;)w1(56,y)dx + fan(g—:+%§)%—yldfl

=0 (due to periodicity)

fl

+ P1111017, y)dy — fflp—id9= 0
an

Therefore, the weak form of the x-momentum equation is

—] dQ= ”129312112
/ l: 611 6w__1_ 611 612 61121

277— 6:1:

— +—
7762: 6:1: + ”(63/ 6:1: 6y

Similarly, the weak form of the y-momentum equation is

611+ 6_:6w__2 ”6111/6102 p6w2

 

(5.19)

(5.20)

(5.21)

From the weak form equations (520,521), the following bilinear and linear forms
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are found:

B(U, 'U, 1121) = [(1111)

B(u, v, 1122) = [(102)

where

61.01

[(1111) — ”19-8—2:— d9

81112

I w — —d0(2) ”Pay

_ 611 6w1 611

and

611 611 61122

B(uivaw2):[2 [ME/+5; E+2

(5.22)

(5.23)

(5.24)

623

(5.26)

(5.27)

To implementing the boundary conditions, the procedure discussed in chapter

four should be followed. Therefore, the unconstrained momentum equations can be
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written as

‘

f, [2.73—3.22 +72%; + $2,232] an

+§ fn(u — g) w1|l6w|| d9

— (917%‘19 = 0

v

(5.25)

 

(5.29)

 —fnp‘%";1d§2 = 0

where “662“ is the boundary measure function which is discussed in appendix (B).

Substituting equation (5.15) into equations (528,5.29) yields the final momentum

equations written in a penalty formulation as

611611) 6n 6v 6w

fa [27757—521 + "(5; + a—J—L] d9

1

5' MIL - glwlllawll d9

61)

39

l

6'

6w

331d!))fat‘S-l‘; +
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(5.30)

 



and the y-momentum is

5.4

8v

8::

6w 3

)79‘22 +2776:
9—5092] an

(5.31)

 
Wavelet-Galerkin Method and Discretization

of the Momentum Equations

In the wavelet-Galerkin method, the dependent variables u, v are expanded in terms

of scaling functions of Daubechies type as follows:

”(56, y) =

22(1), y) =

where X = 2%, Y :2 2jy, N =

N—l N—l

ZZUmx — i)¢(Y — k) (5.32)
i=0 k=0

N—l N—l

mm — i)¢(Y — k) (533)

ll O a
.

ll 0

H
.

23', Ujk = 23m,“ ij = 23.12,)c , and j is the level of

discretization. In the Galerkin formulation the test functions 10's are chosen from the

same space as u, v, i.e. ml 2 wz = ¢(X — p)¢(Y — q) where p and q are integer that

are the translates of the scaling functions ¢(X) and ¢(Y) respectively. The boundary
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conditions in equation (5.14) is also expanded in wavelet space as

N—lN-l

9(a:3): Z Zen-tam ¢(-Y k) (5.34)

i=0 1::0

where

Gm = 2j9pq : //g(x,y)¢(X — P)¢(Y " q)d:1:dy (5.35)

The coefficients U’s and V’s are found by substituting equations (532,533,534)

into equations (530,531). This will result in having the momentum equations in

scaling function expansions. For example, the x-momentum equation is discretized
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as follows:

  

 

 

 

 

 

:01: —5kq

2nz..U.1/¢'(X— )'—¢(X p)dxf¢(Y— k)¢(Y— q)dy

=‘fip =Cfilk

+77 23,1. ch / ¢(X - z')<(>(X -p)d$/ ¢’(Y - k)¢'(Y - aldy

:Cvloi 0:211

mam/('(X —z') X:)dx/¢(Y- —q)dy

+-22.1%. Haw“/¢(X «was p)dx/ ¢(Y —k)¢(Y — q)dy

= :5,”

——:2..sz Haw” / ¢(X — i)¢(X p)dx/¢(Y )(Y— q)dy
:01: i

—% E... U... f ('(X — z')¢'(X —- pm] ¢(Y — k)¢(Y — my
=(j'10p =C30k

J

 

fl

-%§:.—,mk/¢(X—z‘)¢'(X —p)dxf¢(—Y k)¢(Y m) =0

>

 l

(5.36)

