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ABSTRACT
BENTHIC INVERTEBRATE COMMUNITY STRUCTURE AS AFFECTED BY
FOREST SUCCESSION AFTER CLEAR-CUT LOGGING ON PRINCE OF WALES
ISLAND, SOUTHEAST ALASKA
By

Osvaldo Hernandez

The primary industries of Prince of Wales Island are toursim, timber harvesting
and sport and commercial fisheries. Because timber harvesting is a disturbance that
affects both physical and biological characteristics of adjacent streams and rivers, the
effects of clear-cutting on spawning and rearing habitats of commercial and sport fish
species have been investigated. However, many small fishless headwater streams in
upland forests, with potential sources of benthic invertebrates as major food items for
economically important fish species have received little attention. In an effort to assess
the effects of timber harvest practices in upland forests, benthic invertebrate community
structure was contrasted among four dominant forest management conditions and
instream habitats. Timer harvest caused increases in invertebrate richness, densities and
biomass relative to old growth conditions, particularly in second growth managements
with an alder-dominated riparian vegetation. Large woody debris and gravel habitats
supported high densities and biomass of invertebrates. In addition, large woody debris
also supported a richer and more diverse fauna than either cobble or gravel substrates.
Alternatives to clear-cut harvesting should be employed for the maintenance of wood

recruitment into streams and growth of red alder along riparian margins.
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CHAPTER 1

SUMMARY OF SELECTED STUDIES EXAMINING FOREST HARVEST EFFECTS
ON STREAM ATTRIBUTES IN NORTH AMERICA

INTRODUCTION

The effects of forest clear-cutting upon physical and biological characteristics of
streams have been well studied from eastern to western United States and British
Columbia. These studies have been conducted with a number of designs, from before and
after studies to comparative and long-term studies. Often, experimental forests have been
established for this purpose. The following consists of a brief introduction into several
studies at different localities examining forest harvest effects on stream attributes, and are
summarized in Table 1.
Eastern North America

Rishel et al. (1982) conducted a study at the Leading Ridge Watershed Research
Unit in Pennsylvania to investigate changes in stream temperatures. They compared
temperatures of headwater streams whose riparian vegetation was clear-cut and herbicide
treated to streams with a buffer strip and streams with undisturbed riparian vegetation and
found significant increases in daily maximum and significant decreases in daily minimum
temperatures relative to the reference streams. Diurnal fluctuations increased four times
from the control, and the highest temperature recorded was 32°C.

Silsbee and Larson (1983) investigated numerous physical parameters (Tablel)
and responses of benthic macroinvertebrates in second order streams to clear-cut logging
in the Great Smokey Mountains National Park in Tennessee and North Carolina. Their

treatment streams had been clear-cut in the early 1900s (1905 to 1926) and their control



streams had previously been uncut. They found that unlogged streams had less numbers
of invertebrates than clear-cut streams, and that scraper and shredder functional groups
were dominant in these systems. They attributed these results to differences in the
riparian vegetation community.

Martin et al. (1985) and Noel et al. (1986) conducted studies of the
biogeochemistry of streamwater in New England after a clear-cut. Their approach
involved comparing streams whose riparian vegetation was clear-cut (2 years previous) to
reference streams (uncut for 35 years) within areas of different vegetation communities
(coniferous, Northern Hardwoods and Central Hardwoods). Streams with clear-cut
riparian vegetation within the Northern Hardwood forests showed greatest differences in
stream chemistry after a clear-cut. They found greater numbers of macroinvertebrates
(Ephemeroptera and Diptera) in the clear-cut streams and attributed this to increases in
temperature and light, leading to increases in food supply for invertebrates by
accelerating the mineralization of organic matter as well as by increasing algal growth.

Griffith and Perry (1991) compared leaf pack processing rates in second order
streams flowing through 20 year and 80-year-old forests with differing vegetation types.
The 80-year-old forests were dominated by Red Oak (Quercus rubra), Sugar Maple
(Acer saccharum) and American Beech (Fagus grandifolia) while the 20-year-old forest
was dominated by black cherry (Prunus serotina) and black birch (Betula lenta). Sugar
Maple leave leaf packs were used and they found leaf pack processing rates were faster in
the 20-year-old forests, which they attributed to significantly greater densities of total

macroinvertebrates, shredders and collector gatherers than in the 80-year-old forests.



In Maine, a 1.2 km section of the east branch of the Piscataquis River was studied
before and after a clear-cut in 1982 for timber harvesting effects on fish diet and
production (Garman and Moring 1993). As part of the fish diet studies, the investigators
found significant changes in the macroinvertebrate community. Mean densities were
higher in the spring and lower in the fall than they were the previous year (before
harvesting). After the harvest, Ephemeroptera, Plecoptera and Odonata were significantly
less abundant while Chironomidae abundance increased threefold.

The responses of macroinvertebrates to different degrees of timber harvesting also
have been investigated in pools of small headwater intermittent streams of the Quachita
National Forest in Arkansas (Brown et al. 1997). The authors found significantly higher
total densities and significantly lower diversity in harvested streams, as well as an
increase in the ratio of shredders to collectors possibly due to increases in CPOM from
harvesting techniques.

Coweeta Hydrologic Laboratory

The effects of clear-cutting on second order streams have been studied
extensively at the Coweeta Hydrologic Laboratory in Franklin, North Carolina. The two
primary streams under study were the Big Hurricane Branch whose watershed was clear-
cut in 1977, and Hugh White Creek whose watershed has been undisturbed since 1924.
Many faunal changes occurred in the benthic macroinvertebrate community that was
sampled on a monthly basis (Webster et al. 1983). Greater abundances of collector-
gatherer mayflies (Baetis spp. and Ephemerella spp.) were found in the logged stream.

The dominant shredder, Peltoperia maria, declined in numbers and was virtually non-



existent within three years of the harvest. The changes in the macroinvertebrate
community were attributed to changes corresponding to their food availability.

