.mmfiwgmym.» n.4,“. a; . o n q as. u u . .mWak . ‘ . . . ‘ a . ‘ ‘ o . ‘ . .. um. ’ufi . up. ‘ mm». «*3» 5 r 1.1.: ... .. 123‘”... ”mil: Timchan at. {an A . r A? k. My.“ «frahuf u.- yfiac ’53:». gm p slam? “1.. 41. .. dwwflgz. , harm» 2.. :1 .. ‘ ‘93.“? . ~ Ema“. v :5: f... 159)..» V . ‘. v 3.)». .i . . L. m. 2.33:»: 41 {53.9 . (2‘.va A MA 5 Pumwuriywnufl. . N“ a». ”Mungfl ‘ . y . .. 3.1, u. 53..” . z.‘ . Hack... . hymn < . Wu xu l&3,4‘...r. -,:h.rbh\fi...hk.a._wf t. 5:51;“. a 3.....“t'tzkkuiw13mmauu films‘ I I This is to certify that the thesis entitled FORENSIC ANALYSIS OF CRAYON VIA FOURIER * TRANSFORM INFRARED SPECTROPEOTONETRY (FTIR) ‘ AND SCANNING ELECTRON MICROSCOPY/ENERGY OISPERSIVE SPECTROSCOPY (SEN-IS) L l l I | l presented by Chrsistopher R. Bomarito has been accepted towards fulfillment of the requirements for 11.8. degree in Criminal Justice A», /fldajor péfessor Date 20 [1WJN 3506/ 0-7 639 MS U is an Affirmative Action/Equal Opportunity Institution LIBRARY Michigan State University PLACE IN RETURN Box to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE thrttéhr 6/01 cJCIRC/DateOuop65-p15 FORENSIC ANALYSIS OF CRAYON VIA FOURIER TRANSFORM INFRARED SPECTOPHOTOMETRY (FTIR) AND SCANNING ELECTRON MICROSCOPY/ ENERGY DISPERSIVE SPECTROSCOPY (SEM-EDS) By Christopher R. Bommarito A THESIS Submitted to Michigan State University In partial fulfillment of the requirements For the degree of MASTER OF SCIENCE School of Criminal Justice 2001 ABSTRACT FORENSIC ANALYSIS OF CRAYON VIA FOURIER TRANSFORM INFRARED SPECTOPHOTOMETRY (FTIR) AND SCANNING ELECTRON MICROSCOPY/ ENERGY DISPERSIVE SPECTROSCOPY (SEM-EDS) By Christopher R. Bommarito In this study, the use of SEM/EDS were explored to differentiate between different brands of crayons. Fourteen different brands of crayons were obtained by the author from local stores. One blue crayon and one red crayon from each brand were visually color matched and selected for' analysis. Examination of color alone was found to be a poor discriminator for crayon analysis as the apparent color was highly dependent on sample thickness. Each of the fourteen different brands of crayon could be differentiated via either their FTIR spectra or elemental analysis of extenders via SEM/EDS. Elements quantified and compared via EDS analysis were silicon, magnesium, aluminum and calcium. It was also found that inorganic extender pigments, present in all the crayons tested, were poorly dispersed in some brands of crayon, resulting in random pockets of extenders throughout the crayon. These pockets were visualized using a backscatter detector coupled with the scanning electron microscope (SEM/BSD) which enhances atomic number contrast. When a person writes with this type of crayon, “bands” of the extender pigment are transferred to the written page and can be visualized by SEM/BSD. The bands of extender pigment can then be compared to test samples produced with the suspect crayon. Since these bands are the result of a random distribution of extender pigment, it is possible under certain circumstances to individualize a portion of handwriting to a single crayon. Table Of Contents List Of Tables and Figures 2. 2.1 2.2 2.3 2.4 3. 4. 4.1 4.2 4.3 5. Introduction Crayons Determination Of Protocol Relation of Crayons to Other Materials Selection of Analytical Methods Vehicle Pigments and Extenders Experimental Materials Color FTIR Analysis SEM/EDS Analysis Possible Individualization Of Crayon Writing Conclusions Analysis Protocol Areas for Future Research Remarks References Appendix 1. Instrumental Design & Theory Fourier Transform Infrared Spectrophotometry (FTIR) Scanning Electron Microscopy-Energy Dispersive Spectrometry (SEM/EDS) A. Electron Gun B. Magnetic Lenses C. Specimen-Beam Interactions & Detectors D. SEM Sample Requirements & Vacuum Systems Appendix 2. FTIR Spectra Appendix 3. SEM-EDS Spectra iv \JUtUI-hNN 10 10 11 13 18 23 23 25 25 27 28 28 31 32 33 35 39 41 70 Table 1: Table 2: Table 3: Table 4: Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13: Figure 14: Figure 15: Figure 16: List of Tables Brands and manufacturing information of crayons used Comparison of elemental ratios of two brands of crayon Summary of SEM-EDS data Regions of IR radiation List of Figures Graphical representation of red crayon elemental data Graphical representation of blue crayon elemental data Secondary electron image of crayon tip Secondary electron image of crayon writing Backscatter image of crayon tip with well-dispersed extenders Backscatter image of crayon writing with well-dispersed extenders Backseatter image of crayon tip with poorly dispersed extenders Backseatter image of crayon writing with poorly dispersed extenders Schematic of dispersive IR spectrophotometer Schematic of Michelson interferometer Schematic of a SEM and electron beam Schematic of electron gun and electromagnetic lines of force Schematic of a pole piece lens and electromagnetic lines of force Schematic of beam shaping and deflecting electromagnetic lenses Specimen-beam interactions Effect of topography on secondary electron escape 10 14 15 28 16 17 20 20 21 21 22 22 29 3O 31 32 33 34 35 36 1. Introduction Crayons are infrequently submitted as evidence to forensic laboratories. Of the over 60,000 cases1 received by the Michigan State Police forensic laboratory system (MSP) in calendar year 1999, only two involved the analysis of crayon. One of the cases involved handwriting in crayon, the other involved “tire marking” crayon transferred in a hit and run motor vehicle accident. Because crayons are infrequently encountered, no procedures are delineated for the analysis of crayon in any forensic literature. Current American Society of Crime Laboratory Directors (ASCLD) guidelines2 require: 1.4.2.5) Procedures used must be generally accepted in the field or supported by data gathered and recorded in a scientific manner. 1.4.2.6) New technical procedures must be validated to prove their efficacy in examining evidence material before being implemented on casework. 1.4.2. 7) The laboratory must maintain written copies of appropriate technical procedures. Technical procedures generally arise from research either published or presented at scientific meetings. Since little information has been presented or published on the analysis of crayon, it would directly benefit the forensic science community for such information to be presented and published in a forensic journal. The protocols demonstrated in this thesis might then be adopted by individual laboratories and used when they encounter crayons in a criminal case. The information contained in this thesis will be disseminated through presentation at the American Academy of Forensic Scientists Meeting in February 2001 and submitted to the Journal of Forensic Sciences for possible publication. 1.1 Crayons Crayons are generally made from a combination of wax (paraffin, microcrystalline, polyethylene, beeswax, ozokerite, japan, carnauba), colorant (pigment or dye), stearic acid, beef tallow and filler (aluminum silicate, magnesium silicate)3. It was also found during this research that calcimn carbonate was also used as a filler in some brands of crayon. Water-soluble wax crayons contain an emulsifier wax and polyethylene glycol. Crayons are of course, mass-produced. Binney and Smith, the manufacturer of Crayola® crayons, manufactures approximately 3 billion crayons each year4. The crayon itself is produced from the mixture of molten wax and other ingredients by either molding or extrusion. Most crayons bought by the public are the extruded type. Extruded crayons have more filler and a higher density. Molded crayons are considered to be higher quality and are sold primarily at art supply houses. Molded crayons contain polyethylene wax for greater breaking strength, smoother "lay down" and less "piling”. The waxes used for molded crayons generally have a lower melting point than those used in extruded crayons. 1.2 Determination of Protocol Manufactured materials are frequently encountered as evidence in the forensic science laboratory and are usually grouped into a discipline known as “trace evidence”. These materials include well documented materials such as paint, glass, fibers and explosives; as well as less frequently encountered materials such as garbage bags, greases, commercial products used in poisonings and crayons. In selecting a protocol for the analysis Of any mass-produced material, the forensic scientist must consider not only the validity of the tests used, but also whether the analysis is probative to the material at hand. With manufactured materials, it is usually not possible to determine whether a questioned material came from a single known source. For example, a scientist may be able to determine the brand or even perhaps the manufactured lot of a sample of lipstick, but would not be able to distinguish between different containers in the same lot. From general to specific, the questions that the analyst should attempt to determine by the protocol are: 1. Type of manufactured material (example: paint vs. grease). 2. Subset type of material (example: alkyd paint vs. acrylic paint). 3. Method of manufacture or application (example: dispersion lacquer paint vs. solution lacquer paint) 4. Manufacturer of product (example: BASF paint vs. Dupont paint) 5. Specific product (example: Ford Taurus paint vs. Ford Probe paint) 6. Lot numbers of same product A 7. Subset of a single lot 8. Single package or part of product Usually a general protocol may narrow the range to the manufacturer of the product or perhaps the specific product and no further. Protocols to determine lot number and subset of lot number must be determined for each manufactured product, as the variable to determine these factors generally varies from manufacturer to manufacturer. It is generally not possible to narrow the range down to a single package or part of product in a mass-produced material unless there is a unique feature or the material is used or damaged in a unique fashion. It was the goal of this study to try to differentiate between different manufacturers and brands of crayon. This would also create a basis for examination of individual characteristics that may allow an analyst to further characterize sub-sets, lot, etc. within a single brand of crayon. 1.3 Relation of Crayons tO Other Materials Since there are no known forensic crayon analysis methods it is helpful to look at materials that are closely related to crayons and attempt to apply methods used for the analysis of these materials to the analysis of crayon. Even though crayons are used as writing instruments, the most closely related forensic discipline to crayon analysis is not the analysis of inks, but rather the analysis of coatings (paint). In fact a case could be made that a crayon is indeed a non-permanent coating applied via writing. Some of the terminology used in the coating industrys’6 applies to crayons and will be used in the remaining text: Surface coating: Suspension of a pigment in a vehicle designed for protection of a surface or for decoration or for both. Vehicle: The portion of surface coating other than the pigment, the purpose of which is to enable the pigment to be distributed over the surface. Binder: The portion of the vehicle that binds the pigments and additives in place and dries to a solid film. Pigment: Finely divided particles, which are dispersed throughout the liquid coating and give the dried film .' color, opacity (hiding power), film reinforcement and functionality, gloss and permeability. Extender: A low cost inorganic pigment used to modify the gloss, texture, viscosity and other properties, and to reduce the cost of the finished product. Crayons are a suspension of pigment or dye in a vehicle (wax). They contain extenders (beef tallow, aluminum silicate, magnesium silicate, calcium carbonate) to add hardness to the crayon as well as to add bulk to the vehicle. Any method developed for the analysis Of crayons should provide for some examination of the vehicle, pigments and extenders as is done in the analysis of coatings. 