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ABSTRACT

PERIODIC ARMA MODEL: FORECASTING, PARSIMONY,
ASYMPTOTIC NORMALITY AND AIC

By

Kai Zhang

Periodic autoregressive moving average (PARMA) models are indicated for time series whose

mean, variance, and covariance function vary with the season. In this thesis, I develop

and implement forecasting procedures for PARMA models. The required computations are

documented in detail. An application to monthly river flow forecasting is provided.
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Chapter 1

Introduction

Mathematical modeling and simulation of river flow time series are critical issues in hydrol-

ogy and water resources. Most river flow time series are periodically stationary, that is,

their mean and covariance functions are periodic with respect to time. To account for the

periodic correlation structure, a periodic autoregressive moving average (PARMA) model

can be useful. PARMA models are also appropriate for a wide variety of time series appli-

cations in geophysics and climatology. In a PARMA model, the parameters in a classical

ARMA model are allowed to vary with the season. Since PARMA models explicitly describe

seasonal fluctuations in mean, standard deviation and autocorrelation, they have been used

to generate more faithful models and simulations of natural river flows.

Historically, Gladyshev [18] first defined the concept of periodically correlated stochastic

process; In [20], some early work of Jones and Brelsford studied the problem of predicting

time series with periodic structure, including the estimation of necessary parameters; In [32]

and [47], Pagano and Troutman studied the elementary properties of univariate processes,
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and connections with stationary multivariate processes; For stationary time series models,

Box and Jenkins [10] presented a systematic approach for modeling time series based on

three stages: (1) Model identification; (2) parameter estimation; and (3) diagnostic checks

or tests of goodness of fit. Since then, applications and extensions of this modeling approach

to hydrology have been widespread.

Adams and Goodwin [1] described an on-line parameter estimation technique, based

on methods from automatic control, which provides consistent estimates of PARMA model

parameters. Anderson and Vecchia [3] obtained the asymptotic distribution for the sam-

ple autocovariance and sample autocorrelation functions of PARMA process, and they also

studied the asymptotic properties of the discrete Fourier transform of the estimated periodic

autocovariance and autocorrelation functions. Anderson and Meerschaert [5] established the

basic asymptotic theory for periodic moving averages of i.i.d. random variables with reg-

ularly varying tails. They showed that when the underlying random variables have finite

variance but infinite fourth moment, the sample autocorrelations are asymptotically stable.

Lund and Basawa [22, 23] explored recursive prediction and likelihood evaluation techniques

for PARMA models.

Time series analysis involves four general steps: model identification, parameter estima-

tion, diagnostic checking, and forecasting. Model identification is the most difficult step for

PARMA modeling. Noakes et al. [31] suggested examining the plots of the periodic partial

autocorrelation function as the best approach to identify PARMA models. This method

is highly recommended when the parameter space is not constrained, however it requires a

high level of user experience. Another method is to use an automatic selection criterion,

such as the Akaike Information Criterion (AIC) [2], or the Bayesian information criterion
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(BIC) [37] when all possible candidates of models are examined. However, this procedure

requires investigating quite a large number of models, especially when the number of param-

eter estimates is fairly large, for example, monthly data with 12 seasons. Ursu and Turkman

[52] applied the genetic algorithm as a method of identifying the PAR model, which greatly

improved the model selection efficiency. Salehi H. has also made tremendous contributions

on periodic stochastic process, see [26, 27, 28, 29].

Additionally, model identification for general PARMA times series was discussed in Tes-

faye, Meerschaert and Anderson [42]. Anderson, Meerschaert and Vecchia [6] developed an

innovations algorithm for PARMA parameter estimation. Tesfaye, Meerschaert and Ander-

son [42] demonstrated model diagnostics for a PARMA model of monthly river flows for the

Fraser River in British Columbia, Canada. In this thesis, I develop a practical method for

forecasting PARMA models, and I demonstrate the method by forecasting monthly river

flows for the same time series of monthly flows.

A stochastic process {X̃t}t∈Z is periodically stationary if its mean EX̃t and covariance

Cov(X̃t, X̃t+h) for h ∈ Z are periodic functions of time t with the same period S, i.e., for

some integer S ≥ 1, for i = 0, 1, ..., S − 1, and for all integers k and h, I have

EX̃i = EX̃i+kS and Cov
(
X̃i, X̃i+h

)
= Cov

(
X̃i+kS, X̃i+kS+h

)
.

A periodically stationary process {X̃t} ia called a PARMAS(p, q) process if the mean-

centered process Xt = X̃t − µt is of the form

Xt −
p∑

k=1

φt(k)Xt−k = εt +

q∑
j=1

θt(j)εt−j (1.0.1)
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where {εt} is a sequence of random variables with mean zero and standard deviation σt > 0

such that {δt = σ−1
t εt} is independent and identically distributed. ({εt} is called periodic

i.i.d. Gaussian noise if Xt is a Gaussian process.) Here the autoregressive parameters φt(j),

the moving average parameters θt(j), and the residual standard deviations σt are all assumed

to be periodic functions of t with the same period S ≥ 1. Throughout this paper I will also

assume:

(i) The model (1.0.1) admits a causal representation

Xt =
∞∑
j=0

ψt(j)εt−j (1.0.2)

where ψt(0) = 1 and
∑∞
j=0 |ψt(j)| <∞ for all t. Note that ψt(j) = ψt+kS(j) for all

j.

(ii) The model (1.0.1) also satisfies an invertibility condition

εt =
∞∑
j=0

πt(j)Xt−j (1.0.3)

where πt(0) = 1 and
∑∞
j=0 |πt(j)| <∞ for all t, and define Xt−j = 0 when t− j < 0.

Again, πt(j) = πt+kS(j) for all j.

The notation used in this paper is consistent with: Anderson and Vecchia [3]; Anderson

and Meerschaert [4, 5]; Anderson, Meerschaert, and Vecchia [6]; Anderson and Meerschaert

[7]; Tesfaye, Meerschaert, and Anderson [42]; and Tesfaye, Anderson, and Meerschaert [43].

This notation is also an extension of the notation in Brockwell and Davis [11].

Suppose I have N years of data, consisting of n = N×S data points, X̃0, X̃1, . . . , X̃n−1,
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where S is the number of seasons. For example, for monthly data I have S = 12, and our

convention is to let i = 0 represent the first month, i = 1 represent the second, . . . , and

i = S − 1 = 11 represent the last.

The sample mean for season i is

µ̂i = N−1
N−1∑
k=0

X̃kS+i. (1.0.4)

The sample autocovariance for season i at lag ` is

γ̂i(`) = N−1
N−1−hi∑
j=0

(
X̃jS+i − µ̂i

)(
X̃jS+i+` − µ̂i+`

)
, (1.0.5)

where ` ≥ 0, hi = b(i+ `)/Sc and = b · c is the greatest integer function.

The sample autocorrelation for season i at lag ` is

ρ̂i(`) =
γ̂i(`)√

γ̂i(0)γ̂i+`(0)
, (1.0.6)

which is also the sample cross-correlation between two different seasons.

In (1.0.5) the divisor N is used rather than N − hi, since this ensures that the autoco-

variance matrix at season i, Γ̂
(i)
N =

[
γ̂i(j − `)

]n
j,`=1 is non-negative definite, where

Γ̂
(i)
N =

[
γ̂i(j − `)

]n
j,`=1 =



γ̂i(0) γ̂i(1) . . . γ̂i(N − 1)

γ̂i(1) γ̂i(0) . . . γ̂i(N − 2)

...
. . .

...

γ̂i(N − 1) γ̂i(N − 2) . . . γ̂i(0)


.
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To see this we may write Γ̂
(i)
N = 1

N ΓΓ′, where Γ is the N × 2N matrix

Γ =



0 . . . . . . 0 Y1 Y2 . . . . . . YN

0 . . . 0 Y1 Y2 . . . . . . YN 0

...
. . . . . .

...
...

...
...

...
...

0 Y1 Y2 . . . YN 0 . . . . . . 0


,

j = 1, . . . , N , and Yj = X̃jS+i−µ̂i. Then ∀N×1 vector a, we have a′Γ̂(i)
N a = N−1(a′Γ)(a′Γ)′ ≥

0. By definition of non-negative definiteness, since a is arbitrary, then the matrix Γ̂
(i)
N =[

γ̂i(j − `)
]n
j,`=1 is non-negative definite.

Then the sample covariance matrix

Γ̂
(i)
k

=



γ̂i(0) γ̂i(1) . . . γ̂i(k − 1)

γ̂i(1) γ̂i(0) . . . γ̂i(k − 2)

...
. . .

...

γ̂i(k − 1) γ̂i(k − 2) . . . γ̂i(0)


converges in the operator norm ‖A‖ = sup{‖Ax‖ : ‖x‖ = 1} to the covariance matrix

Γ
(i)
k

=



γi(0) γi(1) . . . γi(k − 1)

γi(1) γi(0) . . . γi(k − 2)

...
. . .

...

γi(k − 1) γi(k − 2) . . . γi(0)



in probability as N →∞, if k →∞ in such a way that k2/N → 0. This result also assumes
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a spectral bound, see [6, Theorem 3.1], and that the underlying noise sequence has finite

fourth moment. Note that, if every σi > 0, then Proposition 4.1 of Lund and Basawa [22]

shows that the covariance matrix Γ
(i)
n =

[
γi(j − `)

]n
j,`=1 is invertible for every n ≥ 1 and

each i = 0, 1, . . . , S − 1. Since the set of invertible matrices is open, the convergence in

probability from [6, Theorem 3.1] implies that the sample covariance matrix is invertible

with probability approaching 1 as k →∞.

Given a PARMAS(p, q) model (1.0.1) for a periodic time series, a recursive forecasting

algorithm is developed in this thesis based on minimizing mean squared error. I detail

the computation of h-step ahead forecasts for a PARMA model, based on the innovations

algorithm, and an idea of Ansley (see Ansley [9]; Lund and Basawa [23]). I also have

developed R codes to implement these forecasts, and compute the asymptotic variance of

the forecast errors. All R codes are listed in the appendix. This thesis is laid out as follows.

Chapter 2 develops the algorithms for computing h-step ahead forecasts for any h ≥ 1,

and computes the associated forecast error variances. Chapter 3 specifies the details of

computation in this paper, mainly by R software. Chapter 4 illustrates the methods of

this thesis by forecasting average monthly flows for the Fraser River. Chapter 5 develops

a reduced PARMAS(p, q) model to achieve parsimony. Chapter 6 derives the asymptotic

theory of PARMA models, and Chapter 7 discusses the periodic AIC for automatic model

selection.
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1.1 Computation of PARMA Autocovariances

Given a PARMAS(p, q) time series (1.0.1), Define the covariance function

γj(`− j) = E(XjX`) = Cov(Xj,X`), (1.1.1)

and note that

γj(`− j) = E(XjX`) = E(X`Xj) = γ`(j − `)

for all j, ` ∈ Z. Then the covariance function γj(`−j) = E(XjX`) can be explicitly computed

by two methods. The first approach is to use the causal representation in (1.0.2). Given the

model parameters, we may write

E
(
XjX`

)
= E

( ∞∑
k=0

ψj(k)εj−k

)( ∞∑
r=0

ψ`(r)ε`−r

)
=
∞∑
k=0

∞∑
r=0

ψj(k)ψ`(r)E
(
εj−kε`−r

)
.

Notice that E
(
εj−kε`−r

)
= σ2

j−k, when j−k = `−r, and E
(
εj−kε`−r

)
= 0, otherwise.

Letting r = `− j + k, therefore

γj(`− j) = E
(
XjX`

)
=
∞∑
k=0

ψj(k)ψ`(`− j + k)σ2
j−k. (1.1.2)

However, (1.1.2) is computationally impractical since it requires determination and infinite

summation of ψj(k) and ψ`(`− j + k).

Let γt(h) = Cov
(
Xt,Xt+h

)
be the autocovariance of Xt at season i = t− Sbt/Sc and

lag h ≥ 0. Now I will consider the second method, by mimicking Yule-Walker methods for

8



stationary ARMA series. Multiplying both sides of (1.0.1) by Xt−h, where h > max (p, q),

I have

Xt−h

Xt − p∑
k=1

φt(k)Xt−k

 = Xt−h

εt +

q∑
j=1

θt(j)εt−j

 .

Take expectations on both sides, and use causal representation to compute the right hand

side:

E

Xt−h
Xt − p∑

k=1

φt(k)Xt−k

 = E

Xt−h
εt +

q∑
j=1

θt(j)εt−j


γt−h(h)−

p∑
k=1

φt(k)γt−h(h− k) = E

 ∞∑
k=0

ψt−h(k)εt−h−k

εt +

q∑
j=1

θt(j)εt−j


= 0,

since εt−h−k ⊥ εt−j,∀j = 0, 1, . . . , q, k = 0, 1, . . ., where x ⊥ y if and only if 〈x, y〉 = 0,

and 〈x, y〉 is the inner product of x and y in Hilbert space H. Recall from Chapter 2 of

Brockwell and Davis [11] that 〈x, y〉 is called the inner product of x and y, such that

(a) 〈x, y〉 = 〈y, x〉, the bar denoting complex conjugation,

(b) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 for all x, y, z ∈ H,

(c) 〈αx, y〉 = α〈x, y〉 for all x, y ∈ H and α ∈ R,

(d) 〈x, x〉 ≥ 0 for all x ∈ H,

(e) 〈x, x〉 = 0 if and only if x = 0.

In this way I obtain

γt−h(h) =

p∑
k=1

φt(k)γt−h(h− k). (1.1.3)
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Equation (1.1.3) expresses γt−h(h) in terms of autocovariances of the previous p lags when

h > max (p, q). The advantage of this method is that the computational complexity of

(1.1.3) does not increase with increasing h. Therefore, once γt−h(h) is identified for all lags

0 ≤ h ≤ max (p, q) and for all seasons i = 0, 1, . . . , S − 1, then the PARMA autocovariances

at higher lags can be efficiently computed. Next I will focus on computation of γt−h(h) for

0 ≤ h ≤ max (p, q) and all seasons i = 0, 1, . . . , S − 1. With a similar technique, multiply

both sides of (1.0.1) by Xt−h and take expectations:

E

Xt−h
Xt − p∑

k=1

φt(k)Xt−k

 = E

Xt−h
εt +

q∑
j=1

θt(j)εt−j

 .
Notice that for 0 ≤ h ≤ max (p, q), then

γt−h(h)−
p∑

k=1

φt(k)γmin(t−k,t−h)(|h− k|)

= E

 ∞∑
k=0

ψt−h(k)εt−h−k

εt +

q∑
j=1

θt(j)εt−j


=

q∑
j=h

θt(j)σ
2
t−jψt−h(j − h),

where θt(0) = 1 and E(εt−h−kεt−j) = σ2
t−j , when k = j − h, and E(εt−h−kεt−j) = 0,

otherwise. In this way I get the general form of autocovariance function for 0 ≤ h ≤

max (p, q),

γt−h(h) =

p∑
k=1

φt(k)γmin(t−k,t−h)(|h− k|) +

q∑
j=h

θt(j)σ
2
t−jψt−h(j − h). (1.1.4)

In a straightforward way, (1.1.4) is actually an S× [max(p, q)+1] dimensional linear system.
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Table 1.1: Parameters in PARMA12(1, 1) for Example 1.1.1.

season i φi θi σi
0 0.198 0.687 11875.479
1 0.568 0.056 11598.254
2 0.560 -0.052 7311.452
3 0.565 -0.050 5940.845
4 0.321 0.470 4160.214
5 0.956 -0.389 4610.209
6 1.254 -0.178 15232.867
7 0.636 -0.114 31114.514
8 -1.942 2.393 32824.370
9 -0.092 0.710 29712.190
10 0.662 -0.213 15511.187
11 0.355 0.322 12077.991

The matrix associated with this linear system is invertible as long as the PARMA model is

causal. See the appendix for a simple R code written to solve the linear system, for γt−h(h),

for all 0 ≤ h ≤ max (p, q) and i = 0, 1, . . . , S−1. Note that (1.1.4) only requires ψt−h(j−h)

for j ≤ q, which great reduces the computation, compared with the first method in (1.1.2).

Example 1.1.1. Consider the PARMA12(1, 1) model in Table 1.1.1, used in Tesfaye et al.

[42] to fit the 72-year monthly observations of Fraser river.

By (1.1.4), when 0 ≤ h ≤ max(1, 1), I have h = 0, 1, and


γt(0)− φt(1)γt−1(1) = θt(0)ψt(0)σ2

t + θt(1)ψt(1)σ2
t−1

γt−1(1)− φt(1)γt−1(0) = θt(1)σ2
t−1

(1.1.5)

Note that θt(0) = 1, ψt(0) = 1, ψt(1) = φt(1) + θt(1), and (1.1.5) is a 12× 2 dimensional

linear system containing 24 unknown paramters γt(0) and γt(1), for t = 0, 1, . . . , 11. Apply

the computation in R, I can get γt(0) and γt(1) for all the seasons, which are shown in the

11



Table 1.2: Part of autocovariances in PARMA12(1, 1) for Example 1.1.1.

season i γt(0) γt(1) γt(2) γt(3)
0 261385575 156364519 87564130 49473734
1 228262590 120832037 68270101 21914702
2 117569804 63754073 20465057 19564595
3 69938164 39038161 37320482 46799885
4 42959747 34336947 43058531 27385226
5 50262780 59246310 37680653 -73175828
6 302264368 165787551 -321959424 29620267
7 1059745614 258668383 -23797491 -15753939
8 1619934424 615947912 407757518 144753919
9 1298905828 671836226 238501860 47223368
10 600922799 290799803 57578361 32704509
11 301560482 159927070 90838576 50869602

first two columns of Table 1.1.1. For h > 1,

γt−h(h) = φtγt−h(h− 1), (1.1.6)

therefore γt(h) at higher lags h > 1 can be computed. Partial results for higher lags are

shown in Table 1.1.1.
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Chapter 2

Forecasting and forecast error

2.1 Forecasting

The PARMA prediction equations are based on orthogonal projection, to minimize the mean

squared prediction error among all linear predictors. If the PARMA process has Gaussian

innovations, then this will also minimize the mean squared prediction error among all pre-

dictors.

To simplify notation, I denote the first season to be forecast as season 0, and define the

season of the oldest data point as season S − 1. If the total number of available data is

not a multiple of S, I discard a few(< S) of the oldest observations, to obtain the data set

X̃0, X̃1, . . . , X̃n−1, where n = N × S.

Recall that Xt = X̃t−µt is the mean-centered process in (1.0.1). Fix a probability space

on which the PARMAS(p, q) model (1.0.1) is defined, and let

H̃n = s̄p{1, X̃0, . . . , X̃n−1} = s̄p{1, X0, . . . , Xn−1}
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denote the set of all linear combinations of these random variables in the Hilbert space of

random variables on that probability space, with the inner product 〈X, Y 〉 = E(XY ). Note

that

PH̃n
X̃n = PH̃n

(Xn + µn)

= µn + PH̃n
Xn

= µn + Ps̄p{1,X0,...,Xn−1}
Xn

= µn + Ps̄p{X0,...,Xn−1}
Xn,

(2.1.1)

so that forecasting for the original data X̃t can be accomplished by forecasting the mean-

centered process Xt, and then adding the seasonal mean. In order to develop a more efficient

forecasting algorithm, it is useful to consider a transformed process (cf. Ansley [9]; Lund

and Basawa [6]) defined by

Wt =


Xt, t = 0, . . . ,m− 1

Xt −
p∑

k=1

φt(k)Xt−k, t ≥ m
(2.1.2)

where m = max(p, q). Then it follows from (1.0.1) that, for t ≥ m, the transformed process

(2.1.2) has the moving average representation

Wt =

q∑
j=0

θt(j)εt−j, (2.1.3)

where θt(0) = 1 for all t. Notice that φt(k) and θt(k) are periodic in S, such that φt(k) =

φ〈t〉(k) and θt(k) = θ〈t〉(k), where 〈t〉 is the season corresponding to index t, so that 〈t〉 = t
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mod S.

Proposition 2.1.1.

Hn = s̄p{X0, . . . , Xn−1} = s̄p{W0, . . . ,Wn−1} (2.1.4)

for all n ≥ 1.

Proof. Define H∗n = s̄p{W0, . . . ,Wn−1}. For j = 1, obviously H1 = s̄p{X0} = s̄p{W0} =

H∗1. Assume that when j = n − 1, (2.1.4) holds, i.e. Hn−1 = s̄p{X0, . . . , Xn−2} =

s̄p{W0, . . . ,Wn−2} = H∗n−1. By (2.1.2),

Wn−1 =


Xn−1, n− 1 < m

Xn−1 −
p∑

k=1

φn−1(k)Xn−1−k, n− 1 ≥ m.

Then Wn−1 can be expressed as a linear combination in the span Hn = s̄p{X0, . . . , Xn−1}.

Together with the inductive assumption at j = n − 1, Hn−1 = H∗n−1, I conclude that

H∗n ⊂ Hn. Next I will prove the other direction, Hn ⊂ H∗n. By a transformation on (2.1.2),

I have,

Xn−1 =


Wn−1, n− 1 < m

Wn−1 +

p∑
k=1

φn−1(k)Xn−1−k, n− 1 ≥ m

By the induction hypothesis, Hn−1 = s̄p{X0, . . . , Xn−2} = s̄p{W0, . . . ,Wn−2} = H∗n−1,

it follows that Xn−1 can be expressed as a linear combination in the span

H∗n = s̄p{W0, . . . ,Wn−2,Wn−1}.
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Then Hn ⊂ H∗n. Together, this proves that

Hn = s̄p{X0, . . . , Xn−1} = s̄p{W0, . . . ,Wn−1} = H∗n

for all n ≥ 1.

Proposition 2.1.2. The process Wt satisfies an invertibility condition

εt =
∞∑
j=0

πt,jWt−j (2.1.5)

where πt,0 = 1 and
∑∞
j=0

∣∣∣πt,j∣∣∣ <∞ for all t. Also πt,j = πt+kS,j for all j.

Proof. First define Wt−j = 0 if t− j < 0. By (2.1.2), when t ≥ m,

Xt = Wt +

p∑
k=1

φt(k)Xt−k,

and then by Proposition 2.1.1,

Xt ∈ s̄p{Wt,Xt−1, . . . , Xt−p} = s̄p{Wt,Wt−1, . . . ,Wt−p}.

Then Xt can be written as

Xt = atWt + at−1Wt−1 + . . .+ at−pWt−p =

q∑
k=0

at−kWt−k,
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where at, . . . , at−p are finite constants. Then by (1.0.3),

εt =
∞∑
j=0

πt(j)Xt−j =
∞∑
j=0

πt(j)

 q∑
k=0

at−j−kWt−j−k

 .

Therefore I can write

εt =
∞∑
j=0

πt,jWt−j,

where πt,j is a finite linear combination of πt(j), such that

πt,j =


at−j

j∑
k=0

πt(j − k), 0 ≤ j < q

at−j
q∑

k=0

πt(j − k), j ≥ q

Or

πt,j = at−j

min(q,j)∑
k=0

πt(j − k).

If we let a∗ = max{at, . . . , at−p} which is bounded, by taking maximum of p + 1 finite
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constants. Then

∞∑
j=0

∣∣∣πt,j∣∣∣ =
∞∑
j=0

∣∣∣∣∣∣∣at−j
min(q,j)∑
k=0

πt(j − k)

∣∣∣∣∣∣∣
≤
∣∣a∗∣∣ ∞∑

j=0

min(q,j)∑
k=0

|πt(j − k)|

=
∣∣a∗∣∣

 ∞∑
j=q

q∑
k=0

|πt(j − k)|+
q−1∑
j=0

j∑
k=0

|πt(j − k)|


=
∣∣a∗∣∣

 q∑
k=0

∞∑
j=q

|πt(j − k)|+
j∑

k=0

q−1∑
j=0

|πt(j − k)|


=
∣∣a∗∣∣min(q,j)∑

k=0

∞∑
j=k

|πt(j − k)| <∞,

since
∣∣a∗∣∣ <∞ and

∑∞
j=0 |πt(j)| <∞ for all t in (1.0.3).

Define X̂0 = Ŵ0 = 0 and, for n ≥ 1, let

X̂n = PHn (Xn)

Ŵn = PHn (Wn)

(2.1.6)

denote the one-step projections of Xn and Wn onto Hn, respectively.

The next result computes the covariance function of the transformed process {Wt}. This

result was stated without proof in Lund and Basawa [23, Equation (3.16)], in a different

notation.

Proposition 2.1.3. Given a PARMAS(p, q) process (1.0.1), the covariance function C(j, `) =
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E(WjW`) of the transformed process (2.1.2) is given by

C(j, `) =



γj(`− j) 0 ≤ j ≤ ` ≤ m− 1

γj(`− j)−
p∑

k=1

φ`(k)γj(`− k − j) 0 ≤ j ≤ m− 1 < ` ≤ 2m− 1

0 0 ≤ j ≤ m− 1, ` ≥ 2m

q∑
k=0

θj(k)θ`(k + `− j)σ2
j−k j, ` ≥ m

for all j, ` ∈ Z, where I define θj(0) = 1 for all j,∈ Z.

Proof. For the first case, where 0 ≤ j ≤ ` ≤ m − 1, I have from (2.1.2) that Wj = Xj and

W` = X`. Then E(WjW`) = E(XjX`) = γj(`− j). For the second case, when j ≤ m− 1,

but m ≤ ` ≤ 2m− 1, I have

E(WjW`) = E
[
Xj(X` − φ`(1)X`−1 − . . .− φ`(p)X`−p)

]
= γj(`− j)−

p∑
k=1

φ`(k)γ`(`− k − j).

In the third case, if j ≤ m− 1 and ` ≥ 2m, then I have using (1.0.1) with θt(0) = 1 that

E(WjW`) = E

Xj( q∑
k=0

θ`(k)ε`−k
) ,

where E(Xj ε`−k) = 0 for k = 0, 1, . . . , q since ` − k ≥ ` − q ≥ 2m − q ≥ 2m −m = m >
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m− 1 ≥ j. Finally, for the last case, when m ≤ j ≤ `, using (1.0.1) again I have

E(WjW`) = E

( q∑
k=0

θj(k)εj−k
)( q∑

r=0

θ`(r)ε`−r
)

=

q∑
k=0

q∑
r=0

θj(k)θ`(r)E(εj−kε`−r),

and E(εj−kε`−r) = 0 unless j − k = `− r.

Remark 2.1.4. Since θ0(k) = 0 for k > q, it follows from the final case in Proposition 2.1.3

that C(j, `) = 0 whenever ` > m and ` > j + q.

Using the covariance function C(j, `) computed in Proposition 2.1.3, I can now apply the

innovations algorithm from Brockwell and Davis [11, Proposition 5.2.2 ] to the transformed

process (2.1.2) to compute the one-step ahead predictor

Ŵn =
n∑
j=1

θn,j

(
Wn−j − Ŵn−j

)
, (2.1.7)

where θn,1, . . . , θn,n are the unique projection coefficients that minimize the mean squared

error

vn = E
(
Wn − Ŵn

)2
. (2.1.8)
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The coefficients θn,j in (2.1.7) and vn in (2.1.8) are computed from the system of equations

v0 = C(0, 0)

θn,n−k = v−1
k

C(n, k)−
k−1∑
j=0

θk,k−jθn,n−jvj


vn = C(n, n)−

n−1∑
j=0

(
θn,n−j

)2
vj

(2.1.9)

solved in the order v0, θ1,1, v1, θ2,2, θ2,1, v2, θ3,3, θ3,2, θ3,1, v3, . . . and so forth.

