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ABSTRACT

PERIODIC ARMA MODEL: FORECASTING, PARSIMONY,
ASYMPTOTIC NORMALITY AND AIC

By

Kai Zhang

Periodic autoregressive moving average (PARMA) models are indicated for time series whose
mean, variance, and covariance function vary with the season. In this thesis, I develop
and implement forecasting procedures for PARMA models. The required computations are

documented in detail. An application to monthly river flow forecasting is provided.
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Chapter 1

Introduction

Mathematical modeling and simulation of river flow time series are critical issues in hydrol-
ogy and water resources. Most river flow time series are periodically stationary, that is,
their mean and covariance functions are periodic with respect to time. To account for the
periodic correlation structure, a periodic autoregressive moving average (PARMA) model
can be useful. PARMA models are also appropriate for a wide variety of time series appli-
cations in geophysics and climatology. In a PARMA model, the parameters in a classical
ARMA model are allowed to vary with the season. Since PARMA models explicitly describe
seasonal fluctuations in mean, standard deviation and autocorrelation, they have been used

to generate more faithful models and simulations of natural river flows.

Historically, Gladyshev [18] first defined the concept of periodically correlated stochastic
process; In [20], some early work of Jones and Brelsford studied the problem of predicting
time series with periodic structure, including the estimation of necessary parameters; In [32]

and [47], Pagano and Troutman studied the elementary properties of univariate processes,



and connections with stationary multivariate processes; For stationary time series models,
Box and Jenkins [10] presented a systematic approach for modeling time series based on
three stages: (1) Model identification; (2) parameter estimation; and (3) diagnostic checks
or tests of goodness of fit. Since then, applications and extensions of this modeling approach

to hydrology have been widespread.

Adams and Goodwin [1] described an on-line parameter estimation technique, based
on methods from automatic control, which provides consistent estimates of PARMA model
parameters. Anderson and Vecchia [3] obtained the asymptotic distribution for the sam-
ple autocovariance and sample autocorrelation functions of PARMA process, and they also
studied the asymptotic properties of the discrete Fourier transform of the estimated periodic
autocovariance and autocorrelation functions. Anderson and Meerschaert [5] established the
basic asymptotic theory for periodic moving averages of i.i.d. random variables with reg-
ularly varying tails. They showed that when the underlying random variables have finite
variance but infinite fourth moment, the sample autocorrelations are asymptotically stable.
Lund and Basawa [22, 23] explored recursive prediction and likelihood evaluation techniques

for PARMA models.

Time series analysis involves four general steps: model identification, parameter estima-
tion, diagnostic checking, and forecasting. Model identification is the most difficult step for
PARMA modeling. Noakes et al. [31] suggested examining the plots of the periodic partial
autocorrelation function as the best approach to identify PARMA models. This method
is highly recommended when the parameter space is not constrained, however it requires a
high level of user experience. Another method is to use an automatic selection criterion,

such as the Akaike Information Criterion (AIC) [2], or the Bayesian information criterion
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(BIC) [37] when all possible candidates of models are examined. However, this procedure
requires investigating quite a large number of models, especially when the number of param-
eter estimates is fairly large, for example, monthly data with 12 seasons. Ursu and Turkman
[52] applied the genetic algorithm as a method of identifying the PAR model, which greatly
improved the model selection efficiency. Salehi H. has also made tremendous contributions

on periodic stochastic process, see [26, 27, 28, 29].

Additionally, model identification for general PARMA times series was discussed in Tes-
faye, Meerschaert and Anderson [42]. Anderson, Meerschaert and Vecchia [6] developed an
innovations algorithm for PARMA parameter estimation. Tesfaye, Meerschaert and Ander-
son [42] demonstrated model diagnostics for a PARMA model of monthly river flows for the
Fraser River in British Columbia, Canada. In this thesis, I develop a practical method for
forecasting PARMA models, and I demonstrate the method by forecasting monthly river

flows for the same time series of monthly flows.

A stochastic process {Xt}teZ is periodically stationary if its mean E)E't and covariance
Cov(Xt,Xt+h) for h € Z are periodic functions of time ¢ with the same period 5, i.e., for

some integer S > 1, for : = 0,1,...,.5 — 1, and for all integers k£ and h, I have

EX; =EX; g and Cov (XZ',XH}Z) = Cov (Xz'+kS>Xi+kS+h> ‘

A periodically stationary process {Xt} ia called a PARMAg(p,q) process if the mean-

centered process X; = Xt — put is of the form

P q
Xp= > )Xy =cp+ Y (e (1.0.1)
k=1 j=1



where {4} is a sequence of random variables with mean zero and standard deviation o3 > 0
such that {0y = o 15t} is independent and identically distributed. ({e4} is called periodic
i.i.d. Gaussian noise if X; is a Gaussian process.) Here the autoregressive parameters ¢ (j),
the moving average parameters 64(j), and the residual standard deviations oy are all assumed
to be periodic functions of ¢ with the same period S > 1. Throughout this paper I will also

assuie:

(i) The model (1.0.1) admits a causal representation
Xp = vz (1.0.2)

where ¢4(0) =1 and Z]Oi() 1¢(4)] < oo for all . Note that ¥4(j) = 14, g (j) for all
J.

(ii) The model (1.0.1) also satisfies an invertibility condition
00
=S i) (103
J=0

where 7(0) = 1 and Zﬁo |m¢(j)] < oo for all ¢, and define Xy _; = 0 when ¢t —j <0.

Again, m(j) = T4y .g(j) for all j.

The notation used in this paper is consistent with: Anderson and Vecchia [3]; Anderson
and Meerschaert [4, 5]; Anderson, Meerschaert, and Vecchia [6]; Anderson and Meerschaert
[7]; Tesfaye, Meerschaert, and Anderson [42]; and Tesfaye, Anderson, and Meerschaert [43].
This notation is also an extension of the notation in Brockwell and Davis [11].

Suppose [ have N years of data, consisting of n = N x S data points, XO’ )~(1, . ,Xn_l,
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where S is the number of seasons. For example, for monthly data I have S = 12, and our

convention is to let ¢ = 0 represent the first month, ¢ = 1 represent the second, ..., and

1 =S5 —1 =11 represent the last.
The sample mean for season 7 is
N-1
(1.0.4)

. -1 5
ii=NT Y Xpgii
k=0

The sample autocovariance for season ¢ at lag ¢ is

N—1-h;
5O =N S (Rjgi — i) (Xjsive — fise) (1.0.5)
=0

where £ >0, h; = [(i +¢)/S] and = | -] is the greatest integer function.

The sample autocorrelation for season i at lag ¢ is

P p— O — (1.0.6)
¥i(0)%;1¢(0)

which is also the sample cross-correlation between two different seasons.

In (1.0.5) the divisor N is used rather than N — h;, since this ensures that the autoco-

variance matrix at season 1, f(l) =[R:G=01",_4 is non-negative definite, where
N Ti\J j,0=1

WO A BN -
~ (2 7i(1 %(0) i (N —2)
00 - G-l - | ] !
YN =1) %(N =2) 7;(0)




To see this we may write f‘g\zf) = %FF/, where I' is the N x 2N matrix

0 0 Y] Yy Yy
0 0 Y] Y Yy O

T = ,
0y, Yo ... Yy 0 ... ... 0

j=1,...,N, ande = st_{_i—,&i. Then VN x 1 vector a, we have a/f‘g\?a = N_l(a/F)(a/F)/ >
(2)

0. By definition of non-negative definiteness, since a is arbitrary, then the matrix I N

[%’ (j — g)};{le is non-negative definite.

Then the sample covariance matrix

7i(0) (1) Yi(k—1)
. (Z) ;Yz(l) ;Yz (0) ’%(k - 2)
Fk: =
ik =1) A (k—=2) ... 4(0)
converges in the operator norm ||A|| = sup{||Az|| : ||z|| = 1} to the covariance matrix
7(0) (1) (k= 1)
(9) (1) 7%0) ok =2)
Fk =
’}/Z(k‘ — 1) ’}/Z(k,‘ - 2) e ’)/Z(O)

in probability as N — oo, if £ — oo in such a way that )2 /N — 0. This result also assumes
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a spectral bound, see [6, Theorem 3.1], and that the underlying noise sequence has finite
fourth moment. Note that, if every o; > 0, then Proposition 4.1 of Lund and Basawa [22]
shows that the covariance matrix Fg ) = [72' (7 — E)}Z ¢—1 1s invertible for every n > 1 and
each 1 = 0,1,...,5 — 1. Since the set of invertible matrices is open, the convergence in

probability from [6, Theorem 3.1] implies that the sample covariance matrix is invertible

with probability approaching 1 as k — oo.

Given a PARMA g(p, ) model (1.0.1) for a periodic time series, a recursive forecasting
algorithm is developed in this thesis based on minimizing mean squared error. I detail
the computation of h-step ahead forecasts for a PARMA model, based on the innovations
algorithm, and an idea of Ansley (see Ansley [9]; Lund and Basawa [23]). I also have
developed R codes to implement these forecasts, and compute the asymptotic variance of
the forecast errors. All R codes are listed in the appendix. This thesis is laid out as follows.
Chapter 2 develops the algorithms for computing h-step ahead forecasts for any A > 1,
and computes the associated forecast error variances. Chapter 3 specifies the details of
computation in this paper, mainly by R software. Chapter 4 illustrates the methods of
this thesis by forecasting average monthly flows for the Fraser River. Chapter 5 develops
a reduced PARMA g(p, ¢) model to achieve parsimony. Chapter 6 derives the asymptotic
theory of PARMA models, and Chapter 7 discusses the periodic AIC for automatic model

selection.



1.1 Computation of PARMA Autocovariances

Given a PARMA g(p, q) time series (1.0.1), Define the covariance function
vj(é—j) E(X Xy) = Cov(Xj,Xg), (1.1.1)

and note that

v =J) = E(X;Xy) = E(XpX ;) =70 — )

for all j, ¢ € Z. Then the covariance function 7 (l—7) = E(Xng) can be explicitly computed
by two methods. The first approach is to use the causal representation in (1.0.2). Given the

model parameters, we may write

B(X;X)) =E (kio% )(ZW r)eg— r)
= i i CRIOLICGRCENE

k=07r=0

Notice that E (53»_]{;55_7,) = Ug—k’ when j—k =/(—r,and E <5j—k5€—7*> = 0, otherwise.

Letting r = ¢ — j + k, therefore

7= ) =B (X;X,) = l;)zpj(k)w(e —j+ kot (1.1.2)

However, (1.1.2) is computationally impractical since it requires determination and infinite
summation of 1 (k) and Vo(l —j+k).
Let v4(h) = Cov (Xt, Xt+h> be the autocovariance of Xy at season ¢ =t — S|t/S]| and

lag h > 0. Now I will consider the second method, by mimicking Yule-Walker methods for
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stationary ARMA series. Multiplying both sides of (1.0.1) by X;_;, where h > max (p, q),

I have
p q

Xp p | Xe= D o)Xy g | =X et + D Ot()er—
k=1 j=1

Take expectations on both sides, and use causal representation to compute the right hand

side:
p i q
E|Xpop (Xe = D otMXy g || =B | Xy (e + D 04—
k=1 i j=1
p 00 q
Yop(h) = > o)y _p(h—k) =B [ Y dy_pBep_p_p | [ee+ D Ot(5)er—;
k=1 k=0 J=1

since g4_p,_p L Et—jvvj =0,1,...,¢,k =0,1,..., where x L y if and only if (x,y) = 0,
and (x,y) is the inner product of x and y in Hilbert space H. Recall from Chapter 2 of

Brockwell and Davis [11] that (z,y) is called the inner product of z and y, such that
(a) (z,y) = (y,z), the bar denoting complex conjugation,
(b) (x4 y,2) = (x,2) + (y,2) for all z,y,z € H,
(c) (ax,y) = alz,y) for all x,y € H and o € R,
(d) (z,x) >0 for all z € H,

(e) (z,z) =0 if and only if z = 0.

In this way I obtain

M=

Ye—n () ot (k)vi—p(h = k). (1.1.3)

i
—_



Equation (1.1.3) expresses v;_p,(h) in terms of autocovariances of the previous p lags when
h > max(p,q). The advantage of this method is that the computational complexity of
(1.1.3) does not increase with increasing h. Therefore, once y;_j,(h) is identified for all lags
0 < h < max (p,q) and for all seasons i = 0,1,...,5 — 1, then the PARMA autocovariances
at higher lags can be efficiently computed. Next I will focus on computation of v;_,(h) for
0 < h < max(p,q) and all seasons i = 0,1,...,5 — 1. With a similar technique, multiply

both sides of (1.0.1) by X;_;, and take expectations:

b q

X p [ X =D o) Xp_p || =B | Xy, 5t+29t(j)5t—j
k=1 j=1

Notice that for 0 < h < max (p, ¢), then

p
Ye—n () = > otk hmin(e—pt—p)(1h— KD
k=1
0 q
=E | Y v Repp_g [ et + D 0rG)er—j
k=0 j=1

q
Z Ut ]¢t p = h),

where 64(0) = 1 and E(gt—h—kgt—j) = o2

Tt when k£ = 5 — h, and E(et_h_kat_j) =0,

otherwise. In this way I get the general form of autocovariance function for 0 < h <

max (p, q),
p

In a straightforward way, (1.1.4) is actually an S x [max(p, ¢) + 1] dimensional linear system.

10



Table 1.1: Parameters in PARMA{9(1, 1) for Example 1.1.1.

season i O; 0; o;
0 0.198 0.687 11875.479
1 0.568 0.056 11598.254
2 0.560 -0.052 7311.452
3 0.565 -0.050 5940.845
4 0.321 0.470 4160.214
5 0.956 -0.389 4610.209
6 1.254 -0.178 15232.867
7 0.636 -0.114 31114.514
8 -1.942  2.393  32824.370
9 -0.092 0.710 29712.190
10 0.662 -0.213 15511.187
11 0.355 0.322  12077.991

The matrix associated with this linear system is invertible as long as the PARMA model is
causal. See the appendix for a simple R code written to solve the linear system, for v;_ h(h),
for all 0 < h <max(p,q) andi =0,1,...,5—1. Note that (1.1.4) only requires 1y _,(j —h)

for j < g, which great reduces the computation, compared with the first method in (1.1.2).

Example 1.1.1. Consider the PARMA{9(1,1) model in Table 1.1.1, used in Tesfaye et al.

[42] to fit the 72-year monthly observations of Fraser river.

By (1.1.4), when 0 < h < max(1,1), I have h = 0,1, and

1(0) = (1)1 1(1) = 0(0)wy (0)7 + (g (1)o7

Y—1(1) = d(1)_1(0) = Bp(1)o?_,

(1.1.5)

Note that 64(0) = 1, ©4(0) = 1, ¥4(1) = ¢4(1) +604(1), and (1.1.5) is a 12 x 2 dimensional
linear system containing 24 unknown paramters v;(0) and v4(1), for t =0,1,...,11. Apply

the computation in R, I can get ~4(0) and ~4(1) for all the seasons, which are shown in the

11



Table 1.2: Part of autocovariances in PARMA{9(1, 1) for Example 1.1.1.

season i 7¢(0) (1) 7t(2) 7t (3)
0 261385575 156364519 87564130 49473734
1 228262590 120832037 68270101 21914702
2 117569804 63754073 20465057 19564595
3 69938164 39038161 37320482 46799885
4 42059747 34336947 43058531 27385226
5 50262780 59246310 37680653  -73175828
6 302264368 165787551 -321959424 29620267
7 1059745614 258668383  -23797491  -15753939
8 1619934424 615947912 407757518 144753919
9 1298905828 671836226 238501860 47223368
10 600922799 290799803 57578361 32704509
11 301560482 159927070 90838576 50869602

first two columns of Table 1.1.1. For h > 1,

Ye—pn(h) =y _p(h = 1),

(1.1.6)

therefore 14(h) at higher lags h > 1 can be computed. Partial results for higher lags are

shown in Table 1.1.1.
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Chapter 2

Forecasting and forecast error

2.1 Forecasting

The PARMA prediction equations are based on orthogonal projection, to minimize the mean
squared prediction error among all linear predictors. If the PARMA process has Gaussian
innovations, then this will also minimize the mean squared prediction error among all pre-
dictors.

To simplify notation, I denote the first season to be forecast as season 0, and define the
season of the oldest data point as season S — 1. If the total number of available data is
not a multiple of S, I discard a few(< S) of the oldest observations, to obtain the data set

XO,)N(l,...,Xn_l, where n = N x §S.

Recall that X} = )N(t — pu is the mean-centered process in (1.0.1). Fix a probability space

on which the PARMA g(p, ¢) model (1.0.1) is defined, and let

7:[71 = SI){l,Xo, S ,Xn_l} = S_p{l,Xo, S ,Xn_l}

13



denote the set of all linear combinations of these random variables in the Hilbert space of
random variables on that probability space, with the inner product (X,Y) = E(XY'). Note

that

P?-lan = Pﬂn (Xn + ,Un)

=pun+ P; Xn
Tin (2.1.1)

= fin + Psp{l,XO,...,Xn_l}X”

= Hn PST){XQ,...,Xn_l}Xn’

so that forecasting for the original data Xt can be accomplished by forecasting the mean-
centered process Xy, and then adding the seasonal mean. In order to develop a more efficient
forecasting algorithm, it is useful to consider a transformed process (cf. Ansley [9]; Lund

and Basawa [6]) defined by

X, t=0,....m—1

Wy = (2.1.2)

p
Xp= > o)Xy, t=m
k=1

where m = max(p, q). Then it follows from (1.0.1) that, for ¢ > m, the transformed process

(2.1.2) has the moving average representation

q
Wi =Y 0i(G)er—j, (2.1.3)
J=0

where 64(0) = 1 for all ¢. Notice that ¢4(k) and 64(k) are periodic in S, such that ¢;(k) =

¢<t>(k:) and 0y(k) = 9<t) (k), where (t) is the season corresponding to index ¢, so that (t) =t
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mod S.

Proposition 2.1.1.
Hn:ST){Xo,...,Xn_l} :Sb{Wo,...,Wn_l} (2.1.4)

for alln > 1.

Proof. Define Hj, = sp{Wy),...,W,,_1}. For j =1, obviously H1 = sp{Xp} = sp{Wp} =
H’f Assume that when j = n — 1, (2.1.4) holds, ie. H,_1 = sp{Xp,.... X;,_9} =
sp{Wp, -, Wy—o} =H}_|. By (2.1.2),

Xn—1: n—1<m
Wp1= p
Xn_l o Z ¢n—1(k)Xn—1—]{;> n—1>m.
k=1

Then W,, 1 can be expressed as a linear combination in the span Hp = sp{X,..., X, _1}.

Together with the inductive assumption at j = n — 1, H,, 1 = H* I conclude that

n—1’

H}, C Hp. Next I will prove the other direction, Hy, C H;,. By a transformation on (2.1.2),

I have,

W1, n—1<m

Xn—l =

p
Woo1+ Y op_1()X,_1_j n—1>m
k=1
By the induction hypothesis, H,,_1 = sp{Xq, ..., X;,—9} = p{Wp,...., W9} = H;;_lv

it follows that X, 1 can be expressed as a linear combination in the span

'H;‘; =sp{Wp,....Wp_9,W,,_1}.
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Then Hy, C Hjy. Together, this proves that
Hn =sp{Xg,.... X1} =sp{Wp,...., W,,_1} = Hy

for all n > 1. O

Proposition 2.1.2. The process Wy satisfies an invertibility condition
ep = m Wi (2.1.5)

where Tt = 1 and Z;X;O ‘WtJ‘ < o0 forallt. Also Tt = Tt4kS, for all j.

Proof. First define Wy_; = 0if ¢t —j <0. By (2.1.2), when t > m,
p
Xe=Wr+ > op(k)Xy_p,
k=1

and then by Proposition 2.1.1,
Xy € SI){Wt, Xt—l? . 7Xt—p} = SI){Wt, Wt—l’ cey Wt—p}'

Then X} can be written as

q
Xp=agWy+ap g Wyoy+ .t apWip =) a1 Wy,
k=0

16



where ag, ..., a;_y are finite constants. Then by (1.0.3),

o0 o0 q
ep = mNXe—j= > mG) | D ar Wi ik
Therefore I can write
00
&t = Z Wt,th—j7
J=0

where Ty j s a finite linear combination of 74(j), such that

/

j
a_; Y m(i—k), 0<j<q
k=0

g~ q
at—j > mi—k), j>q
\ k=0
Or
min(q,j)
7Tt’j :at_]‘ Z ﬂ-t(j_k)
k=0

If we let a* = max{ay,... ,at_p} which is bounded, by taking maximum of p + 1 finite

17



constants. Then

00 00 min(q,j)
> ‘”t,j) =D lu—j Y, mG—Fk
=0 j=0 k=0

0 mln(qvj)

<SS ImG—k)

7=0 k=0
oo q g—1 j
=|a*[ [ DD ImG =B+ D> I — k)
7=q k=0 7=0k=0
q oo 7 q—1
=1a*[ [ Y Y im0+ 3> ImG - k)
k=0j=q k=07=0

mln(Q)j) 0

=la*| > D |mi— k)| < oo,

k=0 j=k

since |a*| < oo and Z}x:)() |74(j)] < oo for all ¢ in (1.0.3). O

Define XO = WO =0 and, for n > 1, let

Xn =Py (Xn
o (X) (2.1.6)

denote the one-step projections of Xy, and Wy, onto Hy,, respectively.

The next result computes the covariance function of the transformed process {W}}. This
result was stated without proof in Lund and Basawa [23, Equation (3.16)], in a different

notation.

Proposition 2.1.3. Given a PARMAg(p, q) process (1.0.1), the covariance function C(j, () =

18



E(WjW@ of the transformed process (2.1.2) is given by

(

7i(€ ) 0<j<l<m—1

p
vjC=3) =Y bkt —k—j) 0<j<m-1<{<2m—1

C(j,0) = k=1
0 0<7<m—1,£2>2m
Ze egkw—])j? L g0 >m
\ k=0

for all j,¢ € Z, where I define (9]-(0) =1 for all j, € Z.

Proof. For the first case, where 0 < 7 < ¢ < m — 1, I have from (2.1.2) that Wj = Xj and
Wy = Xy. Then E(WjW@ = E(Xng) = yj(é — 7). For the second case, when j < m — 1,

but m < ¢ <2m — 1, I have

E(W,;Wy) = E[X;(Xy = ¢p()Xp_1 — ... — dp(0) Xy_,)]

p
= (= 5) =Y bplk)rp(t —k = j).
k=1

In the third case, if j <m — 1 and ¢ > 2m, then I have using (1.0.1) with 6;(0) = 1 that

B(W; 1)) = [ (Z"e e k)]

WhereE(stg_k):Ofork::O,l,...,qsinceE—k2€—q22m—q22m—m:m>
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m — 1 > j. Finally, for the last case, when m < j < ¢, using (1.0.1) again I have

q q
E(W]WE) =FE < Z ej(k)gj—k) < Z 9€(T’>€g_r)
k=0 r=0
q (q
=> > 0 (k)0 (r)E(ej_gep—y):
k=07r=0
and E(gj—kgﬁ—r) =O0unless j —k=/0—r. O

Remark 2.1.4. Since 0y(k) = 0 for k > ¢, it follows from the final case in Proposition 2.1.3

that C(j,¢) = 0 whenever ¢ > m and ¢ > j + q.