1.4 Selection of analytical methods A. Vehicle Several methods are used in the forensic science community for the examination of the vehicle in the analysis of coatings. The polymers and chemicals comprising the vehicle are organic in nature and thus are examined using analytical techniques that allow the characterization of the organic material. In most forensic laboratories, the vehicle in coatings are characterized by either infrared Spectrophotometry or pyrolysis gas chromatography. In infrared spectrophotometry, infrared light is directed through a thin section of the sample and the amount of infrared light absorbed at various wavelengths in the infrared range measured, forming a graph of wavenumber versus percent of light transmitted. Because the absorptance of infrared light is directly related to the chemical functional groups comprising the sample, the infrared spectrum allows the characterization of these functional groups and comparison of samples to other samples/standards for identification. A major drawback to the use of infrared spectrophotometry is that the infrared Spectrum of a sample Shows a combination of all components of the sample. Components that are poor absorbers in the infrared range or are present in trace amounts might not be detected in a sample. Pigments and extenders are usually comprised of inorganic materials, which are poor absorbers in the infrared range. Dyes and additives are usually present in small amounts in the sample and therefore often not detected by infrared spectrophotometry. Thus the infrared spectrum of a coating is usually comprised primarily of the binder material. In pyrolysis gas chromatography, a portion of sample is pyrolized at a temperature of 600-900 deg. Celsius and is introduced in it’s vapor phase into a gas chromatograph, an instrument which separates components of a material based on their affinity for a coating material inside the column of the instrument. The components of the material may be pattern matched and compared to other samples/standards by comparison of the time each component is retained by the instrument. A graph of the elution patterns from a pyrolysis gas chromatograph is known as a pyrogram. The advantage of this method over infrared spectrophotometry is that components that are present in small amounts, such as additives and dyes, can usually be readily detected. The melting point of inorganic components, such as those present in pigments and extenders, is usually too high for efficient pyrolysis; therefore, these components are not usually detected by this method. There are several drawbacks to pyrolysis gas chromatography. The pyrolysis of a material is not always accomplished at the same rate or efficacy, which can result in differences in the chromatograms that are not due to the sample. Secondly, the pyrolysis of a material often results in the production of compounds not found in the original material. These compounds are known as pyrolysis products and are due to complex chemical reactions that take place at high temperatures. Although comparison of these products between samples is a valid analytical technique, one must be aware that not all compounds present in the pyrogram were present in the original sample. Lastly, gas chromatography is a separation technique and not a qualitative identification technique. Components having different chemical compositions can have similar retention times, which may lead to misinterpretation or misidentification. In the end, infrared spectrophotometry was selected as the technique to compare the “vehicle” of the crayon components. This was primarily due to fear that, because of the thermal stability of wax as a vapor, the wax would condense inside the column of the gas chromatograph. Infrared spectrophotometry was tried first with promising results; therefore, pyrolysis gas chromatography was not attempted. Crayons may be partially dissolved in an organic solvent such as chloroform and directly injected on a gas chromatograph or gas chromatograph coupled with a mass spectrometer. Determination of an appropriate solvent for any additives or dyes in the crayons would be problematic since different materials are added to each product. B. Pigments and Extenders Pigments and extenders are generally examined in forensic coatings analysis via microscopy and/or an instrumental technique. Microscopy is excellent for comparative analysis; however, years of operator training and experience is necessary for optical qualitative identification. Advantages include the possible identification of the crystal form of some inorganic compounds (i.e. rutile vs. anatase titanium dioxide) and the ability to see the dispersion of pigments throughout a sample for comparative analysis. Many forensic laboratories, including those at the Michigan State Police, perform analytical elemental analysis to identify and compare inorganic materials present in the sample. Scanning electron microscopy energy dispersive x-ray spectrometry (SEM-EDS) is the most commonly used method for forensic elemental analysis, although atomic absorption, inductively coupled plasma mass spectrometry and neutron activation analysis are also used. The primary reasons for the popularity of SEM-EDS is it’s flexibility and widespread availability. SEM-EDS can be used on a wide variety of evidence, such as glass, explosive residue, fibers, gunshot residue and coatings. SEM-EDS is typically available in any forensic laboratory that examines gunshot residue, where it is the technique of choice worldwide. In this technique, the sample is exposed to a beam of electrons. The electron beam excites electrons in the sample, causing them to be expelled from the sample. Electrons of higher energy fill the sample’s lower energy electron shells that have vacancies due to expelled electrons, and the difference in energy is accounted for, in part, by the emission of x-rays. X-rays emitted from different elements have characteristic energies. The EDS system in the SEM collects these x-rays, sorts them by energy and plots a spectrum of Energy vs. Intensity. The “peaks” which result from this plot can be compared to standard elemental energies for qualitative analysis of elements present in the sample. The area under the peaks can be compared to known x-ray response data; therefore, quantitative analysis of elements present is also possible. Because of the ability of SEM-EDS to qualitatively and quantitatively examine the inorganic portion of the crayons, it was believed that this would be the best method for elemental analysis as well as the most promising method to distinguish between different brands of crayon. 2.1 Materials 2. Experimental Fourteen brands of crayon were purchased off the shelves of local Lansing, MI area stores. These were the only brands of crayon found in an exhaustive search of over 30 stores. The brands and manufacturers are detailed in the table below. Brand Manufacturer/Distributor Place Of Manufacture A-l Quality® A.J. Cohen Distributors China Cran® Wholesale Merchandisers, Thailand Inc. Crayola® Binney & Smith Easton, PA Crayola Color Slicks® Binney & Smith Easton, PA Crayola Construction Paper® Binney & Smith Easton, PA Crayola Pearl Brites® Binney & Smith Easton, PA Crayola Techno Brite® Binney & Smith Easton, PA Kid’s Club Kid’s Club Industries Malaysia Laion Fun Club® Lai On Plastic Products China Factory, LTD Pentech Color Club® Pentech International Malaysia Prang Fun Pro® Dixon-Ticonderoga Toledo, OH RoseArt® Rose Art Industries Taiwan Trend Wipe Off® Trend Enterprises, Inc. St Paul, MN Z-Line® Unknown China Table 2: Brands and manufacturing information of crayons used in study One red crayon and one blue crayon from each box were visually color matched as closely as possible and selected for examination. The goal of the examination was to distinguish between each of the fourteen brands of crayon. 2.2 Color After the color matching the crayons to select them for the study, each of the 10 selected crayons were drawn with and the color of the writing visually compared. It was thought that one might be able to distinguish between crayons on the basis of color alone. This hypothesis proved to be false. Color in crayon writing is a function of several factors, chief among them is the color and dispersion of the colorant. The color did indeed vary between different brands of crayon. The dispersion of the colorant, however, is controlled not only by the dispersion of the Colorant in the crayon, but also the thickness of which it is applied to the paper. The thicker the amount of crayon applied to the paper, the deeper the color appeared. It was demonstrated through trial and error that crayons of different shades of color could be made to appear similar by altering the amount that is applied to the paper. Since the amount of crayon “piled” during handwriting would be difficult if not impossible to measure and repeat, it was determined that optical determination of color was a poor discriminating method in crayon analysis. 2.3 FTIR analysis A small portion of each crayon was smeared on a potassium bromide disc and run on a Perkin-Elmer Spectrum 1000 FTIR equipped with an Autoimage system microscope. The samples were run in transmittance mode at lcm'l resolution in the wavenumber range of 4000-690 cm”, which is the effective range of the instrument’s MCT detector. The initial supposition was that FTIR would be a poor discriminator of crayons. This is due to some of my experience in analyzing other wax-based products. It has been found through analysis of these materials such as candles and polishing materials that different types of wax yield very similar IR Spectrographs. All waxes have strong absorptances in 2970-2930 cm", 1480-1455 cm'1 and 735-710 cm'1 ranges. These 11 absorptances are due to long chain hydrocarbons, which make up the paraffin wax. My hypothesis was that different crayons would also yield similar spectra. Again, the hypothesis was false. The wax portion of the crayons did yield similar spectra, present in all of the crayons other than the Prang® brand, which is soybean based rather than paraffin based. During analysis, it was found that the remaining areas of the IR Spectrum of wax were essentially blank, yielding excellent information about additives, pigments and extenders present in the crayon. This is a logical inference since Nujol, a material used by IR spectroscopists to prepare mulls for IR, is comprised of liquid paraffin7. The selection of Nujol as the medium for mulls is due to the vast regions in the IR spectrum in which Nujol does not absorb radiation. Since paraffin wax is the binder material in most crayons, it is ideally suited as a medium for the remaining materials in the crayon to be examined by IR. Three principal regions in the spectrum were found to provide useful information. The region of 3750-3590 cm'1 is a primary adsorption area for inorganic silicate compounds used as extenders in crayons. These compounds include magnesium and aluminum silicates in various mineral forms, such as talc, kaolinite, etc. The presence of an absorptance band at 1750-1680 cm'1 indicates the presence of a carbonyl group in the compound. These would be present in many organic additives and dyes. The region between 1400 cm"1 to 750 cm"1 is a portion of the fingerprint region which wax has no strong absorptances. Bands in this area are due to pigments, dyes, extenders, plasticizers and other additives. Each of the different brands of crayon varied from one another in this region, proving the value of IR as a discriminator between brands of crayon. 12 2.4 SEM/EDS Analysis The tip of each crayon was broken off , mounted on an aluminum stub with carbon tape and run on a LEO 43 5vp SEM equipped with a EDAX Phoenix EDS system. The samples were run at an accelerating voltage of 25,000 volts. In order to automate the analysis and allow for ease of comparison, a set of elements were selected for quantitation. The elements selected were silicon, aluminum, magnesium, and calcium. These elements would be in abundance in pigments and extenders added to the binder, but not present in significant amounts in the binder itself. The x-rays were sampled for 100 live seconds for each sample and the analysis performed five times on each crayon. Sampling was performed in a reduced raster pattern to ensure a representative sample and the location of the reduced raster was changed for each analysis. The multiple analyses were alternated between seven samples to assure any variation resulting in instrumental condition change would be accounted for in the data. Weight percent of each of the selected elements was calculated 1.2”9 Ratios of raw by the EDAX EDS program using the ZAF correction protoco elemental data were also calculated for comparison purposes. Weight percent data for all selected elements were added to give an approximation of the total amount of inorganic pigments and binder present in the crayon. The results of analyses are summarized in Table 2 and Figures 1 and 2. Comparison of the data was performed using the guidelines developed by the author for the analysis of trace elements in glass via SEM-EDS.lo First, standard deviation Of the elemental ratios of raw data in the five analyses were calculated. If the average of the elemental ratios from one sample fit in the greater of a three standard 13 deviation or 5 percent range of the value for another sample, for all ratios, the samples could not be eliminated as having originated from the same source (i.e.: inclusive). If one ratio falls outside the range, the two samples were excluded as having originated from the same source. The use of standard deviation as one of the variables in establishing an acceptable range is necessary to account for variation inherent in the sample and instrumental variation over time.” The 5 percent figure was included in the calculation of acceptable range because it was found that sometimes the standard deviation in a particular sample set might be lower than the error inherent in the method. In the aforementioned glass study 98 percent of same source glass samples were found to be inclusive using these guidelines. All brands of the red and blue crayons could be distinguished within their color group using these guidelines. An example of the comparison using the two crayons with the most Similar elemental ratios is as follows: m Si/Al Mg/Al Si/Mg Ca/Si Kid's Cthed 15.31 10.61 1.44 003 (a) Sthev= 1.25 Sthev= 0.31 Sthev= 0.09 Sthev= 0.01 Lo= 11.57 Lo= 9.69 Io= 1.16 Io= 0.01 = 19.05 Hi= 11.53 Hi= 1.72 Hi= 0.05 mourn-law 15.00 722 2.08 0.03 Red Sthev= 5.43 Sthev= 2.48 snow: 0.12 Sthev= 0.01 (b) to: -130 Io= 0.21 Lo= 1.72 Lo= 0.00l = 31.30 Hi= 14.65 Hi= 2.44 H1= 0.06 (a)inlo(b) Inclusive Inclusive Exclusive Inclusive (b)imo(a) Inchsive Exchsive Exclusive Inclusive Table 2: Comparison of elemental ratios of two brands of crayon Because at least one of the ratios from each of the brands of crayon was outside the range of the other brand, the two crayons were excluded as originating from the same source. 