:. . .. ., . A ‘ .s . aw?“ 2 . . A . , . E. 2.1““. . . , «NEW? . . in. .. 2., .. x. v . % .«t s in? A. :0 5 ‘Fo :1” L .2; x. Q ‘0 I E?! . 0:: . in... mean .. aw ‘ no" {9. . . 1 £3... E . 5 A _.. 2; < THL‘US r\ I“ /)‘b l.‘ This is to certify that the dissertation entitled Documenting the history of speciation in Rhagoletis zephyria (Diptera: Tephritidae) using molecular markers presented by Vesna Gavrilovic has been accepted towards fulfillment of the requirements for Ph . D . degree in Zoology v a r professor Date 05/1m2001 MS U i: an Affirmative Action/Equal Opportunity Institution 0-12771 LIBRARY Michigan State Universlty PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE iiitiifi 6101 chlRC/DateDuopGS—MS i_——— _—_____————— DOCUMENTING THE HISTORY OF SPECIATION IN Rhagoletis zephyrz'a (Diptera: Tephritidae) USING MOLECULAR MARKERS By Vesna Gavrilovic A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements - for the degree of DOCTOR OF PHILOSOPHY Department of Zoology and Program in Ecology, Evolutionary Biology and Behavior 2001 ABSTRACT DOCUMENTING THE HISTORY OF SPECIATION IN Rhagoletis zephyria (Diptera: Tephritidae) USING MOLECULAR MARKERS By Vesna Gavrilovic Rhagoletis pomonella (apple maggot) and R. zephyria (snowberry fly) belong to the R. pomonella species group of the true fruit flies (Tephritidae) which are the center of a long-lasting debate about modes of Speciation. Speciation in this group appears to have been occurring sympatrically via host-plant shifts, in the absence of the geographic barriers traditionally thought to be necessary for genetic divergence of populations and establishment of reproductive isolation. The distribution of R. pomonella and R. zephyria has been described as parapatric, while all the other species of the pomonella group are broadly sympatric. In addition, while most of the species in the group show only allele frequency differences for electrophoretic loci, there is a fixed difference at the Had locus (hydroxyacid dehydrogenase) in R. zephyria (fixed for Hadl l l) and R. pomonella (two other alleles - Had '00 and Had125 ). Therefore the relationship between these two species provides a contrast to other species pairs in the group. This project investigates whether R. zephyria has diverged by mechanisms similar to the ones that lead to divergence of other taxa in the pomonella group. To address this question, the phylogenetic position of R. zephyria within the group is studied using sequences of nuclear and mitochondrial genes. Patterns of genetic variation in both apple maggot and snowberry flies throughout the geographic ranges of both species are characterized not only using gene sequence data, but also using amplified fragment length polymorphism (AF LP) patterns, in order to infer polarity and time of the host shift that presumably occurred causing Speciation and infer genetic mechanisms involved in species divergence. Rhagoletis pomonella appears to represent a large and variable gene pool from which new species arise. The zone of overlap of native geographic ranges of R. zephyria and R. pomonella is shown to be much larger than previously described. Host shifi that led to divergence of R. zephyria from R. pomonella and Speciation appears to have occurred from ancestral hawthorn to snowberry. Speciation of R. zephyria appears to be very recent, as indicated by the unresolved phylogeographic relationships, incomplete lineage sorting and lack of fixed differences at all loci whose sequences were studied. The amount of genetic variation found in R. zephyria was large, indicating that Speciation was not accompanied by bottlenecks. Little geographic structuring was revealed by analyses of anonymous nuclear loci, mitochondrial COI/COII gene and AF LP patterns. All analyses show that R. zephyria appears to be a native inhabitant of eastern North America. Some AF LP fragments were only amplified either in R. zephyria or R. pomonella. These fragments can potentially be used as diagnostic markers for distinguishing between these two species. ACKNOWLEDGEMENTS Numerous people have provided guidance, help and support in various ways throughout the years I was working on this dissertation. Without them the project would have been much weaker and the whole graduate school experience much less fun. Dr. Jim Smith, my advisor, provided knowledgeable and professional guidance, support and continuous understanding and a simple “Thanks” is just not enough to express how much I appreciate it. It is difficult to find adequate words of gratitude to Dr. Guy Bush for his continuous intellectual guidance and financial support. Thanks to Dr. Rich Lenski and Dr. Jim Hancock for the time and effort they invested in serving on my Graduate Committee. Special thanks are due to present and past members of Smith and Bush or Bush and Smith lab, who were always extremely supportive and provided technical help, valuable discussions and suggestions: Dr. George Weiblen, Angela Roles, Joe Crossno, Dr. Vanderlei Martins, Matt J aycox, Vince Borla, Chhaya Patel, Martha Smith Bressan Caldas, Jessica Wolf, Elizabeth Kruszewski and Danielle Christman. Amplification and sequencing of the nuclear alleles would not be possible without Joe Roethele (University of Notre Dame) who constructed the genetic linkage map of Rhagoletis pomonella, designed primers for the nuclear loci, helped tremendously in cloning and sequencing, trained me to do sequencing myself, initiated valuable discussions and always had friendly words of understanding and support. I would like to thank Dr. Jeff F eder who kindly allowed me to use the primers designed in his laboratory and do a large part of the work there. Help and support of members of his lab - Uwe iv Stolz, Dr. Bill Perry, Hattie Dambroski and Dr. Ken F ilchak are highly appreciated. Thanks also to Nancy Perry for providing the warmth of home one winter when I worked at Notre Dame. For direct or indirect help with collecting the samples throughout the country I would like to acknowledge Dr. Guy Bush, Dr. Jim Smith, Joe Crossno, Dr. Mark Wiedrlechner (Iowa State University), Mike Klaus (Washington Department of Agriculture), Dr. Diane Olsten (Utah State University), Charles Linn (Agriculture Experimental Station, Geneva, NY), Dr. Ron Prokopy (University of Massachusetts, Amherst) and Dr. Timothy Dickinson (Royal Ontario Museum, Toronto, ON). For help with sequencing and AF LP GeneScanning thanks go to Sue Soltzfus, Therese Best, Sherry Tjugum-Holland and Barbara Christian at the MSU DNA Sequencing Facility. When data analyses seemed to be going to a dead end, Dr. Ron DeBry (University of Cincinnati) and Dr. Susan Masta (San Francisco State University) provided advice that helped me put things back on track. Their help is greatly appreciated. Branislav Blagojevic was cheering for me from the very beginning, waiting impatiently for a long time on the other side of the country, making sure that I did many things in an unorthodox way, at least time—wise. Including the 3am phone calls which I will surely miss, but gladly trade for conversations in person. It would be very difficult to get through all the challenges without the support of my family, even from across the ocean. Here I say thanks to Vladimir Gavrilovic, Ana and Dragan Gavrilovic and J elena Todic. Friends whose encouragement and sanity keeping are priceless include Sandra Bencic, Dr. Danny Rozen, Jelena and Goran Poprzen, Natasa Nestorovic, Igor Pastirk, Sanela Lampa Pastirk, Eva Maria Muecke, Alexandra Burch, Hilschers — Klara, Roman and Ondrej, Silvia Fransen and Katarina Martic. And then also, thanks to Micaela Szykman, Russ Van Horn and Ed Siuda for all the kind words and support. Encouragement from Maxygen, Inc. that came from Dr. Lori Giver, Dr. Steve delCardayre, Cristina Ivy, Troy Obrero, Walker Lutringer, Fred Gaume and many others contributed greatly to my motivation to finish the project and finish it quickly, for which I am very grateful to all of them and to Dr. Danny Rozen for helping me start that network. vi TABLE OF CONTENTS LIST OF TABLES ............................................................................... viii V LIST OF FIGURES ................................................................................ ix KEY TO SYMBOLS AND ABBREVIATIONS .............................................. x CHAPTER 1 INTRODUCTION .................................................................................. l Speciation in the absence of geographic barriers ............................................... 1 Use of molecular markers in making inferences about Speciation ........................... 8 Rhagoletis pomonella group taxa, life history, host use and geography ................... 13 Specific objectives and hypotheses ............................................................. 20 CHAPTER 2 GEOGRAPHIC DISTRIBUTION OF R. zephyria .......................................... 23 Introduction ....................................................................................... 23 Materials and Methods ........................................................................... 27 Results ............................................................................................. 29 Discussion .......................................................................................... 39 CHAPTER 3 PHYLOGEOGRAPHIC RELATIONSHIPS OF R. pomonella AND R. zephyria. . ....44 Introduction ....................................................................................... 44 Materials and Methods ........................................................................... 47 Results ............................................................................................. 56 Discussion ......................................................................................... 90 CHAPTER 4 DIVERGENCE OF R. pomonella AND R. zephyria AS REVEALED BY DIFFERENCES IN AF LP PATTERNS ....................................................... 99 Introduction ......................................................................................... 99 Materials and Methods .......................................................................... 102 Results ............................................................................................. 110 Discussion ........................................................................................ 1 19 CONCLUSIONS ................................................................................ 1 25 APPENDICES .................................................................................. 128 Appendix A: P220 sequence alignment ...................................................... 129 Appendix B: P2956 sequence alignment ..................................................... 146 Appendix C: P2480 sequence alignment ..................................................... 167 Appendix D: COI/COII sequence alignment ................................................ 180 REFERENCES ................................................................................... 201 vii LIST OF TABLES Table 1.1. Taxa belonging to the Rhagoletis pomonella species group and their host plants .................................................................................................... 16 Table 2.1. Collection records for R. zephyria ..................................................... 34 Table 3.1. Populations of Rhagoletis zephyria and R. pomonella included in the phylogeographic analyses ........................................................................... 49 Table 3.2. Oligonucleotide sequences used for PCR amplifications and sequencing. . . . . ...53 Table 3.3. Summary of the sample and loci analyzed in R. zephyria, R. pomonella and other taxa of the genus Rhagoletis in this phylogeographic study .............................. 58 Table 3.4. Summary of the polymorphism at three anonymous nuclear loci and mitochondrial COI/COII locus in R. pomonella, R. zephyria and other taxa of the genus Rhagoletis ............................................................................................. 58 Table 3.5. Detection of natural selection at the four loci in R. pomonella, R. zephyria and all other Rhagoletis taxa (pooled) using Tajima's (1989) and Fu & Li's (1993) tests ..................................................................................................... 60 Table 3.6. HKA (Hudson-Kreitman-Aguadé) test for silent-site differences in four regions between R. pomonella and R. zephyria ............................................................ 61 Table 3.7. Summary of divergence parameters between R. pomonella and R. zephyria ................................................................................................ 62 Table 3.8. Summary of the parsimony analyses of the DNA sequences at three anonymous nuclear loci and mitochondrial COI/COII locus .................................................. 63 Table 4.1 Populations of R. zephyria and R. pomonella sampled for the AF LP analysis ................................................................................................ 103 Table 4.2. Cycling parameters used for selective amplification .............................. 108 Table 4.3 Estimated average heterozygosities and percentage of polymorphic loci in R. zephyria and R. pomonella ......................................................................... 113 Table 4.4 Genetic distances (below diagonal) and geographic distances (in miles, above diagonal) between R. zephyria and R. pomonella from different regions based on AF LP data .................................................................................................... 118 viii LIST OF FIGURES Figure 1.1. Geographic distribution of the Rhagoletis pomonella group species ........... 17 Figure 2.1. Collection sites of R. zephyria ....................................................... 38 Figure 3.1. Genetic linkage map of Rhagoletis pomonella ..................................... 51 Figure 3.2. P220 neighbor-joining tree based on J ukes-Cantor distances ................... 64 Figure 3.3. P220 -— a random most parsimonius tree (of the 264500 equal MPRs). . . . . ....66 Figure 3.4. P220 - strict consensus of 264500 most parsimonious trees of length 262. CI=0.523, RI=O.896, RC=0.468 .................................................................. 68 Figure 3.5. P2956 - neighbor-joining tree (J ukes-Cantor distances) ........................ 71 Figure 3.6. P2956 —- a random most parsimonious tree (of 285400 equal MPRs) ......... 73 Figure 3.7. P2956 - strict consensus of 285400 most parsimonious trees of length 309. CI=O.628, RI=0.937, RC=0.588 .................................................................. 75 Figure 3.8. P2480 — neighbor-joining tree (J ukes-Cantor distances) ......................... 77 Figure 3.9. P2480 — a random most parsimonious tree (of 1920 MPRs) ..................... 79 Figure 3.10. P2480 - strict consensus of 1920 most parsimonious trees of length 582. CI=O.308, RI=0.698, RC=O.214 .................................................................. 81 Figure 3.11. COI/COII — neighbor-joining tree (J ukes-Cantor distances) .................. 84 Figure 3.12. COI/COII — a random most parsimonious tree (of 89200 MPRs) ............ 86 Figure 3.13. COI/COII - strict consensus of 89200 most parsimonious trees of length 300. CI=O.613, RI=0.780, RC=O.483 .................................................................. 88 Figure 4.1 Collecting sites for the populations sampled for AF LP analysis ............... 104 Figure 4.2. The principle of the AF LP DNA fingerprinting technique ..................... 107 Figure 4.3 Frequency distribution of number of fragments amplified from each individual ............................................................................................ 1 12 Figure 4.4. Neighbor-joining tree based on the analysis of 255 AF LP loci ................ 1 14 ix KEY TO SYMBOLS AND ABBREVIATIONS aap (ptx) — Rhagoletis pomonella, Waxahatchie, Texas has — R. basiola bop (pga) - R. pomonella, Macon, Georgia c — R. carnivora cng — R. cingulata com — R. completa eL (electrom) — R. electromorpha f — R. nr. mendax (flowering dogwood fly) fa (nr. mendax a) - R. nr. mendax (flowering dogwood fly), adult fp (nr.mendax p) - R. nr. mendax (flowering dogwood fly), pupa fu — R. fausta ind —— R. indiferens jbt — R. juniperina m — R. mendax mel — R. mendax, East Lansing, Michigan mga — R. mendax, Georgia mmi - R. mendax, East Lansing, Michigan mnj — R. mendax, Rutgers, New Jersey mns - R. mendax, Nova Scotia mon - R. mendax, Ontario mOtis — R. mendax, Otis Lake, Michigan mxH —- R. nr. pomonella, Mexico (highland) mxhd — R. nr. pomonella, La Jolla, Mexico me — R. nr. pomonella, Mexico (lowland) NC (pmiNC) — R. nr. pomonella, Grant, Michigan nr. mendax GA - R. nr. mendax (flowering dogwood fly), Georgia nr. pom MX - R. nr. pomonella, Mexico nwmx — R. pomonella, New Mexico p - R. pomonella, Grant, Michigan pco - - R. pomonella, Boulder, Colorado pel — R. pomonella, East Lansing, Michigan pga (bop) - R. pomonella, Macon, Georgia pia - R. pomonella, Ames, Iowa pil - R. pomonella, Riverwoods, Illinois pma - R. pomonella, Amherst, Massachusetts pmhbj - R. nr. pomonella, Louisiana (mayhaw fly) pmi - R. pomonella, Grant, Michigan pmiNC (NC) - R. pomonella, Grant, Michigan pmn - R. pomonella, Staples, Minnesota pne ‘- R. pomonella, Nebraska pns - R. pomonella, Kentville, Nova Scotia pny - R. pomonella, Geneva, New York pon - R. pomonella, Toronto, Ontario ppa - R. pomonella, Biglerville, Pennsylvania xi ptx (aap) - R. pomonella, Waxahatchie, Texas put - R. pomonella, Wellsville, Utah pwa - R. pomonella, St. Cloud Ranch, Washington rpmx - R. nr. pomonella, Mexico City, Mexico sparkga — R. nr. mendax, Georgia (sparkleberry fly) str — R. striatella sv — R. suavis t — R. tabellaria, Washington tzt — R. tabellaria, Ontario zca — R. zephyria, Honeydew, California 200 — R. zephyria, Boulder, Colorado zel — R. zephyria, East Lansing, Michigan zid - — R. zephyria, Elmira, Idaho zma — R. zephyria, Amherst, Massachusetts zmio — R. zephyria, Mio, Michigan zmn — R. zephyria, Hawby, Minnesota zmt — R. zephyria, Swan Lake, Montana zmtB — R. zephyria, Terry, Montana znd — R. zephyria, Bismarck, North Dakota zne — R. zephyria, Brady, Nebraska zny — R. zephyria, Geneva, New York zon — R. zephyria, Rice Lake, Ontario zor — R. zephyria, Grants Pass, Oregon xii zpa — R. zephyria, College Park, Pennsylvania zsb -— R. zephyria, Glen Haven (Sleeping Bear Dunes), Michigan zsd — R. zephyria, Custer, South Dakota zwa — R. zephyria, Dixie, Washington zwi — R. zephyria, Waukesha, Wisconsin zwy — R. zephyria, Moiser Gulch, Wyoming In all trees, green branches represent R. zephyria, red R. pomonella, pink R. nr. pomonella (Mexico), blue R. mendax and light-blue R. nr. mendax (flowering dogwood fly). Squares next to R. zephyria labels and circles next to R. pomonella labels correspond to geographic regions from which the samples were taken: red — Northeast, orange — Great Lakes, green — Great Plains, blue — Rocky Mountains and Colorado Plateau, violet (purple) — Northwest, and gray — South. xiii CHAPTER 1 INTRODUCTION Tephritid fruit flies in the genus Rlzagoletis have been a model system for studying sympatric Speciation via host-plant shifts with no geographic separation of populations. Some of the species in this genus (suavis species group, Bush and Smith 1998) conform to the traditional view that new species arise when genetic differences between populations accumulate as a result of geographic barriers to gene flow (Mayr 1963). However, species of the pomonella species group represent one of the examples of incipient sympatric Speciation, not uncommon in phytophagous insects (Mitter et al. 1991, Guldemond and Mackenzie 1994, Emelianov et al. 1995) and some vertebrates (Schliewen et al. 1994, Sturmbauer 1998, Hatfield and Schluter 1999). Rhagoletis pomonella group species are also one of the best-understood examples where ecology has played an important role in Speciation (Orr and Smith 1998). SPECIATION IN THE ABSENCE OF GEOGRAPHIC BARRIERS Species and Speciation are the center of the long-standing debate focused on explaining how gene pools become split and isolated, giving rise to new species. Many biologists still hold the view that this is possible only if physical barriers to gene flow between populations exist, allowing accumulation of different mutations, different selection pressures and stochastic processes to shape gene complexes within these populations in such a way that, if they come into secondary contact, they will no longer be able to produce viable and fertile offspring. If they accept the view that Speciation can occur without physical barriers to gene flow, they often say it happens only rarely (e. g Barraclough and Vogler 2000). Parapatric divergence in a classic sense may be initiated in a small region at the periphery of a widely distributed species. The new ecological “race” becomes adapted to a new “niche” and, once established, spreads to occupy the range of the new habitat or host (after Bush 1975). It is unlikely that a shift and adaptation to the new niche occurs simultaneously along the entire ecotone. Recently, mosaic distribution of populations throughout the species range has been referred as to parapetric distribution of populations (for example, Gavrilets et al 2000). Models of Speciation under this definition of parapatry assume that geographic variation exists between populations of a widely distributed species and some gene flow occurs between neighboring populations. It is intuitive that the geographic ranges of most species are much larger than the dispersal distances of their individuals or gametes. Even though any particular mutation is a rare event, the number of possible mutations is almost unlimited and therefore different mutations are likely to accumulate in different populations of species throughout the range. Different habitat conditions, both biotic and abiotic, are likely to exist in different parts of the range, creating different selection regimes,which can contribute to divergence of the populations despite some gene flow. The main questions here are how fast reproductive isolation can develop and where does the first split occur (Gavrilets et al 2000). According to Mayr (1963), peripheral populations are more likely to diverge because they are usually smaller, experience different selection pressures than the central populations and are less affected by gene flow. Brown (1957), on the other hand, in his concept of centrifugal Speciation, argues that the central populations represent the origin of new species because they are often the source of new genetic variability. In a recently developed model, Gavrilets et al (2000) have shown that both time until Speciation and location of the first split depend on mutation rate, amount of genetic change required for reproductive isolation and population size. One of the important implications of this model is that it does not require strong divergent selection for rapid (few hundred to few thousand generations) Speciation. Experimental study of premating reproductive mechanisms in grasshoppers (Tregenza et al 2000) corroborated that the long periods of allopatry are not necessary for Speciation. At the opposite end to allopatric Speciation in the geographic continuum is Speciation in sympatry. Key elements of sympatric Speciation are resource-based disruptive selection, assortative mating and habitat (host) fidelity (Johnson et al 1996, F utuyma 1997, Berlocher 1998, Schluter 1998). Habitat choice behavior is also attributed the status of a key component in generating conditions under which reproductive isolation between sympatric populations can evolve (Via et al 2000), because behavioral changes often initiate the use of a new environment, allowing selection to operate on morphological and physiological characters (F utuyma and Moreno 1988, Fry 1996). Earlier models (Felsenstein 1981) involved non-habitat-choice assortative mating and divergent selection. In these models, recombination easily separates alleles for assortative mating from alleles for performance in two habitats, and little or no divergence is possible. F elsenstein (1981) therefore concluded that sympatric Speciation is only likely under highly restricted conditions. Models developed later (Rausher 1984) included loci for habitat choice and demonstrated that habitat preference can develop easily even in absence of fitness differences across environments. Therefore characters that influence both specialized resource use (habitat preference) and assortative mating are particularly important in evolution of ecological specialization and speciation. The significance of ecological specialization in speciation has been widely recognized and documented for a number of species (Bush 1994, Johnson et al 1996, Schluter 1996). Experimental corroboration of this model comes from work of Via on pea aphids. In several studies her group has shown that under experimental conditions two host races of pea aphids have poor performance and fitness on alternative hosts simply because of unwillingness to feed on that host, not because of physiological trade-off. Several other studies have shown that trade-offs are not essential for ecological specialization (Fry 1996, Kawecki 1996, Whitlock 1996). Caillaud and Via (2000) suggest that the physiological trade-off (toxicity of the alternative host) initially might have been the selective force favoring host plant acceptance, but it no longer plays that role. In host races of Rhagoletis pomonella, no evidence of larval feeding trade-off have been found (Prokopy et a1 1988) — larvae of both races performed equally in hawthorn fruits, yet they are highly specialized for different temporal resources (Feder et al 1997, F eder and Filchak 1999, Filchak et al 1999). Under the influence of natural selection, populations colonizing novel environments can diverge very rapidly from the ancestral populations, which is a critical early step in speciation (Coyne 1992, Travisano and Rainey 2000). Speciation by ecological specialization is most rapid when assortative mating in different environments is coupled with habitat preference (Johnson et al 1996). In the initial diversification phase small amount of divergence occurs; this phase is followed by the quasi-equilibrium phase during which little divergence occurs and completion phase when gene flow between habitats stops quickly (in less than 1000 generations) and divergence is dramatic (Johnson et al 1996). Fast speciation in sympatry can also occur when traits for habitat choice, or traits correlated with them, are the direct target of disruptive selection (Kondrashov and Kondrashov 1999). Reproductive isolation can develop in the presence of limited gene flow via pleiotropy when divergent selection acts on multiple characters (Rice and Hostert 1993). When the effect of selection is larger than gene flow, some divergence will result; selection will then tend to further decrease gene flow, enabling divergence of traits that initially were not diverging (Rice and Salt 1990). It is usually not easy to estimate how fast reproductive isolation evolves, especially in long-standing groups, since averaging rates over time obscures the biologically important short-term evolution (Hendry and Kinnison 1999). The most spectacular speciation rate has been estimated for cichlid fishes in lakes of Eastern Africa (Danley et al 2000, Wilson et al 2000). Several factors contribute to rapid diversification despite some gene flow in these lakes: philopatry, lack of dispersing larval stage, and varying water levels which affects extinction and reestablishment of populations (Danley et al 2000, Meyer 1993). A number of experimental studies with known timescales have shown that reproductive isolation can evolve very rapidly - examples of rapid divergence include limnetic and benthic forms of sticklebacks (Schluter 1996), evolution of soapbeny bug populations on alternative hosts (Carroll et al 1997), morphological differentiation of Anolis lizards introduced to Bahaman Islands (Losos et al 1997), changes in life history traits and morphology in Neotropical guppies (Reznick et al 1997), and morphological and genetic divergence between river and lake populations of salmon (Hendry et al 2000). In all these cases, diverging populations were adapting to local resources and genetic differences were small, especially in neutral markers, but isolation developed in as little as 13 generations (Hendry et a1 2000). Accompanying morphological and ecological changes were large enough to prevent cross mating, which can further facilitate divergence and led to speciation in sympatry. Ecological interactions, rather than ecological specialization, are the starting point in models of sympatric speciation with an evolutionary branching approach (Doebeli and Dieckmann 2000). These models are based on the theory of adaptive dynamics (Metz et al 1992, Geritz et al 1998). In these models, ecological interactions such as resource competition, predator-prey interactions or mutualism are the driving force of evolutionary change and branching. A number of empirical examples provide evidence for sympatric speciation under the evolutionary branching models. In sticklebacks (Schluter 1994, Nagel and Schluter 1998), Anolis lizards (Losos et al 1998) and Darwin’s finches (Grant et al 1985, Schluter 1988) branching is attributed to resource competition; however, it is not clear that competition is an important factor in insect evolution. In orchid and orchid bees coevolution and cospeciation are initiated by mutualistic interactions (Kiester et al 1984), whereas speciation in sub-Antarctic weevils illustrates the significance of predator-prey interactions (Chown and Smith 1993). Berlocher (1998) recognizes four stages in the process of sympatric speciation: host races, species isolated by host fidelity, species with prezygotic and/or postzygotic isolation unrelated to host fidelity, and totally isolated species. Taxa at all of the stages are found within the Rhagoletis pomonella species group. Host races of R. pomonella mate on fruits of different host plants and display no other pre- or postzygotic reproductive isolation; however, gene flow between them is reduced by strong host fidelity and selection. Genetic differences between the host races are small; in the case of apple and hawthorn races of R. pomonella there are no unique allozyme alleles but frequency differences between races are maintained by host choice behavior and selection despite the 6% gene flow between them (Feder and Bush 1989). Species isolated by host fidelity in the R. pomonella species group (R. pomonella and “flowering dogwood fly”, Berlocher 1998) have larger allele frequency differences but still no unique alleles have been identified. Hybridization between these species under laboratory conditions results in fully viable and fertile offspring (Smith 1986). In nature, host choice of these species is even more pronounced than in host races and this strong host fidelity prevents them from interbreeding (Berlocher et al 1993). Species with prezygotic and/or postzygotic reproductive isolation unrelated to host fidelity show non—fixed species- specific allozyme alleles (private alleles) and morphological autapomorphies (Feder and Bush 1989, Jenkins 1996). Low levels of gene flow are possible (Feder and Bush 1989), but the assortative mating occurs under laboratory conditions, even in the absence of host plants (Bierbaum and Bush 1990), and in nature where large host preference differences prevent interbreeding (Feder and Bush 1989). Hybrids have reduced viability but are fully fertile (Bierbaum and Bush 1990). Within the R. pomonella species group, this stage is illustrated by R. mendax (blueberry maggot) and R. pomonella species pair (Berlocher 1998). Totally isolated species, such as R. cornivora and R. pomonella are separated by large genetic distance and exhibit fixed allozyme differences at several loci (Berlocher et al 1993), as well as morphological polymorphisms (Jenkins 1996). USE OF MOLECULAR MARKERS IN MAKING INFERENCES ABOUT SPECIATION Information about speciation can be inferred from analyses of the geographic ranges of species, correlations between range overlaps and the degree of genetic divergences, and by a biogeographic analyses of allele or haplotype genealogies (Berlocher I998). Phylogeography brings an historical perspective to population genetic phenomena such as population subdivision, genetic drift, gene flow and selection (Brown et al. 1996), and allows estimates to be made about the order and polarity of ancestor- descendant relationships and ecological niches (Berlocher 1998). Existing patterns of allele relationships depend on the time since speciation and the mode of speciation. Deep gene trees with major lineages separated by relatively large mutational distances are usually observed when long-term, usually physical barriers to gene flow separate the populations (Avise 2000). The observed genetic distances may arise as a result of novel mutation accumulation in lineages after their geographic separation or as a result of lineage sorting from a polymorphic ancestral gene pool; these two cases are not mutually exclusive. However, the same results could occur following sympatric divergence. Deep splits between distinct mtDNA lineages have been observed in contiguous populations of black-backed jackal (Wayne et al 1990). The authors suggest that this finding may be the result of secondary admixture of populations that were separated in the past or retained distinct ancestral lineages despite high gene flow. Recent sympatric speciation is reflected by alleles of ancestral species forming a paraphyletic group, with alleles of derived species arising from within the ancestral clade (Hanison 1991). Generally, if populations have been reproductively isolated for a relatively short time, little differentiation is expected to be observed in neutral genes, leading to unresolved relationships between the taxa, since parental genes are still being shared among derived groups. The ancestral species is expected to be more geographically structured than the descendant species, since populations of the ancestral species have been adapting to local habitat conditions for a longer time (Brown et al 1996). For mitochondrial DNA, Nei gel and Avise (1986) have shown by computer simulations that, following speciation, relationships among haplotypes go through phases of poly-, para- and monophyly and that the time to reaching monophyly depends on population sizes at and after speciation. It should be noted that the general expectations about lineage sorting and coalescence are only applicable to selectively neutral alleles/haplotypes. Different types of natural selection will change the expectations in different ways. When directional selection drives the frequency of an advantageous allele, it eliminates the variation at linked sites by a selective sweep or hitchhiking effect (Stephan et al 1992). New variation is recovered very slowly by accumulation of new neutral mutations in copies of advantageous alleles. This shortens the coalescent time for the gene and linked loci, depending on the strength of linkage (Li 1997). Selection against deleterious mutations (background selection, Charlesworth et al 1993) also reduces neutral variation at linked sites, reducing the coalescent time at that region as well. The effect of background selection is strongest when the mutation rate is high and the recombination rate is low; it decreases rapidly with the increase in recombination rate (Li 1997). Balancing selection, on the other hand, can slow down the elimination (extinction) of alleles at a locus and linked sites, maintaining some lineages over time scales much longer than expected and across speciation events (Clark 1997). Polymorphisms can also be misleading in the estimation of patterns and time of speciation when trans-species polymorphisms exist (Klein 1986). In such a case, the divergence of allelic lineages occurrs before the divergence of species, so that polymorphisms observed within species are older than the species itself, as illustrated by the highly polymorphic human MHC loci (Klein et al 1993). The type of molecular markers chosen for phylogeographic studies thus largely influences the conclusions drawn from gene genealogies. Although the importance of the marker choice is not questioned, the majority of the studies published are based on only one type of molecular marker (for exceptions see Bemardi et al. 1993, Burton and Lee 1994, Hare and Avise 1998). About 70% of all phylogeographic studies are based primarily or exclusively on analyses of mitochondrial DNA (Avise 2000), which is a maternally inherited, haploid marker. The mitochondrial genome is relatively small in size (16 kb in Drosophila) and present in thousands of copies in each individual. mtDNA does not undergo recombination, shows stable gene arrangement, ample polymorphism within species, and often evolves faster than typical single-copy nuclear DNA (Avise 1994). Isolation of haplotypes is relatively easy through PCR. Trees based on mitochondrial DNA sequences reflect only a matrilineal portion of the evolutionary history (Maddison 1995), which might be quite different from the history of nuclear genes. Nuclear markers, depending on their nature (single-copy genes, repeated short sequences, size polymorphisms) and position in the genome (in regions presumably under 10 selection vs. neutral), can reveal different patterns of variation and evolution. Nuclear markers often used for studying genetic structure and relationships of populations and species include allozymes, RFLPs (restriction fragment length polymorphism, reviewed in Avise 1994), microsatelites (Weber and May 1989), VNTRs (variable number of tandem repeats or minisatellites, Jeffreys et a1 1985) and AF LPs (amplified fragment length polymorphism, Voss et a] 1995). These markers do not require DNA sequencing and allow estimates of population genetic parameters such as allele frequencies, numbers of alleles, heterozygosity, effective population size, Nem and Neil parameters, genetic distances among populations, and F or 0 statistics (Wright 1965, Weir and Cockerham 1984) The sequences of single-copy nuclear genes are more difficult to obtain and few studies have used them for estimation of intra— or interspecific gene trees and phylogeographic analyses (Hare and Avise 1998). In diploid organisms, if the individual is heterozygous at a locus under study, PCR amplifies both alleles and it is important to separate them and obtain both sequences. This is possible by cloning of the amplified PCR products through a vector. However, misincorporation of nucleotides during the previously performed PCR is possible (Keohavong and Thilly 1989). Some authors ignore possible misincorporations in their analyses (Palumbi and Baker 1994, Sota and Vogler 2001). Another approach to this problem involves sequencing multiple clones from a single individual so that the sequences can be compared and allelic variants distinguished (Bemardi et al 1993). Most phylogenetic information is recovered from gene trees obtained from loci in regions with low recombination frequencies. Recombination distorts the phylogenetic history of changes within and between lineages ll by producing homoplasy, which can erroneously cluster the genotypes and violate the assumption that tree branches are non-reticulate (Avise 2000). Estimates divergence times between species are based on the concept of a “molecular clock” (Hillis et al 1996). This concept is based on the simplifying assumptions that DNA sequences evolve at an approximately uniform rate over time in all evolutionary lineages (Zuckerkandl and Pauling 1965) and that the rate of neutral mutation equals the rate of evolution (Kimura 1968). For mtDNA it is estimated that 1- 2% sequence divergence accumulates over a million years (Brown et al 1979). However, this clock has only been calibrated using insect and crustacean sequences (Brower 1994). It is known that variation in rate of mtDNA evolution exists not only among taxa but also among different genes (Simon et al 1994). Differences among taxa may stem from different efficiencies of their DNA repair systems (Britten 1986), different generation times (Laird et al 1969) or different metabolic rates (Martin and Palumbi 1993). More accurate estimates of the rate of evolution are obtained if multiple loci are used and averaged, since that reduces the variance (Takahata and Nei 1985). If the time since lineage separation can be estimated from fossil evidence as well, than the clock can be calibrated more accurately. Unfortunately, fossil data are not available for most taxa, so the molecular clock can only be used for rough estimates. 