Proposition 2.1.5. Given a PARMAS(p, q) process (1.0.1), the innovations algorithm (2.1.9)

applied to the transformed process (2.1.2) with covariance function C(j, `) from Proposition

2.1.3 yields

Ŵn =



0 n = 0,

n∑
j=1

θn,j

(
Wn−j − Ŵn−j

)
1 ≤ n < m,

q∑
j=1

θn,j

(
Wn−j − Ŵn−j

)
n ≥ m.

(2.1.10)

In particular, I have θn,j = 0 whenever j > q and n ≥ m.

Proof. If n ≥ m and j > q, then Remark 2.1.4 implies that C(n, n− j) = E(WnWn−j) = 0.

Since

Ŵn−j ∈ s̄p{W0, . . . ,Wn−j−1},

another application of Remark 2.1.4 shows that E(WnŴn−j) = 0, and then it follows using

the linearity of the expectation operator that

E
[
Wn(Wn−j − Ŵn−j)

]
= 0. (2.1.11)
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The proof of the innovations algorithm in [11, Proposition 5.2.2 ] shows that the random

variables

{Wn−j − Ŵn−j : j = 1, 2, . . . , n}

are uncorrelated, and hence the coefficients

θn,j = v−1
n−jE

[
Wn(Wn−j − Ŵn−j)

]
(2.1.12)

are uniquely defined. Then (2.1.10) follows from (2.1.11), (2.1.12), and (2.1.9).

Remark 2.1.6. Proposition 2.1.5 shows the advantage of the transformed process (2.1.2) for

computing the innovations, since the sum in (2.1.10) terminates after q lags when n ≥ m.

Since the forecast equations developed later in this paper all depend on the innovations, this

fact will be used to speed up the forecast computations.

The next result gives the one-step ahead predictors X̂n for the best linear predictor, that

minimize the mean squared prediction error. Equation (2.1.13) was proven by Lund and

Basawa [23, Equation (3.4)] in a different notation.

Theorem 2.1.7. The one-step predictors (2.1.6) for a PARMAS(p, q) process (1.0.1) can

be computed recursively using

X̂n =



n∑
j=1

θn,j

(
Xn−j − X̂n−j

)
1 ≤ n < m

p∑
j=1

φn(j)Xn−j +

q∑
j=1

θn,j

(
Xn−j − X̂n−j

)
n ≥ m

(2.1.13)

where the coefficients θn,j are computed via the innovations algorithm (2.1.9) applied to the

transformed process (2.1.2).
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Proof. Project each side of (2.1.2) onto the space Hn in (2.1.4) to get

Ŵt =


X̂t t = 0, . . . ,m− 1,

X̂t − φt(1)Xt−1 − . . .− φt(p)Xt−p t ≥ m.

(2.1.14)

Subtract each side of (2.1.2) from the corresponding expression in (2.1.14) to see that

Ŵt −Wt = X̂t −Xt (2.1.15)

for all t ≥ 0. Solve for X̂t in (2.1.14), substitute (2.1.10), and then use (2.1.15) to arrive at

(2.1.13).

Remark 2.1.8. Theorem 2.1.7 is the basis for our forecasting computations. The fact that

the sum in (2.1.13) terminates after q innovations when n ≥ m simplifies and speeds up the

computations.

Recall from (2.1.4) that Hn = s̄p{X0, . . . , Xn−1}. The next result gives the h-step

ahead predictors PHnXn+h that minimize the mean squared prediction error. This result

was proven by Lund and Basawa [23, Equation (3.36)] in a different notation.

Theorem 2.1.9. The h-step predictors for a PARMAS(p, q) process (1.0.1) can be computed

recursively using

PHnXn+h =
n+h∑
j=h+1

θn+h,j

(
Xn+h−j − X̂n+h−j

)
(2.1.16)
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when n < m and 0 ≤ h ≤ m− n− 1, and

PHnXn+h =

p∑
k=1

φn+h(k)PHnXn+h−k

+

q∑
j=h+1

θn+h,j

(
Xn+h−j − X̂n+h−j

)
.

(2.1.17)

otherwise, where the coefficients θn,j are computed via the innovations algorithm (2.1.9)

applied to the transformed process (2.1.2).

Proof. Since Hn is a subspace of Hn+h, I can write

PHnWn+h = PHnPHn+h
Wn+h

= PHnŴn+h

= PHn

n+h∑
j=1

θn+h,j

(
Wn+h−j − Ŵn+h−j

) .

Since Wn+h−j − Ŵn+h−j is orthogonal to Hn for j ≤ h, and contained in Hn for j > h,

it follows using Brockwell and Davis [11, Proposition 2.3.2] that

PHnWn+h =
n+h∑
j=h+1

θn+h,j

(
Wn+h−j − Ŵn+h−j

)
. (2.1.18)

Since each Wn+h−j−Ŵn+h−j lies inHn, for j > h, and Wn+h−PHnWn+h is orthogonal

to any element of Hn, it follows that the mean square error of the h-step prediction is

E
(
Wn+h − PHnWn+h

)2
= C(n+ h, n+ h)−

n+h∑
j=h+1

(
θn+h,j

)2
vn+h−j.
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From (2.1.2), I can write PHnWn+h = PHnXn+h when 0 ≤ h ≤ m− n− 1, and

PHnWn+h = PHnXn+h −
p∑

k=1

φn+h(k)PHnXn+h−k (2.1.19)

when h ≥ m− n. Substitute (2.1.15) into (2.1.18) to get

PHnWn+h =
n+h∑
j=h+1

θn+h,j

(
Xn+h−j − X̂n+h−j

)
. (2.1.20)

If 0 ≤ h ≤ m − n − 1, then (3.0.6) and (2.1.2) imply that (2.1.16) holds. If h ≥ m − n,

substitute (3.0.6) into (2.1.19) to get (2.1.17), using the fact that θn+h,j = 0 if j > q and

h ≥ m− n.

Given a PARMAS(p, q) time series data set X̃0, . . . , X̃n−1, I can forecast future values

using the h-step ahead predictors from Theorem 2.1.9. Note that this requires computing

all of the innovations

Xt − X̂t for t = 0, 1, . . . , n− 1

using the recursive equation (2.1.13). Complete details will be provided in Chapter 3. In

the next chapter, I explicitly compute the forecast errors, which will be needed to compute

prediction bands for this forecast.

2.2 Forecast errors

The next theorem is the main theoretical result of this chapter. It explicitly computes the

variance of the forecast errors, and a simpler asymptotic variance that is useful for compu-

tations. Formula (2.2.12) for the covariance matrix of the forecast errors was established
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by Lund and Basawa [23, Equation (3.41)] in a different notation. However, that paper did

not develop an explicit formula for the forecast error variance. I begin with the data set

{X0, X1, . . . , Xn−1} as in Chapter 2, where n = N × S.

Theorem 2.2.1. Define χj(0) = 1 for all j ≥ 0, χj(j − `) = 0 for all j ≥ 0 and ` > j, and

recursively

χj(`) =

min(p,`)∑
k=1

φj(k)χj−k(`− k) (2.2.1)

for all j ≥ 0 and 0 ≤ ` < j.

Then the mean-squared error σ2
n(h) = E

[(
Xn+h − PHnXn+h

)2
]

of the h-step predictors

PHnXn+h for the PARMAS(p, q) process (1.0.1) can be computed recursively using

σ2
n(h) =

h∑
j=0

 j∑
k=0

χh(k)θn+h−k,j−k

2

vn+h−j (2.2.2)

when n ≥ m := max(p, q), where the coefficients θn+h−k,j−k and vn+h−j are computed

via the innovations algorithm (2.1.9) applied to the transformed process (2.1.2). Furthermore,

the asymptotic mean squared error is given by

σ2
n(h)→

h∑
j=0

ψ2
h(j)σ2

h−j as n = NS →∞, (2.2.3)

where

ψh(j) =

j∑
k=0

χh(k)θh−k(j − k).

Proof. Recall that Xt = X̃t − µt is the mean-centered process in (1.0.1), and Wt is the

transformed process in (2.1.2). Note that the mean squared prediction error σ2
n(h) =
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E(Xn+h − PHnXn+h)2 for the mean-centered PARMA process (1.0.1) is not the same

as the mean squared prediction error E(Wn+h − PHnWn+h)2 for the transformed process

(2.1.2). When n ≥ m := max(p, q), Theorem 2.1.9 implies that (2.1.17) holds for any h ≥ 0,

and note that the second term in (2.1.17) vanishes when h+ 1 > q. Write

Xn+h = X̂n+h + (Xn+h − X̂n+h),

and since n = NS, then φn+h(j) = φh(j). Substitute (2.1.13) with n ≥ m to get

Xn+h = φh(1)Xn+h−1 + . . .+ φh(p)Xn+h−p

+

q∑
j=0

θn+h,j

(
Xn+h−j − X̂n+h−j

)
,

(2.2.4)

with θn,0 = 1 for all n. Subtract (2.1.17) from (2.2.4) and rearrange terms to get

Xn+h − PHnXn+h −
p∑

k=1

φh(k)
(
Xn+h−k − PHnXn+h−k

)

=
h∑
j=0

θn+h,j

(
Xn+h−j − X̂n+h−j

)
.

(2.2.5)

Define the random vectors

Mn =


Xn − X̂n

...

Xn+h − X̂n+h

 and Fn =


Xn − PHnXn

...

Xn+h − PHnXn+h.

 (2.2.6)
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Write

Φh =
[
−φj(j − `)

]h
j,`=0

(2.2.7)

where I define φj(0) = −1 for all j, and φj(k) = 0 for k > p or k < 0. Note that φj(k) is

periodic in S, such that φj(k) = φ〈j〉(k), where 〈j〉 is the season corresponding to index j,

so that 〈j〉 = j mod S. Then from the innovations algorithm, write

Θn =
[
θn+j,j−`

]h
j,`=0

(2.2.8)

where I define θn,0 = 1, and θn,k := 0 for k > q or k < 0. Then I can use (5.1.3) to write

ΦhFn = ΘnMn, (2.2.9)

where I note that

Φh =



1 0 0 0 . . . 0

−φ1(1) 1 0 0 . . . 0

−φ2(2) −φ2(1) 1 0 . . . 0

−φ3(3) −φ3(2) −φ3(1) 1 . . . 0

...
...

...
...

...
...

−φh(h) −φh(h− 1) −φh(h− 2) . . . . . . 1


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and

Θn =



1 0 0 . . . 0

θn+1,1 1 0 . . . 0

θn+2,2 θn+2,1 1 . . . 0

θn+3,3 θn+3,2 θn+3,1 1
...

...
...

...
...

...

θn+h,h θn+h,h−1 θn+h,h−2 . . . 1


are lower triangular matrices.

The entries of the innovations vector Mn in (2.2.6) are uncorrelated, with covariance matrix

Vn := E
[
MnM

′
n

]
= diag

(
vn, vn+1, . . . , vn+h

)
, (2.2.10)

where I recall that

vn = E

[(
Xn − X̂n

)2
]

(2.2.11)

are the one step ahead prediction errors. Then the covariance matrix of the vector Fn =

Φ−1
h

ΘnMn of prediction errors is

Cn := E
[
FnF

′
n

]
= ΨnVnΨ′n where Ψn = Φ−1

h
Θn (2.2.12)

and ′ denotes the transpose.

In order to compute the matrix Cn in (2.2.12), I first need to compute the inverse matrix

Φ−1
h

=
[
χj(j − `)

]h
j,`=0

(2.2.13)

29



and show that (2.2.1) holds. An elegant way to compute the inverse matrix (5.1.11) is to

use operator notation along with the z-transform. Use (1.0.1) to write

Φ(B)Xn+j = Θ(B)εn+j for j ≥ 0, (2.2.14)

where

Φ(z) = 1−
p∑

k=1

φn+j(k)zk = −
p∑

k=0

φn+j(k)zk = −
p∑

k=0

φj(k)zk

Θ(z) = 1 +

q∑
k=1

θn+j(k)zk =

q∑
k=0

θn+j(k)zk =

q∑
k=0

θj(k)zk,

since n = NS, BXt = Xt−1 is the backward shift operator. Then the infinite order moving

average representation (1.0.2) for the mean-centered process Xt can be written in the form

Xn+j = Ψ(B)εn+j for j ≥ 0, (2.2.15)

where

Ψ(z) = Φ−1(z)Θ(z) (2.2.16)

Notice that Φh = Φ, however Θn 6= Θ and Ψn 6= Ψ. Write

Ψ(z) =
∞∑
k=0

ψj(k)zk

Φ−1(z) =
∞∑
k=0

χj(k)zk

extending the notation (5.1.11). If n ≥ m = max(p, q), then the infinite order moving

30



average representation (2.1.3) of the transformed process Wt can be written in the form

Wn+j = Θ(B)εn+j for j ≥ 0 and n ≥ m. (2.2.17)

Equating (2.2.15) and (2.2.17) and using (2.2.16) shows that

Xn+j = Φ−1(B)Wn+j for j ≥ 0. (2.2.18)

Since

Φ−1(z)Φ(z) = I,

I have  ∞∑
k=0

χj+k(k)zk

1−
p∑

k=1

φj(k)zk

 = 1

for all j ≥ 0.

By expanding the above equation, I have

(
χj(0) + χj+1(1)z + · · ·+ χj+k(k)zk + · · ·

)(
1− φj(1)z − · · · − φj(p)zp

)
= 1,

which could be separated as

χj(0) +
(
χj+1(1)− χj(0)φj(1)

)
z + · · ·

+
(
χj+p(p)− χj+p−1(p− 1)φj(1)− · · · − χj(0)φj(p)

)
zp + · · · = 1
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Setting every coefficient of zk to 0, for k = 1, 2, . . ., I have for all j ≥ 0,

χj(0) = 1

χj+1(1) = χj(0)φj(1)

...

χj+p(p) = χj+p−1(p− 1)φj(1)− · · · − χj(0)φj(p).

Hence,

χj(`) =
∑̀
k=1

φj(k)χj−k(`− k) =

min(p,`)∑
k=1

φj(k)χj−k(`− k),

using the fact that φj(k) = 0, k > p and χj(`− k) = 0, k > `, which proves (2.2.1).

Since Φh = Φ, this shows that the inverse matrix (5.1.11) can be computed for any h ≥ 0

by taking χj(0) = 1 for all j ≥ 0, χj(j − `) = 0 for all j ≥ 0 and ` > j, and recursively

applying the formula (2.2.1) for all j > 0 and 0 ≤ ` < j.

Now I can proceed to compute the matrix Cn in (2.2.12). First write

Ψn = Φ−1
h

Θn =
[
ψn+j,j−`

]h
j,`=0
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where

ψn+j,j−` =
h∑
s=0

(
Φ−1
h

)
j,s

(Θn)s,`

=
h∑
s=0

χj(j − s)θn+s,s−`

=

j∑
s=`

χj(j − s)θn+s,s−`

(2.2.19)

since χj(j − s) = 0 for s > j, and θn+s,s−` = 0 for s < `. Substitute s = j − k in the sum

(5.1.5) to obtain

ψn+j,j−` =

j−∑̀
k=0

χj(k)θn+j−k,j−`−k (2.2.20)
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Now it follows from (5.1.5), (5.1.9), and (5.1.14) that

σ2
n(h) = E

[(
Xn+h − PHnXn+h

)2
]

= Ch,h

=
h∑
u=0

h∑
w=0

Ψh,uVu,wΨ′w,h

=
h∑
u=0

h∑
w=0

Ψh,uVu,wΨh,w

=
h∑
u=0

Ψh,uVu,uΨh,u

=
h∑
u=0

ψ2
n+h,h−uvn+u

=
h∑
u=0

h−u∑
k=0

χh(k)θn+h−k,h−u−k

2

vn+u

(2.2.21)

Substitute u = h− j to obtain (2.2.2).

Next I require a few preparatory results.

Lemma 2.2.2. With the innovations algorithm (2.1.9) applied to the transformed process

(2.1.2), I have
∣∣∣vr − σ2

r

∣∣∣→ 0, as r →∞.

Proof. Recall that Hr = s̄p{X0, . . . , Xr−1} = s̄p{W0, . . . ,Wr−1}, and define

Hr = s̄p{Wj,−∞ < j ≤ r − 1}.
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By the invertibility condition of Wr process in Proposition 2.1.2,

σ2
r = E(ε2r) = E(Wr +

∞∑
j=1

πr(j)Wr−j)2 = E(Wr − PHrWr)2

where
∞∑
j=1

πr(j)Wr−j = PHr(εr −Wr) = −PHrWr,

since εr⊥Hr and Wr−j ∈ Hr, j = 1, 2, . . . ,∞. Since Hr ⊆ Hr, I have PHrWr ∈ Hr, thus

by the Projection Theorem in Brockwell and Davis [11, Theorem 2.3.1 ], it follows that

σ2
r = E(Wr − PHrWr)2 ≤ E(Wr − PHrWr)2 = E(Wr − Ŵr)2 = vr.

On the other hand,

−
r∑
j=1

πr(j)Wr−j ∈ Hr,

so that by another application of the Projection Theorem in Brockwell and Davis [11, The-

orem 2.3.1 ], I obtain

vr = E(Wr − Ŵr)2 = E(Wr − PHrWr)2

≤ E
(
Wr − (−

r∑
j=1

πr(j)Wr−j)
)2

= E
(
πr(0)Wr +

r∑
j=1

πr(j)Wr−j
)2

= E(
r∑
j=0

πr(j)Wr−j)2
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Therefore, since εr ⊥ Hr,

vr ≤ E

 r∑
j=0

πr(j)Wr−j

2

= E

εr −∑
j>r

πr(j)Wr−j

2

= E(εr)2 + E

∑
j>r

πr(j)Wr−j

2

= σ2
r + E

∑
j>r

πr(j)Wr−j
∑
k>r

πr(k)Wr−k


≤ σ2

r +
∑
j,k>r

(
| πr(j) || πr(k) |E | Wr−jWr−k |

)

≤ σ2
r +

∑
j,k>r

(
| πr(j) || πr(k) |

√
C(r − j, r − j)C(r − k, r − k)

)

≤ σ2
r +

∑
j>r

| πr(j) |

2

M,

where M = max{C(i, i) : i = 0, 1, . . . , S − 1} <∞. In summary, I have proved

σ2
r ≤ vr ≤ σ2

r +
( ∑
j>r

| πr(j) |
)2M

where
(∑

j>r | πr(j) |
)2 → 0 uniformly over all seasons, as r →∞. Hence , as r →∞, I

have

|vr − σ2
r | ≤

( ∑
j>r

| πr(j) |
)2M → 0,

which completes the proof.
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Lemma 2.2.3. Let Wr be given by (2.1.2) and Ŵr be given by (2.1.10). Then

lim
r→∞E

[
(Wr − Ŵr − εr)2

]
= 0.

Proof. By the causal representation Wr =
∑q
j=0 θr(j)εr−j in (2.1.3), I may write

E[εr(Wr − Ŵr)] = E[εr(εr +

q∑
j=1

θr(j)εr−j − Ŵr)] = E(ε2r) = σ2
r ,

since εr ⊥ εr−j , for j = 1, . . . , q, and εr ⊥ Hr, therefore εr ⊥ Ŵr. Hence E[εr(Wr−Ŵr)] =

σ2
r . Then

E
[
(Wr − Ŵr − εr)2

]
= E

[
(Wr − Ŵr)2

]
− 2E[εr(Wr − Ŵr)] + E(ε2r)

= vr − 2σ2
r + σ2

r

= vr − σ2
r → 0,

using Lemma 2.2.2.

Proposition 2.2.4. Let θr,k be the projection coefficients from (2.1.7) and let θr(k) be the

moving average coefficients from (1.0.1). Then

|θr,k − θr(k)| → 0 as r →∞, for all k = 1, 2, . . .

Proof. I know that by (2.1.12)

θr,k = v−1
r−kE

[
Wr(Wr−k − Ŵr−k)

]
.
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I also have

θr(k) = σ−2
r−kE(Wrεr−k),

since

E(Wrεr−k) = E
(
θr(k)ε2r−k

)
= θr(k)σ2

r−k,

using the causal representation (2.1.3). By the triangle inequality,

∣∣∣θr,k − θr(k)
∣∣∣ ≤ ∣∣∣θr,k − σ−2

r−kE
(
Wr(Wr−k − Ŵr−k)

)∣∣∣
+
∣∣∣σ−2
r−kE

(
Wr(Wr−k − Ŵr−k − εr−k)

)∣∣∣
=
∣∣∣θr,k − σ−2

r−kθr,kvr−k
∣∣∣

+
∣∣∣σ−2
r−kE

(
Wr(Wr−k − Ŵr−k − εr−k)

)∣∣∣
≤
∣∣∣θr,k∣∣∣ ∣∣∣1− σ−2

r−kvr−k
∣∣∣

+
∣∣∣σ−2
r−k

∣∣∣C(r, r)
1
2
[
E(Wr − Ŵr − εr)2

]1
2 ,

(2.2.22)

using the Cauchy-Schwarz inequality. Note that θr,k is uniformly bounded in r over all

seasons, since (2.1.12) and the Cauchy-Schwarz Inequality imply,

θr,k = v−1
r−kE

(
Wr(Wr−k − Ŵr−k)

)
≤ v−1

r−k
√
C(r, r)

√
E(Wr−k − Ŵr−k)2

= v
−1/2
r−k

√
C(r, r).

Then, as r → ∞, the first term on the right-hand side of (2.2.22) approaches 0 by Lemma

2.2.2. The second term on the right-hand side of (2.2.22) approaches 0 by Lemma 2.2.3

and the fact that σ−2
r−kC(r, r)

1
2 is uniformly bounded in r. Thus,

∣∣∣θr,k − θr(k)
∣∣∣ → 0 as
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r →∞.

Proof of Theorem 2.2.1 continued. Using the covariance function C(j, `) computed in Propo-

sition 2.1.3, I can now apply the innovations algorithm from Brockwell and Davis [11, Propo-

sition 5.2.2 ] to the transformed process (2.1.2) to compute the one-step ahead predictor

Ŵn =
n∑
j=1

θn,j

(
Wn−j − Ŵn−j

)

for n > 0, where Ŵ0 = 0. Proposition 2.2.4 shows that

∣∣∣θs,` − θs(`)
∣∣∣→ 0 as s→∞, for all ` > 0. (2.2.23)

Note that (2.2.23) also holds for ` = 0, since θs,0 = θs(0) = 1 by definition. Substitute

s = n+ h− k and ` = j − k to see that

∣∣∣θn+h−k,j−k − θn+h−k(j − k)
∣∣∣→ 0 as n→∞ (2.2.24)

for all j ≥ k ≥ 0. Since n = NS, then θn+h−k(j − k) = θNS+h−k(j − k) = θh−k(j − k).

Therefore (5.1.19) is better written as

∣∣∣θNS+h−k,j−k − θh−k(j − k)
∣∣∣→ 0 as N →∞. (2.2.25)

The mean-centered process Xt has moving average representation (2.2.15), which can be

related to the moving average representation (2.2.17) of the transformed process Wt by the
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relation (2.2.16). Expanding both sides I obtain

∞∑
j=0

ψh(j)zj =
( ∞∑
j=0

χh(j)zj
)( q∑

j=0

θh(j)zj
)
.

Expanding the product on the right-hand side and equating coefficients, we have

∞∑
j=0

ψh(j)zj =
( ∞∑
j=0

χh(j)zj
)(
θh(0)1 + θh(1)z + · · ·+ θh(q)zq

)

= χh(0)θh(0)1 +
(
χh(0)θh(1) + χh(1)θh−1(0)

)
z

+ · · ·+
( j∑
k=0

χh(k)θh−k(j − k)
)
zj + · · ·

=
∞∑
j=0

( j∑
k=0

χh(k)θh−k(j − k)
)
zk.

Then

ψh(j) =

j∑
k=0

χh(k)θh−k(j − k) (2.2.26)

for all h ≥ 0 and j ≥ 0. Now it follows from (5.1.5), (2.2.25) and (2.2.26) that

lim
N→∞

∣∣∣ψh(j)− ψNS+h,j

∣∣∣
= lim
N→∞

∣∣∣∣∣∣
j∑

k=0

χh(k)θh−k(j − k)−
j∑

k=0

χh(k)θNS+h−k,j−k

∣∣∣∣∣∣
≤ lim
N→∞

j∑
k=0

∣∣χh(k)
∣∣ ∣∣∣θh−k(j − k)− θNS+h−k,j−k

∣∣∣
= 0,

(2.2.27)

where for each h ≥ 0, k = 0, . . . , j and 0 ≤ j ≤ h, χh(k) is a constant independent of
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n = NS. Notice that from (2.2.25), as N →∞ I have

j∑
k=0

χh(k)θNS+h−k,j−k →
j∑

k=0

χh(k)θh−k(j − k)

and therefore,

 j∑
k=0

χh(k)θNS+h−k,j−k

2

→

 j∑
k=0

χh(k)θh−k(j − k)

2

(2.2.28)

Furthermore, by (2.2.28), since h is finite and σ2
h−j is periodic with period S and thus

bounded, then as N →∞,

lim
N→∞

h∑
j=0

∣∣∣∣∣∣∣
 j∑
k=0

χh(k)θNS+h−k(j − k)

2

−

 j∑
k=0

χh(k)θNS+h−k,j−k

2
∣∣∣∣∣∣∣σ2
h−j → 0

(2.2.29)
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Then it follows from (2.2.2), (2.2.27), (2.2.29) and Lemma 2.2.2 that

lim
n→∞

∣∣∣∣∣∣σ2
n(h)−

h∑
j=0

ψ2
n+h(j)σ2

n+h−j

∣∣∣∣∣∣
= lim
N→∞

∣∣∣∣∣∣σ2
NS(h)−

h∑
j=0

ψ2
h(j)σ2

h−j

∣∣∣∣∣∣
= lim
N→∞

∣∣∣∣∣∣∣σ2
NS(h)−

h∑
j=0

 j∑
k=0

χh(k)θh−k(j − k)

2

σ2
h−j

∣∣∣∣∣∣∣
≤ lim
N→∞

∣∣∣∣∣∣∣σ2
NS(h)−

h∑
j=0

 j∑
k=0

χh(k)θNS+h−k,j−k

2

σ2
h−j

∣∣∣∣∣∣∣
+ lim
N→∞

h∑
j=0

∣∣∣∣∣∣∣
 j∑
k=0

χh(k)θh−k(j − k)

2

−

 j∑
k=0

χh(k)θNS+h−k,j−k

2
∣∣∣∣∣∣∣σ2
h−j

= lim
N→∞

∣∣∣∣∣∣∣σ2
NS(h)−

h∑
j=0

 j∑
k=0

χh(k)θNS+h−k,j−k

2

σ2
h−j

∣∣∣∣∣∣∣
= lim
N→∞

∣∣∣∣∣∣∣σ2
NS(h)−

h∑
j=0

 j∑
k=0

χh(k)θNS+h−k,j−k

2 (
vNS+h−j + σ2

h−j − vNS+h−j
)∣∣∣∣∣∣∣

≤ lim
N→∞

∣∣∣∣∣∣∣σ2
NS(h)−

h∑
j=0

 j∑
k=0

χh(k)θNS+h−k,j−k

2

vNS+h−j

∣∣∣∣∣∣∣
+ lim
N→∞

h∑
j=0

∣∣∣∣∣∣∣
 j∑
k=0

χh(k)θNS+h−k,j−k

2
∣∣∣∣∣∣∣
∣∣∣(σ2

h−j − vNS+h−j
)∣∣∣

= lim
n→∞

∣∣∣∣∣∣∣σ2
n(h)−

h∑
j=0

 j∑
k=0

χh(k)θn+h−k,j−k

2

vn+h−j

∣∣∣∣∣∣∣+ 0

= 0.