14 65: hfimugmm. 3:33.83 mamxfio mamas... 332%.. 2323: 3x .333... ~33 3:. 3...? 3933.538 MQNuENM Ee..\$§\e began. a. $.35 No.0 mwd mwd and 2.6 No.0 No.0 mvd mud mvfim No.0 No.0 mm... 5.» .900 No.0 mod mfo v9.0 mwd Duo mfo :20 no.0 no.0 mwdm mad .56 mod 530 a... 8.. and Nos 84. 2;... can 3N 8N vac .c... 2.. no. 3... 22.» S. 8a SN 3.. 3.. .2 SN 21. SN 3... 8.. o... 8.8 Rd as...» NNNM mm.» and BN6 mad cm... and wad exam mo... VNd mud. end N04 .32. mmdm mvd moé and mad omé :6 mod NW... .06. w... on... mad 0... EB: Nmfiv 00...... 3.0 tam 0mm menu mm. .0. 2. 0mm. bmd mmé mwém ovN :é 22m mmhm mmé nod Mrs and. N9? mod... vmd ooh. 5.9. mm... 0.6. and and _<=m «to 3.. m..o new «a... 2.6 .260 5626.”. mad Be «no a: so... Sci 8... a...” N; ~..~ a: 9.25 3.60 22.90 8.. mo.» 5.. mac mm... .525 .-< mac 8...” and 8.. was 2965 8.0 $5 ...o and one 26 .5“. :23 R... ...n E... 8.. to 25 :8“. 2220 no... so...” .00 8.. was .83 5:62.260 26.20 8d o..~ ~..o S... cm... sum 2:8. 20.90 a...» 3.0 Ed 86 mod :80 m..o m... 8.. 8.0 .3 use. .55 no. 86 8.. Sum 26 9.5. .o.. 2.0 mod mm... mm... :83: mm... «to o..o 9.0 SE cs_-N 3 :s so 3 a; .m s :s _< s :s as. so + 5 + _< + a: s :s 63.56 2.03.0 02m Ens—cam mm... .2. «No S.» is. 2.6 3.60 52:6“. 5... 8..” mud «n. 8.. 2cm :8“. 26.20 3.0 no... u... on. m: 8.26 860 26.20 .m... 3.» 36 new ow. Sec 8.0 tun «No SN o... 6:5 65.8. 26.20 mod mm... and cm. 3... 26.20 8d .0.” 8.0 SN .3 33c 8:62.28 2280 SN 3N and 8d 2.... 3:20 .-< o..o EN .3 N... was 2.0 .5“. :23 mod ~..~ 0.... .o.~ S... 2.0 £5. 8..” mod 86 mod 2.” :80 .3 35 5o 35 a: 536m and mm. 36 Ed SN use. 3.0 8.0 o..o 2.0 so... oc__-~ 3:: so $2.1m g. :s _< s :s a: so in + _< + a: s :s .353 nco>20 com EaEfiaw 15 aeaub \o “.353 935.3... 8 33.: N uBuh EE\S§ 3.5.5.» Siege 3...? =§u~§8~§2 Pfiaauuu ..~ 2:»: swab v o e0 as co 0.... cl. 000 2 v [be em 9/ o o 00/5 oo . cod cod. .6 + .w + _< + as. .23- oodu 6.8- M ,_.,i 8.8 22.59 _ 2le : . oodv Ell 8.9.. 00.8 33am ESEU tom 88.6 \o .353 935.3... 3 8...: N .43: EEKSQE .8535.» 299.6 2.3 \o afiuuaouuauu 3938.5 ..N 2:“: 8.o cod. 8.8 8 1m + .< 4 a: .x. :5- 8.8 @3- 8.3 8.8 3.st 8.8 .522. 8.2. 28. 8.8 oodm code— 85...: uozauU 93m 17 3. Possible Individualization of Crayon Writing Although individualization of a manufactured product is not usually possible a characteristic has been discovered in some brands of crayon, which may allow a crayon to be individualized to a handwritten sample. During the SEM-EDS elemental analysis, it was observed that about one third of the brands of crayon had extenders which were poorly dispersed. The extenders appear in the backscatter image as bright areas against the darker background of the binder. The extenders are not visible in the secondary electron image (Figures 3 & 4), nor in any form of light microscopy attempted (stereo, transmitted, polarized). The extenders in most crayons are well dispersed and thus when the crayon is used, the writing has evenly dispersed bright Spots when viewed in backscatter mode (Figures 5 & 6). Poorly mixed extenders form “pockets” in some brands of crayon. These extender pockets are randomly distributed in the crayon (Figure 7). When a crayon of this type is used, extender is transferred to the written page and appears as bright bands against a dark background of the binder and paper (Figure 8). Because these pockets are a result of a random distribution, no two crayons with this defect should transfer the bands to a page in the same manner. In fact, the bands will change during continued writing with the same crayon. In the case of a crayon with poorly mixed extenders, a portion of crayon handwriting may have bands that are similar to test bands produced with that crayon, with two caveats. First, the portion of questioned handwriting examined must be the last portion of writing performed with the crayon. This is because the pockets of extenders change throughout the crayon. If the wrong questioned word is chosen or the crayon has 18 been used after the questioned document was written, the bands will change and thus not align. Second, the rotation of the crayon in the hand in the known writing must be identical to that in the questioned writing. This appears to be highly problematic to duplicate; however, Since crayons are worn down as they are used, determination of the angle and rotation of writing is often a simple task. Comparison of the extender bands in the SEM is a relatively Simple procedure as magnification and rotation of samples on separate stubs in a Split-screen mode allows matching bands to be aligned by the analyst in a manner similar to bullet comparison on a comparison light microscope. Because analysis of the extender bands is not possible after the crayon has been used, it is imperative that the tip of the crayon not be disturbed during other analyses. Thus, removal of portions of the known crayon for other types of analysis (color, FTIR, elemental) should be from the Opposite end or the interior of the crayon. Care should be taken not to spoil the last portion of questioned writing with any document or chemical examination if extender band examination is to be attempted. 19 Figures l l & 12: Secondary electron images of crayon and subsequent writing with this crayon. Note surface detail showing directionality Of writing and poor contrast with paper surface due to small topography difference. 20 \ K: 9. ' j - ’ '- . ‘.‘J(UIJI‘I Mode 3 ‘vhlinle [Wu-5mm \ ‘ - .- 7'. «‘1 ‘.'-. -: Figures 5 & 6: Backseatter images of crayon with well-dispersed extender pigment and subsequent writing with this crayon (Crayola). 21 4. Conclusions 4.1 Analysis Protocol A protocol for the forensic analysis of crayon was developed. The foundation for the protocol lies in the analysis of paint and other coatings. The protocol is described below and should be executed in the following order: 1. Perform a visual and stereoscopic examination of questioned writing for trace materials and gross color. Small color differences should not be used for elimination. Attempt to determine the last portion of questioned handwriting in which a crayon was used. DO not damage this area. . Examine and compare questioned writing and known crayon via FTIR. Samples removed from questioned writing should be from an area other than the last portion of writing. Known samples should not be removed from an end of the crayon which has been used for writing. Questioned and known samples may be smeared on a potassium bromide disk and run (at minimum) through a range of 4000-690 cm". Significant variation in 3750-3590 cm", 1750-1680 cm" or ”00 cm" to 750 cm"1 regions may be used for elimination. Examine and compare questioned writing and known crayon via SEM- EDS. A 1 square centimeter square of questioned handwriting should be removed from the last portion of writing and mounted on a SEM stub with carbon tape. A ~100 mm section of the interior of the crayon should then be cut with a scalpel and mounted on a separate 23 SEM stub for comparison. Known and questioned sample X-ray data should then be alternately collected in variable pressure mode at 25 kV for 100 live seconds, until each sample has been run 5 times. Average Si/Al, Mg/Al, Si/Mg and Ca/Si ratios Should then be compared. An elimination may be made if any of the questioned ratios are outside a range of 3 standard deviations or 5 percent of the known. If only one ratio is outside these limits, the samples may be re-run prior to elimination. . Lower the SEM working distance and examine the known crayon Slice in variable pressure-backscatter mode for the presence of extender “pockets”. If extenders are evenly distributed, check the questioned handwriting for an even distribution. The presence of multiple extender bands may be used for elimination. . If extender pockets are present in the known sample, carefiilly prepare a sample of known crayon handwriting by determining the rotation and angle of the crayon when it was last used for writing. This may be accomplished using the angle of wear on the crayon tip. Prepare a known writing sample on a clean piece of paper by applying firm, even pressure in a straight line over a distance of 1-2 centimeters. . Remove the first 1 square centimeter portion of the known crayon handwriting on a SEM-stub and run in variable pressure-backscatter mode along with the questioned sample. If multiple extender bands are consistent between known and questioned handwriting, 24 individualization of the known crayon to the handwriting is possible. Any variation between known and questioned bands should not be used for elimination. 4.2 Areas for Future Research The methods outlined in this research should allow the forensic scientist to distinguish, at minimum, between different brands of crayon in a forensic analysis. There are, however, other areas of crayon analysis that could be explored. Although the dyes and additives present in the crayon contributed to the IR Spectrum in this study, separation of these compounds by a chromatographic method such as thin layer chromatography or gas chromatography-mass spectrometry would be a more probative factor for comparison. Elemental analysis by other more sensitive analytical techniques such as inductively coupled plasma-mass spectrometry could be performed. Analysis by a more sensitive technique would allow examination and comparison of elements that are present but below the detection threshold of SEM-EDS. Intra-batch and inter-batch variation of both chemical and elemental composition could be studied for each brand of crayon to assess the variability within each brand. This would be helpful in an actual case situation as insight on variability of the brand of crayon enables the analyst to assess the strength of an association. 25 It would also be helpful to determine if any extenders are present in paper products and if so, whether they may leach into crayon handwriting and modify the elemental data. The author has begun research in examining pencil writing via the same SEM-EDS method to determine if the elements present and or their ratios vary in different brands and grades of pencil. This research would be beneficial as pencils are used much more often than crayons for handwriting. 4.3 Remarks The characterization of different brands of crayon is useful; however, the unique and somewhat clever part of this research is use of backscatter imaging to individualize the crayon to a piece of writing. The author’s hope is that by disseminating this technique, other scientists might be able to make a specific identification. This research demonstrates the importance of developing new imaging techniques and applying current analytical techniques to achieve forensic analyses that were once thought to be impossible. 26 I— o 10. ll. 99°SF‘MPVNT‘ I—II—II—dI—i—I—I WNWN—‘o P References Michigan State Police Forensic Science Division 1999 Year End Statistics American Society of Crime Laboratory Directors, Laboratory Accreditation Board Manual 2000, pp. 34-36. Ellis MH and Yeh MB, “Categories of Wax-Based Drawing Media”, Western Association for Art Conservation (WAAC) Newsletter, Volume 19 No. 3, September 1997. Woods 8, Crayons From Start to Finish, Blackbirch Press, CT, 1999 Thornton JI, “Forensic Paint Examination” pp. 529-571 , Forensic Science Handbook, Volume 1, Richard Saferstein, Ed., Prentice-Hall, NJ, 1982 LeSota S., Coatings Encyclopedic Dictionary, Federation of Societies for Coatings Technology, Blue Bell, PA, 1995 Grifi'lths PR and De Haseth JA, Fourier Transform Infrared Spectrometry, John Wiley & Sons, NY, 1986 Flegler SL, Heckman JW and Klomparens KL, Scanning and Transmission Electron Microscopy: An Introduction, W.H. Freeman and Company, NY, 1993 Goldstein J], Newbury DE, Echlin P, Joy DC, Romig AD, Lyman CE, Fiori C and Lifshin E, Scanning Electron Microscopy and X-RaLMicroanalysis: A text for Biologists, Materials Scientists, and Geologists, Plenum Press, NY 1992 Reeves E and Bommarito C, “Elemental Analysis of Glass via Variable Pressure Scanning Electron Microscopy- Energy Dispersive Spectrometry (SEM-EDS)”, Accepted for presentation at 2001 Annual Meeting of Amercan Academy of Forensic Sciences Schefler WG, Statistics for the Biological Sciences, Addison-Wesley Publishing, Philippines, 1979 Figures Author Author Author Author Author Author Author Author http://www.chemistry.vt.edu/chem-ed/spec/vib/ir-instr.html Imzflwwwchemistry.vt.edu/chem-ed/optics/selector/michelso.html http://www.mse.iastate.edu/microscopy/path2.html http://www.granite.k l 2.ut.us/I-Iunter__High/BusinessPartners/sem/source.html http://jan.ucc.nau.edu/~wittke/Column.html http://jan.ucc.nau.edu/~wittke/Column.html Goldstein J], Newbury DE, Echlin P, Joy DC, Romig AD, Lyman CE, Fiori C and Lifshin E, Scanning Electron Microscopy and X-Ray Microanalysis: A text for Biologists, Materials Scientists, and Geologists, Plenum Press, NY 1992, p. 177 Flegler SL, Heckman JW and Klomparens KL, Scanning and Transmission Electron Microscopy: An Introduction, W.H. Freeman and Company, NY, 1993, p.73 27 Appendix 1: Instrumental Design and Theory Fourier Transform Infrared Spectrophotometry Infrared (IR) spectroscopy measures vibrations of functional groups and highly polar bonds. These chemical 'fingerprints' are made up of the vibrational features of all the sample components. IR spectrometers record the interaction of IR radiation with experimental samples, measuring the frequencies at which the sample absorbs the radiation and the intensities of the absorptions. Determining these frequencies allows identification of the sample's chemical makeup, Since chemical functional groups are known to absorb light at Specific frequencies. IR radiation is electromagnetic radiation that encompasses all the wavelengths between the visible and microwave regions of the electromagnetic spectrum. The IR region can also be subdivided into three smaller regions known as near-IR, mid-IR and far-IR, the ranges of which are summed up in the table. [Region Wavenumber Range Vibrational / Rotational Information Changes in vibrational and rotational levels, Near IR 14000 - 4000 overtone region and some low energy electron transitions mi d-IR 4000 _ 400 Changes In fundamental Vibrational levels of most molecules far-IR 400 - 20 Rotational energy level changes Table 1: Regions of IR radiation Traditional dispersive infrared Spectrophotometers consist of an infrared source fitted with a monochrometer, a mirror that splits the infrared beam into two paths, a sample holder and an infrared detector. The infrared radiation is limited to a single wavelength by the monochrometer and the beam emitted is Split and passed through a 28 '" __ _ _ 7 monochromator . , '. I K nnnnnn a y o "7',- ML? ------------- ‘ § .:':'."