12 RHAGOLETIS POMONELLA GROUP TAXA, LIFE HISTORY, HOST USE AND GEOGRAPHY The Rhagoletis pomonella species group consists of 4 taxonomically described species, at least two undescribed species (sparkleberry fly and flowering dogwood fly) and several taxa of uncertain taxonomic status (host races, geographic races) (Table 1.1). All Rhagoletis taxa are typical solitary parasites in that females search for host fruits for their offspring, and oviposit only on acceptable fruits (Price 1977). R. pomonella group species have specific hosts that belong to widely divergent plant families (Table 1.1). All taxa within the R. pomonella species group have almost identical life cycles. They are univoltine, with adults emerging over short periods of time in spring or summer. Emergence of each species is synchronized with the beginning of the fruiting season of their respective host. Adults feed on insect honeydew, bird feces, yeast and bacteria found on leaf surfaces of host or non-host plants (Bush 1992). Females become sexually mature 7 or 8 days after emergence, at which time they begin mating and ovipositing. Mating occurs almost exclusively on the host fruit (Prokopy et al 1971). Females are attracted to a suitable host fruit by chemical (Prokopy et al 1973, Frey et al 1998) and visual cues (Moericke et al 1975), where they lay their eggs into the fruit by inserting their ovipositor into the fruit. Oviposition is followed by marking of the fruit with pheromones. That deters other females from ovipositing into the same fruit (Prokopy 1972). This probably reduces competition and perhaps enhances resource partitioning. Each female typically lays one egg per fruit; however, multiple infestations have been observed, particularly in large fruit such as apples (Filchak, pers. comm.; Gavrilovic and Crossno, pers. observ.) and experimentally corroborated in R. zephyria (van Randen and Roitberg 1996). Multiple ovipositions per single fruit were originally explained in parasitoids by mistakes in oviposition (van Lenteren 1981), but more recently were argued from a standpoint of adaptive superparasitism theory (van Alphen and Visser 1990). This theory states that when ecological or physiological conditions are unfavorable (e.g. no uninfested fruit, high egg load) and there is positive probability that an additional larva could survive feeding within the same fruit, females can increase their reproductive fitness component by accepting previously marked (i.e. infested) host fi'uit. Larvae feed and pass through 3 instars within the fruit over a 2-4 week period (Bush 1966). Upon completion of larval development, which is synchronized with fruit falling to the ground, larvae leave the fruits and pupate 3-5 cm in the soil, enter diapause and overwinter in the pupal stage. The following summer adults emerge and complete the life cycle in 20-30 days. Host fidelity in all species of the genus Rhagoletis is very high and adults are known to disperse over large distances in search of favorable hosts when local host fruit is not available (Bush, 1966). Many of the taxa in the pomonella species group can be crossed in the laboratory (Bierbaum and Bush 1990); however, they rarely interbreed in nature (F eder and Bush 1989). This indicates that host preferences and host fidelity accompanied with mating on the fruits of the host plant serve as effective premating reproductive isolation mechanisms between taxa utilizing different host plants. Four species, two undescribed species close to R. mendax and two taxa of uncertain status close to R. pomonella belong to the R. pomonella species group (Table 1.1). The status of Mexican populations of R. pomonella is also uncertain — whether they represent geographic race of R. pomonella or a separate species remain under investigation (Bush, pers. communication; Feder et al, in prep.) l4 Rhagoletis pomonella is native to eastern North America, from Nova Scotia and Maine southward to central Florida and westward to northwestern Minnesota and eastern Texas (Figure 1.1). Populations present in the Pacific Northwest and western slopes of the Rocky Mountains are thought to be introduced (McPheron 1990). Ranges of all other taxa, except for R. zephyria, are fully contained within the much broader range of R. pomonella (see Bush and Smith 1998). Rhagoletis zephyria has been described as occurring throughout western North America and is parapatric in Minnesota and Manitoba with R. pomonella (Bush 1966). However, R. zephyria has recenty been reared from native snowberries in Ontario (Smith, pers. comm), Michigan (Crossno, pers. comm.) and southeastern Wisconsin (Gavrilovic, pers. observation, see also Chapter 2), indicating that the zone of overlap is much broader (see Figure 1.1). Populations of R. zephyria also exist in eastern North America, where they are thought to be introduced from western North America with the host plant, Symphoricarpos albus var. Iaevigatus, that is grown as an ornamental shrub (Feder et al 1999). 15 Table 1.1. Taxa belonging to the Rhagoletis pomonella species group and their host plants. TAXA HOST PLANTS FAMILY hawthorn (Crataegus 15 spp.) Rhagoletis pomonella . Rosaceae _ apple (Malus pumzlla) R. zephyria snowberry (Symphoricarpos 3 spp.) Caprifoliaceae R mendax blueberry (Vaccinium 7 spp.) Ericaceae ' huckleberry (Gaylusaccia 3 spp.) R. cornivora shrubby dogwoods (Cornus 2 spp.) Comaceae ibifi’éi’éfyxfly) sparkleben‘y (Vaccim'um arboreum) Ericaceae R. nr. mendax . . (flowering dogwood fly) flowering dogwood (C ornus florzda) Comaceae 2:13:11) El; n):onella plums (Prunus 2 spp.) Rosaceae 211th 3:13;; 11a mayhaw (Crataegus 2 spp.) Rosaceae 16 .530 E 3:885 98 558.83% £5 E woman: .SEEEQK .M van SEEKS. QMNQMSE mo 5:2:me oEmfiwooO ._._ oezmi 63:95:: EEEEQR .k ...: ezmzoEcm ,xl Gauzvobcc Ebékmm .x. . . . . 35:33 fill-l. } ...-coo... K 17 Except for R. cornivora, species of the pomonella group are morphologically virtually indistinguishable. In the case of R. pomonella and R. zephyria, only males can be distinguished on the basis of small difference in the shape of surstyli (Bush 1966, Jenkins 1996). All R. pomonella group taxa show the same distinctive wing banding pattern, that resembles the legs of jumping spider when observed from above. Genetic variation at various levels and evolutionary relationships within the pomonella group have been examined by allozymes (Berlocher and Bush 1982, Feder et al. 1988, McPheron et al. 1988, McPheron 1990, Berlocher et al. 1993, Berlocher 1995, Berlocher 2000) and mitochondrial DNA sequences (Smith and Bush 1997, Han and McPheron 1997, McPheron and Han 1997). Most taxa of the group show only allozyme allele fi'equency differences (Berlocher et al. 1993). Six diagnostic loci show constant host-related frequency differences between apple and haw races of R. pomonella (Feder et al 1988, McPheron et al 1988), as well as among other taxa within the group (Berlocher et al 1993). Rhagoletis pomonella and R. mendax possess private alleles at polymorphic loci aspartate—aminotransferase-l (Am-1'00 in R. pomonella), diaphorase-Z (Did-2lOO in R. pomonella) and fumarase (F um15 8 in R. mendax), with other alleles at these loci being shared among species. However, there is a nearly fixed allele difference between apple maggot and snowberry fly at the hydroxyacid dehydrogenase (Had) locus — R. zephyria is fixed for Had' ‘ ', while R. pomonella has two other alleles, Hadmo and Had125 (Berlocher et al. 1993). It should be noted that Feder et al. (1999) found very low frequencies of Hadloo in populations of R. zephyria from Michigan and central Minnesota, and Hadl H in populations of R. pomonella from Washington, northem and central Minnesota. The presence of these rare alleles is explained by low-level l8 hybridization or occasional mistakes in oviposition. It should be noted again that R. cornivora, the most genetically distant of the species within the R. pomonella group, along with the fore-mentioned morphological differences, possesses 9 unique allozymes alleles and appears to have diverged first from the remainder of the group (Berlocher et al 1993, Jenkins 1996). Although much work has been done in order to characterize the genetic variability of, and the relationships between, the species comprising the Rhagoletis pomonella group (Berlocher et al. 1993, Smith and Bush 1997, Berlocher 2000), many questions remain open, from the full resolution of phylogenetic relationships to the taxonomic status of currently unplaced populations, and to testing the sympatric hypothesis of speciation. The knowledge gained through extensive research and deployment of new molecular markers raises unresolved questions, keeping the field vibrant and exciting for years to come. This dissertation focuses on the placement of R. zephyria and its relationship to R. pomonella (the putative ancestor for all the taxa in the R. pomonella species group), in order to infer the mode of speciation that led to divergence of these two species. Speciation via host shifts has been proposed for most of the broadly sympatric pomonella group taxa and it is interesting to determine whether R. zephyria has diverged by a similar mechanism. Rhagoletis zephyria is the only species in the group with distribution extending far outside of the range of R. pomonella. It is also the only species in the pomonella group with fixed allele difference at one of the allozyme loci (Had). That provides an important contrast to all other species pairs in the group. 19 SPECIFIC OBJECTIVES AND HYPO’I‘HESES Population genetic Studies based on allozymes indicate that R. pomonella is the most genetically diverse (with highest number of alleles at any of the allozyme loci and highest heterozygosity) and most highly structured (as inferred from F s, values) of the pomonella group species (Berlocher et al. 1993, Berlocher 1995, Berlocher 2000). This has led to a working hypothesis that the apple maggot fly represents a large and variable ancestral gene pool from which new species of the pomonella group arise. Specific hypotheses tested in this project are: Hypothesis 1: Rhagoletis pomonella represents a large and variable gene pool, containing ancestral polymorphisms, from which new species arise. Hypothesis 2: Rhagoletis zephyria has diverged from R. pomonella more recently than the blueberry maggot, R. mendax. Hypothesis 3: The host shift that led to divergence of R. zephyria from R. pomonella and speciation occurred from ancestral hawthorn host to snowberry. Hypothesis 4: Rhagoletis zephyria in Eastem North America has been introduced with the host plant (snowberry). The extent of the range of overlap between R. pomonella and R. zephyria has important implications for inferring mechanisms and geographic location of divergence that led to speciation. Berlocher (1998) suggests that the range of overlap for these two species, based on the previously described range of R. zephyria, is only about 15% whereas mean range of overlap for all host-shifting species he examined was about 50%. The size of overlap for apple maggot and snowberry flies is close to the mean range of 20 overlap found for non-host-shifters (12.4%), where speciation can be explained by allopatric models (Berlocher 1998). To be able to address any hypotheses of speciation of R. zephyria and its origin in eastern North America, I needed to obtain reliable geographic distribution data (Chapter 2). To test the hypotheses 1-3 I used a phylogeographic approach. Rhagoletis pomonella and R. zephyria populations representative of the species geographic ranges were surveyed for variation using molecular markers. In order to estimate levels of genetic variation in R. pomonella and R. zephyria and compare them to other species of the pomonella species group, as well as other species of Rhagoletis, I used DNA sequences from three anonymous single-copy nuclear loci from three different linkage groups in the R. pomonella genome (P220 from linkage group I, P2956 from linkage group II and P2480 from linkage group III; Figure 3.1; Roethele et al. 1997), as well as mitochondrial DNA (cytochrome oxidase subunits I and II withintergenic tRNALc" coding region; COI/COII) (Chapter 3). The identities of the nuclear loci used here are unknown. They display significant linkage disequilibrium with allozymes which display host—specific frequency differences between host races of R. pomonella (Roethele et al. 1997). The degree of linkage to the allozyme loci (as determined by levels of recombination, Roethele et al 1997) is different for these markers. Each of these loci reflects the evolutionary history of the distinct part of the genome. This study thus relies on a representative portion of a genome. As mentioned earlier, relationships between taxa inferred from gene trees obtained using one gene can differ dramatically from those obtained using a different gene or a different type of marker. Therefore gene trees may not accurately correspond to species trees (Maddison 1995, Wang et al 1997). To 21 overcome this problem, I used not only sequences from different genes, but also amplified fragment length polymorphism (AF LP) genotyping (Voss et al 1995). This technique has recently been suggested for studying relationships between very closely related and rapidly evolving Species (Albertson et al 1999), for studying population structure and differentiation and estimating population genetics parameters (Reineke et al 1998). It generates a large quantity of information (polymorphic loci) by screening the entire genome. I used two selective amplification primers to generate AF LP patterns for individual flies from populations representative of the geographic ranges of R. pomonella and R. zephyria and used these data to study phylogeographic relationships of the populations of both species (Chapter 4). If R. pomonella indeed represents a large, ancestral gene pool, it can be expected that it will show a higher number of alleles, higher average nucleotide diversity, higher heterozygosity, and higher F s, values across its geographic range than R. zephyria. It can also be expected that R. pomonella is paraphyletic, while other species of the group are expected to Show autapomorphic genetic differences, with alleles arising from pomonella alleles. The polarity and time of the presumed host shift can also be inferred from allele genealogies. If the data indicate that the divergence of R. zephyria from the ancestral gene pool of R. pomonella was recent, then the polarity of host shift can be inferred to be from ancestral hawthoms to snowberry. Cladograms and distance-based dendrograms obtained from sequences of different genes and comparison of structure of R. zephyria populations across the geographic range of the species and to the structure of R. pomonella populations in the zone of overlap, should provide information on the origin of R. zephyria in eastern North America, where one host plant species has been introduced. 22 CHAPTER 2 GEOGRAPHIC DISTRIBUTION OF R. ZEPHYRIA INTRODUCTION The Rhagoletis pomonella species group is one of the best-understood natural model systems in which ecology is proposed to have played an important role in species divergence (Orr and Smith 1998). Several closely related species in the R. pomonella species group appear to have speciated in sympatry, with shifts to new hosts accompanying all speciation events. Rhagoletis zephyria (snowberry fly) is a sister species to R. pomonella (apple maggot). The geographic ranges of the R. pomonella group taxa, except for R. zephyria, are completely contained within that of R. pomonella (Bush 1966, F oote et al 1993). Speciation of R. zephyria, which infests fruits of Symphoricarpos spp., is an interesting evolutionary question. Not only has R. zephyria different geographic distribution (overlapping with R. pomonella and mostly allopatric to other pomonella group taxa), but also this species is the only one of the R. pomonella group taxa that displays fixed genetic differences with R. pomonella. The working hypothesis about the origin of R. zephyria is that it has diverged and speciated by a host shift. The shift must have had occurred in the zone of contact between the ancestral and derived host, therefore in the zone of overlap of R. zephyria and its ancestor. Another assumption is that the ancestral host is hawthorn, and that the ancestral population was R. pomonella-like. It has been proposed that R. pomonella (apple maggot fly) has the ability to shift from the original (ancestral) host to fruits of different host 23 plants and utilize them as a new resource, thus giving rise to new species (as implied in Bush 1969). Host fidelity is an important factor in the speciation process, since adults of all pomonella group taxa mate exclusively on or near their host fruits (Bush 1966). This establishes and maintains premating reproductive isolation between the newly diverged taxa. Although R. pomonella and R. zephyria can be crossed under laboratory conditions, in nature that happens only rarely (Feder and Bush 1989, McPheron 1990, Smith et al 1993, Feder et al 1999). To begin addressing the questions of how, when and where R. zephyria diverged from an R. pomonella-like ancestor, it is important to establish the current distribution of the two species. The geographic distribution of R. zephyria has not been well characterized, and therefore it is not well known where and how large the zone of parapatry is or has historically been. In addition, the host distribution of R. zephyria is also uncertain. A precise map of the present geographic distribution of host and fly, as well as evidence suggesting past distributions, are two of several variables that should be known to document the history of speciation of any two taxa (White 1978). Many of the other variables are already well documented for the R. pomonella species group taxa. These include detailed morphological descriptions of taxa (Bush 1966, Foote et al 1993, Jenkins 1996), ecological data on preferred habitats and the life history of the organisms (Bush 1966, F oote et al 1993), behavioral information about possible ethological isolation or habitat selection (Prokopy et al 1971, 1972, Prokopy and Bush 1972, 1973), genetic descriptions based on cytological, biochemical and molecular data (Bush 1966, Berlocher and Bush 1982, Feder et a1 1988, 1997, 1999, McPheron et al 1988, Berlocher et al 1993, Berlocher 1995, 2000, McPheron and Han 1997, Smith and Bush 1997), data 24 on morphological and genetic geographic variation (McPheron 1990, F eder et al 1999), experimental hybridization studies (Smith et al 1993) and information on the frequency of hybridization in nature where the ranges overlap (McPheron 1990, Feder et al 1999). R. zephyria infests fruits of Symphoricarpos spp. (Caprifoliaceae). The primary host of R. zephyria in western North America is S. (1le var. laevz'gatus (S. rivularis). It is a woody shrub, 1-2m tall, with dark-green leaves and small, pink, bell shaped flowers, which give rise to pearl-like white berries in clusters. The fruit remains on the plants into the late fall. The natural geographic distribution of this plant is limited to west of Rocky Mountains (Jones 1940, US. Department of Agriculture, Forest Service 2001 online), but following the Lewis and Clark expedition of 1804-05 this variety of snowberry was introduced into the eastern part of North America and has escaped from cultivation over a wide range (Bush 1966). R. zephyria infestations of the fruits of S. albus var. laevigatus have been observed in eastern North America and have commonly been assumed to have come along with the introduction of the host (F eder et al 1999). On the east side of the Rocky Mountains and throughout the Great Plains, the most common species of snowberry, and the primary host of R. zephyria, is S. occidentalis, a small shrub up to 1m tall, with small pale pink flowers, which give rise to round, dull greenish—white spongy fruits in clusters; the fruits quickly turn brown in early fall. Symphoricarpos occidentalis has a very wide distribution, from British Columbia to Ontario and south to Washington, Utah, New Mexico and Oklahoma (U .S. Department of Agriculture, Forest Service 2001 online). It is most commonly found and is very abundant in the prairies of the northern Great Plains. Although records of S. occidentalis exist for Wisconsin, Illinois, Michigan, Ontario, Pennsylvania and New York (herbarium 25 data, Soper and Heimburger 1994, US. Department of Agriculture, Forest Service 2001 online), R. zephyria was not considered to be present in these states, except in association with the cultivated S. albus var. laevigatus. The third potential host species for snowberry flies is S. albus var. albus although so far it has not been reported as a host of R. zephyria. S. albus var. albus is smaller in size than S. albus var. laevigatus (up to 1m) with smaller flowers and fruits which grow as solitary rather than in clusters. Symphoricarpos albus var. albus occurs in the eastern United States and Canada, from eastern Quebec south to North Carolina and extends west to the Rocky Mountains where it is only found on the eastern slopes (Jones 1940). This variety readily hybridizes and is interfertile with S. albus var. leavigatus introduced to the eastern North America (Smith, pers. comm.). This species of snowberry is only abundant in the northern part of its range (US Department of Agriculture, Forest Service online), but its presence throughout the entire region implies that the range of the three native potential host plants of R. zephyria is more or less continuous throughout North America. The geographic range of R. zephyria has been described as primarily western, from southern British Columbia south to northern California, extending east to the Mississippi River valley in Minnesota (Foote et a1 1993, Bush 1966). This implies that the zone of parapatry between apple maggot and snowberry flies is relatively narrow, since the native range of R. pomonella does not extend west of Minnesota (Figure 1.1, after Bush 1966). Infestations by R. zephyria were previously reported for fruits of S. albus var. laevigatus and S. occidentalis (Bush 1966). In order to determine precisely the geographic range of the snowberry flies, fruits from all three potential hosts were sampled throughout the ranges of these plants. The objectives were: i) to determine where 26 R. zephyria occurs; ii) whether all three potential hosts are infested and to what extent; iii) whether infestations of the native hosts are limited to the west of the Mississippi River valley; iv) where introduced hosts were infested; and v) how may the origin of R. zephyria in the eastern North America be explained. Adults of R. zephyria were reared from fruits of all three host plants as a result of the extensive collection. The geographic range of R. zephyria extends south to South Dakota and Nebraska; infestations of native hosts in Wisconsin, Michigan, Ontario and New York are reported for the first time. The natural range of R. zephyria thus extends east of the Mississippi River valley through the Great Lakes area. These findings have important bearing on inferences about the speciation of R. zephyria, since they indicate that the zone of overlap with R. pomonella or pomonella-like ancestor is or has been much broader than previously thought. MATERIALS AND METHODS Field survey: Snowberry stands were located by searching herbarium records, visiting sites with the prOper ecological characteristics but previously not known to be inhabited by potential host plants, or from personal contacts. Fruits of S. albus var. laevigatus , S. albus var. albus and S. occidentalis were hand-picked between the months of August and October each year from 1993 to 2000 from localities in Massachusetts, New York, Pennsylvania, Michigan, Wisconsin, Minnesota, North and South Dakota, Nebraska, Colorado, Wyoming, Montana, Idaho, Washington, Oregon and California and 27 the province of Ontario (Table 2.1). Identifications of plant species were made in the field. When uncertainty about the plant identity arose or when new sites were found, plants were pressed and brought to the laboratory for identification. Insect rearing: Fruits were collected into ZiplocTM bags containing a small amount of vermiculite to prevent early rotting. Bags were stored in coolers in the field at 10-20°C until returned to the laboratory. All fruits were placed into plastic trays with approx. 2cm layer of moist Grade 3 (medium) vermiculite and allowed to dry for 3-5 weeks at room temperature. During this time larvae completed their development, left the fruits and pupated in trays. Fruits were removed and in most instances counted. Vermiculite was sifted through a screen which retained the pupae, that were then counted and infestation rates calculated as the number of pupae recovered divided by the number of fruits. Pupae were placed in Petri plates (100x15mm) with a layer of approx. lem of moist vermiculite. The plates were then placed in a 4°C refrigerator for 6-7 months to simulate overwintering. Water was added to vermiculite monthly to keep the pupae hydrated. After 6-7 months Petri plates were transferred to a controlled environmental incubator (25°C, 14h light, 21°C, 10hr dark). Emerging adults were collected daily and kept alive for 5-7 days on diet of 50% (w/v) yeast and 25% (w/v) sucrose. Flies reared from Symphoricarpos spp. were assumed to be R. zephyria. Host fruit remains one of the most reliable indications of Species identification. Since the host fidelity in R. pomonella species group is very high and oviposition mistakes are rare (Bush 1966, Bierbaum and Bush 1990) it is generally accepted that fly species can be assigned based on fruits from which they were reared. 28 RESULTS Host plants: Infestations of fruits were observed for all three host plants (S. albus var. laevigatus, S. albus var. albus and S. occidentalis) between 1993 and 2000 (Table 2.1). Symphoricarpos albus var. laevigatus was sampled at 34 localities in its native range west of the Rocky Mountains. It was found to be infested at 28 (82.4%) localities. Infestations were also observed in Washington, Oregon, California, Idaho and Montana. At three localities in California and three in Idaho fruits of S. albus var. Iaevigatus were not infested (Table 2.1). Stands of introduced S. albus var. laevigatus were infested at all localities east of the continental divide that were sampled. However, it should be noted that uninfested S. albus var. laevigatus have been observed in Door County, WI (Bush, pers. comm.) and at 17 localities in Nova Scotia (Crozier, pers. comm). S. occidentalis was sampled at 26 localities both west of the Rocky Mountains where its range overlaps with the range of S. albus var. laevigatus and in the Great Plains where it is the predominant snowberry species. In all cases it was infested (Table 2.1 ). S. albus var. albus was sampled at eight localities and observed at two more where it was not sampled because permits to collect in National Parks and National Monuments were not available. It was infested at six localities (75%) in New York, Ontario, Michigan and Wisconsin. A low number of pupae were recovered from samples from Ontario (2-18, Table 2.1). At several other localities S. albus var. albus was not found to be infested, although R. zephyria was reared from the fruits of other hosts at relatively close localities (Table 2.1). 29 Localities: Northwest (Washington, Oregon and California). Native S. albus var. laevigatus was sampled at 11 localities in Washington, seven localities in Oregon and seven localities in Northern California; S. occidentalis was sampled at one locality in Washington. All S. albus var. laevigatus samples from Washington and Oregon were found to be infested; R. zephyria was reared from four samples from California. At three localities in California fruits were not infested with R. zephyria. Infestation rates ranged from 0.8% at Olympia, WA to 62.9% at Dixie, WA, which was the highest infestation rate observed for all samples (Table 2.1). S. occidentalis collected at Beacon Rock State Park in the Columbia River Gorge was also infested with R. zephyria (infestation rate 30.0%, Table 2.1). Rocky Mountains and Colorado Plateau (Idaho, western Montana, Wyoming and Colorado). S. albus var. laevigatus was sampled at four localities in Idaho. A sample from one locality sampled in 1995 (Elmira) was infested with R. zephyria. At three localities sampled in 1997 no infestation was found (Table 2.1). In Montana, both S. occidentalis and S. albus var. Iaevigatus were sampled at localities west of the continental divide, where S. albus var. laevigatus is generally more common. Three S. occidentalis and five S. albus var. laevigatus populations were sampled. All the samples were found to be infested with R. zephyria. Most of the samples from Montana were taken in 1994 and 1995 when the fruit number was not determined. All three potential host species were sampled in Wyoming. S. albus var. laevigatus was sampled at a single locality at high altitude (6700’, Glendo State Park). A large number of fruits was collected (2689, Table 2.1), enabling detection of a very low rate infestation (0.04% - only one pupa was recovered from the fruits). At lower altitudes, two samples of S. 30 occidentalis were found to be infested (1 .0-3.2%, Table 2.1). S. albus var. albus was found growing at the Devil’s Tower National Monument where it was not collected. Fruits did not look infested; however, this does not necessarily imply that they are not infested, but only the inability to detect infestation by observation. At another site (Bear Lodge campground), fruits of S. albus var. albus were relatively scarce and no pupae were found. In Colorado, a small stand of native S. albus var. albus was found at Estes Park. Fruits were sampled on several occasions (1996, 1997, 1999) but yielded no pupae. Cultivated S. albus var. laevigatus growing as an ornamental plant on campus of the University of Colorado in Boulder were sampled in early August of 1997, when an infestation rate of 0.8% was observed (Table 2.1). In early September 1999, very large berries were showing signs of heavier infestation; however, only 12 pupae were recovered from 973 fruits (1.2%, Table 2.1) Great Plains (eastern Montana, North Dakota, South Dakota, Nebraska, Minnesota). S. occidentalis is a dominant host in eastern Montana. It is very common across the broad areas of North and South Dakota and Minnesota where large stands are frequently found and easily spotted along the roads. Three samples were taken from Montana, four from North Dakota, three from South Dakota, two from Nebraska and five from Minnesota. All samples yielded pupae; infestation rates ranged from 0.4% at Wasta, SD to 4.2% at Rapid City, SD. Several large stands of S. occidentalis were observed in Badlands National Park (Gavrilovic, pers. Obs.), but no collections were made in the Park. A stand of S. albus var. albus was seen at Custer State Park, SD (Crossno, pers. comm.) where no collections were made, also due to the lack of necessary permits. 31 Great Lakes (Wisconsin, Michigangnd Ontario). Herbarium records from the University of Wisconsin, Madison indicated that S. occidentalis grows in Wisconsin. However, most of the sites these records listed were converted to comfields (Gavrilovic, pers. obs.). A stand of S. occidentalis found along the railroad tracks in Waukesha, about 15 mi west of Milwaukee, was heavily infested with R. zephyria (27.2%, Table 2.1). S. occidentalis was also found near Mio, MI and pupae were recovered from the fruits. Native stands of S. albus var. albus form the predominant ground cover at three sites in Ontario where it was sampled in 1996 and 1998. All three samples were infested; however, adults emerged only from samples collected at Glen Miller and Rice Lake (Table 2.1). S. albus var. albus was also observed in Pinery Provincial Park (Gavrilovic and Crossno, pers. obs.) but it was not collected. At Glen Arbor, MI (Sleeping Bear Dunes National Lakeshore), plants found were either S. albus var. albus or its hybrid with S. albus var. laevigatus. These fi'uits were also found to be infested (Table 2.1). Infestations of S. albus var. laevigatus introduced to Michigan as horticultural plant were previously known (Bush pers. comm., Smith pers. comm). This host plant was sampled at five localities in Michigan and found to be infested at all of them (Table 2.1). The plant is common in Lansing/East Lansing area and heavily infested. Lower numbers of pupae were recovered fiom samples from Mio Dam and Harrisville (Table 2.1). Northeast (Pennsylvania, New York and Massachusetts). Only introduced S. albus var. laevigatus was found in Pennsylvania and Massachusetts, infested with R. zephyria (Table 2.1 ), consistent with previous reports (Smith pers. comm., Bush pers. comm.) In New York, two samples of S. albus var. laevigatus were found to be infested. The plants at Wellesley Island were likely S. albus var. albus, however, the possibility that they were 32 hybrids with var. laevigatus cannot be excluded. This sample was also infested (Table 2.1), and was collected near the town of Alexandria Bay where infested S. albus var. laevigatus was observed (Smith, pers. comm). 33 032.960 «50> I O> £95550 too. I 0... $8on com I E $.st 8:2 I v.2 .9885. m I H7: SEEM E: I m:. .829: .22. I 2 6:380 com I QB. .5833. swam I Saeu SR2 Amoco? as 855 SEES SSSSS as SS3 aezaaeceoenaeaaeao S : oz m: SEES SSSSS .5 SS5 3:238:85: Save 8:: o2: 3 $255 SSSSS a? SS3 ESEeEEEZmSE Seeing .835 Sea ow OS x: 885 SSSSS .5 SSS 5:8 5:26 o\o©.w Ow COG M2 OOONR MSQMNASE um> “3&wa 3:300 5&0:me $3 8 02 M: 885 SSSSS .5, SSS. 9383.83 Seem Soon 0%.. 88 x: 883 SSSSS a? SSS $2588; @3825 as? m 8N x: 883 SEES as, SS3 aegeteesfi Soon CM 2: 0E2 883 SSSSS Es SS3 Eeeeexmvaaaam Seem Seam Sew: mm mm CS2 883 SEES a? SS5 fiagfimzeeex 220% Some 333% SS moaoo 822$ SSSSSSS SS3 335 23378235 3.89. oz memoo 23:83 SSSSS as, SS5 asegego SO Sad e o: x: 883 SSSSS ESSSS aeaSEaaESo 28% oz moaoo 322$ SSSSS .ESSew ESSEEQESO Gum: oz 85.5 8253 SSSSS as, SS3 csgaivexfisefi SEES? 3a.. 5238.:— Amzzcéoaam 322m cote—=5 3.5 8325.8: A5588 bzaooq 3535\355 BESS». Q So mEooE 5:00:00 ._.N 053. 34 S3 0 OS o> SEES SS: .5, SS: .m 3:28 BEES“: E2555 38:8 2oz o> SEES SS: :2 SE a QSOEECEEo E3 or E8 855 SEan SESES S: SEES, 33288 .83 EB am 886 SE a: E SE 858 SEES SEEEE S, 8856: .8? ES SSEm SS 5 E 8% 858 SEES SEEEE .m SEESVEEE Sod o :3 moaow SEES 9.23. 35:35 Es 9:59;: 0S2 GEES ES moaoc SEES SEEEEE w ASSESS .82 5% 2:822 5.: 538m ES 855 SEES SEEEEw EESSEESEEE 2:822 as 3 oz moEoo SEES SESES :2 SSS EESEEEES €va oz moaoo SEES SEES .SZEES, EESEEE EC 3:8 oz memoo SEES SEES :2 SEES, ASSESS: 88% oz 858 SEES SESES SEES, ESEEES 5% SO 6 oz moEoo SEES SEES .5, SEES 6852”: 93 53m 28% oz moaoo SEES SEESE: w 685:5 ESSQ :s 3 oz moaoo SEES SEEEE: w SoEBSE :3 SE oz moaoo SEES: SEEEE .m SEESE 82%: EV ow oz moaoo SEES SEESE: w 3E5 ES 2:252 SS 0 8m ozo SEES SEES ESSS SEESEOSEEOEE Sod o S moEou SEES SEES S: SEES. ES 592% Ed 0 8: moaoo SEzS SEES S: SSS 32$ 82v Ex 85 82 E5 oz moaoo SEES SESES .5, SEE. Eéoeeéa 2.2: SEE E SS 858 SESS SESES :3 SSS EESmZEu SS: S3“ E E moaoo SEES SEES :2 SS5 c2855 3 535 Sod o S moaqo SEES SESES S: SS5 385:5 $385.5 Sod o :E 855 SEES SEES S: SSS 8.85:5 5:238 E03: E SE 858 SEES SESES .5 SEE. ESSEEESE Sod : 88 Bad SEES SESES E: SEES. 858202 2.: :35 S3: SE S8 memoo SEES SESES S: SEES 3803801233 252:5 8a.. :o:58..=_ Aw._=u3oao=m 33.:— ._88=oU 2am 86%38! Aha—=88 bign— ou=_>o._m\33m :83 2 29S 35 Cid av N 8? o> woacw 3% .5 3% .m 08% {a fiasco 382$ E M: oz (\th 82$ :53 .5 :53 w Ewaeoeeoa 33 82 E m oz EB 80% :53 .5, .253 .m Ewseoeeoov $52 56 2.5.5 2 Q2 Uma 303m £3ng .3> 333% Amoco—3 toowozoom § _ oz 8: 32a qsamsmao .5, 253% A283 2:3...ch E 2 oz DE 825% $3365 .5 253m $889 ago 22 so 2 oz DE 8253 £25380 w 2889 2.2 E 3 oz um: 325$ 3% .5 :53 .m @889 ES 22 $3? 8? 882 023 8-32 Sumsms a; 253% @235 82 383 ago E 3” oz 3 33:35 5 :53 .5, 3% w 92285 5:: 36 cm 7 oz 022%: $-82 “sagas .5 .353 game: 82 mango 535:2 $3.“. 5 ma 0> 323 £95398 .9) Qfioxaav 28x33 588”; : _ 2 N2 oz memoo 2&an £2§E§ .m 928 E3“: :3 E oz moEoo «8:83 gages .m £8:on ”am 30 NS oz 853 $383 Esamsao .m 23$ 0:5”. oz : 5 oz ooEou $383 magmas w 6:325 magma x5 8w : 8m oz oeooo 28:83 Esésao w 6%: 339m 88252 x: m Mme o> 3335 Esgac a E85,: 2223 $0.,“ 2 c 8 22 moooo 822.03 Eszfiao .m E853 32o 8.2232 830:8 25z 0> 325 g 32.3380 w 28x8: oz mccmsmo “532—00 0:02 O> .Um: 003 .53m .3226 .3.) («336 .m. €03:va Vina 83m ouamsU XE o 8: o> 8233 325398 .m eeweéoov 233 $3 2 22 o> o8 Ea sagas a Eswaéé 526 x? mm Sn o> 8233 Eszfiao .m Eewséoov 3.6 35 38.5 52% $2 2 ma 0> Boga Snowshoes w 33sz 22:5 39 9: oz oeooo $233 335380 w @556 2232 :3 : 8N oz 855 3235 23:3380 w 2982 22:2 gm 2 o c 9: oz moaoo 23:3 232%88 .m 3258 36 533 38.8 582 :3 O we” oo6> 823$ .253 .5 3% .m EeEd “E 8mm x? a c 2 m8 om5> a8 33 3&55 .5, 33% EeEd 8228.35 . 328m $3 3 m own oeooo 325$ 3&53 .5, 253% c2535 8828.25 1 5225 2:225 3a.. 2538:: aiuavmaaom 33.....— ._33=oU 8.5 86on .8: 32:89 5:“qu 3:395355 :83 3 2,3 36 8mm oz 50 80. $5 Emmams .5 £39m Enaeamv 55,22 39 mm DZ Ed moi \o uzBmSmE om> 253m. AEEmoEmE E235 382.5832 5 o oz m: 832% S 3% .5 232% anezv 232 3:233 68 5 oz 3 83m 5 maamsms .5 3:5 8.53:9 5250 :$ 5 oz m: 325% 585$ .5 3:5 @5ng 222 :30 is, 52 DZ OZ Eo.&\25m £03 3 29¢ 37 928 E c8533 08 oocmtomg £5 E momeC .moEEmm b89505 noomomfiéoo E0852 moooEmm owofio .38: 023: no BosoVN .x we mwomuom Boo 68052 flan—Em 520 .utbfiwu .% mo 8% oouoozoo ._.~ ooowi 3S: .._m> 353 Md I 3.33.65 .5> 253 .m 0 nl'. zisoowsuua W0 III- ”mEmE .8: 38 DISCUSSION Native snowberry species in the western part of North America (Washington, Oregon, California, Idaho, Montana, Wyoming) and in the Great Plains (North Dakota and Minnesota) were previously known to be host plants for R. zephyria (Bush 1966, lFoote et al 1993). The natural range of the fly has been reported to extend east into Minnesota and no further than the Mississippi River Valley. Findings of R. zehyria in eastern North America have been attributed to human introduction, as the host, S. albus var. Iaevigatus was introduced and cultivated as an ornamental plant (Feder et a1 1999). Thus, the range of R. zephyria, including all introduced and native populations, was thought to be discontinuous (Bush and Smith 1998). The main reason for this was the assumption that the suitable host plants were not found in the Great Lakes area and further east, into the northeast United States. Symphoricarpos albus var. albus, the native snowberry species in the eastern North America, has never been reported infested with R. zephyria. In this field survey, stands of native snowberry species were located in a broad geographic area covering the regions previously known as parts of the range of R. zephyria and those where the fly has not been found although the hosts were known to commonly occur (such as South Dakota and Nebraska), or where the only host available for flies was thought to be the introduced S. albus var. laevigatus (Wisconsin, Michigan, New York, Ontario). Here the observations of R. zephyria infesting native S. occidentalis in Wisconsin and Michigan and S. albus var. albus in Michigan, Ontario and New York are reported. These are the first reports of R. zephyria in Wisconsin and the first reports of R. zephyria infesting native hosts east of Minnesota. The rearing of R. zephyria pupae 39 and adults from native hosts (S. occidentalis) in South Dakota and Nebraska is also reported, and the findings of R. zephyria in Wyoming are extended into the eastern part of the state. By these findings the known natural geographic range of R. zephyria is extended. Another species of the R. pomonella group, R. mendax (blueberry maggot), has recently been found to infest native host plants in the Great Lakes area (Smith et al, in review), a finding that questions the previously accepted view that the pest was introduced with the cultivated host plants from the regions where it commonly occurs. Similarly, this report of fly populations infesting native hosts raises a question of the origin of R. zephyria in the eastern North America. S. occidentalis is a native inhabitant of the Great Lakes area. This species is typically found in prairies, which became established in this region after the Pleistocene glaciers began receding (Thompson and Smith 1970, Catling and Catling 1993). Herbarium records indicate that S. occidentalis was common in Wisconsin, Illinois, Michigan, Ohio and New York as recently as 60 years ago, and distribution data from the US Forest Service list this species from British Columbia to Ontario and as far south as New Mexico and Oklahoma. Stands of S. occidentalis in Wisconsin and Michigan may represent prairie remnants from the period after the Pleistocene glaciers began receding and pupae and adults of R. zephyria were reared from both localities (Waukesha, WI and near Mio, MI). Catling and Catling (1993) suggest that prairie remnants exist around Lake Ontario as well, with S. albus var. albus being the predominant ground cover at some areas, whereas Soper and Heimburger (1994) report S. occidentalis in Ontario, at areas that correspond to Catling and Catling’s (1993) prairie remnants. Adults of R. 40 zephyria were reared from S. albus var. albus from two such sites (Glen Miller and Rice Lake, ON). It is interesting to note that herbarium records from the University of Michigan indicate that S. occidentalis was growing on the streets of Grand Rapids, MI and in the Black River valley near Port Huron, MI about 100 years ago. An attempt was made to locate native stands of either S. ocidentalis or S. albus var. albus in Ohio, but information from the Department of Natural Resources indicated that the snowberries were extirpated from Ohio relatively recently (Cusick, pers. comm.) All this suggests that S. occidentalis was much more common in the Great Lakes area in the recent past, indicating that the zone of overlap of R. zephyria and R. pomonella may have been much wider than previously thought. This observation is important with respect to whether populations of R. zephyria in eastern North America have been established by importation of flies with the host plants or by spreading to the introduced host from local native plants. S. occidentalis appears to be the preferred host of R. zephyria. All the samples of S. occidentalis were found to be infested (Table 2.1), whereas some samples of native S. albus var. laevugatus were not (three samples from California and three from Idaho yielded no pupae). Introduced S. albus var. laevigatus in Door County, WI, outside of the native range of any snowberry species or variety, has never showed signs of infestations (Bush, pers. comm.) Cultivated S. albus var. Iaevigatus in Nova Scotia is also not known to be infested with R. zephyria (Crozier, pers. comm.) The same variety has been widely introduced into Great Britain from the Pacific coast of North America, but no R. zephyria associated with it has been observed (Gilbert 1995). Therefore it appears that infestations of introduced S. albus var. laevigatus occur only where the native host is present as well. 41 This supports the hypothesis that R. zephyria may be a native inhabitant of eastern North America. AF LP analysis showed that R. zephyria reared from native host plants in New York, Ontario, Michigan and Wisconsin possess AF LP fragments characteristic of R. zephyria. Neighbor-joining analysis of AF LP patterns placed these individuals within the R. zephyria cluster (Chapter 4). While mitochondrial and nuclear DNA sequences of flies from these populations are very similar to other R. zephyria (Chapter 3), a lack of geographic structuring does not allow me to distinguish between different scenarios about the origin of snowberry flies in the east. However, the amount of variation observed suggests that bottlenecks did not play a role in population divergence, which would be expected if the populations in eastern North America were introduced and founded from a small number of individuals. The possibility that these populations were established by range expansion of R. zephyria west of the Mississippi River valley and colonization of available hosts in the region cannot be eliminated. However, under such a scenario it would be expected to see isolation by distance, which the data at this point do not support. The results of this field survey and rearing of R. zephyria from a previously unrecorded host, S. albus var. albus, raise a question as to whether other species of Symphoricarpos may serve as hosts for snowberry flies. It is important to note that where S. albus var. albus was co-occurring or growing relatively close to S. albus var. Iaevigatus or S. occidentalis, no infestations of S. albus var. albus were observed, indicating that the other hosts are preferentially chosen. However, it may also indicate that short dispersal distances and the patchiness of the suitable habitats may limit further 42 range expansion, even though the hosts may be present, as in the case of geometrid moths [tame andersoni feeding on patchy distributed host plant, Dryas drummondii (Doak 2000). The relatively isolated, although physically close, stands of S. albus var. albus in Colorado and Wyoming were not found to be infested (Table 2.1). The same was true for stands of different species or varieties of Symphoricarpos observed or sampled in Utah, Nevada and Arizona, where no signs of infestations were obvious and no flies were reared from any of the samples (Bush, pers. comm., Smith, pers. comm.) This may indicate that more or less geographically continuous presence of host plants is necessary for dispersal of flies and range expansion. The described findings of R. zephyria infesting native hosts in the Great Lakes region may be similar to the observation of Smith et al (in review) of blueberry maggot (R. mendax) infesting native Vaccinium corymbosum and V. angustifolium in the same region. Similar to infestations of S. occidentalis, Vaccinium stamineum is reported to be infested with R. mendax throughout its natural geographic range in eastern North America, with V. corumbosum and V. angustifolium serving as “range extenders”. Even so, the latter two hosts are not infested everywhere they grow, presumably because abiotic factors render the habitat unsuitable for R. mendax (Smith et al, in review). The same may be true for R. zephyria whose preferred host appears to be S. occidentalis, with S. albus var. laevigatus and S. albus var. albus serving as “range extenders” respectively to the west and east. 43 CHAPTER 3 PHYLOGEOGRAPHIC RELATIONSHIPS OF R. POMONELLA AND R. ZEPHYRIA INTRODUCTION The history of species divergence can be inferred from DNA sequence polymorphism patterns at randomly selected genes (Kliman et al 2000) by comparing the patterns between species, estimating DNA sequence divergence, inferring ancestral states and reconstructing speciation events from the phylogenies. White (1978) stressed the importance of describing genetic variation across the entire geographic ranges of two sister taxa for documenting the history of their speciation. Previous DNA sequence studies of phylogenetic relationships of taxa in the R. pomonella species group and species of the genus Rhagoletis as a whole have sampled only a small number of individuals (usually one) from each species (Smith and Bush 1997, McPheron and Han 1997, Han and McPheron 1997). This study represents the first effort to make inferences about speciation of R. zephyria using a phylogeographic approach. In this study I characterized genetic variation across the geographic ranges of Rhagoletis zephyria and R. pomonella by analyzing DNA sequence divergence in mitochondrial DNA and three anonymous nuclear loci. The general objective was to examine biogeographic patterns within and between species at the DNA sequence level and make inferences not only with respect to where the divergence of R. zephyria from R. pomonella may have occurred, but also to the mode of speciation and subsequent species divergence. Within this general framework, I addressed several specific questions: i) what is the phylogenetic position of R. zephyria within the R. pomonella species group; 44 ii) how closely related are R. zephyria and R. pomonella; iii) is there geographic structure within R. zephyria and/or R. pomonella and iv) are there any fixed differences between the two species? The phylogenetic position of R. zephyria within the R. pomonella group is uncertain. Phylogenetic studies based on allozymes (Berlocher et a1 1993, Berlocher 2000) have placed R. zephyria at the base of the closely related R. pomonella group species (with R. cornivora at the base of the entire group). However, the parsimony tree in which R. zephyria was a sister to one of the R. pomonella clades was not a significantly worse fit (Berlocher 2000). Studies based on mitochondrial DNA sequences (l6S — McPheron and Han 1997, Han and McPheron 1997; COI/COII — Smith and Bush 1997) support the latter relationship. Studies of genetic variation in multiple populations of R. pomonella so far have all been based on allozymes (McPheron 1990, Berlocher 2000). Several populations of R. zephyria were analyzed for allozyme and mitochondrial RFLP variation by Feder et al (1999); their study focused on hybridization between R. pomonella and R. zephyria. No large-scale geographic studies to date in either species have been based on DNA sequence data. R. pomonella and R. zephyria display a fixed difference at one of the six diagnostic allozyme loci (Had) identified by F eder et al (1988) and McPheron et al (1988). R. zephyria is fixed for Had I H while R. pomonella is polymorphic for two other alleles, Had100 and Had'zs. Also, R. pomonella and R. zephyria display a fixed difference in the shape of male claspers (surstyli) (Westcott 1989), and the lengths of female ovipositors (however, the variation in the latter trait is large and ovipositor lengths 45 overlap, Bush 1966). No fixed differences in mitochondrial C011 and 168 DNA sequences have been found (Smith and Bush 1997, McPheron and Han 1997). As mentioned above (Chapter 1), relationships between taxa inferred from gene trees obtained using one gene can differ dramatically from those obtained using a different gene or a different type of marker. Therefore gene trees may not accurately correspond to species trees (Maddison 1995, Wang et al 1997). Maddison (1997) remarks that “phylogeny has a variance as well, represented by the diversity of trees of different genes”. The use of multiple loci for estimating relationships between taxa permits one to distinguish the forces that act on many genes (and ideally the entire genome) from those affecting individual loci (Hudson et al 1987). In this study I used DNA sequences of three anonymous single-copy nuclear genes and a well-characterized mitochondrial COI/COII gene in order to minimize the limitations of the single-gene approach. The nuclear loci represent different linkage groups in the R. pomonella genome (Figure 3.1; Roethele et al 1997). While the identities and function of the nuclear loci used here are unknown, they are each in significant linkage disequilibrium with the allozyme loci that display host-specific frequency differences between host races of R. pomonella (Roethele et a1. 