This proves (2.2.3).
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The following corollary gives asymptotic prediction intervals for the forecast, in the Gaus-

sian case.

Corollary 2.2.5. If {Xt} is a 0-mean Gaussian process, then the probability that Xn+h lies

between the bounds PHnXn+h±zα/2
(∑h

j=0 ψ
2
h(j)σ2

h−j
)1

2 approaches (1−α) as n→∞,

where zα is the (1− α)-quantile of the standard normal distribution.

Proof. Since (X0, X1, . . . , Xn+h)′ has a multivariate normal distribution, then by Problem

2.20 in Brockwell and Davis [11],

PHnXn+h = Es̄p{X0,...,Xn−1}
Xn+h = E(Xn+h|X0, . . . , Xn−1).

Then since (2.2.3) holds, letting Φ(t) denote the cumulative distribution function of the

standard normal distribution, it follows that, as n→∞,

P
(
PHnXn+h − zα/2

( h∑
j=0

ψ2
h(j)σ2

h−j
)1

2

≤ Xn+h ≤ PHnXn+h + zα/2
( h∑
j=0

ψ2
h(j)σ2

h−j
)1

2
)

= P
(
|Xn+h − PHnXn+h| ≤ zα/2σn(h)

)
→ Φ(zα/2)− Φ(−zα/2)

= 1− α.
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Chapter 3

Computation

In this chapter, I outline the computations needed to produce forecasts and the associated

prediction intervals. All the calculations are carried out by R software, and the codes are

in the appendix. This chapter details the codes and their usage. The first step is model

selection, i.e., the number of seasons S, the order p of the autoregressive part, the order q

of the moving average part must be chosen. Usually S is known from the application. For

example, I use S = 4 for quarterly data and S = 12 for monthly data. The next step is to

estimate the autoregressive parameters φt(k) for k = 1, . . . , p, the moving average parameters

θt(j) for j = 1, . . . , q, and the residual standard deviations σt of a PARMAS(p, q) model

for the sample-mean corrected data, Xt = X̃t − µ̂t. These two steps are closely connected,

since the process of model selection requires fitting a proposed model to judge its adequacy.

The entire procedure of model selection and parameter estimation is outlined in Tesfaye, et

al.[42]. A brief synopsis is given in the following paragraph.

For any data set X̃0, X̃1, . . . , X̃ñ, we can extract a subset X̃i, X̃i+1, . . . , X̃i+n−1, where

i represents the i-th season, n = NS, N equals the number of years of data and S equals the
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number of seasons in a year. Use (1.0.4) and (1.0.5), respectively, to compute the seasonal

sample means and autocovariances. The means µ̂i for i = 0, 1, . . . , S − 1 are stored in an

S × 1 array MU(I) for I= 1, . . . , S and the autocovariances γ̂i(`) for i = 0, 1, . . . , S − 1

and ` = 0, . . . , N − 1 are stored in an S × N array GAMMA(I,L) for I= 1, 2, . . . , S and

L= 1, . . . , N . Since our notation begins with season i = 0 and lag ` = 0, and since many

coding platforms (including R) do not allow zero or negative subscripts, there is a change of

notation I= i+ 1 and L= `+ 1. In this way, MU(I) = µ̂i and GAMMA(I,L) = γ̂i(`).

Now consider a general innovations algorithm for all seasons i, where i = 0, 1, . . . , S − 1:

v0,i = C(i, i)

θ
(i)
n,n−k = v−1

k,i

C(i+ n, i+ k)−
k−1∑
j=0

θ
(i)
k,k−jθ

(i)
n,n−jvj,i


vn,i = C(i+ n, i+ n)−

n−1∑
j=0

(
θ
(i)
n,n−j

)2
vj,i,

(3.0.1)

solved in the order v0,i, θ
(i)
1,1, v1,i, θ

(i)
2,2, θ

(i)
2,1, v2,i, θ

(i)
3,3, θ

(i)
3,2, θ

(i)
3,1, v3,i, . . . and so forth.

Now k + 1 iterations of the innovations algorithm (3.0.1) with C(j, `) = γ̂j(` − j) must be

computed for every initial season i = 0, 1, . . . , S − 1 to obtain the estimates of the seasonal

variances

σ̂2
i = vk,〈i−k〉, (3.0.2)

and estimates of the coefficients in the infinite order moving average representation (1.0.2),

ψ̂i(`) = θ
(〈i−k〉)
k,`

(3.0.3)
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for ` = 0, . . . , k, where 〈t〉 is the season corresponding to the index t, so that 〈jS + i〉 = i.

See Anderson, Meerschaert, and Vecchia [6] for more details.

It is necessary to repeat the innovations algorithm for every initial season i = 0, 1, . . . , S−

1 because the final estimates of the seasonal variances σ̂2
i and the infinite order moving

average coefficients ψ̂i(j) depend on both the starting season i and the number of iterations.

The number of iterations k + 1 should be chosen so that all the parameter estimates σ̂2
i

for i = 0, 1, . . . , S − 1 and ψ̂i(j) for i = 0, 1, . . . , S − 1 and ` = 0, . . . ,m show evidence of

convergence, where m = max{p, q}. I use the idea of relative error to show the convergence.

For example, as the number of iterations increases, for a fixed season i, define σ̂2
i (k) as

the seasonal sample variance after k iterations, and σ̂2
i (k + 1) the seasonal variance after

k + 1 iterations. Since the value of variance can be large, I consider the relative change[
σ̂2
i (k+ 1)− σ̂2

i (k)
]
/σ̂2
i (k). As a general rule of thumb, I interpret a relative error less than

0.05 after k + 1 iterations as evidence of convergence. The estimated seasonal variances are

stored in an S× 1 array VAR(I) for I= 1, . . . , S and the estimated coefficients in the infinite

order moving average representation are stored in an S × N array PSI(I,L) for I= 1, . . . , S

and L= 1, . . . , N . In this way, VAR(I) = σ̂2
i and PSI(I,L) = ψ̂i(`) , where I= i + 1 and

L= `+ 1.

Anderson and Meerschaert (2005) show that

vk,〈i−k〉
P−−−→ σ2

i , (3.0.4)

θ̂
(〈i−k〉)
k,j

P−−−→ ψi(j), (3.0.5)
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and

N1/2(θ̂(〈i−k〉)
k,j

− ψi(j)
)
⇒ N

(
0,

j−1∑
n=0

σ2
i−n
σ2
i−j

ψ2
i (n)

)
(3.0.6)

as N →∞ and k →∞ for any fixed i = 0, 1, . . . , S − 1, where “⇒ ” indicates convergence

in distribution, and N (m, v) is a normal random variable with mean m and variance v. The

main technical condition for the convergence (3.0.6) to hold is that the noise sequence εt has

a finite fourth moment.

In practical applications, N is the number of years of data, k is the number of iterations

of the innovations algorithm (typically on the order of k = 10, 15 or 20, see the discussion

later), and the convergence in distribution is used to approximate the quantity on the left-

hand side of (3.0.6) by a normal random variable. Equation (3.0.6) can be used to produce

confidence intervals and hypothesis tests for the moving average parameters in (1.0.1). For

example, an α-level test statistic rejects the null hypothesis
(
H0 : ψi(`) = 0

)
in favor of the

alternative
(
Ha : ψi(`) 6= 0, indicating that the model parameter is statistically significantly

different from zero) if |Z| > zα/2. The p-value for this test is

p = P (|Z| > |z|) where Z ∼ N (0, 1),

z =
N1/2θ̂

(〈i−k〉)
k,`

W
, and W2 =

∑`−1
n=0 v̂k,〈i−k−n〉

(
θ̂
(〈i−k〉)
k,n

)2

v̂k,〈i−k−`〉
.

(3.0.7)

The innovations algorithm allows us to identify an appropriate model for the periodic time

series at hand, and the p-value formula gives us a way to determine which coefficients in

the identified PARMA model are statistically significantly different from zero (those with a
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small p-value, say, p < 0.05).

Once estimates of the infinite order moving average coefficients ψ̂i(j) have been com-

puted, a system of vector difference equations must be solved to determine estimates of the

autoregressive parameters φ̂i(j) for i = 0, 1, . . . , S − 1 and j = 0, . . . , p, and estimates of

the moving average parameters θ̂i(j) for i = 0, 1, . . . , S − 1 and j = 0, . . . , q. See Tesfaye,

Anderson and Meerschaert [43] for complete details. In the special case of a PARMAS(1, 1)

model, it is possible to solve those difference equations by hand to obtain

φ̂t(1) = ψ̂t(2)/ψ̂t−1(1) and θ̂t(1) = ψ̂t(1)− φ̂t(1) (3.0.8)

where ψ̂t(0) = 1. Hence k+ 1 iterations of the innovations algorithm for every initial season

i = 0, 1, . . . , S−1 are sufficient to estimate these parameters, assuming that k is large enough

to ensure convergence for the variance estimates σ̂2
i and the infinite order moving average

coefficients ψ̂i(j) for all seasons i = 0, 1, . . . , S − 1 and for all lags j = 0, . . . ,m, where

m = max{p, q}. In general, the number of iterations needed for convergence will depend on

the order of the model being fit. I use an S×(m+1) array to store θ̂t(j), for a PARMAS(p, q)

model, and use the same size array to store φ̂t(j). In my R code, the corresponding names

of these arrays are named as THETA and PHI respectively.

Table 3 lists moving average parameter estimates ψ̂i(`) at season i and lag ` = 1, 2, . . . , 6,

and p-values, after k = 20 iterations of the innovations algorithm applied to average monthly

flow series for the Fraser River near Hope BC. In the discussion of a PARMAS(1, 1) model,

by (3.0.8) I only consider ψ̂i(`) at lag 1 and lag 2, and the ones with a higher p-value are

shown in bold font in Table 3. In order to study the convergence of ψ̂i(`) as iterations k

increase, I exclude ψ̂i(`) if its corresponding p-value is more than p0 of 0.05, since that value
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Table 3.1: Moving average parameter estimates ψ̂i(`) at season i and lag ` = 1, 2, . . . , 6, and
p-values, after k = 20 iterations of the innovations algorithm applied to average monthly
flow series for the Fraser River near Hope BC.

i ψ̂i(1) p ψ̂i(2) p ψ̂i(3) p ψ̂i(4) p ψ̂i(5) p ψ̂i(6) p
0 0.885 .00 0.134 .28 0.105 .10 0.163 .01 0.006 .93 0.038
1 0.625 .00 0.503 .00 0.085 .46 0.140 .02 0.077 .17 -0.004 .94
2 0.508 .00 0.350 .00 0.419 .00 0.032 .72 0.097 .03 0.019 .65
3 0.515 .00 0.287 .00 0.140 .07 0.239 .00 0.034 .60 0.030 .37
4 0.791 .00 0.165 .10 0.295 .00 0.112 .12 0.160 .03 0.045 .43
5 0.567 .00 0.757 .00 0.057 .61 0.250 .00 0.062 .40 0.139 .06
6 1.076 .01 0.711 .11 0.856 .01 0.415 .13 0.241 .17 0.112 .52
7 0.522 .03 0.684 .41 0.988 .28 1.095 .09 0.350 .51 0.198 .56
8 0.451 .00 -1.014 .00 -0.062 .66 -0.745 .50 0.128 .87 -0.635 .31
9 0.618 .00 -0.041 .77 -0.746 .01 -1.083 .26 -0.047 .97 0.514 .50
10 0.448 .00 0.409 .00 0.026 .78 -0.241 .20 -1.125 .08 0.799 .26
11 0.677 .00 0.159 .01 0.194 .00 0.050 .46 -0.190 .17 -0.402 .38

would not be significantly different from zero by (3.0.7). And consider the relative error

ERRki (`) =

∣∣∣∣∣ ψ̂i(`)(k+1) − ψ̂i(`)(k)

ψ̂i(`)
(k)

∣∣∣∣∣ . (3.0.9)

And define the maximum of the relative error

Rk = max{ERRki (`) : (i, `) /∈ Ik},

where Ik is defined as

Ik = {i, ` : p < p0 in (3.0.7)}

Figure 3.1 shows plots of Rk against number of iterations k, and the convergence of ψ̂i(`) as

k increase. Figure 3.1 also shows plots excluding ψ̂i(`) with p values above p0 of 0.01 and

0.10. Similar plots for vk,〈i−k〉 are given in Figure 3.2.

Once the model is fit, the adequacy of the model can be judged. One way to do this is
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Figure 3.1: Convergence of ψ̂i(`) as iterations k increase,where 0 ≤ i < S−1, 1 ≤ ` ≤ 2, k =
1, 2, . . . , 30. For interpretation of the references to color in this and all other figures, the
reader is referred to the electronic version of this dissertation.

to compute the residuals and check for any remaining serial correlation. To compute the

residuals from the data, the invertible representation (1.0.3) is used and the weights πt(j)

must be computed by solving another system of vector difference equations. In the special

case of a PARMAS(1, 1) model, it is possible to solve those difference equations by hand

(see Anderson, Meerschaert and Tesfaye [8]) to obtain

δ̂t = σ̂−1
t

[
Xt −

(
φ̂t(1) + θ̂t(1)

)
Xt−1

+
t−i∑
j=2

(−1)j
(
φ̂t−j+1(1) + θ̂t−j+1(1)

)
θ̂t(1)θ̂t−1(1)...θ̂t−j+2(1)Xt−j

] (3.0.10)

where i is the season of the first data point. This produces n − 1 residuals δ̂t for t =

i+1, . . . , i+n−1. In general, one obtains n−m residuals where m = max{p, q} depends on

the order of the model being fit. Now plot the autocorrelation function (ACF) and the partial
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Figure 3.2: Convergence of vk,〈i−k〉 as iterations k increase,where 0 ≤ i < S − 1, 1 ≤ ` ≤
2, k = 1, 2, . . . , 30.

autocorrelation function (PACF) of the residuals and check for any remaining serial correla-

tion, in exactly the same way as for ARMA modeling. An example could be seen in Figure

4.3 of next chapter. Since the standardized errors δt = σ−1
t εt in a PARMAS(p, q) model

are also iid observations under this model, 95% of the ACF and PACF values should fall

within the confidence bands ±1.96/
√
n−m if the model is adequate, see Tesfaye, et al [42].

The principle of parsimony suggests that I choose an adequate model with m = max (p, q) as

small as possible. Once the order p of the autoregressive part and the order q of the moving

average part are chosen and found adequate, it is then advisable to fit a reduced model with

fewer parameters. One method for finding a reduced model using discrete Fourier transforms

is discussed in Anderson, Meerschaert and Tesfaye [8].

Validation of a time series model is tantamount to the application of diagnostic checks to
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the model residuals, to see if they resemble white noise. The Ljung-Box test can be used to

test the white-noise null hypothesis (see [11]). If the null hypothesis of white-noise residuals is

not rejected, and if the autocorrelation and partial autocorrelation functions of the residuals

show no evidence of serial correlation, then I judge the model to be adequate. Fitting a

suitable distribution to the residuals allows for a faithful simulation based on this model.

To obtain additional parsimony, it is also advisable to consider simpler models where some

statistically insignificant model parameters are set to zero. If the resulting model residuals

pass the same diagnostic tests, then the simplified model is also deemed adequate.

Next I detail the computations required to produce forecasts, and their prediction inter-

vals. As before, I assume that the first season to be forecast is season i = 0, and write the

data in the form X̃0, X̃1, . . . , X̃n−1, discarding a few of the oldest observations if necessary.

Then I compute the sample means µ̂i using (1.0.4) and set X(I) = X̃i− µ̂i for I = 1, . . . , S.

Step 0: Compute the sample autocovariance by (1.0.5). Apply innovations algorithm

with γ̂i(`), and get estimates for σ̂2
i and ψ̂i(`) by (3.0.2) and (3.0.3). Then model parameter

estimates θ̂t(j) and φ̂t(k) could be computed by (3.0.8). From the constructed model, create

an S × Q array to store θ̂t(j), j = 0, 1, . . . , q with θ̂t(0) = 1 and t = 0, 1, . . . , S − 1, where

Q = q + 1. Also, create an S × p array to store φ̂t(k), k = 1, . . . , p and an S × 1 array

to store σ̂2
t . The corresponding array names in my R codes are THETA, PHI and SIGMA

respectively.

Step 1: Use Proposition 2.1.3 to compute the covariances, C(j, `), of the transformed

process Wt given in (2.1.2). Notice that in the computation process, γj(`− j), θ̂t(j), φ̂t(k),

and σ̂2
t are obtained in Step 0. Create an n× n array C(J,L) to store C(j, `), where C(J,L)

= C(j, `), for J = j+1, L = `+1. Speed and efficiency of the algorithm given in Proposition
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2.1.3 is provided for by noting that C(j, `) = 0 if ` − j > q and ` ≥ i + m where m =

max(p,q). I may let the n × n array defined just now as a zero-array, in this way, with the

previous condition, I could avoid a lot of computations.

Step 2: From the innovations algorithm given by (2.1.9), once C(j, `) is given, calculate

the coefficients θn,j . Since θn,j = 0 if j > q and n ≥ m, I will need an array of size n×Q

(again, θn,0 = 1) to store the innovation coefficients, where the corresponding array name is

THETA in my R code. The innovations algorithm is solved in the order v0, θ1,1, v1, θ2,2,

θ2,1, v2, θ3,3, θ3,2, θ3,1, v3, . . . and so forth. Use an n× 1 array to store vk.

Step 3: Compute the one-step predictors, X̂1, X̂2, . . . , X̂n−1, by (2.1.13), and they are

stored in the array Xhat in my R code. At most only an m-step computation is needed,

where m = max(p, q), since (2.1.13) only requires the storage of at most p past observations

Xn−1, . . . , Xn−p and at most q past innovations (Xn−j − X̂n−j), j = 1, . . . , q. Therefore

computation is much faster when p and q are small, for example, PARMA(1,1) model. The

one-step prediction is based on the mean-subtracted data, so I add the seasonal mean back

to X̂n once the prediction is obtained. See step 4 for specific storage of X̂n.

Step 4: The one- and h-step predictors are stored in the same vector Y of length n+ h,

where h is the desired number of forecast steps. For example, Y [n + 2] is the prediction at

2-step. Compute the h-step predictors PHnXn, PHnXn+1, . . ., in order, using the recursion

given by (2.1.17). The calculation of Y [h] is based on the information on Y [h − 1], so the

computation is recursive. At most only an m-step computation is needed.

Step 5: By Corollary 2.2.5, compute approximate 95% Gaussian prediction bounds for

Xn+h given by PHnXn+h ± 1.96 × σn(h). The large sample approximation of σn(h) is

obtained from (2.2.3). The weights, ψt(j) in (2.2.3) are computed from the model parameters
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φt and θt via the following recursions:

ψi(j)−
p∑

k=1

φi(k)ψi−k(j − k) = 0, j ≥ max(p, q + 1)

and

ψi(j)−
j∑

k=1

φi(k)ψi−k(j − k) = 0, 0 ≤ j < max(p, q + 1)

To avoid this computation, I may adopt the parameter estimate ψ̂i(j) in (3.0.3). Finally,

noting that X̃n+h − µ̂n+h = Xn+h, the approximate 95% prediction bounds for X̃n+h

are (µ̂n+h + PHnXn+h) ± 1.96 × σn(h). Also, µ̂n+h = µ̂〈n+h〉. Two h-length vectors

U BOUND and L BOUND are defined to store the prediction bounds.

3.1 A simulation study for the convergence of the co-

efficients in innovations algorithm.

To better testify the convergence of ψ̂i(`) and v̂k,〈i−k〉 as iterations k increase in Figure 3.1

and Figure 3.2, we will conduct a detailed simulation to show the actual error in convergence

of ψ̂i(`) and v̂k,〈i−k〉 in innovations algorithm. 72-year of monthly data for PARMA12(1, 1)

were simulated, as shown in Table 3.1, and the innovations algorithm was used to obtain

parameter estimates. Some general conclusions can be drawn from this study, which in

practice proves the results in (3.0.4) and (3.0.5). Define the relative error for ψ̂i(`) as

follows:

ERR1ki (`) =

∣∣∣∣∣ ψ̂i(`)(k+1) − ψ̂i(`)(k)

ψ̂i(`)
(k)

∣∣∣∣∣ . (3.1.1)
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And define the maximum of the relative error

R1k = max{ERR1ki (`) : (i, `) /∈ Ik},

where Ik is defined as

Ik = {i, ` : p < p0 in (3.0.7)}

And define the relative error for v̂k,〈i−k〉:

ERR2ki =

∣∣∣∣∣ v̂k+1,〈i−(k+1)〉 − v̂k,〈i−k〉
v̂k,〈i−k〉

∣∣∣∣∣ . (3.1.2)

And define the maximum of the relative error

R2k = max{ERR2ki : ∀i = 0, . . . , 11},

Figure 3.3 illustrates plots of R1k and R2k against iterations k, which shows the con-

vergence of ψ̂i(`) and v̂k,〈i−k〉 as iterations k increase,where 0 ≤ i ≤ 11, 1 ≤ ` ≤ 2, k =

1, 2, . . . , 50. For ψ̂i(`) , the maximum relative error over all seasons i drop below 5% when

k is between 10 and 20, and it increases when k is larger than 20, since the sample autoco-

variance becomes relatively small when the lag is large. Similar observation could be seen

for v̂k,〈i−k〉, where the maximum relative error over all seasons i drop below 7% when k is

between 10 and 20, and it increases when k is larger than 20. Therefore, we conclude that

10 to 20 iterations of the innovations algorithm are usually sufficient to obtain reasonable

estimates of the model parameters. Furthermore, a convergence test for the model parame-

ters φ̂ and θ̂ is shown in FIgure 3.4, and it shows similar results, which proves our previous
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Table 3.2: Model parameters and estimates for simulated PARMA12(1, 1) data.

season i φi φ̂i θi θ̂i σi σ̂i
0 0.20 0.34 0.70 0.58 11900 8766
1 0.60 0.72 0.10 0.10 11600 7626
2 0.60 0.56 -0.10 -0.16 7300 6693
3 0.60 0.45 -0.10 0.05 6000 4402
4 0.30 0.30 0.50 0.48 4200 3521
5 0.90 0.85 -0.40 -0.29 4600 4287
6 1.30 2.03 -0.20 -0.23 15200 15880
7 0.60 0.06 -0.10 0.20 31100 22339
8 -1.90 -4.85 2.40 5.43 32800 31761
9 -0.09 0.38 0.70 0.17 29700 29657
10 0.70 0.65 -0.20 -0.25 15500 13426
11 0.40 0.10 0.30 0.51 12100 11126

conclusion.
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Figure 3.3: Plots of R1k and R2k against iterations k, which show the convergence of ψ̂i(`)
and v̂k,〈i−k〉 as iterations k increase,where 0 ≤ i ≤ 11, 1 ≤ ` ≤ 2, k = 1, 2, . . . , 50.
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Figure 3.4: Convergence of φ̂i and θ̂i as iterations k increase,where 0 ≤ i ≤ 11, k =
1, 2, . . . , 50.
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Chapter 4

Application to a Natural River Flow

In this chapter, I apply the R codes in Chapter 3 to forecast future flows for a time series of

monthly river flows, get 95% Gaussian prediction bounds for these forecasts.

I model a monthly river flow time series from the Fraser River at Hope, British Columbia,

which is the longest river in British Columbia, traveling almost 1400 km and sustained by a

drainage area covering 220,000 square kilometers. See for maps and river flow data downloads

at http://www.wateroffice.ec.gc.ca/ .

Daily discharge measurements, in cubic meters per second (cms), were averaged over

each of the respective months to produce monthly Fraser River flow time series. The series

contains 72 years of data from October 1912 to September 1984, and part of the data is shown

in Figure 4.1. To better test the prediction results, I based our forecast on the first 70 years

of data, from 1912 to 1982. Then, I computed a 24-month prediction from October 1982 to

September 1984. In our analysis, i = 0 corresponds to October and i = 11 corresponds to

September. Using the “water year” starting on 1 October is customary for modeling of river

flows, because of low correlation between Fall monthly flows. The sample seasonal mean,
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Figure 4.1: Average monthly flows in cubic meters per second (cms) for the Fraser River at
Hope, BC indicate a seasonal pattern.

standard deviation and autocorrelations at lag 1 and lag 2 are given in Table 4 and Figure

4.2, with 95% confidence intervals. The non-stationary of the series is apparent, since the

mean, standard deviation and correlation functions vary significantly from month to month

(the confidence bands for some wet and dry seasons don’t overlap). Removing the periodicity

in mean and variance will not yield a stationary series. Therefore a periodically stationary

series model is appropriate. Tesfaye, et al. [42], identified a PARMA12(1, 1) model

Xt − φiXt−1 = εt + θiεt−1, (4.0.1)
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Figure 4.2: Statistics for the Fraser river time series: (a) seasonal mean; (b) standard
deviation; (c,d) autocorrelations at lags 1 and 2. Dotted lines are 95% confidence intervals.
Season = 0 corresponds to October and Season = 11 corresponds to September.

where Xt = X̃t − µt, E (εt) = 0, V (εt) = σ2
t , σ−1

t εt iid, for the series with S = 12, and

used the innovations algorithm at k = 20 iterations for periodically stationary processes by

(3.0.1) and (3.0.8) to estimate φi(1), θi(1), and σi, i = 0, 1, . . . , 11.

Table 4 gives the parameter estimates of the model where φ̂ = (φ0(1), . . . , φ11(1))′,

θ̂ = (θ0(1), . . . , θ11(1))′, and σ̂ = (σ0, . . . , σ11)′. I employ these estimates as the parameters

of the model. Although the model is periodically stationary, the standardized residuals

(3.0.10) should be stationary, so the standard 95% limits ( that is, 1.96/
√
n ) still apply.

Figure 4.3 shows the ACF and PACF of the model residuals. Although a few values lie
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Figure 4.3: ACF and PACF for model residuals, showing the bounds ±1.96/
√
N , indicate no

serial dependence. With no apparent pattern, these plots indicate that the PARMA12(1, 1)
model is adequate.
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Table 4.1: Parameter estimates for the PARMA model (1.0.1) of average monthly flow series
for the Fraser River near Hope BC from October 1912 to September 1982.

month φ̂ θ̂ σ̂

OCT 0.187 0.704 11761.042
NOV 0.592 0.050 11468.539
DEC 0.575 -0.038 7104.342
JAN 0.519 -0.041 5879.327
FEB 0.337 0.469 4170.111
MAR 0.931 -0.388 4469.202
APR 1.286 -0.088 15414.905
MAY 1.059 -0.592 30017.508
JUN -2.245 2.661 32955.491
JUL -1.105 0.730 30069.997
AUG 0.679 -0.236 15511.989
SEP 0.353 0.326 12111.919

Table 4.2: Sample mean, standard deviation and autocorrelation at lag 1 and 2 for an average
monthly flow series for the Fraser River near Hope BC, from October 1912 to September
1982.