Taking advantage of the delta function, equation (5.36) is written in a simpler manner

as

[a II H H

pH 4):":4 V'kczigicligq + I: qu "' a: Gm li=P— k—q-4 ’

 _l n+4 11 1 p+4 0+4 10 10 _

' UiQpC — ‘ 4Zk:q—4 ikCi—qu—k —05 z=p—-4 —p_
J
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Similarly the discretized y-momentum equation is

4 4 4

”Zip—4 22:1,-4 UikC.-1°p01°k+2nZZ:,_4 Vkaqlk

+77 ZpH—VViquli + “6%)“le ’ @11qu ( (5'38)

 “221251—41 2123-114Uikczio£1230q_El-'ZZ::—4 Vkauk——

5.5 Solution of the Resulting System of Equations

Equations (537,538) form a nonlinear coupled system of equations in terms of the

coefficients U’s and V’s. This system of equation is written in matrix form as

AU 0 U Fu

= (5.39)

0 By V Fv

This system can be solved iteratively using Newton’s method, or more easily by using

the Picard iteration method. The system of equation (5.39) can be converted to an

easier one to solve, by segregating the dependent variables U and V from equations

(537,538) [33] as

p+4 q+4 llawllU

(277 — -) Z UiqC“ + 7] Z Ukaflk + —'€—'—Upq —'"uF (5.40)

i=P——4 k=q——4
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where

p+4 9+4 p+4 q+4 “at—Ulla

= -7, Z ZV-kCIOC _, +—:Z Z V;0.101,010,, + ——€—G,, (5.41)

i=p—4k:q i=p—4k:q——4

The dependent variables U and V in the y-momentum equation (5.38) can be segre-

gated as

p+4 q+4 ”aw€l___l

1? Z 14,011+ (247— -) Z V,011—14,, = F, (5.42)

i=p—4 k=q-4

where

p+4 (1+4 p+4 q+4 ”aw”

_——-n E E U010,Cl°,+: Z 2 UC,§1,-C,1‘1,+ —G,, (5.43)

i=p—4k=q—4 Ei=p—4k=q--4 8

This segregation scheme produces equations (540,542) which are series of non-

linear Poisson equations and can be solved iteratively by Picard Iteration method.

5.5.1 Picard Iteration Method

The iteration procedure of this method is simple. For example, equation (5.40) can

be written in matrix form as

AWU=RW) W“)

B(77W = F507) (5-45)
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It should be noted that n is a function of U and V. For the system in (5.44) the

Picard algorithm is given by

44(77"‘)U""+1 = F1107“) (5-46)

where the superscript indicates the iteration number. This method is known to hav

a reasonably large radius of convergence. An improvement in the convergence rate

can sometimes be obtained by use of a relaxation formula [33],

A(n’")U* = F501“) (5-47)

where

U'"+1 = aU’" + (1 — a)U* (5.48)

The matrices A(17m) and B(77"‘) are not circulant, nearly symmetric.

5.5.2 Calculation of the Viscosity Function 17’”

The viscosity function 71’” is calculated using a scaling function expansion. Equation

(5.13) can be written as

"1-22 2(91‘1)2+2(Qfl)2+(3_u’1 2,. 21212:)..(232) 7;"
77 —770 82: 8y By By 826 8:13

(5.49)
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The following substitution can be used to simplify the evaluation of 17:

 

  

,

ni"=a§;"

775":ng

né"=%3

772"=65’:)

(5.50)

The following wavelet expansions are used for 771", 17;", 17g",and 17;” at each iteration m:

‘

77in = Eli/filo 61"L‘MX - 0450/ “ k)

77$" = 2.17.2052, (X — z‘)¢(Y— k)

115" = 2.”,‘0 ea",,.¢(X — z‘)¢(Y — k)

 ”in = Zia-=0 e4mk¢(X — i)¢(Y _ k)
J

(5.51)

The coefficients e’s are found by substituting equations (551,532,533) into equations

(5.50) and taking the inner product of both sides by ¢(X — p)¢(Y —

the evaluation of 31.4 is as follows:

 