1997). The degree of linkage to the allozyme loci as determined by levels of recombination (Roethele et al 1997) is different for each of these markers and ranges between 1.8 and 7.50M. The working hypothesis in this study is that the speciation of R. zephyria occurred by a host shift of an R. pomonella-like ancestor from hawthoms to snowberries in a zone of parapatry or sympatry in the upper Mississippi River valley of Minnesota. In studies based on allozyme data (Berlocher and Bush 1982, Berlocher 2000) R. pomonella has 46 been shown to be the most genetically variable species of the group, with a large and variable gene pool containing ancestral polymorphisms. In at least one case it has been documented that R. pomonella has shifted from one host (hawthoms) to another (apples) thus forming a new host race. This has led to a hypothesis that R. pomonella may be the ancestor of other taxa in the group, which speciate by host shifts. It is further hypothesized that the descendent R. zephyria spread west, and possibly east, on snowberries. If there were no snowberries east of the Mississippi River valley prior to this host shift, R. zephyria found in eastern North America today must have been introduced with the infested host after the Lewis and Clark expedition (see Chapter 2). One alternative hypothesis is that the host shift occurred at the Great Plains/Eastem Woodland boundary, with subsequent dispersal of snowberry flies both east and west, assuming that snowberries existed in eastern North America prior to the host shift (see Chapter 2). MATERIALS AND METHODS Sample: Infested fruits of R. zephyria and R. pomonella host plants (snowberries, hawthoms and apples) were collected during late summer and fall of 1994, 1995, 1997, 1998, 1999 and 2000 throughout the geographic ranges of both fly species (Table 3.1) and brought to the laboratory, where the files were reared as described in Chapter 2. Pupae of R. pomonella from Nova Scotia were obtained from R. Smith in 95% ethanol. Adults were used for DNA extractions for all R. zephyria and most R. pomonella 47 samples; DNA was extracted from pupae of R. pomonella from Nova Scotia (ethanol preserved), Massachusetts, New York and Washington State (samples collected in fall 2000) and Ontario (no adults emerged during two seasons). Individuals belonging to other taxa included in the analyses were either reared in the laboratory of J. Feder at the University of Notre Dame or obtained from S. Berlocher (University of Illinois at Urbana-Champaign) or J. Smith. These flies were subjected to the same procedures as R. zephyria and R. pomonella samples (see below) and sequences from them were obtained in collaboration with J. Roethele (University of Notre Dame). DNA extraction from R. zephyria and R. pomonella: Total genomic DNA was isolated from individual flies using a protocol modified from Han and McPheron (1997). Individual flies were homogenized in buffer (10 mM Tris, pH 8, 60 mM NaCl, 150 mM sucrose, 10 mM EDTA, 0.5% (w/v) SDS, 0.1 mg/mL proteinase K) and crude homogenates were incubated at 55°C for 30 minutes. Buffer containing 300 mM Tris, 150 mM sucrose, 100 mM EDTA and 0.75% (w/v) SDS was added to precipitate protein. After incubation on ice for 10 minutes an equal volume of phenol was added and protein and cell debris were removed by centrifugation (14,000 rpm, 5 min). Residual protein contaminants were removed by subsequent phenolzchloroformzisoamyl alcohol (25:24: 1 , v/v/v) and chloroformzisoamyl alcohol (24:1, v/v) extraction followed by ethanol precipitation at ~20°C overnight. DNA was resuspended in TE buffer (lOmM Tris, lmM EDTA) containing lOOug/mL RNase A and stored at 4°C. 48 Table 3.1. Populations of Rhagoletis zephyria and R. pomonella included in the phylogeographic analyses 332°” Locality Label R. zflrhyria Massachusetts Amherst ZMA New York Geneva ZNY Pennsylvania Penn State campus ZPA Ontario Rice Lake ZON Michigan Mio ZMIO Michigan Sleeping Bear ZSB Michigan East Lansing ZEL Wisconsin Waukesha ZWI Minnesota Hawby ZMN North Dakota Bismarck ZND South Dakota Custer SP ZSD Nebraska Brady ZN E Colorado Boulder ZCO Wyoming Moiser Gulch ZWY Montana Swan Lake ZMT Montana Billings ZMTB Idaho Elmira ZID Washington Dixie ZWA Oregon Grants Pass ZOR California Honeydew ZCA R. pomonella Nova Scotia Kentville PNS Massachusetts Amherst PMA New York Geneva PNY Pennsylvania Biglerville PPA Ontario Toronto PON Michigan E. Lansing PEL Michigan Grant PMI Georgia Macon PGA Illinois Riverwoods PIL Minnesota Staples PMN Iowa Ames PIA Nebraska ([80E,exit285) PNE Colorado Boulder PCO Texas Waxahatchie PTX New Mexico (unknown) PNM Utah Wellsville PUT Washington St. Cloud PWA Mexico Mexico City PMX Mexico La Jolla MXHD 49 Choice of markers: Primer pair sequences for 10 anonymous nuclear loci located in different linkage groups (Figure 3.1) within the genome, and showing different levels of recombination with allozymes which show host-specific frequency differences in host races of R. pomonella, were provided by J. Roethele and J. F eder (University of Notre Dame). These loci (P181 and P220 from linkage group 1; P114 and P2956 from linkage group 11; P7, P2156 and P2480 from linkage group III; P100 and P661 from linkage group IV and P454 from linkage group V) were screened for variation and level of phylogenetic signal. Based on the results of a preliminary study, P220, P2956 and P2480 were chosen for the phylogeographic study. P181, P2156 and P454 showed very little variation; the phylogenetic signal from P661 was complicated by high recombination rates within this gene; P114 provided less resolution than P2956; P7 was very difficult to amplify and clone, and P100 did not amplify in R. zephyria. 50 8.7 20.0 7.0 3.3 3.3 2.5 0.4 4.2 4.9 11.1 6.2 - P3072 - P2160 ~P2944 -P226 - P181 —P341 — Idh —Ak -P2648 — Pgm 1.7 4.6 02_ Iiialr4_ O 0 ~Aat-2 2.0 LDia-2 —' 0.7 3.7 14.8 III I - P667 -P2619 . . 6.3 " _. °. —Pe -2 "P138 8.3 p 12.0 "‘ P719 _ G'G'pdh 0.6 68 ~P849 -Acon-2 ‘ 8 8 4 Anal 05 -P2156 - 0] ‘ P70 ilk -Had 3-2 P Adh-1 1 4 8, M” 0.2 - 57 _P8 0.2 : 33a_. ' P114 1.4 i ‘4-1 1.2 ‘ P47 “P29261D'-P3082 «2 0.3 ' P2825 3.6 0.4 _ P33 5.6 ‘ P3061 3 —P2473 L P22 51 V V sex chromosome —P2963 _ Aat-1 — P2565 _ P309 — P1 147 —P1700 — P661 _ Gpi —P454 _ P369 -P535 -P2620 — P727 _ P9 — P6 _ P100 PP405 —P33 Dot chromosome Ac P291 9 P249 P33b Figure 3.1. Genetic linkage map of Rhagoletis pomonella. Map constructed by Roethele et al. (1997) based on genetic recombination data obtained using allozyme and cDNA markers. Underlined allozymes show allele frequency differences between the apple and hawthorn host races of R. pomonella. cDNA markers are labeled with a “P”, followed by a number; bold lines and marker labels indicate loci in gametic disequilibrium with an adjacent allozyme locus. The loci used in this study are framed in red. PCR amplification, cloning and sequencing for R. zephyria and R. pomonella: Primers used for PCR amplifications of nuclear alleles were designed by J. Roethele and are listed in Table 3.2. Reactions were performed in SOpL or 200pL volumes using leibcoBRL PCR buffer, 6.25 mM MgC12, 1.25 mM of each of dATP, dCTP, dGTP and dTTP, 10 pM of each primer, 5 units of Gibco Taq polymerase and luL of template DNA (not quantified). The PCR cycling regime was: 95°C, 5 min; 35 cycles of 94°C 2 min, 52°C 1 min 30 sec, 72°C 2 min; 72°C 7 min. PCR products were initially gel-purified by centrifugation through an Amicon Ultrafree-DA filter (Millipore, Bedford, MA) followed by isopropanol precipitation for 2 hr at 4°C and cloned into the pCR2.l Dual Promoter plasmid using a commercially available TA cloning kit (Invitrogen, Carlsbad, CA). After overnight ligation at 14°C, chemically competent EFloL E. coli cells were transformed and grown on LB medium plates containing 50 mg/mL ampicillin and 1.6 mg X-gal. PCR products were also directly cloned without gel-purification, which yielded higher numbers of putatively positive clones, so this technique was adopted for all subsequent clonings. Putative positive clones were checked for the presence of inserted DNA by direct PCR amplification from bacterial colonies, using the same primers and same cycling regime as in the original PCR. Four positive clones from each individual fly were purified (WizardS V Miniprep, Promega, Madison, WI) and sequenced. For about 30% of the number of flies, sequencing was performed in both directions by cycle sequencing with dye termination using universal primers M13 and M7 and the ALF automated sequencer (Amersham-Pharmacia) at the University of Notre Dame. The rest of the sample was sequenced unidirectionally, using universal primer M13 and ALF automated sequencer at the University of Notre Dame, or specific T7 primers (Table 3.2) with the 52 BigDye termination (Applied Biosystems, Foster City, CA) and ABI377 sequencer at Iowa State University or the University of Minnesota Some sequences were obtained by sequencing purified PCR products from screening reactions (Qiaquick, Qiagen, Valencia, CA). Several clones were sequenced at both University of Notre Dame and Iowa State University to check for discrepancies. The results were consistent regardless of the primers (universal or specific), template (purified plasmids or direct screening PCR products) and sequencing method. The mitochondrial COI/COII coding gene region was PCR amplified as a single lkB fragment using the protocol of Smith and Bush (1997) and primers George (Cl-J- 2792, Bogdanowicz et al 1993) and Eva (TK-N-3722, Bogdanowicz et al 1993) (Table 3.2), with the modification that DNA was not quantified prior to amplification. PCR products were purified (Qiaquick, Qiagen, Valencia, CA) and sequenced directly in both directions using BigDye termination (Applied Biosystems, Foster City, CA) and ABI377 sequencer at Iowa State University. Table 3.2. Oligonucleotide sequences used for PCR amplifications and sequencing Primer Sequence 220T3 5’ CTG AAG TGG AAG ATG AAG AG 3’ 220T7 5’ TTC GCG TAG TTA CAT ATT TAC 3’ 2956T3 5’ CTG CGT TGC TGT TTT TGC 3’ 2956T7 5’ CGC TAT TTA TTC CTG AAC ATA TTT TC 3’ 2480T3 5’ GCC AAA GGG TAA TTT GTT TGA TAG 3’ 2480T7 5’ TGC GAT TTG ACT TAT CTT AAT GG 3’ George 5’ ATA CCT CGA CGT TAT TCA GA 3’ Eva 5’ GAG ACC ATT ACT TGC TTT CAG TCA TCT 3’ 53 Data analyses: Editing of nucleotide sequences was performed by using Sequencher 3.1 (Gene Codes Corp. Ann Arbor, M1) or Mac Vector 6.0 (Oxford Molecular Ltd., Oxford, UK). Sequences were aligned by eye using Se-Al v1.0 (Rambaut 1996 online) and compared to unpublished sequences of cDNA for each nuclear locus (courtesy of J. Roethele) or published COl/COII sequences (Smith and Bush 1997). Alignments (Appendices A-D) were exported as Nexus files for analyses of polymorphism and phylogenetic relationships. GenBank accession numbers for the sequences are being obtained at the time of the submission of this dissertation. Measures of DNA polymorphism (number of haplotypes, haplotype diversity h (estimate of heterozygosity), nucleotide diversity 7t and 0, and number of polymorphic sites) were obtained using the program DnaSP ver. 3.50 (Rozas and Rozas 1999). This program was also used to calculate values of Tajima’s D (Tajima 1989) as well as to perform the Hudson-Kreitman-Aguadé test (HKA, Hudson et al 1987) of neutrality (Kimura 1983). The average number of nucleotide substitutions per site between R. pomonella and R. zephyria (ny) and the number of net nucleotide substitutions per site between these two species (Da) were also estimated using DnaSP, as well as the parameters that estimate gene flow (Nm). Phylogenetic analyses were performed in PAUP* 4b (Swofford 1999) version 6. For nuclear loci, analyses were performed on a PowerMacintosh G3, with 512MB RAM memory and 400MB allocated to PAUP. For COI/COII, analyses were performed on a PowerMacintosh 8600/200, with 64MB RAM and 48MB allocated to PAUP. For each individual dataset, neighbor-joining and maximum parsimony analyses were done. Neighbor-joining analysis was based on pairwise Jukes—Cantor distances (J ukes and 54 Cantor, 1969), with R. cingulata as outgroup for P220, R. basiola as outgroup for P2956, R. tabellaria as outgroup for P2480 and R. suavis as outgroup for COI/COII. Identical alleles (haplotypes) were then removed from the analysis in order to decrease the number of possible rearrangements. Insertion/deletion events (indels) were hypothesized based on the aligned sequences. For P220 and P2480 indels were scored as present or absent and appended to the datasets (Siiltrnan et al 1995). For P2956, the majority of the indels were overlapping so it was not possible to score them separately. For COI/COII there was only one 5-bp deletion in one sequence and this indel was also not scored. Gaps were then treated as missing data. In parsimony analyses, MP trees were first obtained using the heuristic search option with simple sequence addition and TBR branch swapping. The search was limited to saving 5,000 trees due to the large number of most parsimonious trees. Multiple searches were than performed to search for the islands of shorter trees as recommended by Maddison (1991) and using the method of Masta (2000) with 1000 replicate searches, each limited to saving 50 trees one step longer than the shortest trees found. In all cases these searches found trees that were shorter than the ones obtained by the initial simple sequence addition search. MPRs from these searches were then used as starting trees for TBR branch swapping. Images in this dissertation are presented in color. In all dendrograms and phylograms presented here, green branches indicate R. zephyria, red R. pomonella, blue R. mendax and light-blue R. nr. mendax (flowering dogwood fly). Squares to the right of taxon label indicate R. zephyria, circles R. pomonella. Different colors of these symbols correspond to geographic regions: red — Northeast, orange — Great Lakes, green — Great Plains, blue — Rocky mountains, violet — Northwest and gray — South. 55 To assess the confidence estimates on the groups contained in the MP trees, F elsenstein’s (1985) bootstrap approach was used with 500 replicates for both neighbor- joining and MP trees. For parsimony bootstrapping, the fast stepwise sequence addition option in PAUP* 4b6 was used. Branches with bootstrap confidence limits above 90 are considered to be well supported, between 70 and 90 moderately well supported and between 50 and 70 weakly supported. RESULTS Polymorphism. A summary of the number of sequences obtained at each locus is presented in Table 3.3. DNA sequence variation is presented in Table 3.4. Two main sampling strategies are usually found in phylogenetic studies based on DNA sequences (F unk 1999). In one strategy, a small number of individuals (or only one) is sampled from a large number of taxa and the phylogenies obtained from the sequence data are usually well resolved and supported (Funk et al. 1995). An alternate strategy consists of sampling several individuals from a number of geographic units, usually from the same species, focusing on population genetic processes within species (Avise et al. 1987). Both of these strategies have their limitations. When a small number of individuals per taxon is sampled, intraspecific variation may not be detected; if sample sizes are large but limited to one species inferences are also limited to that species. In this study, populations of R. zephyria and R. pomonella were sampled across their geographic ranges and a small number of alleles from each population was obtained for three nuclear and one mitochondrial gene. Therefore the sampling for the phylogeographic analysis of the 56 divergence between R. zephyria and R. pomonella conforms to the “large number of taxa, small number of individuals per taxon” strategy, since the populations of the two species were the main objects (or taxa) of the study, with the goal to obtain information that can provide insight on the process of speciation and divergence of R. zephyria. The uneven number of sequences obtained from each taxon at each locus resulted from unsuccessful amplifications or clonings or sequences that were too ambiguous at multiple sites so that the calls could not be easily made. At P220 and P2956 haplotype diversity in R. zephyria is slightly higher than in R. pomonella, whereas at P2480 and COI/COII it is higher in R. pomonella. Summed over all nuclear loci, the weighted average value of 0/bp was higher in R. zephyria (0.0652) than in R. pomonella (0.0513). For mitochondrial COI/COII R. pomonella displays higher nucleotide polymorphism than R. zephyria. The percentage of polymorphic sites was similar in the two species at P2956 and P2480 (7.7 and 20.5% in R. pomonella, 7.9 and 19.8% in R. zephyria). At P220, 21.9% of sites were polymorphic in R. zephyria, compared to 13.9% in R. pomonella. At COl/COII, a low level of polymorphism was observed — only 3% of sites were polymorphic in R. pomonella and 2.3% in R. zephyria. No fixed differences were observed between R. pomonella and R. zephyria at any of the loci. 57 Table 3.3. Summary of the sample and loci analyzed in R. zephyria, R. pomonella and other taxa of the genus Rhagoletis in this phylogeographic study. Locus nZ np n0 Link. gr. Allozyme Length P220 67 46 32 I Aat-2, Did-2 425 P2956 13 36 96 Il Acon-2, Mpi, Me 521 P2480 70 34 1 1 111 Had 439 COl/COII 25 23 32 mt n/a 1074 nz - number of R. zephyria sequences. np— number of R. pomonella sequences. n0 - number of sequences obtained from other taxa. Link. gr. — linkage group (chromosome) where the locus is located in the R. pomonella genome (Roethele et al 1997). Allozyme — allozyme locus to which the locus under study is linked. Length — number of base pairs aligned. Table 3.4. Summary of the polymorphism at three anonymous nuclear loci and mitochondrial COI/COII locus in R. pomonella, R. zephyria and other taxa of the genus Rhagoletis. Locus Length Na] h Npoly n 0 porn 30 0.926 57 0.031 0.059 P220 425 zep 48 0.950 93 0.028 0.073 other 28 0.992 85 0.046 0.056 porn 22 0.943 40 0.020 0.021 P2956 521 zep 11 0.962 41 0.018 0.032 other 92 0.999 175 0.048 0.087 pom 32 0.996 90 0.070 0.080 P2480 439 zep 51 0.984 87 0.057 0.097 other 1 1 1.000 81 0.065 0.077 pom 13 0.874 32 0.009 0.020 COI/COII 1074 zep 11 0.800 25 0.006 0.014 other 22 0.970 139 0.041 0.059 pom — R. pomonella. zep — R. zephyria. Other — other taxa. N.. — number of different alleles (haplotypes). NM, - number of polymorphic sites. h — haplotype diversity. 1: - nucleotide diversity. 0 - nucleotide diversity, estimate of 4Ncu. 58 Tests of selective neutrality. Natural selection acting on different loci can change expectations about lineage sorting and coalescence, so it is important to estimate whether selection is acting on the loci under study. Selection can be detected using Tajima’s parameter D based on the comparison of two different estimates of 0 which are strongly correlated (Tajima 1989). If the loci are neutral, both estimates are expected to be the same and D is expected to be 0. A values of D significantly different from 0 indicates that natural selection acts on the locus. Using this method, selection was detected at P220 and P2956 in R. zephyria and COI/COII in R. pomonella and R. zephyria (Table 3.5). An alternative method (F u and Li, 1993) is based on weakly correlated estimates of 0. The test statistic G was significant at P220 and COI/COII in R. pomonella and R. zephyria and at P2480 in R. zephyria (Table 3.5). All estimates of D and G had negative values, indicating an excess of low frequency polymorphisms and slightly deleterious alleles (Li 1997). 59 Table 3.5. Detection of natural selection at the four loci in R. pomonella, R. zephyria and all other Rhagoletis taxa (pooled) using Tajima’s (1989) and F u and Li’s (1993) tests. Locus Species Tajima’s D Fu & Li’s G pom -1.648 -3.018* P220 zep -2. 122* -4.704** other -0.674 -0.221 pom - l .086 -1.966 P2956 zep -1.930* -2.153 other -1 .504 -1.731 porn -1.062 -1.673 P2480 zep -l .404 -3.377** other -0.722 -0.367 porn -2.l72** -2.973* COI/COII zep —2.219** -3.108** other -1 . 190 -0.480 pom —- R. pomonella, zep — R. zephyria, other —- other Rhagoletis species. * - P<0.05, ** - P<0.01 Neutral mutation hypothesis predicts that the levels of within- and between- species DNA variation should be positively correlated (Kimura and Ohta 1971). This prediction can be tested by the Hudson-Kreitman-Aguadé (HKA) test which estimates whether the levels of observed polymorphism and divergence are consistent across loci (Hudson et al 1987). HKA test showed that levels of polymorphism and divergence across the three regions were consistent within and between species and none of the loci caused significant departure from neutrality in R. pomonella and R. zephyria (x2 non- significant, Table 3.6). Pairwise comparison of P2956 and COI/COII was not possible because none of the R. pomonella sequences at P2956 were obtained from the individuals from which sequences of COl/COII were obtained. 60 Table 3.6. HKA (Hudson-Kreitman-Aguadé) test for silent-site differences in four regions between R. pomonella and R. zephyria. Region SL6 p Wd 12 obs exp obs exp P220 38 38.20 16.27 16.07 vs.P2956 25 24.80 10.23 10.43 0.001 P220 33 33.89 9.64 8.75 vs. P2480 65 64.11 15.67 16.56 0.018 P220 37 38.09 9.31 8.22 vs.COII/COII 21 19.91 3.21 4.30 0.075 P2480 29 28.33 23.81 24.47 vs.P2956 8 8.67 8.15 7.49 0.012 P2480 66 66.95 15.21 14.26 vs. COI/COII 24 23.05 3.97 4.91 0.035 seg — number of segregating sites, pwd — average pairwise number of differences Divergence between R. pomonella and R. zephyria. The average numbers of nucleotide substitutions per site between R. pomonella and R. zephyria (ny) for each locus are given in Table 3.7. The highest number of substitutions per site was observed at P2480, whereas the lowest was in COI/COII. The number of net nucleotide substitutions per site (D3) between the two species was highest at P220 (Table 3.7) and lowest at COI/COII. Using these parameters and the Lynch and Crease (1990) method in DnaSP, gene flow between the species was estimated (Nm, Table 3.7). Values of Nm at P2480 and COI/COII were high (Table 3.7). At these two loci natural selection was detected using Fu and Li’s test (Table 3.5). The estimate of Nm was the lowest at P220 for which Fu and Li’s G was also significant in both R. pomonella and R. zephyria (Table 3.5). 61 Table 3.7. Summary of divergence parameters between R. pomonella and R. zephyria. Locus ny Da Nm P220 0.0526 0.0233 0.31 P2956 0.0205 0.0056 0.66 P2480 0.0682 0.0039 3.97 COI/COII 0.0075 0.0002 15.24 Phylogenetic analyses. Neighbor-joining analyses based on J ukes-Cantor distances and parsimony analyses were performed for each locus. The neighbor-joining trees (Figures 3.2, 3.5, 3.8 and 3.11) illustrate the relative genetic distances between the analyzed sequences. If the substitution rates at each locus were uniform (constant molecular clock within and across loci), branch lengths of neighbor-joining trees would be proportional to time since divergence. The constancy of the molecular clock at each locus so far has not been demonstrated in Rhagoletis; at different loci branch lengths differ considerably (Figures 3.2, 3.5, 3.8 and 3.11), which obscures estimates of times since divergence. Generally, the amount of change in the R. pomonella species group was found to be small (especially at COI/COII and P2956) which suggests recent divergence ofthe taxa (Figures 3.2, 3.5, 3.8, 3.11). A summary of the parsimony analyses is given in Table 3.8. At all loci the number of informative characters used for parsimony analyses was low, and in some cases (P220) lower than the number of individual sequences analyzed. This complicated the analyses and resulted in thousands of equally parsimonious trees. Except for P2480, consensus trees were poorly resolved and bootstrap support for clades was low (Figures 62 3.4, 3.7, 3.10 and 3.13). Consistency indices were also low, while retention indices were relatively high (Table 3.8). Table 3.8. Summary of the parsimony analyses of the DNA sequences at three anonymous nuclear loci and mitochondrial COI/COII locus. Locus n length n,- nMpR TL CI RI RC HI P220 145 425 105 2645003 262 0.523 0.896 0.468 0.477 P2956 145 521 148 2854003 309 0.628 0.937 0.588 0.372 P2480 115 439 139 1920 582 0.308 0.698 0.214 0.692 COI/COII 80 1074 141 89200“ 300 0.613 0.780 0.483 0.387 n — number of sequences, n, -— number of informative characters, nMpR — number of equally parsimonious trees obtained, TL — tree length, CI — consistency idex, RI — retention index, RC — rescaled consistency index, HI — homoplasy index; 3 indicates that the search was terminated when the number of saved MPRs exhausted the RAM before swapping on all trees. Maximum parsimony analysis of P220 using 1000 replicate island searches yielded 26500 equally parsimonious trees of length 262. Additional TBR swapping on these trees yielded only trees of the same length (262) and exhausted the RAM after saving 264,500 trees. A random MPR (most parsimonious reconstructions) is shown in Figure 3.3. Strict consensus of the 264,500 trees is shown in Figure 3.4. Only 10 nodes within the R. pomonella species group were supported and overall bootstrap support was low. 63 Figure 3.2. P220 neighbor-joining tree based on Jukes-Cantor distances. Bootstrap values greater than 50% are shown. Green branches represent R. zephyria, red R. pomonella, blue R. mendax and light-blue R. nr. mendax (flowering dogwood fly). Squares next to the taxon name symbolize R. zephyria, and circles symbolize R. pomonella. Colors of the symbols represent geographic regions: red — Northeast, orange — Great Lakes, green — Great Plains, blue — Rocky Mountains and Colorado Plateau, violet — Northwest and gray — South. For taxon labels please refer to Key to symbols and abbreviations (p. xi). 64 El _«A I 21141.3. mom. “‘2 .11 14 M» I M3 o —— 0.005 substitutions/site Figure 3.2. 65 Figure 3.3. P220 - a random most parsimonius tree (of the 264500 equal MPRs). Green branches represent R. zephyria, red R. pomonella, blue R. mendax and light-blue R. nr. mendax (flowering dogwood fly). Squares next to the taxon name symbolize R. zephyria, and circles symbolize R. pomonella. Colors of the symbols represent geographic regions: red — Northeast, orange — Great Lakes, green — Great Plains, blue — Rocky Mountains and Colorado Plateau, violet — Northwest and gray — South. For taxon labels please refer to Key to symbols and abbreviations (p. xi) 66 Fun] I ma. Mu I is: is «to .‘OC' l i- has. a 4 Figure 3.3. 67 Figure 3.4. P220 - strict consensus of 264500 most parsimonious trees of length 262. CI=0.523, RI=O.896, RC=0.468. Bootstrap values greater than 50% are shown above branches. Green branches represent R. zephyria, red R. pomonella, blue R. mendax and light-blue R. nr. mendax (flowering dogwood fly). Squares next to the taxon name symbolize R. zephyria, and circles symbolize R. pomonella. Colors of the symbols represent geographic regions: red — Northeast, orange — Great Lakes, green —- Great Plains, blue — Rocky Mountains and Colorado Plateau, violet — Northwest and gray — South. For taxon labels please refer to Key to symbols and abbreviations (p. xi). 68 u ...IIIII ltlnl I... III; Ill-Ila. nooooooc O O Figure 3.4. 69 P2956 was the only locus for which majority of the sequences obtained were from the taxa outside of the R. pomonella group (Table 3.3, Figures 3.5, 3.6 and 3.7). Both neighbor-joining and parsimony analyses at this locus suggest that R. zephyria groups within the R. pomonella species group (Figures 3.5, 3.6 and 3.7), with the majority of the groups weakly to moderately supported. Replicate island parsimony searches yielded 4550 trees of length 309, which were used as starting trees for TBR branch swapping. The search was aborted after saving 285,400 trees and exhausting the RAM. A random MPR (most parsimonious reconstruction) is shown in Figure 3. 6. A strict consensus of the MPRs at P2956 (Figure 3.7) retains the R. pomonella species group clade with poorly resolved relationships between the taxa and R. zephyria forming an unresolved group within this clade, with the exception of a single R. zephyria from New York. Bootstrap support for the clades was low to moderate (Figure 3.7). Replicate island searches for the shortest parsimony trees at P2480 yielded 650 trees of length 582. After additional TBR swapping on these trees, 1920 trees of the same length were found. A random tree representing the 1920 trees is shown in Figure 3.9, and a strict consensus of these trees is shown in Figure 3.10. Although the resolution at this locus was good (better than at other loci), consistency index and retention index had low values (Table 3.8) and a low number of nodes was bootstrap supported (Figure 3.10). 70 Figure 3.5. P2956 — neighbor-joining tree (J ukes-Cantor distances). Bootstrap values greater than 50% are shown. Green branches represent R. zephyria, red R. pomonella, blue R. mendax and light-blue R. nr. mendax (flowering dogwood fly). Squares next to the taxon name symbolize R. zephyria, and circles symbolize R. pomonella. Colors of the symbols represent geographic regions: red -— Northeast, orange —— Great Lakes, green — Great Plains, blue — Rocky Mountains and Colorado Plateau, violet - Northwest and gray — South. For taxon labels please refer to Key to symbols and abbreviations (p. xi). rs“ E — 0.005 substitutions/site Figure 3.5. 72 1“ £3: Figure 3.6. P2956 — a random most parsimonious tree (of 285400 equal MPRs). Green branches represent R. zephyria, red R. pomonella, blue R. mendax and light-blue R. nr. mendax (flowering dogwood fly). Squares next to the taxon name symbolize R. zephyria, and circles symbolize R. pomonella. Colors of the symbols represent geographic regions: red — Northeast, orange — Great Lakes, green — Great Plains, blue — Rocky Mountains and Colorado Plateau, violet — Northwest and gray — South. For taxon labels please refer to Key to symbols and abbreviations (p. xi). 73 74 Figure 3.7. P2956 - strict consensus of 285400 most parsimonious trees of length 309. CI=0.628, RI=0.937, RC=0.5 88. Bootstrap values greater than 50% are shown above branches. Green branches represent R. zephyria, red R. pomonella, blue R. mendax and light—blue R. nr. mendax (flowering dogwood fly). Squares next to the taxon name symbolize R. zephyria, and circles symbolize R. pomonella. Colors of the symbols represent geographic regions: red — Northeast, orange — Great Lakes, green — Great Plains, blue —- Rocky Mountains and Colorado Plateau, violet — Northwest and gray — South. For taxon labels please refer to Key to symbols and abbreviations (p. xi). 75 Figure 3.7. 76 Figure 3.8. P2480 — neighbor-joining tree (J ukes-Cantor distances). Bootstrap values greater than 50% are shown. Green branches represent R. zephyria, red R. pomonella, blue R. mendax and light-blue R. nr. mendax (flowering dogwood fly). Squares next to the taxon name symbolize R. zephyria, and circles symbolize R. pomonella. Colors of the symbols represent geographic regions: red —— Northeast, orange — Great Lakes, green — Great Plains, blue — Rocky Mountains and Colorado Plateau, violet — Northwest and gray — South. For taxon labels please refer to Key to symbols and abbreviations (p. xi). 77 ("LI I ”A O 14 NJ . .1 7‘ $111.60 "In I ciiia 5' 10.4 “.1 _ 0.005 substitutions/site Figure 3.8. 78 Figure 3.9. P2480 — a random most parsimonious tree (of 1920 MPRs). Green branches represent R. zephyria, red R. pomonella, blue R. mendax and light-blue R. nr. mendax (flowering dogwood fly). Squares next to the taxon name symbolize R. zephyria, and circles symbolize R. pomonella. Colors of the symbols represent geographic regions: red — Northeast, orange — Great Lakes, green — Great Plains, blue — Rocky Mountains and Colorado Plateau, violet — Northwest and gray — South. For taxon labels please refer to Key to symbols and abbreviations (p. xi). 79 “.2 NJ — 5 changes Figure 3.9. 80 Figure 3.10. P2480 strict consensus of 1920 most parsimonious trees of length 582. CI=0.308, RI=0.698, RC=0.214. Bootstrap values greater than 50% are shown above branches. Green branches represent R. zephyria, red R. pomonella, blue R. mendax and light-blue R. nr. mendax (flowering dogwood fly). Squares next to the taxon name symbolize R. zephyria, and circles symbolize R. pomonella. Colors of the symbols represent geographic regions: red — Northeast, orange — Great Lakes, green — Great Plains, blue — Rocky Mountains and Colorado Plateau, violet — Northwest and gray — South. For taxon labels please refer to Key to symbols and abbreviations (p. xi). 81 Figure 3.10. ss- tit -.iitiié sunrises... 5 IIOOOOOOOI .n-...-....-- E. as: II-o REE} .IIIIIIIIIthIOOOII .. EEEEEEEEEEIB .. .— 82 s Parsimony analysis of the COI/COII data using replicate island searches yielded 280 trees of length 300. Additional TBR branch swapping on these trees yielded 89,200 trees of the same length (Table 3.8) before exhausting RAM. A random MPR is shown in Figure 3.12. A strict consensus of the MPRs did not resolve relationships among the taxa of the R. pomonella species group (Figure 3.13) and the only clades that were bootstrap supported were the clades consisting of the taxa outside of the R. pomonella species group and R. carnivora. 83 Figure 3.11. COI/COII — neighbor-joining tree (J ukes-Cantor distances). Bootstrap values greater than 50% are shown. Green branches represent R. zephyria, red R. pomonella, blue R. mendax and light-blue R. nr. mendax (flowering dogwood fly). Squares next to the taxon name symbolize R. zephyria, and circles symbolize R. pomonella. Colors of the symbols represent geographic regions: red — Northeast, orange —- Great Lakes, green — Great Plains, blue — Rocky Mountains and Colorado Plateau, violet — Northwest and gray — South. For taxon labels please refer to Key to symbols and abbreviations (p. xi). 84 wane. 'Fpmz. W11 “unit b m2. - MAO an I 100 mum «2.2 - 0.001 wbstltutlonslslte Figure 3.11. 85 Figure 3.12. COI/COII -—- a random most parsimonious tree (of 89200 MPRs). Green branches represent R. zephyria, red R. pomonella, blue R. mendax and light-blue R. nr. mendax (flowering dogwood fly). Squares next to the taxon name symbolize R. zephyria, and circles symbolize R. pomonella. Colors of the symbols represent geographic regions: red — Northeast, orange — Great Lakes, green — Great Plains, blue -— Rocky Mountains and Colorado Plateau, violet — Northwest and gray — South. For taxon labels please refer to Key to symbols and abbreviations (p. xi). 86 was“. «.1 I MNA MI W W1. pic I -—ptx1.20 “NLMH —gm|2 I W. «mam. I m I not I m- m u I I arm I and I m1.um1v.pd4l I I MNX. m1 1310.1 ”1 2 IO um .22 —1 change Figure 3.12. I—ruu Imam ~61? 1m 16192.2 —Lm1 87 Figure 3.13. COI/COII - strict consensus of 89200 most parsimonious trees of length 300. CI=0.613, RI=0.780, RC=0.483. Bootstrap values greater than 50% are shown above branches. Green branches represent R. zephyria, red R. pomonella, blue R. mendax and light-blue R. nr. mendax (flowering dogwood fly). Squares next to the taxon name symbolize R. zephyria, and circles symbolize R. pomonella. Colors of the symbols represent geographic regions: red — Northeast, orange — Great Lakes, green — Great Plains, blue — Rocky Mountains and Colorado Plateau, violet —— Northwest and gray — South. For taxon labels please refer to Key to symbols and abbreviations (p. xi). 88 anus“: O “11.1 I post: I ammonia,“ "14.1 W2 ' pm I anA 90102 I m I m1 I not I zone I zma I mmtt rm. man? an“ man won me meal I “M6 MI w. 9011. HISI [IMI m1. anae- antr- MI anta- anu- MI ml m4- marl pma. pm. ala- pcot I m I not I not I zmt I an I not I put I W1 O W" I zmtBr I mMX 12110.1 Q9112 UM doctmnt “11.1 1‘1me c1 .7 001111 «02.2 dflg1 NM. 1 “2.2 Figure 3.13. 