Parameter

month µ̂ γ̂(0)
1
2 ρ̂(1) ρ̂(2)

OCT 69850 19976 0.712 0.515
NOV 55824 17709 0.748 0.577
DEC 40502 12858 0.731 0.541
JAN 33006 9269 0.786 0.697
FEB 30740 8878 0.787 0.380
MAR 29348 8864 0.504 0.286
APR 58959 20314 0.333 -0.286
MAY 173308 39437 0.260 -0.031
JUN 249564 45154 0.577 0.499
JUL 198844 42627 0.780 0.456
AUG 127138 28253 0.720 0.308
SEP 86437 20071 0.621 0.472
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Figure 4.4: 24-month forecast (solid line with dots) based on 70 years of Fraser river data,
with 95% prediction bounds (dotted lines). For comparison, the actual data (solid line) is
also shown. This data was not used in the forecast.

slightly outside of the 95% confidence bands, there is no apparent pattern. The p value

from the Ljung-Box test was 0.08 indicating that I do not reject the null hypothesis that

the residuals resemble iid white noise. Hence we conclude that the PARMA12(1, 1) model

is adequate.

If I reject the null hypothesis that PARMA(1, 1) model residuals resemble iid noise, I

would abandon that model and fit a PMA(q) model to the data, q ≥ 2. Using Theorem 1

in [8], I would identify the order, q, of the pure moving average and then parsimoniously

estimate the moving average parameters that I deem to be nonzero. However, from Tesfaye,
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et al. [42], the PARMA(1, 1) model is generally adequate to model most river flow time

series.

I then compute a 24-step future prediction for the Fraser river data, that is, a forecast

for the next 24 months from October 1982 to September 1984.. The prediction is compared

to the original data in Figure 4.4. Note that the forecast curve is close to the original data

curve, and that the historical Fraser River data stay well within the 95% prediction bands.

Figure 4.5 illustrates how the width of the prediction intervals vary with the season. This

is a consequence of the non-stationarity of the river flow series, and specifically the fact that

the standard deviation and the correlation functions vary significantly from month to month.
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Figure 4.5: Width of 95% prediction bounds for the Fraser river.
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Chapter 5

Maximum likelihood estimation and

reduced model

5.1 Maximum likelihood Function for PARMAS(p, q)

Model

By Yule-Walker equations, the vector of autoregressive coefficients φ
(i)
n = (φ

(i)
n,1, . . . , φ

(i)
n,n)′

solves the prediction equations

Γn,iφ
(i)
n = γ

(i)
n (5.1.1)

with γ
(i)
n = (γi+n−1(1), γi+n−2(2), . . . , γi(n))′ and

Γn,i =

[
γi+n−`(`−m)

]
`,m=1,...,n

(5.1.2)

is the covariance matrix of Xn,i = (Xi, ..., Xi+n−1)′ for each i = 0, ..., S − 1. If σ2
i > 0

for i = 0, . . . , S − 1, then for a causal PARMAS(p, q) process the covariance matrix Γn,i is
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nonsingular for every n ≥ 1 and each i in Lund and Basawa [22, Theorem 3.1]. Assuming

that Xn,i is a Gaussian process, its likelihood function can be written using the general

formula for a multivariate normal random vector with a given mean and covariance matrix

L(Γn,i) = (2π)−n/2(det Γn,i)
−1/2 exp

(
−1

2X
′
n,iΓ
−1
n,iXn,i

)
, (5.1.3)

where Γn,i is the covariance matrix of Xn,i defined in (5.1.2).

Whenever Γn,i is invertible, the direct calculation of det Γn,i and Γ−1
n,i can be avoided

by expressing it in terms of the one-step predictors X̂i+j and the mean square errors vj,i,

both of which are easily calculated recursively from the innovations algorithm, where vj,i is

from (3.0.1), and

Xi+j − X̂
(i)
i+j ∼ N (0, vj,i), j = 0, 1, . . . , n− 1,

Recall the innovations representation for PARMA models in Anderson et al [6], where

X̂
(i)
i+t =


0, t = 0

t∑
j=1

θ
(i)
t,j (Xi+t−j − X̂

(i)
i+t−j), t = 1, . . . , n− 1.

(5.1.4)

Then the computation for (5.1.3) can be simplified in the following theorem:

Theorem 5.1.1. When Γn,i is invertible, the likelihood (5.1.3) can be equivalently written

68



in the form of

L(Γn,i) =(2π)−n/2(v0,iv1,i · · · vn−1,i)
−1/2

exp
(
− 1

2

n−1∑
j=0

(Xi+j − X̂
(i)
i+j)2/vj,i

)
,

(5.1.5)

where X̂i+j are the one-step predictors in (2.1.13) and vj,i are the mean square errors in

(3.0.1).

Proof. For each i, define the n× n lower triangular matrix

Ci = [θk,k−j(i)]n−1
k,j=0

, (5.1.6)

where det Ci = 1, since all the diagonal elements θk,0(i) = 1 for k = 0, . . . , n− 1, and define

the n× n diagonal matrix,

Di = diag(v0,i, v1,i, . . . , vn−1,i). (5.1.7)

Therefore X̂
(i)
n,i = (X̂

(i)
i , . . . , X̂

(i)
i+n−1)′ can be written in the from,

X̂n,i = (Ci − I)(Xn,i − X̂
(i)
n,i), (5.1.8)

where I is the n× n identity matrix. Hence,

Xn,i = Xn,i − X̂n,i + X̂n,i = Ci(Xn,i − X̂n,i). (5.1.9)
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Since Di = E

[(
Xn,i − X̂n,i

)(
Xn,i − X̂n,i

)′]
, and Γn,i = E

(
Xn,iX

′
n,i

)
, it follows that

Γn,i = CiDiCi
′. (5.1.10)

By (5.1.9) and (5.1.10), we obtain

X
′
n,iΓ
−1
n,iXn,i = (Xn,i− X̂n,i)

′Di
−1(Xn,i− X̂n,i) =

n−1∑
j=0

(Xi+j − X̂
(i)
i+j)2/vj,i, (5.1.11)

and

det Γn,i = (det Ci)
2(det Di) = v0,iv1,i · · · vn−1,i. (5.1.12)

Therefore the likelihood (5.1.3) of the vector Xn,i reduces to (5.1.5). Whenever Γn,i is

invertible, the likelihood in (5.1.3) has the equivalent innovations representation as (5.1.5).

Actually Γn,i is invertible for causal PARMA models, see the proof in Lund and Basawa [23,

Proposition 4.1]. Given the seasonal one-step error variances vj,i from the innovations and

the one-step ahead predictor X̂
(i)
i+j , then L(Γn,i) in (5.1.3) can easily be calculated.

For notation, let φt = (φt(1), . . . , φt(p))
′ and θt = (θt(1), . . . , θt(q))

′ denote the autore-

gressive and moving-average parameters during season t, respectively. Then we can write

L(Γn,i) = L(β), where we use β = (φ′0,θ
′
0,φ
′
1,θ
′
1, . . . ,φ

′
S−1,θ

′
S−1)′ to denote the collec-

tion of all PARMAS(p, q) parameters. The dimension of β is (p+q)S×1. Following the ideas

from Basawa and Lund [24], we treat the white noise variances σ2 = (σ2
0, σ

2
1, . . . , σ

2
S−1)′

70



as nuisance parameters. Then the likelihood function is given by

LX (β) = (2π)−n/2(v0,iv1,i · · · vn−1,i)
−1/2 exp

(
− 1

2

n−1∑
j=0

(Xi+j − X̂
(i)
i+j)2/vj,i

)
.

(5.1.13)

Another way to compute the PARMA likelihood parameter estimates is to equivalently

minimize the negative log likelihood

−2 log{L(β)} = n log(2π) +
n−1∑
j=0

log(vj,i) +
n−1∑
j=0

(Xi+j − X̂
(i)
i+j)2/vj,i. (5.1.14)

According to Basawa and Lund [24], once we obtain the maximum likelihood estimate β̂,

the MLE of σ2
i for 0 ≤ i ≤ S − 1, have the large sample form

σ̂2
i = N−1

N−1∑
j=0

εjS+i(β̂)2,

where σ̂2 = (σ̂2
0, . . . , σ̂

2
S−1)′. However, they didn’t give a proof for the large sample form.

In the following we propose our method of MLE computation, where there is an exact form

of MLE for σ2, and the computation is much faster. Given the data set Xi, . . . , Xi+n−1,

apply innovations algorithm to compute the 1-step ahead predictors X̂
(i)
i+j , j = 0, . . . , n− 1

and the forecast errors vj,i = E

[(
Xi+j − X̂

(i)
i+j

)2
]

.

Corollary 5.1.2. |rj,i − 1| → 0 as j →∞.

Proof. By Anderson et al. [6, Corollary 2.2.1]

vk,〈i−k〉 → σ2
i ,
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we have

|vj,i − σ
2
i+j | → 0, as j →∞.

Recall that vj,i = σ2
i+jrj,i, then we have

|σ2
i+jrj,i − σ

2
i+j | → 0, as j →∞,

so that

σ2
i+j |rj,i − 1| → 0, as j →∞.

Notice that for PARMAS(p, q) model σ2
i+j is periodic of S seasons, so

0 < σ2
i+j ≤ max{σ2

0, . . . , σ
2
S−1} <∞,

then we have proved

|rj,i − 1| → 0, as j →∞.
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Then the negative log likelihood (5.1.14) becomes

`(β) = −2 log{L(β)} = n log(2π) +
n−1∑
j=0

log(vj,i) +
n−1∑
j=0

(
Xi+j − X̂

(i)
i+j

)2
/vj,i

= n log(2π) +
S−1∑
i=0

N−1∑
k=0

log
(
rkS+iσ

2
i

)

+
S−1∑
i=0

N−1∑
k=0

(
XkS+i − X̂

(i)
kS+i

)2
/
(
rkS+iσ

2
i

)

= n log(2π) +
N−1∑
j=0

log(rj) +N log(σ2
i ) +

S−1∑
i=0

Si/σ
2
i ,

(5.1.15)

where

Si =
N−1∑
k=0

(XkS+i − X̂
(i)
kS+i

)2

rkS+i
.

Then for i = 0, . . . , S − 1, we have

∂`

∂σ2
i

=
N

σ2
i

+
−1(
σ2
i

)2
Si = 0,

therefore

Nσ2
i − Si = 0,

and

σ2
i =

Si
N
.

So the MLE of σ2
i is

σ̂2
i =

1

N

N−1∑
k=0

(
XkS+i − X̂

(i)
kS+i

)2
/rkS+i = Si/N, (5.1.16)
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where X̂
(i)
kS+i

and rkS+i come from the innovations algorithm applied to the model. Now

we can substitute σ̂2
i for σ2

i in the negative log likelihood to get

−2 log{L(β)} = n log(2π) + n+
n−1∑
j=0

log(rj,i) +N
S−1∑
i=0

log
(
Si/N

)
.

Then it suffices to minimize

`∗(β) =
1

N

n−1∑
j=0

log(rj,i) +
S−1∑
i=0

log
(
Si/N

)
.

Also, since rj,i → 1 as j →∞, then log(rj)→ 0, so

1

N

n−1∑
j=0

log(rj) ≈ 0,

and approximate MLE minimizes
∑S−1
i=0 log

(
Si/N

)
.

Example 5.1.3. A PARMA(1, 1) example from Chapter 4 will be shown here, to demon-

strate how to explicitly solve the mean square errors, and obtain the likelihood value and

maximum likelihood estimate. We adopt the 70 years of monthly Fraser river data from

October 1912 to September 1982, and since there are 840 observations, we denote them as

{Xt} = {X0, X1, . . . , X839}. Therefore the negative log likelihood is simplified as

−2 log{L(β,σ2)} = n log(2π) +
n−1∑
j=0

log(vj) +
n−1∑
j=0

(Xj − X̂j)2/vj

= n log(2π) +
N−1∑
j=0

log(rj) +N log(σ2
i ) +

S−1∑
i=0

Si/σ
2
i ,

(5.1.17)
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where β = (φ0, θ0, φ1, θ1, . . . , φ11, θ11)′ and σ2 = (σ2
0, σ

2
1, . . . , σ

2
11)′. Computations in

Lund and Basawa [23, Equations (2.7), (2.11)] show that the PARMA(1, 1) model is causal

when |φ0φ1 · · ·φ11| < 1 and invertible when |θ0θ1 · · · θ11| < 1. By Theorem 2.1.7, we may

write

X̂0 = 0

X̂1 = θ1,1

(
X0 − X̂0

)
X̂t = φtXt−1 + θt,1

(
Xt−1 − X̂t−1

)
t = 2, . . . , 839.

(5.1.18)

For the covariance structure of {Xt}, we will use the γt(h) results from Section 1.1.

The innovations algorithm explicitly identifies the prediction coefficients as

θt,1 = v−1
t−1C (t, t− 1) = v−1

t−1θtσ
2
t−1. (5.1.19)

Use (5.1.19) in innovation algorithm gives

vt = C(t, t)− θ2t,1vt−1 = (σ2
t + θ2t σ

2
t−1)− v−1

t−1θ
2
t σ

4
t−1, (5.1.20)

where t ≥ 1, and the initial condition is v0 = γ0(0). Equation (5.1.20) is a difference

equation for vt, which can be explicitly solved as follows. First, write

vt = σ2
t

yt
yt − 1

,

vt−1 = σ2
t−1

yt−1
yt−1 − 1

,

(5.1.21)
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and substitute (5.1.21) in (5.1.20) to get

σ2
t

yt
yt − 1

= (σ2
t + θ2t σ

2
t−1)−

θ2t σ
4
t−1

σ2
t−1

(yt−1 − 1)

yt−1

σ2
t ytyt−1 = (σ2

t + θ2t σ
2
t−1)yt−1(yt − 1)− θ2t σ

2
t−1(yt−1 − 1)(yt − 1),

therefore

yt = 1 +
σ2
t

σt−1θ
2
t

yt−1 t ≥ 1, (5.1.22)

where the initial condition of (5.1.22) is y0 =
σ−2

0 γ0(0)

σ−2
0 γ0(0)−1

. Letting

P (t) =
σ2
t

σ2
t−1θ

2
t

, (5.1.23)

then the solution to (5.1.22) is

yt = 1 + P (t)yt−1

= 1 + P (t)
(

1 + P (t− 1)
)
yt−2

= 1 + P (t)
(

1 + P (t− 1)
)(

1 + P (t− 2)
)
yt−3

...

= 1 +

 t∏
r=1

P (r)

 y0 +
t∑

j=2

 t∏
r=j

P (r)

 , t ≥ 1.

(5.1.24)

In the computation, notice that
∑t
j=2

(∏t
r=j P (r)

)
is the row-summation of the product
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of each row in a matrix, where the matrix is



1 P (2) P (3) . . . . . . P (t)

1 1 P (3) . . . . . . P (t)

1 1 1 P (4) . . . P (t)

...
...

...
...

...
...

1 1 1 . . . 1 P (t)


.

Use (5.1.24) in (5.1.21) to compute vt. Then use vt in (5.1.19) to compute θt,1. Next obtain

X̂t in (5.1.18). Finally substitute into (5.1.17) to get the negative log likelihood function.

In Chapter 4, we fit a PARMA(1,1) model to the 70-year Fraser river flows data. The

model parameters θ̂t, φ̂t and σ̂t are shown in Table 4 of Chapter 4. Using these values to

compute vt and X̂t in this example, we obtain the negative log likelihood value of 18543

for this model. However, in the following we consider to take the logarithm of the data, for

all computations in MLE. The model parameters for the logarithm of the data are shown

in Table 5.1.3, where the negative log likelihood value is -362.655. To get the maximum

Season 0 1 2 3 4 5

θ̂i 0.650 0.206 -0.026 -0.033 0.426 -0.400

φ̂i 0.393 0.740 0.712 0.715 0.431 1.020
σi 0.165 0.187 0.164 0.159 0.135 0.134

Season 6 7 8 9 10 11

θ̂i 0.446 -0.171 1.918 0.836 -0.299 0.540

φ̂i 0.425 0.313 -1.628 -0.045 0.979 0.414
σi 0.260 0.184 0.127 0.143 0.108 0.138

Table 5.1: Estimated parameters for PARMA12(1, 1) model, from innovations algorithm,
using the logarithm of the original data. The resulting negative likelihood value is -362.655.

likelihood estimators, we will differentiate −2 logL(β) partially with respect to the parame-
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ters. A non-linear optimization algorithm will be applied, using R software to find the MLE.

By our earlier assumption, we treat the white noise variances σ2 = (σ2
0, σ

2
1, . . . , σ

2
S−1)′ as

nuisance parameters, so that the independent variables in the optimization are the model

parameters β = (φ0, θ0, φ1, θ1, . . . , φS−1, θS−1)′. After we compute the MLE β̂, we solve

the MLE for σ̂2 = (σ̂2
0, . . . , σ̂

2
S−1)′ using

σ̂2
i =

1

N

N−1∑
k=0

(
XkS+i − X̂

(i)
kS+i

)2
/rkS+i = Si/N,

The function optim in R is used, a general-purpose optimization based on Nelder–Mead,

quasi-Newton and conjugate-gradient algorithms. It includes an option for box-constrained

optimization and simulated annealing. Several different options were explored, using our

likelihood function, and the initial values from Table 4. A summary of the performance of

the different options is provided in Table 5.2. The BFGS option was found to be the fastest

convergent method. This option uses the results published simultaneously by Broyden,

Fletcher, Goldfarb and Shanno in 1970 [12], [17], [19] and [38], which uses function values and

gradients to approximate the optimization surface. The parameter estimates that resulted

using the BFGS algorithm are listed in Table 5.3.

Method −2 log{L(β̂)} Running time Convergence Depending on initial value

BFGS 463.8585 137s Yes Yes
CG -505.37 282s No Yes

SANN -362.65 378s Yes Yes
Nelder-Mead 1182.61 17.29s No Yes

Table 5.2: A compare of different algorithm in optim function.

In order to test the convergence, we use the result in Table 5.3 as an initial value, and

run the optimization procedure again. The algorithm converges quickly to the same value
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Season 0 1 2 3 4 5

θ̂i 0.586 0.154 0.119 -0.008 0.085 -0.206

φ̂i 0.546 0.800 0.709 0.679 0.738 0.884
σi 0.165 0.187 0.164 0.159 0.135 0.134

Season 6 7 8 9 10 11

θ̂i 0.204 0.071 1.035 0.398 -0.110 0.415

φ̂i 0.720 0.162 -0.690 0.417 0.855 0.558
σi 0.260 0.184 0.127 0.143 0.108 0.138

Table 5.3: MLE result by BFGS method, with σi as nuisance parameters. The resulting

MLE value was −2 logL(β̂) = −463.8585.

of −2 log{L(β̂)} as before.

Next we plot −2 log{L(β, σ2)} as a function of each σi, for i = 0, 1, . . . , 11. In this way,

we obtain 12 plots, shown in Figure 5.1. There is a clear global local minimum point on

each plot, which we compute using the optimize function in R to find the corresponding σi

value, and denote it as σ∗i , with σ∗ = (σ∗0 , σ
∗
1 , . . . , σ

∗
11)′. With this σ∗i value, we run optim

again for −2 log{L(β, σ2)}, using the same BFGS algorithm, resulting in a lower negative

likelihood value of -506.6053. For different starting values and different iterations, the routine

converges to the same optimum. See results in Table 5.4.

Finally, to check our results, we use a one variable optimization to minimize the negative

log likelihood function as a function of each individual variable, by similar techniques to find

the global minimum points θ∗ = (θ∗0, θ
∗
1, . . . , θ

∗
11)′ on Figure 5.2 and φ∗ = (φ∗0, φ

∗
1, . . . , φ

∗
11)′

on Figure 5.3. Since these results have been consistent with the MLE results from BFGS

optimization algorithm shown in Table 5.4, then we are confident that the values reported

in Table 5.4 represent the true MLE. Therefore we take the results in Table 5.4 as our final

optimization results for model parameters.
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Figure 5.1: −2 log{L(β, σ2)} as a function of each σi, i = 0, . . . , 11, with the remaining
parameters fixed.
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Figure 5.2: −2 log{L(β, σ2)} as a function of each θi, i = 0, . . . , 11, with the remaining
parameters fixed.
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Figure 5.3: −2 log{L(β, σ2)} as a function of each φi, i = 0, . . . , 11, with the remaining
parameters fixed.
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Season 0 1 2 3 4 5

θ̂i 0.586 0.154 0.119 -0.008 0.085 -0.206

φ̂i 0.546 0.800 0.709 0.679 0.738 0.884
σ∗i 0.199 0.208 0.194 0.171 0.166 0.151

Season 6 7 8 9 10 11

θ̂i 0.204 0.071 1.035 0.398 -0.110 0.415

φ̂i 0.720 0.162 -0.690 0.417 0.855 0.558
σ∗i 0.300 0.219 0.153 0.162 0.126 0.154

Table 5.4: MLE by BFGS method, using the values of σ∗ from Figure 5.1. The resulting
MLE value was −2 logL(β̂) = −506.6053. We take those parameters as our best results in
optimization.

5.2 Reduced PARMAS(1, 1) model.

To obtain additional parsimony, it is also advisable to consider simpler models where some

statistically insignificant model parameters are set to zero.

5.2.1 Reduced model by asymptotic distribution of ψ̂i(`)

In the discussion of a reduced PARMAS(1, 1) model, by (3.0.8),

φ̂t(1) = ψ̂t(2)/ψ̂t−1(1) and θ̂t(1) = ψ̂t(1)− φ̂t(1).

In order to obtain the estimates of the PARMA12(1, 1) model parameters, we need only

consider ψ̂i(`) at lag 1 and lag 2. An α-level test statistic rejects the null hypothesis(
H0 : ψi(`) = 0

)
in favor of the alternative

(
Ha : ψi(`) 6= 0, indicating that the model pa-

rameter is statistically significantly different from zero) if |Z| > zα/2. The p-value for this

test is given by (3.0.7), and it gives us a way to determine which coefficients in the identified

PARMA model are statistically significantly different from zero (those with a small p-value,
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i 0 1 2 3 4 5 6 7 8 9 10 11
θi 1.04 0.20 -0.02 -0.03 0.42 -0.40 0.87 0.00 -0.71 0.79 -0.29 0.54
φi 0.00 0.74 0.71 0.71 0.43 1.02 0.00 0.00 1.00 0.00 0.97 0.41
σi 0.16 0.18 0.16 0.15 0.13 0.13 0.26 0.18 0.12 0.14 0.10 0.13

Table 5.5: Parameter estimates for the reduced PARMA model (1.0.1) of average monthly
flow series for the Fraser River near Hope BC from October 1912 to September 1982. The
resulting negative likelihood value is -351.3939.

say, p < 0.05). Coefficients with a higher p-value are shown in bold font in Table 3.1, and we

set coefficients ψ̂i(`) = 0 in that case. Using (3.0.8), we then list in Table 5.5 the parameter

estimates of the reduced PARMA12(1, 1) model, where autoregressive coefficients in season

0, 6, 7 and 9 are set to 0.

Here we apply innovations algorithm to get our model parameters. Later in this chapter

we will shown a different method using MLE. Once we obtain the estimates for the reduced

PARMA12(1, 1) model parameters, we can carry out forecast procedures similar to the full

PARMA12(1, 1) model, as follows. Since autoregressive coefficients in season 0, 6, 7 and 9

are set to 0, the computation is simpler for the Wt process.

• Compute the transformed process (2.1.2) using the reduced model parameters.

• Compute the sample autocovariance of that process by Proposition 2.1.3.

• Apply the innovations algorithm (2.1.9) to get the projection coefficients θn,j .

• Use (2.1.13) to compute the one-step-ahead predictors X̂n for n = 1, 2, . . . , 840 =

70× 12.

• Apply (2.1.17) to get the forecasts.

• Use the asymptotic formula (2.2.3) to compute 95% prediction bounds, based on the

assumption of Gaussian innovations.
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The resulting prediction, along with the 95% prediction bands, is shown in Figure 5.4. The

actual data (solid line) is also shown for comparison. Note that the forecast (solid line with

dots) is in reasonable agreement with the actual data (which were not used in the forecast),

and that the actual data lies well within the 95% prediction bands. Furthermore, we give

a detailed comparison in Figure 5.5 between full model and the reduced one. As shown

in the first two graphs, the prediction results are quite similar. In a further investigation,

we check the difference and relative error between the two forecasts, for every step. The

differences are small. In fact, when compared to predictions, the relative errors are small.

When the step h ≥ 5, the relative errors are nearly zero. We conclude that the removed

autoregressive coefficients in season 0, 6, 7 and 9 are insignificant, and the reduced model

is a viable substitute for the full model. We prefer the reduced model, since it has fewer

parameters.

5.2.2 Reduced model by asymptotic distribution of MLE

Another method for obtaining a reduced model is to apply the asymptotics of MLE for the

PARMA process, which were developed in Basawa and Lund [24]. For a causal and invertible

Gaussian PARMA model, with the assumption of {εt} being periodic i.i.d. Gaussian noise,

Basawa and Lund [24, Theorem 3.1] gives the asymptotic distribution of β̂, as N →∞,

N1/2(β̂ − β)→ N
(
0, A−1(β,σ2)

)
, (5.2.1)

where

A(β,σ2) =
S−1∑
i=0

σ−2
i Γi(β,σ

2), (5.2.2)
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Figure 5.4: A 24-month forecast using the reduced PARMA12(1, 1) model. Solid line is
the original data; Solid line with dots is the reduced PARMA(1,1) forecast; The two dotted
lines are 95% Gaussian prediction bounds. The 24-month forecast is from October 1982 to
September 1984.

and

Γi(β,σ
2) = E

[(
∂εt(β)

∂β
)(
∂εt(β)

∂β

)′]
.

Furthermore, Basawa and Lund [24, Remark 3.1] states that if {εt} is Gaussian, then the

maximum likelihood estimate has the same asymptotic distribution as the weighted least

squares estimate. Once we obtain the maximum likelihood estimate β̂, the MLE of σ2
i for

0 ≤ i ≤ S − 1 could be computed by

σ̂2
i =

1

N

N−1∑
k=0

(
XkS+i − X̂

(i)
kS+i

)2
/rkS+i = Si/N, (5.2.3)
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Figure 5.5: A comparison of 24-month forecasts between the full PARMA12(1, 1) model and
reduced PARMA12(1, 1) model. In the first two graphs, dotted line is forecast, and solid
line is real data.
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where σ̂2 = (σ̂2
0, . . . , σ̂

2
S−1)′.

Example 5.2.1. We adopt the causal and invertible first-order PARMA12(1, 1) model from

Example 5.1.3, and show how to compute the asymptotic covariance matrix A−1(β,σ2).

The results are shown in Table 5.6, where se =
diag(A−1)

N1/2
stands for the standard error

for β̂. In the following, p = q = 1, and S = 12 denotes the number of seasons, and

Season
√
γ̂i(0) se(θ̂i) se(φ̂i)

0 0.06 0.36 0.30
1 0.07 0.26 0.21
2 0.06 0.23 0.19
3 0.05 0.22 0.18
4 0.05 0.27 0.21
5 0.05 0.24 0.17
6 0.16 0.29 0.19
7 0.08 0.08 0.06
8 0.11 0.25 0.19
9 0.05 0.19 0.09

10 0.03 0.18 0.14
11 0.03 0.24 0.18

Table 5.6: MLE and its standard error.

i = 0, 1, . . . , S − 1, and 〈t〉 denotes the corresponding season index for t, where

〈t〉 =


t− S[t/S] if t ≥ 0,

S + t− S[t/S + 1] if t < 0,

and [ · ] stands for the greatest integer function. The model is

Xt = φtXt−1 + εt + θtεt−1. (5.2.4)
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Taking partial derivations in (5.2.4) gives

∂εt(β)

∂β
= −e2〈t〉+1Xt−1 − θt

∂εt−1(β)

∂β
− e2〈t〉+2εt−1(β), (5.2.5)

where ej denotes a (p+ q)S × 1 unit vector whose entries are all zero, except for a 1 in the

jth row. Note that in the following Xt−1, θt and εt−1(β) are scalars, however
∂εt(β)
∂β

and

ej denote the (p+ q)S × 1 vectors. Therefore by causality

E
[
Xt−1εt−1(β)

]
= E

[
εt−1(β)Xt−1

]
= E

[
ε2t−1(β)

]
= σ2

t−1,

by Leibniz integral rule, provided that εt−1(β) and
∂εt−1(β)

∂β
are both continuous, we take

the derivative outside the expectation,

E

[
∂εt−1(β)

∂β
Xt−1

]
=

∂

∂β
E
[
εt−1(β)Xt−1

]
=

∂

∂β

[
σ2
t−1

]
= 0,

where 0 is a (p+ q)S × 1 zero vector. Similarly

E

Xt−1

(
∂εt−1(β)

∂β

)′ = 0
′
,

and

E

[
∂εt−1(β)

∂β
εt−1(β)

]
=

∂

∂β
E
[
εt−1(β)εt−1(β)

]
=

∂

∂β

[
σ2
t−1

]
= 0,

and similarly

E

(∂εt−1(β)

∂β

)′
εt−1(β)

 = 0
′
.