6,, 5kg

2.2,. [3(x_.)¢(x_ p)dz/¢(Y— kw —4)dy=
___Cl0i 6kg

A L

24,1530 .-’,’i./¢’(X-i)¢(-X p)d$/¢(Y- ”MY-(1)61;
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q). For example,

(5.52)

 



Therefore

Similarly

and

N—l

6;" = E UimC'10
Pq vq p_i

i=0

N—l

m _ m 10

62139 — Up,qu—k

k=0

N—l

m _ m 10

83W — ‘fp,qu_k

k=O

N—l

8;" :2 :VmCIO

m m p—i

i=0

(5.53)

(5.54)

(5.55)

(5.56)

With the knowledge of the coefficients e’s at each iteration, we substitute those e’s

into equations (5.51) to evaluate nf‘,n§",n§",and 17;" at each iteration step m. The

nfn’s are then substituted into equation (5.49) for the calculation of 17'" at each point

(p, 9)-

5.6 Examples

The examples that were considered in Chapter Four will be considered again here,

namely the flow between concentric cylinders and lid-driven cavity problems. Those
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examples will be computed for different values of the dimensionless exponent n. These

examples are as follows.

5.6.1 Flow Between Rotating Concentric Cylinders

In this example, the configuration of this problem in the fictitious domain method

with the boundary conditions is shown in Figures (4.1,4.10). This problem has an

exact solution with the following assumptions:

 

o Steady state fluid flow

0 Incompressible flow

0 Fully developed flow.

The exact solution for this problem is as follows:

 

W =3 011.3 + 027‘ (5.57)

n — 3

s — n +1 (5.58)

V ,-— V. o

01 = ”J ”‘T (5.59) 

 " (5.60)
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Figure 5.1: Velocity vectors for the flow between two concentric cylinder problem

(71. = 0.8).

where V290 is the outer tangential velocity, V3, is the inner tangential velocity, 7‘, is

the outer radius, and r,- is the inner radius. Figure (5.1) shows the velocity vectors

of the flow field. Figure (5.2) shows a comparison between the wavelet solution and

the exact solution for this example for different levels.

116

  



 

 

--- Exact Solution

— Wavelet Solution
  
 

  

 

 

    
 

     
 

Level=5 Leve|=6

1 . 1 .

0.8 0.8

°
:1)

3 g

"g 0.6 * g 0.6

'5"
an

5
2

a? 3?

.3 0.4

§ 0.4

0
a

>
>

0.2
0.2

n O 1
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_1 0 

Figure 5.2: Comparison between the wavelet and exact solutions at the crossection

y = 0, ((9 = 0, 7r in polar sense)(n = 0.8).
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Figure 5.3: Velocity vectors for the lid-driven cavity problem (level=5).

5.6.2 Lid-Driven Cavity Problem

This problem is solved using the boundary conditions shown in Figure (4.2). Re-

sults are provided for this problems by velocity vectors and stream lines for different

values of the dimensionless exponent 72. Figure (5.3) shows the velocity vectors, Fig-

ures (5.4) shows the stream lines for this problem. It should be pointed out that

when the dimensionless exponent n equals 1 the Newtonian flow is recovered, see

Figure (5.4). The iteration history of this problem is shown in Figure (5.5). It should

be pointed out the iteration was stopped when the residual satisfied the required
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Figure 5.4: Streamlines for the lid-driven cavity problem (level=6), left Newtonian

fluid, and right non-Newtonian fluid.

tolerance. The residual is defined as

Residual = (/Z(vn+1 — w)? (5.61)

5.7 Discussion and Summary

In this chapter, a wavelet-Galerkin method was presented to solve some non-

Newtonian fluid flow problems. This method is developed with a penalty formulation

of the relevant functional. A segregated solver was used to de~couple the governing

equations. This lead to the conversion of complicated non-linear momentum equa-

tions into a series of uncoupled non-linear Poisson equations. Those Poisson equations

were solved iteratively by the Picard iteration method. The method presented in this
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Figure 5.5: Residual history of the Picard iteration method.
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chapter requires the solution of two Poisson equations at each iteration in the Picard

method. This procedure was tested by various examples. Results of these examples

suggest that the proposed solution method is accurate and rapid.
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Chapter 6