89 DISCUSSION Phylogenetic position of R. zephyria. At all four loci analyzed here, both R. pomonella and R. zephyria appear to be polyphyletic (Figures 3.2—2.13). Results obtained from the different loci support the hypothesis that R. zephyria is a sister taxon to R. pomonella and that it has diverged from the common ancestor more recently than R. mendax. At all loci sequences of R. zephyria and R. pomonella are placed within the same clades, and at P2956, P2480 and COI/COII alleles of R. mendax appear to have diverged from the common ancestor with the present-day R. pomonella before alleles of R. zephyria (Figures 3.7, 3.10 and 3.12). This is consistent with findings of Bush and Smith (1997) and McPheron and Han (1997) based on mitochondrial DNA sequences. Allozyme data (Berlocher et al 1993) suggested a different pattern and placement of R. zephyria at the base of the closely related taxa of the R. pomonella species group (without the more diverged R. cornivora). Recent analysis based on allozyme data agreed with the previous one on basal placement of R. zephyria; however, this analysis included only two populations of R. zephyria and it was suggested that the alternative placement (within the group as a sister to R. pomonella) was not significantly poorer (Berlocher 2000). At P220 most of the R. zephyria sequences were included in the same clade (Figure 3.3) which also included R. pomonella from Michigan, Texas and Georgia, R. nr. pomonella from La Jolla, MX, R. fausta and R. juniperina. Within this clade two smaller clades of R. zephyria were observed. Within the larger of these two clades two R. pomonella sequences were found, both from the Great Plains region. Other sequences of R. zephyria or R. pomonella do not fall into the clades which reflect geographic regions. 90 A large R. zephyria clade is retained in the strict consensus with the same R. pomonella sequences from Great Plains within the clade. A clade formed by R. tabellaria and R. electromorpha, sister species from the R. tabellaria species group, was also retained in the strict consensus tree (Figure 3.4). The remainder of the tree was poorly resolved (Figure 3.4). At P2956, species of the R. pomonella group formed a clade within which a single R. striatella allele sequence was placed (Figure 3.6). R. zephyria formed a sister clade to one of the R. pomonella clades, except for a single individual from New York (zny 3.4), which was a sister taxon to another R. striatella and placed in a clade with R. suavis and R. flavigenualz's which are distantly related to the R. pomonella species group. The clade of R. pomonella species group (excluding some of the R. cornivora sequences which were placed as a sister group to R. suavis and R. flavigenualis, Figure 3.7) was weakly supported (bootstrap = 66). Moderate support was observed for the clade consisting of R. pomonella group taxa without R. cornivora (bootstrap = 74). Clades consisting of the taxa outside of the R. pomonella species group were weakly to moderately supported (Figure 3.7). The relationships among the R. pomonella species group taxa suggested by the maximum parsimony analysis of the P2480 were consistent with the relationships suggested by allozyme data (Berlocher et a1 1993). R. cornivora formed a sister clade to the other R. pomonella group species (Figure 3.10). At the base of the more closely related R. pomonella group taxa (without R. carnivora) was the clade formed by five R. pomonella sequences. R. mendax and R. nr. mendax branched off from the remainder of the taxa before branching of R. zephyria and R. pomonella. Sequences of R. zephyria and 91 R. pomonella (except for five in the basal clade) were placed in three distinct clades, none of which corresponded to species. One of the three clades consisted mostly of R. zephyria from the populations west of the Mississippi River Valley, with three R. pomonella sequences (from Minnesota, Nebraska and Colorado) within this clade. Another large clade consisted of R. pomonella and R. zephyria from both sides of the Mississippi, with some structuring of R. zephyria into a predominantly western and predominantly eastern group. R. pomonella sequences were placed with predominantly eastern R. zephyria (except one R. pomonella from Michigan found in the “western” R. zephyria clade, Figure 3.10). The third large clade contained mostly sequences of R. zephyria from the Northeast and Great Lakes, with R. pomonella predominately from the Great Plains. At COI/COII branch lengths within the R. pomonella species group were short, which is consistent with the low levels of nucleotide polymorphism (Table 3.4) and low sequence divergence between R. pomonella and R. zephyria (Table 3.7). A unique haplotype was found in R. zephyria populations ranging from Massachusetts to Michigan. Of all the eastern R. zephyria, only haplotypes found in Wisconsin and New York populations was placed into the clade consisting of western R. zephyria and both eastern and western R. pomonella (Figure 3.12). All mtDNA haplotypes observed in western R. zephyria were either shared with or more closely related to R. pomonella. The inability to better resolve the relationships among taxa in this study at three out of four loci may stem from the very low number of informative characters and high number of taxa (sequences) analyzed. High number of taxa also deflates consistency indices, regardless of any change in information content (Kitching et a1 1998). It is interesting to note that the only well-resolved locus in this study was P2480, which is 92 tightly linked to Had, the only allozyme locus that displays fixed difference between R. pomonella and R. zephyria. Some of the discrepancies between the gene trees presented here may be caused by different forms of selection acting on the different genes. At P220, alleles from the same heterozygous individuals were found in divergent clades, suggesting that balancing selection may have played a role in Shaping the phylogenetic pattern observed at this locus. Estimates of Tajima’s D and Fu and Li’s G at all loci were negative (Table 3.5). The more robust Fu and Li’s statistic detected significant selection at P220 and COI/COII in both R. pomonella and R. zephyria and at P2480 in R. zephyria (Table 3.5). This finding was expected for the mitochondrial COI/COII gene region which codes for the two subunits of cytochrome oxidase and has been shown to be conserved within the R. pomonella species group (Smith and Bush 1997). Low nucleotide diversity in both species and high similarity of mitochondrial COI/COII haplotypes indicate that this gene region remains highly conserved under strong selection pressure that does not eliminate only the mutations that maintain the functionality of the gene. Negative values of Tajima’s D or F u and Li’s G reflect an excess of low frequency polymorphisms, which can result from recent selection so that the variation is removed, or by a recent population size expansion (Tajima 1989, Kliman et al 2000). The HKA test, on the other hand, did not indicate a significant contribution of any of the loci to deviations from the neutral mutation hypothesis (Table 3.6). Presence of selection also influences the estimates of gene flow between R. pomonella and R. zephyria (Table 3.7). The indirect methods of estimating gene flow (average number of migrants per generation, Nm) are based on the parameters of divergence between the two species (average number of nucleotide 93 substitutions and number of net substitutions per site at each locus, Table 3.7) and the assumption that the alleles at the loci under study are selectively neutral. If alleles are not selectively neutral, and if selection favors the same allele everywhere (directional selection), the rate of gene flow tends to be overestimated (Futuyma 1997), which can explain the high Nm estimated for P2480 and COI/COII (Table 3.7). For these two loci selection was detected by Fu and Li’s test (Table 3.5). Rate of gene flow can also be overestimated if speciation has been recent and the two sister species have not had enough time to differentiate. The high Nm at these two loci seems to support the hypothesis of a recent speciation event. If selection favors different alleles in the two Species, the rate of gene flow tends to be underestimated. Selection was detected at P220 by Fu and Li’s test (Table 3.5), however, Nm estimated for this locus was smaller (0.31) than for the neutral P2956 (0.66). Inferences about speciation from phylogeography. Overall phylogeographic patterns observed seem to be consistent with recent speciation. If the speciation has occurred within the past 10,000 years, unresolved relationships and shared ancestral genes are expected to be found (Masta 2000). Host fidelity in Rhagoletis is high (Bush 1966) and hybridization between R. pomonella and R. zephyria occurs only rarely (Feder et a1 1999). The phylogenetic patterns observed at all the loci, lack of fixed differences, sharing of alleles and haplotypes between the two species and the placement of alleles derived from geographically very distant populations can be explained by the recent speciation and retention of ancestral polymorphism. Alternatively, these patterns could be explained by interspecific gene flow. Other types of data are consistent with the recent speciation hypothesis as well — R. pomonella and R. zephyria share alleles at all allozyme 94 loci except for Had (Berlocher and Bush 1982, Berlocher et al 1993, F eder et al 1999) and are morphologically identical except for the shape of male genitalia (Bush 1966). Low levels of genetic divergence are often found between ecologically differentiated species which speciated by habitat shifts (sticklebacks — Schluter 1996, cichlid fishes — Albertson et a1 1999, Danley et al 2000, damselflies — Brown et a1 2000) and the results reported here are consistent with those findings. One possible alternative explanation for sharing alleles and haplotypes between species would be if the recurrent mutations occur in the two species independently (Kliman et a1 2000). However, it would be difficult to explain the low levels of sequence divergence observed at all unlinked loci by this phenomenon. Generally, little geographic structuring was observed at any of the loci. When the sequences of R. pomonella were found in predominantly R. zephyria clades (such as at P220 and P2480), they tended to be from the populations of R. pomonella sampled in the Great Plains (Minnesota, Nebraska, Iowa), indicating that the host shift from hawthoms to snowberries and speciation of R. zephyria occurred in the Plains, in the zone where Crataegus sp. and Symphoricarpos sp. were in contact when the glaciers receded after the last glaciation period. At P220 and P2480, some of the R. pomonella sequences were placed at the base of the R. pomonella species group, supporting the hypothesis that the common ancestor may have been R. pomonella-like. Based on the working hypothesis that the common ancestor of R. pomonella and R. zephyria was R. pomonella-like and infested hawthorn fruits (host of the present-day R. pomonella), the expectation was that R. pomonella 95 would show a higher number of alleles, higher average nucleotide diversity and higher heterozygosity across its geographic range than R. zephyria. Both species have high levels of polymorphism estimated by nucleotide diversities (7t and 0) and haplotype diversity (h, also an indirect estimate of heterozygosity) (Table 3.4). The levels of polymorphism observed in R. pomonella and R. zephyria were much higher than in Drosophila simulans, D. mauritiana and D. sechellia (Kliman et a1 2000). Only at COI/COII was the amount of variation low, as expected for Rhagoletis mitochondrial genes (Smith and Bush 1997, Smith and Bush 2000). Over all loci studied, R. zephyria had higher weighted average of 0/bp (0.0652) than R. pomonella (0.0513), contrary to the expectation that R. pomonella should have higher diversity. However, at some loci (P2480) sequences of R. pomonella were not obtained from the entire geographic range, and generally numbers of sequences obtained were uneven at all loci, which may have contributed to the unexpected finding that R. zephyria appears to be more genetically variable than R. pomonella. Even so, it appears that the speciation of R. zephyria was not accompanied by bottleneck. It should be noted that high genetic diversity does not necessarily negate population bottleneck at speciation - whether the bottleneck can be reflected by the present genetic structure depends on how recent the speciation event is and how long the bottleneck lasted relative to the effective population size (Eyre-Walkers 1998). Given the lack of fixed differences between R. pomonella and R. zephyria at the loci studied here and the similarity of their sequences reflected by the small numbers of phylogenetically informative characters, shared alleles and haplotypes between individuals from different species, relatively short branch lengths in neighbor-joining analyses and unresolved 96 phylogenetic relationships (Table 3.8, Figures 3.2-3.13, Smith and Bush 1997, McPheron and Han 1997), the scenario in which the speciation occurred relatively recently seems plausible. Therefore, it is unlikely that if the bottleneck played a role in speciation it would not be reflected by the present structure. It is difficult to infer the direction of population expansion from the phylogenies at different loci (Figures 3.2-3.13), since little geographic structuring is revealed. However, the better resolved P2480 MPRs suggest some structuring of R. zephyria, supporting the hypothesis that dispersal to the west preceded the expansion to the east (Figure 3.10). Of the three clades where R. zephyria is placed in the strict consensus of 1920 most parsimonious trees, the basal one consists mostly of alleles from populations west of the Mississippi, indicating that these populations may have had more time to adapt to local conditions and accumulate new mutations than the populations in the east. Incomplete lineage sorting and the presence of both eastern and western alleles of R. zephyria in the same clades at P2480 and P220 seems to support the hypothesis that R. zephyria was not introduced to the Eastern North America, consistent with findings of infestations of native hosts east of the Mississippi River and infestations of introduced hosts only when the native hosts have been present (Chapter 2). If introduction had occurred, populations in the east should have gone through a bottleneck, which would be reflected in the MPRs by shorter branch lengths, similarity of the sequences in the east and their placement together. This was not observed (Figures 3.2-3. 1 3). However, a hypothesis that multiple introductions of R. zephyria from different areas in the west into the east cannot be ruled out. 97 One possible way to obtain more information about the processes involved in divergence of the two closely related species may be to assess genetic variation at many more loci and more individuals, which I did using the amplified fragment length polymorphism (AF LP) DNA fingerprinting (Chapter 4). 98 CHAPTER 4 DIVERGENCE OF R. POMONELLA AND R. zsrrmm AS REVEALED BY DIFFERENCES IN AF LP PATTERNS INTRODUCTION Attempts to resolve phylogenetic relationships among taxa of the R. pomonella species group and/or to determine phylogenetic position of R. zephyria so far have used allozymes (Berlocher et al 1993, Feder et al 1999, Berlocher 2000), morphological characters (Jenkins 1996), and sequences of mtDNA genes (Smith and Bush 1997, McPheron and Han 1997) or nuclear loci (Chapter 3, Feder et al in prep). These studies have shown that R. pomonella appears to be the most variable species of the group, which has led to a working hypothesis that R. pomonella represents a large ancestral gene pool from which new species have arisen. The lack of observed fixed differences between the pomonella group species, except for the Hadl H allozyme allele in R. zephyria, and similarity between mtDNA haplotypes (Smith and Bush 1997, McPheron and Han 1997) indicates their recent divergence, with R. pomonella giving rise to new taxa faster than alleles can become fixed. Since mitochondrial COI/COII is highly conserved and reflects only a matrilineal fraction of the evolutionary history (Maddison 1995), nuclear gene phylogenies for 3 different loci were constructed (Chapter 3). These phylogenies all suggested different relationships between taxa and revealed little or no clear geographic structuring of R. pomonella and R. zephyria populations. In addition, the results only hinted to the origin of R. zephyria - where the host shift occurred, what the forces driving divergence and speciation could have been, and whether the snowberry fly is a native 99 inhabitant of Eastern North America. Furthermore, attempts to identify diagnostic markers that would be useful in determining whether specimens collected (trapped) in the field as adults belong to one or another species have so far not been very successful. The problem in the phylogeographic approach may be that an insufficient number of sequences (individuals) or insufficient number of markers was used. It is not very likely that the sampling strategy used for phylogeographic analyses provided insufficient number of sequences, given the large number obtained from R. pomonella and R. zephyria (Chapter 3). Kliman et al (2000) argue that repetitive sampling within species tends to reveal true genealogical history, implying that the number of individuals can be dramatically reduced if multiple loci are sampled. For rapidly evolving clades, Moran and Komfield (1993) suggest that only a method that assays variation at a large number of loci could overcome the effects of incomplete allele sorting in the time since species divergence. Recently, amplified fragment length polymorphism (AF LP, Vos et al 1995) genotyping has been suggested as a method of choice for studying relationships between closely related species (Albertson et al 1999), population structure and differentiation and estimating population genetic parameters (Reineke et al 1998, Cardoso et al 2000). It is widely used in characterizing variation in microbial (Rademaker 2000) and plant isolates (Myashita et al 1999, Cho et al. 1996), as well as in mapping plant genomes (V oorips et a1 1997, Brigneti et al. 1997, Vuylsteke et a1 1999, Castiglioni et a1 1999). It has less frequently been applied to animal systems, probably because microsatellites are well established for many species and have been extensively used as a method for studying genetic variation between pOpulations (for example, Estoup et al 1996). However, a 100 number of recent studies indicate that AF LP fingerprinting is becoming more popular - it has been employed in assessing parentage in birds (Quisteau et a1 1999), detecting hybridization (Prowell et al unpublished, Nijman et al 1999) and for establishing linkage maps (Liu et a1 1999). By screening loci distributed throughout the entire genome, AF LP can be used to generate a larger quantity of information than other markers such as allozymes, RAPDs, RFLPs or microsatellites (Mueller and Wolfenberger 1999). Characters produced by AF LP are highly replicable and provide good resolution of phylogenetic structure (Albertson et a1 1999). A change in a restriction recognition site does not alter the size of the fragment but removes it from the profile. The absence of a particular fragment can also be the result of an insertion or deletion event between the cut sites, in which case the size of the fragment is altered; it can also result from the failure to amplify some of the fragments from unknown reasons. Therefore, one disadvantage of the AF LP technique is that the characters behave as dominant markers, rather than co-dominant produced by traditional RF LP. However, its advantages include that it does not require prior knowledge of DNA sequences, detects variation over the entire genome and is highly reproducible because it uses stringent reaction conditions (Vos et al 1995). I used AF LP fingerprinting technique to compare intra- and interspecific variation at sites distributed randomly throughout Rhagoletis genome among 55 R. pomonella individuals from 13 populations and 59 R. zephyria individuals collected from 16 populations. These populations were chosen to represent the zone of overlap between the two species and to cover the entire geographic range of R. zephyria. This study was aimed at providing information about geographic structuring within R. pomonella and R. 101 zephyria and identifying relationships between their populations. This information is crucial if we are to better understand the mechanisms of speciation of R. zephyria, infer the location of the presumed host shift from ancestral hawthoms to snowberries and explain the present-day geographic distribution of R. zephyria. In addition, potentially useful characters that can be used to differentiate R. pomonella and R. zephyria genotypes by a PCR-based technique were identified, eliminating the need for the fresh material required for allozyme—based methods. MATERIALS AND METHODS Sample: Individual flies representing the zone of overlap of geographic ranges of R. pomonella and R. zephyria and covering the entire range of R. zephyria were used for the AF LP genotyping. I sampled at least 5 flies from each population (Figure 4.1). Not all the samples amplified successfully (Table 4.1), so for calculation of genetic distances and analyses of geographic structure samples were pooled according to geographic regions as follows (Table 4.1): Northeast (Massachusetts, New York and Pennsylvania), Great Lakes (Ontario, Michigan, Illinois and Wisconsin), Great Plains (Minnesota, Iowa, Nebraska, North Dakota, South Dakota and Montana “B”), Rocky Mountains and Colorado Plateau (Colorado, Montana, Utah and Idaho) and Pacific Northwest (Washington, Oregon and California). Rhagoletis mendax individuals from four populations (East Lansing, MI; Otis Lake, MI; Jasper Pulaski, 1N and Rutgers, NJ) were also included in the neighbor-joining analysis (Table 4.1) in an attempt to infer the 102 polarity and order of host shifts, while two individuals of R. nr. pomonella sampled near Mexico City, Mexico, were used as an outgroup. Table 4.1 Populations of R. zephyria and R. pomonella sampled for the AF LP analysis. 2%?“ Locality Label n R. zephyria Massachusetts Amherst ZMA 3 New York Geneva ZNY 2 Pennsylvania PSU campus ZPA 3 Michigan East Lansing ZEL 4 Wisconsin Waukesha ZWI 5 Minnesota Hawby ZMN 5 North Dakota Bismarck ZND 5 South Dakota Custer SP ZSD 5 Colorado Boulder ZCO 3 Montana Swan Lake ZMT 3 Montana Melstone ZMTB 2 Idaho Elmira ZID 4 Washington Dixie ZWA 5 Oregon Grants Pass ZOR 7 California Honeydew ZCA 3 R. pomonella Massachusetts Amherst PMA 5 New York Geneva PNY 2 Pennsylvania Biglerville PPA 3 Ontario Toronto PON 3 Michigan E. Lansing PMI 4 Illinois Riverwoods PIL 4 Minnesota Staples PMN 4 Iowa Ames PIA 5 Nebraska (180E,exit285) PNE 3 Colorado Boulder PCO 5 Utah Wellsville PUT 4 Washington St. Cloud PWA 4 Mexico Mexico City PMX 2 n - number of individual fingerprints used for the analysis 103 @6398 as”? 8.“ BEES macaw—smog 05 L8 8% mason—.00 2V 2:me 104 DNA extraction: DNA was isolated fiom the individual flies following the protocol of Han and McPheron (1997, see also Chapter 3). For AF LP genotyping, the concentration of DNA in each sample was determined using TKOlOO fluorimeter (Hoeffer Scientific Instruments, San Francisco, CA), since equal amounts need to be used for each individual reaction. AFLP genotyping: AF LP analysis was performed using a modified protocol developed by PE Applied Biosystems (Foster City, CA) after Vos et al (1995) (Figure 4.2). Restriction and ligation of adaptors was carried out in a single 11 uL reaction for each individual DNA sample. Approximately 400ng of total genomic DNA was digested with two restriction enzymes: 1U of four-base recognition MseI and 5U of six-base recognition EcoRI for 2.5 hours at 37°C in presence of IU of T4 DNA ligase and adaptor pairs, short double-stranded sequences with one asymmetric end complementary to either EcoRI or Msel end. Ligation of adaptor sequences modifies the restriction recognition sequence so that restriction does not occur after the ligation. The restriction-ligation samples were diluted to 200uL in TE buffer (20mM Tris-HCl, 0.1mM EDTA, pH 8.0) to obtain the appropriate concentration for subsequent amplification reaction. Preselective amplification reduces the number of fragments 16-fold by using the primers that match recognition site, adaptor sequence and 3’C for M361 primer and 3’A for EcoRI primer (Figure 4.2). Amplifications were performed in 20uL total reaction volume using 15 uL of Amplification Core Mix (PE Applied Biosystems), l uL of preselective primer mix and 4uL of diluted restriction-ligation products. The cycling regime for preselective amplification was 72°C 2min, 20 cycles of 94°C lsec, 56°C 3OSec, 72°C 2 min, followed by an extension step of 30 min at 60°C, with all ramp times set to 0.01 on the PE9600 105 thermal cycler. PCR products from preselective amplification were diluted to 400uL with TE buffer to obtain the appropriate concentration for selective amplification. Selective amplification further reduces the number of fragments using the primers that match restriction enzyme recognition site, adaptor sequence and three adjacent nucleotides (Figure 4.2). EcoRI primers are labeled with fluorescent dye which enables the visualization of fragments after the separation of amplified products on a DNA sequencer. Each fragment for each primer combination, visualized as a band on the denaturing gel, corresponds to a single AF LP locus. One Msel and one EcoRI primer should be chosen according to the PE Applied Biosystems protocol; after initial screening for polymorphism using 35 primer combinations, I chose the E-AGG/M-CTT and E- ACT/M-CAG primer combinations. Selective amplification reactions were performed in 20uL volumes, using 15uL of Amplification Core Mix (PE Applied Biosystems), 1pL of each primer and 3uL of diluted preselective amplification reaction products. Cycling parameters for selective amplification are given in Table 4.2. Amplification products were separated on 6% denaturing polyacrylamide gels for 3.5 hours using an ABI Prism 377 DNA sequencer with GS-500 ROX-labeled size standard. A subset of samples was independently prepared twice and electrophoresed at both MSU and Iowa State Sequencing Facilities to check for any possible discrepancies. The results were consistent, so the rest of the sample was run at MSU. Sizes of fragments were determined automatically by GeneScan 2.0.2 software (PE Applied Biosystems), by comparison to the size standard. 106 V AGenomic DNAcrfllntofmgmenlswiththerestricfionenzymesMselandEooRl "::l_] if: EA H: "— -.. 3 5. ___ B. Ligation of adaptors: 60081 is ‘and Msel is E m C. Genomic DNA fragments are modified. Msel Msel EOORI EOORI ...- . Template preparation and ligation of AFLP adaptors Prepared Template: Genomic DNA Fragment. Modified with Adaptors F1 F1 Preselective Primers: - A : EcoRl adaptor + recognition site + A or 15le adaptor + recognition site Adaptors. Thermal Core Mix Cycling C : Msel adaptor + recognition site + C s, :3; C ' G Preselective amplification of the prepared template A Choose Selective AFLP Primers: * - Axx }one of eight different fluorescent dye-labeled * - Ax/Tx AFLP EcoRl Selective Amplification primers 1:1 Cxx - one of eight different AFLP Msel Selective Amplification primers. 8. Run Selective Amplification: T1 1:10 1 36 A Primers. @ Thennal Core Mix Cycling Selective amplification with fluorescent dyelabeled primers Figure 4.2. The principle of the AF LP DNA fingerprinting technique. Total genomic DNA is cut into fragments using two different restriction enzymes. At the same step, fragments are modified by ligation of adaptors to prevent reannealing. Number of fragments is subsequently reduced by two PCR amplifications (preselective and selective) with increasing specificity of primers. In selective amplification, one of the primers is labeled with fluorescent dye, which enables visualization of fragments after their resolution on a denaturing gel. 107 Table 4.2. Cycling parameters used for selective amplification Hold Cycle Hold # of cycles 94°C 2 min 65°C 30 sec 72°C 2 min 1 94°C 1 sec 64°C 30 sec 72°C 2 min 1 94°C 1 sec 63°C 30 sec 72°C 2 min 1 94°C 1 sec 62°C 30 sec 72°C 2 min 1 94°C 1 sec 61°C 30 sec 72°C 2 min 1 94°C 1 sec 60°C 30 sec 72°C 2 min 1 94°C 1 sec 59°C 30 sec 72°C 2 min 1 94°C 1 sec 58°C 30 sec 72°C 2 min 1 94°C 1 sec 57°C 30 sec 72°C 2 min 1 94°C 1 sec 56°C 30 sec 72°C 2 min 23 60°C 30 min 4°C forever 108 Data analysis: AF LP fragments of in the size range of 200-450bp for primer combination E-AGG/M-CTT and 150-450bp for primer combination E-ACT/M-CAG were scored as present (1) or absent (0) for each individual. GeneScan automatically assigns bands detected in each lane to a particular molecular weight. Because sizing by the automated sequencer has a certain standard deviation, genotype patterns were manually compared against each other and fragments were inferred to be the same if they differed by less than lbp. Data were entered into a spreadsheet and subsequently examined to pool the fragments that differed by lbp if no individuals displayed both smaller and larger fragment. A frequency distribution of the number of fragments obtained from each individual was plotted to check for deviations from normal. Five percent of the samples with unusually high and 5% with unusually low numbers of fragments were eliminated from the analysis. A high number of fragments has been shown in some cases to be the result of incomplete digestion after which all digested and partially digested fragments are amplified (PE Applied Biosystems 1996 protocol). A low number of fragments resulted from unsuccessful amplifications with one of the primer combinations. The dataset was then analyzed by neighbor-joining using PAUP*4b (Swofford 1999) version 6 with mean character difference as the distance measure. The relative strength of neighbor-joining clusters was evaluated by bootstrapping (F elsenstein 1985) based on 500 replicates. Characters supporting each cluster in the neighbor-joining tree were determined by MacClade 4.0 (Maddison and Maddison 2000). Percentages of polymorphic loci, heterozygosities, F5, values and genetic distances between geographic regions were estimated using TFPGA (Tools For Population Genetic Analyses, Miller 1997). Percentage of polymorphic loci was calculated using both 99% and 95% criteria. 109 Since AF LP bands represent the dominant genotype at a locus, heterozygosities were estimated based on a Taylor expansion of the estimate of frequencies of recessive alleles (Lynch and Milligan 1994). F5. was calculated using Weir and Cockerham’s (1984) method with jackknifing over loci to obtain variance estimates and bootstrapping with 1000 replicates to generate 95% confidence intervals. Genetic distances were calculated as Nei’s (1972, 1978) distance measures. Approximate geographic distances were estimated between the geographic centers of the populations sampled within the regions and used in TFPGA to perform a Mantel test (Mantel 1967) with 10000 random permutations to determine whether there is a correlation between unbiased Nei’s (1978) genetic and geographic distances. RESULTS In a preliminary study I screened a total of 35 AF LP primer combinations for amplification of polymorphic fragments in four R. zephyria and four R. pomonella individuals, each from a different population. The majority of loci were polymorphic with the polymorphism being shared between the two species. However, two primer pair combinations (E-AGG/M-CTT and E-ACT/M-CAG) were identified that produced bands unique to R. pomonella or R. zephyria. These primer pairs were used to generate AF LP fingerprints for the entire sample. Fragments smaller than 200bp for primer combination E-AGG/M-CTT and smaller than 150bp for primer combination E-ACT/M-CAG were excluded from the analysis. The distribution of these fragments within each individual 110 genotype and between genotypes was too complex to score and interpret unambiguously. Primer combination E-AGG/M-CTT amplified a total of 112 fragments between 200 and 450bp, with the average of 19 per individual; E-ACT/M-CAG amplified 143 fragments between 150 and 450bp, with the average of 24 fragments per individual. Of these 255 AF LP loci, 239 (93.7%) were polymorphic across both species. A frequency distribution of number of fragments amplified for each individual of R. zephyria, R. pomonella and R. mendax is shown in Figure 4.3. Ninety percent of the fingerprints obtained consisted of 29-62 fragments. Therefore all individuals for which less than 29 or more than 62 fragments were amplified were eliminated from the analysis. Average heterozygosities and the percentage of polymorphic loci within regions for both species are given in Table 4.3. Levels of genetic variation, described by both heterozygosities and % polymorphic loci were somewhat lower in R. pomonella than in R. zephyria (Table 4.3). However, R. pomonella populations appear to be more genetically structured than R. zephyria — the value of parameter 0 (which corresponds to Fst) in R. pomonella is 0.106 (with a 95% confidence interval of 0072-0. 142), while in R. zephyria it is 0.0615 (with a 95% confidence interval of 0.0440080). However, these values were not significantly different (t=2.7510, df=110, P>0.05). The neighbor-joining tree (Figure 4.4) shows that, in general, each of the three species (R. pomonella, R. zephyria and R. mendax) clusters coherently. Rhagoletis mendax appears as a sister group to R. pomonella, with R. zephyria forming a sister taxon to them. The only R. zephyria that falls into the cluster with R. pomonella is a single individual from South Dakota (ZSD16). Two individuals of R. zephyria (one from Idaho — ZIDS, and one from Washington — ZWA8), as well as one bluebeny maggot fly from 111 New Jersey (MNJ 7), were placed outside of the main clusters in the neighbor-joining analysis (Figure 4.4). Number of samples —-——_———_-*——‘ ——-———-——-—--—-—-“-— V-NC‘OODlDlv—Nmmlnrikmmms—N Fi—Nlmmvvmcqcorxtxcomo: I 103 109 115 Number of fragments Figure 4.3 Frequency distribution of number of fragments amplified from each individual. Samples with numbers of fragments between the dash lines were used in the analysis. 112 Table 4.3 Estimated average heterozygosities and percentage of polymorphic loci in R. zephyria and R. pomonella. R. zephyria n H polyoo polyos Rpomonella n H polyog poly95 Northeast 8 0.066 25.098 25.098 Northeast 10 0.109 48.235 28.235 Great Lakes 9 0.108 45.098 45.098 Great Lakes 18 0.073 44.706 26.667 Gr. Plains 17 0.1 10 51.765 33.333 Gr. Plains 12 0.087 41.961 26.274 R°°ky . 10 0.110 45.098 23.529 R°°ky . 0.086 32.157 32.157 Mountains Mountains Northwest 15 0.102 47.843 28.626 Northwest 4 0.080 25 .490 25.490 total 59 0.111 61.176 31.765 total 53 0.101 57.255 31.327 n — sample size, H — average heterozygosity, polyoo - % of polymorphic loci by the 99% criterion, pOIY95 - % of polymorphic loci by the 95% criterion. 113 Figure 4.4. Neighbor-joining tree based on the analysis of 255 AF LP loci. Green branches indicate R. zephyria, red R. pomonella and blue R. mendax. Colored squares next to R. zephyria and circles next to R. pomonella sample labels indicate geographic regions: red — Northeast, orange — Great Lakes, green — Great Plains, blue — Rocky Mountains and purple — Northwest. For taxon labels please refer to Key to symbols and abbreviations (p. xi). (Images in this dissertation are presented in color) 114 fiZVMSI m. m’ ' m- ="~I ”134m 115 Like in R. pomonella and R. mendax, groups within the R. zephyria cluster do not correspond to regions, and genotypes from the same population are scattered throughout the tree. Somewhat exceptional is the cluster of individuals from western populations at the base of the large R. zephyria cluster and 3 snowberry flies from Massachusetts and California each. In these cases genotypes from the same population cluster together, but within groups that consist of individuals from different regions (plains, northwest and northeast with Massachusetts flies and mainly plains with California flies). Several characters define each cluster, and some of them are potentially useful for discrimination between species. The fragment of 273bp amplified by the E-AGG/M-CTT primer pair is present in all R. zephyria except the two individuals falling outside of the main clusters and is found in no R. pomonella except one individual from Washington. The same primer combination amplified a fragment of 316bp in all snowberry flies but one from Idaho and one from South Dakota, both of which are not placed within the main R. zephyria cluster. The 316bp fragment was amplified in only three R. pomonella and two R. mendax. In 41 of the 59 snowberry flies primer pair E-ACT/M-CAG amplified a fragment of 262bp, with frequency increasing from east to west. This fragment was amplified in two apple maggots from Nebraska, two blueberry maggots from Michigan (one from East Lansing, one from Otis Lake) and one from New Jersey (this individual groups with two R. zephyria outside of the main clusters in the neighbor-joining tree, Figure 4.4). The primer combination E-ACT/M-CAG amplified a fragment of 150bp in most R. zephyria and R. mendax, but appears to be lost in the R. pomonella lineage since it amplified in only six R. pomonella from different populations. Fragment of 224bp 116 amplified by this primer pair was found in about 60% of snowberry flies, its frequency being highest in the Plains, Northwest and Northeast, and lower in the Great Lakes and Rocky Mountains populations. The same fragment was found only in one apple maggot from Iowa. Similarly, fragment of 244bp was amplified in about 60% of R. zephyria, with highest frequency in the Great Lakes and lowest in the Rocky Mountains. This fragment was present in only three R. pomonella, one from Pennsylvania and two from Washington. One of these apple maggots from Washington also had the 273bp fragment amplified by E-AGG/M-CTT primers and present only in R. zephyria. The 305bp fragment observed in all R. pomonella from Colorado and Utah (Rocky Mountains and Colorado Plateau ecoregion) was rare in apple maggots from other regions and found in snowberry flies from Wisconsin and North Dakota (four and one individuals, respectively). R. pomonella/R. mendax cluster is defined by fragments of 266 and 277bp amplified by the E-AGG/M-CTT combination and 202bp amplified by the E-ACT/M- CAG primer pair. All these characters are potentially useful for species identification. Mantel test indicated that there is no significant correlation between genetic and geographic distances. Coefficient of correlation between the two matrices in R. zephyria was 0.369 and in R. pomonella 0.402, both of them were not significant, which was consistent with the results of neighbor-joining analysis where no geographic structuring was observed (Figure 4.4) 117 .5035qu l 32 .3033 092200 98 mam—3552 xxcom 1 2M £82m 320 1 m0 68:3 820 1 AU €35.82 1 m Z mezmzefieq .2 l a .383an .m -N o 35¢ :56 M58 :86 Sad 53.0 $86 836 83.0 aze 2:. o $56 $55 35.0 88.0 836 8:3 mace $3.0 53 8: 8e e was Rood $8.9 8:3 88.0 285 god .5... 82 8: ca. o 828 £85 $8.0 $8.0 age 385 see 82 8: com 84 o 38.0 88.0 $86 9.85 886 mza o2 owe SS 82 as o :86 :86 38.0 S56 32A 8m one. 2: 8: owes owe o 28.0 good 58 EA o8 ewe 8m 8m em: 82 8m 0 flood 35¢ .20-... 8: 2: on on own as: 82 2: o 886 see 82 8: com on 8 SS 82 8: as. o m2.N 32 a sad ewe nee mze 32¢ 2a-... ewe .20-... m2.N .83 A5"? no women 22on EobbE Sch 6228qu .- 98 383%». Q goofing emcomfle gone £21: :5 80836 cine—meow use encomfiu 3268 82856 03280 is 638. 