/', . 1’ ‘ IR .3} Ireferencel $119 """ I -------------------- source."_-.I | Whom—T; ..... 3‘ u: ..... ........ ,, \.-___ sampleL sample I -a§”o .Lco adoo coo. Gem _ ocom coon odoov Ill. I ., 1 EL. ; :r. i . t lllllli illrl.-. ., .. s-|l+ll.iill . ...LI.I I‘ll- ll-.. _ . a M vo m _ _ , u ,_ _ . momm I . _ _ o— mmmm “ _ . . . 2 _ “ vmmm # .3 Ba b__§o-< £0 .- 3. tom mu» . .mm . a? _ I S. 1m? __"'—="._. A _~‘---. _— ———~——_ ‘——-——‘1 . has on omoa \ .. i an arm onH . .x . : -8 _.fl ‘ mam xx / mHHH \ / Inn . a. i p ..\ ,, ,. .\ amen jaw odac mHn 8de é:eoa<3£2oeeo_2 8.. 53mm: .< 82808 - 50685.9:3296 750 Do: ocom w v mm com :80 £0 Nomw- -mmva fl . s 3 H ., \ a. p m m \. we < \\ ./.\1 f t/ \( a 2.3)); \\ /( >2. 2- f\/ \\I\ .l. . .i t Jill\ ll\. 1 illil (\t 11‘». odoav . sifno 1o— In— ION awn rcm rmm rev ,nv 1cm has Inn roe -no :2. Ins. [cw Inn 100 :ma r 6.60— 43 oonma é::oa, x. . -no v 0.00— odao 8.: hood 1 Pl .tl HmoH Neva . _ _ H+VH m, ._w H : ,. W. ._ r. ammofl _ # NHHH m w . _ ;:, mama . 2 ofiVH\ , nmmfi _ m. roomfl. . ham“ ‘ x ..g. .Nmmfl MM . 2 . .. , ..., > \.. r .. _ . - < c 2.x ,. ._ . . p a ’, p m / ..._ /.... . fix 839 Hosea/622%.: 8&832.‘ 2 £30on - Foods-sescos-Euo _ -Eo coon com 325 3.00 “—93.6 9.8 ————_-_ -—~‘_.,_ —~—.—_ vmmN odoov mamm /Nme x w 3 . xiii/x ,3... 8 9o 7 n -2 . 2 8 - mm -8 r 3 S. .9. he. 2 ,8 T 8 -2 1 2. cm vmo : c.8— ‘45 0.000 coo— NoVH mfls . --mmp a maofi W: m _, . 3. / omm my / ax. \ mood .\ g , m a, D i a f . mama . K r .smHH . oflva_ / r / \ ‘ J \ ,. wnmflx _ ,. ... .1 . K . . h mmmfl k / .r / p _\ snmawr. K \ .. x a (mix/5.x > m _;=0 cow. DOON mvmw 00M 300m 00325300 £0,350 90 . Hopfi . _ . msvfi y w“ . _ r ,_ t. F ween smmfl coma \_. .7, a \ 09.00 ”2353083258.: Sudompduvn 2 8.500% - Sedans-eBcosab’uo vmmm odoov -_.o -n 2 2 [on .8 -3. rnm :3 TS. row Ex. .3 Too .3 -0» 12. 18 In» 00 1mm r odo— 46 Afiooe “—7—— 000 ooo. oom— II. t» i iiL . 9| Nflva _ -;-~00H _ mmm F. . ,0000 oooa / \ z. / \ Kim m r. \ / 00~H / a / mama . .0009, o / 00¢: a / . mmmfi _ K r , > . . san/X. pmma ,;g($Li ) r . o <(/\ / 09.09 ”Eaegoeofisobi 09.99.82 2 E2803 - 60.0292902296 .Lnu 00% 03.5 room 0.93.0 £0 Horfi OOOM .~‘ / 0000 Hamm odocv NAV rm ro— 1n— fiom nN vmmN 10M tow the ion .hem mm 100 no a 2. 00 T 3 00 rnm /2 m gf’g>){i{xr o avoc— ‘47 odow o2: con — .I l H ll. .llillitlhllll llulT 0HwH NowH > “ NFVH , _« ___ _ H00 H 0 m n... m .. . 0 _ \0 a r K. m .H H. .\ m who H 0m0 H / mmmH \ /., t. o x ./00HH mvmfl momH . .. . J m; a / mpmH Rf ;\ nemH : .0 ., P c? g 0 H. m H H ./ m m P H. / t< H \ .3). HNO\\ 0 D \ /H\ ,L 0. H00 \ >x 09.00 “2030208820.: 09.38.03» .< E2380 - 98.09002902096 .TEo coon and 0:5 09.00% 0.9800 90 .TMOPH % _ u _ 08m i IrT .ll'll 1. owmm 0m0~ .r T 00 {17(1):} (:3 (T 1 0.000.. IETNH 0 0_ T 2 0N T mm T on T mm 00 3 T 00 T R .00 T 00 T 00 In. In” -Oa rma Po\0 T 06°— 48 000— oaba mowH 00 9.00 6.300(0963E222 km. .00 :38 2 £38.00 - 0000520509896 H .50 000d Hora 00m 920 0.32 £0 0.000% NM TI 2 -2 T00 T00 T00 mm T00 T2. .00 .000 T00 T00 T00 T00 T00 T00 T00 T00 mm 1 0.00m 49 mar 780 000— 00%— 000H _ 0HwH H00H _ H” .2: . _ r... . r. . __. H m ‘ 00mH m . momH 0 \ ‘ fiHomH _ _ . . r Mmmw ; vaH . _ ;g\ . a, I 0 F0 H x R _ \ f H i K ,_ wmmH . _ , _ \ mmmm~0mH , ‘ ’ ./.0NNH o r... . . f _. 0.0 L H\ , ._ m .. u x _.._... . o 0 1...... / , 00m 006 000 :23 £0 mamm vnmm mhwm 09.00 “20:8,32208085 09.009; {.0 .< 82803 . 50.02022200296 nN 00m T mm 100. 1 mV 10w Ex. 1 mm 00 I no :05 1 mm. on 1 mm 100 Tma T 0.00— 5() 0.2. Hm‘_ movH H "F"-- V H Hfiha 00 F .00 “2050302202222 09.0 80.3.? .< 82.080 - 90008209000296 H .80 ooom 0.000v 000m _ 0.0 ,/ T W 0— mvmm -m— r0N 03— 920 00.00 500.com 9.0 3.00. T mm 0m 1mm u 0? T n? T fix. on T. mm 00 two 51 1 05 I mm. \c K . vaN a . r 00 T00 100 0.00 ,-3 KKTTx; . . .m\ ,xa ,fx/xlllkarif\t$1$k4 ,- , - THV00H 0.000 coo. ®HOH .. T 000 000 Z. . . _. . . .___ .._ 0:. \ H... / ... . .. 000. ... -__r.H.———— "fl-..— ‘_. (____.. *-- ‘0. - 09.00 ”2000952206085 09.9... .03. .< 628000 - 6008002902890 TEo ~00H . wMFH 000m . . . . . mva 03. mafia. 0.6 000m \ \ mamm 0.000v T0 T0. 2 T00 T00 T00 T00 -00 T2. 00 T00 00 T00 T00 -2. 000 -00 T00 J0 F0\0 0.00. 52 0.000 0H0 M-.— __'»- 000 _ lllktlll FHOH . _.__..._.——-— ‘ --—_ 0N0 00%. 0000 new. 9.0003. 9.0 09.00 ”2053055808.: 09.000. 9000 .< 52.0000 . 30.08.082.806? l 000m 0.000v / 52$, <(ufi\/.¥a09no ..E0 000— 00m. Iiiltlur .I III! ll c i. i ii iii- i movH , .NmVH . . .. 0~0H _ 000H 2 mmoH H 000H : 000H . ,5 mmmH NHva . _.l mpHH N . . U 000. man. 000 . . ”v0HH MVNH .. g M .. P. / H mmNH 3.. . x \ ..... \__.. . . _;_ Q x . _. I / .. .mHmA. . \ Q).\ , /\... .9. K. L. c) \ . . <<~ .. xx . 0 L. )[filt 000m .. lTiin ii Ti 000m 0.000.» mva 00M 95:. 9.8 N0 10. in. 0N TnN T0m -nm T0? .9» Ton T....\0 1mm 100 Two 105 ink. r00 1mm 100 Tna r 0.00. 54- 09.00 “2000208088225. 090000.000... .< 6.5080 - 900.028.353.96 , .L00. .9000 000. oOn. . .Ilkilil. I TT i r T It iit L. l I» it 4“ M. NJ.H 0 H0 .. vaH 000 _ _ _ ._ . .0 6. ¥ .m. x ; r _ . . E . _ . .. 000H . _ : . . ,_ .. . _ . _ . .1 . . 00H. . . / _ . < 3000H 00HH / mom mmm .. x. N , . N. .. . 2 . x /. . x. .\ /. 2. x ; ... . mmm M} x . 2 \ \. . ST. . T . .2 2%.... fit. /e..zl>..2 )5 .. I . \\2.... mama 000m . I.— ll. 03. 2.30 0.0 000m ll. 2... A... . .llllllllllluiT .JEE . . .. _ mmmN. N . . D NOWM t? T 00 .2 .TT..... .103.» T 3 {tit/x 0.000? m0 To. Tm. T00 .00 T 00 00 T00 r. 0.. - Ex. 00. 7.0 0 00 no .2 .12. 00 run T 0.00. 55 A8000 000. .i.i..i-lllL| . . T- I. 09.09 6.000308305083 «9.009.003 .( 6.50000 - 30.3.30302896 . .;=0 00n— 000N 000m . ._\' I III/T. .0»: .. L. M /_, 00.00 ”W .. . r i 0000 N _... .. : .. . m 8.0 0:30-... 0.0 $2 : ._ _ . _ .W . . . . . .. 2 / 2; 0Hmm H000 ;.. mmwm ,/. 0Mmm _ \ I! :I .I‘kkl 15:1. li 0.000v l 7.0 rm 10. T 00 T R 00 - mm 1 0V 0.. T 00 bx. T 00 ., 00 T 00 .05 JPFI 56 00 w .00 _. Ho.....t0a<_uEQOEaKnx—z VG F .th _..NOP r «< EEfionw . FOO._nc29co>I§“o _A=0 OOm _ OCON 98m odoov odoc coo— .. . ,I T..- 2:... -1 ITIuL r/ olTT1TlTTIT||l \T .TI'TI—V W.o .\ m / "" “" 'r‘ . 0mmm .0. 000m m— ,ON 02m :80 £0 mN wcm mmVH 7mm «000 wmv Rb» .. rcn ‘ .nm T 000 00 .. omvfl n0 .. \ Inh é mnm \ r. mm _ \1 fa. \ .. .. ,, v I.) . r & . . u r\./\(T>; \/ .\ {x3’33‘13‘ ’ ___. .» >T:.JTTT T, z/l/J/\/ . . FTT,.\1(\ Inna “Ecc— 57 oofioor Houston’xDanoEOLQE www.mwm «.mrmw .< 53.0005 . PDQ-niahficoxagb odcov _;00 0.0.6 000— 002 OOON 06.0mm.-- IT Tut ITI. ». .5! -Il- 'tllilz h T I. _ \ 2 x .. x. . ._ \. . mmmm \ mvmm 035 0.93.5 £0 -wmmm N000 ,.. mrva Now” nfiwfl . _. Z : \ map 000 \ _. . . ._ . .. m. . mm» \ /N000 \. / mafia . . /> . z. . /. mmmfi bnmfl _ . , . . __ _ ._ v we a . _ . .. _ . wonfl 3mmfl.owM mvmm / mmb . . ... m m . . / mama . .. m .. . /.)..& . _ mood . . a C I. 0 S/ \x .. ,. .. \ . 2 ... .<.....,.(\ \, < , \.\ K) ..,. T. ,. a x 47. ,2 \k. I A T 7 \\\ . ITA .. $\al I- v}c . \l- 00 ff: .T 3 _.0 0 T0. 2 T0~ Tmu -0m .3. T00 va T0n In Ha» T 0.06— 58 odao coo— mmna _;:0 co: ooom OOOM ?. . _ 0mmm menu _ 02m 835 00.00 0.9300 500 «mam Hpvfi _, .1. % mora .. . _: . ._ . . _ . . . .. .. \ «mhfl . . “momfl ovmfl mfiwm . T . . 0900? 655202206922 «0 fluent .80 .< 52.0on T 0.._n.»0.900>89”o odocv , - Nd m T 0— Tn— P90 T we T on T mu .ow .. ma T co TnAw r 0.02 :59 0.000 000 _ COW — TIT 'Flll 'l IOTT ! \l Til . «N00 w «000 0000 ; mvm . _ .. ._ mam .. 0000 r . ./ ofivi. \ . , . . . _ 0000 . ._ m hbmfl. ._ .. ./_ w m N H _. _ o m m H x T . _ x. / ymvmfi . .. . r > .0 f . ._ . / . . T. . .. /\ T \ / ...,. (LTDK .(T....;/\P\\ _’ 09.09 H23.22522383.5. «9.009. 9 Sn 2 E2808 - .00..0o>89=o>0§0 _;:o 02m .8000 «5:033:00 0.9300 9.5 Nobfl mvmm «mom 0.000? vd T m T2 Tn— TON TmN TOM Tmm Tow Tm? T0m H.0\0 Tmn 00 .m0 705 .nb .00 ammo nu . -00 {TTTKKTTTTTTTT.- 00 0.00— (K) 0000 [IT pmm .yov “0.000. . . . «0.. . . mmmfl m . _ . WQNH .0... VONH .\... T oowdm Heston<09305922 Nowdmowdonn a< Eagm T woo..nn>n..O/co>29no .;:0 000m . 00m. 02m Sim. .0000 0.9.000 £0 N00. T. «we. 00$. g... T. . . .. . _ mmwfi . 000.. vnmav.’ , . r . . T....,,..... -. .. T.\ . a . SK: c. f/ . K. / TT. mva vmmN 0.000? Tfim.0 Tm T0. Tm. T0N mN Tom Tmm T0? va Ton Tmn T00 Two 0.. Tmb T00 F0\0 61 Wa— —m;‘:_"‘—_ 09.09 ”2000308308292 «9.9.9.003 2 82.0000 - 60.3.0.5..3296 - 750 000m 0.000v \/ 0mmm 02m. 8.0m 05.00... 0.0.300 £0 v.0 Tn T0. fm. T0N fimm j0m -nm T00 va ..0n Tro\0 mm T00 ,mw 0.000 000. F » oHOH omoa 000 mph NNHH mrmfl anH 09.00 ”05:34.02220232 000.000 9.0.0.00 E 8.5800 T 00.3029080896 .Tnnv 000m can 930 0.0.0. e0 000m 0.0009 n.N r... r» 9 T2 T00 T00 00 ran T00 T00. Ton T00 T00 T00 105 P00 r 0.00. 63 09.09 “830308808085 000.009.0000 2 82.080 - 0003023000890 .Lho 0.000 000. 000. 0000 0000 0.009. |.T.1ITT. .TI.T.T|.TIITTTTIIIII|I.F|.II.TTTTT T :-Ts;-LT!IlllT , 0.0 n 0000 0000 0. Th— TON 3.0 020 Si :23 £0 :mN m HOH Obv H OM > vmmN Inn . 0m0H Tnv 0v _ 0300 0900 00w0 Tcn > . 0&0. Inn . .3. _ _ _0000 uh» T00 000m . 00 000 . _ . . T00 . / _ \\ 00. W . wow . h. . 0 _/ » 5 T 000 /.€a§u a! TEo OOON coon odcov L |rl€ - pl - . .- 0 ll: Siil ii I,|II| . [ .ziarl - y----|. 3} -iuln" +_| W.O \ fl . \ \ \ .I _ . . \ ‘ vam0 1c— odao \ mem0 mmm0 _ 02m weak— 3.8 mm rcm T 2 ,_ Tow -nv , _ 1 “ I ha» _ cm .1 1 r _ _ mom 1 mfiflfih mama ‘ . mm . _ mmvHA mflh _y.. mmoJ . . V . .1 J 1. 1 >m01100wfl,. . foo .. i / .I f _,1 y ‘ I .. _ /. T1; 1 . ... .. < ..1 __ i .1 / or .( fins. _ , T3 . 1 r . . m5 Hmp 1 %/\/ «and / 1cm H H x w vaH . \ /. . , «awn . . . wam r , . . 1.. 3 >21... 1 .. \ / 8 ..))\:i ’.\X\ A V 66 odoe coo— r' .I - II I. lily" liilllv o «000 1., Nova . . .2 1 . .1 _~. . 1 . 1 . . mfin 1 n . 00> 1 . x . ~ A ‘ f a W. ._ 1. ._ ,... a, 1 . _, .. _. _ , . \ ,.. . ,V .. J >>mfl / . .. ,. n f wmm 1 / , _ . , 1. ._ \ .. _.. \ 1 ,. 1: HQ 1 8:8. ”23:85223083 03. $2.89 2 E2808 - 8o._noo8>co>a§a _A:o OOON ®¢mN 03m 583. 9.8 mawm / / Kisxstficsl. 1, mxwm Odo _.. T 35f)? ov Ell - i¢ilfi Md m o— 2 ON mm 1cm mm Iov n v Fo\o 10m WWW ow an To“. 12. low .0» 19G xm¢ w v.8— 67 oowdow “Batax‘DEouoEogi www.8ofimmv ~< 558m . woo..nu:29co>a§uo TEo odoc o2: 00m _ oocN 8cm odoov 6.; . . v2: 1 ‘ vomN Oman 1 mnva mvm0 To. .. z @050 ... mmvfl ._ n— .. I _ 02m 28:. 9.8 ho\o 1mm O \D ./ . ... / x ./ «awn f vme wn¢ . 66¢— 68 'wl!_—‘* ——u_-.._~_ OCC— I w i y I- III I. I I mm. mm.. firm. 1 1 0mo.om.. c 0.0.. we.” 0pm 1 . 1 1 v.0. 1 1 .. ‘7, 1 mmm 1/ 1.1. . 1 \1 . .1. ‘ 1,... a 1 _ > 1 1 1 , - 1.1 1.. thH 8.69 “EsuogoesoEQoE on .. .36me 2 5268.0 - .8.Boc__~,co>a§u «Ado OOON OOOM .ll1olqllllult- l3lul .l ‘ . . ,ifil l :74 u . I $| 'lli L|.1I.. NmmN 1 OmmN mme 2.5 25-0 as 1 vmm N 1 _ . 1 1. 1 1 1 1 1 111 ,. NOWM can. mam. \ . H \ ,1 .fi. 2 1, ., 1..) .,\4» /:/fi---.. .551: ii TWQ c.0030 . Md .n o. 2 .3 , n0 ‘Om . EX. 12. nb ‘cm w nu ‘oa [odo— 6%) Appendix 3: SEM-EDS Spectra 70 23-Oct-2000 17:10:33 KV: 25.0 Til: 0.0 'I'kOfl‘: 35.0 1135 Fsc: 17218 Cps: 3230 LSec: 100 Pm:100L Kev: 0.52 Cnt:698 Spectrum: cru200.SPC p Kn Crayola Color Slick Blue nu. K: I I ] I 1 I T I I I I I I I 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Ill-oat Into Neightt Ataic’s C x 1070 .36 92 .64 96.65 m 105.21 2.11 1.09 m 40.40 0.69 0.32 81! 255.06 3.84 1.72 Cal 39.02 0.72 0.22 nu lultipoint Output 7l 23-Oct-2000 mm xv: 25.0 Tilt: on non: 35.0 ms Fsc: 12204 Cps:2240 LSec: 100 Prst:1001. Kev: 0.52 Cat:504 Spectrumrn20731’C rm. Crayola Color Slick Blue “(3 x. l ' l ' I ' l ' I ' l ' l ' l ' 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Result: Ila-ant Into Weight-.9: Atmic’s C! 145.36 92.58 96.62 m 73.94 2.13 1.10 A1! 30.35 0.74 0.35 81! 178.47 3.87 1.73 CI! 25.59 0.67 0.21 mu Midpoint Output 72 23-Oct-2000 17:37:58 KV: 25.0 Til: 0.0 'l‘kOfl’: 35.0 15135 Fsc:10539 Cps: 1881 LSec:100 Prst: 100L Kev: 0.52 Cnt:444 Spectrum: cm214.SPC lpxa Crayola Color Slick Blue Quantitatiw Results Ila-at Into Weight’r Ito-let C R 641.42 92.71 96.68 m 64.19 2.18 1.12 m 23.40 0.67 0.31 813 148.42 3.78 1.69 CI! 21.24 0.66 0.21 Mag :42X H mum m liltipoint Output 73 23-Oct-2000 17:51:33 KV: 25.0 Tilt: 0.0 TkOff:35.0 22/35 I"sc: 9497 Cps: 1575 LSec: 100 ”$100!. Kev: 0.52 Cnt:346 Spectrum crn221.SPC CKa Crayola Color Slick Blue Quantitative Results c x mm AlK Six cut Element Inte 569.51 53.57 22.42 128.30 19.32 Weight'k Atomic’s 92 . 