Therefore, if we multiply both sides of (5.2.5) by its own transpose and take an expectation,
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we have

E

[
∂εt(β)

∂β

] [
∂εt(β)

∂β

]′
= E

[
− e2〈t〉+1Xt−1 − θt

∂εt−1(β)

∂β
− e2〈t〉+2εt−1(β)

]
[
− e2〈t〉+1Xt−1 − θt

∂εt−1(β)

∂β
− e2〈t〉+2εt−1(β)

]′
= θ2t E

[
∂εt−1(β)

∂β

] [
∂εt−1(β)

∂β

]′
+ var(Xt−1)E2〈t〉+1,2〈t〉+1

+ σ2
t−1

[
E2〈t〉+2,2〈t〉+2 + E2〈t〉+2,2〈t〉+1 + E2〈t〉+1,2〈t〉+2

]
+ θt

(
e2〈t〉+10

′
+ 0e

′
2〈t〉+1 + e2〈t〉+20

′
+ 0e

′
2〈t〉+2

)
= θ2t E

[
∂εt−1(β)

∂β

] [
∂εt−1(β)

∂β

]′
+ var(Xt−1)E2〈t〉+1,2〈t〉+1

+ σ2
t−1

[
E2〈t〉+2,2〈t〉+2 + E2〈t〉+2,2〈t〉+1 + E2〈t〉+1,2〈t〉+2

]
+O

= θ2t E

[
∂εt−1(β)

∂β

] [
∂εt−1(β)

∂β

]′
+ var(Xt−1)E2〈t〉+1,2〈t〉+1

+ σ2
t−1

[
E2〈t〉+2,2〈t〉+2 + E2〈t〉+2,2〈t〉+1 + E2〈t〉+1,2〈t〉+2

]
,

where var(Xt) = γt(0) is the variance of Xt, and Ei,j = eie
′
j denotes a (p+ q)S × (p+ q)S

matrix whose entries are all zero, except for a one in the ith row and jth column, and O is

a (p+ q)S × (p+ q)S zero matrix. Recall that

Γt(β, σ
2) = E

[
∂εt(β)

∂β

] [
∂εt(β)

∂β

]′
,

then we obtain

Γt(β, σ
2) = θ2t Γt−1(β, σ2) +Mt,
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where

Mt =σ2
t−1

[
E2〈t〉+2,2〈t〉+2 + E2〈t〉+2,2〈t〉+1 + E2〈t〉+1,2〈t〉+2

]
+ var(Xt−1)E2〈t〉+1,2〈t〉+1.

For simplicity we adopt the notation

Γi(β,σ
2) = θ2i Γi−1(β,σ2) +Mi, (5.2.6)

with the boundary condition Γ0(β,σ2) = ΓS(β,σ2), hence in this way all the index i are

bounded, 0 ≤ i ≤ S − 1. The solution to (5.2.6) is

Γi(β,σ
2) = r2θ,i

i∑
k=0

Mk

r2
θ,k

+ (
r2θ,S−1

1− r2
θ,S−1

)r2θ,i

S−1∑
k=0

Mk

r2
θ,k

, (5.2.7)

where

rθ,t =
t∏

j=0

θt, (5.2.8)

the proof for (5.2.7) is given as follows. By (5.2.6), ∀ 0 ≤ i ≤ S − 1, we could write
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recursively:

Γi = θ2i Γi−1 +Mi

= θ2i (θ2i−1Γi−2 +Mi−1) +Mi

= θ2i θ
2
i−1(θ2i−2Γi−3 +Mi−2) + θ2i Mi−1 +Mi

= θ2i θ
2
i−1θ

2
i−2Γi−3 + θ2i θ

2
i−1Mi−2 + θ2i Mi−1 +Mi

. . .

=
(
θiθi−1 · · · θi−(S−1)

)2
Γi−S

+
(
θiθi−1 · · · θi−(S−2)

)2
Mi−(S−1) . . .+

(
θiθi−1 · · · θ0

)2M−1

+
(
θiθi−1 · · · θ1

)2M0 +
(
θiθi−1 · · · θ2

)2M1 + . . .+ (θiθi−1)2Mi−2 + θ2i Mi−1 +Mi

=
(
θiθi−1 · · · θi−(S−1)

)2
Γi−S + I + II, (5.2.9)

where we define

I =
(
θiθi−1 · · · θi−(S−2)

)2
Mi−(S−1) . . .+

(
θiθi−1 · · · θ0

)2M−1

II =
(
θiθi−1 · · · θ1

)2M0 +
(
θiθi−1 · · · θ2

)2M1 + . . .+ (θiθi−1)2Mi−2 + θ2i Mi−1 +Mi,

since Γi−S = Γi by periodic property, θiθi−1 · · · θi−(S−1) = rθ,S−1 by definition in
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(5.2.8), we could write (5.2.9) as

Γi =
I + II

1− r2
θ,S−1

=
II(1− r2θ,S−1) + I + II(r2θ,S−1)

1− r2
θ,S−1

= II +
I + II(r2θ,S−1)

1− r2
θ,S−1

. (5.2.10)

Note that

II =
(
θiθi−1 · · · θ1

)2M0 +
(
θiθi−1 · · · θ2

)2M1 + . . .+ (θiθi−1)2Mi−2 + θ2i Mi−1 +Mi

=
(
θiθi−1 · · · θ0

)2(M0

θ20

+
M1

(θ0θ1)2
+ . . .+

Mi
(θ0θ1 · · · θi)2

)

= r2θ,i

M0

r2
θ,0

+
M1

r2
θ,1

+ . . .+
Mi

r2
θ,i


= r2θ,i

i∑
k=0

Mk

r2
θ,k

. (5.2.11)

On the other hand, we want to prove that

I + II(r2θ,S−1)

1− r2
θ,S−1

= (
r2θ,S−1

1− r2
θ,S−1

)r2θ,i

S−1∑
k=0

Mk

r2
θ,k

, (5.2.12)
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in this way we will finish the proof of (5.2.7). Note that

I + (r2θ,S−1)II =
(
θiθi−1 · · · θi−(S−2)

)2
Mi−(S−1) . . .+

(
θiθi−1 · · · θ0

)2M−1

+
(
θS−1θS−2 · · · θ0

)2 (
θiθi−1 · · · θ0

)2(M0

θ20

+ . . .+
Mi

(θ0θ1 · · · θi)2

)

=
(
θiθi−1 · · · θi−(S−2)

)2
Mi+1 . . .+

(
θiθi−1 · · · θ0

)2MS−1

+ r2θ,S−1r
2
θ,i

i∑
k=0

Mk

r2
θ,k

=
(
θS−1 · · · θ0

)2 (
θi · · · θ0

)2( Mi+1

(θ0 · · · θi+1)2
+ . . .+

MS−1

(θ0 · · · θS−1)2

)

+ r2θ,S−1r
2
θ,i

i∑
k=0

Mk

r2
θ,k

= r2θ,S−1r
2
θ,i

S−1∑
k=i+1

Mk

r2
θ,k

+ r2θ,S−1r
2
θ,i

i∑
k=0

Mk

r2
θ,k

= r2θ,S−1r
2
θ,i

S−1∑
k=0

Mk

r2
θ,k

,

dividing both sides by 1−r2θ,S−1, (5.2.12) is proved. Add (5.2.11) and (5.2.12) into (5.2.10),

we complete the proof of (5.2.7).

The invertibility of the model requires that |rθ,S−1| < 1. In the end, A−1(β,σ2) is a

(p+ q)S × (p+ q)S matrix, and it could be computed by the inverse of A(β,σ2) in (5.2.2).

Equation (5.2.1) can be used to produce confidence intervals and hypothesis tests for the

model parameters β. An α-level test statistic rejects the null hypothesis H0 : βi = 0 in

favor of the alternative hypothesis Ha : βi 6= 0, indicating that βi is statistically significantly
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different from zero if |Z| > zα/2. The p value for this test is

p = P (|Z| > |z|), (5.2.13)

where Z ∼ N (0, 1), and

Z = (β̂ − 0)/se.

After we get the MLE optimization results from Example 5.1.3 and Table 5.4, we do a

hypothesis test for the model parameters β̂ = (θ̂, φ̂), where the standard error se is ob-

tained from Table 5.6. Using the level of significance of α = 5%, we get the reduced model

parameters, which achieve the goal of parsimony. The results are shown in Table 5.7.

Season 0 1 2 3 4 5 6 7 8 9 10 11

θ̂i 0.55 -0.01 0.04 -0.02 0.09 -0.26 0.01 0.37 1.89 0.27 -0.08 0.32
p-value 0.13 0.96 0.87 0.93 0.74 0.27 0.98 0.00 0.00 0.16 0.64 0.18

reduced θ̂i 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 1.89 0.00 0.00 0.00

φ̂i 0.37 0.63 0.52 0.54 0.71 0.86 1.18 0.23 -1.41 0.35 0.57 0.37
p-value 0.22 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

reduced φ̂i 0.00 0.63 0.52 0.54 0.71 0.86 1.18 0.23 -1.41 0.35 0.57 0.37

Table 5.7: Model parameters by MLE optimization and their p-values.

We obtain the forecast in a similar manner as the previous reduced model. The resulting

prediction, along with the 95% prediction bands, is shown in Figure 5.6. The actual data

(solid line) is also shown for comparison. The forecast (solid line with dots) is in reasonable

agreement with the actual data (which were not used in the forecast), and the actual data

lies well within the 95% prediction bands. A detailed comparison can be seen in Figure 5.7

between full model and the reduced one. As shown in the first two graphs, the reduced

model predicts as well as the full model. In the next two graphs, we check the difference and
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relative error between the two forecasts, for every step. The differences are small. In fact,

when compared to predictions, the relative errors are quite small. When the step h ≥ 5,

the relative errors are nearly zero. We conclude that the removed autoregressive coefficients

in Table 5.7 are insignificant, and the reduced model performs as well as the full model. In

summary, we prefer the reduced PARMA12(1, 1) model simply because it is a simpler model

with fewer parameters and the same adequacy.

Forecasting by reduced PARMA model 

 by asymptotic distribution of MLE

Month / Year

F
lo

w
 (

c
m

s
)

10/1982 02/1983 06/1983 10/1983 02/1984 06/1984

9
1
0

1
1

1
2

1
3

Figure 5.6: A 24-month forecast using the reduced PARMA12(1, 1) model in Table 5.7. Solid
line is the original data; Solid line with dots is the reduced PARMA(1,1) forecast; The two
dotted lines are 95% Gaussian prediction bounds. The 24-month forecast is from October
1982 to September 1984.
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Figure 5.7: A comparison of 24-month forecasts between the full PARMA12(1, 1) model and
reduced PARMA12(1, 1) model, by asymptotic distribution of MLE. In the first two graphs,
dotted line is forecast, and solid line is real data.
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Chapter 6

Asymptotic normality of PARMA

model

Let Xn,i = (Xi, ..., Xi+n−1)′ be a causal and invertible PARMAS(p, q) process (1.0.1),

where n is the number of observations and i = 0, ..., S − 1. For notations, let φt =

(φt(1), . . . , φt(p))
′ and θt = (θt(1), . . . , θt(q))

′ denote the autoregressive and moving-average

parameters during season t, respectively. Then we can write the likelihood function as

L(β), where we use β = (φ′0,θ
′
0,φ
′
1,θ
′
1, . . . ,φ

′
S−1,θ

′
S−1)′ to denote the collection of all

PARMAS(p, q) parameters. The dimension of β is (p+q)S×1. Following the ideas from Ba-

sawa and Lund [24], we treat the white noise variances σ2 = (σ2
0, σ

2
1, . . . , σ

2
S−1)′ as nuisance

parameters. Then the likelihood function is given by (5.1.13) in Chapter 5. By (5.1.16), once

we obtain the maximum likelihood estimate β̂, the MLE of σ2
i for 0 ≤ i ≤ S − 1 could be

computed by

σ̂2
i =

1

N

N−1∑
k=0

(
XkS+i − X̂

(i)
kS+i

)2
/rkS+i = Si/N,
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where σ̂2 = (σ̂2
0, . . . , σ̂

2
S−1)′. Equivalently, we could minimize the negative log likelihood

`(β) = −2 log{L(β)}

= n log(2π) +
n−1∑
j=0

log(vj,i) +
n−1∑
j=0

(Xi+j − X̂
(i)
i+j)2

vj,i

= n log(2π) +
n−1∑
j=0

log(σ2
i+jrj,i) +

n−1∑
j=0

(Xi+j − X̂
(i)
i+j)2

σ2
i+jrj,i

= n log(2π) +
n−1∑
j=0

log(σ2
i+j) +

n−1∑
j=0

log(rj,i) +
n−1∑
j=0

(Xi+j − X̂
(i)
i+j)2

σ2
i+jrj,i

.

(6.0.1)

Next we consider the properties of the first derivative
∂`(β)
∂βk

in a few lemmas.

Lemma 6.0.2. For k = 1, . . . , p+q, there exist constants C > 0 and s ∈ (0, 1) such that

∣∣∣∣∣∂rt,i(β)

∂βk

∣∣∣∣∣ ≤ C(β)st,

where t ≥ 1, and 1 ≤ k ≤ p+ q.

Proof. Note that

rt,i(β) = E
(
Yt+i − Ŷt+i

)2
=

E
(
Xt+i − X̂t+i

)2

σ2
t+i

,

where Y t,i = (Yi, . . . , Yt+i−1)
′

is the mean zero PARMA process with period S given by

Yt −
p∑

k=1

at(k)Yt−k = Zt +

q∑
j=1

bt(j)Zt−j (6.0.2)
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where {Zt} is a sequence of random variables with mean zero and standard deviation 1. Here

the autoregressive parameters at(j) and the moving average parameters bt(j) are assumed

to be periodic functions of t with the same period S ≥ 1. By the invertibility assumption,

we write

Yt+i +
∞∑
j=1

Yt+i−jπt+i(j) = Zt+i, (6.0.3)

where πt+i(j) = πt+i+kS(j) by the periodic property of PARMA model. In the following,

we write πt+i(j) = πt+i(j;β) to emphasize the dependence of πt+i(j) on β, and the

autocovariance function is

ηi(h;β) = Cov(Yi, Yi−h),

By Anderson et al. [6], the best linear predictor of Yt+i is defined as

Ŷ
(i)
t+i = φ

(i)
t,1Yt+i−1 + . . .+ φ

(i)
t,t Yi, t ≥ 1,

where the vector of coefficients, φt,i =

(
φ

(i)
t,1, . . . , φ

(i)
t,t

)′
, appears in the prediction equations

Gt,iφt,i = ηt,i,

where

ηt,i =
(
ηt+i−1(1), ηt+i−2(2), . . . , ηi(t)

)′
,

and

Gt,i =
[
ηt+i−`(`− j;β)

]t
j,`=1

is the covariance matrix of (Yt+i−1, . . . , Yi)
′
. Proposition 2.1.1 of Anderson et al. [6] shows
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that if σ2
i > 0 for i = 0, 1, . . . , S−1, then for a causal PARMAS(p, q) process the covariance

matrix Gt,i is nonsingular for every t ≥ 1 and i. In this way we can generalize Corollary

5.1.1 in Brockwell and Davis [11] to periodically stationary process,

rt,i(β) = ηt+i(0;β)− η
′
t,iG
−1
t,i ηt,i. (6.0.4)

If we multiple Yt+i−1 and take expectations on both sides of (6.0.3), we could obtain

ηt+i−1(1;β) = −
∞∑
j=1

πt+i(j;β)ηt+i−j(j − 1;β),

similarly, if we multiple Yt+i−2, Yt+i−3, . . . individually on both sides of (6.0.3) and take

expectations, we have

ηt+i−2(2;β) = −
∞∑
j=1

πt+i(j;β)ηt+i−j(j − 2;β),

ηt+i−3(3;β) = −
∞∑
j=1

πt+i(j;β)ηt+i−j(j − 3;β),

...

Therefore we could have

η∞,i = −G∞,iπ∞,i,

where

η∞,i =
(
ηt+i−1(1;β), ηt+i−2(2;β), . . .

)′
,

G∞,i =
[
ηt+i−`(j − `;β)

]∞
j,`=1

,
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π∞,i =
(
πt+i(1;β), πt+i(2;β), . . .

)′
.

Additionally, G−1
∞,i can be written as

G−1
i,∞ = Ti,∞T

′
i,∞,

where

Ti,∞ =
[
πt+i(k − j;β)

]∞
k,j=1 ,

πt+i(0;β) = 1 and πt+i(j;β) = 0, for j < 0. Furthermore, if we multiply Yt+i on both

sides of (6.0.3) and take expectation, we have

ηt+i(0;β) = π
′
∞,iG∞,iπ∞,i + 1. (6.0.5)

Substituting (6.0.5) into (6.0.4), we have

rt,i(β) = 1 + π
′
∞,iG∞,iπ∞,i − η

′
t,iG
−1
t,i ηt,i

= 1 + η
′
∞,iG

−1
∞,iη∞,i − η

′
t,iG
−1
t,i ηt,i

Therefore

∂rt,i(β0)

∂βk
= 2

∂η
′
∞,i
∂βk

G−1
∞,iη∞,i + η

′
∞,iG

−1
∞,i

∂G∞,i
∂βk

G−1
∞,iη∞,i

−2
∂η
′
t,i

∂βk
G−1
t,i ηt,i + η

′
t,iG
−1
t,i

∂Gt,i

∂βk
G−1
t,i ηt,i,

where all the terms on the right hand side are evaluated at β = β0, and β0 is the truth. By
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G−1
t,i ηt,i = φt,i, the above equation reduces to

∂rt,i(β0)

∂βk
= −2

∂η′∞,i
∂βk

π∞,i +
∂η
′
t,i

∂βk
φt,i


−

[
π
′
∞,i

∂G∞,i
∂βk

π∞,i − φ
′
t,i

∂Gt,i

∂βk
φt,i

]
.

In Anderson et al. [6, Corollary 2.2.4], they show that

φ
(i)
t,k
→ −πt+i(k) as k →∞,

and
n−1∑
j=0

(
φ

(i)
t,j + πt+i(j)

)2
≤ 2

πC


∑
j≥n

∣∣πt+i(j)∣∣
2

M

 ,
where M = max{ηt+i(0;β), i = 0, . . . , S − 1}. Note that

(∑
j≥n

∣∣πt+i(j)∣∣)2
is bounded

in n. Therefore we could have

∂rt,i(β0)

∂βk
≤ 2K1

n−1∑
j=0

∣∣∣∣πt+i(j) + φ
(i)
t,j

∣∣∣∣+
∑
j≥n

∣∣πt+i(j)∣∣


+K1

 t∑
j,`=1

∣∣∣∣πt+i(i)πt+i(`)− φ(i)
t,jφ

(i)
t,`

∣∣∣∣+ 2
∑
j≥n

∣∣πt+i(j)∣∣∑
`

∣∣πt+i(`)∣∣
 ,

where K1 = 1
2π

∫ π
−π

∣∣∣∣∂g(λ;β0)
∂βk

∣∣∣∣ dλ and g(λ;β0) is the spectral density matrix of the equiv-

alent vector ARMA process with length S. Note that |A| is the determinant of A if A is a
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matrix. By the Cauchy-Schwarz inequality,

∣∣∣∣∣∂rt,i(β0)

∂βk

∣∣∣∣∣ ≤ K2t
1/2st/2 +K3

∑
j≥n

∣∣πt+i(j)∣∣+K4ts
t/2

≤ K5s
t
1,

(6.0.6)

where K2, K3, K4, K5 are positive constants, 0 < s < 1, and 0 < s1 < 1. This finishes the

proof.

Lemma 6.0.3. For k = 1, . . . , p+q,

n−1/2

∣∣∣∣ ∂
∂βk

∑n−1
t=0 log rt,i

∣∣∣∣+

∣∣∣∣∣∣∑n−1
t=0

(Xt+i−X̂t+i)2

r2t,i

∂rt,i
∂βk

∣∣∣∣∣∣

β=β̂

p→ 0.

Proof. Given
∂rt,i(β0)

∂βk
≤ C(β){S(β)}t from Lemma 6.0.2 and the fact

∣∣∣r2t−1,i

∣∣∣ ≥ 1, we

have

n−1/2

∣∣∣∣∣∣ ∂

∂βk

n−1∑
t=0

log rt−1,i

∣∣∣∣∣∣
β=β̂

≤ n−1/2
n−1∑
t=0

1

r2t−1,i

∣∣∣∣∣∂rt−1,i

∂βk

∣∣∣∣∣
β=β̂

≤ n−1/2
n−1∑
t=0

∣∣∣∣∣∂rt−1,i

∂βk

∣∣∣∣∣
β=β̂

≤ C1n
−1/2

n−1∑
t=0

st1

→ 0.

Therefore

n−1/2

∣∣∣∣∣∣ ∂

∂βk

n−1∑
t=0

log rt−1,i

∣∣∣∣∣∣
β=β̂

p→ 0.
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On the other hand,

n−1/2E


∣∣∣∣∣∣
n−1∑
t=0

(Xt+i − X̂t+i)2

r2t,i

∂rt,i

∂βk

∣∣∣∣∣∣
β=β̂

I(A)


≤ C1E

n−1∑
t=0

(Xt+i − X̂t+i)2

r2t,i

st1I(A)


= C1

n−1∑
t=0

σ2
t+ir

2
t,i

r2t,i

st1I(A)


≤ CC1

n−1∑
t=0

st1

→ 0,

where I(·) is the indicator function and C > 0 is a constant, A is an event with the probability

arbitrarily close to 1 and on which ‖β̂−β0‖ arbitrarily small for all large n, where we adopt

the strong consistency for MLE of a vector ARMA model from Dunsmuir and Hannan [15],

and apply it for PARMA model.

n−1/2

∣∣∣∣∣∣
n−1∑
t=0

(Xt+i − X̂t+i)2

r2t,i

∂rt,i

∂βk

∣∣∣∣∣∣
β=β̂

p→ 0.

Remark 6.0.4. From Section 2 of Basawa and Lund [24], the PARMA model (1.0.1) has the

S−variate vector ARMA representation

Φ0
−→
XN −

p∗∑
k=1

Φk
−→
XN−k = Θ0

−→ε 0 +

q∗∑
k=1

Θk
−→ε N−k, (6.0.7)
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where {
−→
XN} and {−→ε N} are the S−variate series {

−→
XN} =

(
XNS+1, . . . , XNS+S

)′
and

{−→ε N} =
(
εNS+1, . . . , εNS+S

)′
. The model orders in (6.0.7) are p∗ = [p/S] and q∗ =

[q/S], where [x] denotes the smallest integer greater than or equal to x.

Remark 6.0.5. In Dunsmuir and Hannan [15], the following assumption is needed for the

strong consistency of MLE of the vector ARMA model. They restricted the elements of

Φj, 1 ≤ j ≤ p∗ and Θj, 1 ≤ j ≤ q∗ to lie in a ball specified by

tr

 p∗∑
1

ΦjΦj
′

+

q∗∑
1

ΘjΘj
′
 <∞. (6.0.8)

With condition (6.0.8), Dunsmuir and Hannan [15, Theorem 3] gave the strong consistency

of the MLE of the vector ARMA model.

Remark 6.0.6. By Section 3 of Basawa and Lund [24], we could work in the univariate

PARMA setting rather than transform to an S−variate vector ARMA model. This is eligible

by two reasons. First of all, one has to invert the S-variate ARMA transformation to obtain

the individual PARMA model cofficients. Hence the results derived directly in terms of the

univariate PARMA model will be more readily usable. Second of all, even though one could

obtain a standard vector ARMA model, the covariance matrix of the vector noises and the

moving average parameters would still depend both the PARMA autoregressive parameters

and the variance of vector ARMA model. For the above reasons, we will work directly in

the PARMA setting. Therefore we adopt the strong consistency for MLE of a vector ARMA

model from Dunsmuir and Hannan [15], and apply it for PARMA model.

106



Lemma 6.0.7. For k = 1, . . . , p+ q,

n−1/2
n−1∑
t=0

∣∣∣∣∣Xt+i − X̂t+i + Zt+i
rt,i

∂(X̂t+i + Zt+i)

∂βk

∣∣∣∣∣
β=β̂

p→ 0,

and

n−1/2
n−1∑
t=0

∣∣∣∣∣Xt+i − X̂t+i − Zt+irt,i

∂(X̂t+i − Zt+i)
∂βk

∣∣∣∣∣
β=β̂

p→ 0.

Proof. We only prove n−1/2∑n−1
t=0

∣∣∣∣∣Xt+i−X̂t+i−Zt+irt,i

∂(X̂t+i−Zt+i)
∂βk

∣∣∣∣∣
β=β̂

p→ 0, since

the other result could be proved in a similar way. By the invertible assumption of PARMAS(p, q)

model,

Zt =
∞∑
j=0

πt(j)Xt−j,

and from the model set-up in (1.0.1), we can write

φt(z) = 1− φt(1)z − . . .− φt(p)z
p,

and

θt(z) = 1 + θt(1)z + . . .+ θt(q)z
q.

Additionally,

πt(z) =
φt(z)

θt(z)
= 1 +

∞∑
j=1

πjz
j.

Notice that β = (φt(1), φt(2), . . . , φt(p), θt(1), θt(2), . . . , θt(q))
′
, and when k = 1, . . . , p, we
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have

zk

θt(z)
=
−∂φt(z)/∂βk

θt(z)
= −∂ (φt(z)/θt(z))

∂βk
= −∂πt(z)

∂βk
= −

∞∑
j=1

∂πt(j)

∂βk
zj,

and when k = 1, 2, . . . , q, we have

∂ (πt(z))

∂βp+k
=
∞∑
j=1

∂πt(j)

∂βp+k
zj =

∂ (φt(z)/θt(z))

∂βp+k
= −φt(z)

θ2
t (z)

∂θt(z)

∂βp+k
= −φt(z)

θ2
t (z)

zk.

In summary, 
zk

θt(z)
= −

∑∞
j=1

∂πt(j)
∂βk

zj

φt(z)

θ2
t (z)

zk = −
∑∞
j=1

∂πt(j)
∂βp+k

zj.

(6.0.9)

Then we can prove from (6.0.9) that there exist constants C > 0 and s ∈ (0, 1) such that

∣∣∣∣∣∂πj∂βk

∣∣∣∣∣ ≤ Csj, j ≥ 1, 1 ≤ k ≤ p+ q.