Using the covariance function C'(j, ¢) computed in Proposition 2.1.3, I can now apply the
innovations algorithm from Brockwell and Davis [11, Proposition 5.2.2 | to the transformed

process (2.1.2) to compute the one-step ahead predictor

n
Wi =3 05 (Wanej = W) (2.1.7)
J=1
where 9n71, ..., 0n n are the unique projection coefficients that minimize the mean squared
error
NN
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The coefficients 9n7 j in (2.1.7) and vy, in (2.1.8) are computed from the system of equations

vg = C(0,0)
1 k1
Ot =05+ |C(n k) = Zo Ok ki—j%n.n—j; (2.1.9)
]:

n—1 9
vp = C(n,n) — Z <9n,n—j) v;
Jj=0

solved in the order V), 91,1, vy, 9272, (9271, v9, 9373, 9372, 9371, U3, ... and so forth.

Proposition 2.1.5. Given a PARMAg(p, q) process (1.0.1), the innovations algorithm (2.1.9)
applied to the transformed process (2.1.2) with covariance function C(j,£) from Proposition

2.1.3 yields

(

0 n =20,

(2.1.10)

A

‘ (Wn—j W
Wn—j — Wn—j) n > m.

I

In particular, I have Qn,j = 0 whenever j > q and n > m.

n
> On,j
7=1
q
> On,j
(=1

Proof. If n > m and j > ¢, then Remark 2.1.4 implies that C'(n,n —j) = E(Wan_j) =0.
Since

Wn—j € SI){W(), ceey Wn—j—1}7

another application of Remark 2.1.4 shows that E(Wan_ j) = 0, and then it follows using

the linearity of the expectation operator that

~

w.

E |Wn(W,, n—j)| =0. (2.1.11)
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The proof of the innovations algorithm in [11, Proposition 5.2.2 | shows that the random

variables

{Wn—j—Wn—j j=1,2,...,n}

are uncorrelated, and hence the coefficients

-1 N
Gn’j = Un—jE Wn(Wn—j - Wn_]) (2.1.12)
are uniquely defined. Then (2.1.10) follows from (2.1.11), (2.1.12), and (2.1.9). O

Remark 2.1.6. Proposition 2.1.5 shows the advantage of the transformed process (2.1.2) for
computing the innovations, since the sum in (2.1.10) terminates after ¢ lags when n > m.
Since the forecast equations developed later in this paper all depend on the innovations, this

fact will be used to speed up the forecast computations.

The next result gives the one-step ahead predictors Xp, for the best linear predictor, that
minimize the mean squared prediction error. Equation (2.1.13) was proven by Lund and

Basawa [23, Equation (3.4)] in a different notation.

Theorem 2.1.7. The one-step predictors (2.1.6) for a PARMAg(p,q) process (1.0.1) can

be computed recursively using

( n
ZQnJ (Xn—j_Xn—j) 1 §n<m
D (2.1.13)

q
o Xn—j + 3 0nj (Xnj = Xnj) nzm
j=1

IR

[
—_

\ J

where the coefficients an are computed via the innovations algorithm (2.1.9) applied to the

transformed process (2.1.2).
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Proof. Project each side of (2.1.2) onto the space Hp, in (2.1.4) to get

Wy = (2.1.14)
Xt =or(DXp1 = = o(p)Xyp—p t=m.

Subtract each side of (2.1.2) from the corresponding expression in (2.1.14) to see that
Wy — Wy = Xy — Xy (2.1.15)

for all ¢ > 0. Solve for X; in (2.1.14), substitute (2.1.10), and then use (2.1.15) to arrive at

(2.1.13). 0

Remark 2.1.8. Theorem 2.1.7 is the basis for our forecasting computations. The fact that
the sum in (2.1.13) terminates after ¢ innovations when n > m simplifies and speeds up the

computations.

Recall from (2.1.4) that Hpn = sp{Xp,...,X,_1}. The next result gives the h-step

ahead predictors PanX

n+h that minimize the mean squared prediction error. This result

was proven by Lund and Basawa [23, Equation (3.36)] in a different notation.

Theorem 2.1.9. The h-step predictors for a PARMAg(p, q) process (1.0.1) can be computed

recursively using

n+h

pH"Xn+h - % 9"+haj (Xn—l—h—j - Xn—l—h—j) (2.1.16)
j=h+1
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whenn <m and 0 < h<m-—n-—1, and

p
Py Xnah = D Snn(B) Py X hk
=1
q A
+ ) Onth,; <Xn+h—j_Xn+h—j>'
Johel

(2.1.17)

otherwise, where the coefficients Qn,j are computed via the innovations algorithm (2.1.9)

applied to the transformed process (2.1.2).

Proof. Since Hp, is a subspace of H,, 4+ I can write

PrpnWonin = PrpPa, o Watrh

- PHan+h
n+h )

= Py, §:0n+Mj(w%+h<j_MWHhrj>
7=1

A

Since Wn+h—j - Wn—l—h—j is orthogonal to Hp, for j7 < h, and contained in Hy, for j > h,

it follows using Brockwell and Davis [11, Proposition 2.3.2] that

n+h

Py Wit h = Xh: 9n+h,j <Wn—|—h—j - Wn—l—h—j) : (2.1.18)
J=h+1

A

Since each Wn+h—j_Wn—|—h—j lies in Hp, for 5 > h, and Wn+h_PHan+h is orthogonal

to any element of Hp, it follows that the mean square error of the hA-step prediction is

n+h

2 2
E(Wih = PrpWorn) =Clothnth) = 3 (9nin) vnpnj
j=h+1
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From (2.1.2), I can write Py W), = Py X

nth When 0 <h <m—mn—1, and

p
Py Wash = PrpXnah = D O h ) Pryy X (2.1.19)
k=1

when h > m — n. Substitute (2.1.15) into (2.1.18) to get

n+h

Prn W = % 9"+haj <Xn—|—h—j - Xn—l—h—j) : (2.1.20)
j=ht1

If 0 <h<m-—n-—1, then (3.0.6) and (2.1.2) imply that (2.1.16) holds. If h > m —n,
substitute (3.0.6) into (2.1.19) to get (2.1.17), using the fact that Opyp,j=0ifj>qand

h>m—n. O

Given a PARMA g(p, ¢) time series data set X'O, e ,Xn_l, I can forecast future values
using the h-step ahead predictors from Theorem 2.1.9. Note that this requires computing
all of the innovations

Xy — Xy fort=0,1,....,.n—1

using the recursive equation (2.1.13). Complete details will be provided in Chapter 3. In
the next chapter, I explicitly compute the forecast errors, which will be needed to compute

prediction bands for this forecast.

2.2 Forecast errors

The next theorem is the main theoretical result of this chapter. It explicitly computes the
variance of the forecast errors, and a simpler asymptotic variance that is useful for compu-

tations. Formula (2.2.12) for the covariance matrix of the forecast errors was established
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by Lund and Basawa [23, Equation (3.41)] in a different notation. However, that paper did
not develop an explicit formula for the forecast error variance. I begin with the data set

{X0,X1,...,X,,_1} as in Chapter 2, where n = N x S.

Theorem 2.2.1. Define Xj(o) =1 forall j >0, Xj(j —0)=0 forallj >0 and ¢ > j, and

recursively

min(p,f)
X (l) = 1;:1 ¢ (k)X (€ = k) (2.2.1)

forallj >0 and 0 </{ < j.
2
Then the mean-squared error U%(h) =E [(Xn—i—h — PHan—l—h) } of the h-step predictors

P?-[an+h for the PARMAg(p,q) process (1.0.1) can be computed recursively using

2

J
2
o) = | D xn®in—pj—k | Ungn—j (2:2.2)
7=0 \h=0

when n > m := max(p, q), where the coefficients Qn—l—h—k j—k and Upth—j are computed
via the innovations algorithm (2.1.9) applied to the transformed process (2.1.2). Furthermore,

the asymptotic mean squared error is given by

h
a%(h) — Z w]%(j)a]%_j asn=NS — oo, (2.2.3)
j=0
where
J
() =Y xp (k)0 (G — k).
k=0

Proof. Recall that Xy = )N(t — pip is the mean-centered process in (1.0.1), and W is the

transformed process in (2.1.2). Note that the mean squared prediction error a%(h) =
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E(X,4p — P”Han+h>2 for the mean-centered PARMA process (1.0.1) is not the same

as the mean squared prediction error E(W,

nth — PHn Wt h)2 for the transformed process

(2.1.2). When n > m := max(p, ¢), Theorem 2.1.9 implies that (2.1.17) holds for any h > 0,

and note that the second term in (2.1.17) vanishes when h + 1 > ¢. Write

Xn+h = Xn+h + (Xn+h - Xn—l—h>7

and since n = NS, then ¢, 1,(j) = ¢p(j). Substitute (2.1.13) with n > m to get

Xntn =0 Xpp1+- -+ 0p0 X1y
q (2.2.4)

+ D> i (Xn+h—j - Xn+h—j) )
§=0

with 6, o =1 for all n. Subtract (2.1.17) from (2.2.4) and rearrange terms to get

p
X = PrpXpn = D op(k) <Xn+h—k - PHan+h—k>
k=1

. (2.2.5)
- Z 9n+h,j (Xn+h—j - Xn+h—j> :
J=0
Define the random vectors
Xn — Xn Xp — Py, Xn
My = : and Fp = : (2.2.6)
Xn—l—h - Xn+h Xn—l—h - PHan+h'
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Write

), = [—(bj(j - g)]?e:o (2.2.7)

Y

where I define qﬁj(O) = —1 for all j, and gbj(k) =0 for k > p or k < 0. Note that ¢j(k) is
periodic in S, such that qu(k) = ¢<J~>(k), where (j) is the season corresponding to index j,

so that (j) = j mod S. Then from the innovations algorithm, write

On = [enﬂ,j—d?,g:o (2.2.8)

where I define gn,(] =1,and 0, ;. :=0for k > qor k <0. Then I can use (5.1.3) to write

j, Fn = OnMn, (2.2.9)
where I note that

1 0 0 0 0
—¢1(1) 1 0 0 0
—99(2) —¢9(1) 1 0 0

), =

—¢3(3)  —93(2) —¢3(1) 1 0
—¢p(h) —op(h—1) —¢p(h—2) 1
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and

1 0 0 ... 0
971—{—1,1 1 0 ... 0
On+22  On421 1 - 0

On+33  On+32 Ont31 1

—_

Onihh Onihh—1 Onihh—2
are lower triangular matrices.

The entries of the innovations vector My, in (2.2.6) are uncorrelated, with covariance matrix

Vn=E [MHMH = diag (Un>vn+1> . ’Un—i—h> , (2.2.10)
where I recall that
N2
o = E [(Xn — Xn> } (2.2.11)
are the one step ahead prediction errors. Then the covariance matrix of the vector Fj, =
@El@nMn of prediction errors is

Cp = E [FRFH = W VW), where Wy =10, (2.2.12)

and / denotes the transpose.

In order to compute the matrix Cp, in (2.2.12), I first need to compute the inverse matrix

h

i 0=0 (2.2.13)

oyt = [ — 0]
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and show that (2.2.1) holds. An elegant way to compute the inverse matrix (5.1.11) is to

use operator notation along with the z-transform. Use (1.0.1) to write

O(B)X,,, j=O(B)eyyj forj >0, (2.2.14)

n+j

where

Z Ot (R) Z Ot (R) Z ¢ (k)

since n = NS, BXy = X;_ 1 is the backward shift operator. Then the infinite order moving

average representation (1.0.2) for the mean-centered process Xy can be written in the form
Xntj = \I'(B)gn—l—j for j >0, (2.2.15)

where

U(z) = 1(2)0(2) (2.2.16)

Notice that ®;, = ®, however Oy # © and Uy, # . Write

= l/{j(k)zk
k=0

L) =3 k)R
k=0

extending the notation (5.1.11). If n > m = max(p,q), then the infinite order moving
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average representation (2.1.3) of the transformed process W} can be written in the form

4%

n+j=0(B)epyj forj=0andn>m. (2.2.17)

Equating (2.2.15) and (2.2.17) and using (2.2.16) shows that

X

-1
n+j — o (B)W,

g forj>0. (2.2.18)

Since
oL@z =1,
I have
— k D k
S xar®F | (1= 30 050k ) =1
k=0 k=1
for all 5 > 0.

By expanding the above equation, I have

(O + X1z xR ) (1= 0Dz = 0(p)P ) = 1,
which could be separated as

1j(0) + (X1 (1) = xj(0)6;(1) 2+ -
+ (Xap®) = Xjgp-1(p = Dj(1) =+ = x;(0)05(p) ) F +-- =1
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Setting every coefficient of 2k to 0, for k=1,2,..., I have for all j > 0,

Hence,
¢ min(p,f)
k=1 k=1

using the fact that gbj(k:) =0,k > p and Xj(f — k) =0,k > £, which proves (2.2.1).

Since ®;, = ®, this shows that the inverse matrix (5.1.11) can be computed for any h > 0
by taking Xj(o) =1 for all 7 > 0, Xj(j — /) =0forall j >0 and ¢ > j, and recursively

applying the formula (2.2.1) for all j > 0 and 0 < ¢ < j.

Now I can proceed to compute the matrix Cp, in (2.2.12). First write

h

Up = ‘P;:l@n = [¢n+j,j —d 7,6=0
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where

h
~1
Untjjt= 2 (1), On)se
s=0 ’
h
= D> X0 =)0 ps 50 (2.2.19)
5=0

J
=2 X = 8)0n s s
s=(

since Xj(j —5) =0 for s> j, and 0 ¢ =0 for s < {. Substitute s = j — k in the sum

n+s,s—

(5.1.5) to obtain

j—t
Unjjmt = D X R) s i, (2.2.20)
=0
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Now it follows from (5.1.5), (5.1.9), and (5.1.14) that

o2(h) = E [(Xn+h - PHanMﬂ

=Cpp
hoh

=D D VpaVuw¥y

u=0w=0
h h

- Z Z \I’h,uVan\Dh,w

u=0w=0 (2.2.21)
h

- Z \I/h,uku\llh,u
u=0
h

2
- Z wn—l—h,h—uvn‘i‘u
u=0

h 2

h—u
- Z Z Xh(k)en—i—h—k:,h—u—k: Un+u
u=0 \ k=0

Substitute u = h — j to obtain (2.2.2). O

Next I require a few preparatory results.

Lemma 2.2.2. With the innovations algorithm (2.1.9) applied to the transformed process

(2.1.2), I have

vr—ag‘—ﬂ), as r — 0o.

Proof. Recall that Hy = sp{X(,..., X, _1} =sp{Wy,...,W,._1}, and define

Hy =sp{W,;,—oco < j <r—1}.
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By the invertibility condition of Wj process in Proposition 2.1.2,
00
of =B(e2) =BWr + Y ()W, j)* = B(Wr — Py, Wy)?
J=1

where

o
> ()W = Pp (er = Wp) = =P, Wr,
j=1

since er LHy and W,._ . € Hr,j =1,2,...,00. Since Hy C Hy, I have PHTWT € Hy, thus

by the Projection Theorem in Brockwell and Davis [11, Theorem 2.3.1 |, it follows that
2 = E(Wy — Py Wr)? < E(Wy — Py Wi)2 = E(Wy — Wp)? =
o =EWr — Py, Wr)* <EWp — Py Wr)? =EWr = Wr)® = vr.

On the other hand,

r
— Z Wr(j)Wr_j € HT,
j=1

so that by another application of the Projection Theorem in Brockwell and Davis [11, The-

orem 2.3.1 ], T obtain
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Therefore, since e L Hy,

. 2
vp < E ZWT(J)WT—]
=0
2
=E €T—Z7TT(J)WT—]
j>r
2
=Ee)? +E | Y mr ()W,
j>r
= 072 +E Z Wr(])Wr—j Z mr (K)W,._},
Jj>r k>r
<of+ Y (ImrG) lmr(k) [B] Wy jW, |
S oy mrJ) Il Tr r—j"r—k
J,k>r
<o+ 3 (Imr() Il mr(B) VCG = jr = O —hyr = B)
7,k>r
2
<o2+ (Y Im() || M
j>r

where M = max{C(i,i):1=0,1,...,5 — 1} < oo. In summary, I have proved

o2 <vp <o+ (Y () |)2M
j>r
where (Zj>7" | 7 (5) | )2 — 0 uniformly over all seasons, as r — oo. Hence , as r — oo, |

have

or — a2l < (3 I me(G) 1)2M =0,
j>r

which completes the proof. O]
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Lemma 2.2.3. Let Wy be given by (2.1.2) and Wy be given by (2.1.10). Then
’I“li}Hg)OE[(WT — Wr — 67“)2} =0.

Proof. By the causal representation Wy = Z?:O Oy (j)sr_j in (2.1.3), I may write

q
Eler(Wr — Wr)] = Bler(er + Y 0r(j)e,—j — Wir)] = B(eR) = o7,
j=1

since ey L Er—j» forj=1,...,q,and e L Hy, therefore e L Wy. Hence E[ET(WT—WT)] =

a%. Then
E[(Wr - Wr - 87’)2}
— E[(Wy — Wp)?] = 2E[ep (Wy — W)] + E(e2)
=up — 2072 + 072
= v — 072 — 0,
using Lemma 2.2.2. O

Proposition 2.2.4. Let 0,. ;. be the projection coefficients from (2.1.7) and let Oy (k) be the

moving average coefficients from (1.0.1). Then
10, 3. — Or (k)| =0 asr— o0, forallk=1,2,...
Proof. T know that by (2.1.12)

_1 .
97’,1{: = Ur_k;E[WT<WT—k - Wr—k‘)}'
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I also have

Or(k) = 0 2 B(Wre,_1).

since

E(Wre,_p) = E(0r(k)e2_ ) = 0r(k)o?_ .,

using the causal representation (2.1.3). By the triangle inequality,

Oy — Or(k)] <

O o = 0y BV (W, = W, )|

r

9 .
+ ‘Ur_/{;E(WT(Wr—k Wik~ €r—k))‘
= ‘97’ k— U;_ler kvr—k’
’ ’ (2.2.22)
9 .
+ ‘U,r,_kE(WT(Wr—k - W?‘—k‘ - 87“—]€>)‘

—2
<Pl o

-2 | o(r, )3 Vy— e)2]2
—i—‘ar_k‘C’(r,r) [E(Wyr — Wy —&7)?] 2,

using the Cauchy-Schwarz inequality. Note that 6,. . is uniformly bounded in 7 over all

seasons, since (2.1.12) and the Cauchy-Schwarz Inequality imply,

1 A
Op 1 = Ur_kE(WT(Wr—k - Wy_p))
<o L VO EW,_ — W, )

—1/2
:Ur—lé C(r,r).

Then, as 7 — oo, the first term on the right-hand side of (2.2.22) approaches 0 by Lemma

2.2.2. The second term on the right-hand side of (2.2.22) approaches 0 by Lemma 2.2.3

1
and the fact that 0;_2k0(r, )2 is uniformly bounded in r. Thus,

Ok — Or(k)] > 0 as
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r — 00. O

Proof of Theorem 2.2.1 continued. Using the covariance function C'(j, ) computed in Propo-
sition 2.1.3, I can now apply the innovations algorithm from Brockwell and Davis [11, Propo-

sition 5.2.2 | to the transformed process (2.1.2) to compute the one-step ahead predictor
n
W =3~ b (Wnj = W)
J=1

for n > 0, where WO = 0. Proposition 2.2.4 shows that

Os.0— «95(6)’ —0 ass— oo, foralll>D0. (2.2.23)

Note that (2.2.23) also holds for £ = 0, since 05 o = 65(0) = 1 by definition. Substitute

s=n-+h—kand ¢ =7 — k to see that

€n+h—k,j—k_9n+h—k(j_k) — 0 asn— o (2.2.24)

for all j > k > 0. Since n = NS, then en—l—h—k(j — k) = 9NS+h_k,(j —/C) = Qh_k(j —k?).

Therefore (5.1.19) is better written as
QNS—i—h—kj—k_eh—k(j_k) —0 as N — oc. (2.2.25)

The mean-centered process X; has moving average representation (2.2.15), which can be

related to the moving average representation (2.2.17) of the transformed process Wy by the

39



relation (2.2.16). Expanding both sides I obtain
o0 . 00 : q .
>zl = (3 =) (3 00)=7).
J=0 J=0 J=0
Expanding the product on the right-hand side and equating coefficients, we have

> ()=l = (D0 xa)=!) (05001 + 0,10z + -+ 0, ()27)
j=0 j=0

= X (001,01 + (X1, (0)0),(1) + x4, (1)0,_10)) 2

J )
TR ( S xR0~ k))z] TSI
k=0
oo J
=3 (X kgl - )"
=0 k=0
Then
J
Up() =D xp (k)0 (G — k) (2.2.26)
k=0

for all h > 0 and j > 0. Now it follows from (5.1.5), (2.2.25) and (2.2.26) that

lim 1) — :
N %O’%(J) UNS+h,j

J J
= Tim | > Xy (M0 G = k) = > xpWONSh—k j—k
= = (2.2.27)
J
< lim k ]9_ k) — 0 b
_N%OZ Xn W)\ —1 G = %) = ON gt h—k j—k
k=0

where for each h > 0, k = 0,...,7 and 0 < j < h, xp(k) is a constant independent of

40



n = NS. Notice that from (2.2.25), as N — oo I have

J J
Y X RONSth—k -k = Y Xp (RO (G = k)
k=0 k=0

and therefore,

k=0

J J
(Z Xh(k)eNSJrhk,jk) — (Z X (k)0 _ 1.5 — k)) (2.2.28)
k=0

Furthermore, by (2.2.28), since h is finite and U%_j is periodic with period S and thus

bounded, then as N — oo,

) 9 . 2
J J 9
lim S B ONsn_pG k)| - Xn(KONS+h—k j—k | |Th—j =0
N—>c>oj:0 —0 k=0 7

(2.2.29)
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Then it follows from (2.2.2), (2.2.27), (2.2.29) and Lemma 2.2.2 that

I o (h an—i—h n+h J

N—oo

J=0
: W :
= Nlim oy g(h) — Z Z Xp (k)0 (5 — k) Th—j
0 =0 \k=0

2 a :
< dim Jojrg(h) = > | D xn(RONSeh—kj—k | T

N—oo

Wl 2 ?
_ 2
+ lim ) (Z Xp(k)Op (5 — K ) (Z X 9NS+h—k:,j—k) Th—j
J

2
Xh NS+h—k,j—k h—j

2
ho [ 7
] 2 2
= i jofyg(h) - 'E : (§ X RON S h— ke (st+h—j toh—j —UNs+h—j)

N—oo

2
h
< lim |o%g(h Z(th ONS+h—kj—k | YNS+h—j

. 2
h j
+ Nli_r>noo > (kZO Xh(/f)HNSJrhk,jk) ’(Uz—j —UN S+h—j)’

3=0
i 2
2
= lim _|op(h) = ) (Z Xh(k)enJrh/ka) Un+h—j| 0
5=0 \k=0
=0.

This proves (2.2.3). O
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The following corollary gives asymptotic prediction intervals for the forecast, in the Gaus-

sian case.

Corollary 2.2.5. If {X}} is a 0-mean Gaussian process, then the probability that Xy, lies

2

1
between the bounds Py X + 2z h_ 1/12 Yo% )2 approaches (1 —a) as n — oo,
Hn*nt+h=~a/2\ Z5=0 YRV /" h—j

where zo, 1s the (1 — a)-quantile of the standard normal distribution.