82 96 .73 2.06 1.06 0.73 0.34 3.71 1.65 0.68 0.21 Mag :42x EDAX Nul tipoint Output 74 #mum Met-2000 18:05:10 KV: 25.0 Tilt: 0.0 'l‘kOff: 35.0 29/35 For: 7717 Cps: 1391 LSec: 100 M1001. Kev:0.52 Cac294 Spa-:cmmSPC CKa Crayola Color Slick Blue l T ' l ' I 7 l r l *1 I 4.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results flaunt Into weightx Atmic’: C! 458.41 92.79 96.70 m 45.03 2.14 1.10 All 18.83 0.76 0.35 81.! 104.16 3.72 1.66 Ct! 13.39 0.58 0.18 m1 Whimht Output 75 24-0ct-2000 11:40:17 KV: 25.0 Tilt: 0.0 'l‘kOfl’: 35.0 7’35 Fae: 16207 Cps: 2711 LSec: 100 Prst: 100L Kev: 5.44 Cat: 56 Spear-I: cm256.SPC ‘3 K2 l A'1 B'Ue l 7 T ' l ' T ' l ' l ' i 1 l 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Raaulta Ila-ant Into Weightx Atonic’s cx 1000.39 93.28 91.21 m 18.92 0.46 0.24 m 68.87 1.36 0.63 81! 166.72 2.97 1.32 Cl! 88.37 1.92 0.60 mu ultipoint Output 76 2+0ct-2000 11:54:07 KV: 25.0 Tilt:0.0 1110113350 14135 II‘sc: 12070 Cps: 2157 LSec: 100 l’rst:100L Kev: 5.44 Cut: 47 Spectrum: cru263.Sl’C 3 K3 A-1 Blue “(3 fi' f I I I I I I I I I I I I I I I I I 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Ilenent Inte Weight’s Atmic’s C R 749.89 92.41 96.84 149'! 15.29 0.47 0.24 All 61.64 1.54 0.72 six 148.30 3.37 1.51 CAI 79.71 2.21 0.69 mu mtipoint Output 77 Met-m 12:07:51 KV: 25.0 Tilt: 0.0 110113350 21135 lI‘sc: 12621 093:2035 LSec: 100 Prst:100L Kev: 5.44 Cn1:47 Spear-z crn270.SPC «‘5 I’.‘ A-1 Blue I l I 1 f 4.00 8.00 12.00 16.00 N.” 24.00 Quantitative Results fluent Int. Weight" Atmic’c C R 770.43 93.99 97.51 14.44 0.49 0.25 43.62 1.19 0.55 104.68 2.57 1.14 58.52 1.76 0.55 2355 mu lultipoint Output 78 24001-2000 12:21:39 KV: 25.0 Tilt: 0.0 'l‘kOfl:35.0 28/35 lI‘sc:11980 Cps: 1948 [Sea 100 Prst:100L Kev: 5.44 Cn1:26 Spectrum: crn277.SPC 3K2 A-1 Blue 1K: —1' I I I I I I I I I I I I I I I l I 7 '"F 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Element Inte Weight‘ia Atomic’a c x 734.06 93.46 97.27 My: 13.49 0.45 0.23 1111: 47.20 1.28 0.59 six 122.37 3.01 1.34 cm 59.55 1.79 0.56 a Z Mag :43): L—' 600 um EDAX Multipoint Output 79 “Oct-2100 12:35:23 KV: 25.0 Tilt: 0.0 TkOfl’: 35.0 35135 Fat: 10881 Cps: 1907 LSec: 100 Prst:100L Kev: 5.44 Cat:46 Spear-z cmMSPC I210 A-1 Blue I I I I I I I I I I I I I I r 4.00 8.00 12.00 16.00 ”.00 24.00 28.00 32.00 36.00 Quantitative Results [lament Into Weightx Atonic’e C! 661.14 92.41 96.04 m 12.62 0.44 0.23 m 52.14 1.48 0.69 81! 132.18 3.40 1.53 CI! 72.07 2.26 0.71 mu lultipoint Output 80 24—0ct-m00 11:38:17 KV: 25.0 Tilt: 0.0 T110“: 35.0 6f35 Fsc: 22688 Cps: 4002 [Sea 100 Prst: 1001. Kev: 5.44 Cat: 73 Spectrum: c111255.SPC I? [(3 Crayola Pearl Brite Blue “Q I I I I I I I I I I I I I I I I 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Ila-ant Into Weight’s Atmic’s c 3 1419.37 93.45 97.02 In! 69.87 1.10 0.56 21: 142.86 1.86 0.86 Si! 276.19 3.29 1.46 Cal: 20.32 0.29 0.09 max “timint Output 81 24-061-2000 11:52:09 KV:25.0 Tilt: 0.0 TkOfl':35.0 13/35 II‘sc: 19777 Cps: 3380 L800: 100 l’rst:100L Kev: 5.44 C111:66 Spectrum: crn262.SPC Crayola Pearl Brite Blue Quantitative Results C K “OK All Six C83 Element Inte 1243.33 54.83 98.22 200.42 13.36 Weight% Atomick 94 . 26 97 . 39 1.05 0.54 1.56 0.72 2.89 1.28 0.23 0.07 Mag :43): l——' 600 um m Multipoint Output 82 21-Oct-2000 12:05:54 KV:25.0 Tilt: 0.0 TkOll’:35.0 20/35 Fsc: 14573 Cps: 2020 LSec: 100 Prst:100L Kev: 5.44 Cntz45 Spectrum: crn269.SPC Crayola Pearl Brite Blue ’2. l ' l 7 l l 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results ale-ant Inte Weight}; Atonic’s C I 893.59 93.08 96.84 In! 52.09 1.27 0.65 All 92.34 1.86 0.86 811: 188.73 3.48 1.55 Ca! 13.99 0.31 0.10 Mag :43x L——' 600 um max lultipoint Output 83 24-0d-2000 12:19:41 KV: 25.0 Tilt: 0.0 Tk011‘:35.0 2735 1'50: 17837 Cps: 3051 L804: 100 Prst: 100L Kev: 5.44 Cut: 60 Spectrum: crn276.SPC l’ Ka Crayola Pearl Brite Blue iKa T T I I I I I I I I I I I I I 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quant itat ive Results Element Inte Weight}: Atomicfis C K 1106.98 94.22 97.38 MI 42.01 0.90 0.46 AIR 98.37 1.74 0.80 SiX 181.18 2.92 1.29 Cax 11.27 0.22 0.07 Mag :43x L——' 600 um EDAX mltipoint Output 84 24-0ct-2000 12:33:25 . KV: 25.0 Til: 0.0 TRON: 35.0 3435 Fee: 14436 Cps: 2468 LSec: 100 Pm: 100L Kev: 5.44 Cat: 49 Spectrum: crn283.Sl’C 1C Ka Crayola Pearl Brite Blue iKa I I I I I I I I I I I I I I 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Element Into leiqht’: Atonic’: c x 898.51 94.14 97.35 40.42 1.07 0.55 69.62 1.52 0.70 150.52 2.98 1.32 11.99 0.29 0.09 8355 m lultipoint Output 85 24-0d-2000 11:36:16 KV: 25.0 Tilt: 0.0 T110“: 35.0 5/35 Fsc: 32603 Cps:4087 LSec: 100 Prst:100L Kev: 5.44 Cat: 67 Spectrum: crn254.SPC cu» CmnBMe I T 4.00 8.00 l f I ' l r l ' I 12.00 16.1!) 20.00 24.00 Quantitative Results Ila-ant Into c E 2082.46 m 0.00 m 0.00 81! 0.00 Cal 187.68 Weight’s Atuic’s 96.83 99 .03 0.00 0.00 0.00 0.00 0.00 0.00 3.17 0.97 Mag :43): max lultipoint Output 86 Met-m 11:50:10 KV: 25.0 Tilt: 0.0 11011: 35.0 12l35 lI‘ac: 21373 1390:2540 LSec: 100 M1001. Kev: 5.44 Cet:36 Specuu:cru261.SPC me Cran Blue - 44- I I T I r I 4.00 8.00 12.1” 16.00 20.00 24.1” ”.00 32.00 36.00 Quantitative Results Element Inte Neightx Ataicx c x 1347.39 96.84 99.00 In: 2.07 0.09 0.04 m 3.86 0.09 0.04 31: 1.05 0.04 0.02 cm 114.01 2.95 0.90 Mag 3433 H mum m Mtipoint Output 87 24-0ct-2000 12:03:56 KV:25.0 Tilt: 0.0 TkOfl':35.0 19I35 II‘SC: 19859 Cps: 2456 L804: 100 Prst:100L Kev: 5.44 C111: 37 Spectrum: crn268.SPC :Ka Cran Blue l ' l ' 4.00 8.00 12.00 I 16.00 20.00 24.00 Quantitative Results Element Inte Weight% C K 1236.44 95.87 My! 4.23 0.13 MK 3.84 0.10 Six 1.76 0.04 Cu! 142.00 3.86 Atonic% 98.68 0.07 0.04 0.02 1.19 blag:43x EDAX Multipoint Output 88 24013-2000 12:17:43 KV:25.0 Tilt: 0.0 1110112350 26’35 Fsc:22086 Cps:2791 LSec: 100 P1001001. Kev: 5.44 Cnt:45 Spectrum: cm275.SPC 2 K2 Cran Blue M I 1 l r l ' l ' l ' l ' l ' l ' l ' l 4.00 0.00 12.00 16.00 20.00 24.00 20.00 32 00 30.00 Quantitative Results Element Inte Weight’s Ate-i494 CR 1372.10 95.40 98.53 1191: 4.68 0.13 0.07 All 3.39 0.08 0.04 six 2.07 0.04 0.02 Cal 179.59 4.35 1.35 Mag :43x max lultipoint Output 89 D: \EDAI32 \AUTO\USR\crn28 2 . SPC Labelz33/35 W:2S.01‘ilt:0.0 Take-ott:35.0 Det mezsm+ Res:137 'l'c:10 P8 : 19359 Lsec : 100 24-Oct-2000 12:31:27 1i E I. Cran Blue l l; n l I. Is 1 3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.0 IDA! w Quantification (Standardless) fluent lomlized 82C Il'able : Default Element Wt % At % K-Ratio Z A F C X 97.41 99.18 0.9167 1.0017 0.9395 1.0000 MgK 0.09 0.04 0.0005 0.9495 0.6264 1.0002 AlK 0.07 0.03 0.0005 0.9223 0.7880 1.0004 SiK 0.04 0.02 0.0004 0.9499 0.9085 1.0008 CaK 2.39 0.73 0.0235 0.9177 1.0720 1.0000 Total 100 . 00 100 . 00 90 Element Net Inte. Bkgd Inte. Inte. Error P/B C K 1333.61 3.84 0.27 347.29 MgK 4.00 8.91 11.68 0.45 AlK 3.85 12.00 13.71 0.32 51K 2.85 12.99 18.84 0.22 CaK 122.19 7.90 0.96 15.47 Cran Blue 9] 24-0ct-2000 11:34:14 KV:25.0 Tilt: 0.0 TkOff:35.0 4/35 l‘sc: 17066 Cps:2451 L800: 100 Prst:100L Kev: 5.44 Cut: 65 Spectrum: crn253.SPC p10. Crayola Techno-Brile Blue I I I 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Element Inte Weight’s Atmic‘k CE 1050.52 95.77 98.12 119'! 53.20 1.45 0.73 Al! 5.73 0.13 0.06 six 102.97 2 .04 0.90 Ca! 24.83 0.61 0.19 max mtipoint Output Mag :43x L—l 600 um 24-0ct-2000 11:48:12 KV:25.0 Tilt: 0.0 T110": 35.0 11l35 Fsc: 11936 Cps: 1678 LSec: 100 I’rst:100L Kev:5.44 Cut: 29 Spectrum: cm260£PC Crayola Techno-Brite Blue Quantitative Results Element Inte Weight’s Atonic’s C R 715.87 95.74 98.12 m 35.55 1.42 0.72 Al! 3.19 0.11 0.05 six 72.03 2.09 0.92 Cal 17.79 0.64 0.20 Magz43x L—l 600nm max uultipoint Output 93 24-001-2000 12:01:58 KV:25.0 Tilt: 0.0 TkOfl:35.0 18/35 Fsc: 6669 Cps: 976 LSec:100 Prst: 100L Kev: 5.44 Cnt:30 Spectrum: crn267.SPC Crayola Techno-Brita Blue I I I I l I I I I 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 593‘. 4.00 Quantitative Results Element Inte Weight‘k Ate-it’s C I 394.93 95.92 98.23 14g! 17.38 1.30 0.66 A13 1.56 0.10 0.04 six 34.77 1.88 0.83 cu: 11.94 0.80 0.24 Mag :43}: bl 600nm w 11:11 tipoint Output 24049-2000 12:15:44 KV:25.0 Tilt: 0.0 T110": 35.0 25l35 lI‘sc: 5862 Cps: 958 LSec: 100 1’51:le Kev: 5.44 Cnt:25 Spectrum: crn274.SPC Crayola Techno-Brite Blue Quantitative Results C K Max MK six CaR Element Inte 344.75 19.37 2.14 41.64 14.70 Weight% Atomic"; 94.90 97.78 1.53 0.78 0.14 0.06 2.39 1.05 1.04 0.32 Mag:43x l—l 600nm EDAX Hultipoint Output 95 D:\3DIX3Z\AUTO\USR\crn281.SPC Lebelz32/3S ._— rs : 2943 Lsec : 100 kV:25.0'rilt:0.0 Il'ake—off:35.0 Det Type:SU'l'fl+ Res:137 'l'c:10 24-Oct-2000 12:29:29 g i 2 I .9 I Crayola Techno-Brite Blue Total 100.00 100.00 ~ '91 Ca ‘ AM— A —j‘\A4 . A7%EEEEEEEEEEEE:==:=2======:==‘ , g 1 3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.0q max at Quantification (Standardless) llement lomlized SIC fable : Default Element Wt % At % K-Ratio Z A F C R 96.19 98.39 0.7103 1.0021 0.7369 1.0000 MgK 1.03 0.52 0.0063 0.9499 0.6387 1.0007 AlK 0.11 0.05 0.0008 0.9227 0.7796 1.0013 Six 1.64 0.72 0.0141 0.9503 0.9001 1.0003 CaK 1.03 0.32 0.0101 0.9181 1.0633 1.0000 96 Element Net Inte. Bkgd Inte. Inte. Error P/B C K 190.83 0.80 0.73 238.54 MgK 8.75 1.80 4.02 4.86 AlK 1.14 2.32 21.09 0.49 51K 19.17 2.50 2.56 7.67 CaK 9.65 2.52 3.97 3.83 Crayola Techno-Brite Blue 97 24-0ct-2000 11:32:14 KV: 25.0 Tilt: 0.0 '1'1101'1:35.0 3/35 Fsc: 12809 Cps: 2374 LSec: 100 Pm: 100L Kev: 5.44 Cn1:82 Spear-1: crnZSLSPC CKa 51Ka Laion Fun Club Blue f 4.00 8.00 I ' 1 ' 1 ' l ' 1 12.00 16.00 20.00 24.00 Quantitative Results Element Inte C R 790.75 145;: 85.29 A111 7.98 Silt 194.67 cm 2.99 Weight’s Atomick. 93.34 96.89 2.36 1.21 0.19 0.09 4.03 1.79 0.08 0.02 Mag :43): EDAX multipoint Output 98 24-00t-2000 11:46:15 KV:25.0 Tilt: 0.0 T140“: 35.0 111/35 l"sc: 8543 Cps: 1625 LSec: 100 Prst:100L Kev:5.44 Cnt:57 Spectrumzcrn259SI’C :Ka Laion Fun Club Blue Quant itat ive Result 5 Element Inte Weight’a Atomic‘k C R 514.05 92.50 96.48 119! 66.00 2.63 1.35 A1! 4.68 0.16 0.07 six 154.73 4.63 2.06 Ca! 2.48 0.09 0.03 Mag :43x L.—l 600 um EDAX Multipoint Output 99 24-0ct-2000 12:00:02 KV:25.0 Tilt: 0.0 T140113 35.0 "/35 Fsc: 7676 Cps: 1405 1.801: 100 Prst: 100L Kev: 5.44 Cnl:46 Spectrum: crn266.SPC :Ka Laion Fun Club Blue l ' l 4.00 8.00 l I I I ‘1’ *1 I 12.00 16.00 20.00 24.00 Quantitative Results Element Inte Weightx Atomic’s C R 464.87 93.19 96.81 m 53.02 2.48 1.27 Al! 4.33 0.17 0.08 six 116.46 4.07 1.81 ca 1.95 0.08 0.03 Mag :43): EDA! lultipoint Output 100 214-043-2000 12:13:48 KV:25.0 TiI:0.0 TkOlI':35.0 24/35 Fsc:10973 Cps: 1795 Misc: 100 Pist:100L Kev: 5.44 Cat: 65 Spectrum: crn273.SPC Laion Fun Club Blue iKa 1 I I I I I I I I 1 I I fir 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Element Inte Weightk Atomic‘ia C K 668.66 94.33 97.36 119K 57.07 2.04 1.04 AlK 6.79 0.21 0.09 six 125.43 3.33 1.47 Cal 2.84 0.09 0.03 Mag :43x L——1 600 um max mitipoint Output lOl Met-m 12:27:34 KV: 25.0 Tilt: 0.0 110112350 31135 Fee: 11187 Cps: 1785 LSec: 100 Prst:1001. Kev:5.44 Cetz36 Spear-z cruZBlLSPC T510: Laion Fun Club Blue iKa Kn T j l ' I ' I ' I 4.00 8.00 12.00 16.00 20.00 24.00 Quantitative Results fluent Inte Weight’s Atmick 679.02 94.16 97.56 54.30 1.99 1.01 3.66 0.11 0.05 113.52 3.07 1.35 1.95 0.06 0.02 325%: Mag :43): mu lultipaint Output I 32.00 36.1!) m Whimint Output Meg :43: 103 24-0ct-2000 11:30:17 KV: 25.0 Tilt: 0.0 1110112350 2’35 lI‘sc: 38287 Cps: 4542 LSec: 100 P501001. Kev: 5.44 Cut: 75 Spectrum: cmZSlSPC lplh Z-Line Blue I I I I iw I I I I I I I I I I I 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quentitetive Results lle-ent Inte Weight’s Atonic’s C K 2431.37 90.85 99.60 Ila! 7.39 0.12 0.06 m 7.80 0.11 0.05 81! 11.06 0.13 0.06 Ce: 53.41 0.79 0.24 24-0ct-2000 11:44:17 KV: 25.0 Tilt: 0.0 110112350 9I35 Fee: 18364 Cps: 2002 LSec: 100 Prst:1001. Kev: 5.44 Cet:28 Spear-z cmZSBSPC C [(11 Z-Line Blue f I l I 17 I I T I 1 T I I I l I T 4.00 8.00 12.00 16.00 20.00 24.00 28.“) 32.00 36.00 Quentitetive Results llenent Inte weight’s Ate-1d: CK 1140.18 99.29 99.73 m 3.93 0.14 0.07 Al! 3.78 0.11 0.05 8:13 4.49 0.12 0.05 0.3 10.69 0.34 0.10 m lultipoint Output 104 24-0ct-2000 11 58:06 KV: 25.0 Tilt: 0.0 TkOfl:35.0 16l35 Fsc: 17804 Cps: 1917 LSec: 100 Prst:100L Kev: 5.44 Cut: 45 SpectrumrnfiSSPC CKn Z-Line Blue l I 4.00 8.00 I I I I I r r, I I I I I I I I l 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results c R an AIR SiK cut Element Inte 1081.06 2.64 2.59 2.24 11.20 Weight% Atomic‘is 99 . 37 9 9 .77 0.10 0.05 0.08 0.04 0.06 0.03 0.38 0.12 Mag :43x L—1 600 um max Nultipoint Output 105 Met-N00 12:11:51 KV:25.0 Tilt: 0.0 'I'kOfl:35.0 23/35 lI‘sc: 73151 Cpsz2593 LSec: 100 PIst:100L Kev: 5444 Cut: 47 Speck-:cmNZSPC Z-Line Blue 2.00 16.00 20.00 24.00 28.00 32.00 36.00 E 1 I ' l ' 1 ' l T 1 1 l ' l ' I I T I 4.00 8.00 1 Quantitative Results Element Inte Weight’a Atomic’a C R 1432.14 98.98 99.62 149K 4.82 0.14 0.07 Alx 4.08 0.09 0.04 six 9.99 0.20 0.09 cm 23.67 0.59 0.18 Mag :43x L-—-' 600 um smx M'ultipoint Output 106 24-0ct-2000 12:25:38 KV: 25.0 Tilt:0.0 TkOfl‘:35.0 3M5 Fsc: 22428 Cps: 2532 LSec: 100 Pm: 100L Kev: 5.44 Cut: 41 Spectrum crn27951’C CK: Z-Line Blue % I l I 1 I I I I I I l I l I l I I 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Element Inte C R 13 82 . 