Furthermore, we may expand the Yule-Walker equation Γn,iφ
(i)
n = γ

(i)
n as



γi+n−1(1)

γi+n−2(2)

γi+n−3(3)

...

γi(n)


=



γi+n−1(0) γi+n−1(−1) . . . γi+n−1(−n+ 1)

γi+n−2(1) γi+n−2(0) . . . γi+n−2(−n+ 2)

γi+n−3(2) γi+n−3(1) . . . γi+n−3(−n+ 3)

...
... . . .

...

γi(n− 1) γi(n− 2) . . . γi(0)





φ
(i)
n,1

φ
(i)
n,2

φ
(i)
n,3
...

φ
(i)
n,n


,
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then for 1 ≤ j ≤ n, we have

γi+n−j(j) =
n∑
`=1

φ
(i)
n,`

γi+n−j(j − `),

therefore for 1 ≤ k ≤ p+ q,

∂γi+n−j(j)

∂βk
=

n∑
`=1

∂γi+n−j(j − `)
∂βk

φ
(i)
n,`

+
n∑
`=1

∂φ
(i)
n,`

∂βk
γi+n−j(j − `). (6.0.10)

On the other hand,

Zn+i = Xn+i +
∞∑
`=1

πn+i(`)Xn+i−`,

if we multiply Xn+i−j on both sides and take expectations, we can obtain

γn+i−j(j) =
∞∑
`=1

πn+i(`)γn+i−j(j − `),

then similarly for 1 ≤ k ≤ p+ q,

∂γn+i−j(j)

∂βk
=
∞∑
`=1

∂πn+i(`)

∂βk
γn+i−j(j − `) +

∞∑
`=1

πn+i(`)
∂γn+i−j(j − `)

∂βk
. (6.0.11)

If we subtract (6.0.10) from (6.0.11), we have

0 =
n∑
`=1

(
πi+n(`)− φ(i)

n,`

)
∂γi+n−j(j − `)

∂βk
+
∑
`>n

πi+n(`)
∂γi+n−j(j − `)

∂βk
(6.0.12)

n∑
`=1

∂πi+n(`)

∂βk
−
∂φ

(i)
n,`

∂βk

 γi+n−j(j − `) +
∑
`>n

∂πi+n(`)

∂βk
γi+n−j(j − `).
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Furthermore, we may write (6.0.12) as

n∑
`=1

∂φ(i)
n,`

∂βk
−
∂πi+n(`)

∂βk

 γi+n−j(j − `)

=
n∑
`=1

(
πi+n(`)− φ(i)

n,`

)
∂γi+n−j(j − `)

∂βk

+
∑
`>n

(
πi+n(`)

∂γi+n−j(j − `)
∂βk

+
∂πi+n(`)

∂βk
γi+n−j(j − `)

)
.

(6.0.13)

Consequently, we write (6.0.13) as

∂
(
πn,i − φn,i

)
∂βk

= Γ−1
n,i

[
∂Γn,i

∂βk
(φn,i − πn,i) + dn,i

]
,

where dn,i is an n× 1 vector with

∑
`>n

(
πi+n(`)

∂γi+n−j(j − `)
∂βk

+
∂πi+n(`)

∂βk
γi+n−j(j − `)

)

as its j-th component. Then under the assumption of Z−t = X−t = 0 for all t ≥ 0 we have

Zt+i = θ(B)−1φ(B)Xt+i

= π(B)Xt+i

= Xt+i +
∞∑
j=1

Xt+i−jπt+i(j)

= Xt+i +
n−1∑
j=0

Xt+i−jπt+i(j).
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Now it follows from (6.0.13) that

E

∂
(
X̂

(i)
t+i − Zt+i

)
∂βk


2

=E

∂
(
φ

(i)
t,1Xt+i−1 + . . .+ φ

(i)
t,tXi −Xt+i −

∑n−1
j=0 Xt+i−jπt+i(j)

)
∂βk


2

=E

n−1∑
j=0

∂

(
φ

(i)
t,j − πt+i(j)

)
∂βk

Xt+i−j


2

=
∂
(
φt,i − πt,i

)′
∂βk

Γt,i

∂
(
φt,i − πt,i

)
∂βk

=

[
∂Γt,i

∂βk

(
φt,i − πt,i

)
+ dn,i

]′
Γ−1
t,i

[
∂Γt,i

∂βk

(
φt,i − πt,i

)
+ dt,i

]

≤ 2

λmin(Γt,i)

[
‖
∂Γt,i

∂βk

(
φt,i − πt,i

)
‖2 + ‖dt,i‖

2

]

≤
2max{α, γi(0)}t
λmin(Γt,i)

‖φt,i − πt,i‖2 +

∑
`>t

∣∣πt+i(`)∣∣+

∣∣∣∣∂πt+i(`)∂βk

∣∣∣∣
2


≤C1s
t
1,

where λmin(Γt,i) > 0 denotes the minimum eigenvalue of Γt,i, and

α ,

∣∣∣∣∣∣∣
∫ π

−π

∂
∣∣∣θ(eiw)/φ(eiw)

∣∣∣2
∂βk

dw

∣∣∣∣∣∣∣ ≥
∣∣∣∣∂γi(j)∂βk

∣∣∣∣ ,
for j ≥ 1 and 1 ≤ k ≤ p+ q, and C1 > 0 and s1 ∈ (0, 1) are some constants, which depend

on β ∈ B continuously. Additionally, a detailed discussion of spectral density for PARMA
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model could be seen in Wy lomańska [56]. Next using the similar argument as in the proof

of Lemma 6.0.3, we may show that

E

[
∂(X̂t+i − Zt+i)

∂βk
I(A)

]2

β=β̂

≤ C2s
t
2, t ≥ 1, 1 ≤ k ≤ p+ q,

where A is an event with the probability arbitrarily close to 1 and on which ‖β̂ − β0‖

arbitrarily small for all large n, and C2 > 0 and S2 ∈ (0, 1) are some constants. Hence

n−1/2∑n−1
t=0

E

∣∣∣∣∣(Xt+i−X̂t+i−Zt+i)rt,i

∂(X̂t+i−Zt+i)
∂βk

∣∣∣∣∣
β=β̂

I(A)


≤ n−1/2∑n−1

t=0

E
[
Xt+i − X̂t+i(β)− Zt+i(β)

]2
E

[
∂(X̂t+i−Zt+i)

∂βk

]2

β=β̂

I(A)

1/2

≤ Cn−1/2∑n−1
t=0 s

t/2
2

→ 0,

where C > 0 is a constant. Thus

n−1/2
n−1∑
t=0

∣∣∣∣∣(Xt+i − X̂t+i − Zt+i)rt,i

∂(X̂t+i − Zt+i)
∂βk

∣∣∣∣∣
β=β̂

→ 0.

In a similar manner, we could prove

n−1/2
n−1∑
t=0

∣∣∣∣∣Xt+i − X̂t+i + Zt+i
rt,i

∂(X̂t+i + Zt+i)

∂βk

∣∣∣∣∣
β=β̂

p→ 0,

and this ends the proof.

We will show that the asymptotic variance of the estimated periodic AR and MA coeffi-
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cient vector can be nicely represented in terms of the two PAR models. Define

φt(B)ξt = Wt,

and

θt(B)ςt = Wt,

where {Wt} ∼ WN(0, 1) is a white noise process with mean 0 and variance 1. Let ξ =(
ξ−1, ξ−2, . . . , ξ−p, ς−1, . . . , ς−q

)′
, and

W(β) = W(φt,θt) = {Var(ξ)}−1.

Before we state our next lemma, we need to clarify notation. By the invertible assumption

of PARMA model (1.0.1), we may write

εt+i = εt+i(β) = Xt+i−φt(i)Xt+i−1− . . . φt(p)Xt+i−p−θt(1)εt+i−1 . . .−θt(q)εt+i−q.

Then for k = 1, . . . .p, we may write

U
(i)
tk

= −
∂εt+i
∂βk

,

and for k = 1, 2, . . . , q,

V
(i)
tk

= −
∂εt+i
∂βp+k

.

Let χ = (X,Z) and τ = (U ,V ), where X and U are n × p matrices with Xi+j−`

and U
(i)
j`

as their (j, `)-th elements, respectively, and Z and V are n × q matrices with
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εi+j−` and V
(i)
j`

as their (j, `)-th elements respectively. Denote R as the diagonal matrix

diag
(
r0,i(β0), . . . , rn−1,i(β0)

)
.

Lemma 6.0.8. n−1τ
′
R−1τ

P→W∗(β) = {Var(σtξt)}−1.

Proof. In the following proof, all U
(i)
tk

,V
(i)
tk

,Zt+i, and rt,i are evaluated at β = β0. We

adopt the notations that

BkU
(i)
tj = U

(i)
t−k,j,

and

BkV
(i)
tj = V

(i)
t−k,j.

From the invertible representation, we have

U
(i)
tj = θ−1

t (B)Xt+i−j,

and

V
(i)
tj = θ−1

t (B)Zt+i−j = φt(B)θ−2
t (B)Xt+i−j,

assuming that X−t = Z−t = 0 for all t ≥ 0. Let


1/θt(z) = 1−

∑
j≥k ψt(j)z

j

φt(z)/θ2t (z) = 1−
∑
j≥1 ηjz

j,
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then

U
(i)
tj =Xt+i−j −

t+i−j−1∑
k=1

ψt(j)Xt+i−j−k

=φt(B)−1Zt+i−j +
∑

k≥t+i−j
ψt(k)Xt+i−j−k

=
˜

U
(i)
tj + u

(i)
tj ,

(6.0.14)

and

V
(i)
tj =Xt+i−j −

t+i−j−1∑
k=1

ηkXt+i−j−k

=θt(B)−1Zt+i−j +
∑

k≥t+i−j
ηkXt+i−j−k

=
˜

V
(i)
tj + v

(i)
tj .

(6.0.15)

Note that

E

(
u

(i)
tj

)2
= E

 ∞∑
k≥t+i−j

ψt(k)Xt+i−j−k

2

(6.0.16)

≤
∞∑

`=1,k≥t+i−j
γt+i−j−k(k − `)ψt(k)ψt(`)

≤ M
∞∑
k=1

ψ2
t+i−j−k

≤ Cst−j,

for t ≥ 1, and 1 ≤ j ≤ p, where 0 < s < 1 and M = max{γi(0) : i = 0, 1, . . . , S − 1}.
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Similarly, we could have

E

(
v
(i)
tj

)2
≤ Cst−j,

for t ≥ 1, and 1 ≤ j ≤ q. Notice that the (j, `)−th element of n−1τ
′
R−1τ is

1

n

n−1∑
t=0

U
(i)
tj U

(i)
t`
/rt,i =

1

n

n−1∑
t=0

( ˜
U

(i)
tj

˜
U

(i)
t`

+
˜

U
(i)
tj u

(i)
t`

+ u
(i)
tj

˜
U

(i)
t`

+ u
(i)
tj u

(i)
t`

)
/rt,i.

By the ergodic theorem, under the assumption of a measurable density function for PARMA

process,

1

n

n−1∑
t=0

˜
U

(i)
tj

˜
U

(i)
t`

=
1

n

n−1∑
t=0

[φ−1
t (B)εt+i−j ][φ−1

t (B)εt+i−`]

a.s.→ Cov(
˜

U
(i)
tj

˜
U

(i)
t`

)

= Cov
(
φ−1
t (B)Zt+i−j, φ

−1
t (B)Zt+i−`

)
= (σt+i−jσt+i−`)Cov(ξt+i−j, ξt+i−`).

By Corollary 5.1.2 |rt,i − 1| → 0 as t→∞, we have

1

n

n−1∑
t=0

˜
U

(i)
tj

˜
U

(i)
t`
/rt,i

a.s.→ (σt+i−jσt+i−`)Cov(ξt+i−j, ξt+i−`).
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By Cauchy-Schwartz inequality and (6.0.16),

1

n

n−1∑
t=0

E

∣∣∣∣u(i)
tj u

(i)
t`

∣∣∣∣ /rt,i ≤ 1

n

n−1∑
t=0

E

∣∣∣∣u(i)
tj u

(i)
t`

∣∣∣∣
≤ 1

n

n−1∑
t=0

[
E

(
u

(i)
tj

)2
E

(
u

(i)
t`

)2
]1/2

≤ C

n

n−1∑
t=0

s2t−j−`

→ 0.

(6.0.17)

Then

1

n

n−1∑
t=0

u
(i)
tj u

(i)
t`
/rt,i

p→ 0.

With a similar method, we may also show that

1

n

n−1∑
t=0

˜
U

(i)
tj u

(i)
t`
/rt,i

p→ 0,

and

1

n

n−1∑
t=0

u
(i)
tj

˜
U

(i)
t`
/rt,i

p→ 0.

Therefore for 1 ≤ j, ` ≤ p,

1

n

n−1∑
t=0

U
(i)
tj U

(i)
t`
/rt,i

p→ (σt+i−jσt+i−`)Cov(ξt+i−j, ξt+i−`).

We can prove in a similar manner that for 1 ≤ j ≤ p and 1 ≤ ` ≤ q,

1

n

n−1∑
t=0

U
(i)
tj V

(i)
t`

/rt,i
p→ (σt+i−jσt+i−`)Cov(ξt+i−j, ςt+i−`),
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and 1 ≤ j, ` ≤ q,

1

n

n−1∑
t=0

V
(i)
tj V

(i)
t`

/rt,i
p→ (σt+i−jσt+i−`)Cov(ςt+i−j, ςt+i−`).

Putting the above three equations together, we have completed the proof.

Lemma 6.0.9. Let τ = (U ,V ), U is an n × p matrix with U
(i)
j`

as its (j, `)-th ele-

ments, respectively, and V is an n × q matrix with V
(i)
j`

as their (j, `)-th elements. Both

U and V follow the assumption of second finite moment. R denotes the diagonal matrix

diag
(
r0,i(β0), . . . , rn−1,i(β0)

)
, and

Z =
(
Zt+i(β0), Zt+i+1(β0) . . . , Zt+n−1(β0)

)′
,

then

n−1/2τ
′
R−1Z D→ N

(
0, σ2

t W
∗(β0)−1

)
.

Proof. Define

Ũ
(i)
t =

(
Ũ

(i)
t1 , . . . , Ũ

(i)
tp , Ṽ

(i)
t1 , . . . , Ṽ

(i)
tp

)′

and

u
(i)
t =

(
u

(i)
t1 , . . . , u

(i)
tp , v

(i)
t1 , . . . , v

(i)
tq

)′
,

where Ũ
(i)
tj , Ṽ

(i)
tj , u

(i)
tj and v

(i)
tj are defined in (6.0.14) and (6.0.15). From the model invertible

assumption, we may write Zt = εt+ zt, where zt = −
∑
j≥t

πt(j)Xt−j , and πt(z) =
φt(z)
θt(z)

=
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1 +
∑∞
j=1 πjz

j. then

n−1/2τ
′
R−1Z = n−1/2

n−1∑
t=0

(
Ũ

(i)
t + u

(i)
t

)
εt + zt
rt,i

(6.0.18)

= n−1/2
n−1∑
t=0

Ũ
(i)
t εt + Ũ

(i)
t zt + u

(i)
t εt + u

(i)
t zt

rt,i
.

Using similar method as (6.0.16), we may obtain that for all t ≥ 1,

E
[
z2
t

]
≤ Cst,

where C > 0, and s ∈ (0, 1) are some constants. Additionally based on the same argument

as (6.0.17), we may obtain that

n−1/2
n−1∑
t=0

Ũ
(i)
t zt + u

(i)
t εt + u

(i)
t zt

rt,i

P→ 0. (6.0.19)

Let F
(i)
t be the σ−algebra generated by {εt+i−k,k ≥ 0}, then {α

′
Ũ

(i)
t εt/rt,i} are martin-

gale differences with respect to {F (i)
t }, for any α ∈ Rp+q. Furthermore, α

′
Ũ

(i)
t εt/rt,i is

F
(i)
t −measurable and

E

[(
α
′
Ũ

(i)
t εt/rt,i

)
|F (i)
t−1

]
=

(
α
′
Ũ

(i)
t /rt,i

)
Eεt = 0.

119



Further for any ε > 0,

1

n

n−1∑
t=0

E

[(
α
′
Ũ

(i)
t εt/rt,i

)2
I

(∣∣∣∣α′Ũ(i)
t εt/rt,i

∣∣∣∣) |F (i)
t−1

]

≤ 1

n

n−1∑
t=0

E

[(
α
′
Ũ

(i)
t εt

)2
I

(∣∣∣∣α′Ũ(i)
t εt

∣∣∣∣ > n1/2ε

)
(
I

(∣∣∣∣α′Ũ(i)
t

∣∣∣∣ > log n

)
+ I

(∣∣∣∣α′Ũ(i)
t

∣∣∣∣ ≤ log n

))
|F (i)
t−1

]

≤ 1

n

n−1∑
t=0

[
σ2
t

(
α
′
Ũ

(i)
t

)2
I

(∣∣∣∣α′Ũ(i)
t

∣∣∣∣ > log n

)
+

(
α
′
Ũ

(i)
t

)2
E

[
ε2t I

(
|εt| >

n1/2ε

log n

)]]

∼σ2
t E

[(
α
′
Ũ

(i)
1

)2
I

(∣∣∣∣α′Ũ(i)
1

∣∣∣∣ > log n

)]
+ E

(
α
′
Ũ

(i)
1

)2
E

[
ε21I

(
|ε1| >

n1/2ε

log n

)]

→0.

The last limit follows from the fact that both εt and α
′
Ũ

(i)
1 have finite second moments.

Note that since rt,i → 1 as t→∞,

1

n

n−1∑
t=0

(
α
′
Ũ

(i)
t εt/rt,i

)2
∼ 1

n

n−1∑
t=0

(
α
′
Ũ

(i)
t εt

)2

a.s.→ E

(
α
′
Ũ

(i)
t εt

)2

= σ2
t E

(
α
′
Ũ

(i)
t

)2

= σ4
t α
′
W (β0)−1α

= σ2
t α
′
W∗(β0)−1α.
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Then it follows from Theorem 4 of p. 511 of Shiryaev [40] that

n−1/2
n−1∑
t=0

(
α
′
Ũ

(i)
t εt/rt,i

)
d→ N

(
0, σ2

t α
′
W∗(β0)−1α

)
, (6.0.20)

for any α ∈ Rp+q. Now the limit

n−1/2
n−1∑
t=0

τ
′
R−1Z D→ N

(
0, σ2

t W
∗(β0)−1

)

follows from (6.0.20), (6.0.18) and (6.0.19).

Theorem 6.0.10. Let Xt be the PARMAS(p, q) process defined by (1.0.1), and suppose that

the vector of true parameter values β0 ∈ B, where B is the parameter space containing all

β. Then as n→∞,

n1/2(β̂ − β0)
D→ N

(
0,W∗(β0)

)
.

Proof. Let X̂n =
(
X̂i, . . . , X̂i+n−1

)
, then Xn = H(i)

(
Xn − X̂n

)
, where H(i) is given as

H(i) =



1 0 0 . . . 0

h
(i)
11 1 0 . . . 0

h
(i)
22 h

(i)
21 1 . . . 0

h
(i)
33 h

(i)
32 h

(i)
31 . . . 0

h
(i)
n−1,n−1 h

(i)
n−1,n−2 h

(i)
n−1,n−3 . . . 1


,
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where the coefficients h
(i)
22 depend on i. Notice that Consequently,

X
′
nΣ(β)−1Xn =

n−1∑
t=0

(
Xt+i − X̂

(i)
t+i

)2

σ2
t rt−1,i

,

where |Σ(β)| =
(∏S−1

i=0 σ2
i

)N
, with N = n/S. Now it follows from (6.0.1) that

`(β) = −2 logL(β) = n log(2π) + n+
n−1∑
j=0

log(rj,i) +N
S−1∑
i=0

log(Si/N),

where

Si =
N−1∑
k=0

(
XkS+i − X̂

(i)
kS+i

)2

rkS+i
.

Note that β̂ is the solution of the equation ∂
∂β

`(β) = 0, and for 1 ≤ k ≤ p, the equality

∂
∂β

`(β)|
β=β̂

= 0 leads to

0 =
n−1∑
t=0

Zt(β̂)U
(i)
tk

(β̂)

rt,i(β̂)
+ δ

(i)
k

(6.0.21)

=
n−1∑
t=0

Xt − p∑
j=1

β̂t(j)Xt−j −
q∑
i=1

β̂t(p+ i)Zt−i(β0)

 Û(i)
tk

(β0)

rt,i
+ η
′
k(β̂ − β0) + δ

(i)
k
,
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where X−j = Z−j = 0 for all j ≥ 0, and

δ
(i)
k

=

(
σ2
t
2

∂

∂βk

n−1∑
t=0

log rt,i −
1

2

n−1∑
t=0

(Xt − X̂t)2

r2t,i

∂rt,i

∂βk

− 1

2

n−1∑
t=0

[
Xt − X̂t + Zt

rt,i

∂(X̂t + Zt)

∂βk
+
Xt − X̂t − Zt

rt,i

∂(X̂t − Zt)
∂βk

]) ∣∣∣∣β=β̂
,

(6.0.22)

and

ηk =
n−1∑
t=0

U
(i)
tk

(βn)

rt−1(βn)

q∑
j=1

β̂p+jU
(i)
t−j(βn)

+
n−1∑
t=0

Xt − p∑
j=1

β̂jXt−j −
q∑
j=1

β̂p+jZt−i(βn)

 ∂

∂β

U
(i)
tk

rt−1


β=βn

=
n−1∑
t=0

U
(i)
tk

(β0)

rt−1(β0)

q∑
j=1

βp+jU
(i)
t−j(β0) +

n−1∑
t=0

Zt(β0)
∂

∂β

U
(i)
tk

rt−1


β=β0

+Op(n‖β̂ − β0‖).

In the above expression, U t =

(
U

(i)
t1 , . . . , U

(i)
tp , V

(i)
t1 , . . . , V

(i)
tq

)
, and βn is always between

β̂ and β0. Similarly, the equation ∂
∂βp+j

`(β)|
β=β̂

= 0 (1 ≤ k ≤ q) leads to

0 =
n−1∑
t=0

Xt − p∑
j=1

β̂jXt−j −
q∑
j=1

β̂p+jZt−i(β0)

V (i)
tk

(β0)rt−1(β0)

+η
(i)
p+k

(i)′(β̂ − β0) + δ
(i)
p+k

,
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where

δ
(i)
p+k

=

(
σ2
t
2

∂

∂βp+k

n−1∑
t=0

log rt,i −
1

2

n−1∑
t=0

(Xt − X̂t)2

r2t,i

∂rt,i

∂βp+k

− 1

2

n−1∑
t=0

[
Xt − X̂t + Zt

rt,i

∂(X̂t + Zt)

∂βp+k
+
Xt − X̂t − Zt

rt,i

∂(X̂t − Zt)
∂βp+k

]) ∣∣∣∣β=β̂
,

(6.0.23)

and

η
(i)
p+k

=
n−1∑
t=0

U
(i)
tk

(β0)

rt−1(β0)

q∑
j=1

βp+jU
(i)
t−j(β0) +

n−1∑
t=0

Zt(β0)
∂

∂β

 V
(i)
tk

rt−1


β=β0

+Op(n‖β̂ − β0‖).

It follows from (6.0.21) and (6.0.23) that

U
′
R−1Xβ̂ = U

′
R−1Y +A

′
(β̂ − β0) + δ(i), (6.0.24)

where

δ(i) = (δ
(i)
1 , . . . , δ

(i)
p+q)

′
,

and A is the (p+ q)× (p+ q) matrix with η
(i)
k

as its k-th column. Note that Y −Xβ0 = Z

and

U = X −
q∑
j=1

βp+j


U−j(β0)

′

...

Un−1−j(β0)
′

 .
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By (6.0.21), (6.0.23) and (6.0.24), we could obtain

UR−1U(β̂ − β0) = UR−1Z +
[
B(i)

]′
(β̂ − β0) + δ(i),

where B(i) is the (p+ q)× (p+ q) matrix, and the sum of last two terms on the right hand

side of (6.0.23) is the (p+ k)-th term for B(i), with k = 1, . . . , q. Therefore,

n1/2(β̂ − β0) =

UR−1U

n
− B

(i)′

n

−1
UR−1Z − δ(i)

n1/2

=

[
UR−1U

n

]−1
UR−1Z
n1/2

+ op(1),

where the last equality follows from Lemma 6.0.3 and Lemma 6.0.7, and the fact that B
(i)
n

p→

0, with a similar proof as (6.0.17). Then the theorem follows from Lemma 6.0.9.
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Chapter 7

Periodic AIC for PARMAS(p, q) model

7.1 Kullback-Liebler (K-L) Information

The development of the AIC is predicted on the Kullback-Liebler (K-L) information between

two probability density functions f and g, where K-L information is defined to be

I(f, g) =

∫
f(t) ln

(
f(t)

g(t)

)
dt.

The notation I(f, g) denotes a measure of the information lost when g is used to approxi-

mate f , which is also the expectation of the logarithmic difference between the two density

functions f and g.

Example 7.1.1. Suppose we approximate the normal distribution given by f(t|µ, σ2) =

1
σ
√

2π
e
−1

2(
t−µ
σ )2

with g(t|ξ, τ2) = 1
τ
√

2π
e
−1

2(
t−ξ
τ )2

. Then

ln

(
f(t)

g(t)

)
=

1

2
{ln τ

2

σ2
− (

t− µ
σ

)2 + (
t− ξ
τ

)2},
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and the K-L information is

I(f, g) = Ef

[
ln

(
f(t)

g(t)

)]
=

1

2

[
ln
τ2

σ2
− E(

t− µ
σ

)2 + E(
t− ξ
τ

)2

]

=
1

2

[
ln
τ2

σ2
− 1 +

σ2 + (µ− ξ)2

τ2

]
.

If the true distribution f is the standard normal and g ∼ N(0.1, 1.5), then

I(f, g) =
1

2
{ln 1.5

1
− 1 +

1 + (0− 0.1)2

1.5
} = 0.0394.

Proposition 7.1.2. I(f, g) ≥ 0.

Proof. For a convex function, C, Jensen’s Inequality from Durrett [16, Theorem 1.5.1] asserts

that C [E(X)] ≤ E (C(X)). Therefore by letting C = − ln(t), we write

I(f, g) =

∫
f(t) ln

(
f(t)

g(t)

)
dt

= −
∫
f(t) ln

(
g(t)

f(t)

)
dt

=

∫
f(t)C

(
g(t)

f(t)

)
dt

= Ef

[
C
(
g(t)

f(t)

)]
≥ C

[
Ef

(
g(t)

f(t)

)]
= − ln

∫
f(t)

(
g(t)

f(t)

)
dt

= − ln

∫
g(t)dt

= − ln 1

= 0.
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7.2 Derivation of periodic AIC for PARMAS(p, q) pro-

cess

Following the ideas from Basawa and Lund [24], we treat the white noise variances σ2 =

(σ2
0, σ

2
1, . . . , σ

2
S−1)′ as nuisance parameters. We use β = (φ

′
0,θ
′
0,φ
′
1,θ
′
1, . . . ,φ

′
S−1,θ

′
S−1)

′

to denote the collection of all PARMAS(p, q) parameters. The dimension of β is (p+q)S×1.