Other studies conducted at Coweeta include Gurtz and Wallace’s (1984)
investigation of substrate-mediated responses of macroinvertebrates to logging
disturbance. Of the four substrates (rock face, cobble, pebble and sand) investigated, rock
face was the preferred substrate in the clear-cut stream and cobble was the preferred
substrate in the reference stream. They concluded that larger substrates, requiring more
energy to move, had increased numbers of macroinvertebrates colonizing them. Wallace
and Gurtz (1986) concluded that Baetis spp. mayflies respond quickly to take advantage
of increases in autochthonous production, therefore, being important to energy processing
in the disturbed stream.

Stone and Wallace (1998) investigated the effects of sixteen years of forest
succession on benthic macroinvertebrate community structure, as well as the efficacy of
five indices in determining recovery. Macroinvertebrate abundance, biomass and
secondary production were greater in the disturbed stream than in the reference stream.
The authors found that the percentage of scrapers initially present increased after logging,
following the increase in algae production, and then declined with the decline in primary
production. The trend in shredders present was an initial decline following the decrease in
allochthonous inputs and successive increase in percentage following the return of
allochthonous inputs. Once again, changes in macroinvertebrate community structure
were directly corresponding to changes in the type and quantity of food available to them.
Of the indices examined, percent Baetis, shredder to scraper ratios, and the North

Carolina Biotic Index showed the greatest ability to detect differences between the logged



and the reference stream. They all showed recovery or no difference between clear-cut
and reference streams after sixteen years of forest succession.
Western North America

Newbold et al. (1980) investigated the effects of logging, with and without buffer
strips, on numerous streams across northern California. Their first objective was to
establish macroinvertebrate community differences between logged and reference sites.
Of three indices of dissimilarity, only Euclidean distance showed a significant logging
effect. Diversity of macroinvertebrates was lower and total density was higher in the
logged streams, which the authors attributed to high densities of Baetis, Nemoura spp.
and Chironomidae. Their second objective was to determine what effects buffer strips of
differing widths had on logging effects. They found significant logging effects with
narrow (<30m) buffer strips and no significant logging effects with wide (>30m) buffer
strips.
Alsea Watershed Study

The Alsea Watershed Study as described by Hall et al. (1987) was a long-term
study of the effects of timber harvesting, with and without buffer strips, on physical and
biological characteristics of headwater streams along the Oregon coast. The sampling was
conducted seven years prior and seven years after timber harvest on three watersheds.
The first watershed was completely clear-cut, the second was cut with buffer strips and
the third was left as a control. They found slight physical characteristic changes in the
watershed with buffer strips, and large changes in the suspended sediments, dissolved
oxygen, and temperature in the clear-cut watershed. However, these changes returned to

prelogging levels as riparian vegetation returned. The biological aspect of their study



included periphyton responses (Hansmann and Phinney 1973), however, focused on fish
population responses to timber harvest (Connolly and Hall 1999).
H.J. Andrews Experimental Forest

Forest and stream interactions have been studied extensively at the H.J. Andrews
Experimental Forest in Oregon. Rothacher (1970) and other follow-up studies (Harr et al.
1982 and Hicks et al 1991) compared changes between water yield in streams whose
riparian vegetation was entirely clear-cut and another that was patch cut. Within a larger
study looking at community structure of periphyton communities, Lyford and Gregory
(1975) found standing crop and rates of colonization of periphyton to be greater in a
clear-cut section of Mack Creek than in a forested area of the same stream. They believed
light was the limiting factor determining growth rates of algae in those cascade mountain
streams. Hawkins et al. (1982) addressed the relative importance of differences in
riparian vegetation, instream substrates and gradient in benthic invertebrate communities
of streams at the H.J. Andrews Experimental Forest. The canopy types in their study
consisted of clear-cut, second growth deciduous, and old growth conifer. Substrate
composition varied with gradient. High gradient streams (~ 10%) had primarily boulder
and gravel substrates, while substrates in low gradient streams (~1%) consisted of cobble,
gravel, and sand. They found canopy type to be more important in influencing
invertebrate communities than substrate composition, with greater abundances of
invertebrates in streams with clear-cut riparian vegetation. Anderson (1992) examined the
influence of disturbance on invertebrate communities of Pacific North West streams
where he compared aquatic insect adult emergence in a 3 order stream flowing through:

1) 450 year old coniferous forest; 2) recent clear-cut; and 3) second growth deciduous



riparian canopy 40 years after a clear-cut. He found that streams in old growth forests had
the highest richness and greatest evenness among Ephemeroptera, Plecoptera and
Trichoptera, and biomass of populations were similar across treatments. He also found
strong grazer dominance in the clear-cut streams and a shift to detritivores using
allochthonous materials in the second growth streams. Studies of peak flow responses to
clear-cutting (Thomas and Megahan 1998) and stream temperature responses to forest
harvest (Johnson and Jones 2000) also have been conducted at the Andrews Experimental
Forest.
Washington State

The effects of forest harvest on stream characteristics also have been studied in
Washington. Bilby and Bisson (1987) compared emigration and production of stocked
coho salmon fry in streams flowing through old growth and recently clear-cut streams.
Bilby and Ward (1991) contrasted the characteristics and function of large woody debris
in streams draining old growth, clear-cut and second growth forests. They measured
abundance, size and species of wood across the three riparian types. In addition, they
documented the number and type of pools associated with large woody debris, the
number of pieces of large woody debris that formed waterfalls and sediment storage
created by large woody debris. The authors found their second growth stands, which were
composed largely of red alder, do not supply enough large woody debris to streams, and
that which is supplied is not as effective at influencing channel structure as coniferous
large woody debris. Bilby and Bisson (1992) sought to determine whether autochthonous
organic matter was more important to fish than allochthonous organic matter in streams

draining old growth and clear-cut forests. They measured leaf litter inputs, periphyton,



fluvial organic matter sources (dissolved organic matter, coarse particulate organic
matter, fine particulate organic matter), discharge, water temperature, nutrients, fish
production and diet, as well as invertebrate drift. Both fish diet and drift samples
consisted predominantly of invertebrates belonging to scraper and collector-gatherer
functional groups in both old growth and clear-cut streams. Invertebrates relied heavily
on algae and algal-based detritus as a primary food source, lending to the overall
hypothesis that autochthonous organic matter sources are more important to fish
production in Washington streams (Bilby and Bisson 1992).
British Columbi

Carnation Creek is a small drainage on the west coast of Vancouver Island,
British Columbia, where long-term (15 years) study of timber harvest effects on stream
attributes was initiated in 1971. The study was divided into three phases. The first phase,
from 1971 to 1975, was the prelogging monitoring phase. Phase two, from 1976 to 1981,
involved studies during logging and road construction, and phase three consisted of
postlogging monitoring. Three different logging methods were studied including: 1)
leaving a buffer strip along the stream margin; 2) clear-cutting with great care not to
disturb the stream; and 3) clear-cutting without regard for the stream. Hartman et al.
(1987) provided an excellent synthesis of published Carnation Creek studies up to 1986,
describing changes in physical characteristics of the watershed and responses of fish to
those changes. Hartman et al. (1996) followed up the review of published Carnation
Creek results to 1996, and the implication for fisheries managers. In the review they
describe how timber harvesting had negative impacts on macroinvertebrate densities.