Proof. Since (X, X1,..., X, 4 h)/ has a multivariate normal distribution, then by Problem

2.20 in Brockwell and Davis [11],

Py Xnth = ES—P{XO’_._,Xn_l}Xn—i—h = E(Xp 1 p X0, Xp—1)-

Then since (2.2.3) holds, letting ®(¢) denote the cumulative distribution function of the
standard normal distribution, it follows that, as n — oo,

h
W2
P(Pry X h — a2 Z h0)oh)

l\DI»—l

h 1
2
= Xnth = PrpXngn + 242 Z AN —j 2)

= P(IXn1h = Prp Xnthl < 20 /200(R))
— (I)(Za/Q) — (I)(—Za/z)

=1—-aq.
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Chapter 3

Computation

In this chapter, I outline the computations needed to produce forecasts and the associated
prediction intervals. All the calculations are carried out by R software, and the codes are
in the appendix. This chapter details the codes and their usage. The first step is model
selection, i.e., the number of seasons S, the order p of the autoregressive part, the order ¢
of the moving average part must be chosen. Usually S is known from the application. For
example, I use S = 4 for quarterly data and S = 12 for monthly data. The next step is to
estimate the autoregressive parameters ¢z (k) for k = 1, ..., p, the moving average parameters
0¢(j) for j = 1,...,q, and the residual standard deviations oy of a PARMA g(p, ) model
for the sample-mean corrected data, X; = )N(t — fiz. These two steps are closely connected,
since the process of model selection requires fitting a proposed model to judge its adequacy.
The entire procedure of model selection and parameter estimation is outlined in Tesfaye, et

al.[42]. A brief synopsis is given in the following paragraph.

For any data set XOv le e ,Xﬁ, we can extract a subset Xi? Xi—i—l? e ’Xi+n—17 where

1 represents the i-th season, n = NS, N equals the number of years of data and S equals the
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number of seasons in a year. Use (1.0.4) and (1.0.5), respectively, to compute the seasonal
sample means and autocovariances. The means ji; for i = 0,1,...,S — 1 are stored in an
S x 1 array MU(I) for I= 1,...,S and the autocovariances ¥;(¢) for i« = 0,1,...,5 — 1
and £ = 0,...,N — 1 are stored in an S x N array GAMMA(L,L) for I= 1,2,...,S and
L= 1,...,N. Since our notation begins with season i = 0 and lag ¢ = 0, and since many

coding platforms (including R) do not allow zero or negative subscripts, there is a change of

notation I=4 + 1 and L= ¢ + 1. In this way, MU(I) = ji; and GAMMA(LL) = 4;(¢).

Now consider a general innovations algorithm for all seasons ¢, where : =0,1,...,5 —1:
vo,i = C(0,9)
k—1
()N I VP (&) ()
Opm = Upi |ClTni+h) Zoek b i Ui (30.)
J

(%

2
n’i:C(i—l—n,i—l—n Z(nn j> j,i’

o0

1,1 ULis 95% é)l V9.4 o) gli) L)

solved in the order 0,4 3.3 0392, 037, U340+ and so forth.
Now k + 1 iterations of the innovations algorithm (3.0.1) with C(j,¢) = o (¢ — j) must be
computed for every initial season ¢ = 0,1,...,5 — 1 to obtain the estimates of the seasonal
variances

o;

and estimates of the coefficients in the infinite order moving average representation (1.0.2),

d;(0) = o\ 57FD) (3.0.3)



for £ =0,...,k, where () is the season corresponding to the index ¢, so that (jS + i) = i.

See Anderson, Meerschaert, and Vecchia [6] for more details.

It is necessary to repeat the innovations algorithm for every initial seasoni =0,1,...,5—
1 because the final estimates of the seasonal variances 6@2 and the infinite order moving

average coefficients 1[)2 (7) depend on both the starting season ¢ and the number of iterations.

2

The number of iterations k£ + 1 should be chosen so that all the parameter estimates &Z-
fori=0,1,...,5 — 1 and @Z(]) fori=0,1,...,5 —1and £ = 0,...,m show evidence of
convergence, where m = max{p, ¢}. I use the idea of relative error to show the convergence.
For example, as the number of iterations increases, for a fixed season ¢, define Ef%(k’) as
the seasonal sample variance after k iterations, and &Zz(k + 1) the seasonal variance after
k + 1 iterations. Since the value of variance can be large, I consider the relative change
[62-2(16 +1)— 6@2(k)] / &zz(k)‘ As a general rule of thumb, I interpret a relative error less than
0.05 after k + 1 iterations as evidence of convergence. The estimated seasonal variances are
stored in an S x 1 array VAR(I) for I=1,...,S and the estimated coefficients in the infinite
order moving average representation are stored in an S x N array PSI(,L) for I=1,...,S
and L= 1,..., N. In this way, VAR(I) = 7 and PSI(LL) = ¢;(¢) , where I= i + 1 and

L=/7+1.

Anderson and Meerschaert (2005) show that

Ok (k) N o2, (3.0.4)
é](ffé._k» L g0, (3.0.5)



and

. j—1,2
1/2 (5((i—Fk)) %i—n 2(
NY/ O " = i0) ( A ) (3.0.6)
n=0 "i—j
as N — oo and k — oo for any fixed 2 =0,1,...,5 — 1, where “ = 7 indicates convergence

in distribution, and A/ (m, v) is a normal random variable with mean m and variance v. The
main technical condition for the convergence (3.0.6) to hold is that the noise sequence ¢; has

a finite fourth moment.

In practical applications, N is the number of years of data, k is the number of iterations
of the innovations algorithm (typically on the order of & = 10, 15 or 20, see the discussion
later), and the convergence in distribution is used to approximate the quantity on the left-
hand side of (3.0.6) by a normal random variable. Equation (3.0.6) can be used to produce
confidence intervals and hypothesis tests for the moving average parameters in (1.0.1). For
example, an a-level test statistic rejects the null hypothesis (HO L (0) = O) in favor of the
alternative (Hg : 1;(¢) # 0, indicating that the model parameter is statistically significantly

different from zero) if |Z| > z, /2 The p-value for this test is

=P(|Z] > |2]) where Z ~ N(0,1),

" N N 2 (3.0.7)
) N1/29](€<,€ k)) Lo Zflzlo Yk, (i—k—n) <91(c<,n >)>
¥= w8 N Ok (i—h—0) |

The innovations algorithm allows us to identify an appropriate model for the periodic time
series at hand, and the p-value formula gives us a way to determine which coefficients in

the identified PARMA model are statistically significantly different from zero (those with a
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small p-value, say, p < 0.05).

Once estimates of the infinite order moving average coefficients Qﬂl(]) have been com-
puted, a system of vector difference equations must be solved to determine estimates of the
autoregressive parameters (ﬁz(j) fori =0,1,...,9 —1and j = 0,...,p, and estimates of
the moving average parameters éz(J) fori =0,1,...,5—1and j =0,...,q. See Tesfaye,
Anderson and Meerschaert [43] for complete details. In the special case of a PARMA g(1,1)

model, it is possible to solve those difference equations by hand to obtain

~ ~ ~

o1(1) = d(2)/dp—1(1) and  Gy(1) = 9y(1) — oy (1) (3.0.8)

where ﬂt(O) = 1. Hence k + 1 iterations of the innovations algorithm for every initial season
1=0,1,...,5—1 are sufficient to estimate these parameters, assuming that k is large enough
to ensure convergence for the variance estimates 62.2 and the infinite order moving average
coefficients @@Z(j) for all seasons ¢ = 0,1,...,5 — 1 and for all lags j = 0,...,m, where
m = max{p, q}. In general, the number of iterations needed for convergence will depend on
the order of the model being fit. I use an S x (m+1) array to store ét (j), for a PARMA g(p, q)

model, and use the same size array to store gEt( 7). In my R code, the corresponding names

of these arrays are named as THETA and PHI respectively.

Table 3 lists moving average parameter estimates 2[%(5) at season i and lag ¢/ =1,2,...,6,
and p-values, after k = 20 iterations of the innovations algorithm applied to average monthly
flow series for the Fraser River near Hope BC. In the discussion of a PARMA ¢(1,1) model,
by (3.0.8) I only consider zﬁz (¢) at lag 1 and lag 2, and the ones with a higher p-value are
shown in bold font in Table 3. In order to study the convergence of z@z(é) as iterations k

increase, I exclude 1&2 (¢) if its corresponding p-value is more than pg of 0.05, since that value
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Table 3.1: Moving average parameter estimates 1&2 (¢) at season i and lag £ = 1,2,...,6, and
p-values, after k = 20 iterations of the innovations algorithm applied to average monthly
flow series for the Fraser River near Hope BC.

i i) p | Y2 p [ B p [ Y4 p | 9i(B)  p | (6) p
008 .00| 0.134 .28 | 0.106b .10 0.163 .01 | 0.006 .93 | 0.038

110625 .00| 0503 .00]| 0.085 .46 | 0.140 .02 | 0.077 .17 |-0.004 .94
2 10508 .00| 0350 .00 | 0.419 .00 0.032 .72 0.097 .03 | 0.019 .65
3 10515 .00 | 0287 .00 | 0.140 .07 | 0.239 .00 | 0.034 .60 | 0.030 .37
4 10791 .00 0.165 .10 | 0.295 .00 0.112 .12 | 0.160 .03 | 0.045 .43
5 10.567 .00| 0.757 .00 | 0.057 .61 | 0.250 .00 | 0.062 .40 | 0.139 .06
6 | 1.076 .01| 0.711 .11 | 0.856 .01 | 0.415 .13 | 0.241 .17 | 0.112 .52
7 10522 03] 0.684 .41 | 0988 28| 1.095 .09 | 0.350 .51 | 0.198 .56
8 0451 .00 | -1.014 .00 |-0.062 .66 |-0.745 .50 | 0.128 .87 |-0.635 .31
9 10.618 .00|-0.041 .77 |-0.746 .01 |-1.083 .26 |-0.047 .97 | 0.514 .50
10 | 0.448 .00 | 0.409 .00 | 0.026 .78 |-0.241 .20 -1.125 .08 | 0.799 .26
111 0.677 .00 | 0.159 .01 | 0.194 .00 | 0.050 .46 |-0.190 .17 |-0.402 .38

would not be significantly different from zero by (3.0.7). And consider the relative error

(O F D — 4 )F)

?

ERRF(¢) = (3.0.9)

And define the maximum of the relative error
Ry, = max{ERRF(0) : (i,0) ¢ I1.},

where [ k is defined as

I.={i,{:p<pg in (3.0.7)}

Figure 3.1 shows plots of R, against number of iterations k, and the convergence of 1&2 (0) as
k increase. Figure 3.1 also shows plots excluding @EZ (¢) with p values above pp of 0.01 and
0.10. Similar plots for v}, (i—k) are given in Figure 3.2.

Once the model is fit, the adequacy of the model can be judged. One way to do this is
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(a) Max relative error, P-value = 1%

0.6
|

0.5

0.4

0.2
|

bound of 0.1

value o1 max relative error
0.1 0.3

0.0

0 5 10 15 20 25 30
Number of iterations

Figure 3.1: Convergence of @@Z (¢) as iterations k increase,where 0 <i < S—1,1 </ <2 k=
1,2,...,30. For interpretation of the references to color in this and all other figures, the
reader is referred to the electronic version of this dissertation.

to compute the residuals and check for any remaining serial correlation. To compute the
residuals from the data, the invertible representation (1.0.3) is used and the weights m(7)
must be computed by solving another system of vector difference equations. In the special
case of a PARMAg(1,1) model, it is possible to solve those difference equations by hand

(see Anderson, Meerschaert and Tesfaye [8]) to obtain

op = 625_1 [Xt - (th(l) + 91&(1)) X q
; (3.0.10)

~ ~

t—1 L . .
+> (-1 (¢t—j+1(1) + 9t—j+1(1)> 9t(1)9t—1(1)---9t—j+2(1)Xt—j]
j=2

where i is the season of the first data point. This produces n — 1 residuals 515 for t =
i+1,...,i+n—1. In general, one obtains n —m residuals where m = max{p, ¢} depends on

the order of the model being fit. Now plot the autocorrelation function (ACF) and the partial
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(a) Max relative error
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Figure 3.2: Convergence of v, (i—k) @ iterations k increase,where 0 <1< S —1,1 </ <
2,k=1,2,...,30.

autocorrelation function (PACF) of the residuals and check for any remaining serial correla-
tion, in exactly the same way as for ARMA modeling. An example could be seen in Figure
4.3 of next chapter. Since the standardized errors d; = oy 15t in a PARMA g(p, ¢) model
are also iid observations under this model, 95% of the ACF and PACF values should fall
within the confidence bands +1.96/v/n — m if the model is adequate, see Tesfaye, et al [42].
The principle of parsimony suggests that I choose an adequate model with m = max (p, q) as
small as possible. Once the order p of the autoregressive part and the order ¢ of the moving
average part are chosen and found adequate, it is then advisable to fit a reduced model with
fewer parameters. One method for finding a reduced model using discrete Fourier transforms

is discussed in Anderson, Meerschaert and Tesfaye [8].

Validation of a time series model is tantamount to the application of diagnostic checks to
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the model residuals, to see if they resemble white noise. The Ljung-Box test can be used to
test the white-noise null hypothesis (see [11]). If the null hypothesis of white-noise residuals is
not rejected, and if the autocorrelation and partial autocorrelation functions of the residuals
show no evidence of serial correlation, then I judge the model to be adequate. Fitting a
suitable distribution to the residuals allows for a faithful simulation based on this model.
To obtain additional parsimony, it is also advisable to consider simpler models where some
statistically insignificant model parameters are set to zero. If the resulting model residuals

pass the same diagnostic tests, then the simplified model is also deemed adequate.

Next I detail the computations required to produce forecasts, and their prediction inter-
vals. As before, I assume that the first season to be forecast is season ¢ = 0, and write the
data in the form X'O, X 1o Xn—lv discarding a few of the oldest observations if necessary.

Then I compute the sample means /i; using (1.0.4) and set X (/) = X; —ji; for I =1,...,5.

Step 0: Compute the sample autocovariance by (1.0.5). Apply innovations algorithm
with 4;(¢), and get estimates for &@'2 and @Z (¢) by (3.0.2) and (3.0.3). Then model parameter
estimates 64 (j) and ¢y (k) could be computed by (3.0.8). From the constructed model, create
an S x Q array to store ét(j), j=0,1,...,q with ét(O) =landt=0,1,...,5 — 1, where
Q = q+ 1. Also, create an S X p array to store qgt(k), k=1,...,pand an S x 1 array
to store (5?. The corresponding array names in my R codes are THETA, PHI and SIGMA

respectively.

Step 1: Use Proposition 2.1.3 to compute the covariances, C(j,¢), of the transformed
process Wy given in (2.1.2). Notice that in the computation process, 7 (¢ —j), ét (1), q@t(k),
and &? are obtained in Step 0. Create an n x n array C(J,L) to store C(j, (), where C(J,L)

= C(j,0), for J = j+1, L = £+ 1. Speed and efficiency of the algorithm given in Proposition
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2.1.3 is provided for by noting that C(j,¢) = 0 if £ — j > ¢ and ¢ > i + m where m =
max(p,q). I may let the n x n array defined just now as a zero-array, in this way, with the

previous condition, I could avoid a lot of computations.

Step 2: From the innovations algorithm given by (2.1.9), once C(j,¢) is given, calculate
the coefficients en,j‘ Since en,j =0if j > g and n > m, I will need an array of size n x @)
(again, 9n,0 = 1) to store the innovation coefficients, where the corresponding array name is
THETA in my R code. The innovations algorithm is solved in the order vy, 61,1, vy, 92,2,

0271, V9, 9373, 03’2, 0371, vg,... and so forth. Use an n x 1 array to store vg.

Step 3: Compute the one-step predictors, Xl,XQ, o ,Xn_l, by (2.1.13), and they are
stored in the array Xhat in my R code. At most only an m-step computation is needed,
where m = max(p, ¢), since (2.1.13) only requires the storage of at most p past observations
Xp—1s---+Xp—p and at most ¢ past innovations (Xn—j — Xn_j),j =1,...,q. Therefore
computation is much faster when p and ¢ are small, for example, PARMA(1,1) model. The

one-step prediction is based on the mean-subtracted data, so I add the seasonal mean back

to Xy, once the prediction is obtained. See step 4 for specific storage of Xn.

Step 4: The one- and h-step predictors are stored in the same vector Y of length n + h,
where h is the desired number of forecast steps. For example, Y[n + 2] is the prediction at
2-step. Compute the h-step predictors P?—lan’ PHan +1,-- - in order, using the recursion
given by (2.1.17). The calculation of Y[h] is based on the information on Y'[h — 1], so the

computation is recursive. At most only an m-step computation is needed.

Step 5: By Corollary 2.2.5, compute approximate 95% Gaussian prediction bounds for
Xy4p given by PHan—i—h + 1.96 x opn(h). The large sample approximation of op(h) is

obtained from (2.2.3). The weights, 14+(j) in (2.2.3) are computed from the model parameters
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¢+ and 0; via the following recursions:

Z¢@ %_ ]_ )—O,jzmax(p,q+1)

and

J
Z ()Y, _p.(j —k)=0,0 <j <max(p,q+1)

To avoid this computation, I may adopt the parameter estimate 7,&@ (7) in (3.0.3). Finally,
noting that Xn—i—h — ﬂn%—h = X4}, the approximate 95% prediction bounds for Xn—l—h
are (fl,1p + PHan+h> +1.96 x op(h). Also, fi, ) = <n+h> Two h-length vectors

U_BOUND and L_.BOUND are defined to store the prediction bounds.

3.1 A simulation study for the convergence of the co-

efficients in innovations algorithm.

To better testify the convergence of 1&2 (¢) and @k, (i—k) @ iterations k increase in Figure 3.1
and Figure 3.2, we will conduct a detailed simulation to show the actual error in convergence
of 7&2 (¢) and © ke, (i—k) in innovations algorithm. 72-year of monthly data for PARMA{5(1,1)
were simulated, as shown in Table 3.1, and the innovations algorithm was used to obtain
parameter estimates. Some general conclusions can be drawn from this study, which in
practice proves the results in (3.0.4) and (3.0.5). Define the relative error for @Z(ﬁ) as

follows:
i) — 0™
di()¥) |

o4

ERR1¥(¢) = (3.1.1)



And define the maximum of the relative error
R1j, = max{ERR1F(0) : (i,0) ¢ I},

where [ L is defined as

I.={i,{:p<pg in (3.0.7)}

And define the relative error for v b (i—k)*

~

Ok+1,(i—(k+1)) ~ Uk, (i—k) |
Ok, (i—k)

k_
ERR2, = (3.1.2)

And define the maximum of the relative error

R2j, = max{ERR2Y : Vi = 0,..., 11},

Figure 3.3 illustrates plots of R1; and R2;. against iterations k, which shows the con-
vergence of zﬂz(@ and @k,(i—@ as iterations k increase,where 0 < i < 11,1 </ < 2.k =
1,2,...,50. For 1[12 (¢) , the maximum relative error over all seasons i drop below 5% when
k is between 10 and 20, and it increases when k is larger than 20, since the sample autoco-
variance becomes relatively small when the lag is large. Similar observation could be seen
for © k,(i—k)> where the maximum relative error over all seasons 7 drop below 7% when k is
between 10 and 20, and it increases when k is larger than 20. Therefore, we conclude that
10 to 20 iterations of the innovations algorithm are usually sufficient to obtain reasonable
estimates of the model parameters. Furthermore, a convergence test for the model parame-

ters é and 6 is shown in Flgure 3.4, and it shows similar results, which proves our previous
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Table 3.2: Model parameters and estimates for simulated PARMA{9(1,1) data.

season 1% ¢Z gZﬁZ 92' 92‘ o; UAZ'
0 0.20 034 0.70 0.58 11900 8766
1 0.60 0.72 0.10 0.10 11600 7626
2 0.60 056 -0.10 -0.16 7300 6693
3 0.60 045 -0.10 0.05 6000 4402
4 0.30 030 0.50 0.48 4200 3521
5 090 085 -0.40 -0.29 4600 4287
6 .30 2.03 -0.20 -0.23 15200 15880
7 0.60 0.06 -0.10 0.20 31100 22339
8 -1.90 -4.85 240 5.43 32800 31761
9 -0.09 038 0.70 0.17 29700 29657
10 0.70 0.65 -0.20 -0.25 15500 13426
11 0.40 0.10 0.30 0.51 12100 11126

conclusion.

o6



Convergence of psi
(median result in 100 simulations)

q

< ]

3
S
& © |
[
=
©
e«
x o |
©
=

g —

o

S

I I I I I I
0 10 20 30 40 50
Number of iterations
Convergence of sigma
(median result in 100 simulations)

S
o
[0
=
®
©
x
©
=

Number of iterations

Figure 3.3: Plots of R1, and R2j. against iterations k, which show the convergence of zﬁl ()
and vy, (i—F) 8 iterations k increase,where 0 <i < 11,1 </<2. k=1,2,...,50.
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Figure 3.4: Convergence of éz and é@ as iterations k increase,where 0 < ¢ < 11,k =
1,2,...,50.
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Chapter 4

Application to a Natural River Flow

In this chapter, I apply the R codes in Chapter 3 to forecast future flows for a time series of

monthly river flows, get 95% Gaussian prediction bounds for these forecasts.

I model a monthly river flow time series from the Fraser River at Hope, British Columbia,
which is the longest river in British Columbia, traveling almost 1400 km and sustained by a
drainage area covering 220,000 square kilometers. See for maps and river flow data downloads

at http://www.wateroffice.ec.gc.ca/ .

Daily discharge measurements, in cubic meters per second (cms), were averaged over
each of the respective months to produce monthly Fraser River flow time series. The series
contains 72 years of data from October 1912 to September 1984, and part of the data is shown
in Figure 4.1. To better test the prediction results, I based our forecast on the first 70 years
of data, from 1912 to 1982. Then, I computed a 24-month prediction from October 1982 to
September 1984. In our analysis, ¢ = 0 corresponds to October and ¢ = 11 corresponds to
September. Using the “water year” starting on 1 October is customary for modeling of river

flows, because of low correlation between Fall monthly flows. The sample seasonal mean,
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Figure 4.1: Average monthly flows in cubic meters per second (cms) for the Fraser River at
Hope, BC indicate a seasonal pattern.

standard deviation and autocorrelations at lag 1 and lag 2 are given in Table 4 and Figure
4.2, with 95% confidence intervals. The non-stationary of the series is apparent, since the
mean, standard deviation and correlation functions vary significantly from month to month
(the confidence bands for some wet and dry seasons don’t overlap). Removing the periodicity
in mean and variance will not yield a stationary series. Therefore a periodically stationary

series model is appropriate. Tesfaye, et al. [42], identified a PARMA{5(1, 1) model

Xt = 0iXy—1 =& +0ie 1, (4.0.1)
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(a) Sample Means (b) Sample Standard Deviations
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Figure 4.2: Statistics for the Fraser river time series: (a) seasonal mean; (b) standard
deviation; (c,d) autocorrelations at lags 1 and 2. Dotted lines are 95% confidence intervals.
Season = (0 corresponds to October and Season = 11 corresponds to September.

where X} = Xt —pp, E(ep) =0, V(ey) = O't27 Jt_let iid, for the series with S = 12, and
used the innovations algorithm at k& = 20 iterations for periodically stationary processes by
(3.0.1) and (3.0.8) to estimate ¢;(1), 6;(1), and o;, 4 =0,1,...,11.