Conclusions

6.1 Summary and Contributions

Wavelet-based techniques were used in this work to solve heat transfer, Newtonian

and non-Newtonian fluid flow problems. Inherent to these techniques are the diffi-

culties encountered in implementing the boundary conditions and two methods to

enforce them were discussed. Clarifications were made on the techniques used to

implement the boundary conditions. Also, the solution of Newtonian and nonlinear

non-Newtonian fluid mechanics problems with non-periodic boundary conditions is

achieved efficiently and a variety of iterative methods are used to solve these prob-

lems. A segregated formulation based on the solution of a Poisson equation allows

to solve these complex problems efficiently. All this is done using a modest desktop

computer.
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6.2 Findings of the Study

It is found in this study that both the Fictitious Boundary and the Fictitious Do-

main/Penalty methods provide good approximations to the solution of the differen-

tial equations, but that the Fictitious Domain/Penalty Formulation method exhibits

slightly less errors than the Fictitious Boundary Approach. Also, the errors found

in the examples, which were solved by the Fictitious Domain/Penalty Formulation

method, can be further reduced by using a smaller penalty parameter 5. Furthermore,

the resulting stiffness matrix with the Fictitious Domain/Penalty Formulation has a

very nice properties that allow its rapid inversion.

In the Fictitious Domain/Penalty formulation, the resulting system of equation is

solved iteratively using the Conjugate Gradient Method and the Preconditioned Con-

jugate Gradient Method. A simple diagonal preconditioner matrix is suggested in this

study. Using the Preconditioned Conjugate Gradient Method reduced the necessary

numbers of iterations to almost half of the standard Conjugate Gradient Method.

The Fictitious Domain/Penalty formulation can be applied within the framework of

multiresolution analysis in solving partial differential equations.

The use of the Fictitious Domain/Penalty formulation and Preconditioned Conju-

gate Gradient method, allows achieving an efficient and quick solutions to Newtonian

and non-Newtonian fluid flow problem using the capability of a modest personal

computers (Pentium Pro 200 MHz with 64 Mb of RAM).

In addition, in the non-Newtonian flow problems, a penalty method was used

to implement both the boundary conditions and enforce continuity. A segregated
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scheme was used in the non-Newtonian fluid flow problem and this turned compli-

cated, non-linear momentum equations into a series of Poisson equation which are

solved iteratively and efficiently using the wavelet-Galerkin method. The wavelet

formulation of the problems in this work allow modeling and solving large problems

without the need of generating a complex geometry. This was demonstrated with a

few examples.

6.3 Future Research Topics

The results of this dissertation are only a small step in the evolution of wavelets and

their use to solve solution of partial differential equation related to viscoelastic fluid

flow problems. To continue on this work, the following topics should be investigated.

0 Efficient Preconditioning

Finding more efficient preconditioner than the simple diagonal preconditioner

used her is an essential step toward the solution of very large problems.

0 Application of wavelet-based methods to the solution of viscoelastic fluid flow

problems

Applying the current method to solve standard viscoelastic flow problems and

study the performance of wavelets as compared to other techniques.

0 Extension of the formulation of fluid flow problems to problem with high

Reynolds Number.

0 Use of divergence free wavelets for solving incompressible fluid flow problems
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This can be exploited by choosing the proper bases functions for velocity and

pressure fields to satisfy the Ladysenskaja-Babuska-Brezzi (LBB) condition [8,

11].

o Multiresolution wavelet method

Applying the Mallat algorithm [30] to solve some heat transfer/fluid flow prob-

lems using the multiscale analysis.

0 Implementation of other types of boundary conditions, e.g., Neumann and

Robin by using the appropriate modified functionals.
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Appendix A

Construction of Generalized

Wavelet Systems

The Haar scaling function discussed earlier is a special case of a more general class

of functions. In general a scaling function is a solution to a dilation equation of the

form

4(4) = Z 414(24 — 4) (A.1)
k

A wavelet function is defined by

4(4) = Z(—1)*a~-1_.¢(2z - k) (A2)
I:

where N is an even positive integer, and the coefficients a), are called the filter coef-

ficients. Normally, there is a finite number of these coefficients which are non-zero.
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The construction of a wavelet function is based on the following steps:

1. finding the filter coefficients,

2. finding the scaling function.