0 3 max 4.30 an 4.36 Silt 4.66 cu: 24.57 Weight% Atonic’: 99.02 0.13 0.10 0.10 0.65 99.65 0.06 0.05 0.04 0.19 Mag :43x h——Il 600 um mx mitipoint Output 107 24-0ct-2000 12:23:39 KV:25.0 Tilt: 0.0 111011": 35.0 29/35 II‘sc: 9758 Cps:2661 LSec: 100 Prfl: 1001. Kev: 5.44 Cnt:53 Spectrum: cm278.Sl’C :Ka Pentech Color Club Blue $1Ka Tlgx. Quantitative Results Element Inte Weight": Atomic’a C R 603.53 86.51 93.36 319! 260.69 5.98 3.19 A1! 8.38 0.18 0.09 six 387.29 7.20 3.32 cm 6.09 0.13 0.04 Mag :43x l—l 600 um EDAX lultipoint Output 108 24-0ct-w00 12:09:53 KV: 25.0 Tilt: 0.0 TkOfl': 35.0 22(35 Fsc: 10642 Cps: 2854 LSec: 100 I’rst: 1001. Kev: 5.44 Cut: 77 Spectrn: cru271.SPC I; K: Pentech Color Club Blue iKa Ka I I I I fl I I I I I 1 I I T I 4.00 8.00 12.00 16.1!) 20.00 24.00 28.00 32.00 36.00 Quantitative Results llenent Inte weight’t Atomic”: c R 656.60 86.40 93.30 In! 291.21 6.09 3.25 Al! 8.15 0.16 0.08 81! 426.16 7 .24 3.34 Ce! 5.20 0.10 0.03 Magi”! H mm m Mtimut Output 109 24-0ct-N00 11:56:10 KV: 25.0 Tilt: 0.0 T110“: 35.0 15I35 Fsc: 10507 Cps: 3144 LSec: 100 Prst: 100L Kev: 5.44 Cut: 69 Spectrum cm264.SPC I; Ks Pentech Color Club Blue 5iKa Ks l ' l ' l ' I ' l ' l 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results llement Inte Weightt Atc-ic’: C I 647 .72 85.11 92.62 ”I 331.96 6.51 3.50 Al! 11.54 0.22 0.11 Si! 497 .13 8 .02 3 .73 Cal 7.65 0.15 0.05 Magz43x |——-—-| 600nm m lultipoint Output 110 24-0ct-2000 11:42:21 KV:25.0 Tilt: 0.0 TkOll‘:35.0 8B5 lI‘sc:13241 Cps: 3711 LSec: 100 Prst:1001. Kev: 5.44 Cut: 63 Spectrum: crn257SPC fKa Pentech Color Club Blue 31KB 14;“ f 12.00 16.00 Quant it at ive Result 8 Element Inte Weight’s Atomic9a C K 822.65 85.56 92.86 HgK 401.63 6.38 3.42 AlK 11.39 0.17 0.08 six 594.34 7.73 3.59 cm 9.93 0.15 0.05 Mag :43x L__l 600 um EDAX mil tipoint Output lll 24-0ct-20w 11:28:16 KV: 25.0 Tilt: 0.0 TkOfl:35.0 1/35 Fax: 19176 Cps: 5926 LSec: 100 l’rst:100L Kev: 5.44 Cut: 127 Spectrum: crn250.SPC l: Ks Pentech Color Club Blue six: l IL:- I 3 I I I I ‘_I H T I I I I I 400 8.00 12.00 16.00 20.00 24.00 23.00 32.00 36.00 Quantitative Results lleeent Inte weightx Ate-1:8 c x 1196.69 84.70 92.40 lg: 645.31 6.70 3.61 11! 20.37 0.20 0.10 81! 962.26 8.24 3.84 Cal 16.07 0.16 0.05 IDAXHlultipount Output 112 20-0ct-2000 15:08:13 KV: 25.0 Til:0.0 TkOfl:35.0 35/35 Fsc:18388 Cps: 2681 LSec: 100 Prst:100L Kev: 0.52 Cut: 639 Spectrum: cml34.SPC :Ka Trend Red Quantitative Results lie-eat Inte Weight’s Atomic’s c R 1144.49 97.81 99.07 m 3.93 0.12 0.06 All 20.89 0.50 0.22 81! 59.73 1.27 0.55 Cal 11.96 0.32 0.10 Mag :38x H 700 um max lultipoint Output 113 Met-2000 14:54:15 KV: 25.0 Tilt: 0.0 TkOff: 35.0 28/35 Fsc: 18403 Cps: 2615 1.80:: 100 Prst: 1001. Kev: 0.52 Cnt:683 Spectra: cm127.SPC I; Ks Trend Red I I I I I I I I I I I I I I I I 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results fluent Inte Iteiqht’s Atmic’: c E 1142.73 97.75 99.04 m 4.41 0.13 0.06 Al! 23.25 0.55 0.25 Si! 62.72 1.32 0.57 Cal 9.80 0.26 0.08 m lultipoint Output 114 Met-2000 14:40: 15 KV: 25.0 Tilt: 0.0 T1100: 35.0 21/35 Fee: 18723 Cps: 2588 LSec: 100 M1001. Kev: 052 Cst:638 Spear-I: cm120.SPC I2Ka TIendIQed I I I I I I I l I I 4.00 8.00 12.00 16.00 20.00 24.00 Quantitative Results Elesent Inte weighex Atasict ‘ 1159.47 97.73 99.03 4.74 0.14 0.07 21.67 0.50 0.23 65.81 1.36 0.59 10.46 0.27 0.08 BEBE: snax lultipoint Output 115 20-0ct-2000 14:26:20 KV: 25.0 Tilt: 0.0 1110“: 35.0 14/35 Fsc: 17950 Cps: 2563 LSec: 100 Prst: 1001. Kev: 0.52 Cstz643 Spectrum: cru113.Sl’C C Ka Trend Red r I ' l ' 1 ' j ' l ' l ' T ' l 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results EI-ent Inte leight’: Ltmic’: ‘ C R 1115.02 97.08 98.72 m 14.00 0.40 0.20 All 37.53 0.86 0.39 81! 67.91 1.39 0.61 Cal 10.86 0.27 0.08 Mag :38X E 7mm max lultipoint Output 116 20-0ct-2000 14:12:24 KV: 25.0 Tilt: 0.0 11018350 7/35 Fae: 19028 Cps: 2698 LSec: 100 Prst: 1001. Kev: 052 Cat: 632 Spectrum: crs106.SPC CKa Trend Red I 4.00 12.00 16.1!) 20.00 24.00 28.00 32.00 361!) Quantitative Results Ilenent Inte might-.94 thnic’s ‘ cx 1180.44 98.12 99.21 lg! 1.40 0.04 0.02 All 19.28 0.46 0.21 81! 53.02 1.12 0.48 Ca! 9.77 0.26 0.08 Mag :38): |———-| 700 um max lultipoint Output 117 Met-2000 14:04:26 KV:25.0 Tilt: 0.0 1110112350 3/35 Fsc: 34333 Cps: 4127 LSec: 100 Prst:100L Kev: 052 Cnt:101| Spectrum: crn102.Sl’C Cran Red Quantitative Results Elenent Inte Weight’s Atonic’e CK 2155.81 96.42 98.85 lg! 5.05 0.09 0.05 11! 5.64 0.08 0.04 six 10.35 0.13 0.06 can 208.47 3.28 1.01 max nultipoint Output 118 20-0ct-2000 14:18:24 KV: 25.0 Tilt: 0.0 'I'kOiT: 35.0 10/35 Fsc: 33811 Cps: 4151 LSec: 100 Prst: 100L Kev: 0.52 Cut: 930 Spectrum: crn109.Sl’C 2 K2 Cran Red K: T I l I I I l I I I I I l I l I I I 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Element Inte Weight’: Atonic’s C 1: 2114.70 96.88 99.05 Ila! 0 . 00 0 . 00 0 . 00 Al! 0 . 00 0 . 00 0 . 00 Six 0.00 0.00 0.00 Ga! 187.06 3.12 0.95 max lultipoint Output 119 20-0ct-2000 14:32:19 KV: 25.0 Tilt:0.0 1110112350 17/35 Fsc: 33588 Cps: 4053 LSec: I00 l’mt:100L Kev: 0.52 Cut: 873 Spectrum: crnll6.SPC :Ka Cran Red Quantitative Results Element Inte Weight‘k Atonic’s CR 2122.93 97.04 99.09 m 0.56 0.01 0.01 AIR 0.00 0.00 0.00 six 0.00 0.00 0.00 Cal 176.96 2.95 0.90 Mag :38x 700 um max lultipoint Output 120 20-001-2000 14:46:15 KV:25.0 Tilt: 0.0 110112350 2035 E00: 34617 Cps:4383 LSec: 100 Pn't:100L Kev: 0.52 Cnt:834 Spectrum: cm123.SPC Cran Red r I I I I I I I I I l . I I I I I 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Element Inte Weight-.96 Atonic’s CK 2184.86 96.77 99.00 m 2.01 0.04 0.02 A1: 0.00 0.00 0.00 six 0.00 0.00 0.00 ea: 199.14 3.19 0.90 EDAX Multipoint Output 20-0ct-2000 15:00:15 KV:25.0 Tilt: 0.0 “(01835.0 31/35 Fsc: 34331 Cps: 4132 LSec: 100 Prst: 100L Kev: 0.52 Cut: 776 Spectrum crn130.SPC Cran Red Quantitative Results Element Inte Weight‘k Atomic": C R 2174.60 96.96 99.02 149! 5.73 0.11 0.05 AIR 6.34 0.09 0.04 six 8.23 0.11 0.05 Cal 172.75 2.73 0.84 EDAX flu]. tipoint Output 20-Oct-2000 14:00:25 KV: 25.0 'l‘ilt:0.0 T110": 35.0 1/35 Fsc: 33110 Cps: 3954 LSec: 100 Prst: 100L Kev: 0.52 Cut: 777 Spectrum: crn100.S1'C gxa Roseart Red Quantitative Results Ila-ant Inte Weight’s Atomic-’6 CR 2098.43 97.44 98.94 IIQK 50.39 0.84 0.42 All 7.15 0.10 0.04 six 66.39 0.79 0.35 Cal 55.87 0.83 0.25 max lultipoint Output 123 20-0ct-2000 14:14:25 KV:25.0 Tilt: 0.0 TkOiT:35.0 8/35 Fsc: 31044 Cps: 3679 LSec: 100 Prst: 1001. Kev: 052 Cut: 737 Spectrumcrnl07SPC :Ka Roseart Red Quantitative Results Element Inte C x 1956.12 lg! 51.93 A1! 5.79 Si! 69.51 Ce! 49.75 Weight% Atalicx 97.34 98.88 0.92 0.46 0.08 0.04 0.88 0.38 0.78 0.24 EDAX lultipoint Output 124 Met-2000 14:28:21 KV: 25.0 Tilt: 0.0 T110“: 35.0 15/35 Fsc: 30182 Cps: 3771 LSec: 100 Prst: 1001. Kev: 0.52 Cut: 702 Spear-1: crn114SPC fl Rosearl Red Ks I l I 1 ' l 4.00 8.00 12.00 16.00 20.00 24.00 Quantitative Results Element Inte leight’t Atmic’s CR 1903.21 97.40 98.90 m 50.65 0.92 0.46 A1! 4.02 0.06 0.03 81! 68.57 0.89 0.39 Cal 44.93 0.72 0.22 m lultipoint Output 20-0ct-2000 14:42:17 KV: 25.0 Til: 0.0 11011: 35.0 22/35 Fsc: 29406 Cpsz3600 LSec: 100 Prst: 1001. Kev: 0.52 Cat: 715 Spectrum: cre121.SPC CKa Rosearl Red Ka I I I I -T I I I I I I I _ I 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Elenent Inte Weight’s Rtmic’s c s 1852.74 97.07 98.75 In! 57.54 1.04 0.52 Al! 2.76 0.04 0.02 81E 84.62 1.10 0.48 Ca! 46.86 0.75 0.23 EDA! lultipoint Output 126 20-0ct-2000 14:56:17 KV: 25.0 Tilt: 0.0 T110“: 35.0 29/35 Fsc: 27628 Cps: 3420 LSec: 100 Prst:1001. Kev: 0.52 Cst:680 Spectrum: cru128.SPC CKa Ks Rosealt Red f I 4.00 8.00 I I ' I ' I ' I f 12.00 16.1” 20.00 24.00 Quantitative Results Element Inte c E 1721.14 m 59.47 Al! 3.76 Si! 89.02 CaE 46.78 Neight’s Atmic’: 96 . 81 98 . 64 1.13 0.57 0.06 0.03 1.21 0.53 0.79 0.24 EDIE lultipoint Output 127 23-0ct-2000 13:57:20 KV: 25.0 Tilt: 0.0 T110": 35.0 33/35 Fsc: 17203 Cps: 2255 LSec: 100 Prat: 1001. Kev: 0.52 Cat: 511 Spectrum: cru182.SPC lpxa Kid's Club Red I I l 4.00 8.00 I 12.00 I r I 16.1!) 20.00 24.00 28.1!) 32.00 Quantitative Results C I 1052.17 95.51 m 79.43 2.04 A1! 7.37 0.16 81! 116.55 2.21 CI! 3.25 0.08 Element Inte Weight’t Atomic’s 97.90 1.03 0.07 0.97 0.02 ‘ II. _ , .' “.R‘s“ ‘ I". "‘1' )-a ‘4 - l 5...). " .‘ ;.‘,e .I . . . . ..g . i... 8 I I, ’U -‘r ' .4 V _. . .‘ I .. . s \ _. I‘d .. . O . . . . ‘ I a 5‘ .‘fd '1. 14.- max lultipoint Output 23-0ct-2000 13:43:33 KV: 25.0 Tilt: 0.0 T110113 35.0 26/35 Fsc:20599 Cps: 2814 LSec: 100 Prst:1001. Kev: 0.52 Cat:662 Spectrum: cru175.Sl’C 0K2 Kid's Club Red 1 I I I I I I I I I I I I I I 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Element Inte Iteiqht’s Atmic’: E 1280.94 95.43 97.86 99.25 2.08 1.05 9.22 0.16 0.07 146.46 2.27 1.00 3.16 0.06 0.02 O EEEI EDIE lultipoint Output 23-011-2000 13:29:44 KV: 25.0 Tilt: 0.0 111011: 35.0 19/35 II'sc: 12854 Cps: 1625 LSec: 100 Prst: 1001. Kev: 0.52 Cat: 310 Spectrum: cru168.SPC l: x. Kid's Club Red I I I I I I I 1 I I I I I I I I r 4.00 8.00 12.00 16.1!) 20.00 24.00 28.00 32.00 36.00 Quantitative Results Element Inte Weight’t Atmic’s CE 781.86 95.84 98.06 m 53.48 1.91 0.96 11! 5.30 0.16 0.07 811.! 76.68 2.02 0.88 ea 2.23 0.07 0.02 EDIE lultipoint Output 130 23-0ct-2000 13:15:59 KV:25.0 Tilt: 0.0 T110": 35.0 12/35 Fsc: 13404 Cps: 1662 LSec: 100 Prst:100L Kev: 0.52 Cut: 359 Spectrum: cml61.SPC pica Kid's Club Red Quant itat ive Results Element Inte We ight’s Atomic96 C K 814.41 96.09 98.17 MK 53.80 1.90 0.96 MK 5.18 0.15 0.07 Six 67.98 1.77 0.77 Cal 2.73 0.09 0.03 Magz42x l——l600um EDAX Multipoint Output 131 23-0ct-m00 13:02:12 KV: 25.0 Tilt: 0.0 11011: 35.0 5/35 Fee: 21587 Cps: 2913 LSec: 100 Prst: 100L Kev: 0.52 Cat: 660 Spectru: cm154.SI’C I: Ks Kid's Club Red T 1 I I I I I I I I I I I I I I I 4.00 8.00 12.00 16.00 20.1!) 24.00 28.00 32.00 36.1» Quantitative Results Element Inte Weight’: Atomic’s C E 1333.12 95.30 97.80 w: 105.98 2.11 1.07 All 9.86 0.17 0.08 81! 157.60 2.33 1.02 Cal 5.25 0.09 0.03 EDA! lultipoint Output 132 20-06-2000 14:02:75 KV:25.0 Tilt: 0.0 Tk011':35.0 2l35 Fsc: 17883 Cps:2885 LSec: 100 Pm:1001. Kev: 0.52 Cnt:1174 Spectrum: cm101.SPC 3K2 Laion Fun Club Red Quantitative Results Element Inte Weight‘is Atomic’a C R 1108.87 93.92 97.17 149K 109.82 2.30 1.18 AIR 12.57 0.23 0.10 81K 218.15 3.42 1.51 CaK 6.75 0.13 0.04 EDAX uul tipoint Output 133 woe-2000 14:16:22 KV: 25.0 Til: 0.0 TRON: 35.0 9/35 lI‘sc: 12840 Cps: 1758 LSec: 100 Prst: 1001. Kev: 0.52 Cat: 664 Spectrum: crn108.SPC I; Ks Laion Fun Club Red 1 I I I I I I I I I I I I I I I I 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Element Inte Neightx Atomicx 707.74 95.42 97.89 49.77 1.68 0.05 9.50 0.27 0.12 . 100.00 2.51 1.10 4.05 0.12 0.04 33553 EDIE lultipoint Output 134 20-Oct-2000 14%19 KV: 25.0 Tilt: 0.0 111011: 35.0 16/35 Fsc: 16663 Cps: 2389 LSec: 100 Prst:1001. Kev: 052 Cat: 915 Spectru: crullSSPC Fits Laion Fun Club Red 1 I I l fI I I I I u I I I I I 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Element Inte Weight’t Atomict c E 1043.08 95.95 98.15 52.46 1.40 0.71 9.77 0.22 0.10 118.76 2.32 1.01 4.57 0.11 0.03 2151 m lultipoint Output 135 20-0ct-2000 14:44: 15 KV: 25.0 Tilt: 0.0 Tl1011: 35.0 23/35 Fsc: 20068 Cps: 2969 LSec: 100 Prst:1001. Kev: 0.52 Cnt:1030 Specm:crn122.SPC ex. Laion Fun Club Red I I I I I 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results I 4.00 8.00 Element Inte Weightt Atonic’: CE 1251.34 96.12 98.22 149E 63.04 1.42 0.72 A1! 5.68 0.11 0.05 Si! 137 .97 2.27 0.99 Cal 3.90 0.08 0.02 sues m1 tipoint Output 136 20-0ct-2000 14:58:15 KV:25.0 Tilt: 0.0 Tk011':35.0 30/35 Fsc: 19656 Cps: 2862 LSec: 100 Prst:1001. Kev: 0.52 Cut: 1007 Spectrum: cm129.SI’C CKa Laion Fun Club Red Quantitative Results Element Inte C E 12 31 . 0 3 ml: 83.65 111: 12.10 six 169.66 cm 3.12 Weight’s Atomic96 95.29 97.82 1.78 0.90 0.22 0.10 2.66 1.17 0.06 0.02 EDAX m1 tipoint Output 137 211-008-201” 14:08:25 KV: 25.0 Tut: 0.0 11011: 35.0 5/35 Fae: 16549 Cps: 3185 LSec: 100 Prst:1001. Kev: 0.52 Cat: 1014 Spectrum: cra104.SPC t K. Crayola Construction Paper Red I1- Ks I I I ‘ f I I f I ' l ' I I I 4.00 3.00 12.00 16.00 20.00 24.00 20.00 32.00 36.00 Quantitative Results Element Inte Weight’: Atmic’: CE 1034.93 94.04 97.28 m 91.04 2.13 1.09 Al! 12.39 0.25 0.11 81! 178.50 3.10 1.37 Cal 23.05 0.49 0.15 m lultipoint Output 138 ”Oct-2000 14:22:21 KV: 25.0 Tilt: 0.0 111011": 350 1235 Fee: 12420 Cps: 2424 LSec: 100 P1381001. Kev: 0.52 Cut: 612 Spectrum cm111.Sl’C 1:1“ Crayola Construction Paper Red 111: K: Ka I I I l I I I I I I I T I 800 12.00 16.00 20.00 24.00 28.00 32.00 3600 Quantitative Results Element Inte Neight’: Rtmic’c CE 767.40 93.65 97.11 lax 68.78 2.11 1.08 AlE 14.69 0.38 0.18 SiE 141.66 3.24 1.44 CaE 22.17 0.62 0.19 max Wtipoint Output 139 20-0ct-2000 14:36:16 KV:25.0 Tilt: 0.0 T110112 35.0 19I35 Fsc: 13108 Cps: 2494 LSec: 100 Plst:1001. Kev: 0.52 Cut:663 Spectrum: cmllSSl’C 3K2 Crayola Construction Paper Red Quantitative Results Element Inte Weightk Atomic’: C E 807.08 93.93 97.24 m 68.30 2.03 1.04 LIE 10.27 0.26 0.12 an 147 .41 3 .24 1.43 Cal 20.18 0.54 0.17 max .111 tipoint Output 140 20-0ct-2000 14:50: 17 KV:25.0 Tilt: 0.0 “1011:350 26/35 Fsc: 17013 Cps:3445 LSec: 100 Prst:100L Kev: 0.52 Cnt:1148 Spectrum: crn125.SPC 3K2 Crayola Construction Paper Red Quantitative Results Element Inte C E 1063.00 sgx 111.95 111x 13.99 85.1! 