Table 4 gives the parameter estimates of the model where ¢ = (¢o(1),... 011 (D),
0= (0p(1),...,011(1)), and 6 = (o, ...,017) . T employ these estimates as the parameters
of the model. Although the model is periodically stationary, the standardized residuals
(3.0.10) should be stationary, so the standard 95% limits ( that is, 1.96/y/n ) still apply.

Figure 4.3 shows the ACF and PACF of the model residuals. Although a few values lie
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Figure 4.3: ACF and PACF for model residuals, showing the bounds +1.96/ VN, indicate no
serial dependence. With no apparent pattern, these plots indicate that the PARMA{9(1,1)
model is adequate.
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Table 4.1: Parameter estimates for the PARMA model (1.0.1) of average monthly flow series
for the Fraser River near Hope BC from October 1912 to September 1982.

~ A~
~

month 10) 0 o

OCT | 0.187 0.704 11761.042
NOV | 0.592 0.050 11468.539
DEC | 0.575 -0.038 7104.342
JAN | 0.519 -0.041 5879.327
FEB | 0.337 0.469 4170.111
MAR | 0.931 -0.388 4469.202
APR | 1.286 -0.088 15414.905
MAY | 1.059 -0.592 30017.508
JUN |-2.245 2.661 32955.491
JUL | -1.105 0.730 30069.997
AUG | 0.679 -0.236 15511.989
SEP | 0.353 0.326 12111.919

Table 4.2: Sample mean, standard deviation and autocorrelation at lag 1 and 2 for an average
monthly flow series for the Fraser River near Hope BC, from October 1912 to September
1982.

Parameter

N[

month | f 7(0) () p2)
OCT 69850 19976 0.712 0.515
NOV | 55824 17709 0.748  0.577
DEC 40502 12858 0.731 0.541
JAN 33006 9269 0.786  0.697
FEB 30740 8878 0.787 0.380
MAR | 29348 8864 0.504 0.286
APR 58959 20314 0.333 -0.286
MAY || 173308 39437 0.260 -0.031
JUN || 249564 45154 0.577 0.499
JUL || 198844 42627 0.780 0.456
AUG | 127138 28253 0.720  0.308
SEP 86437 20071 0.621 0.472
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Figure 4.4: 24-month forecast (solid line with dots) based on 70 years of Fraser river data,
with 95% prediction bounds (dotted lines). For comparison, the actual data (solid line) is
also shown. This data was not used in the forecast.

slightly outside of the 95% confidence bands, there is no apparent pattern. The p value
from the Ljung-Box test was 0.08 indicating that I do not reject the null hypothesis that
the residuals resemble iid white noise. Hence we conclude that the PARMA{9(1,1) model

is adequate.

If T reject the null hypothesis that PARMA(1,1) model residuals resemble iid noise, I
would abandon that model and fit a PMA(q) model to the data, ¢ > 2. Using Theorem 1
in [8], I would identify the order, ¢, of the pure moving average and then parsimoniously

estimate the moving average parameters that I deem to be nonzero. However, from Tesfaye,
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et al. [42], the PARMA(1,1) model is generally adequate to model most river flow time
series.

I then compute a 24-step future prediction for the Fraser river data, that is, a forecast
for the next 24 months from October 1982 to September 1984.. The prediction is compared
to the original data in Figure 4.4. Note that the forecast curve is close to the original data
curve, and that the historical Fraser River data stay well within the 95% prediction bands.

Figure 4.5 illustrates how the width of the prediction intervals vary with the season. This
is a consequence of the non-stationarity of the river flow series, and specifically the fact that

the standard deviation and the correlation functions vary significantly from month to month.
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Chapter 5

Maximum likelihood estimation and

reduced model

5.1 Maximum likelihood Function for PARMAg(p,q)

Model
By Yule-Walker equations, the vector of autoregressive coefficients ¢£LZ ) = (¢7<,Z)1, ey (bgi)n)/
solves the prediction equations

1 i

Fn,i¢7(1) =%<1) (5.1.1)
. 1

with 1) = (-1 (0.3 22, 7(m) and

Fn,i = {%#n—é(g — m)} (5.1.2)
{m=1,...n

X

H—n—l)/ for each i = 0,...,5 — 1. If 0'Z-2 > 0

is the covariance matrix of X,, ; = (X, ...,
)

fori =0,...,5 —1, then for a causal PARMA g(p, ¢) process the covariance matrix Fn,z’ is
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nonsingular for every n > 1 and each ¢ in Lund and Basawa [22, Theorem 3.1]. Assuming
that X, ; is a Gaussian process, its likelihood function can be written using the general
formula for a multivariate normal random vector with a given mean and covariance matrix

LTy, ;) = 2m) " 2(det Ty, )" 2 exp (—%X’ T_l.Xn,Z-) , (5.1.3)

) n,t n,
where Ty, ; is the covariance matrix of X,, ; defined in (5.1.2).

Whenever T'), ; is invertible, the direct calculation of det Fn,i and F;% can be avoided

n,1 ,

by expressing it in terms of the one-step predictors Xz +j and the mean square errors Vi
both of which are easily calculated recursively from the innovations algorithm, where V5 is

from (3.0.1), and

¢ (0) .
X@'+j_X¢+jNN<O’Uj,i)’ j:(),l,...,n—l,

Recall the innovations representation for PARMA models in Anderson et al [6], where

| 0, t=0
()

= (0 (5.1.4)

t

Y )
Zet,j(XZ+t—j_XZ'+t_j)7 t=1,....,n—1.
j=1

Then the computation for (5.1.3) can be simplified in the following theorem:

Theorem 5.1.1. When Fn,i is invertible, the likelihood (5.1.3) can be equivalently written
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wn the form of

LTy, ) =(2m) " 2 (g oy vy )71

9 ) Y

1 (1) \2
exp (-3 . iy = X102 05):

(5.1.5)

where Xi—l—j are the one-step predictors in (2.1.13) and vj g are the mean square errors in

(3.0.1).

Proof. For each i, define the n x n lower triangular matrix

\n—1
C; = [ k(DN i~

(5.1.6)

where det C; = 1, since all the diagonal elements 6. 0(2) =1fork=0,...,n—1, and define

the n x n diagonal matrix,

Di = diag(v()’i, Ul,i’ NN 7“n—1,i)'

:(A(Z’)y‘”’j((i)

Therefore X<Z) ; i+n—1)/ can be written in the from,

n,i

where I is the n x n identity matrix. Hence,

X (X, —X

= Xn,i - Xn,i + Xn,z' =C;

N,
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(5.1.8)
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N N /
Since D; = E {(an Xpi) (Xnsi = Xni) } cand Ty, j = B (X, ;X0 1), it follows that
Ty, =CiD;C;’. (5.1.10)
By (5.1.9) and (5.1.10), we obtain

1 A _ A
X, T X, 0= (X=X )'D; 1(Xn,i_Xn,i>

n,i nz

I
—~
=
_|_
M
N/-\
i\_/
\_/
E
.
N
—~
C)"l
'—l
'—l
—_
~—

and

det Fn,i = (det Ci)2(det Dl) = UO,ivl,i .- ’Un—l,i- (5.1.12)

Therefore the likelihood (5.1.3) of the vector X}, reduces to (5.1.5). Whenever Ly i is
invertible, the likelihood in (5.1.3) has the equivalent innovations representation as (5.1.5).
Actually Fn,i is invertible for causal PARMA models, see the proof in Lund and Basawa [23,
Proposition 4.1]. Given the seasonal one-step error variances v; ; from the innovations and

the one-step ahead predictor X(_g , then L(T';, ;) in (5.1.3) can easily be calculated. O

For notation, let ¢y = (¢4(1), ..., d¢(p)) and 8y = (04(1),...,60:(q))" denote the autore-
gressive and moving-average parameters during season ¢, respectively. Then we can write
L<Fn,i) = L(B), where we use 3 = (q,’>6, 0/ ,gb/l, 0, .. ng 1 GS 1) to denote the collec-
tion of all PARMA g(p, ¢) parameters. The dimension of 3 is (p+¢)S x 1. Following the ideas

from Basawa and Lund [24], we treat the white noise variances o2 = (crg : 0%, . ,a%_l)/
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as nuisance parameters. Then the likelihood function is given by

n—1 )

Lx(B)= (270_”/2(00,@'@1,@' . 'Un—u)_l/z exp ( = (Xjqj — XZ(Qj)Q/Uj,i)'
~
’ (5.1.13)

Another way to compute the PARMA likelihood parameter estimates is to equivalently

minimize the negative log likelihood

n—1 n—1 )
—2log{L(B)} = nlog(2m) + 3 log(v; ) + > (X — XZ.(Q].)Q foig (5114)
3=0 7=0

According to Basawa and Lund [24], once we obtain the maximum likelihood estimate (3,

the MLE of 02-2 for 0 < i < § — 1, have the large sample form

2 R 2
J=0
where 62 = (6(2), e ,&%_1)/ . However, they didn’t give a proof for the large sample form.

In the following we propose our method of MLE computation, where there is an exact form
of MLE for 0'2, and the computation is much faster. Given the data set X;,..., X; 4, 1,

apply innovations algorithm to compute the 1-step ahead predictors X'Z(_Zf_)]
NN 2
()
(XZ 45— Xz' ¥ .

Corollary 5.1.2. |r; ; — 1] = 0 as j — oo.

,7J=0,....,n—1

and the forecast errors Vi = E
b

Proof. By Anderson et al. [6, Corollary 2.2.1]

2
Ok (i—k) — %>
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we have
|Uj,i — 0'22_’_j‘ — 0,as j — o0.
Recall that v = 02'2+jrj,i’ then we have

‘0—22—{—jrj,7: — 0@'2+j‘ — 0,as j — oo,

so that
2 .
Ui+j|rj,i —1] = 0,as j — oc.
Notice that for PARMA g(p, ¢) model UZ-Q i is periodic of S seasons, so

0< Uz'2—i—j < max{a%,...,a%_l} < 00,

then we have proved

r;; — 1 — 0,as j — oc.
7yt J
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Then the negative log likelihood (5.1.14) becomes

n—1 n—1 . (§) 2
0(B) = —2log{L(B)} = nlog(2r) + Z log(v; ;) + ‘ (Xz‘+j —ijrj) /vj,i

where

S—1N-1

=nlog(2m)+ Y _ Y log <7‘k:S+z“7z'2>

1=0 k=0

N1 o 2 (5.1.15)
2> (XkS—l-i_XkS—i—i) /<”€5+i"i>
i=0 k=0

N—-1 S—1
= nlog(2m) + Z log(rj) + Nlog(a?) + Z Si/azz,
=0 i=0

Then for i =0,...,5 — 1, we have

therefore

and

So the MLE of %2 is

)
95

1N—l
N 2

k=0

: 2
(1)
(Xk8+z' - ngﬂ' /ThS+i = Si/N, (5.1.16)
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where X ](fg n and 7.g; come from the innovations algorithm applied to the model. Now
2

we can substitute (32.2 for o7 in the negative log likelihood to get

n—1 S—1
—2log{L(B)} = nlog(2m) +n + Z log(rj7l~) +N Z log (S;/N) -
=0 i=0

Then it suffices to minimize

Also, since i 1 as j — oo, then log(r;) — 0, so

rj)
1 n—1

N 2 log(ry) ~
J=0

and approximate MLE minimizes Z?:_()l log (Si /N )

Example 5.1.3. A PARMA(1, 1) example from Chapter 4 will be shown here, to demon-
strate how to explicitly solve the mean square errors, and obtain the likelihood value and
maximum likelihood estimate. We adopt the 70 years of monthly Fraser river data from
October 1912 to September 1982, and since there are 840 observations, we denote them as

{X¢} =1{X0p, X1, ..., Xg39}. Therefore the negative log likelihood is simplified as

n—1
—210g{L(B,0'2)} = nlog(2m) + Z log Z (Xj — Xj)2/vj
=0
J (5.1.17)
= nlog(2m) + Z log ) + Nlog(o Z S/JZ,
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where 3 = (¢0,90,¢1,91,...,q§11,911)’ and o2 = (08,0%,...,0%1)’. Computations in
Lund and Basawa [23, Equations (2.7), (2.11)] show that the PARMA(1, 1) model is causal
when |¢gé71 -+ - ¢11| < 1 and invertible when [0pf7 ---011]| < 1. By Theorem 2.1.7, we may
write

Xp=0

Xy =011 (X0 - o) (5.1.18)

Xt =Xy 1 +9t71 (Xt—l —Xt_1> t=2,...,839.

For the covariance structure of {X;}, we will use the ~¢(h) results from Section 1.1.

The innovations algorithm explicitly identifies the prediction coefficients as
Op 1 = v, L Ot —1) = v, Y007 . (5.1.19)
Use (5.1.19) in innovation algorithm gives
vy =C(t,t) — Qt%lvt—l = (0752 + 0?0?_1) — vt__llﬁgaél_l, (5.1.20)

where ¢ > 1, and the initial condition is vy = 77(0). Equation (5.1.20) is a difference

equation for vy, which can be explicitly solved as follows. First, write

Ut = Ut2 yf s
yr—1
(5.1.21)
o = 52 Yt—1
— t_lyt—l 1’
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and substitute (5.1.21) in (5.1.20) to get

0254 -1
Y (52 46262 ) 2t—1 (yt—1—1)
yp — 1 of 1 Yt-1

p 2, 22 92 9
oiyryr—1 = (0 + 0505 _1)ys—1(yt — 1) — 0505 _1(yp—1 — Dyt — 1),

therefore
o2
t
g =1+ syl t>1, (5.1.22)
Ut—let
7, *0(0)
where the initial condition of (5.1.22) is yg = _é—.— Letting
90 70(0)—1
P(t) i (5.1.23)
— 2 2 9 . .
;1%

then the solution to (5.1.22) is

Yt = 1+ P(t)yt_l
= 1+ PUO(1+ P(t=1) )y

=1+ P(t) (1 + P(t - 1)) (1 + Pt - 2)>?Jt—3 (5.1.24)

t t t
=1+ HP(T) y0+z HP(r) , t>1.
r=1 =2 \r=j

In the computation, notice that 2322 (Hf,:j P(r)) is the row-summation of the product

76



of each row in a matrix, where the matrix is

1 P2) P@3) P(t)
1 1 P(3) P(t)
1 1 1 PA P(t)
11 1 1 P(t)

Use (5.1.24) in (5.1.21) to compute v¢. Then use vy in (5.1.19) to compute 0; 1. Next obtain
Xy in (5.1.18). Finally substitute into (5.1.17) to get the negative log likelihood function.
In Chapter 4, we fit a PARMA(1,1) model to the 70-year Fraser river flows data. The
model parameters ét, ¢Et and 03 are shown in Table 4 of Chapter 4. Using these values to
compute v; and Xt in this example, we obtain the negative log likelihood value of 18543
for this model. However, in the following we consider to take the logarithm of the data, for
all computations in MLE. The model parameters for the logarithm of the data are shown

in Table 5.1.3, where the negative log likelihood value is -362.655. To get the maximum

Season 0 1 2 3 4 5
0; 0.650 0.206 -0.026 -0.033 0.426 -0.400
¢; 0393 0.740 0.712 0.715 0.431 1.020
o; 0.165 0.187 0.164 0.159 0.135 0.134
Season 6 7 8 9 10 11
0.446 -0.171 1.918 0.836 -0.299 0.540
¢; 0425 0.313 -1.628 -0.045 0.979 0.414
o; 0260 0.184 0.127 0.143 0.108 0.138

Table 5.1: Estimated parameters for PARMA{9(1,1) model, from innovations algorithm,
using the logarithm of the original data. The resulting negative likelihood value is -362.655.

likelihood estimators, we will differentiate —2log L(3) partially with respect to the parame-
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ters. A non-linear optimization algorithm will be applied, using R software to find the MLE.

2:(2 2 2 )/as

By our earlier assumption, we treat the white noise variances o 0h: 075+ 0g_q

nuisance parameters, so that the independent variables in the optimization are the model
parameters 3 = (¢, 0, ¢1,01,...,09_1, 95_1)/. After we compute the MLE 3, we solve

the MLE for 62 = (63,...,6% ;)" using

s 10 ) )
07 =N > (st+z—Xk5+¢) /TkS+i = Si/N,
k=0

The function optim in R is used, a general-purpose optimization based on Nelder—Mead,
quasi-Newton and conjugate-gradient algorithms. It includes an option for box-constrained
optimization and simulated annealing. Several different options were explored, using our
likelihood function, and the initial values from Table 4. A summary of the performance of
the different options is provided in Table 5.2. The BFGS option was found to be the fastest
convergent method. This option uses the results published simultaneously by Broyden,
Fletcher, Goldfarb and Shanno in 1970 [12], [17], [19] and [38], which uses function values and
gradients to approximate the optimization surface. The parameter estimates that resulted

using the BFGS algorithm are listed in Table 5.3.

Method ‘ —2log{L(B)} ‘ Running time | Convergence | Depending on initial value
BFGS 463.8585 137s Yes Yes
CG -505.37 282s No Yes
SANN -362.65 378s Yes Yes
Nelder-Mead 1182.61 17.29s No Yes

Table 5.2: A compare of different algorithm in optim function.

In order to test the convergence, we use the result in Table 5.3 as an initial value, and

run the optimization procedure again. The algorithm converges quickly to the same value
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Season 0 1 2 3 4 5
éz’ 0.586 0.154 0.119 -0.008 0.085 -0.206
¢; 0.546 0.800 0.709 0.679 0.738 0.884
o; 0.165 0.187 0.164 0.159 0.135 0.134
Season 6 7 8 9 10 11
f; 0.204 0.071 1.035 0.398 -0.110 0.415

74
¢; 0720 0.162 -0.690 0.417 0.855 0.558
- 0.260 0.184 0.127 0.143 0.108 0.138

94

Table 5.3: MLE result by BFGS method, with o; as nuisance parameters. The resulting

A

MLE value was —2log L(3) = —463.8585.

of —2log{L(B)} as before.

Next we plot —2log{L(f, 02)} as a function of each o, for ¢ = 0,1,...,11. In this way,
we obtain 12 plots, shown in Figure 5.1. There is a clear global local minimum point on
each plot, which we compute using the optimize function in R to find the corresponding o;
value, and denote it as a;‘, with o™ = (06", 0’1", . ’Uikl)/' With this 0;-" value, we run optim
again for —2log{L(p, 02)}, using the same BFGS algorithm, resulting in a lower negative
likelihood value of -506.6053. For different starting values and different iterations, the routine

converges to the same optimum. See results in Table 5.4.

Finally, to check our results, we use a one variable optimization to minimize the negative
log likelihood function as a function of each individual variable, by similar techniques to find
the global minimum points 8* = (96", 0%, ... ,91‘1)/ on Figure 5.2 and ¢™ = ((bE"), ¢>1k, - ¢’{1)/
on Figure 5.3. Since these results have been consistent with the MLE results from BFGS
optimization algorithm shown in Table 5.4, then we are confident that the values reported
in Table 5.4 represent the true MLE. Therefore we take the results in Table 5.4 as our final

optimization results for model parameters.
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Season 0 1 2 3 4 5
g; 0.586 0.154 0.119 -0.008 0.085 -0.206

¢A>Z~ 0.546 0.800 0.709 0.679 0.738 0.884
of 0199 0208 0.194 0.171 0.166 0.151

i
Season 6 7 8 9 10 11

¢; 0204 0.071 1.035 0.398 -0.110 0.415

qgi 0.720 0.162 -0.690 0.417 0.855 0.558

02‘ 0.300 0.219 0.153 0.162 0.126 0.154

Table 5.4: MLE by BFGS method, using the values of o* from Figure 5.1. The resulting

A

MLE value was —2log L(3) = —506.6053. We take those parameters as our best results in
optimization.

5.2 Reduced PARMA((1, 1) model.

To obtain additional parsimony, it is also advisable to consider simpler models where some

statistically insignificant model parameters are set to zero.

5.2.1 Reduced model by asymptotic distribution of @Ez(f)

In the discussion of a reduced PARMA ¢(1, 1) model, by (3.0.8),

~ ~ ~

dr(1) = ¥p(2)/y_1(1) and  0(1) = dy(1) — dy(1).

In order to obtain the estimates of the PARMA{9(1,1) model parameters, we need only
consider @ZA)Z(E) at lag 1 and lag 2. An a-level test statistic rejects the null hypothesis
(Hp : ¥;(€) = 0) in favor of the alternative (Hgq : 1;(¢) # 0, indicating that the model pa-
rameter is statistically significantly different from zero) if [Z] > 2, /2 The p-value for this
test is given by (3.0.7), and it gives us a way to determine which coefficients in the identified

PARMA model are statistically significantly different from zero (those with a small p-value,
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1 0 1 2 3 4 D 6 7 8 9 10 11
¢, 1.04 020 -0.02 -0.03 042 -040 0.87 0.00 -0.71 0.79 -0.29 0.54
¢; 0.00 074 071 071 043 1.02 0.00 0.00 1.00 0.00 097 0.41
o; 016 0.18 0.16 0.15 0.13 0.13 0.26 0.18 0.12 0.14 0.10 0.13

Table 5.5: Parameter estimates for the reduced PARMA model (1.0.1) of average monthly
flow series for the Fraser River near Hope BC from October 1912 to September 1982. The
resulting negative likelihood value is -351.3939.

say, p < 0.05). Coefficients with a higher p-value are shown in bold font in Table 3.1, and we
set coefficients zﬂz (¢) = 0 in that case. Using (3.0.8), we then list in Table 5.5 the parameter
estimates of the reduced PARMA19(1,1) model, where autoregressive coefficients in season
0, 6, 7 and 9 are set to 0.

Here we apply innovations algorithm to get our model parameters. Later in this chapter
we will shown a different method using MLE. Once we obtain the estimates for the reduced
PARMA{5(1, 1) model parameters, we can carry out forecast procedures similar to the full
PARMA9(1,1) model, as follows. Since autoregressive coefficients in season 0, 6, 7 and 9

are set to 0, the computation is simpler for the Wy process.

e Compute the transformed process (2.1.2) using the reduced model parameters.

Compute the sample autocovariance of that process by Proposition 2.1.3.

e Apply the innovations algorithm (2.1.9) to get the projection coefficients Qn, j-

e Use (2.1.13) to compute the one-step-ahead predictors Xp for n = 1,2,...,840 =
70 x 12.

e Apply (2.1.17) to get the forecasts.

Use the asymptotic formula (2.2.3) to compute 95% prediction bounds, based on the

assumption of Gaussian innovations.
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The resulting prediction, along with the 95% prediction bands, is shown in Figure 5.4. The
actual data (solid line) is also shown for comparison. Note that the forecast (solid line with
dots) is in reasonable agreement with the actual data (which were not used in the forecast),
and that the actual data lies well within the 95% prediction bands. Furthermore, we give
a detailed comparison in Figure 5.5 between full model and the reduced one. As shown
in the first two graphs, the prediction results are quite similar. In a further investigation,
we check the difference and relative error between the two forecasts, for every step. The
differences are small. In fact, when compared to predictions, the relative errors are small.
When the step h > 5, the relative errors are nearly zero. We conclude that the removed
autoregressive coefficients in season 0, 6, 7 and 9 are insignificant, and the reduced model
is a viable substitute for the full model. We prefer the reduced model, since it has fewer

parameters.