In order to derive the filter coefficients certain conditions on the scaling and the

wavelet functions have to be imposed:

1
:
r
-
T
‘

1. the scaling function and its translates should be orthonormal, :

 

2. the wavelet function should be orthogonal to the scaling function,

3. the scaling function is required to be able to exactly represent polynomial of a

certain order, say 12.

A.1 Construction of The Filter Coefficients

Consider the normalization of the scaling function (6, such that

+00 ¢(x)d:r = 1 (A.3)

—00

this yields the following condition for the filter coefficients ak:

Zak = 2 (A.4)

k
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For the scaling function to be orthogonal to its integer translates, the wavelet coeffi-

cients must satisfy the additional requirement that

+00 (:0) (15(1: — l)d:r = 501 (A.5)

—CD

this yields the condition

2 a), ak+21 = 2601 (A.6)

k

where 6 is the Kronecker delta function. The scaling function and its wavelet function

have compact support when a finite number of wavelet coefficients are non zero.

Equations (A.4,A.6) will produce, in an N coefficients system, 5.1,,- +1 equations. This

is not enough to determine a unique set of filter coefficients. Daubechies [12, 13]

enforced the requirement that the scaling functions are able to exactly represent

polynomials of order up to, but not greater than, p. For a polynomial of the form

f(fL‘) = Co +Cl$+02$2 + +Cp_1IL'p-l (A.7)

can be exactly represented by an expansion of the form

1(4) = Z 4.40: _' k) (A8)
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Taking the inner product of equation (A8) with the wavelet function 111(23) gives (due

to the orthogonality condition)

(f($).10($))= 20144505 - 1413(3)): 0 (A-9)

Thus, from equation (A.7),

co/¢(2:)dx+61/1/2(Lr)xdx+02/7,b(x)x2dx+---+cp_1/1/1(:c)xp-l deO

(A.10)

This is valid for all c,-(z' = O, 1, ..... , p — 1)[12, 13, 38]. By choosing c, = 1 and all other

c,- = 0, gives the moment equation

+00

(1(3) 45' d1: = 0, l: 0,1,2,...,p — 1 (A.11)

—00

It was shown in [13] that for N coefficients system, p = %. The final conditions to

get a unique set of coefficients {ah I: = 1, 2, ..., N — 1} comes form the substitution

of equation (A.2) into equation (A.11)

N

E :(-1)kak k’ = 0, 1: 0, 1,2, —2— — 1 (A.12)

k
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A.2 Construction of the Scaling Function

The scaling functions, in general, do not have closed form solutions. They are gener-

ated recursively from the dilation equation (A.1). Without going into a complicated

mathematical analysis, we can write equation (A.1) as

06(22) = ao¢(2$) + a1¢(2:c — 1) + a2¢(2a: — 2) + - . - + aN_1¢(2x -— (N — 1)) (A.13)

Writing this equation for all integer values of 25,-(i = 0, 1,2, ....,N — 1), produce the

following system of equations:

0005(0)

M” = 00¢(2) + 01¢(1) + 0245(0)

S A

O
V

II

49(2) = 0095(4) + 0145(3) + 02¢(2) + 0345(1) '1' 04¢(0)

(A.14)

¢(N — 2) = aN_3¢>(N — 1) + aN-2¢(N — 2) + GN_1¢(N — 3)

(MN-1) = aN—1¢(N— 1)

This can be written in a matrix form as

(M — I)<I> = 0 (A15)
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where I is the identity matrix. The vector (1) and the matrix M are as follows:

  

(15(0)

45(1)

(1): 9(2)

¢(N-2)

_¢(N-1>.

F .

a0 0 0 0 0 0

a2 a1 a0 0 O 0

a3 a2 a1 O O 0

M :

0 0 0 (IN—3 aN—4 (IN—5

0 0 0 951—1 931—2 @1141

L 0 O 0 0 0 (110-1 .  
The solution to equation (A.15) is not unique, and so a normalization condition is

required in order to uniquely determine the vector <I>. That is

2‘1“") =1. k E Z (A.16)

’6

Hence, the values of the scaling functions at the integers are given by the solution of
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equation (A.15) normalized by equation (A.16). Now the values of 05(3) are known

at the integer points of x, the values at the half integers can be found from equation

(A.1)

44;) = Z 414(24 — (4) (AI?)
1:

This process is repeated as many times as necessary to find the values of 05(10) at all

dyadic points {2,L; i,j E Z}.