118 DISCUSSION The results obtained by the AF LP analysis of Rhagoletis pomonella and R. zephyria demonstrated that this technique is powerful and promising for studying genetic variation and relationships between the closely related species of Rhagoletis. The high number of loci sampled at random and as a cross-section of the entire genome reflects much higher variation and provides better resolution than sequences from any of the individual nuclear or mitochondrial loci that have been examined thus far (Chapter 3). Neighbor-joining analysis based on the AF LP loci revealed three well-defined groups with almost perfect correlation of clusters with the three species (R. zephyria, R. pomonella and R. mendax). The only exception was the placement of a single snowberry fly from South Dakota within the R. pomonella cluster (Figure 4.4). This result is consistent with the recent study of divergence of the pomonella group species based on the allele frequencies at 29 allozyme loci (Berlocher 2000), where clustering of populations corresponded to species. In that study R. zephyria was placed at the base of the neighbor-joining tree, as a sister taxon to the cluster containing R. pomonella, R. mendax and R. nr. mendax. AF LP analysis similarly places R. zephyria basally to the pomonella/mendax group (Figure 4.4). Branch lengths in the neighbor-joining tree indicate that the majority of genetic variation is distributed within populations and species, suggesting that speciation occurred without large population bottlenecks. This result is consistent with high allelic and nucleotide diversity found within populations and species in studies of nuclear and 119 mitochondrial DNA sequence variation (Chapter 3, Feder et al in prep) and with hypothesis that speciation occurred in sympatry. Several characters define each cluster corresponding to species, although the groups reflected by the neighbor-joining tree in Figure 4.4 do not have bootstrap support; AF LP analysis thus for the first time provides a reliable PCR-based method for distinguishing between the closely related species of the pomonella group. The primer combinations used in this study amplified several fragments only in R. zephyria and very rarely in R. pomonella or R. mendax. These fragments can theoretically be used as diagnostic markers. Fragment of 273bp was successfully amplified by the primer combination E-AGG/M-CTT in all R. zephyria except in two individuals falling outside of the main cluster. In R. pomonella this fragment was only amplified in one individual from Washington. This individual also possessed the fragment of 244bp amplified by the primer combination E-ACT/M-CTT, present in 33 of the 59 R. zephyria and only two other R. pomonella, one of which was from the same Washington population. This suggests that very low-level hybridization with introgression of zephyria alleles into pomonella may be occurring between apple maggot and snowberry flies in the West. R. pomonella was introduced into the Northwest within the past 100 years (AliNiazee and Brunner 1986, McPheron 1990); allozyme alleles characteristic for R. zephyria (Had1 I l) have been found in low frequencies in flies reared from hawthoms and apples in Washington (McPheron 1990) and Minnesota (F eder et a1 1999), suggesting male- mediated gene flow in the direction from native into the introduced taxon’s gene pool. In both these studies (McPheron 1990, Feder et a1 1999) multilocus genotypes, however, did not indicate the presence of F. hybrids, suggesting extensive backcrossing to R. 120 pomonella. The placement of the potential hybrid individuals observed in this study within the pomonella cluster (Figure 4.4) is consistent with this interpretation. Two snowberry flies, one from Idaho and one from Washington, placed outside the main zephyria cluster, both lack fragments characteristic for R. zephyria. The possibility that this is an artifact produced by failure to amplify these fragments from these flies cannot be ruled out. If there is some biological reason for the absence of zephyria-characteristic fragments in these flies, their placement at the base of the neighbor-joining tree may further indicate that the possible hybridization between apple maggot and snowberry flies is rather rare. In cladistic analyses hybrid taxa tend to be placed as basal, causing extensive homoplasy and reducing the resolution of relationships between other taxa (McDade 1992). To detect population structure in R. pomonella group large sample sizes are needed (Berlocher 1995, 2000), as suggested by the allozyme studies (McPheron 1990, Berlocher 2000). In studies of larger geographic scale (McPheron 1990, Feder et al 1999) Fst values observed between the populations in native, eastern part of the R. pomonella range, were low (0024-0032). Feder et al (1999) report the values of parameter 0 of 0.069 in R. zephyria and 0.073 in R. pomonella. Based on the analysis of 255 AF LP loci and populations grouped in five regions, 0 in R. zephyria was 0.0615, while it was higher in R. pomonella (0.1060). This finding is consistent with the hypothesis that R. pomonella, as an ancestral species, is more geographically structured than the species that have diverged from it. Contrary to the expectation based on the allozyme data (Berlocher et a1 1993, Berlocher 2000, Feder et al 1999) that it should also have higher average heterozygosity, AF LP data indicated somewhat higher value of this parameter in R. 121 zephyria (0.111 vs. 0.101 in R. pomonella). Lower average heterozygosity in Northeastern R. zephyria is consistent with the hypothesis that snowberly fly was introduced to this region from the west when the host plant, Symphoricarpos albus var. laevigatus, was introduced as ornamental shrub. However, the possibility cannot be ruled out that it reflects recent range expansion by colonization followed by genetic bottleneck in this part of the species range. Rhagoletis zephyria appears to have differentiated more from the present-day R. pomonella than R. mendax (Figure 4.3). This result is consistent with morphological (there is a slight difference in shape of male surstyli between apple maggot and snowberry flies; Bush 1966, Jenkins 1996) and allozyme data (Hart111 is fixed in R. zephyria and found only in very low frequencies in western R. pomonella - McPheron 1990; there are no fixed allele differences between R. pomonella and R. mendax). It may suggest that the differences accumulated after the host shift and speciation in zone of parapatry followed by the rapid range expansion to the west (Berlocher 1998), where the flies filled new ecological niches and encountered different selection regimes. Grouping of several flies from Northwest and Rocky Mountains at the base of the neighbor-joining tree seems to indicate that these populations diverged most. Individuals from the Plains region are present in every smaller cluster within R. zephyria and grouped with genotypes from all other regions, which may indicate that speciation occurred somewhere in the zone of parapatry in the Plains, as the hawthoms colonizing prairies alter the last glaciation came into contact with snowberries, and highly genetically variable subpopulations spread both east and west. Very low genetic distances between the Great 122 Lakes and all other regions except Northeast support the hypothesis that R. zephyria is native to the Great Lakes area. The only snowberry fly placed within the R. pomonella cluster (Figure 4.3) lacks some of the fragments characteristic for R. zephyria and absent from R. pomonella. However, it is difficult to assume that it shares pomonella genotype. This genotype may indicate past hybridization with low frequency introgression of genes from R. pomonella into the R. zephyria genome, or incomplete lineage sorting with retention of the ancestral polymorphisms in very low frequencies in R. zephyria, or mistake in oviposition by R. pomonella. Data presented here do not seem to support the hypothesis of multiple speciation events of R. zephyria from R. pomonella or pomonella-like ancestor. The observed patterns do not allow distinguishing precisely between several scenarios of where the speciation of snowberry flies has occurred and how the range has expanded. The ability to further resolve relationships between populations of R. zephyria and R. pomonella should provide better insight into the processes involved in their divergence. Lack of geographic structuring and bootstrap support for the groups in neighbor-joining tree indicates that even with this large number of markers we may still not have sufficient data. To improve resolution and observe geographic structuring within species we may need to sample even more AF LP loci using more primer combinations and obtain AF LP fingerprints from more individuals from each population. Resolution, as well as the support for particular groups, is expected to increase with increased number of loci scored (Albertson et al 1999). It is also possible that resolution would improve with decreasing the number of loci included in the analyses (Prowell et al in prep), since the 123 large number of similar loci may mask differentiation between populations and species. This is reflected by the high levels of homoplasy, i.e. fragments present in some individuals and some populations without any regular pattern. 124 CONCLUSIONS Hypothesis 1: Rhagoletis pomonella represents a large and variable gene pool, containing ancestral polymorphisms, from which new species arise. Rhagoletis pomonella showed larger haplotype diversity than R. zephyria at one of the three anonymous nuclear loci analyzed here (P2480) and at the mitochondrial locus COI/COII. At all loci, nucleotide diversity 7: was higher in R. pomonella than in R. zephyria. Surprisingly, however, the nucleotide diversity parameter 0, as well as weighted 0/bp, was at all nuclear loci higher in R. zephyria, which may reflect the influence of natural selection on polymorphism patterns in R. zephyria. Phylogenetic analyses of two nuclear loci (P220 and P2480) placed some of the R. pomonella sequences at the base of the tree, indicating that alleles of R. pomonella may be more similar to ancestral. Hypothesis 2: Rhagoletis zephyria has diverged from R. pomonella more recently than blueberry maggot, R. mendax. Phylogenetic analyses of anonymous nuclear loci and mitochondrial COI/COII have indicated that R. mendax branched off from the ancestor of present-day R. pomonella and R. zephyria before R. zephyria. Analysis of 255 AF LP loci, however, showed that R. zephyria is more distant from R. pomonella than is R. mendax, contrary to results of the analyses of individual loci and this hypothesis. New models of sympatric speciation suggest that if species begin diverging in sympatry, the ranges of those that speciated the latest should still be sympatric, whereas older species may be less sympatric 125 because of range changes over time (Berlocher, pers. comm.) The geographic range of R. zephyria extends far outside of the range of R. pomonella, although the zone of overlap is much larger than previously thought. The range of R. mendax is completely contained within the range of R. pomonella, which may indicate that R. zephyria speciated before R. mendax. Therefore, it is difficult to infer the timeframe and order of speciation events in the R. pomonella species group. Nevertheless, polyphyly of R. zephyria and R. pomonella, unresolved phylogenetic relationships at anonymous nuclear loci and mitochondrial COI/COII analyzed in this study, shared alleles and haplotypes between species, and lack of fixed differences indicate that speciation may have been recent and could have happened in the past 10,000 years, after the glaciers of the last glaciation receded and host plants (Crategus sp. and Symphoricarpos sp.) came into contact. Hypothesis 3: The host shift that led to divergence of R. zephyria from R. pomonella and speciation occurred from ancestral hawthorn host to snowberry. If the ancestor of the present-day R. pomonella and R. zephyria was R. pomonella- like, as suggested by the analyses of DNA sequences at different loci, then the host shift occurred from the hawthorn host of the ancestor to snowberry. Placement of the R. pomonella alleles sampled from populations from the Great Plains within the clades consisting mainly of R. zephyria alleles seems to support the hypothesis that the host shift may have occurred in the Plains. Little geographic structuring was revealed by the analyses of DNA sequences and AF LP fingerprinting patterns, which makes inferences about the direction of population expansion difficult. However, analyses of P2480 (neighbor-joining and parsimony analysis) and AF LP loci (neighbor-joining) indicate that 126 western populations of R. zephyria appear to be more divergent and placed as basal to the rest of R. zephyria, suggesting that these populations may have been more isolated, perhaps because they dispersed first. Hypothesis 4: Rhagoletis zephyria in Eastern North America has been introduced with the host plant (snowberry). Evidence presented in this study supports the alternative to this hypothesis — that, in fact, R. zephyria is a native inhabitant of eastern North America. Native hosts have been found infested with R. zephyria in the Great Lakes region and in the Northeast, and introduced Symphoricarpos albus var. Iaevigatus has been found infested only when the native hosts were also available in relatively close proximity. Eastern populations of R. zephyria showed no evidence of population bottleneck at any of the nuclear loci, mitochondrial COI/COII or AF LPs, which might be expected if they were introduced with the host plant and founded from a small number of individuals. Alleles of the eastern R. zephyria were placed into same clades as the alleles of western R. zephyria without much geographic structuring. If R. zephyria were introduced to eastern North America, then it would be expected that alleles from eastern populations would group together and lose to particular western populations from which they were introduced, which was not the case in this study. 127 APPENDICES 128 APPENDIX A P220 sequence alignment 129 ......................... ....B.......... .......... ............. ..... ... .. . ............ 4. . . ..... . ....... . ....U.... .. ........... U.B . .. ... .... . ... .. ........... 4.. ..... . . H ............................ ....U.... ...... .. . ..... U.B....... ............ . .... ....... . .4. . ... ..... .8 . .. . .................... .. .B ..... . . ..4.4 ...... ....4... . 4. ..... 4 .....4 ....... l... U ii 4 . .Ummmo on mmmwmmmmmmmmmmwmmmm ....U ....... ....¢.¢ ..... U B..¢.... fl ........ .. fl ....... . 9.. I .... ...... . B..Ummmmmmmmmmmommmmmmmmwmwmm ....U...... . ..... . .. U B ......... . .......mmmmommmmmmmooooommmmmmoooommmmmmmwmo mommooommmmmmoooooooooo ...U... . .......... . U B ... . ........ . .. ............. i ............... B..wmmommmmmmmmwmmmmmwwwmmmmm . ..B.. ....... . ....... . .. ...... . ........ ... .................. 4... . . ........ ..mwmoommmmmmmmmmmmmmmmmmmmm ....U... . .............. U.B .......... . ...... . . ............. . i .. .......... B...Uomommmmmwmmmmmmommmmmmmm . .9 ........................................ ... .. . i . 4 ................ mmmmmmmoowmmmmmmmmmmmmmmmmmw ....B ......... . . ............ .. .. ................ . ........... i ................ mmwmmmmmmmmmwmmmmmmmmooooooo ....B. ..... ... ............. . ........ . . ...... .. . . ........ .-.. ...... . ...... .mommmo mmmmmmmmmmmmmmmmmmmwmm ....U...... ..4.4 ..... U B .4 ..... .4 ..... .. ...4.. ..4 ....... i . ...... 4.. B.mmmmmoo ooommmmmmmmmoooooooo ....B ..... ... ..4.4U ......... 4......4 ...... .....4... . E ii. . U11.B.4......U.momo oommmmmmmmmommmmwooo .. .B... . ....4.4.. ........ 4. ....4 ....... . ..4. ............ ii ..... U..ii.4......U... oomooooommmmmmmwmmmmmm ....H ....... ....4... ......... 4 .... 4 ........... 4..... ..... . ..4.. ...U 4O4UBU.H4UU oomwmmmmmmmmmwmmommmmmmm ....B .......... .4.4 ...... .. 4......4 ........... 4 .......... 10 ii 4 U U9 4 .....UU mmmmmmmmmmmmmmmmmmwmmmm ....B... .. ...4.4.. ........ 4......4...........4..........iU.ii.....U..i..4. ..... U..mwmoeooommmmwmmmmmmmmmm ....B. ...... ....4.4... .. .. 4......4 ........ ...4...... .. .. 1.. . .......... .....Ummmmmmmmooommmmmmmoooooo ...B....... ...4.4 ..... U .. ......4 ....... .. .4 . ...... . ..... i .................. UU.mmmmmmmoooommmmmmmmwmmm ....U.. ............ . U B ..... .... . . ... .... ............ ..4... .. . ....... B..U....mmmo.mwmmmmmommmmmmmm ....U...................U.B............................ ..... ...i.......... ..... 9.......momooooooeoommmmmmmmm . .U ................... U.H .................. . .......... . ...... 4.... ........... B.......mmmmmmmmmmmmmmmmwmmoe ..U... ...... . ......... U B ....... . ......... . . ... ......... .. 4 . .. .......... H eoomoommmmmooooooommmmmmmm ..U ................... U B ........ . ........ . ............. . . 4 .. .......... B .... .oooommmmmmmmmmmmmmmmm . ..U ........ . .......... U B ...... . .......... .. ......... . .. 4 ............... B ...U.mmmmmmmmmmmmmmmmmmmmmm ....B ........................................... .. ........ . . 4 .................. ..U..wmmmmwmmmmmmmmmmmmmmm . .U ...... . ............ U B .......... . ......... .. ........... . 4 ............... B oooommmmmmmwmmmmmmwmmmmmmmm ....U ................... U.B ....................... ... ....... . 4 ............... B Ummmmmmmmmmwmmoooommmmmmmm ....U ...... . ...........U.B ..... .... . ............ . .. ..... 4 . ............. B .....ooooommmmwmmmmommmmmmm . ..U. . ............. .U.B .................... . .... . .... 4 .. U ......... B....... ooooooooomwmmmmmmmmmm . ..U ....... .. ..... . ...U.B . ................... ... ....... 4 ...... . ........ B ..00.mmmmmmmmmmooooommmmmwm ....B.. .... ...... ....... . ... . ... ............... .. .. ..... 4 ...... . ......... mmmmmmmmmo mwmmwmmmmmmwmmmmmm ....B.... . ......................... . ................. . ........ 4 ................... ...mmmmoooooooooommmmmmmm ....B ........... . . .................. . .............. .. ......... 4 .................... .. ......... . ............ ....B.. . . ....... . ...................... . .. ....... ... ...4 ............. U ..... . ........................ ....B.... .......... .....U ....... . ............... ............U..4... ............. U...U.. ..................... IIIIBIIIIIOIIIIOIOIIIIIIIIIOOHL3u e.a>3~ e.HH3N H. .Hm3N .Hm3N .mDmN r-f bi4soflimrnr~filvraoimidraoxrieroerN HNHNNMM I moan Haze «new .HCON HCON .mch .mxcu .mocN .NOCN .HuEN .HuEN .NGEN .NCEN .Hnflu .HUHN .HHON .HHON .HOON .HOON .Hmuu 131 OI I (\I I (\- .0. E-‘E-‘E-lE-‘E-It‘oUUD-UUO-UUBE—‘HUUE—‘E—tf-‘UBFUUUHHBB O I I o. I 00. IO. 9 B Q Q Q Q Q 06. I I“. no. I I I o. I I 0' I I 0. o. I .0. IOII 'O-UUO-UUO-UUUUUUU U I so. I I“. I - m e a m e 0 '0'E-li-I I0. I I 0 0“. (x o. (\o I o. .04. .04. I I I I I I I I I I I I I I I I O I I I I I I I I I I I I I I I I I I I I I I I O I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I .4. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 .0. a 4 < a 4 m 4 a e a < m I (\g 0‘ I I0' I I o. I I I I I I I I I I I I I I I I I I I I I I I I I I O. I ‘\. I I I o. I I 0‘ I 0- 0- ’0' I I0. I I“. I IO. 00. o. o. o. I o. I O. o. o. o. o. o. (‘0 (‘I OI OI (\I OI I o. (\o OI (\I (\o 00 OI 00o OI OI OI OI OI OI 0“- o. o- 0' (‘0 C‘- 00 OI (\o (\u - w w o. o. o. o. o. o. o. I o. o. (\I o- (‘I OI “I (\I “I OI O. (\I OI 0‘ (‘I OI OI . p. o. (s. o. o. o. o. o. (‘0 (‘0 (‘0 O. O. (\- o. o. o. o. o. o. o. o. (\I OI On 0‘ O. 0‘ (\- O. o. o. o. o. o. o. (x. (s. o. o. o. o. o. n. o. o. o. o. o. o. no 0- OI (‘I (\I OI o. o. o. o. o. o. o. n. I 0' (\I (‘I (\o o. o. o. o. o. mbmmvmmaommbmmvmmflommhwmvmmaommbmmvmmaommbwmemmaommbmmvmmdommbmmvmmflommbmmvmmaommhmmvmwaommbwmvmmaommbmmvmma ooooooooommmmmmmmmmmmmmmmmmmwbbbehbbhbbmwmwmwmwmmmmmmmmmmmmvvwevvvvvvmmmmmmmmmmNNNNNNNNNNHHHHHHHHaH HHHHHHHaH m.mamm H.mamm m.HQmm m.HQmo H.muoN e.muoN m.muoN m.muo~ H.vu m.mu H.mu «.mm H.md m.Hd mmpvvoz mmnvvuz NMENmUz HOENmUz ¢.HE H.HE m.mu m.Hm m.mo v.0HU m.oau ¢.mm3Q e.~usd e.Husm m.HU:d N.N>CQ H.N>CQ m.H>cQ H.H>CQ m.mcom m.mm3n H.~m3u v.mnmu m.mnmu m.v>cN 132 . 9 ................... 0 .............. 04 .4 .................. 4 ............................................ 9 ........... 4 ....... 0 ..... . ........ 04 .4 ............... 0..4 ............................................ . 9 ........... 4 ....... 0 .............. 04. .4 .................. 4 ............................................ 9 ........... 4 ....... 0 .............. 04 .4 .................. 4 ............................................ 9 ........... 4 ....... 0 .............. 04 4 .................. 4 ............................................ 9 ....... . .................................................. 4 ................... . ........................ 9 .......................................................... 4 ............................................ . 9 .......................................................... 4 ............................................ 9 ........... 4 ....... 0 .............. 04 .4 ............... 0..4 ............................................ ...0. . ... ........... 0.9 ........ . ....................... ... 4 ............... 9 ............................ .0 ................... 0.9 .................................... 4 ............... 9 ............................ .9 .......................................................... 4 ............................................ 9 .......................................................... 4 ............................................ . 9 ........... 4 ....... 0 .............. 04 ..4 .......... .. .0..4 ............................................ 9 .......................................................... 4 ............................................ . 9 ................... 0.9 .................................... 4 ........... 4 ................................ . 9 .......................................................... 4 ............................................ ..9. .. . 4 ....... 0 .............. 04 ..4 ............... 0..4 ............................................ . ..9 ........... 4 ....... 0 .............. 04 ...................... 4 ............................................ 9 ........... 4 ....... 0 .............. o4 ...................... 4 ............................................ . 9 ...... 0 ........ 0 0 ..... 4 ........ 04 ............ . ......... 4 ................... 0 ........................ ....9 ...... 0 ........ 0 0 ..... 4 ......... 4. . ... 0 ...... . ..... 4 ................... 0 . . ................ . .0. .. ............... 0.9 .................................... 4 ............... 9 ....... . .................... ..0 ................... 0.9 .................................... 4 ............... 9 ............................ ... 9 ........... 4 ....... 0 .............. 04 .4 ............... 0..4 ........................... . ................ ....9... . . ................................... .. .. . ....4 ................ . ..... . ...... . .............. ....9 ..................................... . .................... 4 ............................................ .8. .4 ................ .. mbmmvmmaomwbmmvmmaommhwmvmmaommbmmvmmaommbmmvmmaommbmmvmmaommbmm«mmaommbmm«mmaommbmmvmmaommbmmIMNHommummvmma ooooooooommmmmmmmmmmmmmmmmmmmbbbbbbbbbhmmmmmmmmmmmmmmmmmmmmvv¢vv«¢¢vvmmmmmmmmMMNNNNNNNNNNHHHaHHHHHa HHHHHHHHH m.HuNu N.auNu m.am.mmu v.9m.mmu N.Hmmmmmu N.HXEQH H.HXEQu 9.H9nseq HH.HflnneQ v.HxE3c m.HXE3c m.Hunxs 9.HUQXE m.munh m.munh ma.Hsu oa.flsu NH.Ndw HH.qu b.Hdm m.mmco m.mmco m.Hmco ¢.Hmc0 v.mmon H.maon m.Haon H.Haon 133 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII mIlflmoN ...BB...H.O ........ ...........O....... ..... . ..................... ... ......... ..... ..................... ..... N.HHMQ ...BB...F.U ................... O ............................................................................. H.aHmQ ............ ................. . ................................................................. 4 ............ m.N0CQ ...BB...B.O ................... 0....B ........ . ..... U .................... . ....... . ............................ H.MGOQ ...HB..OB.U .................. 4O ........ U ................ . ............................... . ................... M.HMEQ ...BB...B.U ...... . ............ U..... ......... .......... .............. ...... ........ . ........................ N.HMEQ ....B ............................................................................ B .......................... m.NMQQ ...BB...B.U....O .............. U... ............ ........ ......... ...0 ......................................... H.NMQQ ............................................................................................................ N.a0CN ... ......................................................................................................... H.H0CN ....................................... ..................................................................... H.HOHEN BB 9 U ................... U. B 4 ........................................................ 4n ........... v.NMQN .. ...... . ...... .. .................... . ......... 4 ........................ . ................................. H.HQQN ............................................................................................................ N.HMQN . ................ . ................ 8.... . .................................................... 4 ............ N.NUCN ................................... B........................................................................ N.HUCN .. . ........................ ..... ...................................................................... m.HUCN B ............................................................................ B .......................... m.NUmN B..B. .B ..................... U . F ................ B ................................................ . ...... v.HUmN BB...B.O ................... O .................. . .......................................................... m.MHflQ .HIIHIIIIH.U ................... U ............................................................................. H.MHHQ . 99...“..0 . .............. O ..................... I ............................... I ....................... NoHHfiQ PH. .9.0 ................... U ............................................................................. H.HHHQ o.H:H.o.-.H..O . ................. O .................... o ................................... o .................... H.v0fla .98. .8.0 ................... O .................... . ........................................................ m.mMHQ ...-I... .......... . .......... Uc. . . .................................................................... H.mm..flQ BB. .H.O ................... O ............................................................................. m.¢CEQ .PB. .B.O ................... O ........................................................................ . H.¢QEQ .99...B.0 ................... O ................... . ..... . ................................................... m.NGEQ .99. .B.0 ................... O ............................................................................. N.mHEQ . orHrHI. ..Hyco ................... o ................. . ..... o ..................................................... H.mflEQ .............................. m.U........................................................................... N.MH0N . .. .......... . . ..................... .. ........ ... .. ..... . ...................... .. . . . ........... H.MHwN ............................................................................................ B .4-........... m.NCON ..................... 0...................U.................................................................. N.NCON . ............................. O . .......................... B ........................ . 4 .................. m.HGEN ......................U ............. U ................ ..... ........................ ........ .................. m.NH®N UUUUUBHBU894404408099899004888099904uOBBB540808000894004040904949944444940049040904940990000080-840640494008 H.NHmN mmIMNHommbmmvmmflommbmmvmmaommhmmvmmaommbmmvmNHommbmmvmmaommbmmvmmaommbmmvmmaommbmmvmmaommhmm4mmaomm>mmvmmaom HHHHHHHoooooooooommmmmmmmmmmmmmmmmmmmhbbbbbbbbbmmmmmwmmmmmmmmmmmmmmvvvvvvv¢vvmmmmmmmmmmmmmmmmmmmmadflaHHHHHHO NNNNNNNNNNNNNNNNNHHHHHHHHHHHHHHHHHHHHHHHAHHHHHHHHflHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHaHHHHHHHHHHHHH 134 .B. .B. .B. .4. .B.U....... mmvmmflommbmmvmmaommbmmvmmaommbmmvmmfiommbwmIMNHommbwmImmaommbmmvmmaommbmmvmmaommfimmvmmaommbmmImmflommnwmwmmaom HHHHHHHoooooooooommmmmmmmmmmmmmmmmmmwbbbbbbbbhbwmmwmmmwmmmmmmmmmmmmIvIIvIIIvvmmmmmmmmmmmmmmmmmmmmaaaaaaHHHHO NNNNNNNNNNNNNNNNNHHHHHHHaHHHHHHHHHHHHHHHHHHHHHHHaHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH uuuuuuu I I I I I I I I I I I I I I I I I I I IIIIIII I I I nII I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I IIIIIIIIIIII'III I I I I I I I I I I I I I I I I I I I I IIIIIIIIIII I I I I I I I I I IIIII I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I «I I I I I I I I I I I I IIIIIII I I I I I I I I I I I I I I I I I I I I I I I I IIIIIII U I I I I I I I I I I I I I I I I I IIIIIIIIII I I I I I I I I I I I I I I I I I I I I IIIIIIIIIIIIIIII I I I I I IIIII I I I I I I I I I I I I I I I U I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I .U m.amuEN m.HmuEN m.muEN m.muEN m.mmEN «.mmEN N.HmEN H.HmEu N.NUflN a.mnfiu m.NmuEN m.mmou m.mmon v.NmuEN m.H>3N v.a>3u «.Hfl3u H.Hfl3N N.Hm3n H.Hm3N m.vnmu m.vnmu m.acoN HH.HCON m.m>cn ma.m>:~ H.mmcn m.mch m.fiuEN NH.HuEN «.mcsu m . NCEN I.Hnfiu m.HuHu m.HHm~ m.HHmN v . HOUN H . HOUN b.HmoN 135 ..BBF. ..BHB. ..BBB. ..BBB. ...B. O -E~E«BIHEJE«E«E3H ooooooooooooooooooooooooooooooooooooooo O O I I O O I O O O I I I I O IIIIIIIIIIIIIII I I O IIIIIIIIIIIIIIIIIIIIIIIIII O OOOOOOOOOOOOOOOO a IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII O a I I I I O O O O O O O I I I ....... O ........ I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ooooooooooooooooooooooooooooooo oooooo .mamm .mamm .Hamm .Hamm .muoN .muoN .mHON .muoN H.vu m.mu H.mu MWFHNMHM H.ma m.Hm mmvvvuz commmmmmmmmmmmmmmmoooommmommmmmommmmmmmmmmmmmmmmmmm OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO I O O I O I I I I I I I O I I I O I I I I I O ........ I C O I I I I I I I I I I I I O 0 00000000 O O O O o no OOOOOOOOOOOOOOOOOOOOOOOO I I I O I O I O I I O I O O I I I ..... O O C I I I I I I I I I I O I I I I I I I I I I I I I I I I I I I I I I I I I ...... I I I I I I I I I I I I I I I I ...B ...................... . ............ ......... .......... B........U.......... ....... 00000000 (‘0 (\o O. o (\o (x (\ o. (\c O. (‘0 0' (\o (‘0 (\o O. O- (\o (\- o- o. 0 (s o. O. O. (\o O. 0- (‘0 O. (\o O OOOOOOOOOO I I O I O ooooooooooo O I O O O I O I I I I ....... mm¢mmflommbwm¢mmaommbwmvmmaommbmmvmmaommhmmvmmfiommbmmvmmaommbmmvmmaommbmmvmmflommbwmvmmaommbmm«mmaommbmmvmmaom HHHHHHHoooooooooommmmmmmmmmwmmmmmmmmmbbbbbbbbhbmmmmmmmmmmmmmmmmmmmm«w¢¢¢vvv¢¢mmmmmmmmmmmmmmmmmmmmaHHHHHAHHHO NNNNNNNNNNNNNNNNNHHHHHHHHHHHHHHHHHHHHHHHaHHHHHHHHHHHHHAHHHHHHHHHaHHHHHaHHHHHHHHHHHHHHHHHHHHHHHHHfiHHHHHHHHHHH mmvvwoz mmEmmuz HmEmmuz v.HE H.aE m.mu m.au m.mU ¢.oau m.oau «.mm3q «.musa v.Husa m.Husm «.mxcm H.m>cm m.H>CQ H.H>CQ m.mcoa m.mm3u H.mm3N «.mnmu m.mnmu m.¢>cn 136 999. .9.0 ................... o4 ............. 4 .................. . ........................................... 999...9.o ................... 04 ............. 4 .............................................................. 999 ..9.0 ................... 04.. ........... 4 . .......... . .............................................. .999...9.0 ................... $4 ............ o4 ............ . ................................................. .999 ..9.w .............. . 04 ............. 4 .................................... .. ........................ ..9...9 .............. 4 ..... 4o .................................................. 9 .......................... .9...9 .............. 4.....40 .................................................. 9 . ..................... 9 ............................................................................ 9 ..... . .................... . 999. .9.0 ................... o4 ............. 4 ............... . ................. .... . ....................... ..99 ..9.0 . ....... . ......... w ................. .. .......................................................... 99...9.o ................... w ............................................................................. ............................................................... 0.................9.......................... ................................................................................. 9.......................... 999 9 u ..U ............... o4 ............. 4 ...................................................... 9 ....... ................................................................................. 9.......................... 99 9.0 ................... o ........................................ u .................................... ................................................................................. 9.......................... 999...9.o ................... o4 ............. 4 .............. . ............................................... 999...9.w . ................. o .............. 4 ......... . .................................................... .999...9.w ................... o .............. 4 .............................................................. 999...9.0 ................... o ........... ..u4 ................ o ......... o ................................... 999...9.w ................... o ............. U4 ................ o ......... o ................................... 99...9.o ................. ..o ............... u ............................................................. 99...9.o.. ................. o ............................................................................. 999...9.o ................... o4 ............. 4 .............................................................. ................................................................................. 9.......................... 9.... ................................................... . . ................. 9 .......................... ...............................u .......... ......................... . ........... .9....................... mm¢mmaommbmm«mmaommbmm4mmflommhmmvmmaommbmmvmmaommbmmvmmfiommbmmvmmfiommhmmvmNaommbwmvmmaommbmmvmmaomwhwmvmmaom HHHflHHHoooooooooommmmmmmmmmmmmmmmmmmmbbbbhbbbbbmwwmmmwwmwmmmmmmmmmmvvv4444vvvmmmmmmmmMMNNNNNNNNNNHHHHHHHHaHo NNNNNNNNNNNNNNNNNHHHHHHHHHaHHHHHHHHHHHHHHHHHHaHHHHHHHHHHHHHHHHHHHHHHHHHaHHHHHHHHHHHHHHHHHHHaHHHHHHHHHHHHHHHH m. N. m.Hm ¢.Hm Huuu HuNu .mmu .mmu N.Hmmmmmu N.HKEQ9 H.ermu 9.Hflnnea 4H.Hflnnea v.Hx83c m.HXE3c m.HUan 9.HU£xE m. m. NH. OH. NH HH. 9. .mmco .mmcu .Hmco .Hmco .m409 .m402 .Haon .Haon HMHVQ‘KONM munh much as“ How .mqm mam Hum 137 ............ . ....................4...................4.........4.4. ..4.............................u. . .......................... . ... . ... . ...................... 4.4. ...4 ............................. u. ............. . . ............... ............. ................ .. .......9............................. .. ... .. . ..... . ........... ... .4 ....... . ..... . . ........ . ..4.4 ..4. ....... . .o. . ........... u. .......... .... ........... .....4........ . .. ............4.4. ..4......... 0.................u. .... . ..................... ......4 ...... . . .... ............ 4.4 ...4 ....... .. ................ . ..u. . . . ..... . ................. . ...... 4 ............. .. .............. 4.4 ..... 4 ............................. u ........ ... . . .......4.. . . ........................................................................ . ...... ... . ................. . . .............. ... .............. . ....................................... o. ........ . . .................................... .. .......u.........................4...............4 ..... .......... ............ ............. .........................................4................... ....................................................................................... 9................4. . ...................................................................................... 4 ................... ............................... .........................................................4................... ............... 9...............4................... ---------------.....9........-.--------------9. ................................ . .4.............................4.4.....4.............................o ..................... 4..............4.............................4.4.....4.............................u . ............ . .................... 4 ......... . .. ............... 4.4 ..... 4 ........ . . ................ u. ................... .............. .4.............................4.4.....4.............................u. .............................. ......4.............................4.4.....4.............................u .......... . . ....................4.......... ................4.4.....4.............................u ............... ...................o...................................4..................................... ...... ..............................4............................ 4 4.....4.....................o.......u ... ..... .. .............. . ..... 4.. ............... . . ....... 4.4 ..... 4 ...... . ..................... .u .. ..... . . .... ..... . ......... 4 ........ . .. .......... .. ..... 4.4 ..... 4 ......... . ................... u . ....... . . ............ . ........... 4 ............................. 4.4 ..... 4 ............................. u .. . .. ............ . ...... . .4 ............ . . . ......... . 4.4 ..... 4 ........ . .................... u . . ......... .. .... .......... . .o .......... . ... ...... . . . ..... 4 ..................................... ....... . ..o... . ........ ................. ............................................................. ............ ... ... . ........ 4.............................4......................................... ......w.w........... .......... ..... ....... .................... ... ..... . ....... ..9............9.. .. ...... 4 (UB<3N ............... ....... ......................... «.H>3N ..... ...... . ..... ....... ....................... VoHflgN ...........(.¢. ....... ......................... H.Hfl3N ......... ..... . ......................... ....... N.Hm3N ............... .. . ............................. H.HM3N ...........<.¢ ..... d. ..........¢ ........ ........U... m.vnmN ......... .4... ........... ........ ...... . ......... N.vnmN ......... ..... .......... ... ......... .... .... . m.HCON ............... .................... ....... . ...... HH.HQON ...........4... ..... ............... ........... m.M%CN ......... .¢.¢. .4 ...... . .... . ......... . ..U. NH.M>CN ..U........¢.¢ ..... 4 ........ . ........ . . .......U. H.NwCN ......... .... ...................... .. . ... ......... m.N®CN ...........¢... .............. ................ M.HUEN .. .......... .. ............... . ....... . ........ ... . NH.HUEN ........... «............................... ......... V.NCEN .... .... .¢... ........... . ...... . ..... .. ..... ... . m.NCEN ...........¢...... . . ... ...... . ................. F.HUHN ....... ...4... . ............ .... ... . ......... . m.HUflN ............... ................... ... ....... ... . m.HHmN ...... . ¢.< ..... d ........ ......... ...... 0.0.0. m.HHmN .................. . ............................ V.HOUN ................... ........ ....................U. . H.HOUN .4.4.....¢. .U. vmmaommbmmvmmaommbmm¢mmaomm9mm¢mmaommbwmvmmaommbmmvmmaommbwmvmmaommbmmvmmaommbmm4mmflomm9mmvmmaommhmmvmmaommb NNNNNHHHHHHHHHHoooooooooommmmmmmmmmmmmmmmmmmmbhbbbbbbbbmwmmmmmmmmmmmmmmmmmm¢vvvvv¢vvvmmmmMMMMMMNNNNNNNNNNHHH mmmmmmmmmmmmmmmmmmmmmmmmMNNNNNNNNNNNNNNNNNmmNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN m. . HMUN 139 . . 0.. . . .. . .............. 4 .......... 0.. ...... . ......... 4 4 . .. ................................. ... .......................... ... .4 ...... . ............. . ........ 4 ........ . .................... . ........... ...... ..............................4. . .u......................4...................................... ..... u..............................4..........o..................4 4....................................... ....... ... ........................4.............................4......................................... ..... ...............................4....................................................................... ..... u.............................u4..........w..................4 4....................................... . . 0.... . . ....... .. .......... .04 .......... o. . .. ............ 4 4... .................................... . ..U ... ................... . ....u4... ....... o ..... . . . ....... 4.4 ....................................... . ......... . ......................... 4 ..... . . . . . ... .... ..4.4 ..... 4... .............. . ........... u ............. ..... . . ...... ...... .4.... ... ....... ..... . ..4.4.... 4 ......... . ..... .... . . . u ......... . . . ......... . . .. ..4 ... ...... .. ....... .. ..4.4.. . 4 ..... .. ....... . .. . ... ..... u . . ........ . ..... ....... .. . .4 ... . . ..... ...... . ..4.....u.. .... . .. .... . .......... ......... ................. u ..... . ..4. . ................. . ........ 4 .................... . . ............. ... .................................... 4.............. . . ..........4.4 . ..4.............................u ......... ...........................4.............................4....................................... . .................................... 4.............................4......................................... ........ . . .......................4.............................4......................................... ......................... -..........4................ ............4.4.....4.............................u ......................... -..........4.............................4.4.....4.............................u . ............ u ................... 4 ........... .... . a ......... 4.4.. a ............................. u ................ 0...................4...................H.........4.4.....9.............................u ................ 0...................4...................9.........4.4.....H.............................u .................................... 4.............................4.4. . 4...................-.........u .................................... 4.............................4.4.....4.............................u .................................... 4.............................4......................................... . .................................. 4 .......... . .................. 4.4 ..... 4 ............................. u .................... ................4.............................4.4.....4.............................u . ............................ 4..4 ............................. 4.4.... 4 ............................. u .................................... 4..................... .. . 4 4 ....4........................u. .u . . . ......... . ..... .. ..... . .4 ............ .. . ..... . . ..... 4.4 ..... 4 .......................... ...u .................................... 4.4...........................4.4...................................u . .. . ........ . . . ..... 4 ....... . . . ... ..... 4 . .................................. . .............................. ....................... .9............ . ............... ........... ... . ............. ......................4 .......... ......... ...... ....4..a.. .............. ........... ...... .... vmmHommbwmvmmHommbwmvmmHommbmmvmmHommbwmvmmHommbmmIMNHommbwmvmmHommemvmmHomummvmmHommbmmvmmHommbwmvmmHommh NNNNNHHHHHHHHHHoooooooooommmmmmmmmmmmmmmmmmmmphfibbhbbbhmwmmwmmmmmmmmmmmmmmmvvvvvvvvvvmmmmmmmmmmmmmmmmmmmmHHH mmmmmmmmmmmmmmmmmmmmmmmMMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN MWI‘HNMHM .mmmm .NQmm .Hmmm .Hmmm .muoN .muOu .muoN .mnoN H. m. H. v. H. m. 4w mu mu mm mm Hg mmvaUZ va¢vuz NMENMUZ HMENmUZ w. H.HE m.mu m. m.mU HE Hm v.0HU m.0HU MNVHQNHMHNNQ‘Q'V‘ .mm3m .musq .Husm .Husm .N>CQ .N>CQ .H>:Q .H>CQ .mcoa .mm3N .mmzu .mnmu .mnmu .v>c~ 140 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ImmaommbmmvmmHommbmmvmmHommbmmvmmHommbmmvmmHommbmmIMNHommbmmwmmHommbmmvmmHommbmmvmmHommhmmIMNHomwbmmvmmHommb NNNNNHHHHHHHHHHoooooooooommmmmmmmmmmmmmmmmmmmbbbbbbbbbbmwmmmmmmwmmmmmmmmmmmvvavvavvmmmmmmmMMMNNNNNNNNNNHHH mmmmmmmmmmmmmmmmmmmmmmmmmmmNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN .....<............ IIIIIIIII I IIIIIIII I I IIIIIII IIIIIIIII I I I IIIIII I I I I I I 4.. ..................................... .4....... . .. ..... ...... . .. . .4.. ................................ . . .... .. 0 .. . ..... .. . ......... ... . ...... 4 ................................. 0.0. . ........ 4.. ..................................... ....... . .4.. .. ..... . ..... ..... . . .. .. ... . ........ 4.. ............................ . . ...... .... ..... 4 ............... 0.. ..... . .. . ..4 ..... . .. ..4.4.. . .......... .0.. ........... . ..4 ..... ... .... 4 4.. . 4 ........ ..... . .0 ........... 0. . ... . 4.4.... 4 ......................... .. .0. ... ..... .4.4. ...................................... ..... ..4 .................... . ..... . .............. ... .....4.. .............................. . ........ .........¢................................. m.Hu~u N.Huuu m.Hm ¢.Hm .mmu .mmu N.HMmNmmu N.HXEQM H.HxEQH n.HflnnsQ HH.HHnnEa v.HXE3c m.HXE3s m.HU£xE n.HU£XE m. m. NH. OH. NH. HH. 5. .mmco .mmcu .Hmco .Hmco .maon .mmon .Haon .Haon HMHV‘Q‘QNM munfl munh H20 H30 mam mam Ham 141 ............................................................. H. ................................................. dehUU......B..........B............<........¢...... ................................................. deBOU......B..........H............¢........4...... ....U ...................... d ................... ..deBOU ...... B .......... B ............ < ........ 4 ...... ....U..... ............ . .................. .. ..... .dehou ...... B .......... B ...... ......d ........ d ...... ....U ....................................... U....B<CN ....4......H. ........ ....<........¢...... NH.M>CN .. . . o ...... .H... . . ........ .‘4. . . o . . . .d ...... H.N@CN .................... ................... m.NmCN .......... .H.......MV..................... m.HUEN ............................. .......... NH.HUEN ........ .........w..................... V.NCEN .......... F......0..................... McNGEN .......... B......O.......o......o...... FoflcflN .......... .H.......MV..................... m.H©..HN ........ ............................... moHHwN ..... ......... ...... ...... . ...................... BfidBwU ...... B .......... B ............ d ........ d ...... m.HHwN ... ....... . ..... . ....... . .................. ........... ....... B ....................................... v.HOUN ......... ...............................U....................B....................................... H.HOUN ............................ ...... . ....... .......B¢4&UU......F.. ........ H ........ ....4........4 ...... b.HMUN mvmmdommbmmvmmaommbmmVMNHommbwmvmmaommbwmvmmaommbwm¢mmaommbmmvmmaommbwmvmmaommbmmvmmaommbmm¢mmaommbmm NNNNNNHHHHHHHHHHoooooooooommmmmmmmmmmmmmmmmmmmbbbbbbbbbbmmmmmwmmwmmmmmmmmmmmwvvvvvvv¢vmmmmmmmmmMNNNNN vv¢vvvvvwvvvvvv¢¢¢¢¢¢vvvvvmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm IIIIIIIIOIIIIIIIIIIIIQI... ......... I...OIIIOIIOOIIIIIIIIIIIIO I I I I I I I I I I I I I I I I I I I I I I I I I I IIIIIIII I I I I I I I I I I I I I I I I I I I I I I I I I I 143 ........................ uu........u..............s4ddou......e......o 9......9..............cm H.m>ca m.H>CQ H.H%GQ m.mcoa m.mm3u H.mm3n v.mnmu m.mnmu m.v>cN 144 . ..... . ................ ou ....................... h¢¢c~ .¢QmN .HH3N .Hfi3N m.mm NH.Qu 150 .. .......... . .............. ......9 . ....... . ........ 4Z9 ...... ..... . .............................. 9 ..... . ....... 0.... ..... ........... . ........... .. ................................... . ........ .. ..... . ......... 0.....9 ........ .. .. .............. ......................................... ...... 0 ....... .. 0 ..................... 0.. ......... ...................... .. .............................. .......................... 0 ....... .. ......0. ..... .. . .. . ..... . ..... .......................... 09 . ........................ 0 ..... . .............................. . ........ . . ............................. .. ............... 0 ...... . ......................... 4 ............................................. ...... ................. 0 .................. . .. ........... . ............... . ........................... .......................... 0 .......................... 0 .......................... 0 ..................................................... 4 99 .......... 4 .9. 9 ............................................. . .499 .. ..... . ........................................... 4 ................................................ 9 .......................... 499 ............ 499 ....... 949 9 . ..... .. ............................................ 4Z9. ................. . .......................... 9 ....... .. . ..0 0499 ............ 0 ...... 9... ................... .................... ........ £404099.494804044349000UBBBEUBUUU9.4.4.30OUOHu mm>Hu 152 I I I I I I .0..0. .0..U. I I I I IIIII I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I IIIIII I I I ' I I I I I I I I I I I I I I IIIIIIIII I I IIIII I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I IIIIIIIII I I I I I I I IIIIIII I I I I I I I I IIIIIIII I I I IIIIII IIIIIII I I I IIIII I I I I I I I I I I I I I I I I I I ommbmmvmmflommhwmIMNHommbmmvmmaommbmmvmmaommbwmvmmaommbmmvmmflommbmmvmmflommbwmvmmaommrmmvmmaommbmmImmaommbm HoooooooooommmmmmmmmmmmmmmmmmmmbbbbbbbbbbmmmmmwmmmmmmmmmmmmmmvvvvvvvvvvmmmmmmMMMMNNNNNNNNNNHHHHHHHHHHoooo NNNNNNNNNNNHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHaHHHHHHHHHHHHHHHHHHaHHHHHHHHHHHHaHaHHHHHHHHHHHHHHHHHHHHHHHHHH m.am Ha.me v.HflEQ m.mfiea oaomoafisa momOHfism HHZmoHIEQ Namedflem momoafiem anmoaflem HZmOHflea mQIHHHEQ odommflflea Hammfiflsq mZmNHflem Habmfiflsm mo9mflfiea mzbmaflem vinmaflea mammfleq wommflsa wSmNHea wszIEQ mamvflem momVHEm mfizmvflea «smvflem mflonmflem «znmflsm mz9mflea ¢.Hamw m.HQmm m.mamm v.mmmm NH.Hmon 9.Haon m.H0:xe 0H.erau m.HXEQu 153 .4. .d. .<. .0. .¢. .¢. .¢. .¢. .¢. .4. .<. ....B... ...... F. ......B. .....4.. ...U.... ......4. ......d. I I I I IIIIIII I I I I I I IIIIIII I I I I i I I I I I I I I I I IIIIIIIII I I I I I I I I I I I I IIIIII I I I I I I I I I I I I I I I I I I I IIIIII I I I I I I I I I I I I I I I IIIII I I IIIIIII I I I I I I I I I I I I I IIIIIII I I I I I I I I I I I I I I I I IIIII I I I I I I I I I I I I IIIIIIIIIIII I I I I I I I I I I I I I I I I I I I I I I I I I I I I I IIIIII I I I I I I I I I I I I I ommbwmvmmflommbmm¢mmaommbmmImmflommbwmvmmaommbwmIMNHommbwmwmmaommbwmvMNHommbmmvmmaommbmmvmmfiommbmmvmmaommbm Hoooooooooommmmmmmmmmmmmmmmmmmmbbhbbbbbhbmwwmmmmmmmmmmmmmmmmmvvv¢vvvvvvmmmmmmmmmMNNNNNNNNNNHHHHHHHHHHoooo NNNNNNNNNNNHHHHHHHHHHHHHHHHflHAHHHHHaHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHaHHHaHHHHHHHHHHHHHHHHHaHHHHH m.m:0u m.NmuEN v.mue~ m.Hue~ m.mouu m.mooN H.Hunn ¢.Hunh m.¢e m.ve OH.me «.me m.me m.me HH.HXE3C m.HXE3c v.auum ¢.Nuum m.muum m.Houn m.Houu w.NGEN v.m>:N b.«nm~ m.HH3N F.HH3N N.mm NH.Qm 154 29.0.2 ...... 4 00. .0.0 ............ 2 ........................... 0 ........... 4 ...... 0 .................. 2.9.0 ......... 4 0020.0 ......................................... 0 ........... 4 ...... 0 .................. 2 ................. 0 ...... . ...... . .......................... . ...... 0 ........... 4 ......................... ................... 004 ................ 0.00 . ......... e. ............ . ................. ...4. ............ . . ..... 0.. ......................... ................... 0.22...2 . .22202 ..2..2..224. . ............... 0 ............................................... 0 ........... 4 ......................... 2 ........ 0 ............... . ...... . .............. ....... 0 ........ ..4 . ...... 2 . ...... ................... 0 ..22.2. .20.. . 2 .4. ................... 0004 ........ 000 4 ................... 004 ................... 004 . .. . ......... 0 .................................... 0.. ........ 0 ........... 4 ......................... ................... 00 .... 4 ................... 004 ..... 040 ................................................................... 0400 ......... 040 ...................... 040 ................................................................... 040 4.0 ......... 40020.0 ........................... .......... 0 ........... 4 ...... 0 .................. ................ 4 00. 00040 ................ 400 00040 ................ 40000040 ................ 40000040 ................ 40000040 ................ 40000040 ................ 40000040 ................ 40000040 .......... .. . 0 ........ . o .......... 0 ......................................................................... 00 BHM ............................................. Nm>HH mvmmaommbmmvmmaommhmmvmmaommbmmvmmaommhwm4mmaommbmmvmmaommbmmvmmaommhmmvmmaommbmmvmmaommhmmvmmaommbmmvmma HHHHHHoooooooooommmmmmmmmmmmmmmmmmmmhbbbbbhbhhmmmmmmwwmwmmmmmmmmmmvvvv¢vvvv¢mmmmmmmmmmmmmmmmmmmmaaadaaaaa mmmmmmmmmmmmmmmMNNNNNNNNNNNNNNNNNNNNNNNNmmNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 156 4 ....... 9. 9 ............... 4 ....................... . .......... 0 ......... .04 ......................... 4.... ..9. 9.. ....... . ..... 4 ........................ . ......... 0 ........... 4 . ...................... 4 .......... 9 ............... 4.. ................................ 0 ........... 4 ......................... 4... .9 ..... ..9 ............. ..4... ............................... 0 ........... 4 ......................... 4..... . ........ 9 ............... 4 .................................. 0 ........... 4 ......................... 4. .............. 9 ............. ..4 .................................. 0 ........... 4 ......................... 4..4 ............ 9 ............... 4 .................................. 0 ........... 4 ......................... 4 ............... 9 ............... 4. . .............................. 0 ........... 4 ......................... 4 ............... 9 ............... 4 .................................. 0 ........... 4 ......................... 4 ............... 9 ............... 4 .................................. 0 ........... 4 ......................... 4 ............... 9. 0 ........... 4 .................................. 0 ........... 4 ......................... 4 ....... 9 ....... 9 ............... 4 .................................. 0 ........... 4 ......................... 4 ............... 9. 0 ........... 4 ...................... . . ...... 0 ........... 4 ..... . ................... 4 ............... 9. 0 ........... 4 ............ . ......... . .. 0 ........... 4 ......................... 4..4 ............ 9 ............... 4 ................... . .. . ...... 0 ........... 4 .......... . . . .......... 4.. 0 .......... 9 ............... 4 .................... . ...... . ...... 0 ........... 4. . ............. . . ..... 4 ............... 9 ............... 4 .............................. .. 0 ........... 4 ......................... 4 ............... 9 ............. ..4 ..... . ............................ 0 ........... 4. .. ............ . ........ 4 ............ .9 ............ ...4 ........ 4 .......... . . . . ...... 0 ........... 4 ............. . ........... 4 ............ .9 ...... . .. ..4 ........................ . ....... . 0 ....... ....4.... .......... . .......... 4 ......... .9...0... .... ..4 ........... .. ............ ...... . 0 ........... 4.. .......... . ............ 4 .......... .9...0 ........... 4 ................................. 0 ........... 4 ....................... . 4 ............ 9 ......... . ..... 4 .................................. 0 ........... 4. . . .......... . ......... 4 ........... ..9. 0 . ......... 4 ................... . . .. ........ 0 ........... 4... ...................... 4 ............... 9. 0 ........... 4 ............... . ....... .. .0 ........ ...4 ......................... 4. ........ ..9 .......... . .4 .................. . . ....... . 0 ........... 4 ......................... 4 ............... 9 ........... . ..4. . ............. . .......... . . .0 ........... 4 ......................... 4 ............... 9 ............... 4 .................... . ..... ..... 0 ........... 4 ......... . ..... . . 4 ........ .9. .0 ....... . ..4 ........................... ... . 0 ........... 4 ............... .. . 4 ....... 9. ..9 ............ ..4 ................... . .. . .. 0 ..... . ..... 4.. ....................... 4 ..... ..9. .9. .. .. .. .4... ............. . ...... .. .. 0 ........... 4 ......................... 4 ......... .9. .. ..... ... ..4.. ......................... .. ..... 0 ....... ....4. . ........... . .......... 4 ......... 9 ..... 9 ........... . ..4 .................................. 0 ........... 4 ................. .. ...... 4 ......... 9 ..... 9 ............... 4 .................................. 0 ........... 4 ......................... 4..4 ............ 9 ............. . 4 .................................. 0 ........... 4 ............... 0 ......... 4..4 ............ 9 ............ 0 4 .................... 0 ............. 0 ........... 4 ............... 0 ......... 4 ............... 9 ............... 4 .................................. 0 ........... 4 ......................... 4 ............... 9 .............. .4. . ............................... 0 ........... 4 ......................... 4 ............... 9 ........... . ..4 ...................... .... ........ 0 ........... 4 ......................... m¢mmaommbmmvmwaommummvmmfiommhmmvmmaommbmmvmmaommbmmvmmaommbmmvmmaommbmmvmmaommbmm¢mmaommbmmvmmaommbmmvmma HHHHHHoooooooooommmmmmmmmmmmmmmm0mmmbbbbbbhubbmwwmmmwmwmmmmmmmmmmmvvvv¢vv¢vvmmmmmmMMMMNNNNNNNNNNHHHHHHHHH mmmmmmmmmmmmmmmMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNmmNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN m.am HH.NE v.aflem m.mflea odomOHflsm momoflflsm HHZmOHfiem mamoaflem mamoafism anmOHflem HZQOHfiEQ mowflaflem oaommaflsm Hammflflem mzmmaflea aanmflflea mobmafiea mz9mflflea «Spmafism mammflea mommfiea mzmmflea bszHEQ momvfisa mam¢fiea ma2m¢fiea «smvflsa mannmflea ¢z9mfiem mz9mflea v.HQmm m.ammm «.mamm v.wmmm 157 4 ....... 9 ....... 9 ............... 4 .................................. 0 ........... 4 ......................... 4 ....... 9 ....... 9 ............... 4 .................................. 0 ........... 4 ......................... 4 ....... 9 ..... ..9... ........ .. .4 ......... . . ........ .. .. . ..... 0 ........... 4 ......................... 4 ....... 9 9 9 ............... 4 .................................. 0 ........... 4 .............. 0 .......... 4 ....... 9 ....... 9 ............... 4 .............. 4 ................... 0 ........... 4 ......................... 4 ....... 9 ....... 9 ............... 4 ................ 0 ................. 0 ........... 4 ......................... ................ 4 0......0...............9.........................0...........4......................... ................ 4 0......0...............9.........................0...........4......................... 4 0 .......... 9 ............... 4 .................................. 0 ........... 4 ......................... 4 ........... .. 9 .0 ........... 4 .................................. 0 ........... 4 ......................... 4 4 ............ 9 ...... . ...... ..4 ................ . ....... . . ...... 0 ........... 4 ......................... 4 ............... 9 ............... 4 .................................. 0 ........... 4 ......................... 4 4 ............ 9 ............... 4 .................................. 0 ........... 4 ......................... 4 ............... 9 ............... 4 .................................. 0 ........... 4 ......................... 4 ............... 9 ............... 4 .................................. 0 ........... 4 ......................... 4 ....... 9 ....... 9 ............... 4 .................................. 0 .......... 04 ......................... 4 ............... 9 ............... 4 .................................. 0 ......... 0 4 ......................... 4 0 .......... 9 ............... 4 .................................. 0 ........... 4 ......................... 4 ............... 9 ............................................................ 0 ............ 0 .............. 4 ....... 9 ....... 9 ............... 4 .................................. 0 ........... 4 ......................... 4 ....... 9 ....... 9 ...... . ........ 4 .................................. 0 ........... 4 ......................... 4 ....... 9 ....... 9 ............... 4 ............................ 9 ..... 0 ........... 4 ......................... 4 ............... 9 ............................................................ 0 ........................... 4 ....... 9 ....... 9 ............... 4 .................................. 0 ........... 4 ......................... 4 ....... 9 ....... 9 ............... 4 .................................. 0 ........... 4 ......................... 4 ....... 9 . 9 ..... . ......... 4 ..................... . ..... ..... 0 ........... 4 .............. . .......... 4 ....... 9 ....... 9.. ......... ....4 .................................. 0 ........... 4 ......................... 4 ....... 9. . ...9. ......... .....4 ...................... . . ......... 0 ........... 4 .............. . .......... mvmmaomm9mmvmmaommbmmvmmaommbmmvmmaommbmmvmNaommbmmvmmaommbwmvmmaommbmmvmmaommhmmvmmaommbmmvmmaommhmmvmma HHHHHHoooooooooommmmmmmmmmmmmmmmmmmmbbbbhbbbbbmmwwmmwmmmmmmmmmmmmmv¢v¢vvv¢v¢mmmmmmMMMMNNNNNNNNNNHHHHHHHHH mmmmmmmmmmmmmmmMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNmNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN w m . v m m m H w (‘WI‘V‘WMNwV‘V‘ .mcon mmusn .musu .HuEN .moun .moun .Hunfl .Hunh m.¢e m.¢s oa.ms m.me «.06 158 4 ...................................... U ............. 9 ........ U 9 ............... 9494 ......... B 4 4 m HSw 4.4 ...................................... 9 ..................................................... 9 ......... N chu <.¢ ............................................................................................ pH. ......... m.chu 4.... ...... .404 . ....... u ..... U.U.U .. .. ..... u ..... . ..... ... ......... .. ...... c . ..... . .................. v.N>m 4 ........... 404 ...... 9 u ..... U.U.U ..... 9 ..... u ............................... 1 .......................... m N>m ¢.< . ....... . ...... . .......... Mu. . o c . ..................... .. ....... . ........................ .H. ......... OHmCU 4 4 .............. 4 ............................................................................. 9 ......... mmco «.4 .............. d .................................... . ........................................ .H. ......... mmco 4.4 ............................................................................................ B ......... Hmcu 4.4 ........................... U ................................................................ B ......... mUQH 4 4 ........... 4 ................................................................................ 9.. ....... MUCH 4 4 ........................... U ................................................................ 9 ......... NUCH 4.4 ........................... U ........................... . .................................... 9..... vUGH 4 4 ........................... U ................................................................ 9 ......... mUCd 4 4 ........................... U ................. U .............................................. B ......... bUCd 4 4 ........... 4 ................................................................................ 9 ......... mUCH 4 ............. 4 ............................................. 0 .................................. B.U ....... «ECU 4. ............ 4 ............................................. U .................................. 9.U ....... mEOU 4 ............. 4 ............................................. U .................................. 9.U ....... 0800 4 ............. 4 ............................................. U .................................. B.U ....... FHEOU 4 ............. 4 ............................................. U .................................. 9.U ....... mHEOU 4 ...................................... U ............. 9 ........ U B ............... B494 ......... 9..4 4 HSM 4 .............................. U ....... U ............. B ........ U .9 ............... B494 ......... 9 4..:un- omfiw 4 ................................... 9 O ............. 9 ........ U .9 ............... 9494 ......... 9 4..uu-- mmzu 4 ...................... . ...... .. ....... U ............. 9 ........ U .B ..... . ......... B494 ......... B 4..---- wmdu 4 ...................................... U ............. 9 ........ U...B ............... 9494 ......... 9..4..usn- mmdw 4 ...................................... U...9 ......... 9 ........ U...B ............... B494 ......... 9..4..su-- mdu 4 ........................... .. ......... U ............. 9 ........ U .B ............... 9494 ......... B 4 u--- mSw 4 ...................................... U ............. 9 ........ U .9 ............... B494 ......... B 4 ---: mnu 4 . . .......... . . . . ...... .. . U ............. 9 ...... . U ..9 ............... B494 ......... 9 4 u--- 95w 4 ............................ . ........................................................................... 9H>m 4 ...................... .... ... ...................................... . . . ................... . . . . mH>m 4 ........................................................................................................ mH>m 4 ........................................................................................................ 0N>m 4 ........................................................................................................ Hm>m 4 .................................. O .................................................. U .................. mm>m 4 ......................... .... ................................................................... . .. vm>m UGU44UUOU4UUU4U4UUUUOUBU44uU4U444U444UUBUUUU9U444UU4u199999U4UBB490994444UU---99494nu99999u-:90U49094UUB4 9N>m ommbmm«mmaommbmmvmNaommbmm¢MNHommbmvaNHommbmmvMNHommbmmvmmflommbwm¢mmaommbwm«mmaommhmmvmmaommbwmvmmaommbw NHHHHHHHHHHoooooooooommmmmmmmmmmmmmmmmmmmbbbbbb9999mmmmmmmwmmmmmmmmmmmmvvvv¢vv¢¢¢mmmmmmmmMMNNNNNNNNNNHHHH ¢¢v¢¢¢¢vvvvvv¢v¢vvvvvmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 159 4.4 ................ . ............................ 0 ........... . .................................. 9 ......... 4.4.. ........................................... 0 ........... . .................................. 9 ......... 4.4.. .................. . ....... m ................ 0 .......... . ........................ . .......... 9 ......... 4.4.. ........................................... 0 .............................................. 9 ......... 4 ...................... 4 ............. 0 0 .......................... 9 .................... 0 ....... 9 44 9 4 ...................... 4 4 ......... 0.0 .......................... 9 .................. -...0 ..... 9 . 9 4 ...................... 4. ............ 0.0 .......................... 9 .................... 0. . 9 44 9 4 ...................... 4 4 ...... 0 0.0 .......................... 9 .................. -...0 ..... 9 ..... 9 4 ...................... 4 4 ......... 0.0 .......................... 9 .................. - 0 ..... 9 ..... 9 4 ...................................................... . .......... 9 ....... 4 .......... - ......... 9.0.. 9 4 ................................................................. 9 ....... 4 .......... - ......... 9.0.. 9 4 ................................................................. 9 ....... 4 .......... - ......... 9.0.. 9 4 ...................... 4 4 ......... 0.0 .......................... 9 .................. - 0 ..... 9 ..... 9 4 ................................................................. 9 ....... 4 .......... - ......... 9.0. 94. 4 .......................................................... . ---.9...0...4 .......... - ......... 9.0.. 9.. 4 ..................... . ................. . ..................... ---.9...0...4 .......... - ......... 9 0...9. 4 ............................................................. ---.9...0...4 .......... - ......... 9 ..... 9. 4 ................... . ......................................... ---.9...0.. 4 .......... - ......... 9 ..... 9 4 ............................................................. ---.9...0.. 4 .......... - ......... 9 ..... 9 4 ...................... 4 ............................. 9 ............ 9 ...... 9 .......... 9 .......... 9 ..... 9 4 ...................... 4 ............................. 9 ............ 9 ...... 9 .......... 9 .......... 9 ..... 9 4 ...................... 4 ............. 0 0 ............. 9 ............ 9 ................. 9 .......... 9 ..... 9 4 ...................... 4 ............................. 9 ............ 9 ...... 9 .......... 9 .......... 9 ..... 9 4 ...................... 4 ............................. 9. 0 ......... 9 ...... 9 .......... 9 .......... 9 ..... 9 4 ...................... 4 ............................. 9 ............ 9 ...... 9 .......... 9 .......... 9 ..... 9. 4 ...................... 4 ............................. 9 ............ 9 ...... 9 .......... 9 .......... 9 ..... 9. 4 ............................................. 0 ...... 9 .............................. 9 .......... 9 ......... 4 ...................... 4 ............................. 9 ...... . ..... 9 ...... 9 .......... 9 ......... 49 ..... 9 . 4 ...................... 4 ........ . .................... 9 ............ 9 ...... 9 .......... 9 .......... 9 ..... 9 4 ...................... 4 ............................. 9 ............ 9 ...... 9 ......... 99 ..... 094 9 40 9 4 ...................... 4 ............................. 9 ............ 9 ...... 9 .......... 9 .......... 9 ..... 9.. 4 ......................... 0..4 ....... 0 ............................ 9.0..m ...... 0...9494.4.4 ..... 9. 4..44. 4 ......................... 0..4 ....... 0 ........................ ....9.0 ......... 0...9494.4.4 ..... 9. 4 .44. 4 ......................... 0..4. ...... 0 ............................ 9.0.... ..... 0...9494.4.4 ..... 9..4..44. 4 ........................ .0..4.......0 ............................ 9.0 ......... 0 ..9494.4.4 ..... 9..4..44.. 4 ......................... 0..4 ....... 0 ............................ 9.0 ......... 0...9494.4.4 ..... 9. 4 .44. 4 ......................... 0 4 ....... 0 ..................... . ...... 9 0 ......... 0...9494.4.4 ..... 9. 4. 44. 4 ................................ . ....................................................................... 4 ................... . ..................................... . ...... . ..... . ............................ .. ommbmmvmmaommbwmvmmaommbmmvmmaommbmmvmmaommbmmvmmaommbmmvmmaommrmmvmmaommbmm«MNHommbmmvmmaommbmmvmmaommbm NHHHHHHHHHHoooooooooommmmmmmmmmmmmmmmmmmmhhbhbhbbbbmmmmmmmmmmmmmmmmmmmmvvv¢¢¢vvvvmmmmMMMMMMNNNNNNNNNNHHHH ¢v¢vvv¢¢vv¢v¢vvv¢vv¢¢mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm m.Hxxe m.mee H.mmxs m.mmXE que que max; mAXE 94x5 m.mu oa.vu m.vu m.a.oaunu m.a.oauuu v.4.flmqm oa.a.amqm Hamqm mmqm «mam oa.oa0 m.oau m.Ho 0.90 m.mo 9.mu 0H0 m0 Hmu Nu mac m0 mmmn mmmn «man Hmmn mmmn «man Hm>au Nm>Hu 160 4 ...................... 4...4 ......... U.U .......................... .H. .................. ......U ..... B ..... B... m.Q,m. 4 ...................... 4...4 ......... U.U ....... 0..... ............. B .................. u...U ..... B ..... B... HH.NE 4..... ................. 4 ............. U.U ................. .........B .................. all: ...... 9.4...B... v.HfiEQ 4 ...................... 4...4 ......... U.U ...................... 4...9 .................. n...U ..... B ..... B... m.mfiEQ 4 ..... .. ............... 4... ............ U ................ U ......... B ............................ 9 ..... B... OHQmoaflEQ 4 ........ . ............. 4...4 ......... U.U .......................... 9 .................. u...0 ..... B ..... B... QOoaflEQ 4 ...................... 4...4 ......... U.U ....................................................... B ..... B... HHZmOHfiEQ 4 ...................... 4...4 ........... U ......... 9 ...... U ..... ....B ............................ B ..... B... NQmoHflEQ 4 ...................... 4...4 ........... U ................ U ......... B ............................ B ..... B... QOOHflEQ 4 ...................... 4...4 ......... U.U .......................... B .................. u...U.....B ..... B... OHZmOHHEQ 4 ...................... 4...4 ........... U .............. nus ......... B ............................ B ..... B... HZmOHHEQ 4.. .................... 4...4 ......... U.U... ........ . .............. 9 .................. u...0 ..... B ..... B... mDVHHHEQ 4 ...................... 4...4 ........... U .............. «an ......... B ............................ B ..... B... OHDmNHHEQ 4 ...................... 4...4 ........... U .............. an: ......... 9 ............................ B ..... 9... HQmNHHEQ 4 ...................... 4...4 ......... U.U ........................................... . ........... B ..... B... mZmNHHEQ 4 .................. ....4.. .......... .U.U ................ .. ........ 9 .................... U ....... 9.4...9... HQBNHflEQ 4 ........ U ............. 4 ............... U .............. -uu ......... B ............................ B ..... B... marmaflea 4 ...................... 4 ............... U .............. an: ......... B ............................ B ..... B... mZhNHHEQ 4 ...................... 4 ............. U.U .......................... B ............................ B ..... B... vaNHfiEQ 4 ...................... 4...4 ......... U.U .......................... B .................. u...O ..... B ..... B... QONHEQ 4 ...... . ............. ..4...4 ........... U .............. an: ......... B ........ . ................... B ..... B... mOmNHEQ 4 ...................... 4...4 ........... U .............. nu: ......... B ............................ B ..... B... mEmNHEQ 4 ...................... 4 ............. U.U ....................................................... B ..... B... meNHEQ 4 ...................... 4...4 ........... U ................ U ......... B ............................ B ..... B... QO¢AEQ 4 ...................... 4...4 ........... U .............. nun ......... B ............................ 9 ..... B... mflmvfiEQ 4 ...................... 4...4 ......... U.U .......................... B .................. -...U ..... B ..... B... NHZmVflEQ 4 ...................... 4 ........... ..U.U ................ . ......... B ............................ B ..... B... NvaHEQ 4 ................ . ..... 4....... ........ U .............. -ou.........B. ........................... 9.....9... NHDbmHEQ 4 ...................... 4...4 ........... U .............. uua ......... B ............................ B ..... B... vibmHEQ 4 ...................... 4...4 ......... U.U .......................... 9 .................. c...U ..... B ..... B... mmefiEQ 4 ...................... 4...4 ......... U.U .......................... B .................. -...U ..... B ..... B... v.HQmm 4 ...................... 4...4 ......... U.U .......................... B .................. -...U ..... B ..... B... m.HQmm 4 ...................... 4...4 ......... U.U .......................... U ................. 9 .......... B ..... B... N.NQmm 4 ................... 4..4...4 ......... U.U .......................... B ................. B .......... B ..... B... ¢.NQmm 4 ...................... 4 ............. U.U ............................................ B .......... 9 ..... B... NH.HQOQ 4 ............ U ......... 4 ........... ..U.U .................... . ....................... 9 .......... 9 ..... B... b.HQOQ 4 ...................... 4U.... ........ U.U .............. .. ..... .....B.. ...... . ........... U.......B.44..B... m.HU£XE 4 .................. ....4.... ......... U.U ...................... ....B......B ............. U uuuuuuuuuuuuu B... 0H.HXEQu 4 .................. ....4.............U.U... ............. . ..... ....B......B ............. U ....... B.44..B... m.HXEQH ommhmmvmmflommbmmvmmaommhmmmummaommbwm«mmaommhmmvmmaoambmmvmmaommbwmvmmaommbmmvmmaommbmm4mmaommhmm¢mmaommbm NHHHHHHHHHHoooooooooommmmmmmmmmmmmmmmmmmmhhbb999999mmmmmmmmmmmmmmmmmmmmv¢vvvvv¢vvmmmmmmmmmmmmmmmmmmmmaaaa vwvvvvvvvgyvvvvvv¢v¢¢mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 161 4 ...................... 4. .4 ......... 0.0 ...................... . ..9 .................. - 0 ..... 9 ..... 9 4 ...................... 4...4 ......... 0.0 .......................... 9 .................. - .0 ..... 9 ..... 9 4 ...................... 4...4 ......... 0.0 .......................... 9.0 ................ - .0 ..... 9 ..... 9 4.. ... .............. .4...4.. ... ..0 0 .......................... 9 .................. - .0.. .9 ..... 9. 4.. . ...... . ...4...4... ..0.0. .. . ....... . ......... 9 ....... . . . ..... - .0.. .9.. .9. 4... . .. . . ...4..44..... ..0 0. . . .. ..9... .....4..9. . . ....... ..4. .0.. .9...4.9. 4 .................................... 4 ........... . .99. .4.. -...9 ........ 990 ............... 4.9 ...... 4 4 ................................................... 99. ..4. - 9 ........ 990 ............... 4 9 ...4. 4 ...................... 4 ............. 0.0 .......................... 9 ............................ 9.4...9.. 4 ...................... 4...4 ........... 0 ................ 0--- ...... 9 ............................ 9 ..... 9 4 ...................... 4...4 ......... 0.0 ....................................................... 9 ..... 9 4 ...................... 4..... ........ 0.0 .......................... 9 ............................ 9 ..... 9 4 ...................... 4. 4 ......... 0.0 ....................................................... 9 ..... 9 4 ...................... 4.... . ....... 0.0. . ..................... 9 ..... 0. . ........... . ..... 9 ..... 9 4 ...................... 4.. .. .......... 0 .............. --- .... .9 ......... . . ............... 9 ..... 94 4 ...... . ............... 4.. 4. .. ..... 0.0. . ............ . .. .9 ....... . . ..... - 0 ..... 9 ..... 9. 4 ........................................................... ---.9. 0 ........................ 9 ..... 9 4 ...................... 4 ............. 0 0 .......................... 9 .................... 0 ....... 9.4 9 4. .0 .................................................................................................... 4 ...................... 4...4 ......... 0.0 .......................... 9 .................. - 0 ..... 9 ..... 9 4 ...................... 4. .4 ......... 0.0 .......................... 9 .................. - 0 ..... 9 ..... 9 4 ...................... 4...4.. . ..... 0.0 .......................... 9 .................. - 0 ..... 9 ..... 9 4 ....................... . ......... . ...................................................................... 4 ...................... 4...4 ......... 0.0 .......................... 9 .................. - 0 ..... 9 ..... 9 4 ...................... 4. 4 ......... 0.0 .......................... 9 0 ................ - 0 ..... 9 ..... 9 4 ...................... 4. 4 ......... 0.0 .......................... 9 .................. - 0 ..... 9 ..... 9 4 .................... ..4...4 ......... 0.0 .................... . ....9.... 0 . ..... . - .0.. .9. .9. 4..... ......... ........4...4.........0.0 ............ ..............9..................-...0.....9.....9... ommhwmvmmaommbmm¢MNHommbwm¢MNHommbmmvmmaommbmmvmmaommbmm¢mmaomm9mm¢mmaommhmmvmmaommbmm4mmaommbwm¢mmaommbw NHHHHHHHHHHoooooooooommmmmmmmmmmmmmmmmmmmbbbbbbbbbbmmwmmmmmwmmmmmmmmmmm¢¢¢vvvvv¢vmMMMMMMMMMNNNNNNNNNNHHHH wwwvvvv¢¢¢vv¢vv¢¢¢¢¢vmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 0.mcoN m.mmuEN v.musu 0.Hus~ 0.moun m.moun H.Hun9 v.Hun9 0.05 m.ve oa.me «.02 «.02 0.0g Ha.ax534 N.Hx83c 4.Huum «.muum 0.muum m.H00N m.H00N 0.NGEN «.mmcn 9.030s 0.Hfi3n 9.H43~ «.09 «4.00 162 ............. ....... .. ... ..00 ........ .0...99.00.« ... .. ---- ..9 ...... 0 ............. . ....... .............................. 0.........0....9.00...............----...........0..................... ........................................ 4. ..90.................----................................. . .. ............... . .. ....... .....4....90 ...... . .. . .. .---- ............................ .. ................................. 9494 . 4. ...--. ..0. . 0 ..4090.................................... ................................. 9494 . 4.....-- ..0........4090 0........................0 . ...................... . . .. ....... 4 ..9..............0...----................................. ........................................ 4.......................----................................. ........................................ 4.......................----..........................9...... ............... . ......................4.......................----................................. ........................................ 4........ .. .........----................................. ........................................ 4.......................----................................. . ..................... ... ............ 4 ....................... ---- ................................. ........................................ 4.......................----................................. ........................................ 4.......................----................................. ............... .........................4.. . ................----................................. ........................................ 4.......................----................................. ........................................ 4. ..9..................----............0.................... ......................... . ............4.......................----................................. ........................................ 4..........4............----................................. ........................................ 4.......................----................................. ........... .............................4.................... ----........0........................ .............................. 0.........0 . 9.00...............----...........0..................... ............................. 00.........0 .99.00...............----...........0..................... ........................... 0 00.........0 .99 00...............----...........0..................... ............................. 00.........0. .99.00...............----...........0..................... ............................. 00.........0. 99.00...............----...........0..................... ....................... ......00.........0 .99.00...............----...........0..................... ............................. 00.........0 99.00...............----...........0..................... ............................. 00.........0. 99.00...............----...........0..................... .............. ............. 00........ 0. 99.00........... ----...........0..................... ........................................ 4............................................................ ........................................ 4............................................................ ........................................ 4.......................... ................................ ........................................ 4............................................................ ........................ ........ . .4............................................................ ........................ . ........... .4............................................................ UUU4B444B44UU4U99094944440999994449499940994404949409994UBUUBU4U90949094400444999444994094U44UUUUBUU4 Hommbmmvmmaommbmmvmmaommbmm¢mmaommbmmvmmaomwhom#mmaommbmm4mmaomm9mmvmmaommbmm¢mmaommbwmvmmflommbmmvmma NNHHHHHHHHHHoooooooooommmmmmmmmmmommmmmmmmbbbbbbbb99wmmwwmmmmmmmmmmmmmmm¢¢vvvwvvvvmmmmmmmmmmmNNNNNNNN mmmmmmmmmmmmmmmmmmmmmmvvvvvv¢vvvvv¢vv¢vvv¢vvv¢¢v¢v4vvvv¢¢vv¢v¢v¢vvvvvvvvvv¢v¢vvv¢vvvvvvvvvvvvv¢v¢vvv¢ 09.959 m.aau «.«mcu m.«mc0 ¢.«>m m.«>m cameo 0mcu mmco H040 mocfi mucfi «049 0049 00c9 9bcfl mncfi «600 msoo 0600 99600 mHEOU Haw o«50 mmdu mmsm m«:u man man 050 959 FH>m 0H>m ma>m o«>m Hm>m m«>m v«>m b N>m 163 ........................................ 4.......................----................................. ........................... 0............4.......................----................................. ............................. ...........4.......................----................................. ........................................ 4.......................----................................. ........................................ 4.. 9..................---- 4........................4...... ........................................ 4 9..................----.4........0...............49..... ........................... 0............4. .9..................----.4........................4...... ............. .... ..... . . ...... . ..4....9.. ... . . . . ..----.4........00..............4...... ........................................ 4. 9..................----.4........0...............4...... ........................ ................4 ..9..... .. . . . ----................................. ........................................ 4 .9..................----................................. . ................................... 4 . .9 .................. ---- ............................ . ........................................ 4 .9..................----.4........0...............4...... ........................................ 4 .9..................----................................. ........................................ 4 .9..................---- 4.....0......................... ........................................ 4 .9..................---- 4............................... ........................................ 4.......................----.4.................9............. ........................................ 4 .9..................----.4............................... ........................................ 4.......................---- 4............................... ........................................ 4 9...........4......---- 4........................4...... ........................... .............4 9.......«...4......---- 4........................4...... ........................................ 4 9.......0..........----.4........................4 4 ........................... . ...........4 9................. ----.4 .......................4...... ................................ 0.......4 .9..................----.4........................4...... ...................... ..................4 .9..................---- 4........................9...... ........................................ 4 9..................---- 4........................4...... ............ ............................4 ...9..................---- . . .......................... ........................................ 4.......................----.4........................4...... ........................................ 4.........0.............----.4........................4...... ................................ 0.......4 .9..................---- 4........................4...... ................................ 0.......4 .9..................---- 4........................4...... .............................. 0.........4 ..9.00...............---- 4.........0..............9...... .............................. 0.........4 9.00...............---- 4.........0..................... .............................. 0.........4. 9.00...............---- 4.........0..................... .............................. 0.........4 9.00...............---- 4.........0..................... ....................... . . . 0.........4......00.. ...........---- 4.........0..................... .............................. 0.........4......00...............---- 4.........0..................... .......................... ......... ....4....9...................... ......... . ................... ...................... ..................4....9....................................................... Hommhwmvmmaommbmm¢mmaommbmm¢mmaommbmmvmmaommbmm«mmaommbmm4mmflommbmmvaHommbmm¢MNHommBmmvmmaommbwmaumma NNHHHHHaHHHHoooooooooommmmmmmmmmmmmmmmmmmmbbbbbbbbbbmmmwwmwmwmmmmmmmmmmmvvvv¢vvvv¢mmmmmmmmMMNNNNNNNNN mmmmmmmmmmmmmmmmmmmmmm¢v¢v¢¢¢v¢¢¢¢¢¢v¢vv¢vv¢v¢vvv344v4vv¢¢¢vv¢v¢¢¢¢¢vvvvv¢vv¢vvvvvvvvvvvv¢wvvv¢vvv¢¢v m.flmxe 0.mee a.