5.2.2 Reduced model by asymptotic distribution of MLE

Another method for obtaining a reduced model is to apply the asymptotics of MLE for the
PARMA process, which were developed in Basawa and Lund [24]. For a causal and invertible
Gaussian PARMA model, with the assumption of {e;} being periodic i.i.d. Gaussian noise,

Basawa and Lund [24, Theorem 3.1] gives the asymptotic distribution of B, as N — oo,

NY23 ) =N (o, A1, 02)) , (5.2.1)
where
S-1
AB,02) =Y o7 2ri(8.02), (5.2.2)
1=0
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Figure 5.4: A 24-month forecast using the reduced PARMA{9(1,1) model. Solid line is
the original data; Solid line with dots is the reduced PARMA(1,1) forecast; The two dotted
lines are 95% Gaussian prediction bounds. The 24-month forecast is from October 1982 to

September 1984.

and

/
2 0z4(B) | 9=4(B)
I. _E .
(8.0%) [( L0)) el
Furthermore, Basawa and Lund [24, Remark 3.1] states that if {¢;} is Gaussian, then the
maximum likelihood estimate has the same asymptotic distribution as the weighted least

squares estimate. Once we obtain the maximum likelihood estimate 3, the MLE of O'Z~2 for

0 <i<§—1 could be computed by

—1

2 1%
%Zﬁz

: 2
(1)
(XkSJrz' - ngﬂ- /TkS+i = Si/N, (5.2.3)
k=0
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line is real data.
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where 6‘2:(A2 A2_1)/.

O-O”O-S

Example 5.2.1. We adopt the causal and invertible first-order PARMA19(1,1) model from

Example 5.1.3, and show how to compute the asymptotic covariance matrix A_l(ﬁ, 0'2).
diag(4~1)
N1/2

for 3. 1In the following, p = ¢ = 1, and S = 12 denotes the number of seasons, and

The results are shown in Table 5.6, where se = stands for the standard error

Season /9;(0) se(6;) se(e;)
0 0.06 0.36 0.30

1 0.07  0.26 0.21
2 0.06 0.23 0.19
3 0.05 0.22 0.18
4 0.05 0.27 0.21
) 0.05 0.24 0.17
6 0.16 0.29 0.19
7 0.08 0.08 0.06
8 0.11 0.25 0.19
9 0.05 0.19 0.09
10 0.03 0.18 0.14
11 0.03 0.24 0.18

Table 5.6: MLE and its standard error.

i=0,1,...,9—1, and (t) denotes the corresponding season index for ¢, where

t — S[t/S] it >0,
(t) =
S+t—S[t/S+1] if t<0,

and [ -] stands for the greatest integer function. The model is

Xy = ¢tXt_1 + e+ ete’:“t_l. (5.2.4)
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Taking partial derivations in (5.2.4) gives

Oz¢(B Jey_1(B)
€§(ﬁ - —e(t) 41Xt -1~ et% — ety +2¢t—1(8); (5.2.5)

where e; denotes a (p + ¢)S x 1 unit vector whose entries are all zero, except for a 1 in the

jth row. Note that in the following X;_ 1, 4 and e;4_1(8) are scalars, however @# and

e; denote the (p + ¢)S x 1 vectors. Therefore by causality

E [X¢_15-1(8)] = E [e—1(8)X¢—1] = E [7_1(8)] = o ;.

0
by Leibniz integral rule, provided that e;__1(8) and %_,éh(ﬁ) are both continuous, we take

the derivative outside the expectation,

dey_1(8 0 ’
R | B R EL Y N B

where 0 is a (p 4+ ¢)S x 1 zero vector. Similarly

and
dey—1(8) 0 0
E taé 5t_1(ﬁ)} %E let—1(B)er—1(8)] 2B [%2—1} =0,
and similarly ,
0 . /

Therefore, if we multiply both sides of (5.2.5) by its own transpose and take an expectation,
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we have

! dey_
. {855(65)} [3€§(ﬁﬂ)] _ E[ _ e2(t>+1Xt—1 g €taé(ﬂ) _ 62(t>+25t—1(ﬁ)}
Osy__
[— ety +1Xt—1 0 taé(ﬁ) - €2<t>+28t—1([3)}

Oet—1(8)] [94-1(8)]’
=9?E[ taé( H taé )] var(Xe—1) By 41,2(8)+1

+o7 4 [EQ(t>+2,2<t)+2 + By 42,200 +1 E2<t>+1,2<t)+2}
/ / / /
+ 04 <62<t>+10 + 062<t>+1 + 62<t>—|—20 + 062<t>+2)

_ 2 {3%5[13(6)} {05155[13(@]/

var(Xy 1) By 11 2(1) 1

+o7 4 [EQ(t>+2,2<t)+2 + By +2,2(0+1 E2(t>+1,2<t)+2}

Oet—1(8)] [9e¢—1(8)]'
:6’252E|: taé( :||: ta,é ):| +var(Xt_1)E2<t>+172<t>+1

+o7 4 [EQ(t>+2,2<t)+2 + By +2,2(00+1 T E2gt)+1.2(0)+2] -

!/
where var(X3) = 7¢(0) is the variance of Xy, and E; ; = ¢ie denotes a (p+¢)S x (p+q)S
matrix whose entries are all zero, except for a one in the ith row and jth column, and O is

a (p+q)S x (p+ q)S zero matrix. Recall that

vt ] ]

then we obtain

Ft(ﬁa 02) - ngrt—l(ﬂ9 02) + Mta
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where

My =of_4 Eoty+2.2(t)+2 T Eay+2.2(0)+1 + EZ(t>+1,2<t>+2]

For simplicity we adopt the notation
r;(8,02) = 922Fz'_1(5, o?) + M; (5.2.6)

with the boundary condition I'g(83, 0'2) =T'g(B, 0'2), hence in this way all the index ¢ are

bounded, 0 <i < S — 1. The solution to (5.2.6) is

' 2 S—1

a2y 9 My, "0,5-1 | 9 M;,
I8, 0 )—7“9’2- Z 3 + (1 .2 )’1“9’2- _7"2 , (5.2.7)

k=00 k 0.5-1  k=0"0k

where
t
ro0= 1] o (5.2.8)
7=0

the proof for (5.2.7) is given as follows. By (5.2.6), V 0 < i < S — 1, we could write
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recursively:

Ty = 02T + M
— 02002 T, M M.
@( 1—1 i—2t z—1)+ 7
212 2 2

2,2 2 92,2 2
= 0707107 ol 3 + 07071 M;_o + 07 M; 1 + M;

2 2
+ (91'92'_1 e 9i—(S—2)> Mi—(S—l) e+ (92'91'_1 .- -90) M—l
9 2 9 9
+(0;0;_1---01)" Mg + (03051 ---02)" My + ...+ (0;0; _1)"M;_o + 07 M;_1 + M;

2
= (9#’@‘—1“'9@'_(5_1)) Fi_g+1+1L (5.2.9)
where we define

2 2
I:(Qiei_l---ei_(5_2)> Mi—(S—l)"‘+(Qiei—l”'QO) M—l

2 2
L= (06,1 01)" My + (06,1 - 09)" My + ...+ (0;0;_1)°M;_o + 62 M;_1 + M;,

since I';_g = I'; by periodic property, 6,60, 1 - "6@'—(5—1) = 79.5-1 by definition in
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(5.2.8), we could write (5.2.9) as

(5.2.10)

Note that

2 2
1= (eigi—l ce 91) MO + (Qigi—l .- -«92) Ml +...+ (Qiei_l)QMi_Q + 0@2M7L—1 + Mi

2 MO Ml M;
:(Hiéi_l---eo) ( 5 + +...+—Z‘9')2
2

08 (6001)° (6oby -
M, M M
= Tg,z 72_0 + 72_1 + + ,',.22
6,0 0,1 0.i
1
M
= 7“57Z- S Sk (5.2.11)
k=0"0,k
On the other hand, we want to prove that
2 2 S—1
1—?“2 _(1—7’2 )T@ﬂ'er ) (5.2.12)
0,5—1 0,5—1 k=0 "6k
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in this way we will finish the proof of (5.2.7). Note that

+ (r2 )II—<9~9~ .0, M, +(0;0;_1---00)° M
0,5—1/" = \"i%i—1"""Yi—(5-2) i—(S—1) i%i—1"""% -1

2 o [ My M;
0g_10g_o---0y) (0,6,_1--0p) <—+...+—Z>
( > L 98 (607 - - 0;)2

2 2
= (91%—1'“9@'—(5—2)) Miyy -+ (0;6;—1---60)" Mg_1

iMk

+

2 2

9,510 2. 2

k=0"6.k
2

2 M; q Mg_q
:(95_1...9()) (92....90) <Z—+2+m+ )

(O 0iy1)
Z
5 M,
+7“9,S—17"9 i Z 2

9 k
- i
_ 2 My, My,
—7“9,5—17“ez Z o +7‘es 1T922T2—
k=i+1"0k k=0"0.k
S_
2 Mj,
—7“9,5—1% Z 2
k=0"0.k

dividing both sides by 1—7’3 g1 (5.2.12) is proved. Add (5.2.11) and (5.2.12) into (5.2.10),

we complete the proof of (5.2.7).

The invertibility of the model requires that |rg g_ | < 1. In the end, A_l(,B, 0'2) is a

(p+q)S x (p+ q)S matrix, and it could be computed by the inverse of A(S3, 0'2) in (5.2.2).

Equation (5.2.1) can be used to produce confidence intervals and hypothesis tests for the
model parameters 3. An a-level test statistic rejects the null hypothesis Hpy : B; = 0 in

favor of the alternative hypothesis Hq : 3; # 0, indicating that 3; is statistically significantly
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different from zero if |Z] > 2, /2¢ The p value for this test is
p=P(2] > |2)) (5.2.13)

where Z ~ N(0,1), and

Z = (B —0)/se.

After we get the MLE optimization results from Example 5.1.3 and Table 5.4, we do a
hypothesis test for the model parameters B = (é, qﬁ), where the standard error se is ob-
tained from Table 5.6. Using the level of significance of o = 5%, we get the reduced model

parameters, which achieve the goal of parsimony. The results are shown in Table 5.7.

Season 0 1 2 3 4 5 6 7 8 9 10 11

0; 055 -0.01 0.04 -0.02 0.09 -0.26 0.01 037 189 027 -0.08 0.32
p-value 0.13 0.96 0.87 093 0.74 0.27 098 0.00 0.00 0.16 0.64 0.18
reduced 6, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 1.89 0.00 0.00 0.00

¢; 037 0.63 052 054 071 086 1.18 0.23 -1.41 0.35 057 0.37
p-value 0.22 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

reduced qgl 0.00 0.63 052 054 071 086 1.18 0.23 -1.41 0.35 0.57 0.37

Table 5.7: Model parameters by MLE optimization and their p-values.

We obtain the forecast in a similar manner as the previous reduced model. The resulting
prediction, along with the 95% prediction bands, is shown in Figure 5.6. The actual data
(solid line) is also shown for comparison. The forecast (solid line with dots) is in reasonable
agreement with the actual data (which were not used in the forecast), and the actual data
lies well within the 95% prediction bands. A detailed comparison can be seen in Figure 5.7
between full model and the reduced one. As shown in the first two graphs, the reduced

model predicts as well as the full model. In the next two graphs, we check the difference and
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relative error between the two forecasts, for every step. The differences are small. In fact,
when compared to predictions, the relative errors are quite small. When the step h > 5,
the relative errors are nearly zero. We conclude that the removed autoregressive coefficients
in Table 5.7 are insignificant, and the reduced model performs as well as the full model. In
summary, we prefer the reduced PARMA9(1, 1) model simply because it is a simpler model

with fewer parameters and the same adequacy.

Forecasting by reduced PARMA model
by asymptotic distribution of MLE

/
- A /

Flow (cms)
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|
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Month / Year

Figure 5.6: A 24-month forecast using the reduced PARMA9(1, 1) model in Table 5.7. Solid
line is the original data; Solid line with dots is the reduced PARMA(1,1) forecast; The two
dotted lines are 95% Gaussian prediction bounds. The 24-month forecast is from October
1982 to September 1984.
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Figure 5.7: A comparison of 24-month forecasts between the full PARMA9(1,1) model and
reduced PARMA15(1,1) model, by asymptotic distribution of MLE. In the first two graphs,
dotted line is forecast, and solid line is real data.
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Chapter 6

Asymptotic normality of PARMA

model

Let Xn,i = (X;, -'-7Xz'—|—n—1>/ be a causal and invertible PARMA g(p, q) process (1.0.1),
where n is the number of observations and ¢ = 0,...,.S — 1. For notations, let ¢; =
(0¢(1),...,0¢(p)) and @; = (84(1),...,60;(q))" denote the autoregressive and moving-average
parameters during season t, respectively. Then we can write the likelihood function as
L(B), where we use 8 = (q’)6, 96, q,’)/l, 0’1, . ¢f9_1,0’5_1)’ to denote the collection of all
PARMA ¢(p, q) parameters. The dimension of 3 is (p+¢)S x 1. Following the ideas from Ba-

2:(2 2

sawa and Lund [24], we treat the white noise variances o 0501 0%_1)/ as nuisance

parameters. Then the likelihood function is given by (5.1.13) in Chapter 5. By (5.1.16), once
we obtain the maximum likelihood estimate B, the MLE of 02.2 for 0 < i< .5 —1 could be

computed by
-1

2 1 X
%:NZ

. 2
o (1)
(Xk8+z' = X060 /TRS+i = Si/N,
k=0
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Xitj)
= nlog(27) Zlog ]Z Z
]:0 J,?
n—1(x, ¢ 2 (6.0.1)

1+ i+j
= nlog(27) + Zlog Z—i—]]l Z 02 o
j =0 Z+] 5

1+) i+
= nlog(2m) E log(o H-j E —~ log(r j,z’) + ZO 02+ T
j J= ] J

0L(B)

Next we consider the properties of the first derivative N in a few lemmas.

Lemma 6.0.2. For k =1, ..., p+q, there exist constants C > 0 and s € (0,1) such that

Ory i(B)
98,

<C(B)s',

wheret > 1, and 1 <k <p-+gq.

Proof. Note that

L\2
. 2 B (Xt+z' - Xt—i—z')
ri(B) = E <Yt+i - Yt+i) = o :
b

/
where Yt,z' = (Yj,...,Yp4;_1) is the mean zero PARMA process with period S given by

P q
Vi— > ab)Ys g =Ze+ D> b))% (6.0.2)
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where {Z;} is a sequence of random variables with mean zero and standard deviation 1. Here
the autoregressive parameters a4(j) and the moving average parameters by(j) are assumed
to be periodic functions of ¢t with the same period S > 1. By the invertibility assumption,

we write

(0. @]
Yivi+ D Yiriojme4i(i) = Zegis (6.0.3)
j=1

where 7y ;(j) = 74y ;4 fg(J) by the periodic property of PARMA model. In the following,
we write 7 ;(j) = m4;(j;8) to emphasize the dependence of w1 ;(j) on B, and the

autocovariance function is

ni(h; B) = Cov(Y;, Y;_p),

By Anderson et al. [6], the best linear predictor of Yz ; is defined as
where the vector of coefficients, qu = (gbgq, cee ¢§Zt> ) , appears in the prediction equations

GtiPti =Mt

)

where
/
N = Mppim1(Dsp4i—2(2) - mi (1))
and
]t
Gy = [ﬁtﬂ'—g@ — j’ﬁ)}j,ﬁzl
/
is the covariance matrix of (Yz4;_1,...,Y;) . Proposition 2.1.1 of Anderson et al. [6] shows
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that if O'Z~2 >0fori=0,1,...,5—1, then for a causal PARMA ¢(p, q) process the covariance
matrix Gt,’i is nonsingular for every ¢ > 1 and ¢. In this way we can generalize Corollary

5.1.1 in Brockwell and Davis [11] to periodically stationary process,

/
~1
r,i(B) = i (0:8) = my Gy - (6.0.4)

If we multiple Y; ;1 and take expectations on both sides of (6.0.3), we could obtain
Nrio1(1:8) = Z w1 (7 B i (G = 1 B),
j=1

similarly, if we multiple Y}, 9,¥;,,_3,... individually on both sides of (6.0.3) and take

expectations, we have
00

Mgi—2(28) = = > myi (G Bmpgri— (G — 2 B),
J=1

Myi—3(3:8) = Z”tﬂ (G: B)npyi— (G —3:8),
j=1

Therefore we could have
Noo,i = ~Go0,iTo0,is
where

Noo,i = (Me4i—1(L;8) Meri—2(2:8),...)

Gooyi = g [nt—l—z =4 ﬂ)}j,ézl ’
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oo, = (Wt—i—i(lS B), 7Tt+i(2;ﬁ), .. ) )

Additionally, G;oli can be written as

/
ol -7 T

1,00 1,007 7,00’

where

Tj oo = [mpyilk = J%ﬁ>]z?j:1 ,

m4i(0;8) = 1 and 7y ;(j;8) = 0, for j < 0. Furthermore, if we multiply Y} ; on both

sides of (6.0.3) and take expectation, we have

/
N4i(0:8) = T, 1Goo,iToo,i + 1 (6.0.5)

Substituting (6.0.5) into (6.0.4), we have

/ /
-1
ri(B) = 14T GooiToo,i = My iGy i M i
/
B 1
= 1+nOOZGOOZn ntzGtmm

Therefore

ory ; on oG
t,z(BO) _ 9 oozG 1 -1 oozG 1

BN 0B, ;iMoo + "700 iCo0yi 0B}, 00,1100,

where all the terms on the right hand side are evaluated at 3 = B, and B is the truth. By
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szz‘l'”t,i = qu-, the above equation reduces to

/ /
ori(Bp) anoo,iﬂ_ '+8T’t,i¢ |
851{ - aﬁk 00,1 85k t,1
/ 8GOOZ / GGM
T d)t,?, .

In Anderson et al. [6, Corollary 2.2.4], they show that

¢§Z]z; — —mp4 (k) as k — oo,

)

and

n—1 ) 9 2
23@@*“%“0 S%}(E:WHWO M|,
j=0

j>n

2
where M = max{ny;(0;8), i =0,...,5 — 1}. Note that (ijn |7Tt+i(j>‘> is bounded

in n. Therefore we could have

dry (B n-l ; .
tég( L 215 (Z Wt+z(j)+¢§; + }Wtﬂ’(ﬂ))
K 7=0 “lzn
/ L
Sl DY Wt+i(@')ﬂt+i(€)—¢§2¢g +2 ) |mi D] w0 ]
J0=1 jzn 14

where K| = %ﬂ ffﬁ

%’50)' dX and g(A; Bp) is the spectral density matrix of the equiv-

alent vector ARMA process with length S. Note that |A| is the determinant of A if A is a
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matrix. By the Cauchy-Schwarz inequality,

It ;(Bo)

SKt1/2st/2+K Ty (g +Ktst/2
aﬁk 2 3 t+1 4

Jjzn (6.0.6)

< K5St1,

where Ko, K3, Ky, K5 are positive constants, 0 < s < 1, and 0 < sy < 1. This finishes the

proof. n
Lemma 6.0.3. For k=1, ..., p+q,
—1/2 || 0 -1 n-l (Xpqi—Xy4i)* Org p
n—1/ mztzo logry j| + (272 th' a@k 7 0.
72 =
Proof. Given ﬁi@ < C(B){S(B)}! 7’2_ > 1, we
have
n—1 n—1 o
=172 9 ~1/2 1 "t—1y
/ 9By, 2 loeri— <Y 2 MBr |35
=0 8=3 t=0"t—1,i B=
n—1
< n—1/2 Z Ory—1,i
< 98, A
t=0 B=p
n—1
< Cln_1/2 Z sli
t=0
— 0
Therefore
n—1
—1/2 % S logry 1 LA
£ =0 =



On the other hand,

T S STV R
— r2. aﬁk ~
t=0 t,2 B=0

n—1 o 2
< qE(Y (Xppi 2Xt+z> o 1(4)
t=0 "ti
n—1g2 ;2.
- O Z t+2z t’zsﬁI(A)
t=0 "t
n—1
< o0y s
t=0
— 0,

where I(-) is the indicator function and C' > 0 is a constant, A is an event with the probability
arbitrarily close to 1 and on which || B — Bp|| arbitrarily small for all large n, where we adopt
the strong consistency for MLE of a vector ARMA model from Dunsmuir and Hannan [15],

and apply it for PARMA model.

-1 ~
~1/2 nz (Xpi = Xppi)* Oy 2,
n r2 98 .
- : k 5
t=0 t,i B=03

Remark 6.0.4. From Section 2 of Basawa and Lund [24], the PARMA model (1.0.1) has the

S—variate vector ARMA representation

* *

p q
(I)O?N — Z q)k?N—k = 90?0 + Z @k?N_k, (6.0.7)
k=1 k=1
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/
where {)_(}N} and {?N} are the S—variate series {)_gN} = (XNS+1> . ’XNS—I—S) and
/
{?N} = (5NS+1>"'7€NS+S) . The model orders in (6.0.7) are p™ = [p/S] and ¢* =

[q/S], where [z] denotes the smallest integer greater than or equal to z.

Remark 6.0.5. In Dunsmuir and Hannan [15], the following assumption is needed for the
strong consistency of MLE of the vector ARMA model. They restricted the elements of

CIDj,l < j <p*and @j, 1 < j < ¢* to lie in a ball specified by
* X
D ;4 /
tr EI:CI)J-@J- + %:Gj@j < 0. (6.0.8)

With condition (6.0.8), Dunsmuir and Hannan [15, Theorem 3] gave the strong consistency

of the MLE of the vector ARMA model.

Remark 6.0.6. By Section 3 of Basawa and Lund [24], we could work in the univariate
PARMA setting rather than transform to an S—variate vector ARMA model. This is eligible
by two reasons. First of all, one has to invert the S-variate ARMA transformation to obtain
the individual PARMA model cofficients. Hence the results derived directly in terms of the
univariate PARMA model will be more readily usable. Second of all, even though one could
obtain a standard vector ARMA model, the covariance matrix of the vector noises and the
moving average parameters would still depend both the PARMA autoregressive parameters
and the variance of vector ARMA model. For the above reasons, we will work directly in
the PARMA setting. Therefore we adopt the strong consistency for MLE of a vector ARMA

model from Dunsmuir and Hannan [15], and apply it for PARMA model.
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Lemma 6.0.7. Fork=1,...,p+q,

n1/2 Z Xiyi = Ko + 241 0Ky + Z414) 2,
—0 Tti 9Py, B=7
and
L—1/2 Z Xiyi— Xevi = Zyi 5(Xt+§ — Zt4i) 2,
t=0 T P B=p

Xpvi=Xipi= 2 0 X i —Zeyi)
Tt i By,

Proof. We only prove n —1/2 Zn 1 LA 0, since

A~

the other result could be proved in a similar way. By the invertible assumption of PARMA ¢(p, q)

model,
00
Z )Xty

and from the model set-up in (1.0.1), we can write

Or(z) =1—r(1)z— ... — gbt(p)zp
and
04(z) =1+ 64(1) + 6¢(q)
Additionally,
7rz=¢t<2): Oowzj
=g 2

Notice that 8 = (¢(1), p4(2), ..., 0¢(p), 04(1),04(2), ... ,Qt(q))/, and when k =1,...,p, we
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have

K 0di(2)/08) _ 0(py(2)/04() _ 0my(2) _iaw) j
0+(2) 04(2) B, ap.

Z
a )
i

and when £k =1,2,...,q, we have

D(mi(2)) _ o= Omi(i) j_ 0(D(2)/04(2)) _  4(2) 904(2) _ By(2)

z = = — = ——F2 .