A.3 Wavelet Multiscale Representation of Func-

tions

Multiresolution analysis consists of deve10ping a representation of a function f (2:) at

different level of resolution. This is achieved by expanding the given function in terms

of a function 05(25) called the basis function. The basis function can be scaled to give

multiple representation of the original function [30, 38, 44]. This require the use of a

scaling function 051(2) which is given by

4(4) = 2441(4) (A.12))
1:

41(4) = 4(21'4 — 4) (1)19)
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where k is an integer called the translate of ¢(:c), j is called the level of repre—

sentation, and c; are called the filter coefficients. For example, this scaling function

can be defined as in [24]: set all c}, on level 3' equal to zero except for 0,7 equal to

one. Using the interpolating subdivision scheme results in ¢{(:1:). Also, using linear

superposition and the subdivision scheme at level j, yield that [38]

((4) = 24.4034 — k) = 2441(4) (MO)

I: I:

It can be seen from equation (A.19) how all scaling functions are simply translates

and dilates of one fixed function.

In order to develop a multiresolution representation of a function in L2(R), the

square of integrable functions, one seeks a sequence of embedded subspaces Vj. Define

the space V], such that

V, =span { 4;;(4) |k e Z } (A.21)

This implies that

3.115;: P1f(ar) = f (x).

where P,- is the L2 orthogonal projection from L2(R) to V,- [31, 38].

For example, if (0(5):) is the Haar scaling function, the V} is the space of functions

I: 1
which are piecewise constant on the interval [55, —'—2t-) with k E Z. The different VJ-

spaces satisfy the following prOperties which make them a Multiresolution analysis
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[38], i.e., wavelets space satisfy the following conditions:

1. Nestedness: V,- C V,'+1.

2. Translation: ifg(2j:c) E V,- then g(2j:1: + k) E V}.

3. Dilation: the subspaces are related by scaling law: g(2j:r) E V,- then g(2j+l:2:) E

14...,

4. Completeness: every function g(:1:) in L2(R) can be approximated with arbitrary

precision with a function from V,- for suitably high j. Sometimes this property

is also expressed as: UjezV} is dense in L2(R).

The translation and dilation properties follow from the definition of V,- equa-

tion (A.21).The nestedness property follows immediately from the dilation equation

(A.18). If 05(93) can be written as a linear combination of the ¢(2x — k), then 051(3)

also can be written as a linear combination of W;+1(gr) and thus V,- C V,-+1. In the

literature , this often refers to a scaling function W (:17) E V,- such that its integer

translates [ W(a: -— k), k 6 Z} is from a Riesz basis for the space V,.

Using the Haar scaling function Figure (A.1), the demonstration of the multires-

olution of functions is presented next using the Haar scaling function. The Haar

scaling function ¢(.2:)is defined as

1 0 _<_ :1: g 1

05(4) = (A.22)

0 otherwise
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Figure A.1: Haar Scaling [and Wavelet Phnctions

f (:r) E L2(R) can be approximated by its projection onto the space V0 such that

1%) = Z 424(2°4 — 4) (A23)

1:

or in general a function may be approximated by its projection onto the space V,- as

f’(:v) = Z 414(214 — k) (4.24)

I:

Figure (A.2) shows different approximations to a function at different levels.

The wavelet function, on the other hand, may also be used to define orthogonal

subspaces [38] such that

let W,- = Span{¢i(z‘) : k E Z}, then Ujez W,- = L2(R) (A.25)

where
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Figure A.2: Multilevel representation of the function f (11:) = sin(27r:z:)

v... = Y.- 4 W.. V.- 1 W.- (426)

where 69 represent a direct sum. This implies the Mallat transformation [44]

V0 C V1 C V2 ------ C V141 (A27)

and

V}+1 = V0 613 W0 69 W1 """ G9 Wj (A428)
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From the relations (A26) and (A.27) above, one can notice that wavelets provide

bases for W,- to describe the difference between to successive subspaces V,- and V,-+1.