Densities of seven select taxa were lower in the clear-cuts and total macroinvertebrate



densities were at 41-50% of prelogging and unlogged control levels. In an effort to
determine how the distribution of macroinvertebrates is affected by interstitial detritus
quality and quantity, Culp and Davies (1985) experimented with four different mixtures
of detritus (no detritus, low hemlock, low alder, high alder) in the main channel of
Camation Creek. They found that total macroinvertebrate densities were higher in the
low alder treatment and that total biomass of macroinvertebrates was greater in both alder
treatments than in the no detritus and low hemlock treatments.
Alaska

The research focus of timber harvest effects on fisheries in Southeast Alaska has
changed from the 1950s to the present (Gibbons et al., 1987; Murphy and Milner, 1997).
Beginning in the 1950s, when timber harvesting began to flourish in southeast, research
focused on harvesting effects on salmon spawning habitat. Post 1960, research switched
focus to harvesting effects on rearing habitat. In the 1990s, with revision of the Alaska
Forest Resources and Practices Act, streamside buffer strips were required to protect
salmonid habitat, and research focus will likely be aimed at monitoring these buffer strips
and their effectiveness. Research on the effects of timber harvesting on benthic
macroinvertebrates has determined that changing light levels are important in Southeast
Alaska streams. Increases in algal production following clear-cutting resulted in
increased benthic invertebrate abundance, while the dominant functional feeding group
(collector-gatherer) remains unchanged (Duncan and Brusven 1985). Research on effects
of canopy type on benthic macroinvertebrate and detritus export from headwater streams,
due to previous timber management in Southeast Alaska, (Piccolo and Wipfli, submitted)

has shown streams with a young growth (35 yr old) red alder-dominated canopy exported



significantly more macroinvertebrates than did streams with young growth (35 yr old)

conifer-dominated canopy.
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CHAPTER 2
BENTHIC INVERTEBRATE COMMUNITY STRUCTURE AS AFFECTED BY
FOREST SUCCESSION AFTER CLEAR-CUT LOGGING ON PRINCE OF WALES
ISLAND, SOUTHEAST ALASKA
INTRODUCTION

Clear-cut logging, a timber harvesting method in which the forest canopy is
removed, is a disturbance that affects both physical and biological characteristics of
adjacent streams and rivers. One of the major changes occurring after a clear-cut is the
decrease of the allochthonous energy base (Duncan and Brusven 1985a) on which
headwater streams and benthic macroinvertebrates are dependent (Vannote et al. 1980).
The effects of the disturbance on benthic macroinvertebrates have either been studied
before and after the harvest (Garman and Moring 1993; Hall et al. 1987; Hartman et al.
1996) or in comparative studies with a reference stream (Anderson 1992; Hawkins et al.
1982; Newbold et al. 1980). However, because the riparian vegetation is brought to a
stage of secondary succession (Alaback 1984), it also has been studied as such (Stone and
Wallace 1998) by comparing macroinvertebrate community structure in streams with
riparian vegetation in different stages of succession (Haefner and Wallace 1981; Murphy
et al. 1981).

Prince of Wales Island is the third largest island in the United States. It is located
within the Tongass National Forest in the southeast panhandle of Alaska. The primary
industries of the island are tourism, timber harvesting and sport and commercial fisheries.
Because many streams and rivers on the island are located within Sitka spruce (Picea
sitchensis) and western hemlock (Tsuga heterophylla) forests, they are subjected to

forestry management practices such as clear-cut logging. Because timber harvesting is a
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disturbance that could adversely affect the fishing industry, the effects of clear-cutting on
spawning and rearing habitats of commercial and sport fish species such as coho
(Onocorhynchus kisutch), pink (O. gorbuscha), chum (O. keta), and sockeye (O. nerka)
salmon have been investigated (Murphy and Milner 1997; Duncan and Brusven 1985b).
However, because the topography of Prince of Wales and southeast Alaska is
mountainous, there are many small fishless headwater streams in the upland forests
connecting to larger fish bearing streams that have received little attention. These small
headwater tributaries can be important sources of fluvial organic matter to the larger
streams and its biota, and potential sources of benthic invertebrates (Wipfli and
Gregovich 2001) that are major food items for economically important fish species.
Therefore, knowledge of the effects of timber harvesting on benthic macroinvertebrates
in these headwater streams is important for the more effective management of both forest
and aquatic resources.

Prince of Wales has been logged extensively since 1950 (Swanston 1967). As a
result, there are streams within forest management conditions with differing types of
dominant vegetation in different stages of forest succession. This study contrasted
streams within four different forest management conditions. First, recent clear-cut (CC)
conditions that were in their fifth year of regeneration had riparian vegetation comprised
primarily of shrubs. Second growth areas varied in canopy composition. Canopy
composition ranged between two extremes where either red alder (A/nus rubra) or
coniferous trees were dominant along the riparian margin. This study contrasted the

extremes, alder-dominated second growth (SA) and conifer-dominated second growth
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(SC), in stands that had been regenerating between 35 and 40 years. Lastly, coniferous
trees dominated the old growth (OG) condition, which has previously not been cut.

In addition to studying the effects of timber harvest based on forest succession, I
also wanted to assess the effects of substrate type on macroinvertebrate response to
timber harvest. Gurtz and Wallace (1984) concluded that more stable substrates were
capable of mediating disturbance effects. Common substrates in these streams are large
woody debris, cobble and gravel.