OWprk 12 Pyt OBtk 07(2)pir  07(2)

In summary,

P x on ( )
_yo 2
ZIONN R k (6.0.9)
b1(2) k _ oo Omld) g
07 (=) =1 OBt

Then we can prove from (6.0.9) that there exist constants C' > 0 and s € (0, 1) such that

o

J )
—=1<Cs), j>1, 1<k<p+q
9B}

() _ (@)

Furthermore, we may expand the Yule-Walker equation T}, ;p,” =7y, as

Yitn—1(1) Yitn—10) Yirn—1(=1) .. Yigp_1(=n+1) %@1

vipne2® || vine2) vitn—20) o vna(-n+2) || 60

Yitn-303) [ 7| %032 itn-31) - Yigp-z-n+3) ¢£f,)3 ’
3i(n) W= =2 . 50 B
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then for 1 < 7 < n, we have

(4)

n
Vid-n— j Z ¢ n 0 i+n— j —0),
(=1
therefore for 1 < k <p+q,
a%’-{—n—j(j) Z a%—{—n j( i 8(]551)@ (j—0) (6.0.10)
0 0 —J
Pk (=1 Ok (=1
On the other hand,
00
i = Xpyi + Z Tn+1 <£)Xn—|—z'—€’
(=1
if we multiply X, j on both sides and take expectations, we can obtain
00
In+i— ] Z T4 (O Vn4i— j(] f),
(=1
then similarly for 1 < k <p+gq,
M ti—j ) & Oy 4i(€) Mnti—j U—-0
ettt Jm e 2 (=0 + T (0 . 6.0.11

If we subtract (6.0.10) from (6.0.11), we have

n
0 = Z(W'+n(€) ¢Z)€
=1 Z " B (>n
i Omin(l) o
9P}, oy, | - =iV (>n
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) Njgn—j( —10) N Z Titn(0) 372'4_”8_6]}{0 Y (6.0.12)

on; ,
+ Z Z+n /Vz—i—n—j(] - E)



Furthermore, we may write (6.0.12) as

(i)
L0 omn(0) |
,23 il KAESD)
n . 37. . (j _ g)
=S (7T¢+n(€) - ¢£Z7)f) ey (6.0.13)
/=1

Mian—iG—14)  Omiyp,(0) : )
+ . /¢ + n—i—0) |-
E%G“M) o 55— =0

Consequently, we write (6.0.13) as

dBy. n,i

where d,, ; is an n x 1 vector with
M)

NMign—iG =0  om,(0) ,
f;(” a0 Z*”a ﬁjk + ?B: mn_j(y—f))

as its j-th component. Then under the assumption of Z_; = X_4 = 0 for all £ > 0 we have

Zpyi = 9(3)_1¢(B)Xt+z’

= m(B)X¢4i
o

= X+ D X ymi(d)
J=1
n—1

= Xppi+ D Xppiogmga(d).
J=0
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Now it follows from (6.0.13) that

o (50, 70) )

E
8ﬁk
(i) (i) 2
O\ O 1 Xtqim1 + o 0 g X = Xy — 205 0 X ()
-
(‘Mk
(i 2
n=10( 7 —m1i(0)
=E Xt—l—Z—j
j=0 Pk

881; ! (¢t i ﬂt,z’) tdy

2 ary i , ,
= = ( Py — i) 17+ lldy
/\mln(rt z) [H aﬁk ( tyi tﬂ) ” H t,zH

2max{a, v;(0)}¢ 9
< e = mllt | X e 0] +
mln( t,z) />t

1
N}

L.

2

aﬁt—l—z ‘
dB;,

SClszi,

where Appi (Tt ;) > 0 denotes the minimum eigenvalue of I'y ;, and

A e
o /— Iy, w _‘ B},

forj>1and 1 <k <p+gq,and C; >0 and sy € (0,1) are some constants, which depend

on # € B continuously. Additionally, a detailed discussion of spectral density for PARMA
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model could be seen in Wytomanska [56]. Next using the similar argument as in the proof

of Lemma 6.0.3, we may show that

N Xpti — Ziyi)

E
0B

1(A)

< Cysh, t>1, 1<k <p+q,
B=0

where A is an event with the probability arbitrarily close to 1 and on which || B8 — Boll

arbitrarily small for all large n, and C'9 > 0 and Sy € (0,1) are some constants. Hence

n 2y E (Xt—i—i_)i;f—fi—i_zt—kz’) a(XtBiﬂ_thH) 1(A)
’ B=pB
(5 1k 2
. 2 | 0Ky =2y 5
—1/2 -1 t t
< PSP B X~ Xei(B) — Zii(B)] B | TR ()
B=p
—1/25n—1 1/2
= o= 12 T s
— 0,
where C' > 0 is a constant. Thus
n—1 % >
Xp o —Xpa = Z4 )0 Xpa s — Zy s
w2y (Xti = Xiqi = Zigi) O Xiqi — Zpyid) 0
In a similar manner, we could prove
n—1 5 ;
Xo o —Xgo i+ 2y, 0( Xy + 2y
n_1/2 Z t+1 t+1 i O( Xy g 1) A 0,
= Tt OBy, 8=
and this ends the proof. O

We will show that the asymptotic variance of the estimated periodic AR and MA coeffi-
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cient vector can be nicely represented in terms of the two PAR models. Define

or(B)&r = Wy,

and

04 (B)st = Wi,

where {W;} ~ WN(0,1) is a white noise process with mean 0 and variance 1. Let & =
/

<£—17£—27 s 7£—p7 §_1, .. ,g_q> s and
W () = W(¢y.0y) = {Var(¢)} L.

Before we state our next lemma, we need to clarify notation. By the invertible assumption

of PARMA model (1.0.1), we may write

etpi = t4i(B) = Xy =0t () Xy i1 —- - 0t (D) Xppi—p— Ot (D1 - —04(@)eppi—g-

Then for £k =1,....p, we may write
g0 _ Ot
tk dBy. ’
and for k=1,2,...,q,
@) i
tk OBtk

Let x = (X,2) and 7 = (U,V), where X and U are n X p matrices with Xi+j—€

and Uj(z) as their (j,/)-th elements, respectively, and Z and V are n X ¢ matrices with
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(4)

Eitj—t and ij ) as their (j,¢)-th elements respectively. Denote R as the diagonal matrix

diag (TO,i(BO)a - 7Tn—1,i(60)> :

/
Lemma 6.0.8. n~ 17 R~ 1+ ]—D> W*(B) = {Var(atft)}_l.

Proof. In the following proof, all U t(]i),vt%),zt 4+, and T4 are evaluated at 3 = 8. We

adopt the notations that

BkUt(;) = Ut@k,f
and

Bkvtg_z‘) _ Vt@l{:,j'

From the invertible representation, we have

and
i -1 -2
Vtg) =0, (B)Zt~|—i—j = th(B)et (B)Xt+i—j>

assuming that X _; =Z7_4 =0 for all ¢ > 0. Let

1/0y(2) = 1= X5 vy ()2
61(2)/02(2) = 1= X 51 mj#,
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then

(0 t+i—j—1
Z .
Utj =Xt4i—j— Z ()X ik
k=1
_1 . .
=¢t(B) Zt—i-i—j + Z wt(k)Xt—l-z’—j_k (6.0.14)
k>t+i—j
) ()
=Uij g
and
(0 t+i—j—1
3
Vij" =Xtti—j — > X jk
k=1
-1 0.1
=0:(B)" Zpioj+ D MXiriojk (6.0.15)
k>t+i—j
()
=Vij +vtj.
Note that
2 00 2
(4)
E<utj = E[ Y eMXpi (6.0.16)
k>t+i—j
oo
= Yo riej— kb= Ovp(R)yy ()
(=1k>t+i—j
— 2
< MY R
k=1
< C’st_j,

fort > 1, and 1 < j < p, where 0 < s < 1 and M = max{y;(0) : ¢ = 0,1,...,5 — 1}.
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j ’

!/
for t > 1, and 1 < j < ¢. Notice that the (j, ¢)—th element of n~lr R~

n—1 n—-1, -~ ~ ~
1 ()0, _ 1 (1) (@) ()() (@)@ ), (0)
~ D Uy Uy frei=— 3\ Uy Uw Uj t0 g Uy tuyfug ) It

t=0 t=0

By the ergodic theorem, under the assumption of a measurable density function for PARMA

process,

5 (0,0 !
S UG = B oy (Bl

= Cov ((bt_l(B)Zt_H'_j,¢;1<B)Zt+z’—€>

(04 4i— Ot 13— ) COV(Epi— i Sp i)

By Corollary 5.1.2 |r; ; — 1| = 0 as t = oo, we have

1 «— a.s.
- Z tg /th = (Otpi— Tt i —0) COV (i Ei—p)-
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By Cauchy-Schwartz inequality and (6.0.16),

n—1 n—1
1 (4) (7) 1 (4) (i)
" OEutjutf /Tt,Z—ﬁtz%)E tj e

IA
SRS
3
=} —
1
=
7N
<
Sl
i
N———
o}
=
/N
<
S+~
S
N———
| E— |
—
\
[\

(6.0.17)

IN

Then

With a similar method, we may also show that

Z tf /T't Z —> O
and
Z l% /Tt Z —) 0.
Therefore for 1 < j,¢ < p,
n—1
1 7 7 p
n ZO U0 1t B @i g i OO 6y
t:

We can prove in a similar manner that for 1 < j <pand 1 </ <g,

Z tg D ey i B Ot ot CV(E i s ):
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1 i), (1 p
-2 ‘Q(j)%(g)/rt,i = (04— Tt i— ) COV(Stpi—js Sti—p):

Putting the above three equations together, we have completed the proof. O

Lemma 6.0.9. Let 7 = (U,V), U is an n X p matriz with Uj(z) as its (j,L)-th ele-

ments, respectively, and V' is an n X q matriz with Vj(g) as their (j,)-th elements. Both

U and V' follow the assumption of second finite moment. R denotes the diagonal matriz

diag (ro,z'(ﬁo% > 7Tn—1,i(ﬁ0)>: and

/
Z = (Z44+i(Bo), Zt4+i+1B0) - - -+ Zt4n—1(Bo))

then

/
12 1z B N (o, at?W*(ﬁO)—1> .

Proof. Define

and

Uy Ug oo Uy s U1 s+ Vg

O = (ol <z’>>',

where U t(;), \75;) : ug) and vg) are defined in (6.0.14) and (6.0.15). From the model invertible

_ P(z)
04(2)

assumption, we may write Z; = e + 2, where 2; = — Z Wt(j)Xt_j, and 74 (2)
Jj=>t
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1+ Z?il szj. then

n—1 . .
w12 g1z = ,m1/2 S <Ut(l) +u§1)> LA (6.0.18)
t=0

Tt

ﬁtmst + Ut(i)zt + ugi)et + ugz)zt

_ n—1/2ni1

+—0 x)

Using similar method as (6.0.16), we may obtain that for all ¢ > 1,
E [zﬂ < C’st,

where C' > 0, and s € (0,1) are some constants. Additionally based on the same argument

as (6.0.17), we may obtain that

n—l Ut(z)zt + ugl)et + ugl)zt 5

, 0. (6.0.19)
t=0 "t

: '

Let Ft(l) be the o—algebra generated by {e;,; 1 k > 0}, then {« Ut(z)et/rtﬂ;} are martin-

gale differences with respect to {F (2)} for any o € RPT4. Furth "7 (?) 1
p g v o . Furthermore, a Uy ey /ry ; is

F t(z) —measurable and

E [(a/[jt(i)et /rm) \F)@J — <o/(7t(i) /rm) Ee; = 0.
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Further for any € > 0,

- . 2 : :
% > E (04,~§Z)5t/7”t,i) [ ( “ UtZ)gt/th |Ft<2—)1
t=0
n—1 ) 2 .
<1 > E <oz, ~t(l)st> I ( a/Ut(Z)gt >nl/2e
"0

[ (e

o)

(i 2 n1/28
+E(Q’U1<)> E [5%[ <|51| > logn)]

> log n)

'
The last limit follows from the fact that both ; and « Ul(z) have finite second moments.

Note that since 73 ; — 1 as t — oo,
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Then it follows from Theorem 4 of p. 511 of Shiryaev [40] that

n~1/2 Z (a Ut et/rt z) i N (O JtQOé W*(Bo)~ a) : (6.0.20)
for any o € RPT4. Now the limit

n_1/2n§_1: ‘r1z B N(O o2 W*(Bg)~ )
i 0
t=0

follows from (6.0.20), (6.0.18) and (6.0.19). O

Theorem 6.0.10. Let X; be the PARMAg(p, q) process defined by (1.0.1), and suppose that
the vector of true parameter values By € B, where B is the parameter space containing all

B. Then as n — o0,

D123 - 8y) B N (0w (8y))

Proof. Let Xp = <XZ, e ’Xi+n—1>> then Xy, = H() (Xn — Xn>, where H() is given as

1 0 0 0
hgil) 1 0 0

a0 = hg‘Q) hgl) 1 0.
I B
5 (0) (1) 3, (7) 1



(@)

where the coefficients h22 depend on 7. Notice that Consequently,

X, - _X@) 2
A nol\ At = Ay
t=0 Jt Tt—l,/l.

N
where [3(5)] = (HS 1 2) , with N =n/S. Now it follows from (6.0.1) that

n—1 S—1
(B) = —2log L(B) = nlog(27) +n + Z log(rj7l~) +N Z log(S;/N),
=0 i=0

where
) )2
N=1 |\ Xgs4i = Xpguy

i TkSi

Note that B is the solution of the equation Wﬁ(ﬁ) = 0, and for 1 < k < p, the equality

( )]ﬁ ﬁ—Oleadsto

BUR B )
Tti 6) K

||P13 “M|
é
a

A i »
Zﬁt(j)Xt _j Zﬁtp—l—zZt iB0) | 20 (3-8 + 0L,
=1

i=1 t,l
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where X_,=7_,=0forall 7 >0, and

J —J
0 _?i"zllo g VS e Ko
\ 2 2 S = h %
! il Xt—XtJth@(XtJth) X=X - 20X - Zy) ’ .
213 Tt by, Tt dBy, B=3
(6.0.22)
and
_nzl szk)(ﬁ ) iﬁ (D) 8.
T 1B & P
n—1 p q 9 U<Z)
D Xt =D X = Y BpyjZ—i(Bn) 25 | 7 tk
=L =t =1 ) p=s,
n—1 U() ) q n—1 P U(Z)
= Z - k! Z ﬂpﬂUt@](ﬁo) > ZiBo)gg |
t-1080) = =0 B\re—1)
] B=B
+0p(n)|B = Byl))-
In the above expression, U = (Ut({), e Ut(;), Vt(lw’ e Vt(qz)) , and (3, is always between

B and Bp. Similarly, the equation ﬁg(ﬁ)‘ﬁZB =0 (1 <k <q)leads to

n—1 q
=2 [ Zﬁyxt i 2 BpriZi—iBo) |V, (k)(ﬁo)rt 1(Bo)
t=0 j=1

@B pg) 4ol
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. 2 n—1 n—1 5 )
5(1) _ (U_t—a Z log Tt — 1 Z (Xt - Xt)z art,z
+k Y/ 2
b 2 Bpik () 2130 "t OBp-+k

1 [Xt_Xt+Zta<Xt+Zt)+Xt_Xt_Zta(Xt_Zt)
=0

)

2 T OBtk Tt B4
(6.0.23)
and
1,0 ) q (2)
(i) n— Uy o [V,
npﬂg—Zm Z ZZtﬁO—B(tl
t=0 ]:1 B=08
+0p(n)|B = Byl))-
It follows from (6.0.21) and (6.0.23) that
URIX3-UR Y + 4 3-8y +60, (6.0.24)

where

5(2) — (5?)7 o ’5(i) ),7

and A is the (p+¢q) x (p+ ¢) matrix with 7)](;) as its k-th column. Note that Y — X3y = Z

and
/
. U_;(Bo)
U=X- Z Bp+j

J=1 /
Up—1-4(8o)
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By (6.0.21), (6.0.23) and (6.0.24), we could obtain

oty - vz + [B0] (3- )+ 50,

where B(®) is the (p+q) x (p+ q) matrix, and the sum of last two terms on the right hand

side of (6.0.23) is the (p + k)-th term for B(i>, with £ = 1,...,q. Therefore,

—1

. (URr—! (i) —lz _ ()
25 gy ~ |URTIU B UR1z-4
n n nl/2
~ [urv] 'urlz +op(l)
N n a2 P

?
where the last equality follows from Lemma 6.0.3 and Lemma 6.0.7, and the fact that Bé ) £>
0, with a similar proof as (6.0.17). Then the theorem follows from Lemma 6.0.9. 0
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Chapter 7

Periodic AIC for PARMA ¢(p, q) model

7.1 Kullback-Liebler (K-L) Information

The development of the AIC is predicted on the Kullback-Liebler (K-L) information between

two probability density functions f and ¢, where K-L information is defined to be

1.9 = [ rom (25 a

g(t)

The notation I(f,g) denotes a measure of the information lost when ¢ is used to approxi-
mate f, which is also the expectation of the logarithmic difference between the two density

functions f and g.

Example 7.1.1. Suppose we approximate the normal distribution given by f(¢| ,u,02) =

1,t—pN2 1,1=€\2
;e_ ( g ) Wl 7-2 f— ;6_ (T) en
/2 2 th g(¢[&, 7%) o 2 . Th
FON 1, 1> t—po  t—Eo
hl(m)—i{lng—Q—( . )<+ ( - )1
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and the K-L information is

I(f?g) = |: (f—i)]:% lnT_Z_E(t;N)2+E(t;£)2
2 2
= %[1 _2_1_|_U+(T+£)].

If the true distribution f is the standard normal and g ~ N(0.1, 1.5), then

1.5 14 (0—0.1)2

I(f,g) = —{ln— —1+ = 0.0394.

Proposition 7.1.2. I(f,g) >0

Proof. For a convex function, C, Jensen’s Inequality from Durrett [16, Theorem 1.5.1] asserts

that C [E(X)] < E(C(X)). Therefore by letting C = — In(t), we write

<>t
(t)dt

I(f.g) = (
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7.2 Derivation of periodic AIC for PARMAg(p, q) pro-

cess

Following the ideas from Basawa and Lund [24], we treat the white noise variances o2 =

9 9 9 . Y / / /
(00,01,...,05_1) as nuisance parameters. We use 8 = <¢0’00’¢1’01""’d)S—l’eS—l)

to denote the collection of all PARMA ¢(p, ¢) parameters. The dimension of 3 is (p+¢)S x 1.
Then the likelihood function is given by (5.1.13), where v;; and XZ(QJ depend on 3. We
also need the asymptotic results of MLE for PARMA process in Basawa and Lund [24]. For

a causal and invertible Gaussian PARMA model, with the assumption of {4} being periodic

i.i.d. Gaussian noise, Theorem 3.1 in Basawa and Lund [24] gave the asymptotic distribution

~

of 3,
NY2(3-8) =N (0,471(8,0%), (7.2.1)
where
S—1
AB.o?) =" o7 r(8.0%), (7.2.2)
1=0
and

F(8.02) ~ F [(a?ﬁﬁ)) (agg(Bm),] |

where the right hand side also depends on 3 and o2 by (5.2.7). However, their proof for
the asymptotic distribution is based on the asymptotic equivalence of lease square estimator
and MLE. In Chapter 6 of my thesis, I gave a direct proof in Theorem 6.0.10.

Once we obtain the maximum likelihood estimate 3, the MLE of 022 for0<i<S-1
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could be computed from (5.1.16), where

—1

2 17y
o=~ 2
k=0

. 2
(XkSJri - Xk:S+z'> [TkS+i = Si/N,

where X kS+q and rpg,; come from the innovations algorithm applied to the model.

Now we are ready to discuss the derivation of AIC. In the K-L information, f represents
the true probability distribution and g represents a model distribution that estimates f. In
the context of PARMA time series modeling, we assume that the truth f and all approx-
imating alternatives g are Gaussian. Additionally, define it as g(¢|8g). Suppose X is an
n-length PARMA g(p, q) time series whose probability density is given by f(t) = g(t|B),
where X = (X;, X;41,... >Xi+n—1)/' To see how we use the K-L information to determine
which model, g(t|3), best fits the truth f, so that it would minimize I(f,g), we write

Q)

I(f.g) = /}unmam§Mt

— [ somirena - [ rome)a. (7.2.3)

For all models g, the first integral on the right-hand side of (7.2.3) is a constant, so it suffices
to maximize [ f(t)In(g(t|B))dt. Given that we have data Y = (V;,Yj 41, ... 7Yi—|—n—1)/ as
a sample from the same truth f(t), the logical step would be to find the MLE B(Y), since
B (Y') approximates BO that minimizes the K-L information. Then we compute an estimate
of I(f, g(t1Bp)) as

o) = [ 1m0

tB(Y))

Since f = g(t|Bp), any value of B(Y) other than Bg results in I(f,g(t|B(Y))) >
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I(f,9(t1Bo))-

Consider the method of repeated sampling as a guide to inference, and minimize the K-L

discrepancy Ey-[1(f, g(t| B(Y)))]. We therefore want to select the model g that minimizes

Ey (oA = [ o ey | [ fom (sdern) a
= constant — EyEx [ln <g(t|,[§(Y)>]

= constant — T,

where all expectations are taken under the assumption that f is the density of X and Y,
and X and Y are independent. Hence, the K-L information criterion for selecting the best

model, g, is to maximize the objective function denoted by

T=EyEx [m (g(t|B(Y))} . (7.2.4)

We have assumed that f(t) has the true PARMA g(p, ¢) model structure, and g <t|B(Y))
is an estimate of f(t). By (7.2.1), B(Y) — B as N — oo. Note that 3 is not necessarily
equal to BO or even of the same dimension. Here B is the parameter vector for the PARMA

model under consideration with the smallest K-L discrepancy from the true model.

Without loss of generality we take the likelihood of B(X) as ¢(t|3(X)) = Lx (8(X)),
by simply then interpreting g as a function of 3(X) given X, which equals the likelihood
under data X. Similarly, under data Y we write g(¢|3(Y)) = Ly (8(Y")). In the following

we will show that our estimate of T = Ey-Ex [In(Ly (8(Y)))] would be In(L x (3(X))),
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where the data X = (X;, X;41,... ’XH—n—l)/ are given. The bias of this estimate is
bias = Ex [In(L x (B(X)))] - T. (7.2.5)

We will obtain a first order estimate of the bias, and then remove this. Ultimately, AIC is
defined to be

AIC = —2In(L x (B(X))) + 2 bias. (7.2.6)

Next we will state a few prerequisite results for our main theorem. Define

2 L (B)
s =Y H—= 3 ¥ Pk ax ity (7.2.7)

where n = NS, and
p q
er=Xe— Y o)Xy — > Ot(3)er—j,
k=1 J=1

are the model residuals. Then we can have the following result, where we write the residual

et as €4(8) to emphasize explicit dependence of ¢4 on 3, and 3 needs to be estimated.
Proposition 7.2.1. Under the assumption of finite second moment for the causal and in-

vertible PARMA process, as N — 0o, we have

1 925(3)
N 5g2

— 2A(8, 02) in probability,

where A(S, 0'2) is given in (7.2.2).
Proof. In the following, B is a (p+¢)S x 1 vector, @? isa (p+q)Sx(p+4q)S dimensional
op
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matrix.