Then the likelihood function is given by (5.1.13), where vj,i and X̂
(i)
i+j depend on β. We

also need the asymptotic results of MLE for PARMA process in Basawa and Lund [24]. For

a causal and invertible Gaussian PARMA model, with the assumption of {εt} being periodic

i.i.d. Gaussian noise, Theorem 3.1 in Basawa and Lund [24] gave the asymptotic distribution

of β̂,

N1/2(β̂ − β)→ N
(
0, A−1(β,σ2)

)
, (7.2.1)

where

A(β,σ2) =
S−1∑
i=0

σ−2
i Γi(β,σ

2), (7.2.2)

and

Γi(β,σ
2) = E

[(
∂εt(β)

∂β

)(
∂εt(β)

∂β

)′]
,

where the right hand side also depends on β and σ2 by (5.2.7). However, their proof for

the asymptotic distribution is based on the asymptotic equivalence of lease square estimator

and MLE. In Chapter 6 of my thesis, I gave a direct proof in Theorem 6.0.10.

Once we obtain the maximum likelihood estimate β̂, the MLE of σ2
i for 0 ≤ i ≤ S − 1
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could be computed from (5.1.16), where

σ̂2
i =

1

N

N−1∑
k=0

(
XkS+i − X̂kS+i

)2
/rkS+i = Si/N,

where X̂kS+i and rkS+i come from the innovations algorithm applied to the model.

Now we are ready to discuss the derivation of AIC. In the K-L information, f represents

the true probability distribution and g represents a model distribution that estimates f . In

the context of PARMA time series modeling, we assume that the truth f and all approx-

imating alternatives g are Gaussian. Additionally, define it as g(t|β0). Suppose X is an

n-length PARMAS(p, q) time series whose probability density is given by f(t) = g(t|β0),

where X = (Xi,Xi+1, . . . , Xi+n−1)′. To see how we use the K-L information to determine

which model, g(t|β), best fits the truth f , so that it would minimize I(f, g), we write

I(f, g) =

∫
f(t) ln(

f(t)

g(t|β)
)dt

=

∫
f(t) ln(f(t))dt−

∫
f(t) ln(g(t|β))dt. (7.2.3)

For all models g, the first integral on the right-hand side of (7.2.3) is a constant, so it suffices

to maximize
∫
f(t) ln(g(t|β))dt. Given that we have data Y = (Yi, Yi+1, . . . , Yi+n−1)′ as

a sample from the same truth f(t), the logical step would be to find the MLE β̂(Y ), since

β̂(Y ) approximates β̂0 that minimizes the K-L information. Then we compute an estimate

of I(f, g(t|β0)) as

I(f, g(t|β̂(Y )) =

∫
f(t) ln(

f(t)

g(t|β̂(Y ))
)dt.

Since f = g(t|β0), any value of β̂(Y ) other than β0 results in I(f, g(t|β̂(Y ))) >
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I(f, g(t|β0)).

Consider the method of repeated sampling as a guide to inference, and minimize the K-L

discrepancy EY [I(f, g(t|β̂(Y )))]. We therefore want to select the model g that minimizes

EY [I(f, g(t|β̂(Y )))] =

∫
f(t) ln(f(t))dt− EY

[∫
f(t) ln

(
g(t|β̂(Y ))

)
dt

]
= constant− EY EX

[
ln
(
g(t|β̂(Y )

)]
= constant− T,

where all expectations are taken under the assumption that f is the density of X and Y ,

and X and Y are independent. Hence, the K-L information criterion for selecting the best

model, g, is to maximize the objective function denoted by

T = EY EX

[
ln
(
g(t|β̂(Y )

)]
. (7.2.4)

We have assumed that f(t) has the true PARMAS(p, q) model structure, and g
(
t|β̂(Y )

)
is an estimate of f(t). By (7.2.1), β̂(Y ) → β as N → ∞. Note that β̂ is not necessarily

equal to β̂0 or even of the same dimension. Here β̂ is the parameter vector for the PARMA

model under consideration with the smallest K-L discrepancy from the true model.

Without loss of generality we take the likelihood of β(X) as g(t|β(X)) = LX (β(X)),

by simply then interpreting g as a function of β(X) given X, which equals the likelihood

under data X. Similarly, under data Y we write g(t|β(Y )) = LY (β(Y )). In the following

we will show that our estimate of T = EY EX [ln(LY (β̂(Y )))] would be ln(LX (β̂(X))),
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where the data X = (Xi,Xi+1, . . . , Xi+n−1)′ are given. The bias of this estimate is

bias = EX [ln(LX (β̂(X)))]− T. (7.2.5)

We will obtain a first order estimate of the bias, and then remove this. Ultimately, AIC is

defined to be

AIC = −2 ln(LX (β̂(X))) + 2 bias. (7.2.6)

Next we will state a few prerequisite results for our main theorem. Define

S(β) =
n−1∑
j=0

ε2i+j(β)

σ2
i+j

=
N−1∑
j=0

S−1∑
k=0

ε2jS+k+i(β)

σ2
k+i

, (7.2.7)

where n = NS, and

εt = Xt −
p∑

k=1

φt(k)Xt−k −
q∑
j=1

θt(j)εt−j,

are the model residuals. Then we can have the following result, where we write the residual

εt as εt(β) to emphasize explicit dependence of εt on β, and β needs to be estimated.

Proposition 7.2.1. Under the assumption of finite second moment for the causal and in-

vertible PARMA process, as N →∞, we have

1

N

∂2S(β)

∂β2
→ 2A(β,σ2) in probability,

where A(β,σ2) is given in (7.2.2).

Proof. In the following, β is a (p+q)S×1 vector,
∂2S(β)

∂β2 is a (p+q)S×(p+q)S dimensional
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matrix.

1

N

∂2S(β)

∂β2
=

1

N

∂2(
∑N−1
j=0

∑S−1
k=0

ε2jS+k+i(β)

σ2
k+i

)

∂β2

=
2

N

∂(
∑N−1
j=0

∑S−1
k=0

εjS+k+i(β)

σ2
k+i

∂εjS+k+i(β)

∂β
)

∂β′

=
2

N

N−1∑
j=0

S−1∑
k=0

σ−2
jS+k+i

(
∂εjS+k+i(β)

∂β
)(
∂εjS+k+i(β)

∂β
)′

+
2

N

N−1∑
j=0

S−1∑
k=0

εjS+k+i(β)

σ2
k+i

∂2εjS+k+i(β)

∂β2

= 2
S−1∑
k=0

σ−2
i+k

 1

N

N−1∑
j=0

(
∂εjS+k+i(β)

∂β
)(
∂εjS+k+i(β)

∂β
)′


+ 2
S−1∑
k=0

 1

N

N−1∑
j=0

εjS+k+i(β)

σ2
k+i

∂2εjS+k+i(β)

∂β2

 ,
As N →∞, by equation (3.13) in Basawa and Lund [24],

1

N

N−1∑
j=0

(
∂εjS+k+i(β)

∂β
)(
∂εjS+k+i(β)

∂β
)′ → Γi+k(β,σ2) in probability,

and by equation (3.14) in Basawa and Lund [24],

1

N

N−1∑
j=0

εjS+k+i(β)

σ2
k+i

∂2εjS+k+i(β)

∂β2
→ 0 in probability,
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therefore as N →∞,

1

N

∂2S(β)

∂β2
→ 2

S−1∑
k=0

σ−2
i+k

Γi+k(β,σ2) + 0 in probability

= 2A(β,σ2).

Lemma 7.2.2. Given X a random variable, if E|X| <∞, then as x→∞,

E
(
|X|I{|X|>x}

)
→ 0.

Thus every random variable X such that E|X| <∞ is by itself uniform integrable.

Proof. 0 ≤ |X|I{|X|>x} is monotone increasing in x to |X|, and therefore using the mono-

tone convergence theorem yields

E
[
|X|I{|X|≤x}

]
→ E|X|, as x→∞.

Notice that

E|X| = E
[
|X|I{|X|≤x}

]
+ E

[
|X|I{|X|>x}

]
,

by assumption E|X| <∞, we conclude that

E
(
|X|I{|X|>x}

)
→ 0,

and X is by definition uniform integrable.
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Lemma 7.2.3. If Xn → X in probability, the following statements are equivalent: (i)

{Xn : n ≥ 0} is uniform integrable. (ii) Xn → X in L1. (iii) E|Xn| → E|X| <∞.

Proof. See Durrett [16, pp. 221-222].

In the following, we rewrite the second derivatives of log likelihood function, to simplify

notation. Define

Ω(β) =
∂2 ln(LX (β))

∂β2
,

then we have the following lemma, which was given in Lund et al. [25, Equation 10] without

proof. A few necessary assumptions are needed for Lemma 7.2.4 and Theorem 7.2.5, and

they guarantee that 1
N
∂2S∗(β)

∂β2 , 1
N
∂2S(β)

∂β2 and 1
N (−2Ω(β)) are not far apart. If we could

prove the strong consistency of β̂ for PARMA model, some of the assumptions below may

be reduced. This would be the direction of our further investigation. Currently we adopt the

strong consistency for MLE of a vector ARMA model from Section 3 of Basawa and Lund

[24], and apply it for PARMA model.

• A1. Ω(β) is bounded and continuous on the parameter space B.

• A2. 1
N (

∂2S∗(β)

∂β2 − ∂2S(β)

∂β2 ) = op(1).

• A3. 1
N

(
Ω(β) + 1

2
∂2S∗(β)

∂β2

)
= op(1).

• A4. N
(
β − β̂

)(
β − β̂

)′
is uniform integrable.

Lemma 7.2.4.

−Ω(β)

N
→ A(β,σ2) in probability as N →∞.
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Proof. By Proposition 7.2.1, as N →∞,

1

2N

∂2S(β)

∂β2
→ A(β,σ2) in probability,

then by assumption A2 and A3 we can write, as N →∞,

−Ω(β)

N
= − 1

N

(
Ω(β) +

1

2

∂2S∗(β)

∂β2

)
+

1

N

(
1

2

∂2S∗(β)

∂β2
− 1

2

∂2S(β)

∂β2

)
+

1

2N

∂2S(β)

∂β2

= −op(1) +
1

2
op(1) +

1

2N

∂2S(β)

∂β2

→ A(β,σ2) in probability,

where the last equality is by Brockwell and Davis [11, Proposition 6.1.3].

Now we are ready to state our main theorem.

Theorem 7.2.5. Suppose that Xt is a causal and invertible Gaussian PARMAS(p, q) pro-

cess, such that assumptions A1− A4 hold. Let f(t) be the joint probability density function

of X = (Xi,Xi+1, . . . , Xi+n−1)′, and β̂(X) denote the maximum likelihood estimates

given data X, suppose that we are given an independent realization of the same process

Y = (Yi, Yi+1, . . . , Yi+n−1)′, with β̂(Y ) as its MLE. Let T = EY EX [ln(LY (β̂(Y )))],

then

T = EX [ln(LX (β̂(X)))]− (p+ q)S + o(1).

Proof. In the following, both the expectations EX and EY are with respect to f , where the

samples X and Y are independent. Let true parameter values be β0 ∈ B, where B is the
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parameter space containing all β. From (7.2.5),

EX [ln(LX (β̂(X)))]− T

=EX [ln(LX (β̂(X)))]− EY EX [ln(LX (β̂(Y ))]

=EY EX [ln(LX (β̂(X)))− ln(LX (β̂(Y ))]

=EY EX [ln(LX (β̂(X)))− ln
(
LX (β0)

)
] + EY EX [ln(LX (β0))− ln(LX (β̂(Y ))]

=EX [ln(LX (β̂(X)))− ln
(
LX (β0)

)
] + EY EX [ln(LX (β0))− ln(LX (β̂(Y ))]

(7.2.8)

We will prove in the following that EX

[
ln(LX (β̂(X)))− ln

(
LX (β0)

)]
= 1

2(p+q)S+o(1)

and EY EX [ln(LX (β0))− ln(LX (β̂(Y ))] = 1
2(p+ q)S + o(1), respectively.

First of all, we compute EX [ln(LX (β̂(X)))− ln
(
LX (β0)

)
] in (7.2.8). Apply a Taylor

series expansion to ln
(
LX (β0)

)
about the MLE β̂(X) for a sample of data X yielding

lnLX (β0) = ln(LX (β̂(X))) + [
∂ ln(LX (β̂(X)))

∂β
]′(β0 − β̂(X)) (7.2.9)

+
1

2
(β0 − β̂(X))′[

∂2 ln(LX (β̂(X)))

∂β2
](β0 − β̂(X)) + Re,

where

[
∂2 ln(LX (β̂(X)))

∂β2

]
is a (p+ q)S× (p+ q)S matrix,

(
β0 − β̂(X)

)
is a 1× (p+ q)S

column vector, and Re represents the exact remainder term for the quadratic Taylor series

expansion and assume it is uniformly integrable. Note that Re = op(1
n), and the convergence

of Re in probability could be inferred from Lemma 6.0.7 and Brockwell and Davis [11,

Proposition 6.1.5].

136



Since β̂(X) is the MLE from data X, then

[
∂ ln(LX (β̂(X)))

∂β
] = [

∂ ln(LX (β))

∂β
]
β=β̂

= 0.

Taking expectations on both sides of (7.2.9),

EX [lnLX (β0)] = EX [ln(LX (β̂(X)))]

+
1

2
EX [(β0 − β̂(X))′

∂2 ln(LX (β̂(X)))

∂β2
(β0 − β̂(X))] + EX [Re]

= EX [ln(LX (β̂(X)))]

+
1

2
tr{EX [

∂2 ln(LX (β̂(X)))

∂β2
](β0 − β̂(X))(β0 − β̂(X))′}+ EX [Re],

where Re = op( 1
n) by Lemma 6.0.7 and Brockwell and Davis [11, Proposition 6.1.5]. There-

fore the expectation of the remainder term is negligible for large sample sizes if we assume

the uniform integrability, i.e. limN→∞ EX [Re] = 0.

Additionally, because β̂ is the MLE under LX (β0), by (7.2.1), β̂ → β0 in probability

as N →∞. By assumption A1 and [11, Proposition 6.1.4], we have

Ω(β̂)→ Ω(β0) in probability as N →∞.

By assumption A1 and Lemma 7.2.2, Ω(β̂) is also uniformly integrable. Then by Lemma

7.2.3 we can get:

lim
N→∞

EX [
∂2 ln(LX (β̂(X)))

∂β2
] = EX [

∂2 ln(LX (β))

∂β2
].
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Hence we may write

(β0 − β̂(X))′
∂2 ln(LX (β̂(X)))

∂β2
(β0 − β̂(X))

= (β0 − β̂(X))′Ω(β̂)(β0 − β̂(X))

= (β0 − β̂(X))′Ω(β0)(β0 − β̂(X))

+ (β0 − β̂(X))′
(

Ω(β̂)− Ω(β0)
)

(β0 − β̂(X))

= (β0 − β̂(X))′Ω(β0)(β0 − β̂(X)) + op(1),

since (β0 − β̂(X)) = op(1) so that

(
Ω(β̂)− Ω(β0)

)
= op(1),

and

(β0 − β̂(X))′
(

Ω(β̂)− Ω(β0)
)

(β0 − β̂(X)) = op(1)

by Brockwell and Davis [11, Proposition 6.1.1]. Therefore

(β0 − β̂(X))′Ω(β̂)(β0 − β̂(X))− (β0 − β̂(X))′Ω(β0)(β0 − β̂(X)) = op(1). (7.2.10)

Now by assumption A1 and A4,

EX

[
(β0 − β̂(X))′Ω(β̂)(β0 − β̂(X))− (β0 − β̂(X))′Ω(β0)(β0 − β̂(X))

]
= o(1).
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Therefore

EX

[
(β0 − β̂(X))′Ω(β̂)(β0 − β̂(X))

]
= EX

[
(β0 − β̂(X))′Ω(β̂)(β0 − β̂(X))− (β0 − β̂(X))′Ω(β0)(β0 − β̂(X))

]
+ EX

[
(β0 − β̂(X))′Ω(β0)(β0 − β̂(X))

]
= o(1) + EX

[
(β0 − β̂(X))′Ω(β0)(β0 − β̂(X))

]
= o(1) + tr

{
EX

[
Ω(β0)

(
β0 − β̂(X)

)(
β0 − β̂(X)

)′]}
.

Then

lim
N→∞

EX [lnLX (β0)] = lim
N→∞

EX [ln(LX (β̂(X)))]

+
1

2
lim

N→∞
EX

[
(β0 − β̂(X))′Ω(β̂)(β0 − β̂(X))

]
+ lim

N→∞
EX [Re]

= lim
N→∞

EX [ln(LX (β̂(X)))]

+ +
1

2
lim

N→∞
tr{EX

[
Ω(β0)

(
β0 − β̂(X)

)(
β0 − β̂(X)

)′]
}

= EX [ln(LX (β̂(X)))]− 1

2
lim

N→∞
tr{EX

[
ANWN

]
},

where we define AN = −Ω(β0)
N , and WN = N

(
β0 − β̂(X)

)(
β0 − β̂(X)

)′
. Additionally

we define WN = ZNZ
′
N , where ZN =

√
N
(
β0 − β̂(X)

)
→ Z as N → ∞ and Z ∼

N(0, A−1(β,σ2)) by (7.2.1). Next we will show that

lim
N→∞

EX
[
ANWN

]
= I(p+q)S, (7.2.11)
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where I(p+q)S is the identity matrix. Notice thatAN → A(β,σ2) in probability as N →

∞, by Lemma 7.2.4, and WN → W = ZZ′, then EWN → EW = E
(
ZZ′

)
= A−1(β,σ2),

where the uniform integrability is guaranteed in assumption A4. Hence

EX
[
ANWN

]
= EX

[
AN

(
WN −W

)]
+ EX

[(
AN − A(β,σ2)

)
W
]

+ EX

[
A(β,σ2)W

]
.

(7.2.12)

By assumption A1, |AN | < M , where M <∞, therefore as N →∞,

0 ≤ |EX
[
AN

(
WN −W

)]
| ≤ |EX

[
|AN |

(
WN −W

)]
| ≤M |EX

[(
WN −W

)]
| → 0,

then

EX
[
AN

(
WN −W

)]
→ 0. (7.2.13)

Similarly,

EX

[(
AN − A(β,σ2)

)
W
]
→ 0, (7.2.14)

and

EX

[
A(β,σ2)W

]
= A(β,σ2)EX [W ] = A(β,σ2)A−1(β,σ2) = I(p+q)S. (7.2.15)

Substitute (7.2.13), (7.2.14) and (7.2.15) into (7.2.12), and let N →∞, to arrive at (7.2.11).

Then

lim
N→∞

EX [lnLX (β0)] = EX [ln(LX (β̂(X)))]− 1

2
lim

N→∞
tr{I(p+q)S}

= EX [ln(LX (β̂(X)))]− 1

2
(p+ q)S.
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So we obtain

lim
N→∞

{EX [ln(LX (β̂(X)))]− EX [lnLX (β0)]} =
1

2
(p+ q)S,

or, in other words,

EX [ln(LX (β̂(X)))]− EX [lnLX (β0)] =
1

2
(p+ q)S + o(1). (7.2.16)

Now let us consider EY EX [ln(LX (β0)) − ln(LX (β̂(Y ))], the remaining term in the last

line of (7.2.8). Similarly, apply the Taylor expansion to ln(LX (β̂(Y )) around β0 for any

given data X yielding

lnLX (β̂(Y )) = ln(LX (β0)) + [
∂ ln(LX (β))

∂β
]′(β̂(Y )− β0)

+
1

2
(β̂(Y )− β0)′[

∂2 ln(LX (β))

∂β2
](β̂(Y )− β0) + Re.

Taking expectations with respect to X yields

EX [lnLX (β̂(Y ))] = EX [ln(LX (β0))] + EX [
∂ ln(LX (β))

∂β
]′(β̂(Y )− β0)

+
1

2
(β̂(Y )− β0)′EX [

∂2 ln(LX (β))

∂β2
](β̂(Y )− β0)

+EX [Re]

(7.2.17)

where Y is independent of X.
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Taking expectations of (7.2.17) with respect to Y yields

EY EX [lnLX (β̂(Y ))] = EX [ln(LX (β0))] + EX [
∂ ln(LX (β))

∂β
]′EY

[
β̂(Y )− β0

]
+

1

2
EY [(β̂(Y )− β0)′EX [

∂2 ln(LX (β))

∂β2
](β̂(Y )− β0)]

+ EX [Re],

letting N → ∞ on both sides, the linear terms vanishes since EY

[
β̂(Y )− β0

]
→ 0 by
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(7.2.1), then the above equations becomes

lim
N→∞

EY EX [lnLX (β̂(Y ))]

= lim
N→∞

EX [ln(LX (β0))] + lim
N→∞

EX [
∂ ln(LX (β))

∂β
]′EY

[
β̂(Y )− β0

]
+

1

2
lim

N→∞
EY [(β̂(Y )− β0)′EX [

∂2 ln(LX (β))

∂β2
](β̂(Y )− β0)]

+ lim
N→∞

E
X

[Re]

=EX [ln(LX (β0))] + EX [
∂ ln(LX (β))

∂β
]′ lim
N→∞

EY

[
β̂(Y )− β0

]
+

1

2
lim

N→∞
tr{EX [

1

N

∂2 ln(LX (β))

∂β2
]EY [N

1
2 (β̂(Y )− β0)N

1
2 (β̂(Y )− β0)′]}

=EX [ln(LX (β0))]

+
1

2
tr{ lim
N→∞

EX [
1

N

∂2 ln(LX (β))

∂β2
]EY [N

1
2 (β̂(Y )− β0)N

1
2 (β̂(Y )− β0)′]}

=EX [ln(LX (β0))] +
1

2
tr{EX lim

N→∞
[

1

N

∂2 ln(LX (β))

∂β2
]A(β,σ2)−1}

=EX [ln(LX (β0))]

+
1

2
tr{EX lim

N→∞
[

1

N

∂2 ln(LX (β))

∂β2
+

1

2

∂2S∗(β)

∂β2
]A(β,σ2)−1}

−1

2
tr{EX lim

N→∞
[
1

2

∂2S∗(β)

∂β2
]A(β,σ2)−1}

=EX [ln(LX (β0))] + 0− 1

4
tr{[2A(β,σ2)A(β,σ2)−1]}

=EX [ln(LX (β0))]− 1

2
tr{I(p+q)S}

=EX [ln(LX (β0))]− 1

2
(p+ q)S,

Hence

lim
N→∞

{EX [ln(LX (β0))]− EY EX [ln(LX (β̂(Y ))]} =
1

2
(p+ q)S,
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or, in other words,

EX [ln(LX (β0))]− EY EX [ln(LX (β̂(Y ))] =
1

2
(p+ q)S + o(1). (7.2.18)

Add (7.2.16) and (7.2.18) into (7.2.8), we have

EX [ln(LX (β̂(X)))]− T = (p+ q)S + o(1)

which completes the proof.

Akaike [2] defined an information criterion (AIC) by multiplying ln(LX (β̂(X))) by −2,

to get

AIC = −2 ln(LX (β̂(X))) + 2K,

where K is the bias term for maximum log-likelihood as an estimator for

T = EY EX [ln(LY (β̂(Y )))],

which is equal to the number of estimable parameters in the model. This has become known

as Akaike’s information criterion or AIC. For a PARMAS(p, q) model, if we treat the variance

as nuisance parameters, there are k = (p + q)S estimable parameters. It is also proved in

Theorem 7.2.5, where

lim
N→∞

bias = lim
N→∞

{EX [ln(LX (β̂(X)))]− T} = (p+ q)S,
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so that

bias = (p+ q)S + o(1).

Therefore an asymptotically unbiased estimator of T = EY EX [ln(LY (β̂(Y )))] is

EX [ln(LX (β̂(X)))]− (p+ q)S.

From (7.2.6) the AIC for a PARMA model is obtained by

AIC = −2 ln(LX (β̂(X))) + 2(p+ q)S, (7.2.19)

7.2.1 Application to model selection for the Fraser River

Besides the compare of forecast plots in Chapter 5, we can also compute the value of AIC

for each candidate model, and the one yielding the minimum AIC is the best model. The

results are shown in Table 7.1. Within all full model candidates, the full PARMA(1, 1)

model fitted by MLE in Table 5.4 has the minimum AIC, and so it is the best full model.

For reduced model, the model in in Table 5.7, obtained by asymptotic distribution of MLE,

has the minimum AIC, and there are only 13 estimable parameters. Lastly, for PARS(p)

model, we tried two different approaches. First approach is by removing all θ̂i in Table 5.7,

since there are only three of them. In this way, we obtain a PAR12(1) model, and there are

only 12 estimable parameters. However, the value of AIC turns out to be very large. The

second approach is done in a more rigorous way, using the pear package in R to do automatic

model selection for PAR12(p) model. The pear package was developed by A.I. McLeod and

Mehmet Balcilar, for estimating periodic autoregressive models, and they provided a built-in
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data set for the historical flows of Fraser river. The best model selected is shown in Table 7.2,

which is a PAR12(3) model with 19 estimable parameters. We compute its AIC, shown in

Table 7.1. Additionally, Table 7.3 demonstrate the AIC values for the logarithm of the data,

where the model parameters have more impacts on AIC. Note that both full and reduced

PARMA12(1, 1) models perform better than PAR models. Therefore the PARMA12(1, 1)

model is a better model for the Fraser river flows.

Model Number of parameters AIC
Full PARMA12(1, 1) model in Table 5.3 24 18524.25
Full PARMA12(1, 1) model in Table 5.4 24 18476.47

Reduced PARMA12(1, 1) model in Table 5.5 19 18768.79
Reduced PARMA12(1, 1) model in Table 5.7 13 18528.13

PAR12(1) model, removing all θ̂i in Table 5.7 12 18754.09
PAR12(3) model in Table 7.2 19 17714.33

Table 7.1: Comparison of AIC values for different models

Season i φ̂i(1) φ̂i(2) φ̂i(3) σ̂i
0 0.527 0.000 0.000 6325.612
1 0.779 -0.231 0.189 5004.514
2 0.764 0.000 0.000 5326.131
3 1.188 0.000 0.000 17540.533
4 0.647 0.000 0.000 37180.017
5 0.411 -1.237 1.562 38084.824
6 0.545 0.000 0.000 34809.521
7 0.517 0.000 0.000 17666.091
8 0.661 -0.127 0.000 13518.955
9 0.890 -0.434 0.165 14685.378

10 0.631 0.000 0.000 12434.951
11 0.543 0.000 0.000 8535.279

Table 7.2: The model parameters in PAR12(p) automatic model fitting by pear package in
R, where the number of estimable parameters is 19, assuming σ̂i as nuisance parameters in
the AIC computation.
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Model Number of parameters AIC
Full PARMA12(1, 1) model in Table 5.3 24 -415.8586
Full PARMA12(1, 1) model in Table 5.4 24 -506.6053

Reduced PARMA12(1, 1) model in Table 5.5 19 -313.3939
Reduced PARMA12(1, 1) model in Table 5.7 14 -297.9929

PAR12(3) model in Table 7.2 19 520.9146

Table 7.3: A compare of AIC values for different models, after taking the log of the data.
Note that both full and reduced PARMA12(1, 1) models perform better than PAR models.

7.3 Future Research

In this section I would like to list out the open problems in my research, and this would also

be helpful for researchers who are interested in studying in this topic deeply.

• Strong consistency of MLE. This could follow the result for ARMA model from Yao

and Brockwell [57]. Clear details applying to PARMA model should be carefully gen-

eralized.

• A stronger condition for Theorem 7.2.5, with fewer assumptions. The uniform inte-

grability of N
(
β − β̂

)(
β − β̂

)′
is waiting for a complete proof, and the property of

the second derivative of likelihood function in PARMA model needs to be studied in

details.