My overall objectives were to: 1) contrast headwater benthic invertebrate
community structure between the four forest management conditions (CC, SA, SC, OG);
and 2) evaluate which instream habitat (large woody debris, cobble or gravel) supported

greater taxa richness, diversity, densities, and biomass of invertebrates.

METHODS
L Study Sites

The study was conducted on 12 streams in the Maybeso Experimental Forest and
the adjacent Harris River watershed in the Tongass National Forest, Prince of Wales
Island, in southeast Alaska (Figure 1). Vegetation of the island is classified as a temperate
rainforest with annual precipitation ranging between 150 to 500 cm, and air temperatures
range from —20°C to 36°C (Duncan and Brusven 1985c; Harris et al. 1974). All stream
sites were first order, high gradient, headwater streams of the Harris and Maybeso
catchments, and they were sampled upstream of logging roads once between 7-15 July

1998 and once between 11-14 June 1999.
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Riparian vegetation differed across management conditions. Vegetation in clear-
cut condition was in its fifth year of regeneration with salmonberry (Rubus spectabilis)
and Alaskan blueberry (Vaccinium spp.) as the dominant riparian species. The alder-
dominated second growth condition, between 35 and 40 years old, consisted of dense red
alder along the riparian margin with a mixture of some conifers and an understory of
ferns and mosses. The conifer-dominated second growth condition, also between 35 and
40 years old, was predominantly Sitka spruce and western hemlock with some red alder
and a fern understory. The old growth condition, that had never been cut, had similar
vegetation to the conifer-dominated second growth, but the trees were more mature and
less dense. There also was a more extensive understory comprised of devils club

(Oplopanax horridus), skunk cabbage (Lysichition americanum) and ferns.

1L Physical Measurements

Physical measurements were taken in streams across the four management
conditions in 1999. Water temperatures were taken simultaneously with Onset® Optic
StowAway Temperature Loggers for a three week period. Discharge was measured using
a Marsh-McBimey® flow meter by the velocity-area method described in Gore (1996).
Nitrates were measured with a Hach® nitrate field test. The percentage of large woody
debris, cobble and gravel habitats was quantified within 25m in each of the 12 streams.
Algal AFDM on clay tiles was determined at two streams of each management condition

using the methods in Steinman and Lamberti (1996).
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1L Experi | Desi | Analysi

The experimental design of the study was a split-plot design; management
condition was the whole-plot factor, habitat was the sub-plot factor. Three streams were
sampled upstream of logging roads in each of the four management conditions. Within
each stream, three random macroinvertebrate samples were collected in 1998 while two
random samples were collected in 1999, from each of the following habitats: 1) large
woody debris, characterized by being of cedar origin, >10 cm diam. and conditioned (in
the water long enough to be suitable for invertebrate colonization); 2) completely
submersed riffle cobble (64-256 mm diam.); and 3) gravel between 2-16 mm diameter. A
total of 108 samples were collected from the 12 headwater streams in 1998, and a total of
72 samples were collected from 12 headwater streams in 1999.

Results were tested for normality and log transformed or square root transformed
where necessary. Multiple ANOV As were generated contrasting richness, diversity,
density and biomass, vs. management conditions (clear-cut, alder-dominated second
growth, conifer-dominated second growth, and old growth) and habitat (large woody
debris, cobble, gravel). ANOVAs were generated for the analysis of nitrates, discharge
and algal AFDM vs. management conditions (SAS Institute 1996). Although results were

transformed, they will be presented in untransformed fashion in graphs and tables.

IV. Macroi | Samoli
The large woody debris samples were randomly selected from the first six pieces
encountered upstream of logging roads. Length and diameter measurements were taken to

estimate surface area. Each piece of large woody debris was collected and placed ina 19
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L bucket and pressure sprayed with water from a hand-pumped lawn sprayer to remove
invertebrates. The macroinvertebrate sample was then rinsed through a 250-micron sieve
and transferred into a 250-ml Whirl-Pak®, preserved in 80% ethanol, and returned to the
lab for sorting under a dissecting scope. All invertebrates were picked from each sample,
counted, identified to the lowest possible taxon, mostly generic level (except
Chironomidae) using Merritt and Cummins (1996a). Chironomidae were subsampled and
identified to subfamily.

Cobble samples were removed from submersed cobble of riffle areas. Each
cobble habitat was selected from the center of each of the first three riffle areas
encountered upstream of logging roads. Sample collection and processing were similar to
that of large woody debris. The cobble were labeled and returned to the lab to estimate
surface area. Surface area was determined by wrapping the cobble in foil paper, removing
the foil, and tracing it onto paper. Surface area was calculated from the paper using a Li-
Cor® portable leaf area meter Model-Li-3000.

Gravel core samples were collected from the center of each of the first three
gravel areas encountered upstream of logging roads. Samples were collected with a core
sampler (6 cm x 6 cm x 6 cm). The core sampler was inserted into the gravel area to a
depth of 6 cm and the contents scooped out with a 250-micron mesh net. The entire
sample was transferred into a whirl-pak and returned to the lab for processing as above.

Invertebrate density was estimated from abundance and surface area calculations
for the large woody debris and cobble samples and was converted to number per 1m’.
Density was calculated from abundance and sample volume for the gravel core samples

and was converted to number per 1m’. Dry mass of invertebrates was estimated
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according to Benke et al. (1999). Richness was measured as total number of taxa present
and diversity was measured using the Shannon-Weiner diversity index (Hauer and Resh
1996). Macroinvertebrates were designated a functional feeding group status (shredders,
filtering-collectors, gathering-collectors, scrapers and predators) according to Merritt and
Cummins (1996b). Dry mass of Oligochaeta were not determined and therefore omitted

from biomass and functional group analysis.

RESULTS
L Physica] Measurements

Daily temperature maximums were greatest in the old growth condition and
lowest in the conifer-dominated second growth. Daily temperature minimums were
lowest in the conifer dominated second growth condition and highest in the old growth
condition. Greatest differences in maximum and minimum daily temperatures were found
in the clear-cut condition and smallest differences in daily temperatures were found in
both conifer-dominated second growth and old growth conditions (Table 1).