2( ZS 1 ]S+/{Z+Z(B))
19%5(8) _ 1 i

N aﬁQ N 8,32

(Z sl jS+k+z(5)a’3jS+k+z‘(5>>

2 0
Theti p

BYe)

e (B) 0¢; (B)
-9 JS+k+i JS+k+i
Z jS—l—k—H( o83 ) o3 )/

S—i—k—l—z (B) 0% 51 k+i(B)
032

J=0 k=0 k+i

1 Nz_l (853’5—1—1{:—1—2’ (8) )<35j5+k+i(5))/]

= o8 0B

o2 032

[1 Nzl €jStk+i(B) 325j8+k+i<ﬁ>]
7=0 k41

As N — o0, by equation (3.13) in Basawa and Lund [24],

)/ — Fi+k(137 0'2) in probability,

and by equation (3.14) in Basawa and Lund [24],

1 Nz: S+k+z(18) 0% jS+k+i(B)
N

— 0 in probability,
032

j=0 k—I—
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therefore as N — oo,

1 025(8 . .
N 8ﬁ2 — 2 Z Uz—i—k k(B0 )—|—O in probability

= 2A(,6,0‘ ).

Lemma 7.2.2. Given X a random variable, if E|X| < 0o, then as © — oo,

E(IX17{x|50)) 0

Thus every random variable X such that E|X| < oo is by itself uniform integrable.

Proof. 0 < |X|I {|1X|>x} is monotone increasing in z to | X|, and therefore using the mono-

tone convergence theorem yields
E [|X|I{|X|<$}] S EX], as 2 — oo

Notice that

BIX| = B [1X17{ x1<0] + E XU x50
by assumption E|X| < oo, we conclude that

E(IX17{x]50}) =0

and X is by definition uniform integrable. O
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Lemma 7.2.3. If Xy, — X in probability, the following statements are equivalent: (i)

{Xn :n >0} is uniform integrable. (ii) Xn — X in Ll (11i) E| Xn| — E|X]| < oc.
Proof. See Durrett [16, pp. 221-222]. O

In the following, we rewrite the second derivatives of log likelihood function, to simplify

notation. Define

_ *In(Lx(B))

0(B) o5

bl

then we have the following lemma, which was given in Lund et al. [25, Equation 10] without
proof. A few necessary assumptions are needed for Lemma 7.2.4 and Theorem 7.2.5, and

2 ox 2
they guarantee that %8 gﬁgﬁ)’ %38156(5) and % (—2€2(B3)) are not far apart. If we could

prove the strong consistency of B for PARMA model, some of the assumptions below may
be reduced. This would be the direction of our further investigation. Currently we adopt the

strong consistency for MLE of a vector ARMA model from Section 3 of Basawa and Lund

[24], and apply it for PARMA model.

e Al. Q(B) is bounded and continuous on the parameter space B.

925*(B)  9*S(B)
032 032

2 ox
¢ A3. & <Q(ﬁ) + %%@) — op(1).

o A2. 1(

) = op(1).

=

e A4 N (ﬁ — B) (,B — B)l is uniform integrable.

Lemma 7.2.4.

Q
——](vﬁ) — A(B,o-z) i probability as N — oo.
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Proof. By Proposition 7.2.1, as N — oo,

1 925(8)
2N 9B2

— A(B, 0'2) in probability,

then by assumption A2 and A3 we can write, as N — oo,

QOB 1 1025%(B)\ | 1 (19%2S*(B) 19°S(B)) , 1 9°S(B)
N TN <9<ﬁ>+éw>+ﬁ<§ 082 2 o0 )+W 932
1 1 925(8)

— A(B,cr2) in probability,

where the last equality is by Brockwell and Davis [11, Proposition 6.1.3]. ]

Now we are ready to state our main theorem.

Theorem 7.2.5. Suppose that Xy is a causal and invertible Gaussian PARMAS(p, q) pro-
cess, such that assumptions A1 — A4 hold. Let f(t) be the joint probability density function
of X = <Xi>Xi+1w--in+n—1),7 and ,@(X) denote the maximum likelihood estimates
gwen data X, suppose that we are given an independent realization of the same process
Y = (Y;.Yjy1.-.. . Yiopn_1) with B(Y) as its MLE. Let T = EyEx[In(Ly (B(Y)))],
then

T =ExIn(Lx(B(X)))] - (p+q)S+o(1).

Proof. In the following, both the expectations E x and Ey- are with respect to f, where the

samples X and Y are independent. Let true parameter values be By € B, where B is the
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parameter space containing all 3. From (7.2.5),

Ex[In(Lx (8(X)) - T
—Ex [In(Lx (B(X)))] - EyEx In(Lx (3(Y)))
=By Ex[In(Lx (B(X))) - In(Lx (B(Y))]
=By Ex[In(L x (B(X))) - In (L x (89))] + By Ex [n(Lx (Bg)) — In(L x (B(Y))]

=Ex [In(Lx (B(X))) — In (L x (Bp))] + EyEx [In(L x (Bo)) — In(L x (B(Y))]

(7.2.8)

We will prove in the following that E x [ln(LX( 3(X))) —In (LX(,BO))] = %(p+q)5+0(1)

and Ey E x [In(L x (Bg)) — In(L x (B(Y))] = %(p + q)S + o(1), respectively.

First of all, we compute E x[In(L x (B(X))) —In (Lx (Bg))] in (7.2.8). Apply a Taylor
series expansion to In (L x (Bq)) about the MLE B(X) for a sample of data X yielding
A oln(L x (B(X .
nix(Bo) = W(kx @)+ (EXEE g, —px))  reo)

1 X 92 In(Lx (B(X)))
+5(Bo — B(X))'] 932

[(Bp — B(X)) + Re,

e [a2 In(L x (B(X)))
032

column vector, and Re represents the exact remainder term for the quadratic Taylor series

] isa(p+q)S x (p+q)S matrix, ([30 — B(X)) isalx(p+q)S

expansion and assume it is uniformly integrable. Note that Re = op(%), and the convergence
of Re in probability could be inferred from Lemma 6.0.7 and Brockwell and Davis [11,

Proposition 6.1.5].
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Since B(X) is the MLE from data X, then

Ly (BX)), _ (Lx(B),
o3 N o6 ] B=p

Taking expectations on both sides of (7.2.9),

Ex[nLx(Bp) = Ex[n(Lx(B(X)))

5 02 n(L x (B(X
+ gEx((8o — Ax) X T

(Bo — B(X))] + Ex|[Re]

= Ex[n(Lx(B(X)))

21, : . )
g (XTI g - X)) B - A0+ Ex el

where Re = Op(%) by Lemma 6.0.7 and Brockwell and Davis [11, Proposition 6.1.5]. There-
fore the expectation of the remainder term is negligible for large sample sizes if we assume

the uniform integrability, i.e. limp_, o, E x'[Re] = 0.

Additionally, because 3 is the MLE under Lx(Bg), by (7.2.1), B8 — B in probability

as N — oco. By assumption Al and [11, Proposition 6.1.4], we have
Q(,@) — Q(Bp) in probability as N — oo.

By assumption Al and Lemma 7.2.2 Q(B) is also uniformly integrable. Then by Lemma

7.2.3 we can get:

02 In(Lx (B))

92 In(L v (B(X
Im Ex] (Lx (B(X))) =

N—00 8ﬁ2

]=Ex]|

.
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Hence we may write

- o 02 In(Lx (B(X)))
(Bo - B(X))' (:)"62

(Bo — B(X))

= (Bo — B(X))'Q(B)(Bp — B(X))

= (Bo — B(X))'2(By) (B — B(X))

+ (Bo — BX)Y (B) - 2Bo) ) (Bo — BX))
= (Bo - B(X))'2ABp)(Bo — BX)) + op(1),

since (Bg — B(X)) = op(1) so that
(28 - 2Bg)) = op(1).

and

A

(80— B(X)) (2(B) - Bp)) (Bo — BX)) = ap(1)

by Brockwell and Davis [11, Proposition 6.1.1]. Therefore

(Bo — B(X))'2B)(By — B(X)) - (Bg — B(X))'2Bp)(Bp — B(X)) = op(1). (7:2.10)

Now by assumption Al and A4,

Ex |(Bo - B(X))QB)(Bo — B(X)) — (Bo — B(X))'Bo)(Bo — B(X))] = o(1).
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Therefore

-~ ~ ~

Ex | (80— B(X))'2B)(Bo — B(X)]

—Ex [(Bo — BX))'2AB) By — BX)) — (By ~ BX))'2Bo) (Bg — BX))]
+Ex [(Bo — B(X))2(B0) (Bo — B(X)]

= o(1) + Ex [(80 — B(X)/2(80) (B — B(X))]

— o)+ {Ex [9(60) (80 - BC0)) (80 - B)) |

Then
im ExnLy(Bo)] =  lim Ex[n(Zx(5(X)))
+ 5 Jim By [(8 — BX))AB) (B — BX))]
2 N—oo

+ lim Ex[Re
N—oo X[ ]

= i Exl(Cx(BC0))

+ +% Jim er{Ex {Q(ﬂo) (50 —B(X)> (ﬁo _B(X)”}

~ Ex(n(Lx(B0))] -5 Jim u{Ex [AxWy]}

A A / . .

where we define Ay = —Q<]€O), and Wy = N (BO — ﬁ(X)) (BO — ﬁ(X)) . Additionally
/ ~

we define Wy = ZyZy, where Zy = VN (ﬁo —ﬁ(X)) 5 Zas N — oo and Z ~

N(o, A_l(,ﬁ, 0'2)) by (7.2.1). Next we will show that

lim EX [ANWN} =1

Jim (r1)S. (7.2.11)
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where I (p+q)S is the identity matrix. Notice that Axr — A(,B,O'Z) in probability as N —

p+q
50, by Lemma 7.2.4, and Wy — W = ZZ', then EW 5y — EW = E (ZZ’) — A~ 1(3,02),

where the uniform integrability is guaranteed in assumption A4. Hence

Ex [ANWy] =Ex [Ay Wy —W)] +Ex |(Ay - A(B,0%)) W]

+Eyx [A(B,a2)W] .

(7.2.12)

By assumption Al, |Aps| < M, where M < oo, therefore as N — oo,

0<[Ex [Ay (Wy —W)] < [Ex [[ANI(Wy = W)] [ < MEx [(Wy —W)]| =0,

then
Ex [Ay Wy —W)] —o0. (7.2.13)
Similarly,
Ex [(AN - A(ﬁ,ﬂ)) W] 0, (7.2.14)
and

Ex |AB0?)W| = AB,0HEx W] = A(B,02)A~ (B,0%) = I (7.2.15)

p+q)S.

Substitute (7.2.13), (7.2.14) and (7.2.15) into (7.2.12), and let N — oo, to arrive at (7.2.11).

Then

. 3 1 ]
Jim Exlin Ly (Bo)] = Bxn(Lx (B(X))] ~ 5 Jim (I, )6}

= Bx (L x (B - 50 +0)S.
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So we obtain

, R 1
ngnoo{EX In(L x (B(X))] — Ex[InLx (Bo)l} = 5(p+ )5,

or, in other words,

Bx In(Lx (B(X)] ~ ExlnLx(Bo)l = 5(p+0)S +o().  (7:216)

Now let us consider Ey-E x[In(L x (8g)) — In(L x (B(Y))], the remaining term in the last
line of (7.2.8). Similarly, apply the Taylor expansion to In(L x (B(Y)) around By for any

given data X yielding

nLxB) = ity (o) + XN B - o)

1. 2In(Lx(8)).

+5B(Y) = o) [, = (B(Y) - o) + Re.

Taking expectations with respect to X yields
BxInLx BV = Bxln(tx (@) + Ex (X P (30r) - g
2 n ~
#5060 - g Ex XN () — g
+E x [Re]
(7.2.17)

where Y is independent of X.
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Taking expectations of (7.2.17) with respect to Y yields

By Bxlin Lx(BO)] = Exln(Lx(@o)] + Ex (X Py [30v) - oo

letting N — oo on both sides, the linear terms vanishes since Ey- [B(Y) — [30] — 0 by
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(7.2.1), then the above equations becomes

lim EyEx[nLyx(B(Y))

N—o0
B L (L x(8)
= Jim Exn(Lx (o)l + Jim Bx[— 2
1 *In(Lx(8)),
+5 yim By [(BY) - Bo) Ex [ 5——1(B() - 8
+ lim E [Re]
N—oo X
dIn(L x (8))

=Exn(Lx Bl +Ex[——75—1 Jim

1 1 9% In(Lx (8)) U
5 u{Ex [ 032 [Ey [N2(B(Y) = Bo)N

=Ex [In(Lx (Bp))]

1 921(Lx(8))
+2t1“{N1£>noo EX [N 862

1 9%In(Lx (8))

/' lim By |B(Y)-

'Ey- [B(Y) - 50}

o]

1 A
[Ey[N2(B(Y) - Bo)N2(B(Y) - Bo)']}
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~Ex[In(Lx(Bo))] + 0 - tr{24(8.0%)4(8.%) 1)
~ExIn(Lx (Bo))] ~ 5r{T(ps )5}

=E x [In(L x (8))] — %(p +q)5,

Hence

lim {Ex[In(Lx(8g))] —EyEx[n(Lx (B(Y))]} =

N—oo
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or, in other words,

Bx In(Lx (80))] ~ By Ex (L x (BO¥))] = 5(p-+ )5 + o). (7.2.18)

Add (7.2.16) and (7.2.18) into (7.2.8), we have

Ex In(Lx (B(X))] =T = (p+4)S +o(1)

which completes the proof. O]

Akaike [2] defined an information criterion (AIC) by multiplying In(L x (B(X))) by —2,
to get

AIC = —2In(L x (B(X))) + 2K,

where K is the bias term for maximum log-likelihood as an estimator for

T = Ey Ex[In(Ly (B(Y)))),

which is equal to the number of estimable parameters in the model. This has become known
as Akaike’s information criterion or AIC. For a PARMA ¢ (p, ¢) model, if we treat the variance
as nuisance parameters, there are k = (p + ¢)S estimable parameters. It is also proved in

Theorem 7.2.5, where

i bias = Jim {Exin(Lx (B(X))] = T} = (0 + 0)S,
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so that

bias = (p 4 ¢)S + o(1).

Therefore an asymptotically unbiased estimator of 7' = Ey-E x [In(Ly~ (B(Y)))] is

Ex [In(L x (B(X)))] — (» +9)S.

From (7.2.6) the AIC for a PARMA model is obtained by

AIC = —2In(L x (B(X))) + 2(p + q)S, (7.2.19)

7.2.1 Application to model selection for the Fraser River

Besides the compare of forecast plots in Chapter 5, we can also compute the value of AIC
for each candidate model, and the one yielding the minimum AIC is the best model. The
results are shown in Table 7.1. Within all full model candidates, the full PARMA(1, 1)
model fitted by MLE in Table 5.4 has the minimum AIC, and so it is the best full model.
For reduced model, the model in in Table 5.7, obtained by asymptotic distribution of MLE,
has the minimum AIC, and there are only 13 estimable parameters. Lastly, for PAR g(p)
model, we tried two different approaches. First approach is by removing all éz in Table 5.7,
since there are only three of them. In this way, we obtain a PAR{9(1) model, and there are
only 12 estimable parameters. However, the value of AIC turns out to be very large. The
second approach is done in a more rigorous way, using the pear package in R to do automatic
model selection for PAR{9(p) model. The pear package was developed by A.I. McLeod and

Mehmet Balcilar, for estimating periodic autoregressive models, and they provided a built-in
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data set for the historical flows of Fraser river. The best model selected is shown in Table 7.2,
which is a PAR{9(3) model with 19 estimable parameters. We compute its AIC, shown in
Table 7.1. Additionally, Table 7.3 demonstrate the AIC values for the logarithm of the data,
where the model parameters have more impacts on AIC. Note that both full and reduced
PARMA{9(1,1) models perform better than PAR models. Therefore the PARMA{9(1,1)

model is a better model for the Fraser river flows.

Model Number of parameters AIC

Full PARMA{9(1,1) model in Table 5.3 24 18524.25

Full PARMA{9(1,1) model in Table 5.4 24 18476.47
Reduced PARMA 19(1, 1) model in Table 5.5 19 18768.79
Reduced PARMA9(1, 1) model in Table 5.7 13 18528.13
PAR19(1) model, removing all §; in Table 5.7 12 18754.09
PAR{9(3) model in Table 7.2 19 17714.33

Table 7.1: Comparison of AIC values for different models

Season i ¢;(1) @;(2) ¢;(3) o,
0 0.527 0.000 0.000 6325.612
1 0779 -0.231 0.189 5004.514
2 0.764 0.000 0.000 5326.131
3 1.188 0.000 0.000 17540.533
4 0.647 0.000 0.000 37180.017
5 0.411 -1.237 1.562 38084.824
6 0.545 0.000 0.000 34809.521
7 0.517 0.000 0.000 17666.091
8 0.661 -0.127 0.000 13518.955
9 0.890 -0.434 0.165 14685.378

10 0.631 0.000 0.000 12434.951
11 0.543 0.000 0.000  8535.279

Table 7.2: The model parameters in PAR{9(p) automatic model fitting by pear package in
R, where the number of estimable parameters is 19, assuming &; as nuisance parameters in
the AIC computation.
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Model Number of parameters AIC

Full PARMA{9(1,1) model in Table 5.3 24 -415.8586

Full PARMA{9(1,1) model in Table 5.4 24 -506.6053
Reduced PARMA9(1,1) model in Table 5.5 19 -313.3939
Reduced PARMA9(1, 1) model in Table 5.7 14 -297.9929
PAR9(3) model in Table 7.2 19 520.9146

Table 7.3: A compare of AIC values for different models, after taking the log of the data.
Note that both full and reduced PARMA{9(1, 1) models perform better than PAR models.

7.3 Future Research

In this section I would like to list out the open problems in my research, and this would also

be helpful for researchers who are interested in studying in this topic deeply.

e Strong consistency of MLE. This could follow the result for ARMA model from Yao
and Brockwell [57]. Clear details applying to PARMA model should be carefully gen-

eralized.

e A stronger condition for Theorem 7.2.5, with fewer assumptions. The uniform inte-
/

grability of N (,3 — B) (,3 — ,é) is waiting for a complete proof, and the property of

the second derivative of likelihood function in PARMA model needs to be studied in

details.

e [ will work on cleaning up my R code, and add the forecasting tool in perARMA
package. This would be very useful for researchers would work on hydrology and

periodic stationary time series prediction.
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APPENDIX

# R code for the paper '"Forecasting for periodic ARMA models"

# by Anderson, Paul; Meerschaert, Mark; Zhang, Kai

# Please put the file "frazierc.txt" under your work directory

HAHBHHAHBHHAHBH R HAH B HAHBEHAH B HAH B HHE
# Seasonal Sample Mean for (4.1)

R H A R R

data <- read.table("frazierc.txt")
XMEAN <- array(0,c(12))

# XMEAN is a vector of sample means for 12 seasons
for(I in 1:12)

{

XMEAN[I] <- 0

for(T in 0:71)

{

XMEAN[I] <- XMEAN[I] + datal[T*12+I,1]

}

XMEAN[I] <- XMEAN[I]/72

149



HERHHEFHHHHHAFHRAHH AR HAFH AR HHAFH R HY
# Sample Autocovariance for (4.2)

HH#HH R R R

# season i =0, 1, ..., 11

# LAG =0, 1, ..., 124

COVAR <- array(0,c(12,125))
for(L in 1:125)
{
LAG <- L-1
for (I in 1:12)
{
i <= (I-1)
COVAR[I,L] <- 0
J <- as.integer ((i+LAG)/12)
K <= ((I+LAG)-(12%J))
for (T in 0:(71-J))
{
COVAR[I,L] <- COVARI[I,L]

+(data[T*12+I,1]-XMEAN[I])*(data[T*12+I+LAG,1]-XMEAN[K])
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}
COVAR[I,L] <- COVAR[I,L]/(72-J)

¥

HH#H R AR H SRS RS R H AR H SRS RS BB AR HEH
# Sample Autocorrelation for (4.3)
HAH B HAH S HAEH SRR RS RS H RS RS HA R E R H
rho <- array(0,c(12,125))

for (I in 1:12)

{

for (L in 1:125)

{

R <= (I+L-2)%%12 + 1

rho[I,L] <- COVAR[I,L]/((COVAR[I,1]*COVAR[R,1])".5)
}

}

HHHFHHHH R R R

# Innovations Algorithm for X_t process

R S R s S R
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# I =3+ 1

# K=k + 1
## L =ell + 1
## N =n + 1

## COVAR(I,L) = gamma_i(ell)

# VN,I) = v_{n,i}

## THETA(N,M,I) = theta_{n,m}"{(i)} WHERE m = M + 1
## NOTE THAT: theta_{n,n-k}"{(i)} = THETA(N,N-K+1,I)
#i# theta_{k,k-j}"{(i)} = THETA(K,K-J+1,I)

## gamma_k(n-k) = COVAR(K,N-K+1)

V<- array(0,c(50,12))
THETA <- array(1,c(50,50,12))
for (I in 1:12)
{
V[1,I] <- COVAR[I,1]
for (N in 2:50)
{
for (K in 1:(N-1))
{
S <=0
if (K == 1)

{
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KO <- as.integer((I+1-2)/12)
K1 <- (I+K-1)-12%KO
THETA[N,N,I] <- (COVAR[K1,N]-S)/V[1,I]

}

else

for (J in 1:(K-1))

{

S <- S+THETA[K,K-J+1,I]1*THETA[N,N-J+1,I]1*V[J,I]
KO <- as.integer((I+K-2)/12)

K1 <= (I+K-1)-12%KO0

THETA[N,N-K+1,I] <- (COVAR[K1,N-K+1]-S)/V[K,I]

b

R <=0

for(J in 1:(N-1))

{

R <- R+V[J,I]*(THETA[N,N-J+1,I])"2
NO <- as.integer ((I+N-2)/12)

N1 <= (I+N-1)-12%NO

V[N,I] <- COVAR[N1,1]-R
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# At k = 20 iterations, get the convergence of THETA and V
psil <- array(0,c(12,12))
for ( I in 1:12 )

{

R <=0

for (J in 1:12)

{

R <= (I-20-1)%Kh12+1
psil[I,J] <- THETA[21,J,R]
+

+

sigma_square <- array(0,c(12))
for (I in 1:12)

{

S <=0

S <= (I-20-1)%%12+1
sigma_square[I] <- V[21,S]

3
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HAH B HAHBHHAHBHHEHAEH RS HAH RS H AR RS H AR RS R H B HE
# Get model parameter estimates by (4.4)

B S i R

phi <- array(0,c(12))

sigma <- array(0,c(12))
theta <- array(0,c(12,864))
for (I in 1:12)

{

R <- ((I-D)-1)%%12+1

phi[I] <- psi1[I,3]/psill[R,2]
}

for (I in 1:12)

{

thetal[I,1] <- -1

}

for (I in 1:12)

{

thetalI,2] <- psill[I,2]-phil[I]
}

for (I in 1:12)

{
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sigmal[I] <- (sigma_square[I])~.5

b

# A simple output of model estimates
phi
thetal, 2]

sigma

# reduced model

=+

phi[1] <= 0

=+

phi[5] <- 0

=+

phi[7] <- 0

+H+

phi[8] <- 0

+=*

phi[10] <- 0

HH#HH R R R

# The following is for prediction

HERHH AR R R

# Autocovariances K(J,L) for W_t process

# K(J,L) = C in (2.6)

K <- array(0,c(865,865))
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for (I in 1:12) # I is season