220.46 cu: 33.09 Weight% Atomic% 93.19 2.39 0.26 3.52 0.64 96.89 1.23 0.12 1.56 0.20 EDAX m1 tipoint Output 141 35.0 3335 Fee: 15847 Cps: 3246 LSec: 100 Prst:1001. Kev: 0.52 Cutz926 Tilt: 0.0 T|10fl KV: 25.0 20-0ct-2000 15:04:16 crn132.SPC Spectrum Crayola Construction Paper Red Ks Ir: mum Quantitative Results Inte Iteight’t Rtmic’t Element C E III! 11E 93.34 984.27 1.15 0.12 1.53 0.22 2.23 0.27 3.44 0.71 95.17 13.55 197 .43 81! CaE 33.27 EDIE lultipoint Output 142 woe-2000 14:10:25 11v: 25.0 Tilt: 00 11:00:35.0 6135 F9c:18158 Cps: 3330 LSec: 100 Pm: 1001. Kev: 0.52 Cat: 3049 SW: cru105.Sl’C 0 K11 Crayola Red iKa Ks I I I I T I I I I l I I I I 4.00 3.00 12.00 16.00 20.00 24.00 20.00 32.00 36.00 Quantitative Results Element Inte leight’: Atcmic’t CE 1142.78 93.33 96.99 m 95.35 1.93 0.99 LIE 43.80 0.75 0.35 81! 215.33 3.25 1.45 Cu! 40.61 0.75 0.23 max lultipoint Output 143 211-011-2000 14:24:21 KV: 25.0 Tilt: 0.0 111011: 35.0 13/35 Fsc: 18573 Cpm 3462 LSec: 100 Pist:1001. Kev: 0.52 Cst:2899 Spectrum: cru112.SPC a E Crayola Red f I I I I I I I I I I I I l 4.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results 8.00 Element Inte Weight’: Atomic’: ‘ C K 1158.84 93.27 96.95 .33 98.08 1.93 0.99 LIE 49.61 0.82 0.38 an 225.00 3.32 1.48 Cu! 36.28 0.65 0.20 1\ m lultipoint Output 144 20-0ct-m00 14:38:17 KV: 25.0 11!: 00 11011: 350 20135 Fsc: 17667 Cps: 3396 LSec: 100 Prst:100L Kev: 052 Cat: 2818 Spectrum: crn119.Sl’C {3 K0 Crayola Red T I I I I I I I I I I I I 4.00 12.00 16.1!) N00 2400 28.00 32.00 36.00 Quantitative Results El-ent Inte Weightx Etc-list ‘ C K 1105.86 92.99 96.82 In! 97.61 1.97 1.02 LIE 52.33 0.89 0.41 81E 226.19 3 .44 1.53 CaE 38.12 0.70 0.22 EDIE lultipoint Output 145 20-0d-21100 14:52: 16 KV:25.0 Tilt: 0.0 TkOl'l':35.0 27/35 FSC: 16179 Cps: 3206 LSec: 100 l’rst:100L Kev:0.52 Cnt:2570 Spectrum: crn126.S1'C pxa Crayola Red Quantitative Results Blenent Inte c x 1013.10 m 86.00 All 47 .68 81X 204 .68 Ca! 33.58 Weight% Atonict > 93.10 96.87 1.91 0.98 0.89 0.41 3.41 1.52 0.68 0.21 Mag :38x h—J 700 um max lultipoint Output 146 :Ka 20-Ocl-2000 15:06:14 KV:25.0 Tilt: 0.0 1110113350 34135 ll‘sc: 16540 Cps: 3100 LSec: 100 Prst: 1001. Kev:0.52 Cntz2466 Spectrum: crn133.SPC Crayola Red Kn I 1 I I l l I 1200 1600 2000 Quantitative Results C K ugx Al! Six Cal Element Inte 1033.44 88.02 44.08 201.27 31.96 Weight% Atanic% 93.27 96.94 1.94 1.00 0.82 0.38 3.33 1.48 0.64 0.20 EDAX Multipoint Output 147 20-06-2000 14:06:24 KV: 25.0 Tilt: 0.0 11018350 465 Fsc: 14012 Cps: 2567 LSec: 100 Prst: 1001. Kev: 0.52 Cm: 1310 Spectrum crnl03.Sl’C (Flo. Prang Red 53‘? K: I ' 1 7 T 4.00 8.00 12.00 16.1” 20.00 24.1!) Quantitative Reaulta Ila-ant Inte Weight’: Atonic’s c x 865.68 92.68 96.64 m 100.50 2.53 1.30 an: 26.86 0.58 0.27 85.3 188.03 3.58 1.60 CI! 27.02 0.62 0.19 max lultipoint Output 148 20-0c1-2000 14:20:23 KV:25.0 Tilt: 0.0 “(0112350 "/35 Fsc: 13777 Cps: 2505 LSec: 100 Prst:100L Kev:0.52 Cm: 1278 Spectrum: cm110.SPC Prang Red Quantitative Results Element Inte c x 051.37 ugx 100.02 1111: 25.31 six 188.29 CaK 27 .30 Weight’s Atonic‘ia 92.62 96.61 2.55 1.32 0.55 0.26 3.63 1.62 0.64 0.20 Mag :38 L——-' 700 um EDAX Multipoint Output 149 20-0c1—2000 14:34:17 KV:25.0 Tilt: 0.0 1110113350 18I35 Fsc: 13972 Cps: 2580 LSec: 100 Pm: 100L Kev:0.52 Cnt:1460 Spectrum: crn117.SPC Prang Red Quantitative Results Element Inte We ight‘ia AtomicSa C R 857.12 92.28 96.44 Max 103.57 2.55 1.31 AIR 36.18 0.76 0.36 six 203.63 3.80 1.70 CaK 27.06 0.61 0.19 EDAX Ilul tipoint Output 150 20-0c1-2000 14:48:15 KV: 25.0 Tilt: 00 T110“: 350 25l35 Fae: 16937 Cps: 3018 LSec: 100 Prst:1001. Kev: 052 Cnt:1605 Spectrum: crnl24.SPC (I Ks Prang Red Ks K8 K: I I I I I j I I I I I I fl I I 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Ila-ant Inte leight’: Atmie’: c 3 1058.91 93.04 96.79 at 122.35 2.59 1.33 111: 19.56 0.36 0.16 is 215.95 3.44 1.53 Ca! 29.49 0.57 0.18 max lultipoint Output 151 nod-3000 15:02: 15 KV: 25.0 Tilt: 0.0 11:05:35.0 32135 Fsc: 15289 Cpsz2663 L801: 100 P1301001, Kev:0.52 Cat: 1602 Specu’umzcrn1315PC 1; K11 Prang Red K8 1:. l ' l f l ' j ' l T I ' I T 1 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results ale-ant Inte Weight’s Ate-1d: ' C I 950.05 92.97 96.77 m 102.66 2.41 1.24 11! 30.68 0.62 0.29 81! 192 .92 3 .41 1.52 Cal 27.48 0.59 0.18 Mag :38x L——l 700nm max lultipoint Output 23-0ct-2000 12:54:13 KV:25.0 Till: 0.0 Tk0fiz350 1/35 Fscz26236 Cps:3981 LSec: 100 Prst:100L Kev: 9.48 Cnt:1005 Spectrum: crn150.SPC A—1 Red Quantitative Results :1e1aent Inte Weight’s Atonic’s CR 1636.04 93.52 97.36 m 41.36 0.66 0.34 AIR 77.66 1.01 0.47 81! 215.59 2.50 1.11 Cal 163.33 2.31 0.72 max 1011 tipoint Output 153 23-0ct-2000 13:08:09 KV: 25.0 Tilt:0.0 1‘k011:35.0 8/35 Fsc:24713 Cps: 3550 LSec: 100 Prst:100L Kev: 0.52 Cut: 899 Spectrum: crn157.SPC A-1 Red Quantitative Results Element Inte Weight’a Atonic’a C R 1545.61 94.16 97.60 119! 42.91 0.75 0.39 A1! 64.80 0.93 0.43 six 171.80 2 .19 0 .97 Cd 126.53 1.97 0.61 EDAX Multipoint Output 154 23-0c1-7000 13:21:55 KV:25.0 Tilt: 0.0 ’1‘k011:35.0 15f35 Fsc:23680 Cps: 3133 1.80:: 100 Prst:100L Kev: 0.52 cm: 714 Spectrum: crn164.SPC CK: A-1 Red Quantitative Results Element Inte Weight’s Atmic’s CK 1473.93 95.09 98.04 119! 27.28 0.54 0.28 All 34.89 0.56 0.26 six 134.35 1.92 0.85 cu: 106.85 1.88 0.58 max lultipoint Output 155 23-0ct-2000 13:35:37 KV: 250 Til: 0.0 11011: 35.0 22I35 173cm Cps:3046 LSec: 100 Prst: 1001. Kev:0.52 Cat: 728 Spectrum: crn17l.SPC I; Ks A-1 Red ' Ks 1 I I I 1 I 1 I T I I I 1 I l I T 4.00 8.00 12.00 16.00 20.00 2400 28.00 32.00 36.” Quantitative Results Ila-ant Inte Weight’s Rte-i139: CR 1292.15 94.02 97.55 m 35.03 0.73 0.37 All 57.90 0.98 0.45 8:13 147 .80 2 .24 0 .99 Cal 110.13 2.03 0.63 snax lultipoint Output 156 Met-2000 13:49:26 KV: 25.0 Tilt: 0.0 “1011: 35.0 29l35 Fsc: 18333 Cps: 2610 LSec: 100 Prst: 100L Kev: 0.52 Cut: 506 Spectrum: crn178.SPC I", Ka A-1 Red Ks 1 ' 1 ' 1 ' 1 ' l ' l ' 1 T l ' 1 T 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Element Inte Weight’s Atonic’s C K 1143.46 94.46 97.77 119K 28.25 0.70 0.36 AlK 32.08 0.64 0.30 Silt 116.16 2.07 0.92 cm 97.31 2.13 0.66 me lultipoint Output 157 23—0ct-2000 13:51:24 KV:25.0 Tilt:0.0 110113350 210/35 Fsc:14000 Cps:?382 LSec: 100 Prst:100L Kev:0.52 Cut: 742 Spectrum crn179.SPC Crayola Color Slicks Red Quantitative Results Element Inte Weightk Atonic’s C I 858 .03 92 .40 96.52 m 74.72 1.83 0.94 All 73.02 1.51 0.70 six 199.09 3.71 1.66 Cal 24.55 0.55 0.17 Mag :42x 1-_1 600 um max mtipoint Output 158 23-0cl-2000 13:37:36 KV: 25.0 Tih: 0.0 11011: 35.0 23l35 Fae: 15328 Cps: 2616 LSec: 100 P1301001. Kev: 0.52 Cst:835 Spednm: crn172.SPC C Ks Crayola Color Slicks Red 1 K8 I I f I f I I I r I I I I I I I I 4.00 8.00 1200 16.00 20.00 2400 28.00 32.00 36.00 Quantitative Results llenent Inte Weights Rte-ic’s C R 947.61 92.38 96.52 m 82.43 1.83 0.94 All 77.11 1.44 0.67 81‘ 222.33 3.75 1.68 Cal 29.33 0.60 0.19 max lultipoint Output 159 23001-2000 13:23:51 KV:25.0 Tilt: 0.0 T110111 35.0 16/35 Fsc:6643 Cps: 1182 LSec: 100 Prst:100L Kev: 0.52 Cut: 359 Spectrum: crn165.SPC Crayola Color Slicks Red Quantitative Results Element Inte Weight‘k Atmic’s c x 307.50 91.83 96.27 11g: 37.76 1.90 1.03 1111: 32.16 1.43 0.67 six 100 .02 4 .03 1.01 cm 15.31 0.74 0.23 max lultipoint Output 160 23-0c1-2000 13:10:03 KV:25.0 Tilt: 0.0 TkOff:35.0 9f35 Fae: 5879 Cps: 969 LSec: 100 Prst: 1001. Kev: 052 Cn1:272 Spectrum: crn158.SPC 3K3 Crayola Color Slicks Red Quantitative Results Element Inte c x 346.56 ng 30.39 1111: 29.44 s11: 84.43 cm 12.24 Weight‘k Atmic’a 92.17 96.43 1.82 0.94 1.49 0.69 3.85 1.72 0.67 0.21 EDAX M'ultipoint Output 23-0ct-2000 12:56:11 KV: 25.0 Tilt: 0.0 1110113350 235 Fsc: 17237 Cps: 2991 LSec: 100 Prst: 1001. Kev: 052 cm: 1059 Spectrum: crn151.SPC 3 K11 Crayola Color Slicks Red K11 I 1 1 I j I ' 1 ' 1 I I I 12.00 16.00 . Quantitative Results Element Inte Weight’s Atonic’s CR 1073.28 92.25 96.45 149K 100.02 1.94 1.00 11! 88.92 1.46 0.68 81.11 256.86 3.79 1.70 Cal 31.73 0.56 0.18 Mag :42x L——4 600 um EDAX Hultipoint Output 25.0 Tilt: 0.0 T110113 350 31/35 KV 18a3100 Pun IBJktflw0 tkihZ! Spununncnn8usPC 1012 1001. Kev: 0.52 Cat: Cps: 2541 83c:12154 Ks 1': Crayola Pearl Brile Red 8.00 . . . 1 I ' .1? . .9 .. . f 6 I. . . .0, v . 1. . . . m!~...3..v. Quantitative Results Inte Neiflt’: Atonic’: Element C I Is! All 96.45 92.23 742.38 0.64 1.04 1.75 0.12 1.24 2.24 3.91 0.38 45.16 98.73 186.68 81! Ca! 15.02 max lultipoint Output 163 23-0ct-2000 13:39:36 KV: 25.0 Tilt: 0.0 “(011: 350 24135 Fsc: 13640 Cps: 2784 LSec: 100 Prst: 100L Kev: 0.52 Cut: 1071 Spectrum: cra173.SPC p x. Crayola Pearl Brite Red 1 I I 1 T 1 r 1 1 If I I 1 I 1 4.00 8.00 12.00 16.1]! 20.00 24.00 28.1” 32.00 36.00 Quantitative Results Element Inte Weight’: thnic’s C K 848.28 92.39 96.51 m 53.68 1.30 0.67 All 107.31 2.16 1.01 81! 206.04 3.82 1.71 CEX 14.74 0.33 0.10 EDIE lultipoint Output 164 23061-2000 13:25:51 KV:25.0 Tilt: 0.0 T110112 35.0 1765 Fee: 12619 Cps: 2567 LSec: 100 I’rst:100L Kev: 052 Cnt:1111 Spectrum: crn166.SPC :Ks Crayola Pearl Brile Red Quantitative Results Element Inte Weight’s Atomic96 c x 777.49 92.22 96.44 11g: 46.86 1.22 0.63 ux 107.16 2.31 1.08 Six 196.61 3.92 1.75 cu: 13.68 0.33 0.10 Mag :42x L——1 600 um EDAX Nultipoint Output 165 10135 :250 1111:00 110113350 100 Prst:100L Kev: 0.52 Cet:1166 KV 230:1.2000 13:12:03 Cps: 2793 LSec Spectra: crn159.SPC Fae: 13258 Ks H II Crayola Pearl Brile Red iKs Quantitative Results Inte Weight’: Rtaic’s Element C R '0’! m 96.25 91.82 828.40 1.42 0.73 59.56 1.86 0.13 226.78 4.15 0.40 811 CIR 18.33 max lultipoint Output 166 Mel-2000 12:58:14 KV:25.0 Tilt:0.0 T1011:35.0 3/35 Fae: 15261 Cps: 3461 LSec: 100 Prst:100L Kev: 0.52 Cnt:1463 Spectrum: crn152.SPC Crayola Pearl Brile Red Quantitative Result 3 Element Inte Weight’s Atomic’s C R 951.75 91.68 96.18 119! 69.83 1.43 0.74 All 134.56 2.31 1.08 Six 263 .80 4 .17 1.87 CaE 21.55 0.41 0.13 max Multipoint Output 167 23-0ct-2000 13:55:23 KV:25.0 Tilt: 0.0 11011:35.0 32135 Fsc: 5976 Cps: 2432 LSec: 100 Prst: 100L Kev: 0.52 C111: 2135 Spectrum: cm181.SPC ‘ . : Ki IKa Pentech Color Club Red MgKa 1 I 12.00 16.00 Quantitative Results Element Inte Weightx Atonic’s C x 349.42 81.13 90.43 Ilg'K 277.06 8.09 4.46 All 7.49 0.22 0.11 Six 414 .37 10 .32 4.92 Cal 8.36 0.24 0.08 EDA! lultipoint Output 168 ”Oct-2000 13:41:35 KV:25.0 Tik:0.0 11011:35.0 25135 Fsc: 6841 Cps: 2744 LSec: 100 Prst: 100L Kev: 0.52 Cut: 2281 Spectrum: crn174.Sl’C 5111‘s 3 K1 Pentech Color Club Red 11gb I T 12.00 16.00 Quantitative Results Element Inte Neight’s Atmic’s C R 396.99 81.07 90.42 119! 309.75 7.92 4.37 All 10.25 0.26 0.13 811.! 482.30 10.49 5.00 CaE 10.05 0.25 0.09 max mtipoint Output 169 23-0d-2000 13:27:48 KV:25.0 Tilt: 0.0 1110113350 18I35 Fsc:5343 Cps: 2021 LSec:]00 Prst:100L Kev: 0.52 (3111:2001 Spectrumzcrn167.Sl’C SiKs - Pentech Color Club Red Mng Quantitative Results Element Inte Weightk Ate-i121 c x 269.07 79.53 89.53 1131: 247.12 8.61 4.79 nx 7.28 0.26 0.13 81: 378.14 11.37 5.47 cu: 6.79 0.24 0.08 max mtipoint Output 170 23-0ct-2000 13:14:03 KV:25.0 Tilt:0.0 110113350 “/35 Fsc: 5299 Cps: 2045 LSec: 100 Prat: 100L Kev: 0.52 Cut: 1920 Spectrum: crn160.SPC SIiKa Pentech Color Club Red '3 K1 MgKa r 1 12.00 16.00 Quantitative Results Element Inte Weightk Atomie’s C R 270.85 79.59 89.57 14g: 248.98 8.67 4.82 Al! 5.12 0.18 0.09 Si! 375.29 11.27 5.42 Cal 8.29 0.29 0.10 max Mtipoint Output 171 23-Oct-2000 13:00:12 KV:25.0 T18: 00 110113350 4135 Fscz6597 Cps: 2541 LSec: 100 Prst: 100L Kev: 0.52 (5111:2543 Spectrum: crn153.Sl’C EiKa 3 K1 Pentech Color Club Red Mng Quantitative Results Element Inte Weightx Rte-it’s C R 343.50 79.84 89.71 819'! 308.81 8.58 4.76 AIR 7.90 0.22 0.11 six 463.20 11.09 5.33 C“ 9.53 0.26 0.09 max 1101 tipoint Output 172 23-0c1-2000 13:45:31 KV: 25.0 Tilt: 00 111011: 350 27’35 Fee: 714323 Cps: 2756 LSec: 100 Prst:100L Kev: 0.52 Cat: 268 Spear-n: crn176.SPC IZKs Z-Line Red 0 l Ks I I I I I I I I r I I I I I I I 400 800 12“) 1601 20M! 2“” 1300 32M) yum Quantitative Results C R m AD! 8i! Cl! Element Inte 1515.60 5.90 4.89 5.25 16.36 Weight’: Atomic’s 99.24 99.71 0.16 0.08 0.11 0.05 0.10 0.04 0.39 0.12 EDA! lultipoint Output 173 23-06-2000 13:31:42 KV: 25.0 Tilt: 00 11011: 350 20’35 Fee: $094 Cps: 2546 LSec: 100 Prst:1001. Kev: 0.52 Cat: 272 Spectrum: cre169.SPC l? K- Z-Line Red 1* I’ I I I ”I l I ’T’ I I I 7’1 v 1 r T v 400 800 1200 1600 2000 2400 2800 3200 3600 Quantitative Results El-ent Inte Ieight’s Atuic’s CE 1438.45 99.36 99.75 ”I 5.28 0.15 0.08 Al! 4.77 0.11 0.05 Si! 4.72 0.10 0.04 Ce! 10.90 0.28 0.08 snax 14111613101101: Output 174 4.00 . . . . K 23-0ct-2000 13:17:57 KV:25.0 Till:0.0 T1011: 35.0 13/35 Fscz24821 Cps: 2799 LSec: 100 Prst:1001. Kev: 0.52 Cut: 281 Spectrum: crnl62.SPC ;Ks Z-Line Red Ks I I 8.00 1 l I 12.00 I 1600 I l I I I I l 1 l . 28.00 32.00 36 00 Quantitative Results Element Inte C E 1549.49 m 4 . 32 A18 3.27 six 2.69 Ga! 12.94 weightk Atomicx 99.45 0.12 0.07 0.05 0.31 99.79 0.06 0.03 0.02 0.09 Hamill“ EDAX lultipoint Output 175 23-0ct—20N 13:04:10 KV: 25.0 Til: 00 11011: 35.0 6135 Fee: 28396 Cps: 3131 LSec: 100 Prst: 100L Kev: 0.52 Cat: 369 Spectrum: crnlSSSl’C 6K: Z-Line Red T IIIIuIII 1 1 4.00 8.00 12.00 16.00 £100 24.00 28.00 Quantitative Results Element Inte Weight’: Atomic’: CE 1755.49 99.33 99.75 In! 5.25 0.13 0.06 Al! 4.48 0.09 0.04 six 3.97 0.07 0.03 Cu! 18.73 0 .39 0.12 EDAX lultipoint Output 176 23-0ct-2000 13:59:17 KV:25.0 Tilt: 0.0 11011: 35.0 34135 Fsc: 20787 Cps:2243 LSec: 100 Prst:100L Kev: 0.52 Cnt:197 Spectrum: cm183.SPC :Ks Z-Line Red Quantitative Results Element Inte Weight’s Atomic’s CR 1284.02 99.24 99.71 11¢: 5.13 0.17 0.08 AIR 5.13 0.13 0.06 six 3.28 0.07 0.03 Cal 13.82 0.39 0.12 mx mltipoint Output 177 23-0ct-2000 14:01:13 KV: 25.0 Tilt: 00 T1011: 350 35135 Fsc: 9518 Cps:1595 LSec:100 P581001. Kev: 0.52 Cnt:500 Spectru:crn1843PC 19K» Crayola Techno Brile Red 1 I I I I I I I I I T I I I T 12.00 16.00 20.00 2400 28.1” 32.1!) 