Discharge was not significantly different across management conditions, and
nitrate data were incomplete for comparisons across management conditions. Instream
habitat quantification showed that cobble and gravel habitats comprised the greatest
proportion of available habitat for invertebrate colonization (Table 2). The conifer-
dominated second growth management condition had the largest proportion of large
woody debris with 20.9%, followed by old growth (12.1%), alder-dominated second

growth (5.4%) and clear-cut (3.3%) (Table 2).
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Algal AFDM was greatest in the clear-cut (0.06 mg cm’”) management condition.
It was significantly greater than in the old growth (0.013 mg cm?) (p<0.05), alder-

dominated second growth (0.015 mg cm?) (p<0.05), and conifer-dominated second

growth (0.013 mg cm’?) (p<0.05) (Figure 2).

A total of 38 genera were collected from representatives of the Ephemeroptera,
Plecoptera, Trichoptera and Diptera from the headwater streams of the Maybeso and
Harris River watersheds (Table 3). In addition, three subfamilies of Chironomidae were
identified from 1999 subsamples. Orthocladinae comprised the largest percentage across
the four management conditions, followed by Tanypodinae and Chironominae (Table 4).

Mean richness, or the total number of taxa collected, was lowest in the old growth
management condition. It was significantly lower than in the clear-cut (p<0.05) and
alder-dominated second growth (p<0.05) conditions in 1998 (Figure 3a). Mean richness
in the old growth condition also was significantly lower than in the alder-dominated
second growth (p<0.05) in 1999 (Figure 3b).

Mean Shannon-Weiner diversity was greatest in both alder and conifer-dominated

second growth management conditions and significantly less in clear-cut and old growth

during both years (Figure 4).

In 1998, mean densities of invertebrates (6590 m™) collected from large woody

debris and cobble habitats in clear-cut management conditions were significantly greater
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than mean densities in old growth (1423 m?) (p<0.05) and conifer-dominated second
growth (988 m) (p<0.05). In addition, the old growth management condition had
significantly lower mean densities (p<0.05) than the alder-dominated second growth
(3131 m™) (Figure 5a). There were no significant differences in mean densities of
invertebrates collected from large woody debris and cobble habitats among management
conditions in 1999. Mean densities of invertebrates collected from gravel habitats were
greatest in the clear-cut (416,667 m™) management condition and least in the old growth
(93,364 m™); however, these differences were only significant in 1999 (p<0.05) (Figure
5b).

In 1998, mean dry mass of invertebrates collected from large woody debris and
cobble habitats was greatest in the clear-cut (291mg m™) management condition and
significantly greater than in the old growth (95mg m™) (p<0.05) condition. In addition,
mean dry mass irr alder-dominated second growth (225mg m™) also was significantly
greater than in old growth (p<0.05) management (Figure 6a). In 1999, mean dry mass of
invertebrates collected from the large woody debris and cobble habitats was greatest in
alder-dominated second growth (644mg m™) conditions and significantly greater than in
the old growth (195mg m™) (p<0.05) (Figure 6b). There were no significant differences
in mean dry mass of invertebrates collected from gravel habitats among management
conditions in 1998. However, in 1999, mean dry mass of invertebrates collected from
gravel habitats in clear-cut (20,491mg m™) management conditions was significantly
greater than mean dry mass in old growth (6,043mg m™) (p<0.05) and conifer-dominated

second growth (p<0.05). In addition, the old growth management condition had
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significantly lower mean dry mass (p<0.05) than the alder-dominated (15,673mg m™)

second growth (Figure 6c¢).

The composition of macroinvertebrates changed functionally and taxonomically
relative to the old growth condition in 1998 (Figure 7). The old growth management
condition was characterized by a high percentage of predators (42%), followed by
scrapers (30%), collector-gatherers (19%), shredders (9%) and absence of collector-
Tilterers. The clear-cut condition had collector-gatherers as the dominant functional
group. Baetis mayflies and Ostracoda comprised the largest proportion of biomass of this
functional group in the clear-cut condition, whereas the mayfly Paraleptophlebia was
dominant in the old growth. The dominant scraper also changed taxonomically, from
Drunella mayflies in the clear-cut to Cinygmula mayflies in the old growth. In addition,
the clear-cuts had a greater proportion of collector-filterers, represented by the caddisfly
Dolophiloides, than the old growth. The alder and conifer-dominated second growth
condition changed slightly with respect to old growth condition. Scrapers and predators
were still the dominant functional groups present, but both second growth conditions had
relatively fewer collector-gatherers and more collector-filterers than the old growth.
Taxonomically, the dominant scraper in the conifer-dominated second growth was the
mayfly Ironodes, while Cinygmula spp. was dominant in both old growth and alder-
dominated second growth conditions.

In 1999, the functional feeding group characterization differed from 1998 (Figure

8). Collector-gatherers (48%) made up the largest proportion in the old growth condition,

28



followed by predators (30%), scrapers (18%), shredders (4%) and the absence of
collector-filterers. Due to large biomass of the predator stonefly Sweltsa, they were the
dominant functional group in both clear-cut and conifer-dominated second growth
managements. As in 1998, the alder-dominated second growth had predators and scrapers
as the dominant functional groups. Taxonomically, the alder-dominated second growth
had the mayflies Paraleptophlebia and Baetis as the dominant collector-gatherers, just as
in the old growth condition, but different from the clear-cut and conifer-dominated

second growth conditions where Baetis spp. and Chironomidae were dominant.

Mean richness was greatest in the large woody debris habitat and least in the
cobble habitat. Mean richness on gravel was significantly greater than on cobble habitats
(p<0.05) only in 1998, while mean richness on large woody debris was significantly
greater (p<0.05) than on gravel or cobble habitats in both years (Figure 9).

Mean Shannon-Weiner diversity was greatest in large woody debris habitats
followed by gravel and cobble habitats on both years (Figure 10). Mean diversity on
gravel habitats was significantly greater than on cobble habitat in 1998 (p<0.05) and 1999
(p<0.05). Mean diversity of invertebrates on large woody debris was significantly greater

(p<0.05) than on cobble habitat both years.