{

K[I,I] <- COVAR[I,1] # when J =L =1

for (J in 1:12)
{
for (L in 1:13)
{
if (J<=18&& L == (I+1) )
{
s1 <- (J-1)%%12+1
11 <- (L-1)%%12+1
K[J,L] <- COVAR[s1,abs(J-L)+1]
- phi[11]*COVAR[s1,abs(L-1-J)+1]

3

for (I in 1:12)

{
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for (J in 1:865)

{
for (L in 1:865)
{
if (min(J,L) >= (I+1) && abs(J-L) <= 1)
{
sl <- (J-1)%%12+1
nl <- (L-1)%%h12+1
ql <= (J-2)%%h12+1
K[J,L] <- theta[s1,1]*thetalnl,abs(J-L)+1]*(sigmal[s1])"2
+ theta[s1,2] *thetal[n1, (abs(1+J-L))+1]*(sigmal[q1]) "2
}
}
}
}

S S S S s
# Innovations algorithm for W_t process
# The computation in (2.6)

U H A

V<- array(0,c(865,12))

THETA <- array(0,c(865,865,12))
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for (I in 1:12)

{

for (J in 1:865)
{

THETA[J,1,I] <- 1
}

}

for (I in 1:12)
{

V[1,I] <- K[I,I]

for (N in 2:(865-1I))
{
THETA[N,2,I] <- K[I+N,I+N-1]/V[N-1,1]

V[N,I] <- K[I+N,I+N]- V[N-1,I]*(THETA[N,2,I])"2

HAHBHHAHBHHEHBH B HAH B HAH B HEHBHHBHEH
# Computation of \hat{X} in (2.7)

HURHHH A
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# Subtract seasonal mean

fraser <- t(data)

X <- array(0,c(864))

for(I in 1:12)

{

for(T in 0:71)

{

X[T*12+I] <- fraser[T*12+I]-XMEAN[I]

}

# Xhat = \hat{X} in (2.7)
Xhat <- array(0,c(12,880))
for (I in 1:12)
{
Xhat[I,1+I] <- 0
Xhat[I,2+I] <- THETA[2,2,I]*(X[I+1]-Xhat[I,I+1])
for (N in 3:(840-I))
{
sl <= (I+N-1)%h12+1

Xhat [I,N+I] <- phi[s1]*X[I+N-1]+ THETA[N,2,I]*(X[I+N-1]-Xhat[I,I+N-1])
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HERHHEFHHHHH AR HHAFHBHHHAFH B R B RS H AR A
# h-step prediction in (2.8) and (2.9)
HERHHEFHHAHHBRHRAFHBRAHAFHBAHHERHHAFHBRHHARHH
for (I in 1:12)

{

sl <- (841-1)%%12+1

Xhat[I,841] <- phils1]*X[840] + THETA[841-1,2,I]1*(X[840]-Xhat[I,840])
for (h in 2:24)

{

ml <- (840+h-1)%%12+1

Xhat [I,840+h] <- phi[ml1]*Xhat[I,840+h-1]

}

}

#it#
# Forecast error in (3.3)

HHHHHHHH R R

# Calculation of Casual represention for PARMA(1,1)

# The casual coefficient psi is periodic in S

psi <- array(0,c(12,24)) # I =12, h =24
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for (I in 1:12)
{
psilI,1] <- 1
psilI,2] <- (phil[I]+thetalI,2])
S <- 1
for (k in 3:24)
{
for (j in 0:(k-3))
{
jO <= (I-j-1)%%12+1
S <- Sxphil[j0]
}
jl <= (I-(k-1)-1)%%12+1
psil[I,k] <- S*(phi[j1]l+thetalj1,2])

}

# h-step prediction error

# Use this error for confidence band in Corr.3.2
sigma_h2 <- array(0,c(12,24))

for (I in 1:12)

{

for (h in 1:24)
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R <-0

for (J in 1:h)

{

sO <- (840+h-1)%%12+1

sl <- (840+h-J-1)%%12+1

R <= R + (psils0,J]) 2+ (sigmals1])"2
}

sigma_h2[I,h] <- R

# Add seasonal mean to Xhat
Yhat <- array(0,c(880))

for(I in 1:12)

{

for(T in 0:71)

{

Yhat [T*12+I] <- Xhat[1,T*12+I]+XMEAN[I]

¥

# Computation of residuals

163



res <- X - Yhat[1:864]

for (I in 1:12)

{

for (T in 0:71)

{

res[T*12+I] <- res[T*12+I]/sigmal[I]
}

}

i s s s s s

# 95Y, Prediction bounds for h-step prediction in Figure 3
i s s s s s

CI_low <- array(0,c(24))

CI_up <- array(0,c(24))

for (I in 1:12)

{
for (h in 1:24)
{
CI_low[h] <- Yhat[840+h]-1.96*sqrt(sigma_h2[I,h])
CI_up[h] <- Yhat[840+h]+1.96%sqrt(sigma_h2[I,h])
}

}
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B R R s e i
# 95Y, Confidence Intervals for sample mean
HHEHHHH R R
CI_low_mean <- array(0,c(12))
CI_up_mean <- array(0,c(12))
for (I in 1:12)
{
CI_low_mean[I] <- XMEAN[I]-1.96%(COVAR[I,1])".5

CI_up_mean[I] <- XMEAN[I]+1.96%(COVAR[I,1])".5

HAHHHHAHBHHAHBHHAHBH R HBHHGHAHBRHAH B HAHH
# 957, Confidence Intervals for gamma_O
HERHHEFHHAFH AR HHAFHHHH RS H R H B H AR RS H
error <- array(0,c(12)) ## define error as sqrt{[(V_00)_ellell]/72}
for (I in 1:12)

{

S <-0

for (L in 0:10)

{

S <= S + 4x((COVAR[I,12xL+1])"2)

}

error[I] <- ((S - 2x((COVAR[I,1])"2))/72)".5
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## subtract the exact one from niu = 0

b

CI_low_gammaO <- array(0,c(12))

CI_up_gamma0 <- array(0,c(12))

for (I in 1:12)
{
CI_low_gammaO[I] <- COVAR[I,1]-1.96%error[I]

CI_up_gammaO[I] <- COVAR[I,1]+1.96%error[I]

#H St H S S S S S S S S S S
# 95% Confidence Intervals for rho_1

B R i R e

W_11 <- array(0,c(12))

for (I in 1:12)

{

S <=0

R <= ((I-1)%%h12)+1

## S is the sum at n = 0, niu = 12

S <- rho[I,1]*rho[R,1] + rhol[I,2]*rho[R,2] - rhol[I,2]*(rho[I,1]*rho[I,2]+
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rho[R,2]*rho[R,1]) - rhol[I,2]*(rho[I,1]*rho[R,2]+rho[I,2]*rho[R,1]) +
.5*%rho[I,2] "2*%(rho[I,1] "2+rhol[I,2] "2+rho[R,2] "2+rho[R,1]"2)

## Next loop is sum from n = -10 to 10

for (L in 1:10)

{

S <- S8 + (rholI,L*12+1]*rho[R,L*12+1] + rhol[I,L*12+2]*rho[R,L*12] -
rho[I,2]*(rho[I,L*12+1]*rho[I,L*12+2]+rho[R,L*12]*rho[R,L*12+1]) -
rho[I,2]*(rho[I,L*12+1]*rho[R,L*12]+rho[I,L*12+2]*rho[R,L*12+1]) +
.5xrho[I,2] "2*x(rho[I,L*12+1]"2

+rho[I,L*12+2] "2+rho[R,L*12] "2+rho[R,L*12+1]"2))

}

P<-0

for (L in (-10):(-1))

{

P <= P + (rhol[I,abs(L*12)+1]*rho[R,abs(L*12)+1] +
rho[I,abs(L*12+1)+1]*rho[R,abs(L*12-1)+1] -
rho[I,2]*(rho[I,abs(Lx12)+1]*rho[I,abs(Lx12+1)+1]+
rho[R,abs(L*12-1)+1]*rho[R,abs(L*12)+1]) -
rho[I,2]*(rho[I,abs(L*12)+1]*rho[R,abs(L*12-1)+1]+
rho[I,abs(L*12+1)+1]*rho[R,abs(L*12)+1]) +

.5xrho[I,2] "2*(rho[I,abs(L*12)+1] "2+rho[I,abs(L*12+1)+1]"2
+rho[R,abs(L*12-1)+1] "2+rho[R,abs(L*12)+1]"2))

3
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W_11[I] <- P+S

b

CI_low_rhol <- array(0,c(12))

CI_up_rhol <- array(0,c(12))

for (I in 1:12)
{
CI_low_rhol[I] <- rhol[I,2]-1.96%((W_11[I]/72)".5)

CI_up_rhol[I] <- rho[I,2]+1.96x((W_11[I]/72)".5)

HHHH

# 95% Confidence Intervals for rho_2
S
W_22 <- array(0,c(12))

for (I in 1:12)

{

S <=0

R <= ((D)%h12)+1

## S is the sum at n = 0, niu = 12

S <- rho[I,1]*rho[R,1] + rho[I,3]*rho[R,3] -

rho[I,3]*(rhol[I,1]*rho[I,3]+rho[R,3]*rho[R,1]) -
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rho[I,3]*(rhol[I,1]*rho[R,3]+rho[I,3]*rho[R,1]) +
.5*%rho[I,3] "2*(rho[I,1] "2+rhol[I,3] "2+rho[R,3] " 2+rho[R,1]"2)
## Next loop is sum from n = -10 to 10

for (L in 1:10)

{

S <- 8 + (rhol[I,L*12+1]*rho[R,L*12+1] +
rho[I,L*12+3]*rho[R,L*12-1]

- rho[I,3]*(rho[I,L*12+1]*rho[I,L*12+3]+
rho[R,L*12-1]*rho[R,L*12+1])

- rho[I,3]*(rho[I,L*12+1]*rho[R,L*12-1]+
rho[I,L*12+3]*rho[R,L*12+1]) + .5%rho[I,3] " 2*(rho[I,L*12+1] 2+
rho[I,L*12+3]"2+rho[R,L*12-1] "2+rho[R,L*12+1]"2))
}

P<-0

for (L in (-10):(-1))

{

P <- P + (rhol[I,abs(L*12)+1]*rho[R,abs(L*12)+1] +
rho[I,abs(L*12+2)+1]*rho[R,abs(L*12-2)+1] -
rho[I,3]*(rho[I,abs(L*12)+1]*rho[I,abs(L*x12+2)+1]+
rho[R,abs(L*12-2)+1]*rho[R,abs(L*12)+1]) -
rho[I,3]*(rho[I,abs(L*12)+1]*rho[R,abs(L*x12-2)+1]+
rho[I,abs(L*12+2)+1]*rho[R,abs(L*12)+1]) +

.5xrho[I,3] " 2*(rho[I,abs(L*12)+1] " 2+rho[I,abs(L*12+2)+1] "2+
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rho[R,abs(L*12-2)+1] "2+rho[R,abs(L*12)+1]"2))
+
W_22[I] <- P+S

}

CI_low_rho2 <- array(0,c(12))

CI_up_rho2 <- array(0,c(12))

for (I in 1:12)

{
CI_low_rho2[I] <- rho[I,3]-1.96%((W_22[I]1/72)".5)
CI_up_rho2[I] <- rho[I,3]+1.96x((W_22[1]/72)".5)
}
HHHHHHEE
# Output
S

# Please remove "#" if you want to generate output files

write(CI_low,file="CI_low_prediction.txt",ncolumns=1)

write(CI_up,file="CI_up_prediction.txt",ncolumns=1)
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write(fraser,file="Data of Fraser River.txt",ncolumns=1)

write(Yhat[1:864],file="24-month Predictions.txt",ncolumns=1)

# write(XMEAN,file="Sample Mean.txt",ncolumns=1)
# write(CI_low_mean,file="CI_low_mean.txt",ncolumns=1)

# write(CI_up_mean,file="CI_up_mean.txt",ncolumns=1)

# write(COVAR[,1],file="Sample Variance.txt",ncolumns=1)
# write(CI_low_gamma0,file="CI_low_variance.txt",ncolumns=1)

# write(CI_up_gammaO,file="CI_up_variance.txt",ncolumns=1)

# write(rho[,2],file="rho_1.txt",ncolumns=1)
# write(CI_low_rhol,file="CI_low_rhol.txt",ncolumns=1)

# write(CI_up_rhol,file="CI_up_rhol.txt",ncolumns=1)

# write(rho[,3],file="rho_2.txt",ncolumns=1)

# write(CI_low_rho2,file="CI_low_rho2.txt",ncolumns=1)

# write(CI_up_rho2,file="CI_up_rho2.txt",ncolumns=1)

# write(res,file="Residuals.txt",ncolumns=1)

HHHFHFHHHBR R H R RS R

# Plots
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# The plots in this paper were producted by Minitab

# The following plots are provided as drafts for reference

HAHHHHAHHHHHE

# Figure 1

g_range <- range(0, data)

plot(datal[1:180,1], col = "black", ylab = "Flow (cms)",
axes=FALSE, type = "1", ylim=g_range, xlab="Month / Year",
cex.lab=1.5, 1ty = 5)

axis(1l,at = c(1,37,73,109,145,180) ,1lab= c("10/1912",
"10/1915","10/1918","10/1921","10/1924","09/1927"))
axis(2, at = ¢(1,50000,100000,150000,200000,250000,

300000,350000,400000), lab =c("0","50000","100000",

"150000", "200000", "250000", "300000", "350000", "400000") )

H#HH R R HEH

# Figure 3

HEHHHH R RHEH

g_range <- range(0, CI_up)

plot(CI_low, col = "blue", ylab = "Flow (cms)", lwd = 2,

axes=FALSE, type = "1", ylim=g_range, xlab="Month / Year",
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cex.main = 2, cex.lab=1.5, 1ty = b)

axis(l,at = ¢(1,5,9,13,17,21,24) ,1ab= c("10/1982","02/1983",
"06/1983","10/1983","02/1984","06/1984" ,""))

axis(2)

lines(CI_up, col = "blue", type="1", 1lty=5, lwd = 2)
lines(Yhat[841:864], col = "red", type="o", pch=20, lty=1, lwd = 2)

lines(data[841:864,1],col = "black", type="1", 1lty=1, lwd = 2)

U AR

# Figure 4

HHHHHHHHHHHH

g_range <- range((CI_low-c(XMEAN,XMEAN)), (CI_up-c(XMEAN,XMEAN)))

plot ((CI_low-c(XMEAN,XMEAN)), col = "blue", type = "1",

ylab = "Width of prediction bounds", ylim=g_range, xlab="Month",
main="Width of prediction bounds (mean subtracted)", 1ty = b)

lines(Yhat [841:864]-c (XMEAN,XMEAN), col = "red", type="o", pch=20, lty=1)

lines ((CI_up-c(XMEAN,XMEAN)), col = "blue", type="1", 1lty=5)

HERHHERHHAHH

# Figure 2
HAHBHHAHBHHHE

par (mfrow = c(2,2))

g_range <- range(0, (CI_up_mean))
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plot (XMEAN, col = "black", ylab = "Sample mean (cms)", lwd =2,
ylim=g_range,axes=FALSE, xlab="Season',

main="(a) Sample Means", 1ty = 5, cex.main = 2.5, cex.lab=1.5)

axis(l,at = 1:12,1ab= c("Q","1", "2 n3m n4qn ngn ngn nwyw ngn ngn w10, "11"))
axis(2)

lines(XMEAN, type="o",lwd = 2,pch = 20)

lines((CI_low_mean), col = "red", type="1", 1lty=5,lwd =2)

lines((CI_up_mean), col = "red", type="1", 1lty=5,1lwd =2)

g_range <- range(0, (CI_up_gammal)~.5 )

plot ((COVAR[,1])".5, col = "black", ylab = "Sample sd (cms)",

axes=FALSE, lwd=2, ylim=g_range, xlab="Season",

main="(b) Sample Standard Deviations", 1ty = 5,cex.main = 2.2, cex.lab=1.5)
axis(l,at = 1:12,lab= c("0","1","2", "3", N4 NG ugn N7 ngn ngu nigu nigu))
axis(2)

lines((COVAR[,1])".5, type="o",lwd = 2,pch = 20)

lines((CI_low_gamma0)~.5, col = "red", type="1", 1lty=5,lwd=2)

lines((CI_up_gamma0O)~.5, col = "red", type="1", 1lty=5,lwd=2)

g_range <- range(0, 1)
plot(rho[,2], col = "black", ylab = "Autocorrelations", axes=FALSE,
ylim=g_range, xlab="Season", main="(c) Sample Autocorrelations : lag = 1",

1ty = 5,cex.main = 1.9, cex.lab=1.5)
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axis(1,at = 1:12,1ab= c("0","1", 12", "3", ngn npn ngn ugn ngn ugu nign nijn))
axis(2)

lines(rho[,2], type="o",lwd = 2,pch = 20)

lines(CI_low_rhol, col = "red", type="1", 1lty=5,1lwd=2)

lines(CI_up_rhol, col = "red", type="1", 1lty=5,lwd=2)

g_range <- range(-.5, 1)

plot(rho[,3], col = "black", ylab = "Autocorrelations", axes=FALSE,lwd=2,
ylim=g_range, xlab="Season", main="(d) Sample Autocorrelations : lag = 2",
1ty = 5,cex.main = 1.9, cex.lab=1.5)

axis(l,at = 1:12,lab= c("0","1","2", "3", "4" "5" "E", 7", "g", "Qn 10", "11"))
axis(2)

lines(rho[,3], type="o",lwd = 2,pch = 20)

lines(CI_low_rho2, col = "red", type="1", lty=5,lwd=2)

lines(CI_up_rho2, col = "red", type="1", 1lty=5,lwd=2)

S s
# Computation of PARMA Autocovariances in Chapter 1.1

HHHHH R R

# Model is PARMA_12(1,1) i.e. there are 12 seasons

# Model is based on table 5 in Tesfaye, Meerschaert and Anderson (2006)

# phi_1 <- c(.198,.568,.560,.565,.321,.956,1.254,.636,-1.942,-.092, .662, .355)
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phi_1 <- c(0,.568,.560,.565,0,.956,0,0,-1.942,0,.662,.355)

theta_1 <- ¢(.687,.056,-.052,-.05,.47,-.389,-.178,-.114,2.393,.71,-.213,.322)
sigma <- c(11875.479,11598.254,7311.452,5940.845,4160.214,4610.209,
156232.867,31114.514,32824.370,29712.190,15511.187,12077.991)

theta_0 <- array(1,c(12))

psi_0 <- array(1,c(12))

psi_1 <- phi_1 + theta_1l

# By (16) in Tesfaye, Meerschaert and Anderson (2006)

# Set AX = b, then solve X, where X is a vector
# X gives ACVF = gamma_i(h), when h <= max(p,q), i =0, 1, ... 11

# In PARMA_12(1,1), p=q =1

A <- array(0,c(24,24))

for (i in 1:12)

{

Ali,i] <=1

A[i+12, (i-2)%%12+1+12] <- 1

Ali, (i-2)%%h12+1+12] <~ (-phi_1[i])
A[i+12, (i-2)%%12+1] <- (-phi_1[il])

b

b <- array(0,c(24))
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for (i in 1:12)

{

b[i] <- theta_0[i] * psi_O[i] * (sigmal[il)~2 +

theta_1[i] * psi_1[i] * (sigmal[(i-2)%%12+1]1)"°2

b[i+12] <- theta_1[i] * psi_O0[(i-2)%%12+1] * (sigmal[(i-2)%%12+11)"2

}

X <- solve(A,b)

X

matrix(X, ncol = 2)

# COVAR is autocovariance function

# COVAR[I,H] = \gamma_{i}(h)

#I=1i+1, i is season, i =0, 1, 2, ... 11
# H=h+1, his lag, h =0, 1, 2, ... 79

COVAR <- array(0,c(12,80))

COVAR[,1:2] <- X # Read X into first columns of COVAR

# A good way to get rid of the for loop below

#for (I in 1:12)

# This loop reads X into COVAR, for h <= max(p,q); here h = 0,1
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# {
# COVAR[I,1] <- X[I]
# COVAR[I,2] <- X[I+12]

# )

for (H in 3:80) # This loop computes ACVF for h > max(p,q)
{

for (I in 1:12)

{

COVAR[(I-H)%%12+1,H] <- phi_1[I]*COVAR[(I-H)%%12+1,H-1]

#this one is right!

# (I-2)%%12+1 represents season I-1

# COVAR[I,H] <- phi_1[I]*COVAR[(I-2)%%12+1,H-1]

}

}

s s T s s

# Innovations Algorithm

HH#HHHHHH R R

V<- array(0,c(50,12))

THETA <- array(0,c(50,50,12))
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for (I in 1:12) # I

i+l, i is season

{

V[1,I] <- COVAR[I,1]
for (N in 2:50) # N = n+l, n is number of iterations
{
for (K in 1:(N-1))
{
S <=0
if (K == 1)
{
KO <- as.integer((I+1-2)/12)
K1 <- (I+K-1)-12%K0
THETA[N,N,I] <- (COVAR[K1,N]-S)/V[1,I]

}

else

for (J in 1:(K-1))

{

S <- S+THETA[K,K-J+1,I]1*THETA[N,N-J+1,I]1*V[J,I]
KO <- as.integer((I+K-2)/12)

K1 <- (I+K-1)-12%KO0
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THETA[N,N-K+1,I] <- (COVAR[K1,N-K+1]-S)/VI[K,I]
THETA[N,1,I] <- 1 # This defines \theta_{n,0}(i) =1

b

R<-0

for(J in 1:(N-1))

{

R <- R+V[J,I]*(THETA[N,N-J+1,I])"2
NO <- as.integer ((I+N-2)/12)

N1 <= (I+N-1)-12%NO

V[N,I] <- COVAR[N1,1]-R

by

FHEH R R R R
# convergence of theta to psi

HHESHHHHH B R

psi_k <- array(0,c(50,12,50)) # psi_k is \psi_{i}(\ell)
for (K in 1:50) # K = k+1, k is number of iterations
{
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for ( I in 1:12 ) # I = i+1, i is season
{

R <=0

for (J in 1:50)

{

R <= (I-K)%%12+1

psi_k[K,I,J] <- THETA[K,J,R]

}

}

}

I
'_\

# Test output for lag
# This matches values of psi_1 = phi_1 + theta_l, after 5 iterations
psi_k[,,2]

psi_1

# Test output for lag = 2

# psi_kl[,,3]

# This shows the error between psi_k[,,2] and psi_1
error <- array(0,c(50,12))

for (I in 1:12)

{

for (K in 1:50)
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{
error[K,I] <- psi_k[K,I,2]-psi_1[I]
}
}

max_error <- array(0,c(49))
# for all season, for lag =1 only
for (K in 1:49)
for (I in 1:12)
{
{
max_error [K] <- max(abs(error([K,I]))
}
}
plot(max_error,ylab = "Value of convergence error",
xlab="Number of iterations", main="error",cex.main = 2, cex.lab=1.8)

lines(max_error, type="o", pch=20, 1lty=1, col="red")

psEss s s s R s S e
# convergence of v to sigma”2

S S S S S
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sigma_square <- array(0,c(50,12))
for (K in 1:50)

{

for (I in 1:12)

{

S <=0

S <= (I-K)%h1i2+1
sigma_square([K,I] <- V[K,S]

}

+

# Test output, which matches sigma, after 5 iterations
sigma_square”.b

sigma

# This gives the error between sigma_square and sigma”2
error2 <- array(0,c(50,12))

for (I in 1:12)

{

for (K in 1:50)

{

error2[K,I] <- (sigma_square[K,I]-(sigmal[I])"2)

3
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