We then introduce a wavelet function (0(22) such that (Ma: — It) forms a Riesz basis for

the subspace W0:

4),: = 244(22): — k) (A29)

is a Riesz basis for W,-, which leads to the relation (A.25). It should be pointed out

that since W0 is contained in the space V1, we can write the wavelet function in terms

of the scaling function at the next higher level,

40(9) = Zbk¢(21$ — 14) (A.30)

k

The Haar wavelet functions shown in Figure (A.1) satisfy equation (A30) with

coefficients ()0 == 1, and bl = —1. So if ¢(:1:) is the Haar scaling function, the corre-

sponding wavelet function 111(33) is

10(33) = 4(255) - 45(217 - 1) (A-31)
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Appendix B

Incorporation of the boundary

measure function [[802] |

The boundary measure function ”80)” is defined in [43] as

llawll = -Vx.. - n (8.1)

1 if (2:, y) on 00)

0 otherwise

where n is the outward normal to the boundary, and wa is the gradient of a char-

acteristic function xw. Typically, [[602]] has zero values in all points of the domain {2

except for the points near to the boundary (902. The boundary of (12, which is an open
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bounded set in R2, is defined as

aw = {(x, y) e R2 : F(:I:.y) = 7}

for some constant 7 and for some Lipschitz function F defined in R2 of 6w, with (12

having a finite perimeter.

The boundary measure function [[601]] can be approximated by wavelet expansion

Haw“ = -Vx.. - n = pr,q¢(2jx - 1045(ij - q) (B3)

=Zq:XP,($-q¢ My“ (1) (13.4)

F;F144 9(12 -(p)¢9— 9) (3.5)

where XM = éxwfifl2,- , 2,-Sii), and FM = -21—,4F(321—;3,%9), with c = fx¢(z)dx. The

expansions for the partial derivative of X4.) and F are as follows:

“69;;y) = 2%)... 4(4 — (4)40) — 4). (8-6)
P14
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W= 2(9’5).,.4(4 — 44(4) - 4), (8.7)
By M 33/

811;: y) = ;(:—:)p.9 (“1' ‘ PM“?! _ (1)) (BB)

——8F;:’y) = §(g—§),,q 9(27 - p)¢(y - 9), (39)

where, for example, the coefficients gxxp q can be calculated as

0X

(a—xhw : Eclianmfl- (13.10)

Therefore

8 61" 5 BF

( .5)...(-..;)... + (55)...(5,;).,.)

((fi(%§)...)2 + ((35)...)2)

For implementation purposes, the approach suggested in [15] in dealing with

 (3.11)
(“10.9 = “ 

”800“ is used. In [15] [[602]] is set to be equal to constant 7 in the points near to

the boundary ('90) and zero elsewhere. The value of 7 is chosen to make the integral

f5, ”60)” d9 equal to perimeter of 0). For the two-dimensional problem Haw“ is

7 if [n,n+1]x[m,m+1]flaw#0

”840”,... c: (8.12)

0 elsewhere
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Appendix C

Algorithms

o Conjugate Gradient

Compute r0 = b — Axe, p0 = 20

For j = 0,1, ..... , until convergence Do:

a. = (Tz',1‘z')

J (A pjvpj)

MH=%+%M

71+): 7'2“ — 02' P1

’8. = (Tl-+11 rid-1)

J (’1': '1')

Pj+1 = r,-+1 + 153' Pj

EndDo

o Preconditioned Conjugate Gradient

Compute To = b — A130, 20 = M-lTo, p0 = 20

For j = 0,1, ..... , until convergence Do:
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a_ : (T,‘,Z,‘)

‘7 (A pjapj)

au=a+wm

73+) = 7‘1 - 09' P1

_ -l

Zj+1 — M 7‘j+1

16' : (Tz'+l: 21H)

J (71.2))

Pj+1 = Zj+1 + 5]" Pj

EndDo

where A is the stiffness matrix, M is the preconditioner matrix, :1: is the vector of

the unkowns, r is the residual vector, p and z are intermediate vectors defined in the

algorithms. The coefficients a and 3 are scalar quantities.
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