VL Macroi brate Density and Bi I Habi

Mean invertebrate densities and biomass were not comparable between gravel and

the other two habitats because of the differences in units; however, mean densities were
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significantly greater on large woody debris habitat (1998 - 5294m™; 1999 - 1893m™) than
on cobble (1998 - 723m™; 1999 - 507m™) during both years (Figure 11). Mean dry mass
of invertebrates from large woody debris (302mg m™) was greater than on the cobble

(83mg m™) habitat; however, the difference was only significant in 1998 (Figure 12).

VIL Functional Feeding Group F ons 2 I Habi

In 1998, the functional feeding groups on large woody debris included scrapers
(38%) (primarily Drunella and Cinygmula mayflies), collector-gatherers (23%) (Baetis
and Paraleptophlebia mayflies and Chironomidae), and shredders (18%) (stoneflies
Despaxia and Zapada). Cobble habitats had a high proportion of scrapers (37%)
(Cinygmula and Ironodes mayflies), and the caddisfly, Arctopsyche spp., as the dominant
collector-filterer (33%). In the gravel habitat, there were large proportions of predators
(43%) (primarily Sweltsa spp. and the crane fly Dicranota), as well as scrapers (35%)
(Cinygma spp. and Cinygmula spp.) (Figure 13).

In 1999, functional groups included for the most part, similar taxa from the
previous year. On large woody debris there was a large proportion of scrapers (55%)
followed by collector-gatherers (18%) and shredders (18%) (crane fly, Tipula). Cobble
habitats had scrapers (60%) and collector-gatherers (25%) (mayfly Epeorus) in greatest
proportions, while the gravel habitat had a large proportion of predators (55%) and
collector-gatherers (28%) (Baetis spp., Paraleptophlebia spp. and Chironomidae) (Figure

14).
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DISCUSSION
L Management Conditions

The results of this study showed that taxonomic and functional differences in
macroinvertebrate composition occurred between harvested sites and old growth
management conditions. The primary reasons for these changes may have been due to
changes in the availability olf food resources (e.g. algal AFDM, labile allochthonous
inputs and fine particulates) in the harvested conditions. Anderson (1992) found that
through the emergence of aquatic insects, streams in old growth management conditions
had a greater number of taxa and evenness than from recent clear-cut and second growth
deciduous riparian management conditions. In contrast, richness of macroinvertebrates in
our old growth conditions was lower than in clear-cut and alder-dominated second
growth conditions. Old growth conditions were lacking three taxa (Micrasema spp.,
Goeracea spp. and Prosimulium spp.) that were present in the other management
conditions. In addition, two dipterans (Thaumaleidae and Limonia spp.) were present
only in the clear-cut condition, and Neophylax spp., Chyranda spp., Rithrogena spp. and
Ptilodactylidae were present only in alder-dominated second growth. Vegetation in the
old growth consisted primarily of more refractory coniferous allochthonous material,
while all other management conditions have sources of more labile deciduous
allochthonous inputs (i.e. red alder and salmonberry) that may be used more readily as a
food source by the caddisfly shredders Micrasema and Chyranda and the crane fly
shredder, Limonia. In addition, mean algal AFDM was greatest in the clear-cut
management condition, which was similar to the findings of Murphy et al. (1986) who

reported their clear-cut streams averaged 130% greater periphyton AFDM than in
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buffered and old growth streams, which they attributed to an increase in amount of light
reaching the stream. Increased algal AFDM in the clear-cut condition may have resulted
in a suitable food source for the caddisfly scraper, Goeracea, and the dipteran scraper,
Thaumaleidae. Lastly, the presence of the black fly (Prosimulium) in managements other
than the old growth suggested that the harvest resulted in greater fine particulates
entering the stream through bank erosion, or lateral inputs from runoff and resuspension
as Anderson and Sedell (1979) described. Webster et al. (1990) also showed that
disturbed streams exported significantly more particulate organic matter than reference
watersheds. My study was conducted upstream of logging roads in order to avoid any
sedimentation effects caused by road construction, so fine particulates to the stream
would have likely arisen from the harvest itself. However, our results also may have
differed from those of Anderson (1992) because of greater taxonomic resolution in his
study.

Although diversity of macroinvertebrates has been reported to be lower in
harvested streams (Newbold ez al. 1980), our results showed mean diversity was not
lower in clear-cut streams than in old growth management streams. In addition to lower
macroinvertebrate diversity, streams within harvested areas have generally been found to
have greater macroinvertebrate densities throughout the lower United States (Hawkins et
al. 1982; Silsbee and Larson 1983), in the Pacific Northwest (Murphy et al. 1981), and
Alaska (Duncan and Brusven 1985b). However, Hartman et al. (1996) described negative
impacts of harvesting on macroinvertebrate densities in Carnation Creek, a locality near
Prince of Wales. In this study, large numbers of Chironomidae in the old growth

condition and large numbers of midges and Baetis spp. in the clear-cut condition, as well
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as fewer taxa, were primarily responsible for lower diversity. The increase in densities
after a harvest was largely due to large numbers of Baetis spp., Chironomidae and the
mayfly Drunella in clear-cut conditions. Similarly, Wallace and Gurtz (1986) reported
increased numbers of Baetis spp. in their harvested streams and attributed it to increases
in autochthonous production. The increase in macroinvertebrate densities in our alder-
dominated second growth conditions were due to large numbers of Zapada spp. and
Micrasema spp., both of which are shredders and presumably using allochthonous inputs
from the red alder riparian vegetation. Culp and Davies (1985) also found higher
macroinvertebrate abundances in substrate patches with alder detritus as compared to
hemlock detritus. I found that headwater streams of the Maybeso Experimental Forest
and adjacent Harris River watershed had greater invertebrate densities following a
harvest, with the clear-cut managements having the greatest densities. Second growth
conditions had intermediate densities, and old growth had the lowest densities of
invertebrates.

Mean biomass also was greater in harvested areas, particularly in the alder-
dominated second growth and recently clear-cut management conditions. This greater
invertebrate biomass in harvested areas may be the result of a greater amount of nutrient
availability through increased litter processing rates (Stone and Wallace 1998),
particularly alder litter which is processed quicker than conifer needles (Sedell et al.
1975). Stone and Wallace (1998) suggested that these processes could lead to increased
production of macroinvertebrates in harvested streams.