• I will work on cleaning up my R code, and add the forecasting tool in perARMA

package. This would be very useful for researchers would work on hydrology and

periodic stationary time series prediction.
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APPENDIX

# R code for the paper "Forecasting for periodic ARMA models"

# by Anderson, Paul; Meerschaert, Mark; Zhang, Kai

# Please put the file "frazierc.txt" under your work directory

#######################################

# Seasonal Sample Mean for (4.1)

#######################################

data <- read.table("frazierc.txt")

XMEAN <- array(0,c(12))

# XMEAN is a vector of sample means for 12 seasons

for(I in 1:12)

{

XMEAN[I] <- 0

for(T in 0:71)

{

XMEAN[I] <- XMEAN[I] + data[T*12+I,1]

}

XMEAN[I] <- XMEAN[I]/72
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}

######################################

# Sample Autocovariance for (4.2)

######################################

# season i = 0, 1, ..., 11

# LAG = 0, 1, ..., 124

COVAR <- array(0,c(12,125))

for(L in 1:125)

{

LAG <- L-1

for (I in 1:12)

{

i <- (I-1)

COVAR[I,L] <- 0

J <- as.integer((i+LAG)/12)

K <- ((I+LAG)-(12*J))

for (T in 0:(71-J))

{

COVAR[I,L] <- COVAR[I,L]

+(data[T*12+I,1]-XMEAN[I])*(data[T*12+I+LAG,1]-XMEAN[K])
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}

COVAR[I,L] <- COVAR[I,L]/(72-J)

}

}

####################################

# Sample Autocorrelation for (4.3)

####################################

rho <- array(0,c(12,125))

for (I in 1:12)

{

for (L in 1:125)

{

R <- (I+L-2)%%12 + 1

rho[I,L] <- COVAR[I,L]/((COVAR[I,1]*COVAR[R,1])^.5)

}

}

##############################################

# Innovations Algorithm for X_t process

##############################################

## I = i + 1
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## J = j + 1

## K = k + 1

## L = ell + 1

## N = n + 1

## COVAR(I,L) = gamma_i(ell)

## V(N,I) = v_{n,i}

## THETA(N,M,I) = theta_{n,m}^{(i)} WHERE m = M + 1

## NOTE THAT: theta_{n,n-k}^{(i)} = THETA(N,N-K+1,I)

## theta_{k,k-j}^{(i)} = THETA(K,K-J+1,I)

## gamma_k(n-k) = COVAR(K,N-K+1)

V<- array(0,c(50,12))

THETA <- array(1,c(50,50,12))

for (I in 1:12)

{

V[1,I] <- COVAR[I,1]

for (N in 2:50)

{

for (K in 1:(N-1))

{

S <- 0

if (K == 1)

{
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K0 <- as.integer((I+1-2)/12)

K1 <- (I+K-1)-12*K0

THETA[N,N,I] <- (COVAR[K1,N]-S)/V[1,I]

}

else

{

for (J in 1:(K-1))

{

S <- S+THETA[K,K-J+1,I]*THETA[N,N-J+1,I]*V[J,I]

K0 <- as.integer((I+K-2)/12)

K1 <- (I+K-1)-12*K0

THETA[N,N-K+1,I] <- (COVAR[K1,N-K+1]-S)/V[K,I]

}

}

}

R <- 0

for(J in 1:(N-1))

{

R <- R+V[J,I]*(THETA[N,N-J+1,I])^2

N0 <- as.integer((I+N-2)/12)

N1 <- (I+N-1)-12*N0

V[N,I] <- COVAR[N1,1]-R
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}

}

}

# At k = 20 iterations, get the convergence of THETA and V

psi1 <- array(0,c(12,12))

for ( I in 1:12 )

{

R <- 0

for (J in 1:12)

{

R <- (I-20-1)%%12+1

psi1[I,J] <- THETA[21,J,R]

}

}

sigma_square <- array(0,c(12))

for (I in 1:12)

{

S <- 0

S <- (I-20-1)%%12+1

sigma_square[I] <- V[21,S]

}

154



############################################

# Get model parameter estimates by (4.4)

############################################

phi <- array(0,c(12))

sigma <- array(0,c(12))

theta <- array(0,c(12,864))

for (I in 1:12)

{

R <- ((I-1)-1)%%12+1

phi[I] <- psi1[I,3]/psi1[R,2]

}

for (I in 1:12)

{

theta[I,1] <- -1

}

for (I in 1:12)

{

theta[I,2] <- psi1[I,2]-phi[I]

}

for (I in 1:12)

{
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sigma[I] <- (sigma_square[I])^.5

}

# A simple output of model estimates

phi

theta[,2]

sigma

# reduced model

# phi[1] <- 0

# phi[5] <- 0

# phi[7] <- 0

# phi[8] <- 0

# phi[10] <- 0

######################################

# The following is for prediction

######################################

# Autocovariances K(J,L) for W_t process

# K(J,L) = C in (2.6)

K <- array(0,c(865,865))
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for (I in 1:12) # I is season

{

K[I,I] <- COVAR[I,1] # when J = L = I

for (J in 1:12)

{

for (L in 1:13)

{

if ( J <= I && L == (I+1) )

{

s1 <- (J-1)%%12+1

l1 <- (L-1)%%12+1

K[J,L] <- COVAR[s1,abs(J-L)+1]

- phi[l1]*COVAR[s1,abs(L-1-J)+1]

}

}

}

}

for (I in 1:12)

{
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for (J in 1:865)

{

for (L in 1:865)

{

if (min(J,L) >= (I+1) && abs(J-L) <= 1)

{

s1 <- (J-1)%%12+1

n1 <- (L-1)%%12+1

q1 <- (J-2)%%12+1

K[J,L] <- theta[s1,1]*theta[n1,abs(J-L)+1]*(sigma[s1])^2

+ theta[s1,2]*theta[n1,(abs(1+J-L))+1]*(sigma[q1])^2

}

}

}

}

##########################################

# Innovations algorithm for W_t process

# The computation in (2.6)

##########################################

V<- array(0,c(865,12))

THETA <- array(0,c(865,865,12))
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for (I in 1:12)

{

for (J in 1:865)

{

THETA[J,1,I] <- 1

}

}

for (I in 1:12)

{

V[1,I] <- K[I,I]

for (N in 2:(865-I))

{

THETA[N,2,I] <- K[I+N,I+N-1]/V[N-1,I]

V[N,I] <- K[I+N,I+N]- V[N-1,I]*(THETA[N,2,I])^2

}

}

#####################################

# Computation of \hat{X} in (2.7)

#####################################

159



# Subtract seasonal mean

fraser <- t(data)

X <- array(0,c(864))

for(I in 1:12)

{

for(T in 0:71)

{

X[T*12+I] <- fraser[T*12+I]-XMEAN[I]

}

}

# Xhat = \hat{X} in (2.7)

Xhat <- array(0,c(12,880))

for (I in 1:12)

{

Xhat[I,1+I] <- 0

Xhat[I,2+I] <- THETA[2,2,I]*(X[I+1]-Xhat[I,I+1])

for (N in 3:(840-I))

{

s1 <- (I+N-1)%%12+1

Xhat[I,N+I] <- phi[s1]*X[I+N-1]+ THETA[N,2,I]*(X[I+N-1]-Xhat[I,I+N-1])

}
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}

#############################################

# h-step prediction in (2.8) and (2.9)

#############################################

for (I in 1:12)

{

s1 <- (841-1)%%12+1

Xhat[I,841] <- phi[s1]*X[840] + THETA[841-I,2,I]*(X[840]-Xhat[I,840])

for (h in 2:24)

{

m1 <- (840+h-1)%%12+1

Xhat[I,840+h] <- phi[m1]*Xhat[I,840+h-1]

}

}

#############################

# Forecast error in (3.3)

#############################

# Calculation of Casual represention for PARMA(1,1)

# The casual coefficient psi is periodic in S

psi <- array(0,c(12,24)) # I = 12, h =24
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for (I in 1:12)

{

psi[I,1] <- 1

psi[I,2] <- (phi[I]+theta[I,2])

S <- 1

for (k in 3:24)

{

for (j in 0:(k-3))

{

j0 <- (I-j-1)%%12+1

S <- S*phi[j0]

}

j1 <- (I-(k-1)-1)%%12+1

psi[I,k] <- S*(phi[j1]+theta[j1,2])

}

}

# h-step prediction error

# Use this error for confidence band in Corr.3.2

sigma_h2 <- array(0,c(12,24))

for (I in 1:12)

{

for (h in 1:24)
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{

R <- 0

for (J in 1:h)

{

s0 <- (840+h-1)%%12+1

s1 <- (840+h-J-1)%%12+1

R <- R + (psi[s0,J])^2*(sigma[s1])^2

}

sigma_h2[I,h] <- R

}

}

# Add seasonal mean to Xhat

Yhat <- array(0,c(880))

for(I in 1:12)

{

for(T in 0:71)

{

Yhat[T*12+I] <- Xhat[1,T*12+I]+XMEAN[I]

}

}

# Computation of residuals
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res <- X - Yhat[1:864]

for (I in 1:12)

{

for (T in 0:71)

{

res[T*12+I] <- res[T*12+I]/sigma[I]

}

}

##############################################

# 95% Prediction bounds for h-step prediction in Figure 3

##############################################

CI_low <- array(0,c(24))

CI_up <- array(0,c(24))

for (I in 1:12)

{

for (h in 1:24)

{

CI_low[h] <- Yhat[840+h]-1.96*sqrt(sigma_h2[I,h])

CI_up[h] <- Yhat[840+h]+1.96*sqrt(sigma_h2[I,h])

}

}

164



###########################################

# 95% Confidence Intervals for sample mean

###########################################

CI_low_mean <- array(0,c(12))

CI_up_mean <- array(0,c(12))

for (I in 1:12)

{

CI_low_mean[I] <- XMEAN[I]-1.96*(COVAR[I,1])^.5

CI_up_mean[I] <- XMEAN[I]+1.96*(COVAR[I,1])^.5

}

#########################################

# 95% Confidence Intervals for gamma_0

#########################################

error <- array(0,c(12)) ## define error as sqrt{[(V_00)_ellell]/72}

for (I in 1:12)

{

S <- 0

for (L in 0:10)

{

S <- S + 4*((COVAR[I,12*L+1])^2)

}

error[I] <- ((S - 2*((COVAR[I,1])^2))/72)^.5
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## subtract the exact one from niu = 0

}

CI_low_gamma0 <- array(0,c(12))

CI_up_gamma0 <- array(0,c(12))

for (I in 1:12)

{

CI_low_gamma0[I] <- COVAR[I,1]-1.96*error[I]

CI_up_gamma0[I] <- COVAR[I,1]+1.96*error[I]

}

#########################################

# 95% Confidence Intervals for rho_1

#########################################

W_11 <- array(0,c(12))

for (I in 1:12)

{

S <- 0

R <- ((I-1)%%12)+1

## S is the sum at n = 0, niu = 12

S <- rho[I,1]*rho[R,1] + rho[I,2]*rho[R,2] - rho[I,2]*(rho[I,1]*rho[I,2]+
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rho[R,2]*rho[R,1]) - rho[I,2]*(rho[I,1]*rho[R,2]+rho[I,2]*rho[R,1]) +

.5*rho[I,2]^2*(rho[I,1]^2+rho[I,2]^2+rho[R,2]^2+rho[R,1]^2)

## Next loop is sum from n = -10 to 10

for (L in 1:10)

{

S <- S + (rho[I,L*12+1]*rho[R,L*12+1] + rho[I,L*12+2]*rho[R,L*12] -

rho[I,2]*(rho[I,L*12+1]*rho[I,L*12+2]+rho[R,L*12]*rho[R,L*12+1]) -

rho[I,2]*(rho[I,L*12+1]*rho[R,L*12]+rho[I,L*12+2]*rho[R,L*12+1]) +

.5*rho[I,2]^2*(rho[I,L*12+1]^2

+rho[I,L*12+2]^2+rho[R,L*12]^2+rho[R,L*12+1]^2))

}

P <- 0

for (L in (-10):(-1))

{

P <- P + (rho[I,abs(L*12)+1]*rho[R,abs(L*12)+1] +

rho[I,abs(L*12+1)+1]*rho[R,abs(L*12-1)+1] -

rho[I,2]*(rho[I,abs(L*12)+1]*rho[I,abs(L*12+1)+1]+

rho[R,abs(L*12-1)+1]*rho[R,abs(L*12)+1]) -

rho[I,2]*(rho[I,abs(L*12)+1]*rho[R,abs(L*12-1)+1]+

rho[I,abs(L*12+1)+1]*rho[R,abs(L*12)+1]) +

.5*rho[I,2]^2*(rho[I,abs(L*12)+1]^2+rho[I,abs(L*12+1)+1]^2

+rho[R,abs(L*12-1)+1]^2+rho[R,abs(L*12)+1]^2))

}
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W_11[I] <- P+S

}

CI_low_rho1 <- array(0,c(12))

CI_up_rho1 <- array(0,c(12))

for (I in 1:12)

{

CI_low_rho1[I] <- rho[I,2]-1.96*((W_11[I]/72)^.5)

CI_up_rho1[I] <- rho[I,2]+1.96*((W_11[I]/72)^.5)

}

#########################################

# 95% Confidence Intervals for rho_2

#########################################

W_22 <- array(0,c(12))

for (I in 1:12)

{

S <- 0

R <- ((I)%%12)+1

## S is the sum at n = 0, niu = 12

S <- rho[I,1]*rho[R,1] + rho[I,3]*rho[R,3] -

rho[I,3]*(rho[I,1]*rho[I,3]+rho[R,3]*rho[R,1]) -
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rho[I,3]*(rho[I,1]*rho[R,3]+rho[I,3]*rho[R,1]) +

.5*rho[I,3]^2*(rho[I,1]^2+rho[I,3]^2+rho[R,3]^2+rho[R,1]^2)

## Next loop is sum from n = -10 to 10

for (L in 1:10)

{

S <- S + (rho[I,L*12+1]*rho[R,L*12+1] +

rho[I,L*12+3]*rho[R,L*12-1]

- rho[I,3]*(rho[I,L*12+1]*rho[I,L*12+3]+

rho[R,L*12-1]*rho[R,L*12+1])

- rho[I,3]*(rho[I,L*12+1]*rho[R,L*12-1]+

rho[I,L*12+3]*rho[R,L*12+1]) + .5*rho[I,3]^2*(rho[I,L*12+1]^2+

rho[I,L*12+3]^2+rho[R,L*12-1]^2+rho[R,L*12+1]^2))

}

P <- 0

for (L in (-10):(-1))

{

P <- P + (rho[I,abs(L*12)+1]*rho[R,abs(L*12)+1] +

rho[I,abs(L*12+2)+1]*rho[R,abs(L*12-2)+1] -

rho[I,3]*(rho[I,abs(L*12)+1]*rho[I,abs(L*12+2)+1]+

rho[R,abs(L*12-2)+1]*rho[R,abs(L*12)+1]) -

rho[I,3]*(rho[I,abs(L*12)+1]*rho[R,abs(L*12-2)+1]+

rho[I,abs(L*12+2)+1]*rho[R,abs(L*12)+1]) +

.5*rho[I,3]^2*(rho[I,abs(L*12)+1]^2+rho[I,abs(L*12+2)+1]^2+
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rho[R,abs(L*12-2)+1]^2+rho[R,abs(L*12)+1]^2))

}

W_22[I] <- P+S

}

CI_low_rho2 <- array(0,c(12))

CI_up_rho2 <- array(0,c(12))

for (I in 1:12)

{

CI_low_rho2[I] <- rho[I,3]-1.96*((W_22[I]/72)^.5)

CI_up_rho2[I] <- rho[I,3]+1.96*((W_22[I]/72)^.5)

}

#############

# Output

#############

# Please remove "#" if you want to generate output files

write(CI_low,file="CI_low_prediction.txt",ncolumns=1)

write(CI_up,file="CI_up_prediction.txt",ncolumns=1)
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write(fraser,file="Data of Fraser River.txt",ncolumns=1)

write(Yhat[1:864],file="24-month Predictions.txt",ncolumns=1)

# write(XMEAN,file="Sample Mean.txt",ncolumns=1)

# write(CI_low_mean,file="CI_low_mean.txt",ncolumns=1)

# write(CI_up_mean,file="CI_up_mean.txt",ncolumns=1)

# write(COVAR[,1],file="Sample Variance.txt",ncolumns=1)

# write(CI_low_gamma0,file="CI_low_variance.txt",ncolumns=1)

# write(CI_up_gamma0,file="CI_up_variance.txt",ncolumns=1)

# write(rho[,2],file="rho_1.txt",ncolumns=1)

# write(CI_low_rho1,file="CI_low_rho1.txt",ncolumns=1)

# write(CI_up_rho1,file="CI_up_rho1.txt",ncolumns=1)

# write(rho[,3],file="rho_2.txt",ncolumns=1)

# write(CI_low_rho2,file="CI_low_rho2.txt",ncolumns=1)

# write(CI_up_rho2,file="CI_up_rho2.txt",ncolumns=1)

# write(res,file="Residuals.txt",ncolumns=1)

###########################

# Plots
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###########################

# The plots in this paper were producted by Minitab

# The following plots are provided as drafts for reference

############

# Figure 1

g_range <- range(0, data)

plot(data[1:180,1], col = "black", ylab = "Flow (cms)",

axes=FALSE, type = "l", ylim=g_range, xlab="Month / Year",

cex.lab=1.5, lty = 5)

axis(1,at = c(1,37,73,109,145,180),lab= c("10/1912",

"10/1915","10/1918","10/1921","10/1924","09/1927"))

axis(2, at = c(1,50000,100000,150000,200000,250000,

300000,350000,400000), lab =c("0","50000","100000",

"150000","200000","250000","300000","350000","400000") )

############

# Figure 3

############

g_range <- range(0, CI_up)

plot(CI_low, col = "blue", ylab = "Flow (cms)", lwd = 2,

axes=FALSE, type = "l", ylim=g_range, xlab="Month / Year",
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cex.main = 2, cex.lab=1.5, lty = 5)

axis(1,at = c(1,5,9,13,17,21,24),lab= c("10/1982","02/1983",

"06/1983","10/1983","02/1984","06/1984",""))

axis(2)

lines(CI_up, col = "blue", type="l", lty=5, lwd = 2)

lines(Yhat[841:864], col = "red", type="o", pch=20, lty=1, lwd = 2)

lines(data[841:864,1],col = "black", type="l", lty=1, lwd = 2)

############

# Figure 4

############

g_range <- range((CI_low-c(XMEAN,XMEAN)), (CI_up-c(XMEAN,XMEAN)))

plot((CI_low-c(XMEAN,XMEAN)), col = "blue", type = "l",

ylab = "Width of prediction bounds", ylim=g_range, xlab="Month",

main="Width of prediction bounds (mean subtracted)", lty = 5)

lines(Yhat[841:864]-c(XMEAN,XMEAN), col = "red", type="o", pch=20, lty=1)

lines((CI_up-c(XMEAN,XMEAN)), col = "blue", type="l", lty=5)

############

# Figure 2

############

par(mfrow = c(2,2))

g_range <- range(0, (CI_up_mean))
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plot(XMEAN, col = "black", ylab = "Sample mean (cms)", lwd =2,

ylim=g_range,axes=FALSE, xlab="Season",

main="(a) Sample Means", lty = 5, cex.main = 2.5, cex.lab=1.5)

axis(1,at = 1:12,lab= c("0","1","2","3","4","5","6","7","8","9","10","11"))

axis(2)

lines(XMEAN, type="o",lwd = 2,pch = 20)

lines((CI_low_mean), col = "red", type="l", lty=5,lwd =2)

lines((CI_up_mean), col = "red", type="l", lty=5,lwd =2)

g_range <- range(0, (CI_up_gamma0)^.5 )

plot((COVAR[,1])^.5, col = "black", ylab = "Sample sd (cms)",

axes=FALSE, lwd=2, ylim=g_range, xlab="Season",

main="(b) Sample Standard Deviations", lty = 5,cex.main = 2.2, cex.lab=1.5)

axis(1,at = 1:12,lab= c("0","1","2","3","4","5","6","7","8","9","10","11"))

axis(2)

lines((COVAR[,1])^.5, type="o",lwd = 2,pch = 20)

lines((CI_low_gamma0)^.5, col = "red", type="l", lty=5,lwd=2)

lines((CI_up_gamma0)^.5, col = "red", type="l", lty=5,lwd=2)

g_range <- range(0, 1)

plot(rho[,2], col = "black", ylab = "Autocorrelations", axes=FALSE,

ylim=g_range, xlab="Season", main="(c) Sample Autocorrelations : lag = 1",

lty = 5,cex.main = 1.9, cex.lab=1.5)

174



axis(1,at = 1:12,lab= c("0","1","2","3","4","5","6","7","8","9","10","11"))

axis(2)

lines(rho[,2], type="o",lwd = 2,pch = 20)

lines(CI_low_rho1, col = "red", type="l", lty=5,lwd=2)

lines(CI_up_rho1, col = "red", type="l", lty=5,lwd=2)

g_range <- range(-.5, 1)

plot(rho[,3], col = "black", ylab = "Autocorrelations", axes=FALSE,lwd=2,

ylim=g_range, xlab="Season", main="(d) Sample Autocorrelations : lag = 2",

lty = 5,cex.main = 1.9, cex.lab=1.5)

axis(1,at = 1:12,lab= c("0","1","2","3","4","5","6","7","8","9","10","11"))

axis(2)

lines(rho[,3], type="o",lwd = 2,pch = 20)

lines(CI_low_rho2, col = "red", type="l", lty=5,lwd=2)

lines(CI_up_rho2, col = "red", type="l", lty=5,lwd=2)

#################################################

# Computation of PARMA Autocovariances in Chapter 1.1

#################################################

# Model is PARMA_12(1,1) i.e. there are 12 seasons

# Model is based on table 5 in Tesfaye, Meerschaert and Anderson (2006)

# phi_1 <- c(.198,.568,.560,.565,.321,.956,1.254,.636,-1.942,-.092,.662,.355)
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phi_1 <- c(0,.568,.560,.565,0,.956,0,0,-1.942,0,.662,.355)

theta_1 <- c(.687,.056,-.052,-.05,.47,-.389,-.178,-.114,2.393,.71,-.213,.322)

sigma <- c(11875.479,11598.254,7311.452,5940.845,4160.214,4610.209,

15232.867,31114.514,32824.370,29712.190,15511.187,12077.991)

theta_0 <- array(1,c(12))

psi_0 <- array(1,c(12))

psi_1 <- phi_1 + theta_1

# By (16) in Tesfaye, Meerschaert and Anderson (2006)

# Set AX = b, then solve X, where X is a vector

# X gives ACVF = gamma_i(h), when h <= max(p,q), i = 0, 1, ... 11

# In PARMA_12(1,1), p = q = 1

A <- array(0,c(24,24))

for (i in 1:12)

{

A[i,i] <- 1

A[i+12,(i-2)%%12+1+12] <- 1

A[i,(i-2)%%12+1+12] <- (-phi_1[i])

A[i+12,(i-2)%%12+1] <- (-phi_1[i])

}

b <- array(0,c(24))
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for (i in 1:12)

{

b[i] <- theta_0[i] * psi_0[i] * (sigma[i])^2 +

theta_1[i] * psi_1[i] * (sigma[(i-2)%%12+1])^2

b[i+12] <- theta_1[i] * psi_0[(i-2)%%12+1] * (sigma[(i-2)%%12+1])^2

}

X <- solve(A,b)

X

matrix(X, ncol = 2)

# COVAR is autocovariance function

# COVAR[I,H] = \gamma_{i}(h)

# I = i + 1, i is season, i = 0, 1, 2, ... 11

# H = h + 1, h is lag, h = 0, 1, 2, ... 79

COVAR <- array(0,c(12,80))

COVAR[,1:2] <- X # Read X into first columns of COVAR

# A good way to get rid of the for loop below

#for (I in 1:12)

# This loop reads X into COVAR, for h <= max(p,q); here h = 0,1
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# {

# COVAR[I,1] <- X[I]

# COVAR[I,2] <- X[I+12]

# }

for (H in 3:80) # This loop computes ACVF for h > max(p,q)

{

for (I in 1:12)

{

COVAR[(I-H)%%12+1,H] <- phi_1[I]*COVAR[(I-H)%%12+1,H-1]

#this one is right!

# (I-2)%%12+1 represents season I-1

# COVAR[I,H] <- phi_1[I]*COVAR[(I-2)%%12+1,H-1]

}

}

###############################

# Innovations Algorithm

###############################

V<- array(0,c(50,12))

THETA <- array(0,c(50,50,12))
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for (I in 1:12) # I = i+1, i is season

{

V[1,I] <- COVAR[I,1]

for (N in 2:50) # N = n+1, n is number of iterations

{

for (K in 1:(N-1))

{

S <- 0

if (K == 1)

{

K0 <- as.integer((I+1-2)/12)

K1 <- (I+K-1)-12*K0

THETA[N,N,I] <- (COVAR[K1,N]-S)/V[1,I]

}

else

{

for (J in 1:(K-1))

{

S <- S+THETA[K,K-J+1,I]*THETA[N,N-J+1,I]*V[J,I]

K0 <- as.integer((I+K-2)/12)

K1 <- (I+K-1)-12*K0
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THETA[N,N-K+1,I] <- (COVAR[K1,N-K+1]-S)/V[K,I]

THETA[N,1,I] <- 1 # This defines \theta_{n,0}(i) = 1

}

}

}

R <- 0

for(J in 1:(N-1))

{

R <- R+V[J,I]*(THETA[N,N-J+1,I])^2

N0 <- as.integer((I+N-2)/12)

N1 <- (I+N-1)-12*N0

V[N,I] <- COVAR[N1,1]-R

}

}

}

#################################

# convergence of theta to psi

#################################

psi_k <- array(0,c(50,12,50)) # psi_k is \psi_{i}(\ell)

for (K in 1:50) # K = k+1, k is number of iterations

{
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for ( I in 1:12 ) # I = i+1, i is season

{

R <- 0

for (J in 1:50)

{

R <- (I-K)%%12+1

psi_k[K,I,J] <- THETA[K,J,R]

}

}

}

# Test output for lag = 1

# This matches values of psi_1 = phi_1 + theta_1, after 5 iterations

psi_k[,,2]

psi_1

# Test output for lag = 2

# psi_k[,,3]

# This shows the error between psi_k[,,2] and psi_1

error <- array(0,c(50,12))

for (I in 1:12)

{

for (K in 1:50)
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{

error[K,I] <- psi_k[K,I,2]-psi_1[I]

}

}

max_error <- array(0,c(49))

# for all season, for lag =1 only

for (K in 1:49)

for (I in 1:12)

{

{

max_error[K] <- max(abs(error[K,I]))

}

}

plot(max_error,ylab = "Value of convergence error",

xlab="Number of iterations", main="error",cex.main = 2, cex.lab=1.8)

lines(max_error, type="o", pch=20, lty=1, col="red")

########################################

# convergence of v to sigma^2

########################################
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sigma_square <- array(0,c(50,12))

for (K in 1:50)

{

for (I in 1:12)

{

S <- 0

S <- (I-K)%%12+1

sigma_square[K,I] <- V[K,S]

}

}

# Test output, which matches sigma, after 5 iterations

sigma_square^.5

sigma

# This gives the error between sigma_square and sigma^2

error2 <- array(0,c(50,12))

for (I in 1:12)

{

for (K in 1:50)

{

error2[K,I] <- (sigma_square[K,I]-(sigma[I])^2)

}
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