3600 Quantitative Results 4.00 Element Inte Weightx Atomic’s CE 581.07 93.23 96.95 In! 57.73 2.31 1.19 Al! 6.57 0.22 0.10 81! 110.61 3 .30 1.47 Cu! 25.62 0.93 0.29 It 1 I4 . .A ‘I .- fi'.‘ p s) .r 5'4":- ._J‘t . -‘ ‘l . ,. I . 't\‘.”>‘ " snax 11111811101111: Output 178 n-oa-zooo 13:47:27 KV:25.0 Tilt: 0.0 TkOl'l‘:35.0 2865 Fsc:5887 Cps: 1048 LSecloo Prst:100L Kev: 0.52 (3:11:309 Spectrum: crnl77.SPC 3K3 Crayola Techno Brite Red Quantitative Results Element Inte Weight’s Atonic’s C K 352.70 92.73 96.71 MK 39.03 2.48 1.28 A13 4.36 0.24 0.11 six 75.30 3.57 1.59 Ca! 17.01 0.98 0.31 mx Hultipoint Output 179 23-0ct-2000 13:33:37 KV:25.0 Tilt:0.0 TkOll':35.0 2135 Fsc:8070 Cps: 1323 LSec: 100 Pm:100L Kev: 0.52 Cnlz398 Spectrum: cm170.SPC gxa Crayola Techno Brile Red Quantitative Results Element Inte Weightk Atonick C R 486.94 93.50 97.10 119! 43.74 2.16 1.11 AlK 5.09 0.21 0.10 six 84.46 3.09 1.37 Celt 23.35 1.04 0.32 EDAX m1 tipoint Output 180 zs-oa-zooo 13:19:53 KV: 25.0 Til: 0.0 TKO“: 35.0 1035 Foam Cps: 1438 LSec: 100 P1381001. Kev:0.52 Cntz461 Specu'um:crn163.SPC CK: Crayola Techno Brile Red I l l f j T l r l r l l 1 r [ I 12.00 16.00 20.00 24.00 28.1” 32.00 36.00 Quantitat ive Results 4.00 e-ent Inte Weightx Ate-1:3 x 500 .30 92 .22 96.47 60.55 2.61 1.35 6.17 0.23 0.11 121.10 3.90 1.75 26.63 1.04 0.33 “E‘- SEES m lultipoint Output 181 B-Od-2000 13:06:07 KV:25.0 Tilt: 0.0 TkOlT:35.0 7/35 Fsc: 11492 Cps: 1880 LSec: 100 l’rst: 1001. Kev: 0.52 Cnt:678 Spectrum: crn156.SPC 3K2 Crayola Techno Brile Red Quantitat ive Results llenent Inte Weight’s Ate-lick c x 691.00 92.32 96.70 m 79.23 2.58 1.33 An: 6.96 0.19 0.09 Six 103.52 3.50 1.56 cu: 30.67 0.91 0.20 m1 Hultipoint Output 182 23-001-2000 17:22:22 KV:25.0 Till: 0.0 TkOfl:35.0 7/35 Fsc28696 Cps: 1601 LSec: 100 Prst:1001. Kev:0.52 Cut: 941 Spectrum: crn206.SPC Crayola Blue Quantitative Results C R 525.69 93.55 97 149K 45.17 1.99 1 AIR 16.39 0.61 0 Six 99.97 3.30 1 Cult 13.60 0.55 0 Element Inte Weight‘is Atomic’a .06 .02 .23 .46 .17 Mag :42x '—| 600 um EDAX Mul tipoint Output 183 230d-2000 17:35:59 KV: 25.0 Tilt: 0.0 TkOff:35.0 14135 Fsc: 7420 Cps: 1257 LSec:]00 Prst:1001. Kev:0.52 Cnt:834 Spectrum cra213.SPC p10. ’8 K: Crayola Blue 4.00 8.00 T T 1 ' T T T ' 1 12.00 16.1!) 20.00 24.00 Quantitative Results Ila-eat Inte C I 429.59 m 32.60 m 8.53 818 75.47 CIR 10.81 "nightk ltmic’fi 94.06 97.31 1.84 0.94 0.40 0.19 3.15 1.39 0.55 0.17 Mag :42x am: lultipoint Output 184 28.00 32.00 36.00 23-0ct-2000 17:49:33 KV:25.0 'l‘i11:0.0 11011: 35.0 21l35 Fsc:7282 Cps: 1313 LSec: 100 Prs1:1001. Kev:0.52 Cnt:879 Spectrum: crn220.SPC 3K3 Crayola Blue Quantitative Results Element Inte WeightSr. Atomic‘is C x 424.26 93.24 96.92 Max 39.61 2.11 1.08 AIR 12.92 0.58 0.27 six 87.70 3.50 1.56 Cal 11.57 0.56 0.18 Mag :42x L—' 600 um EDAX m1 tipoint Output 185 nae-2000 1:93:12 xv: 25.0 m.- 00 non: 35.0 23135 Fecz6131 c...- 1143 1.80:: 100 m: 1001. Kev: 052 cm 733 Spear-z crn227.SPC r; x. Crayola Blue 1 T 1 r j T 1 l [ r 1 I l 4.00 m 12.00 16.00 20.00 2400 20.00 32.00 30.00 Quantitative Results Element Inte leight’c Atmic’s C! 366.13 93.18 96.90 m 32.67 2.00 1.03 All 11.22 0.58 0.27 81.! 79.92 3.66 1.63 CIR 10.34 0.58 0.18 mu filtipoint Output 186 23-0ct-2000 18:16:48 KV:25.0 Tilt:0.0 11(011:35.0 35B5 Fsc:5879 Cps: 1083 LSec: 100 Prst:1001. Kev: 0.52 Cnl:730 Specu'lln:crn234.SPC CK: Crayola Blue Quantitative Results Element Inte Weight9s Atomic9. C R 353.39 93.58 97.08 MI 29.54 1.94 0.99 AIR 10.97 0.61 0.28 six 68.66 3.36 1.49 Cal! 8.79 0.52 0.16 Mag :42x h-I 600nm max 1021 tipoint Output 187 23—0ct-2000 17:20:24 KV:25.0 Till: 0.0 TkOl'l':35.0 6/35 Fsc: 1171] Cps: 1789 LSec: 100 Prsl:100L Kev: 0.52 Cut: 503 Spemum:crn205.SPC 0 K2 I Trend Blue Quantitative Results Element Inte Weightx Atomic’s c x 706.31 96.42 98.42 m 7.“ 0.31 0.15 m 34.03 1.13 0.51 six 65.13 1.95 0.35 cm 5.34 0.20 0.06 Magz42x l—l 600nm me lultipoint Output 188 725-061-2000 17:34:04 KV:25.0 Tilt: 0.0 TkOlT:35.0 13l35 Fsc: 15146 Cps: 2185 LSec: 100 1’51:le Kev: 052 Cnt:634 SpectnlnmrnZlZSl’C FKa Trend Blue Quantitative Results Element Inte Weight‘ia Atomic?» C R 918.24 97.24 98.78 MI 7.30 0.25 0.13 AIR 31.73 0.88 0.40 Silt 60.85 1.51 0.66 cm 4.13 0.13 0.04 Mag :42x h—l 600 um EDAX Multipoint Output 189 23-0ct-2000 17:47:37 KV:25.0 Tilt: 0.0 TkOlT:35.0 20/35 Fsc: 11297 Cps: 1699 LSec: 100 l’rst: 1001. Kev: 0.52 Cat: 522 Spectrum: cm219SPC Trend Blue Quantitative Results Element Inte Weight‘k Atomick C K 689.73 96.83 98.61 MK 5.69 0.25 0.13 AlK 29.41 1.04 0.47 83111 51.91 1.66 0.72 Cal! 5.60 0.22 0.07 Mag :42x I——| 600 um EDAX M111 tipoint Output 190 23-0cl-20w 18:01:17 KV: 25.0 Tilt: 0.0 T110“: 35.0 2735 Fsc: 10438 Cps: 1548 LSec: 100 Pm: 100L Kev: 0.52 Cut: 464 Spectrum: cru226.SPC I: Ks Trend Blue I I I I I I I I 15* 1 I u 1 4.00 8.00 12.00 16.” 20.00 24.00 28.“ 32.00 36.00 Quantitative Results Element Inte lbight%.1tomi¢% C I 628.39 96.80 98.57 m 8.44 0.40 0.20 Al! 25.74 0.99 0.45 81! 51.43 1.78 0.77 Cal 0.72 0.03 0.01 Mag :42x Ellxhlultipodnt Output 191 23—0cl—2000 18:14:52 KV: 25.0 Tilt: 0.0 “(01105.0 3435 Fee: 10666 Cps: 1518 LSec: 100 Prsl:1001. Kev: 0.52 Cat: 350 Spear-I: cm233.SPC C Ks 1 Trend Blue I j T I I I T I I I F I I I I I 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 3631 Quantitative Results Element Inte Weight’e Ate-Lia’s CE 632.50 96.68 98.54 m 6.62 0.31 0.16 All 28.08 1.07 0.48 813 51.58 1.77 0.77 Ca! 3.97 0.17 0.05 EDI! lultipoint Output 192 23-0c1-2000 17:18:27 KV:25.0 Till: 0.0 TkOff:35.0 5/35 F50: 9512 Cps: 1944 LSec: 100 1’51:le Kev: 0.52 Cnl:S83 Spectrum: crn204.SPC Crayola Construction Paper Blue Quantitative Results Element Inte Weight’s Ate-10:96 C x 584 .96 93 .92 97 .26 My! 47.04 1.94 0.99 Al! 7.40 0.26 0.12 Si! 105.58 3.22 1.42 Cal 17.75 0.66 0.21 Mag :42x EDAX Multipoint Output 193 Emu“) 23-0d-2000 17:32:06 KV: 25.0 Tilt: 0.0 TkOlf: 35.0 12135 Fsc: 7051 Cps: 1207 LSec: 100 Prst:1001. Kev: 0.52 Cut: 378 Spectrum: clelSPC I: K. Crayola Construction Paper Blue 1 f l T T T l ' T ' l T l ' l T 4.00 8.00 12.00 16.00 20.00 24.00 23.00 32.00 36.00 Quantitative Results Element Inte leight’: Atmic’s C R 418.59 95.12 97 .82 m 24.41 1.57 0.80 m 5.07 0.27 0.12 81! 51.58 2.43 1.07 Cal 10.64 0.61 0.19 Magz42: L——J 600nm EDIE lultipoint Output 194 230014100 17:45:39 KV: 25.0 Til: 0.0 “00:35.0 19I35 Fee: $959 Cpsz969 LSec: 100 P111: 1001. Kev: 052 Cal: 301 Spectrum: cra218.Sl’C C Ks Crayola Construction Paper Blue 1 r l T j 1 l ' T ' l 1 T ' fl 7 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.” Quantitative Results Element Inte leightx Rtmic’s C R 357.90 94.83 97 .69 In! 22.14 1.62 0.82 Al! 5.42 0.33 0.15 81! 48.76 2.61 1.15 C83 9.22 0.61 0.19 w Mtipoint Output 195 23-0cl-2000 17:59:21 KV:25.0 Tilt: 0.0 Tk()11:35.0 26/35 Fsc: 6588 Cps: 1411 LSec: 100 Pr31: 100L Kev: 0.52 Cnl: 373 Spectrum: crnZZSSPC Crayola Construction Paper Blue l l ' 1 1 I 1 I ' l ' T I I I I I 8.00 12.00 16.00 20 .00 24.00 28.00 32.00 36.00 Quantitat ive Results Element Inte Weight’a Atomic’a c x 392.35 92.82 96.76 ugx 38.18 2.17 1.12 an: 9.18 0.44 0.21 811: 86.05 3.65 1.63 cu: 17.47 0.90 0.28 Mag :42x ‘1 600 um EDAX Multipoint Output 196 23-001-2000 18:12:56 KV:25.0 Tilt: 0.0 1100113350 33/35 Fsc: 7021 Cps: 1251 LSec: 100 Prst:100L Kev: 0.52 Cut: 437 SpecuumzcrnBZSPC Crayola Construction Paper Blue I I I 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Element Inte Weight’: Atomic’s C I 417.07 93.71 97.14 149’! 38.08 2.16 1.11 Al! 4.76 0.23 0.11 six 77 .51 3 .27 1.45 Ca! 12.20 0.63 0.20 Magz42x h. 600nm max Uultipoint Output 197 23-0ct-2000 17:16:29 KV:25.0 Till: 0.0 '1‘kOffz35.0 4l35 Fsc:22029 Cps: 2537 1.580: 100 Prst:1001. Kev:0.52 Cut: 289 Spectrum: crn203.SPC 3K8 Roseart Blue Quantitative Results Element Inte Weight‘ls Atomic‘is C R 1369.60 98.09 99.33 1498 9.35 0.27 0.14 AlK 1.88 0.04 0.02 SiK 11.09 0.23 0.10 cm 53.70 1.36 0.41 Mag :42x |———' 600 um EDAX Multipoint Output 198 non-2000 17:30:12 KV: 25.0 Tilt:0.0 TkOll':35.0 “/35 Fsc: 17874 Cps: 1958 LSec: 100 Prsl:1001. Kev: 052 Cal: 198 SW: crn210.SPC F10 Roseart Blue I ' I ' l ' l ' I ' 1 4.00 8.00 12.1” 16.1!) 30.00 24.00 3.00 fl 32.00 36.00 Quantitative Results Element Inte Weight’s Atomic’: CR 1100.67 98.07 99.32 m 7.44 0.27 0.13 118 3.21 0.09 0.04 81.3 9.77 0.25 0.11 CIK 42.02 1.32 0.40 Mag :42): mu ultipoint Output 199 Met-2000 17:43:46 KV:25.0 Tilt: 0.0 T110“: 35.0 18135 Fsc: 16052 Cps: 1740 LSec: 100 I’rst:100l. Kev: 052 Cnt:164 Specu'I-Izcrn217SPC ”Ks l Roseart Blue Quantitative Results Element Inte Weight’s Rtaaict C R 970.72 98.24 99.38 In! 5.44 0.22 0.11 All 3.18 0.11 0.05 Six 5.66 0.16 0.07 Ca! 35.11 1.27 0.38 max lultipoint Output 200 Mel-2000 17:57:24 KV: 25.0 Till: 0.0 TkOfl': 35.0 25135 Fsc: 22618 Cps: 2413 LSec: 100 Prst:1001. Kev: 0.52 Cat: 221 Spectrum: cru224.SPC CK: Roseart Blue _I 1 1 r I 1 I fi 4.00 8.00 12.00 16m 20.00 24.00 28.1” 32.00 36.00 Quantitative Results Element Inte leight’: Rtmic’s CR 1398.94 99.24 99.70 m 7.19 0.21 0.10 m 4.83 0.11 0.05 811: 6.52 0.14 0.06 Cal 11.73 0.30 0.09 m lultipoint Output 201 23-0d-2000 18:11:“ KV: 25.0 Till: 0.0 TKO“: 35.0 32135 Fsc: 18143 Cps: 1977 LSec: 100 1531:1001. Kev: 0.52 Cut: 174 Spectrum: c411231.SPC 1:10. Roseart Blue T I 4.00 8.00 1 ' 1 1 1 I I I I 12.00 16.00 20.00 24.00 Quantitative Results Element Inte C E 1107.04 lg: 8.43 Al! 3.39 813 6.60 Cal 24.92 leightt Atomicx 98.63 99.49 0.31 0.15 0.10 0.04 0.17 0.07 0.79 0.24 Msg:42x .Enlxhlultipodnt Output 202 1 28.” I j I I 32.00 36.00 23-06-2000 17:14:31 KV: 25.0 Tilt: 0.0 “(011: 35.0 3/35 Fae: 12838 Cps: 2259 LSec: 100 Prst:1001. Kev: 0.52 Cut: 1199 Spectrum erm202.SPC I: Ks Prang Blue [Ks Ks Ks 1 1 1 ' l ' 1 ' 1 ' 1 1 1 T l 7 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Element Inte Weight’: Rtmic’: C R 785.35 92.50 96.58 m 92.03 2.54 1.31 All 10.51 0.25 0.12 818 186.80 3 .87 1.73 Ca! 33.45 0.84 0.26 max lultipoiut Output 3001-2000 17:28:15 KV:25.0 Tilt: 0.0 TkOlI':35.0 10l35 II‘sc: 11172 Cps: 2102 LSec: 100 Prst:1001. Kev:0.52 Cnt:1186 Spectrum: cm209.SPC Prang Blue Quant itat ive Result 5 Element Inte Weight96 Atomic’a C R 679.18 91.95 96.32 MI 88.21 2.71 1.40 AlK 13.71 0.36 0.17 six 176.80 4.09 1.83 CaK 31.67 0.89 0.28 Mag :42x ;—1 600 um EDAX Hui tipoint Output 204 23-0et-2000 17:41:50 KV:25.0 Till:0.0 '1‘k0fl':35.0 17I35 Fsc: 9361 Cps: 1704 LSec: 100 Prst: 100L Kev: 0.52 Cnt:844 Speck-I: crn216SPC pita Prang Blue Quantitative Results Element Inte Weight’s C R 566.53 92.06 Max 73.92 2.75 Alx 9.36 0.30 Silt 143.64 4.02 CaK 25.74 0.87 Atomic9s 96.37 1.42 0.14 1.80 0.27 Mag :42x EDAX uultipoint Output 205 g—lmllm 23-001-2000 17:55:27 KV:25.0 Tilt: 0.0 TkOlf:35.0 24(35 Fsc: 7564 Cps: 1466 LSec100 Prst:1001. Kev: 0.52 Cut: 802 Spectrum: cm223.SPC 3 K2 Prang Blue SiKa Ks I I I I I T I I I I I I T 12.00 16.00 20.00 24.00 28.00 32.00 36.00 Quantitative Results Element Inte Weight’s Atuic’s C E 447.67 91.15 95.94 In! 68.04 3.02 1.57 A1! 9.65 0.37 0.17 six 129.80 4.37 1.97 CaK 26.55 1.08 0.34 Mag:42x |———l 600nm max lultipoint Output 206 23-0d-2000 18:09:03 KV:25.0 Tilt: 0.0 TkOll':35.0 31135 Fsc:6211 Cps:1166 LSec:]00 l’rst: 1001. Kev: 0.52 Cut: 588 Spectrum: crn230.SPC Prang Blue Quant itat ive Result 8 Element Inte Weight‘i: Atomic96 C R 372.24 91.92 96. 119'! 45.94 2.61 1. A1]! 6.85 0.33 0. Six 94.28 4.02 1. Ca! 21.64 1.12 0. 34 35 16 80 35 Mag :42x 1—4 600 um EDAX Multipoint Output 23-0ct-20M 17:12:33 KV: 25.0 Til: 0.0 110113350 2135 Fsc: 31633 Cps: 3629 LSec: 100 Prst:1001. Kev: 0.52 Cut: 1193 Spectrum: cru201.SPC Kid's Club Blue I I 4.00 8.00 I 12.00 ' 1 r 1 I I 16.00 20.00 24.00 Quantitative Results C E 1971.80 96 .52 In! 109.30 1.64 Al! 5.43 0.07 81! 157.58 1.73 Cu! 2.12 0.03 Element Inte Weightx Atmic’s 98.38 0.83 0.03 0.76 0.01 Mag :42}: max lultipoint Output 208 23-0ct-2000 17:26:17 KV: 25.0 Tilt: 0.0 TRON: 35.0 905 Fee: 14637 Cps: 1557 LSec: 100 Prst: 1001. Kev: 0.52 Cut: 218 Spectrum: crm208.SPC l; Ks Kid's Club Blue 1 ' l ' T ' 1 ' 1 ' l ' 1 ' l ' 1 1 4.00 8.00 12.00 16.1!) 20.00 24.00 28.1” 32.00 36.00 Quantitative Results Elnent Inte leight’: ltmic’s CE 881.33 97.76 98.97 m 25.33 0.97 0.48 Al! 2.36 0.07 0.03 8:1! 40.91 1.13 0.49 CI! 2.02 0.07 0.02 m Multipoint Output 209 23-0ct-2000 17:39:53 KV: 25.0 Tilt: 0.0 1110113350 16135 Fsc: 13197 Cps: 1417 LSec: 100 Prst:1001. Kev: 0.52 Cat: 207 Spectrum: cm215.SPC L‘Ka Kid's Club Blue Quantitative Results Element Inte Weight’a Atomic96 C R 793.38 97.63 98.90 HgK 26.38 1.11 0.55 AlR 1.45 0.05 0.02 Six 38.69 1.17 0.51 ca 1.22 0.05 0.01 Mag :42x h—l 600 um EDAX Nultipoint Output 210 211-001-2000 17:53:30 KV: 25.0 Tilt: 0.0 TkOlT:35.0 23/35 Fsc: 24403 Cpsz2851 LSec: 100 Pm:1001. Kev:0.52 Cnt:571 Speck-:cmZZLSPC Kid's Club Blue Quantitative Results Element Inte Weight": Atomic’e C R 1516.18 97.48 98.83 ng 55.37 1.19 0.60 AlK 2.63 0.05 0.02 six 80.48 1.26 0.54 ca 1.07 0.02 0.01 Mag :42x I——1 600 um me Multipoint Output 211 211-001-2000 18:07:07 KV:25.0 Tilt: 0.0 TkOfl':35.0 30/35 lI‘sc: 21141 Cpsz2446 LSec: 100 Prst:100L Kev: 0.52 Cnt:539 Spectrum: cm229.SPC Kid's Club Blue Quantitative Result s Element Inte Weight’s Atomic"; CK 1304.69 97.10 98.65 MI 56.78 1.37 0.69 LIE 3.07 0.06 0.03 six 83.69 1.46 0.64 ca 0.57 0.01 0.00 Mag :42x I...__l 600 um EDAX Multipoint Output ‘frllll‘xl ll 63