Changes in the functional feeding group composition of streams have been shown

to be the result of changes or differences in food availability (Vannote et al. 1980). It is
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probable that differences in macroinvertebrates between years may have resulted from
different seasonal sampling times. Overall, larger proportions of scrapers were present in
July than in June. Similarly, Duncan and Brusven (1985b) also found a tendency for
increased scrapers from spring to summer in their studies in Prince of Wales Island.
Large proportions of predators across management conditions may have resulted from an
under representation in the non-predator fauna due to low sampling efficiency, since all
available habitats (fine woody debris, root wads, mosses and bedrock) were not sampled
in this study. Another possible reason for the presence of a large proportion of predators
is a prey base with a rapid turnover in generation time. For example, large numbers of
Harpactacoida copepods, with a presumably short generation times, were collected from
all management conditions, primarily from large woody debris and gravel habitats where
the predator Sweltsa were more commonly found.

Streams with alder-dominated second growth riparian vegetation had a functional
and taxonomic similarity to old growth management conditions. However, alder-
dominated second growth also had an abundant, richer and more diverse fauna.
Therefore, streams in alder-dominated second growth conditions were potentially
contributing a greater amount and variety of benthic invertebrates to larger fish-bearing

streams.

1L Instream Habitats
In the event of a disturbance such as timber harvest, Gurtz and Wallace (1984)
concluded that invertebrates responded by increasing their abundance on physically

larger substrates that required more energy to move. In my study, the physical stability,
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structural complexity, and ability to retain organic matter resources for invertebrate
consumption may have all been important. Invertebrate richness and diversity were
greatest in the large woody debris followed by gravel and cobble substrates. This could
have been due to a combination of physical stability and structural complexity of the
substrates. Large woody debris is physically larger than either cobble or gravel substrates,
and has greater structural complexity than cobble substrates, possibly allowing for a more
stable habitat, greater variety of food resources and refugia for invertebrates. Wallace et
al. (1995) showed an increase of coarse and fine particulate matter accumulation after log
additions to a stream in North Carolina. In addition, large numbers of taxa have been
found in association with wood as shown by Dudley and Anderson (1982) who recorded
56 taxa closely associated with woody debris and another 129 species as facultatively
associated.

Gravel substrates also were areas of high numbers and biomass of invertebrates in
my study streams. Gravel is more structurally complex than cobble. Cobble is generally
smooth surfaced while the gravel habitat has interstitial spaces for refuge and detritus
accumulation. Culp and Davies (1985) showed the importance of interstitial detritus in
gravel substrates in determining the distribution of macroinvertebrates, with greater
numbers of invertebrates associated with either high or low levels of red alder detritus
than hemlock.

All functional groups were represented in each of the three habitats under study.
Scrapers made up a large proportion in each of the habitats; however, each habitat had a
dominant functional group associated with it. Large woody debris had the highest relative

proportion of shredders, reflecting on its ability to retain coarse particulates (i.e. leaf litter
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and detritus) (Bilby and Likens 1980). Cobble substrates had the highest relative
proportion of collector-filterers suggesting their importance to this group even in the
presence of stable large woody debris substrates. Gravel habitats had the highest
proportion of predators, likely due to the presence of high abundances of Harpactacoida
copepods and chironomid as a prey base.

Instream habitat quantification revealed that the sections of streams examined
were comprised primarily of cobble and gravel substrates and the proportion of large
woody debris present and available for macroinvertebrate colonization in old growth
management conditions averaged 12.1% of the total habitat available. The proportion of
large woody debris in clear-cut management conditions also was small (3.3%). Very few
large pieces of wood remained in these streams after the harvesting event and the
majority of the wood that was available was small and appeared to be slash from the
harvesting event itself. Alder-dominated second growth conditions also had a small
proportion of large woody debris (5.4%). Bilby and Ward (1991) compared woody debris
inputs to streams from old growth, clear-cut and second growth forests and concluded
that large woody debris inputs from second growth forests with red alder riparian stands
were minimal. Surprisingly, conifer-dominated second growth conditions had the greatest
proportion of large woody debris (20.9%); however, most of the large woody debris was
larger in diameter than that of the current forest, suggesting that the origin of the wood
was not from the second growth stand and was in the streams before the harvest or as a
direct result of the harvest.

In addition to the functional importance of large woody debris in: 1) channel and

pool formation (Keller and Swanson 1979); 2) the retention of organic matter (Bilby
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1981); and 3) serving as a habitat for invertebrate colonization (Gurtz and Wallace 1984),
it is important biologically as a food resource for invertebrates (Anderson et al. 1979;
Kaufman and King 1987). Large woody debris contributed significantly to the richness,

diversity, and abundance of macroinvertebrates in Southeast Alaskan headwater streams.

CONCLUSION

The results of this study suggested that forest succession after a timber harvest
affected macroinvertebrate community structure in the upland forests of Southeast
Alaska, as a result of changes in food availability relative to the old growth condition.
First, canopy removal has led to increases in sunlight penetration to the streambed and
consequently to higher autochthonous food resources which results in greater biomass
and densities of scraper and collector-gatherer invertebrates in clear-cut management
conditions. Secondly, in the alder-dominated second growth condition, provision of more
labile allochthonous organic matter (i.e. red alder) has increased the abundance and
number of different shredder invertebrates. Lastly, timber harvest has led to the presence
of collector-filterer organisms in all harvested conditions. Although clear-cut conditions
had the highest densities of invertebrates, alder-dominated second growth conditions had
high densities of invertebrates in addition to a richer and more diverse fauna. Thus,
management of upland forests in Southeast Alaska should provision for red alder riparian
vegetation to maximize macroinvertebrate diversity and abundance.

The evaluation of instream habitats showed that large woody debris and gravel
substrates were important to the contribution of high densities and biomass of

invertebrates to upland Southeast Alaskan headwater streams. In addition, large woody
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debris also contributed to high taxa richness and diversity. Maintenance of both gravel
and large woody debris substrates within these streams is advantageous for large numbers
of benthic invertebrates that could potentially benefit the diet of downstream
economically important fish communities.

There is a need for an alternative method to clear-cut harvesting of upland forests
of Prince of Wales. The alternative must result in an abundant, richer and more diverse
community of benthic invertebrates. Results of this study suggest that this could be
achieved by opening up a portion of the canopy, having red alder along the riparian
margin, and maintaining sources of wood to the streams. I would suggest selectively
cutting a proportion of the riparian vegetation to potentially allow for: 1) greater sunlight
penetration to stimulate autochthonous production; while 2) maintaining wood
recruitment to the stream; and 3) planting of red alder saplings along the riparian margin
for labile sources of allochthonous organic matter. This management strategy should
positively influence invertebrate richness, diversity and abundance, without the loss of

instream habitat.
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Table 1. Average daily maximum, minimum and differences in streamwater

temperature (°C) 1999.

Old Growth  Clear-cut  Alder SG Conifer SG
Ave daily max 10.44 9.96 9.13 7.71
Ave daily min 10.03 9.03 8.38 7.35
Ave max minus min 0.41 0.93 0.75 0.36

Table 2. Percentage of instream large woody debris, cobble and gravel habitats within
management conditions. Do not equal 100 percent in cases where fine woody debris or

bedrock substrates were present.

Management

condition large woody debris cobble gravel
Old Growth 12.1 46.3 40
Clear-cut 33 53.8 32.1
Alder SG 5.4 22.1 67.5
Conifer SG 20.9 24.1 34.2
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Table 3. Checklist of taxa collected from upland forest headwater streams

of Maybeso Experimental Forest and adjacent Harris River watershed

Prince of Wales, Southeast Alaska.

Ephemeroptera
Bactidae
Baetis
Heptageniidae
Cinygma
Cynigmula
Epeorus
Ironodes
Rithrogena
Ephemerellidae
Drunella
Leptophlebiidae

Paraleptophlebia

Plecoptera
Nemouridae
Zapada

Visoka

Leuctridae
Despaxia
Chloroperlidae

Sweltsa

Trichoptera
Philopotamidae
Dolophiloides
Hydropsychidae

Arctopsyche
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Ryacophilidae
Rhyacophila

Brachycentridae
Micrasema

Limnephilidae
Cryptochia
Chiranda

Moselyana

Pseudostenophylax

Psychoglypha
Goeridae

Goeracea
Uenoidae

Neophylax
Glossossomatidae

Anagapetus



Table 4 (cont)

Coleoptera

Ptilodactylidae

Diptera
Thaumaleidae
Ceratopogonidae

Atrichopogon
Probezzia
Chironomidae
Chironominae
Orthocladinae
Tanypodinae
Dixidae

Dixa

Psychodidae
Pericoma
Simuliidae
Prosimulium
Tipulidae
Dicranota
Limonia
Hexatoma
Pedicia
Tipula
Empididae
Chelifera
Clinocera

Oreogeton

Non-insects
Turbellaria
Annelida

Oligochaeta
Copepoda

Harpactacoida
Ostracoda

Hydracarina
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Table 4. Percent distribution of Chironomidae subfamilies collected from large woody

debris, cobble and gravel habitats in each management condition.

Habitat Taxa Old Growth Clear-cut Alder SG  Conifer SG
Large Woody Orthocladinae 59.3 91 85.6 83.4
Debris Tanypodinae 333 6.1 13.1 10.9
Chironominae 7.5 29 1.3 5.7
Cobble Orthocladinae 100 100 100 94
Tanypodinae 0 0 0 2.7
Chironominae 0 0 0 34
Gravel Orthocladinae 100 86.2 80.2 95.9
Tanypodinae 0 2.8 4 0
Chironominae 0 11.1 15.8 4.1
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Figure 1. Maybeso Experimental Forest, Prince of Wales Island, Southeast Alaska
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Figure 2. Mean algal AFDM among management conditions 1999. Means with

different letters are significantly different (p<0.05).
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Figure 4. Mean Shannon-Weiner diversity of invertebrates among management
conditions from (a) 1998 and (b) 1999. Means with different letters are

significantly different (p<0.05).
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Figure 5. Mean densities of invertebrates among management conditions from (a)

large woody debris and cobble habitats 7-15 July 1998; and (b) gravel habitats 11-

14 June 1999. Means with different letters are significantly different (p <0.05).
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Figure 6. Mean dry mass of invertebrates among management conditions from (a)
1998 large woody debris and cobble habitats; (b) 1999 large woody debris and
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significantly different (p<0.05).
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Figure 7. Percentage of functional feeding groups, based on biomass, present

among management conditions 7-15 July 1998.
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Figure 9. Mean richness of invertebrates among habitats from (a) 7-15 July 1998
and (b) 11-14 June 1999. Means with different letters are significantly different

(p<0.05).
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Figure 11. Mean densities of benthic invertebrates on large woody debris and cobble

habitats across all management conditions. 7-15 July 1998 and 11-14 June 1999.
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Appendix 1
Record of Deposition of Voucher Specimens*
The specimens listed on the following sheet(s) have been deposited in the named museum(s) as samples of
those species or other taxa, which were used in this research. Voucher recognition labels bearing the
Voucher No. have been attached or included in fluid-preserved specimens.

Voucher No.: __ 2001-05

Title of thesis or dissertation (or other research projects):
BENTHIC INVERTEBRATE COMMUNITY STRUCTURE AS AFFECTED BY FOREST

SUCCESSION AFTER CLEAR-CUT LOGGING ON PRINCE OF WALES ISLAND, SOUTHEAST
ALASKA

Museum(s) where deposited and abbreviations for table on following sheets:

Entomology Museum, Michigan State University (MSU)

Other Museums:

Investigator’s Name(s) (typed)
OSVALDO HERNANDEZ

Date ___20, IV 2001

*Reference: Yoshimoto, C. M. 1978. Voucher Specimens for Entomology in North America.
Bull. Entomol. Soc. Amer. 24: 141-42.

Deposit as follows:
Original: Include as Appendix 1 in ribbon copy of thesis or dissertation.

Copies: Include as Appendix 1 in copies of thesis or dissertation.
Museum(s) files.
Research project files.

This form is available from and the Voucher No. is assigned by the Curator, Michigan State University
Entomology Museum.
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