«mxs m.«mxs que «axe que 04x5 94x5 «.mu 0H.vu «.0» m.a.oau~u m.a.oau~u v.4.flmqm 0H.H.qum Hflmam mmqm «mam oa.oau m.oao 0.Hu 0.Ho m.«0 9.«0 0H0 m0 H«u NU 0H0 m0 mmmn 000g ¢mmn Hmmn mmmn «man Hm>Hu «m>au 164 ................................. 0......4 9.......... . . ..---- 4........0...............4...... ................................. 0......4 9..................---- 4........0...............4...... ................ ........................4 9.......4..........---- 4.........4..............4...... ........................................ 4 9..................----.4........0...............4...... ........................................ 4 9.......0..........----.4........................4 4 . . .............. . ....... . . . . ........ 4 .. 9 ......... . . . ...----.4 . ...... 0 ....... . ....... 4. ..... ................. ............ . ........4 9 ..............----.4........................4 ... ........................................ 4 . 9..................----.4.. 4 0...............4...... ........................................ 4 9..................----.4.. 4 0...............4...... ........................................ 4 . 9..................----.4........0...............4...... ........................................ 4 . 9.......0..........---- 4........................4..4.. ........................................ 4 . 9..................---- 4........0...............4...... ............. .............. ............4 . 9.......0..........---- 4........................4..4. ........... .. ............. ... ........4.. 9 .....0. .......----.4........................4..4. ........................................ 4 .9 ....... .... .---- 4........................4...... ............... ............... 0......4. ..9.......0..........----.4........................4... . ........................................ 4 ...9.......0......... ---- 4........................4..4. ........................................ 4 9.......0..........---- 4........................4..4. ........................................ 4 9.......4..........---- 4.........4..............4...... .......................... ..............4... 9..................---- 4 . 0 ............4...... .............................. . . 4 9.......0..........----.4........................4..4. ........................................ 4 9.......0..........---- 4........................4..4. ........................................ 4 .9..................---- 4........................4..0. ........................................ 4 .9.......0..........---- 4........0...............4...... ........................................ 4 9.......0..........---- 4........................4..4. ........................................ 4 9..................---- 4........0...............4...... ........................... . . .......4 9..................---- 4.....0 ..............4...... ..................... ...................4 9.......0..........---- 4........................4..4. ........................................ 4 9.......0..........---- 4........................4..4. ........................................ 4 9..................---- 4........0...............4...... ........................................ 4 9..................---- 4........0...............4...... ........................................ 4 9..................---- 4........0...............4...... ........................................ 4 9..................---- 4........0...............4. . ........................ ................4 9..................---- 4........0...............4...... .......................... ..............4 9.......4..........---- 4.........4..............4...... ........................................ 4 9.......4..........---- 4.........4..............4...... ........................................ 4 .9..................---- 4........................4...... ........................................ 4 .9..................---- 4 . 0...................4...... ...................... ....... .......4 9..................---- 4 . 0 . ..............4...... Hommbmmvmwaommbwmvmmaommbmmvmmaommbmmwmmaommhmmvmmaommbmmvmmaommbwmvmmaommbmmvmmaommrmmvmmaommbwmvmma NNHHHHHHHaHHoooooooooommmmmmmmmmmmmmmmmmmm9999999999mmmwmwwwmwmmmmmmmmmmvvvvvv¢vv¢mmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmm¢¢vv¢v¢¢¢vv¢¢4v44v3431133:;vvvvvvv¢vvvv4¢vv¢¢vv¢vvww¢vv¢vv¢v¢vvvvvv¢vvvv¢v¢¢v m.«fism Oflomoafisa mamOHfiem Hflzmoflfisa «omOHHsm momOHflea anmoafiem HZmOHfiEm movflflflsm oaom«flflem Ham«flfleq m20«afiem Ho9«aflem ma9«flfiem mz9«flflea vz9«flfiem mam«flem 0am«fiea 02m«4sm 92m«flem 0000450 0000450 «Hamvflem «200420 «Ho9mflsm «290454 0290450 v.Hmmm m.Hmmm «.«Qmm ¢.«Qmm ««.Haon 9.Hmon 0.Hnnxe OH.erau 0.ermu 165 mm. I I I O O I I I I I I I I I I I O I ....... I I I O O I I I I O O I I I O O C I I I O O I I I I O O I I I O O .0. .U. «040444404404044404040204 - a I I no. 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 O O O O 0 o. (\o (‘0 I OI -<<4<444444<<~«<<<< unnu.4. usuu.4. uuuu.4. uuuu.4. no. ....0. ....U. .0. .0. .0. .0. .0. ..4. ..4. O Hommbmm¢mmaommbmmvmmfiommummvmmflommbwm¢mmaommbwm«mmaommbmmvmmaommbmmvmmaommhmmvmmaommbwmvmmaommbmm¢mma NNHHHHHHHHHHoooooooooommmmmmmmmmmmmmmmmmmmbbbbbbbbbbmmmwmmmmmmmmmmmmmmmmvvvvv¢vvvvmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmw¢v¢V¢¢¢v¢vvvvvv¢wvvvvwvvv¢¢vv¢¢v¢vvvvvv¢vv¢v¢¢vv¢¢wvvvvvvvvvvvvvvvvvvvvwwvvvvv 0.«co« m.NmuEN ¢.«ueN 0.HuEN 0.«00« m.«00« H.Hun9 0.4029 0.02 m.¢e 04.05 «.05 «.05 0.02 HH.aXE3c «.HXEBC v.HHum v.muum 0.«uum «.Houn n.900N 0.«cEN v.m>c« 9.vnmu 0.Hfl3~ 9.H43N «.mm «H.mm 166 APPENDIX C P2480 sequence alignment 167 ............................Iltl..........¢..............I...........WNWWWNWWWWWWNWEWWWWWNWWWWNWWWWNWWWWNWWWWW ............................I!!!..........<.......................U.NWWWWNWNNNNA.‘num‘m.WWWNWWWWWWWWWWNWWWWWNWWAnnun.‘m. ..........................................d.............................U...d.............WNWWNNWNWWNWWWWNWWWW ...............................I.................¢......U|..........nuv4....¢......mwmmmmmmmmwmmmmwmmwwwmmmwmw ........................................................U..............¢.....I........NWWWWWNNWNWWWNWWWNWWWWWW ............................Illl.......................................mmmmfimwfimmmmmm‘nflhm‘m‘wmm‘nfl....mmm‘mmm‘wmm‘m‘mmnfl ............................IIII.....................III........H.........III.I...........WWWWNNWNWWWWNWWWWNWNW ............................II0I................................H;.............................................. ............................Iucl................................H;.. ........................................... ............................nuuu...............................B................................... ............................nuuu.......................B.......B.........4.................................... ............................u-n:...................... ...4.B.4....................................... concouoolIuooa.oanocoo-Uo-no|ll|oouoocoaooncoooo...aoUc-ooooo|o.H.-oooooucnoo‘4ooonU.onmmmmmflflfiwfln‘m‘mw“mmmmmmmmmmmmm ooooo-ccccano.on...coo-00‘.cancoo-onco-oo-oao.ooouacoooocooooo-BooU.cusoaco.4..o.U-A“mmmmmm‘mmm‘mmmmmmmmmmmmmWWWW cocoon-00.0-cone-UncooooluoB-oooo.u-on.ounoon.nnno.no.u-O'H-coooobncn.nno...ool¢o.-.Uohos“.-“WNW-Nam.“mmmmmmmmmwwmmmmmmm cocoon-coco.u.coon.oo-.Uooo.U-U-.-onoonno.a.ooooooooooooooo-oooooa.ca...oooaooooono‘AoIflu‘fl“fluflo‘fln‘fl-‘mflflwmflg‘mwwwwwmwmm“mmwmm onon...-ocoo-occu-ooo.ooucorH.-oa |||||| o.onno...oon...n-ooca H.H>CQ H.908Q 0.Husm 0.Husm m.HUmN v.HUm« 0.40 0.00 v.00 n.00 0.«flea 0.Hfiea 0.mnm« m.¢>cu N.v%cu «.mxcn «.mch 0.0 macaw v.0 0m03~ 0.9 mmm3n m.H mmm3n «.OHmmueN H.0HmmuEN m.0uoN 0.090N H.90QN «.Hofifiu m.aOaEN m.«oHEN 0.«09EN H.HUCN m.HUc« H.«wc« m.«0c« H.«Uc« m.«0c« m.muoN m.muou 168 I I I I I I I I I I I I I I I I I I I I I I I I I I I I - I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I ll. 0 O O I I O O l I I C O C C I O I O D I O O 0 O I I . O O I I I I I I I I O I O C I O I I O O I I O I I I C C C . C C C O I I O I I I I I O I I I C O I O I I O O I O I I O I I I O I O I O O I U I O O I I O I I O "'I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I'HI I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ° B B B B OI 0‘ (\I ‘ l O o. o. (s. o. . o. o. o. o. o. . O o. o. o. a. o. o. o. o. (x. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. (\I OI OI (\I OI OI OI (\I OI OI OI OI OI 0. o. o. o. o. o. o. o. o. o. o. o. o. o. o. O- (‘- 0' (‘0 0- (‘- O- 0. o. o. o. o. o. o. OI (\I (\I OI OI (\I 0' OI OI OI OI (‘I (‘I OI o. o. o. o. o. o. o. OI OI OI OI OI (‘- OI o- 0' OI (‘0 (‘I (\I OI o. n. o. o. o. o. o. o. o. o. o. o. o. o. (\I (\I (\I (\I OI (\I OI o. o. (x. o. n. o. o. o. o. (s. o. o. o. o. o. o. o. o. o. o. o. 4 -E*F#E'B U U 4 o. o. o. o. o. o. o. o. o. o OI o. o. o. IIIIIIIIIIIIIIIIIIIIIIIIIIII-"-IIIIIIIIII4I mmmm‘mmmm‘mmmmmm‘m‘mm‘m‘mwm‘mm‘m IIIIIIIIIIIIIIIIIIIIIIIIIIII'-'-IIIIIIIIII3N m.H>3N H.H93~ «.003N «.33N m.¢mfl0 H.0040 m.mmfi0 H.mmfl0 m.HHm0 H.HHm0 H.0450 «.mmzm «.mcom «.N>CQ H.N>CQ 169 ommbmmvmmaommbmm¢mmaommbmmvmmaommbmmvmmaommbmmvmmaommbmmvmmaommbmmvmmaommhmmvmmaommbwmvmmaommbmmvmmaommbmm¢mmfi I I I I I I I I I I I I I I I I I I I I I I IIIIIIII I I I I I I I I I I I II IIIIIIIII II IIIIIIII I IIIII IIIII II IIIIIII IIIIIIIIII I I II IIIIIII IIIIIII IIII IIIIIIIIIII I I I I I I I I I I ..mmsa m.mmEQ «.mcem H.~aem m.acea H.Hcea H.NGEN N.HmEN H.HmEN v.mch «.mch m.mnmn m.mmEN «.mmuu H.mmom ~.Hmuu H.Hmo~ m.mm3~ H.~mzn v.mcoN 170 .. .... ...... . .. ......................... . . . 4 .......... o ........... 4o ......... 4 ....... u e ........... o. . .......................... He 0 ................... 4 .......... o ................ o ............. u a ........... o. .............. 4....................................4..........0.............................................o. . .................. 4o ..... u.eeuw ................... 4. ............................... -- ...... u..e ............. ................ o. u..............................4..........o..............................u..e............. .... ...... . .............................. . ......... 4 ..... . .0 ........... 4o. ..4 ............ u ...... u ......... . . . ........ . ... ............................ . ..4. ..... ...o.. ..................... . ...... u ....... . . ...... . ................................................ .4. ..... . .0.. ............................ u..e ............. .................... ...............................4..........u..............................u..e............. ..4 ................ o .................... 0.. u ..4 ......................................... u..e. a .......... ............................................... . ..4. ......o..............................u................ wow ............... o .......... . ......... 0.. u ..4 ......................................... u .9 ..... . ....... ... 4 ........... 44 .............................. 4 .......... o ........... 4o ................. u .............. o . .............. . .... . .. ........... . . ..... . ... . . .................... . .o ........ - ....... .......... . . ......... ................. ........ . ........... ......................u.. ... .... o ............ .............. .......................... ......................................................u. . ............. . .............................................. . ................................. . ........ o..o. ................................................... 4.........................................u........-....... .................... o....................0.........4..........o.............................................0 ................... . ........................................................................u........-....... .............. ...........................o.........4..........w .u.....o...................o. B...........o. ......................................... o.........4..........o..........w...................u. B...........o. .................... o....................o.........4..........o.................4...........................o. .................... o....................o.........4..........w.............................................o e ................. 0.. U ................ o ......... 4 .......... o ............................................. o ..... ............ ...o ...... . . .......... o ......... 4 ...... .. .0.. ...... . ............ . ....................... o. ....... u............o.....w........................4..........o.. . . u . ..o.................e............u ................................................... ..........................................u........-....... ................................................... u..........w..............................o..e...........44 .......... 4........................................4..........o...........4o ..9............u......u........4 ..................... ..............................4..........U......u .. 4o. ..9. 4.......u .9. .u......... .. . ............. 4.09 o ........... o ............ 4 .................. u .................. o u .9 ..... -. .4. .. . ....... .. .. ..... ....... ... .... .. . ............. ... . .. . ................... .u... . .- ..... .. ...4. . ......... 0...u. .... . ........ a ....... 4 ..... ... .o . ......... 4o. 9 . ....... u ...... 0.. . 4 ..4 ............ 0...u .................... 0 ......... 4 ......................................... u 4 ......... o4 u-UUUOBBHCQ .H>CQ .HmEQ .Huzm .Husm .anmn .HUmN v.4“ «.Qu v.mM n.4m .mfiem .Hfiem .mnmu .«ch .v>cu .thN .mxcn .m mmmzu .m mmm3n .a mmm3n .H mmmzu .oammuEN .oammuEN m.muoN m.mu0u H.Hmau N.H0HEN m.HoflEN m.moflEN m.moflE~ H.H0cn m.HUcN fl.mmcu .mwcn .NUCN .mUcN .mHoN .muoN V‘MWLDHHN Nmmmxomm MO‘MHM 171 ............................................. u.....4..........0...........4o.................u 9...........w ...... ... .. ..w ...... 4 ..... . ....... 0 .049044 ......................................... u e 4 ........ ........................ .......................... 4..........o...........4o.. a ..........u......u........4 .................... o....................o.........4..........0.............................................o .... .............. w .. ............ . . o . . ..4...w . o ............................................. o .................... o....................o.........4. . ......o..............................u 9............. ..................................... m.............4..........0........4 .40.................u a...........w . .. u ............................... . .......... 4. . . w ........... 4o ................. u e u ........ 4 ........ o..........................................4..........o...........4U.................u a u........4 ................................................... 4..........o...........40.................u e...........o ......... ........................... . ..........4..........w...........4o.................u 9...........o ................................................... 4.........................................o........-....... . . ..................................... o ......... 4 .......... o .......... o .................................. o ... .............. .. ................ . o ......... 4 ...... .. .o .......... o .................................. w ............................................................................................................ o. ..................... ....................0.........4..........w..........o...................u 9...........o. . ..... . ........ . . .............. . ........... . . 4 ...... . .0 . ....4w.. 9 ............ u ...... o ........ 4 ............................................................................................................ o. ............................................................................................. o........-....... . ................. . . . ........ .. ............. 4 . ... .0 ....... .. 40. a ....... . ..o ...... u . 4 ................................................... 4..........0 u........4u. 9............u......u........4 ................................................................. u...........................o........-....... ......................................................... .................................. .u........-....... ............................................................................................. u........-....... ............................................................................................. o..eo............ ............................................................. .. . . ........................u..eo ........... .4 ............ o u .................... o ......... 4 ....................... H ................. u .............. o ................................ 4..................4..........o...........40.................u B............. .................... 0..............................4.........eo ..........40.................u 9. a . . ..u ............... 4 .. o.........................u 4..........o...........4w ................u B.....-....... .................... wo.............................4.........aw...........4m.................u........-....... .................... o..............................4.........Ho...........4o . o.............o a.....-....... ..... ....... . ..... . w ........................ u ............................................... u a ..... - ....... .................... o..............................4..........0............e.................u 9............. ... ........... 4 . o ............... . ......... u 4 .......... w ........... 4w ................. u a ..... - ....... ow. . ........ . ..... o .............................. 4 ......... so ........... 4w ................. u ........ - ....... ............ Ho.....................................4..........o......................4.......u................ ... .............................................. 4 ........ ..U... ........ 4w ......... 4 ....... u a ........... $4 ............90....-.................. .............. 4.. ....... .0... ...... ..40...... ........... u..e ........... o4 ommbmmvmmaommhmm¢MNHommbmm¢MNHommbmmvmmaomummvmmaommbmmvmmfiommbmmvmmaommhmmvmmflommhmm¢MNHommbwmvmmflommhmmvmmH NHHHHHHHHHHoooooooooommmmmmmmmmmmmmmmmmmmbbbhbbbbbbmmmmmmmwmwmmmmmmmmmm¢¢v¢¢v¢vvvmmmmmMMMMMNNNNNNNNNNAHAHHHHHH NNNNNNNNNNNNNNNNNNNNNHHHHHHHHHHHHHHHHHHHHHHHHflHHHHHHaHHfiHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHaHHHHHHaHHHHHHHHHHHHHH N.Hc0n m.mmue~ m.mmue~ m.HmuEN m.fimue~ m.mueN m.~u5~ n.Hue~ m.HueN m.mmEN m.HoHN H.Hnfln m.mHmN fl.mamu m.aamu H.HHmN N.NOUN H.mou~ ¢.aOUN H.Hoou v.m>3u H.N>3N m.a>3u H.H>3~ m.mfl3n N.MH3N m.vmflm H.vmfim m.mmfia H.mmfla m.HHmm H.Hamm H.mflea v.mm3a «.maom N.N>GQ H.m>cm 172 ..... 4.4.004.4.44.0 444.0 4.0 4.2.2.-2.2 ..... 4..2.2...24..0 2 .4.444...2222....2.244 04.0 4.22.-... 2.4.2 ......... 020 ................ . ............ .4 ....... 0 ........ . ...... 4. ................. 0 ................ ....... .. ..222.. 0 .... 0 4..2.2222. ............. 0.. ............. . ...0 ....... ..4.. .. .................................. 0. 4. ..... . ....... ..4. ............... 0 ............... 4. ...... 0 ....... 4 ..... 4 ................. 0 ................. 0 ................ .................... 04.44.0 ................................................... 2 . 04.0 ...... 04 222..0 00 ................................ 404.0 ............................................................................................. 02224.0.222. ...... 000 4.- . ............ . ................. 0 ......... 4 ........ ..0 .......... 0 ............................. . 0 . ........... 4. 0 ......................... 0 4. ........ 0 ........... 40 ................. 0 4. ..... - . . ............. 4. .0 ......................... 0 4 .......... 0 ........... 40 ................. 0 4. ..... - ....... ....... 44.44404000 .................... 04404004.- ......................................... 04000 ..................... 04 000 ...... 04.0 ............................................................................................. 02.902222 ......................................... 04000 ............................................................................................. 024.022222 ........... 4.2.22.0 . 04004. .............. 0 ...... . ............. 0 ......... 4.. ........ 0 ..... . ....................................... 0. ......... 040 ............................................................................................. 024.0.2.2.2.2 ......................................... 04000 ........ 04 000 ............................ 2 ................ 4 ............. 2 . .......... . ........ 0 ........ - . .................... 00400 4.2.2222. .................... 00400 4.....22.22 .................... 004 00 .................... 0.. . .. 04 0.22 0. ................................................... 4....222022.22240. 4.004 . ............................. .. . ............ 4 ........ ..0 ........... 402.4. ............ 0 ...... 0 ........ 4 ....... 4.2.22202 ...... ...40....4...2 ........ 0 ...... 0 ..... ...4 ommhmmvmmaommhmmvmmaommrmmvmmaommummvmmaommbwmvmmaommbmmvmmaommbmmvmmaommbmmvmmflommummvmmaommbmmvmmaommhmmvmmfl mafia."HHHHHHoooooooooommmmmmmmmmmmmmmmmmmmbhbhbhbbbbwmmmmmwmmwmmmmmmmmmm4.314343..vamMMMMMMMMNNNNNNNNNNHHHHHHHHH NNNNNNNNNNNNNNNNNNNNNHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHfiHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH m.mmcu m.mnmu m.mmEN «.mmou H.N40N «.400N 4.400u m.mmzn H.mm3u v.mcoN 173 . ..... . ...... 0 ........ .9 ............ . .004. ........ .. . .. .. . . 9 ....................... . .. . 0 ....... .............................................................. . .. . . 9..........................0. 0 ........................ 9................00...................................4.......................0....... ....... 4......0.........9.................04.....9..................9........0........................0....... .............. 0...... 9.................0......9........4.........9.................................0....... ....... 4......0............0.....................-..................9.............................4 4....... .......................................... 0...........................4...............................0....... ........................ 9................00...........................4.......4.......................0....... .......... ............ 9 . .......... . 00....................... ..4.......4.......................0....... 0 ............. . ........ . ..... ..... . . .0.. ............. 0.... . ..9.. 0 ......................... 9 0 4. ......... ............... ........... ................... ...........................................0....... ..... ................................................... 0 ....................................... . ............ ................... 4 .. 9................00......9....................................................0....... ........................................... 0.................................................................. .................................................................. 4.........4.4...................4 4....... .................................................................. 4.........4.4...................4 4....... ............................ ......................................4.........4.4...................4 4....... ........................................... 0......................................................4.. 4....... ........... ............0 ...............4. -............... .9.......9 4.......................0....... ............... ............ ............0.................................................................. .. ..... 4 ...... 0 ............ 0 . .......... ...4.. - .......... .. ...... 9 ..... . ....................... 4 4 ....... ....... 4......0............0...............4.....-..................9.............................4 4....... ....... 4...................................4.....-..................9.......9 4.......................0....... ........................................... 4.....-..................9.......9.4.......................0....... ........................................... 4.....9..................9.......9.4.......................0....... ........................................... 4........................9.......9.4.......................0....... . 9 ....................................... 4 ..... - .................. 9 0 ..................................... ........................................... 0.................................................................. .. . ................ . 9 ................................. . ................... 4 ................... 4 4 ....... . ............. 0 ......... 9 .......... . ..... 00 .. ...................... 9 ............................. 9 0 ....... .............. 0.........9 ...........0 .00..9.................. 9........0..........9.....9 9..........4 4444444444444444444 ........ 0 .............. 0 .9. 0 ............. - ..... 9 0 ..... . ....... - ............. 9 .......... 9 .9 ....................................... 0 ................................................................ . .......................................... 0...............0.........9 .0. 4.....-..............9........4 ......................................... 00...............0.........9...0.........................9........4 ....... 4......0............0...............4.....-..................9.0.........0............................. .. 4 ..... 90 ............ 0 ............... 4 ..... - .................. 9 ......................................... BCQ .H>CQ .HmEQ .Husa .4034 .HUmN .HUmN 0.44 «.44 v.m4 m.04 .NHEQ .Hfiea .QOu .vch .v>Cu .m>CN .m>cN meer-IN 0300wale 0.0 mmm3N v.0 mmm3N m.H mmm3N m.H mmm3N N.0HmmuEN .Hoammusn m.muoN m.muoN H.40QN ~.4048N m.HofiEN m.~oHEN m.mofien .chu .anN .mch .mch .mUcN .NUCN .muoN .muoN mmMHMHmH 174 ......... .. . 0.........9................00.........................9.............................4 4....... ....... 4.... .0.... .......0...............4 .. -....................................................0.....4 ...... . ..................................4 .-. .. . . . . . 9... .. 9 4........ . .. .......0....... . ......... . ............................ 4 ..... - .................. 9 ....... 9.4 ....................... 0 ....... ........................................... 4.....-..................9.......9.4.......................0....... ........................... ................... ..........0 ... .... ....9.4.................0.....0....... ............ 0 0.................................... . 0.... .. ........9.4...................4 ..4....... ....... 4 .. 0............0. .............4.....-..................9.............................4 4...... ....... 4......0............0...............4.....-..................9.............................4 4....... ............................ ...............0.............. ................................................ ...... ............ ......... .............0 ......... -. .................................................. ....... .. . .. 9.......0.. .... ......0......................................................4 4....... ........................................... 4.....-..................9.......9.4.......................0....... ........................................... 4.....-..................9.......9.4.......................0....... ............... ........................................ .. ... . 4.........4.4...................4 4....... ...... .4 ....0....... ....0 ... ..0.......4.....-........ .. . . 9............. ...............4. 4....... . ...... 4. ..... 0 . .......... 0 ............... 4 ..... - .................. 9 ............................. 4 4 ....... ........................................................... 4......4.........4.4...................4 4....... ........................................... 0.................................................................. ....... 4......0............0 . ...........4.....-..................9.............................4 4 . ....... 4......0............0 . .. ........4.....-..................9......... ...................40 4....... .............................................................................. 4...................4.. 4....... ........................................... 0.........................0........................................ ........................................... 0.................................................................. ....... ....................................0. ...........................4.................................... . ...... . .................................. .4 ..... - ........... ... . ...... .. ........ . ........................... .......................................... 0...............0.........9.. 0.........................9 ..0....4. .............. 0.........9................00.........................9.............................4 ..4....... --. ........................... ..... . .. ........ - ..... . .. 4.94.. 9 . 0 . .. .................... 4 ..0..0. .. . . 4 ...... 0 ...... . 9. .. ...... . ..00. ..... 9 ........... ..... . ..... ... ......... . ........... ....0 .... -- ----------- . ....... 4 ......... .. ............ - ........... 4.94...9. 0 ........ . .. ........... .4 ..0..0.. --. ............................. 4 ....... 4 ....... 9 ........... 4.94. 9. 0 ................. 9 ....... 4 ..0. 0.. ............................................................ ......................................4 ..4....... .................... ........... ... . 0. ...................................4.4. . ..............4 ..09...... . . 4 ...... 0 0 .... 9 .. .........9..00 ...... 9 ............ . . ....... 0 ..... . ................. ...0.. . -- ............................. 4 ................. 9 09 ....... 9.. 9 .0 .. 4 ........................ 0-. -.9 .................................................................... 9.................................0....... .............. 0.........9................00.........................9............................9. .0....... ..............0.........9................00........ ...... ...........9..................... ..... .......0... .. oamhwmvmmflommbmmvmmaommbmmvmmaommbmmvmmaommhmmvmmaommbwm¢mmaommbmm«mmdommbmmvmmaommbmmvmmaommbwmvmmaommbmm¢mma MNNNNNNNNNNHHHHHHHaHHoooooooooommmmmmmmmmmmmmmmmmmmhbbhhbbbbbmmwmmwmwmmmmmmmmmmmmvvvvvv¢¢vvmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN N.Hcon m.NmuEN N.NmuEN m.amuEN N.HmuEN m.musu .muEN .HuEN .Husu .mmEN .Hoflu .Hvflu .mHmN .mamn .Hamn .Hamu .NOUN .mouu .Hoou .Houu .N>3N .N>3N .H>3N .H>3N m.M43N m.ma3u m.¢m44 H.¢m44 m.mm44 H.mm44 n.44m4 H.44m4 H.m494 v.mmza «.mcoa N.N>GQ H.N>GQ HMHQ‘HV‘HNr-‘IMHMHMIDUWI‘N 175 ..........H .......... ...4.... I O O C C I U.U. O C I O . ...... o.u....... .4 .................. . C . ........... I I ........ . ....... 3mm ......... . oooooooooooooooooooooooooooo o c a - cod... 0 ....... ... ..... on. .......... a omm9mmvmm4omm9mmvmmflom ..4......u.......... ..4......u.......... ..4......o.......... MNNNNNNNNNNHHHHHH44440000 mmmmmmm mmmmmmMmmmmmmmmmmmmm oooooomm mmmmmmm .........< ..... .........<..... .........4..... m9mm¢mmflomm9 mmmmmmmmmmm NNNNNNNNNN mmwmmaommbmmv mmmmmmm999 mmmmmmmmmm ......H ”.00”... ooh-H... .H4 ... ...mw ... 4.4.. 4 .... ... ...H.rH.oc. 0. o .- ...-... w .................. H........................... ..d. .. ....... d ............ . ...... ¢.. 00!! ....é... ....¢.. .................. ¢...¢......- .......... ........B 999999900000 NNNNNNNNNNNN mmaomm90m¢mmflomm 0000000 NNNNNNNNNNNNNNNN 90vaNHommbwmvmmdom09 mmmmmmmm¢V¢¢¢vv¢¢vmmm NNNNNNNNNNNN wvaNflommbmeMNH MMMMMMMNNNNNNNNN NNNNNNNNNNNNNNNN N.vu H.40 9.m0 0.46 HH.HE v.0HU m.oa0 m.mmcm «.mmcm ~.Hmca H.40cm m.Hoom N.HOUQ m.mafia m.~444 0.Nmmm m.mm44 9.~mEQ 0.mmem «.mcem H.NGEQ m.HcEQ H.HGEQ H.NGEN N.HmEN H.HmEN «.mwcu m.mmcn m.mn0N 0.NmEN m.mmun H.NMUN N.HMUN H.HMUN m.NM3N H-NM3N $.NCON 176 ..0................................ .............. ...... . ..0. ....... .................... ... .............. ..... .0 ...... .. .0. ............ ..... . ............ ...... . .. ............. .. ..0... ...... ....... ........ ....99.... ...... 0. . .. ..... .. ...... ..0... ... .....................9. ...... .............. ........ ..0............................99..... . .0. .....0............. ..0.... ........ . ...................... ...... ..9........ ...... ...... .................. ............. ....................0..... ...... ..... ... .... ....... ........... ..... . ..... .9..... ..... ..... ... ...... .. ...... ... ..... .......9.... ....... . .... ..... ......... ................. ................................9.. ........... .......... ............ . .. ....... ............. .....9...0.............0 ..... .... ....... ..... 0 ............ ...... ... ...... . ..0.. ............ O O I I i O O O O C I O I O O O I O I O OOOOOOOOOOOOOOO I I I I I I I I I I I I I I I O I I I OOOOOOOOOOOOOOOOOOOO C O O I I O O I O O O I O O I IIIIIIIIII I IIIIIIIIIIIIIIIIII O 0 Co ........ I III C C O ....... O O O O l O O O O I IIIIIIIIII O I O O O D O I C I O O I O C O C O C ..... O ..... I C O I I O O O I I U D O I O C O O ............................. ' | I I I ......... I oooooooooooooo I I I I I I I O ....... I ..... I .............. I I I ............. I I I I I I I I t I I I I I I I I I I UU-nBBBUUUdBdeéUdddUBdBU44 H.H>GQ 4.4064 m.aus4 0.4us4 m.aUmu v.aomn 0.44 «.44 v.04 n.44 m.m454 m.4484 0.mnmu m.v>cu m.¢>cN m.m>cN N.m>CN 0.0 mmm3N v.0 mmm3u m.H mmm3N m.H mmMBN N.oammuEN H.0HmmuEN 4.040N 0.040N 4.404n N.HOHEN .Hofien m.mofieu 0.mofleu H.40au n.40cu H.chu m.~04u H.mocn m.mucu m.m40u m.muoN 177 ..0... .. ..... ......... ..... ...... .................. ... ...0.. .. . .. .0 ................ . . .. 9 0 . ... ..0 ........ .......... ....... ....9.... ..0 ....... . .........0...... ..... ......... . . .... .................... ..0.................. ..... .. ........ .......... ... .. ........ .. .. .....-9 .......... . ........ . ...... . ...... ..0...... ......... ....... ............ .. ...... ............... .........-9 . ........................... .... ..0.. ... ..... ..... .. .. ....... .... ........ .. ..... ........ ...... ..-9 ........ . ................. . ...... ..0... .. ....... .. .................. .. .... ...........0 ............0.... . ..... .. . ..... .......... ..0 ....... . ......... . ..... . .......... 0 ......... .... ....0...... ..... 0.. ........................... . ..... ..0.. . ............. . ...... .... 9 ... ................ . ...... ...... ....... ....................... .. .. .... ..0..... ..... .. ..... ..... ...9 ............... . ........ ... ......... ..... ................ . .................. ....... . 9 .. ....0 ......... ....... .............. ........ ........ .... . ......... . ............ 0.0 . ...... ..0 ... ... ............................ ............0................0.... ........ ........ 0. ... ..... . 04--. . .......... 9 .. ..... ........ . ......... .. .....90.. .............. 0 ......... . ............ 0 .. ....... ..0.-... .... ..................... .. ....... .. . ......... .......... -9.. ..... . .. ... ..... ... ...... .. ..0 .. ....... .. .......... . ..... ................... .. ..... . ............ .-9 ................................. . 0 ............... . ....... .. .... ......0..0 ............ .. ... ..... .... 0 .............................. . . ..0.. 0 ....... . ... ........ .. .........0..0 ......... ...... .. .. .... 0 .................. - ......... 4 . . ..0 ................. . ........... 9...... ..................... . ........ .. ..... . ......... .. ........... . ......... ..0 ................ .. .... ..... ....... .. ...... . ....9... . ... ..... 0.. . ....... . ................... . . ..0.. ................ . ......... . ........................ 0 .............. . 0 ................ . ..... 0 .......... .. ..0..... ... ... ........ ................ ..4.. .....0.... ... ..... 0.... .. .... ... ..... .... . .. ... . 0 ............... . ............. 9 ...... . .............................. . .......... 90 .......................... ..0 . ............. .. .. . ........... . . ....... .. . ... . . 0 . ....... ... ...... .................... .... ............................ .. ...................... 0 ............ ....0 ...................... 0 ............ . 0 .................................... ... .......... ....0 ............ . ..0 ..... . ................ 0 ............ ..0 ............................. 9 ....... 0 ............... 0 ............. . 0 ...................... 0 ............ . 0 .......................... . .................... . ............... . ....... -9 ................................. ..0. .. ........ . ... .. ................. ... ... . .0 ....... .. .....0..... ...... ................ 9.. . 0 ................ . .............. . ........................ 0 ............. 0 ........................... 0 ....... ..0.... .......... ... 0. . ..... ............ ..... 9.. ... .... . ..... ..0....... . ..... .. -------------- ..0. . ...... . .................. ...... ............ 9 . . ................... 0 ......... . .................. 4 0 . ..0... ............. . . ..... .... .... ... . .. 9 ....................... 0 ..... . . -------------------------- ..0 ............................ ... ............... 9 . ... ...... . ......... .0 ................................... ..0. .............. . . ..... ... ........ .... ........ . .................. .... ...... . . .................. .. . . ..0...... .......... . ... ...................... .... ..... .... . ......... .... ... . .. ............ .. . . ..0................ ...... ......BH................... ....... U...........B.0............... ....... .....U..U.... m090mvmm4omm90m4mm40m090m«mmaom090mvmm40mm90mvmm40mm90mvmm40m090mvmm40m090mvmm40mm90mvmm40mm90mvmm40m090mvmma mmmmmmmmmMNNNNNNNNNNH44444HHHHoooooooooommmmmmmmmmmmmm00000099999999990000000000mmmmmmmmmmvvvv¢vvvvvmmmmmmmmm vvvvwvvvv444404v444¢vv¢¢¢v¢v¢¢v¢v¢v¢vvvvmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm m.m40~ n.4coN n.4coN m.NmuEN N.NmuEN n.4muEN N.HmuEN m.~usu m.mue~ 9.4uEN m.4ueN m.NMEN n.4o4u 4.404N m.m4ou 4.m4mN 4.44mN 4.44mN N.NOUN 4.400s v . HOUN H . HOUN w.m93u 4.m>3~ 4.443N 4.443N m.m43~ «.443u 4.4m44 4.4m44 m.mm44 4.mm44 4.44m4 4.4404 4.m4E4 ¢.mmzm «.mco4 «.4944 4.4944 178 ..0.. ..0. m090mvmm4omm90m4mm4om09004mm4om090mvmm4omm90mvmm4om090mvmm4omm90mvmm4omm90mv mmmmmmmmmmmmmmmmmmmm4444444444oooooooooommmmmmmmmmmmmmmmmmmw9999999 vvvvvwvvvvvvvvv4vvvvvv44vvw¢¢vvv¢vvvvvvvmmmmmmmmmmmmmmmmmmmmmmmmmmm ..B. . .. ..4 ..... 4. . . O I I I O O I I I I O I O O O O O O ............... U. . .......................... .H. ....... O ............... O. . ............. 0.. . ...... . ............... .H... ..... U ............... 0.... ...... .. . ........... . . ...4..: .....O ...-..O ..... ............................ UU . .................. . ......... 4.. ....O ............... 0.... ............ U ..... .. ............................ 4..... U ........ . . .. . ..... 0.. . .. ...... . ...H... ............... . . ......H. ........................ . ..... 999000000 mm4omm90mvmm4omm90mvmm4omm90mvmm4 0000mmmmmmmmmmvvvwvv4vv¢mmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm .40 .40 .40 0.46 44.4E 4.040 m.040 m.mm44 m.mm44 «.4044 4.4044 m.4004 m.4004 0.m444 m.m444 0.mm44 m.mm44 9.mmE4 0.mmE4 «.4444 4.4454 n.4454 4.4444 4.m4EN n.4mEN 4.4mEN v.mm4u m.m04u m.mnmu 0.mmEN «.mmuu 4.mmou N.4mou 4.4404 m.m~3~ 4.NM3N v.m40~ [‘HN 179 APPENDIX D COI/COII sequence alignment 180 1111111111 1111111111222222222233333333334444444444$55555S55566666666667777777777888888888899999999990000000000 1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789 T.......C........T.......... IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII G...............T....G...................... ?????? I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ‘ I I I I I I o I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I o I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I o I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ..IIIIIIIIIIIIIIIIIIIII.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII-IIIIIIIIIII .IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIII.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ....................T...........................A..A.C........................T.. ATACCTCGACGTTATTCAGACTATCCAGATGCTTACACTACATGAAATGTAGTTTCAACTATTGGATCTTCTATTTCACTACTAGGAATTTTATTTTTCTTATTTATTA ???????????????????????????????????????????????????????...................................................... nrmendaxG 4Sda.2 4Sma.4 aap1.1 aap2.3 bop1.2 fa.8 fp.11 m4.1 m5.6 mxhd1.4 tzt10.1 pmi2 pns pmnl pmn2 (‘- 00 0- C‘- o. o. (s. o. (‘0 C“ C‘- 0- o. o. n. o. o. (\- o. o. (‘I OI OI OI (\- o. o. o. o. (x. o. o. (‘0 00 00 (‘0 (\- (\. (\- o. OI OI Do 00 OI OI OI OI (\o (\o (\a 0. 0- 0o (‘- (‘0 (‘- 0- Do 0- OI (‘0 GI (‘I o. o. o. o. (‘I (‘I O. “I (\u 0- (‘I O- OI OI (‘0 (‘0 (‘I (\I O. OI o. o. o. o. 4 4 4 4 0‘ O- (‘o 0‘ o. o. o. o. o. o. o. o. o. o. o. n. ................A.......... T.......C........T.......... ..T................T.......... 0- C‘- 0- (‘0 I‘- (‘~ 0' (‘- 00 (‘0 0' 0- 0- On (‘0 C‘- 0' 0' O- O- O- (h (‘c C‘- 00 (‘c (‘- O- p. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. 4 4 4 4 O. OI OI 0. 4 4 4 4 o. o. o. o. (\I OI (‘0 OI 4 4 4 4 4 4 4 4 4 4 4 4 o. o. o. o. ..........................é... . ... . .. ..... ???...................................................... ??????????...................................................... ? ...................................................... ? ? ...................................................... ? .......................T..T........................... ? .............A......... .......................T.. IIIIIIIIIIIIIIIIIIIIIII ????2??? ?.............A.........T...................T.......... 4 4 4 4 4 O. (\o (\o O. (\o ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??? ? ??? ? ?? ???????? ? ? ? ? ? ? ? ? o. (\- o. o. o. o. ? ? ? ? ? ? ? ? (\o no (\a (‘0 (\o (\o o. 00 o. OI (‘0 (‘0 (‘0 C‘- 00 0' 0' 0' C‘- 0' 0' 0' C“ 0- o-o-o-o-o-o-o-0.0.0-0-0-4-4 (\o o- (\- (‘I 0. (‘I 0. (‘0 o. OI O. C‘- OI o. coo-o-o-o-o-o-o-o-ooo~o-o-4 0' C‘- 0' 0' 0' 0' 0° 0' 0° 00 00 0* 0. 5- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 C" 0' 0' 0' (‘0 0° C‘- 0' 0' 0' 0' 0° (‘0 0‘ ? ? ? ? ? ? ? ? ? ? ????????? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? {\o 0. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ???????? ??????? o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. (x. o. o. o. o. o. o. o. o. o. o. o. o. o-o-o-o-o-o-o-o-o-o-ooo-o-4 o. o. o. o. o. o. o. o. o. o. (\- o. o. o. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ????? ????? o. o. o. o. o. o. o. (s. o. o. o. o. o. o. “I o. o. o. o. o. o- o. o- 6. o. o. 6. ol ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??? ??? (‘0 O. OI (\c on (\- OI (\I D. (\I OI OI OI OI O- 0- O- 0- O- O- (‘- O- 0- O- 0- I‘- O- (‘- ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??? ??? o. o. o. (\- o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. a. o. o. 0' “I o. o. o. o. o. o. 0' “I o. o. o. O. O- 0- 0- (‘0 0- (\- 0- O- 0- 0- 0' 0' (‘0 0- ? ? ? ? ? ? ? ? ? ? ? ? ? ? ????? ????? o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. n. o. o. o. o. o. o. o. o. o. o. o. o. n. o. o. o. o. o. o. o. o. (\I “I OI (\I (‘I (\I OI OI OI OI “I (‘0 OI (‘0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ????? ????? o. o. o. o. o. o. o. n. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??? ??? o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. O. o. o. o. o. 0. o. o. o. 0. o. o. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??? ??? o. o. o. o. o. o. o. o. o. o. o. o. o. o. (‘0 OI (‘0 (‘0 OI (\- OI (\- 0' (\I (\I O. OI (‘0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??? ??? o-o-o-o-o-o-o.o-o-o-o-o-o-o~ o. o. o. o. o. o. o. n. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. (‘I 0. OI O. 0‘ (‘9 0. GI (\I OI OI OI (‘0 0. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. n. o. o. o. o. o. o. o. o. o. o. o. (‘I OI (\I OI OI (\- OI (\I OI o. (‘0 OI (‘I 00 o. o. o. o. o. o. o. o. o. o. o. o. o. o. ? ? ? ? ???????????????????????????????????????????????????????...................................................... ??????? ??????? ? ? zpa zmnl zonl zonz zma mmil mns mga mon2 mmiz mmi3 mmi4 c1.7 fu1.1 t29a1.2 181 juniperin 1111111111 0000000000 0123456789012345678901234567890123456789012345678901234557390123455739012345673901234567390123455739 ? ??????????????????????????????????? 9‘3?) 000: 111111111122222222223333333333444444444455555555556666666555777777777733888333839999999999 ??????????????2????????????? 123456789 ????????? nrmendax o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. (‘00- o. o. o. o. o. o. o. o. o. o. 0. o. o. o. o. o. o. o. o. o. o. o. n. o. o. O. o. o. o. o. OI OI (\I (\o o. o. O. O. o. o. o. o. o. o. o. O. o. o. o. o. o. o. O. o. O. o. o. o. o. o. 0. o. O. o. electrom pell IIIIIIIII.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ???????????????? ???????????????????????? pe14 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII p113 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII pil4 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ?????? ???????????????? o. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ??????????????????????? a ??????????????????????????????????????????????????????? ??????????????????????????????????????????????????????? ??????????????? zmal zma2 zmn2v zmtl zmt2 zmt3 zmt4 zwa2 zwa3 zwa4 znel ???IIIIIIIITIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII o. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ???????????? ........T............................................. ???........T............................................. ???????????????????????????????????????????????????? ???........T............................................. o. o. o. o. o. O. O. o- OI O. o. o. o. o. o. o. 0. “C o. o. OI o. O. (\o o. (\o o. O. o. o. o. o. o. o. o. o. 6. o. o- o. O. O. o. o. o. o. o. o. o. o. o. o. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII o. o. o. o. o. O. O. o. o. (\o o. o. (\c O- 0- (‘0 O- C‘- O- (‘- 0- 0- (‘0 0- (‘o 0- (‘o 0' O- O- 0- 0- O- 0- (‘o C‘- (‘o 0- ????????????????? ??????????????????????????????????????????????????????? o. a. o. o. OI OI O- (\u 0- o. o. 0. 0° (‘- 0- 0- O- O- (‘o I‘- o. o. 0- 0' C‘- O- 0. OI O- 0- o. o. (‘o 0- O- O- (‘I (\I C‘- (‘- o. o. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ???????????????? ???????????????????????????????????????Ol..CIIIIII..GOOOOOC...II...............ICOTUIOOAHCCC zwi3 ?????? o ???????????????????????????????? ???????????????????????????? ???????????????????????????? ????????? ppaZ . D I J O I I D I I O I C O I C O O O I C C O O O O I I I I I O i O I I I I O O O O C O O O I O O I O O O I D O O O I O I O O O I C I O O O C I . O C . o. pcol znyS zcol zwyl zndl zsdl IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ......................G.......................................................... ????????????????????? ???????????????????? O O O I C I C O I I O C C O I I C I I O O O I O I I O I O D O I I I I O O O O C C O I O I O I I I l C I I C O l I O O O l I I O I O I ??????????????????????????????????????????????? .......................T..........................A..... o. zmtBl zcal pnyl G. I I I O O I C O U I C C . C Q I . C O 0 I O . . . I I O O I I O I O I C I I O I C C I I U I I C O O O O I O C O C C C O O C O O O O I O O C O O I I ?????????????????????????????????????????????? pwal IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII putl mmoooooomm (\- O- o o. O. o o OI o O C‘ 0 0 o O C‘ 0 O 0 (x (x C‘ o o o O 0 p O. o I O. o 0 O 0 0 0 C‘ O. 0 O- o O 0 C‘ 0 0 o 0 C‘ 0 0 0 O. 0 O. 0 (\- t‘ C‘ III. IIIIID IIIIIIIIIIIIIIIIIIIIIIUIIOIIIIIII .... IIIIIIIIIOIOIIIIIIIIIIIIIIIIOIIIOI IIIIIIIIIIIIIIIIIIIIIIIIIIIIII IOIIIIIIIIIIIIIIIIOOIIOIIIIIIIIIIIII IOIIIIIIIIIIIIIIIIIIOIIIOIIIIIIIIIII o. o. O. (‘- o. o. o. o. o. o. o. o. (x. o. o. OI OI o. o. o. o. o. o. o. o. o. o. o. o. o. p. o. O. (\I o. o. o. o. o. O. o. o. O. 0' ol 0. o. o. o. o. o. o. o. OI o. o. o. 0' o. o. o. o. o. o. (\I o. 0. o. o. O. (\I o. o. o. o. O. O. O. o. o. o. 0- o. o. 0' o. o. 0‘ o. (\I o. o. o. o. o. o. (s. o. n. o. OI o. o. 0. 0| 0. o. o. o. OI o. o. o. o. (s. o. o. o. o. o. o. O. (‘0 0. o. 0' o. o. o. o. o. o. o. o. o. o. o. o. o. o. o- (s. “I o. o. o. o. o. o. o. o. o. o. o. o. “C O. o. 0. o. o. o. o. o. o. o. o. o. o- o- o. 0- (\I o. (\I o. o. o. o. 0. o. o. o. o. o. o. o. o. OI o. o. o. o. OI o. “D o. O. o. (‘I o. 0. o- o. n. o. o. (s. o. (\I o. o. o. o. o. o- o. o. (\I OI (\I O. OI OI OI (\I O. o. (\I o. a. o. o. o. OI (\I no 0. (\I O. o. OI (\I (\I o. 0. OI (\I OI O. O. 0. (\I OI 0' (\I o. (\- (‘I OI (\I o. o. (\I o. o. (\- (\I OI (\I (\I o. o. o. OI OI o. (\I (\I o. (\I (\I OI o. (\I (\I (\I o. o. o. (\I OI (\I o. (\I O. o. o. o. o. o. o. (\I (\I o. (\I OI o. (\I (\I O. OI o. 0. (\I o. 0‘ 0. (\I (\I I (\g I o. (\- I o. ' 0‘ C‘- I o. OI I o. I 0. ' 0- 0' . o. I 0. 0. o. o. o. I o. I b. -o-m -o«m (\I o. I o. I (\o I o. o. ' I‘- C‘- 0' I 0. -o«w ~0-m I O. (\I C O. o. I o. I (\g OI I o. I o. I o. I o. OI “. (\I I O. I o. . o. I 0' I o. OI I fl. I o. o. I o. I a. I 6. I o. I o. I 0. (\I o I (\I I o. o. I 0. I 0‘ 6 (\I I o. I 0' (\I I o. o. o. . 0‘ D o. I o. o- I (\- OI o. 0 o. I o. (‘I (\I o. (\I I (\. o. I (\g o. (‘0 (\I n. 0 I o. o. o. o. 0. C‘ 0- o. omomoooomommmmomooooomomooooooooooonowoooooooooooooooooooooommooommonommmomooooooomooooooooooooooomomoooooooo m 0| 0. (\c O! O. OI OI O- (‘I OI OI (\I O- O- (\n OI OI OI o. O' (\I O. O. OI (\c o. 6. GI (\- OI (\o OI (\I (\I O. OI O- O- (\I (\I 0. o. O. OI OI (‘I O. (\n OI (\I (\o (s. OI OI (\c o. 0' (\I (\c OI (\o (\I o. (\o (\u (\- (\- (\I OI (\u (\- (\I OI o. O. o. o. “I O O- O O- o. o. o. 0. 0| 0. o. o. o. o. o. o. o. O. o. o. o. o. n. o. o. O. o. o. o. O. o. o. (x. OI 0| 0. o. o. o. (‘I m 0' (\- O. o. o. (\I (\- o. 0. o. o. o. O. o. (\- 0. (\o (‘0 o. OI o. (\- (\c o. o. (\I (\c O. (\o O. O- O- (\o (\o o. o. o. O. o. O. (\I (\I a. OI (\o o. (\I O. 0' o. o. (\o o. (\- 0. 0. (h (h 0. (h o. 0. (\o OI o. (\I 0. O. o. O. 0. 0| O. o. (\I o. o. m m .....................................U..........................U.......... OI O. o. o o. . [—4 o. o. o. o. OI o. O p. (\I o. 0 o. o. o. o. o. o. o. OI O OI o. o. 6. o. - (D 0- On 0- 0. o. 0 o (x 0 0 0 o O O o. o. o. O o O O O o 0 0 o. o. o. O- O- o. o. o. o- o. o. O. n. o. o. (\I o. 0. (‘I o. (\I o. o. o. (x o. n. O 0 0 o. 0 0 o o. O o. o O o. o. O O o o. o. O 0. o. 0 o. o. ..4.....B.............O.....................O......................................B......H.......U.......... OIOOOIOIOIIIIIIIIIIIIIn......0..-OIIIOIOOOIIIIIIIIIIIIIIIOOIIIIIIIIIIOIIIIIOIIIIOIIIIIOIIIIIIIIIIIIIIIIIIIIII 9804090BUdBdO¢Bm m.hnneq H.Hsu «.mmcu b.Ho ¢.mmon vfiee MIEE mfiEE «cos mmxummm wme mas HflEE MEN mcou HCON HGEN man «Gem HCEQ wxmncmeuc mam «flea xzsoauc HxEEOQHc H.0Huuu I.Honxe m.mE H.vE Ha.mu m.~u ~.Hmon m.mmmm H.qum v.mEm¢ m.mvm¢ 183 .I 5. a . ..I. 0‘ .1Ix'L'I ............................................................................................................. HuSQ ................................ HM3Q mmmmmmmmmmm chq .................................u.......... HmuN m 0- 0 0 fi. (\ (\ 0 0 0 0 0 fl 0 0 0 O O o O 0 0 fl 0 0 O F o 0 0 0 0 I o. O 0 (\ o o. (‘0 o (\c mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmwmmmwmmmmmoooooooon0000000000oooowmwmw.wwwwwwmwmw HMMMM SE. ........................................................................................................ m>CN .G...........o.........................................0............O........9................B.............. NMQQ ............................................................................................................ mfi3n .......................................................u...........................«mmmmmmmmmmmmmmmmmmmmmmmwm amen . ............ ..................................................... ¢m3n ..d...................................... . u .......................................................0..................................................... mmzu .......................................................u..................................................... mmzu ............................................................................................................. wuss ............................................................................................................. muss ............................................................................................................. muss ............................................................................................................. HuEN ............................................................................................................. >NGEN ............................................................................................................. «was ............................................................................................................. HmEu ............................................................................................................. >HCEQ ............................................................................................................. VHHQ ............................................................................................................. MHHQ ............................................................................................................. VHQQ mwmmmmmmmmmmmmmmmmmmmmmmmmm . mmmmmm «mammmmmmmmmamammwmmmmmm«mmmmmmmmmmmmmmmmwmmmmmmmmmmmmmmmmmmmm Eouuomam mmmmmmmmommmm w o .mwmmoommmmmmmmmmmmm......m..m....mm....mmmmmmmmmmmmmmwmmmmmmmwmmmmmmmmmmm vacmeu: mummvmmaommnmmvmmaommbwm«mmaommhmmvmmaommnmmwmmaommpwmvmmflommbmmvmmaommbmmvmmaommbmm¢mmaommbmm¢mmaommnmm¢mmao HHHHHaaHaoooooooooommmmmmmmmmmmmmmmmmmmbbbhbbnhpnmmmmmmmmmmmmmmmmmmmmv¢vvvvvvvvmmmmmmmmmmmmmmmmmmmmflHHHHHHHHH mmmmmmmmmmmmmmmmmmmaHHHadHHHHHHHHHHHHHaHHHHHHaHHHflHHHHHHHHHHHHHHHHHHHHHHHaHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 184 0 o. o. o. o. o. I o. 0 0 O O O O o (x O O 0 0.. o I o. C‘ O O o. (x O o. o. 0 0 O O O 0 o o t‘ 0 o. o. O O O O (x O o O 0. U o. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I U I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I O O O I I O O O I O I I O O O O O I O O I O C O O O I I O O O C I U C I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII o. O. o. OI o. OI o. o. o. o. o. o. o. n. o. o. o. o. o. o. (s. o. 0. ol 0. o. o. o. o. o. o. o. o. o. o. 0' (s. o. o. o. o. o. o. O. o. o. 0. (‘I o. OI o. O. o. o. OI 0' o. o. o. o. OI o. OI o. o. o. o. o. 0' o. o. O. o. OI o. a. o. o. (\I o. OI o. o. o. O. o. o. o. (‘I o. o. o. o. 0' (x. o. o. o. OI OI o. OI o. o. o. o. o. o. n. 0. OI (\c OI O- (\I O. (\c o. (‘I (‘I “I (\o (M (\o OI (M (\I (h (\a (\o OI 0- O. O. O. o. OI (\o (\o (\o O. OI OI OI (\I OI n. o. (\o (\I OI OI OI (\- 0. (\o OI (\- (\- (\I (\c (\o OI 0. “I “I (\o OI (\I (\I o. (\I O. OI OI (\- (\o (\o O. OI (\I o. (\I (\I (\I (\- O. (‘I 0' 0. OI (\o (\I O. (\o (\- (\c (\. o. O- (\n 0' OI OI o. (‘I o. o. OI o. 0. o. (\I O. o. o. (\o (\I o. o. O. o. O. (\- (\I o. (\o O. (\I o. o. (‘0 o. o. O- o. o- o- OI O. (\- O. 0- o. (\n (\o OI com o. (\- o. C‘- o. OI “. 00 o. O. o. 0. o. O. o. O. (‘I (\c 00 OI O- O- o. o. o. 6‘ OI o. OI O- O. (\o O- (\o (\o o. O. O. o. o. o. (\I (\- o. (\- o. o. O. (\c o. o. o. o. (\I (\c OI (\o (\- o. O. (\I o. o. OI OI (‘0 (‘0 OI O- o. (\- o. o. (\- o. (\- (\n . 6. I (\- I o. O o. I o. I (\- o. I (\- a. I o. I 0' I (\- I (\g I 0' I (\- I o. “C I o. o . o. C b. I o. 0. I o. . 0. (\- . o. I (\o I fi. ' (‘0 C‘- . o. I o. I a. I 0. I o. I o. . 0. fl 0 o. o I o. I O. I o. I o. I o. I o. I 0' I 0. I o. C o. I (\- I o. I fi. I 0' I (\g I o. I o. I “. I O. O. O o. I G. I O. o. (\I I 0. I O. I O. OI I 0' o. (\I (\- I o. OI . O. I (‘0 I o. (\o I o. I 0‘ a O. o. (\c (\o (\o o. I l O O I I I C I I O I C I O I I I I I D I l I I m 0 (\c 0 o o o O (x O O (x 0 0 O p O O p O C‘ (x o C‘ O O (\a o t‘ C‘ O O 0 o O p t‘ O o O o o O O 0 o O o O o o O O 0 0 C‘ o O 0 O- (‘- 0 C‘- l‘ (‘- 0 0- o. C‘- 0- (‘~ (‘0 0- (‘0 (‘- O- 0- 0- O- 0- (‘- I‘c (‘0 (‘0 (‘- (\- C‘- O- (‘- 0- (‘- (‘v 0- 0- O- 0- O- o. o. (‘- O- 0- C‘- (‘o I‘- 0' (‘0 C‘- C‘- 00 O- 0- (‘- 0' O- 0- 0- (‘0 (‘- OI OI O- (‘- 0- (‘0 a. On 0- C‘- (‘0 (‘- 00 O- 0- C‘- O- 0- (‘- (‘- (‘o 0- 0' (‘0 (\- C‘- 0- C‘- o. O- O- 0- 00 (‘- 0- (‘- 0- (‘- (‘- C‘- o. I o. I O. (\I (\I I 0. I O. o. OI I G. OI O- o. o. OI O. I O. I (\- I b. I O. o. I 0. I “. fl 0 I o. o (\I C‘ 0 O OI (\I O OI 0 (\I o. (\ OI OI (‘0 0- o 0 I O. O o. O O 0 I C C I O O O O O D O O I I I I O O I I O O 0 I O I O O O O O O O 0 I O O O O 0 O O I O O O O 0 I I O I I I O O O I O I O O O I O I O O O O O C O O O O O O O O O I I O I O O I I I I I I I I O I O I I I I I I O O IIIIIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ............... ----4m m.flnnea H.H:u «.mmcu b.HU ¢.mmon «flee mass «HEB NCOE mmxumam mm& was HfiEE man NGON HCON HGEN man «Gem HGEQ oxmncmsuc mam «flea xzsomuc szeomuc H.0Huuu v.aunxe m.mE .73: Ha.au m.Mm m.Hmon m.mmmm H.Hawm v.MEm¢ m.mvmv 185 ..........................................................mmmmmmmmmmmmmoooooommmmmmmmmmmonooooooomooomooooomo hwmwmmaommbmmvmmaommbwm¢mmaommbwm¢mmaommbmm«mmaommbwmvmmaommbwmvmmaommhmmvmmaommbmmwmmaommhwmvmmaommhwmvmmaom NNNNNNNNHHHHHHHHHaoooooooooommmmmmmmmmmmmmmmmmmmbbbbbhbvhbmmmmmmmwmwmmmmmmmmmmvvvv¢vvvv¢mmmmmmmmmmmmmmmmmmmma mmmmmmmmmmmmmmmmmmmmmmmmmmMMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Hung amza axca Hmuu HmuEN HUmN anew H>3N Houu mxcu doom mama mazu mmflm mmcm amen «m3u mm3u mm3u quN muss muEN Husu >NGEN «MEN Haas >HCEQ «Hflm mafia ¢Hma Hama Eouuomam xmucmEuc 186 ouc...uooono.H.o..-.oo cccccc coo ..... ...9 oooooooooo co ..... o ....... ...0. ..... ...-ad ............ U ....... ...... ..... aflumgflcgh ......U ..... 9.. ...... ...............B..U... ...... .....4..B...................< .......... O .................... N.HmmNu 0.0.. ....... B.......................B..U ......... .G..... ....... U ....... ......< ......... . .......... . ........ .. N.N>m ............................. ................................................................................ m.hfl£EQ ............ B.......................B....................B...................<............U.................. H HUM U.U ......... B ............ . .......... B U .......... 0 ............ U.< ........... d ........ B ...................... N NmCU O ..... . B ....................... H ... .................................... d ............................... b.HU . ............ ...................... ..... . ........ . ............................. . ..... . .......... . . ....... ¢.NQOQ ..... .. ..... ...... ................... ......... .. ....... ......... . ..... . ............ . .................. VHEE ...... ... ... ....... ............ ................ .. .... ................................................. MHEE .. ...... ... . .............. ...... . . ........ . ... ...... .. ...... . .. .................................. NHEE .... ................ ...... ..... ..... . ........... . ......... ..... . ... ......... . .......................... NCOE ................................................. ................................mmmmmmmmmwmmmmmmmmmmmmmmmmmm mmthmm .................................................................... .............mmmmmmmmmmmwmmmmmwmmmmmmmmmm mmE ....................................... ..........................................mmmwmmmmmmmmmmmwmmmwmwmmmmwm mGE ................. ................................................................mwwmmmmmmmmmmmmmmmmmmmmmmmmm HflEE ............................... .............................................................................. mEN ... ................. . .......... ......... ....... . .............................. . .............................. NCON .... ......... . .................. .... ........ . .............. . ........................ . ................... ..... HGON ....................................................... ...................................................... HGEN .................................... ......................................................................... MQN ....... ........ B ............................................................................................. NCEQ ........ ................................. ... ........................................ . ........................ HGEQ ......... .................... .... . ............... . ......................... ...mmmmmmmmmmmmmmmmmmmmmmmmmmmm OXMUCwEhC ........... .................................................................................................. mGQ ..... ........................ . ..... . .................................................. . ...................... NHEQ ..... ........................... ....B..U... ........... . .................................................... .. XZEOQHC ...... ....................................................................................................... HxZEOQHG ......U.....H... .............. . ..... B ................. 4..B ............ . ..... .d.... ...... O .................... H.0Hunu ......... ............... . ...... ..... ............ . ........... . ......... . ...................................... ¢.HU£XE ...... .................................. .... ...... . .................. ..... ........................... . ....... m.mE ..... .................................................................... . ................................... H.vE .. ...................................... . .......................................... ... ....................... HH.QN ........................................................................ ..................................... m.mu ....................................... w..................................................................... N.HQOQ ............................................................................................................. m.NQmm HHHHHHHHH ......................................................................... ..... ................. ...... H.HQmm 4U49€UB€UB4UUBHUBFN~HEN .......................................................................................................... NMEN .......................................................................................................... HMEN .......................................................................................................... >HGEQ .......................................................................................................... vHHQ ......o..................................................................................................... MHHQ ............ ...... ............................................................................... vflmg . . ................. HHQQ 4 ....o.................... EOHUUWHQ xmccmEuc 188 .................................. U...................U...¢....0.........U........U.......................... cfiumaflcsh ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ............................................................................................................. ............................................................................................................. ............................................................................................................. ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I O I I I I I I I ¢m finnea mcoe mmxumam mmE was HHEE mEN chN acoN HCEN man NCEQ aces oxmucwEu: mam «flea xzeoauc szeoau: H.0Huuu «.Hnnxe N m H. v N m.mE a.ve Ha.mu «.mu .Hmon .mumm Hamm .msmv .MUm¢ 189 ..........U................U...............4.............U¢.................................................. I IIIII OOCIIOIOOIOOOOOOCIDOQCIllaOI...OI...O00.0.0000...Canon-OIOOOCOOOIato...no.0.IIOCOOOOOOOOOIOOOC'00-...c - mwmmaommpmm¢mmaommbmmvmmaommpwmvmmaommbmmvmmaommnmmvmmflommbmmvmmaommnmmvmmaommummvmmaommbmmvmmaommnmm¢mm~ommp vvwvvvmmmmmmmmmmmmmmmmmmmmflHHHHHHHHHoooooooooommmmmmmmmmmmmmmmmmmmbbnbhbhbbbmmmmwmoommmmmmmmmmmmv¢¢¢¢vvvvvmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm¢vvvvv¢vvvv¢vvv¢wvvvv¢vvv¢¢¢vvv¢vv¢¢¢vvv¢vvvvv¢vvvv¢¢v¢¢v¢¢vvv¢ Hung Hmzm H>CQ Hmuu Hmuen Homu Hoax H>3N Houn mch doom mmam mflzu mafia mmca amen vm3n mmzu mm3u ¢uEN muEN muss HuEN >mcsu mmEN HmEN >HCEQ ¢HHQ MHfiu «Hum damn Eouuomam xmccmfiuc 190 ................ <...U....................................... I I I IIIIIIII I I I I I H I I I I I I I I I I I I I I I I I I I IIIIIIIIIIIII I IIIIIIIIIII oooooooo oncooorfiuooooonooH‘....c........-...-aco..o CHHmQHGSh ..........B.. ..... . .............. fl ........... N.HmmNu ...U..H. ......... < .......................... rH; ....... N.N>m ................................................. m..fln§nm .............. B........rH...-..........U........... H.H:H ...H..U ............... pH .......................... .H; ....... N.chu ..........4...<.....¢.0..¢ ....... U...U...d... b.HU ................................................. v . Nmon I I IIIIIIIIIIIIIII I I IIIIIIIIIIIIIIIIIIIIIIIIII #flEE ................................................. MHEE ................................................. NflEE ................................................. NGOE ................................................. mmxummm ............ ..................o...................... “my: ................................................. mg ..... ....... ......o ............................ HHEE I IIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIIIIIIIIIII U IIIIIIIIIIIIIIIIIIIIIIIIIIII MEN ............................................................ ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ........... l......IIU............................ NEON .................... U. . . . . . . . . . . . . . . . . . . . . . . . . . . . HGON ................................................. HEN .................... U. . . . . o . . . . . . . . . . o . . . . . . . . . . . MQN ....................... . . . o . . . . . . . . . . . . . . . . . . . . . . ”GE“ ......................... . . . . . . . . . . . . . . . . . . . . . . . . HEQ ................................................. Oxmncmfic ................................................. mga ................................................. NHEQ oooooooooooooooooooooooooooooooooooooooooooo Uooooooo00¢ocooa..Uu0ooucooaooB-cooc-cnoouccnn...9.-coo...-.-.ooo EEOQHC OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO I 0 OOOOOOOOOOOOOOO IO! IIIIIIIIIIIIIIIIIIIIIIIIIIIIII 000000000 IOI 0000000000 O. OOOOOOOOOOOOOOOOOOOO CID! IIIIIIIIIIII ................................................. HEOQHG .............. .H......................<........... H.0HUNU .......................... ........................ ¢.HU£XE ................................................. W.WE ..... .....................o...................... H.¢E ................................................. Hfloau ........................ ......u.................. Q.mu ................ ......H.....H.................... N.HQOQ ....... m.~mmm H.qum mvmmflommumm¢mmaommbmmvmNHome3N ............................................................H....................... ........................ HOUN ............................................... ........................................................ HOUQ ............................................... ......................................................... Mfi3N .................................................... ........................................................ mafia ..................................................... ............. ........................................ mmcm ....................................................................w........................................ HUCN ................................................. .......................................................... MUEN ..................................................H.......................................................... NuEN .................................................H........................................................... Hue" ............................................................................................................. >NCEN ................................................................................U............................ HMEN ................................. ........................................................... >HGEQ 2a IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ........... VHQQ Hamq souuumflw xmccoEuc .....4........... 192 ................ (... CHHNQHCSfl ................. e........o.....o... ....w...........<... m.Hmmmu ..... U N.N>m ..U... ......... B... ............... ..... ..... .. ............. .... .B ............. . ................ w. ..... m.flD£EQ ...... o........e... 0 ............................ c u m........................ ... H.H:u ............. CUE....U¢........ ...................................... ..............0....................¢... . mGU .................. ................. B ........... ..... N N ......o...... . .................. U ............................................ .. ............ F.HU .... ..... . ..... (H..HH U .................... 0 ...... . ................... “w ....... U ............... U..+ ............ ¢.NQOD 0............cu Houm mama mazn mmfla mwca amcu ¢m3N mm3~ mm3n vusu muss muEu HuEu >NGEN NmEN HMEN >HGEQ «HHQ mflfla «Hum Hflmq souuumflm xmccmEuc 194 ....... ”..U...........U........9.......................4.........................................U........... GHHmQHCSH .................. ...... do......H...U.... ...... ..........< ..... ... ..... ............. ........ . ...... U ...... ..... N.Hm¢NU .doc. ..... < ..... < ........... ....H. ....................... < ..... 0.... ........................................... N.N>m ... ........................ ... .......... . .................................. . ................................. m..fin§nw ................... U..U.........H...U..............o.....4..................................................U.. H.H:U ................ 0................................U.....<..........................‘.......................U.. N.NmCU ..... .....«.............4.......H...U....................d.....U...................................U........... N..HU ................................ ............................................................................. V.NQOQ .............. ......... .(........ ....... ...............<.......... ..... ............ .......................... ¢HEE ....................................................... <..................................................... MHEE ............................................................................................................. NflF—E .. ...... . ............... 4 .............................. < ..................................................... NCOE ............................................................................................................. mmxumam ............ .............. ...... ....... .........o......< .............. ...... ............. ...... ............. . mm;— ......... ...............«......................o.......<..................................................... mg ... ...... ..... .......... €................ ..... . ...... ..4 ........ ... ...................... . ..... . ............. HHEE ............................................................................................................. MEN ............................................................................................................. NGON ............................................................................................................. HCON ....... o..................................................................................................... HEN ................................ ............................................................................. QQN ....... ...................................................................................................... NEQ ...... ..... ........ .......... . ............ .................... ............................ .. ................. HCEQ ............................................................................................................. OXMUCQEHC ........... .................................................................................................. mga ............................................................................................................. NHEQ ............................... ..H........................<.........................................U........... xZEOQaHC ................................................. ............................................................ HxZEOQHC ........................ <......'H...U....................¢.......o.................................U........... H.0HUNU ................ ...... . .................. .... ..... ......... ...................................... . ........... V.HU§E ....................................................... (..................................................... W.mE .............. ...... . .................................. <......... .......................... . ................. H.VE ............. ................................................................................................ HH.QN ............................................................................................................. m.mu ............................................................................................................. N.HQ0Q ............................................................................................................. M.Nnmmm HHHHHHHHHHHHHHHHHHHHHHH”HM” ..................... . ........................... ........ ..... . ................... H.Hgmm ..................... o........................................................... . v msmv oasomdddaoaowdaeeuaauueeocm Hmou HmuEN flown HUCN H>3N Hoou mxcn doom mama mazu mmfim mmca amen Imzu mm3N ~m3u quN muss muss HuEN >mcEN mmsu HmeN >HCEQ «Hfia mafia «Hum Hams Eouuomam xmucmeuc 196 ... <... . B ........... B .U ...... . ....... U ..... U . ................................ U ..... <....................B.............................<..................................B................. .. . <.. fl .8 .U ........ B. . . .......... .. .. . .. ........... . .. . ........... . ...... H ............... U . .................................................................... . ............. U ......................... ... 4 . .... . U .< .B..U ..... . ..... .... ... ..... . .......... . ............ ....U B ................. ..... <.................U .B.................... U . ....................................B................. . . < . ...... B ........... B. U .............. 0..U ....... . ...... U . . . .................. B U ............. .. . .... ... .. . ......... .. .... .. .. ..... ..... .. ...... ...... ............... . ...... B .............. .... 4. . ...................... .. ........... . ............... .. .. .. ............ . . ..................... U .... d ..... .. ... ......... . ........................................................................ . ..... U ..... €.............................................................................. ......................U ..... d.................U...................................................................................U . . ............. ... U . .... .. ...... .. . ..... .... . . . .................. . ......... .. ........... ................................................................................... U......................... ............................................. . . . ..... . ... . ..............U .. ................... . .¢.. . . ................. . ........... . .. ... .... ..... .. ................ . ..... .. .......... . ......... ..... <.....U. 9...... U..................................................................................... ................................................................................... U......................... ..... d....................9........................:....4..................................B................. .............................................. .....................................O.. ...................... ............................................................................................... U............. ................................................................................... U......................... ................................................................................... U......................... a¢4oowam finnea H.H:w .mmcu >.Ho .mmon vase MHee mfise mcoe mmxumam mmE was HflEE MEN mcoN anon HGEN man «SEQ amen oxmocmEuc mam «flea xzsomuc szsoauc H. v. NV‘HMN oauuu Husxs m.mE H.¢E Hfl.mu m.~u .Hmon .mamm .Hmmm .MEmv .mcmv 197 Hommpmmvmmaommbmmvmmflommnmmvmmaommnwm.mmHommbmmvmmaommbmm«mmaommpmmIMNHommbmmvmmHommbmm«mmaommhmmvmmaommpmmIm mmbbbbnnnnnnmmmmmmmmmmmmmmmmmmmmIIIvavvvvmmmmmmmmmmmmmmmmmmmmaaaaaaaHHHoooooooooommmmmmmmmmmmmmammmmm bpbwnbh mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmammmmmmmmmmmmmmmmmmmmmmmmmmmmmmm I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I .d. O .B. O mmm .U. I O I I I I I I I I I I I I I I I I I I I I I I I I I I I O O I I I I I I I I O I I I I C O O I I I 0 O 0 I I I I I I I I I I I I I I I I I I O 0 O I I I I I I I I I I I I I I I I I I Hung Hw3a axcm Hmun HmueN Hnmu HUQN a>3N Houu mch Hoom mama mfl3u mmHQ mmcm Hmcn «m3n mm3n mm3u qun mueN muEN HUEN >NGEN mmEN amEu >HGEQ vflflm mafia «awn Hama Eouuomaw xmocmEyc 198 o. o. o. o- o. o. o. OI o. o. o. o. o. o. o. 0- o. O- o. (‘0 o. o. o. o. o. o. o. o. 0. o. “I o. “I o. o. o. o- o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. n. (‘I o. o. (9 U It 6* E4 4 (‘1 (\o C“ C‘- (\- O- O. OI o. o. o. o. o. o. o. O. 00 o. n. (\- (\c o. m m o. 0. (\q (‘9 n. o. 00 O. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. C‘- 0- Oo 0- o. o. o. o. o. o. o. o. o. 4 Ed 4 U a. o. o. m m o. o. o. o. O. o. o. O. o. (s. o. 0- 0- o. o. (\c (‘c o. o. o. 0. O- o. o. o. o. 0- 0- o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. 0. (‘- 0- O- 0- o. o. o. o. o. o. o. o. o. o. 0- (N O- O- -0 U U B L) U 4 o. 0. C‘- o. o. o. o. o. o. o. o. o. o. o. o. (\o 0- o. o. w m 0‘ C‘- (‘o 0- O- (‘- O- 0- o. o. o. o. o. o. (\o ocoom O. o. 0c 0- o. w m o. o. o. o. a. (\o 00 00 (‘0 0' (‘- o. o. 0' 0' 0. 0o 0- o. o. (‘0 O- o. o. o. o. 0' (‘- o. o. 00 O- (‘0 C‘- I‘- (‘0 0‘ 0- C‘- (\o (\- O. (\o o. (\c I O. -m I (\g I (\- I o. I (\g (\c I 0. new (\- 0.0-m o. (\o o. m w m (\o o.w o. 0- 0- o. (‘0 (‘0 (‘0 0- (‘c 0- 0- O- 0- C‘- 0' (‘0 0' (‘0 00 0- 0' 0‘ C‘- 0' (‘0 (\- O- C‘- 0' 0- 0' C‘- 0- O- (‘- 00 0- (\o C‘- 00 O- 00 00 0. 00 0' (‘0 0O (‘0 I‘- 0' O- O. 00 00 (\o (‘0 0' (‘0 00 o. (‘0 0- o-m I 0. (\I C “I OI ' (‘0 C‘- I (\g I (\g (\o 0 I 6. I 6. o. I (\g 0 0 0 O 0 O o. o. OI o. o. o. o. o. o. o. o. o. (‘0 (‘- o. o. o. 00 o. o. 0' O- o. o. o. O. o. o. o. o- OI o. o. o. o. O. o. OI o. o. o. o. o. o. o. o. (‘0 (‘- o. o. o. (\o m m o-m O. (\o (\a (\o b. (\o o. C‘- O- O' 0' (\c o. 0. (\c (\c O- o. o- o. m m 0. (‘0 0° (‘0 “I (\o O. o. 0- 0- o. o. o. o. o. o. (‘0 (‘- 0' 0- o. o. O. o. o. o. o. o. o. o. o. o. o. o. o. o. o. O. (‘- O- 0- (‘- 0- 0- o. (‘0 0- (‘- 00 (‘- O- (‘- 0- (‘- O- 0- 0o 0- (‘~ 0- 0- (‘- O- I‘- O- 0- 0- 0- 0- C‘- OI o. o. o. o. 0. 0c (‘- 0. 0° (‘0 0- C‘- o. o. o. o. 0- o. o. o. o. o. o. o. 0' 0- o. o. o. O- o. O. (\- Oo (\o OI OI 0- (\o (‘0 (\c OI OI (‘0 (\I O- 0. On 00 (\o (\o OI OI O- 0- (‘c 0. (\- (\- (‘0 (\- (‘o (\n 0' (‘0 0- OI On 0. o. o. o. C‘- 00 0' (‘0 (‘0 O. (\- O- (\- 00 (‘I O. O. (\o 0. Oc (\o o. o. 0' (‘0 C‘- 0. “. 0.0-(\- o. o. o. o. 0. o. o. o. 0. o. o. o. o. o. o. o. o. o. o. 0. o. o. O. o. o. o. o. o. o. o. 0- O- o. (‘0 C‘- o. o. (x. o. o. o. o. o. o. o. o. o. 00 0- o. o. o. o. o. o. o. o. o. o. o. o. o. o. 0- (‘- o. o. o. o. o. o. o. o. o. OI o. o. o. o. o. o. 0. 0- o. o. 0. Go 0- o. o. o. p. o. o. On OI o. o. o. o. 0' 0° 0. (\I o. {‘0 (‘- o. o. o. o. o. o. o. o. o. o. o. o. mmmmmmmm mmm«mmmmmmmmmmmmmmmmmmmmmmmwmmmw............................................................. mmmmmm«mmmwmmmmwmmmmmmmmmmmmmmmm............................................................. mmmmwmmmmwmmmmwmmmmmmmmmmmwmmmum..........U........................B......................... mmmmmmmwmmmmmmmwmwmmmmmmmwwmmmmw............................................................. ...................................B.........B............... I I I D Q C O I O O I I O O O O O O O O I O O O Q I I I I O I O O O O O O I I I I I I I O O I O O O O O O C O I I O O O I I O O O I I I I I I I I I I I I I I I O O I I U 0 O O I C I I O I I I I I O I I I I O O O I O I O O I I I I O I I I I I O I I I I I O I I O O O I I I O O O I O I O O O O I I I I I I I I I I I I I I I I I I I I O I O I I C O I I I I O I I I I I O I O IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII UHUBU¢H<¢BU<m m.flnnea H.H5u «.mmco b.HU «.maon vflEE MfiEE mfiEE mace mmxummm «me was HHEE mEN mcoN HaoN HGEN mun «Gem HGEQ oxmucmeuc mam mfiea XZEOQHC szeomuc H.0Huuu ¢.HUQXE m.me H.vE HH.mu m.Mu m.aaon m.mmmm a.HQmm «.mEmv «.mum¢ 199 11111111111111111111111111 00000000000000000000000000 888888889999999999000000000011111111112222222222333333333344444444445555555555666666666677777 234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234 G..........???????????????????????????????? IIIIIIIIIIIIIIIIIIIIII 1111111111111111111111111111111111111111111111111 9999999999999999990000000000000000000000000000000000000000000000000 ...............T........ junlperln nrmendax electrom pell o. OI o. OI o. (\o (\o (\- (\o (\o o. o. (\- o. (\o o. OI (s. o. (\- o. o. OI o. OI o. o. O. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ????????????? ?????????????? ??????????????????????????????????????? ? ????????????????????????????????? ?? .........................T........................C........T. ............................................???? III-III...IIOIIIIIIIIIIIIIIIDIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIOIIIIIOIIIIIOIIIIOIIIIIIIIII OOIIIIIIIIIIIIIIIIIIIIIII..IIIIIIQIIIIIIIIII pel4 pi13 p114 o. o. o. OI p. o. o. (\- (‘0 6- o. O- o. (\o O. (\o (\c o. 0‘ (\o (\o o- (\o o. (\o O. (\o 0. 0' (\- (‘0 (\o O. o. o. o. o. o. o. o. o. o. ..0...-o.....0..0.-ounce...II-oonooacncoouoo ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? I I I I I I I I I I I I I I I I I I I I I I O I I I I I I I I I I I I I I I I I I I I I I I I I I I .G ? ? ? ?????????????? ? ? ? ? ? ? ?? .................................G...........?? ..............................G................ .................................G........... pmnlv zmal zma2 zmn2v zmtl zmt2 zmt3 zmt4 zwa2 zwa3 zwa4 (\- o- o. O. o. o. 0. (\o o. 0- O. (\o O. o. o. o. o. o. o. o. o. o. OI O. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. (‘0 o. o. o. OI o. o. o. o. (‘0 o. o. OI (‘0 (\- IIIIIIIIIIIIIIIIIIIIIIII... ??????????????????????????????????????????? ?????????????????????????????????????????????? ..............................G..GT.............?? OOIIIIIIIIIIIIIIIIIIIDIIIIIIII-IIICIIIIIOIIIIII OI 0| o. O. OI “I o. o. o. o. o. o. o. 0. o. o. o. o. o. “I “I o. o. o. o. OI o. o. “I 0. o. o. o. o. o. O. o. o. o. o. o. o. o. o. (\- IIIIOIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIOIIIII 200 O O I I I I O I I I I I I I I I I I I I I I I O I I I I I I I I I I I I I I I I I I I I I O. o. O- O. (\- 0- o. (‘0 (\q 0. o. O. (‘0 0' o. O- 0. (‘0 “- (\- o. 0' o. o. OI o. OI o. o. OI o. O. o. o. o. o. o. o. o. o. znel pne3 ????????? ????? ......................T............G.......G.......?? 9? (x. o. o. “I o. o. o. o. o. 0. OI o. OI o. o. (‘0 o. O. OI O. o. o. (‘0 o. o. (‘0 o. o. o. o. OI o. OI o. (x. o. 0. ??????????????????????????????????????? ? ? ?????????????????????????????????????????? ?????????????????????????????????????????????????????????????????? ??????????????????????????????????????????????? °°°?°°??????????????????????????????????????????????2???????????????????? .T ...........................................T...... ............A............................. pia3 zwi3 ppaZ pcol znyS zcol zwyl zndl zsdl 0- o. n. o. o. no (\- “I o. o. OI o. o. OI OI O. o. o. O. OI o. o. o. a. 0' o. o. OI O. o. OI a. o. o. a. o. o. o. o. o. o. o. o. o. o. o. OI OI o. o. o. o. (‘0 o. o. o. o. O. o. O. o. o. o. o. o. (x. o. O. O. o. o. o. o. o. o. o. o. o. OI o. O. o. o. o. o. o. 0' O- ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? .................................G.........G........CAG? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? .G ?? ?? ?? ? ? ? ? ? ? ? ? ? ? ? ? ???? ???? .G .................................G .................................G.... .................................GT.....? IOIIOIOOIIIIOIIIIIICIIIOI.C..-II zmtBl zcal pnyl pwal O. o. o. o. 0. 0. ol 0. o. OI o. o. o. o. o. o. 0- o. (\c o. o. o. o. o. (‘0 O- O. o. 0. o. 0' (‘0 o. o. o- o. o. (\c o- (\- 0. 0' “a o. o. o. o. o. o- o. o. OI o. o. o. o. o. o. “I “I o. o. o. (‘0 o. o. o. (‘0 o. o. o. O. o. o. o. o. o. o. OI OI o. O. o. o. o. o. 0. O- o. o. (\o (\o OI o. o. OI o. OI 0. o. 0' O. o. no OI o. OI O. 0- o. O. (\o O- (\o (\a (\- o. 6. (\- o. o. o. (s. o. o. OI o. (\o o. o. o. a. o. (\o (s. 0. OI o. o. o. o. o. (‘0 OI OI o. o. OI OI o. o. o. o. “I o. o. o. o. o. o. o. o. o. O. o. o. o. putl REFERENCES 201 Albertson RC, Markert JA, Danley PD, Kocher TD (1999): Phylogeny of a rapidly evolving clade: The cichlid fishes of Lake Malawi, East Africa. Proc Natl Acad Sci USA 96: 5107-5110 AliNiazee MT, Brunner JF (1986): Apple maggot in the western United States: A review of its establishment and current approaches to management. J Entomol Soc Brit Columbia 83: 49-53 Alphen JJM van, Visser ME (1990): Superparasitism as an adaptive strategy for insect parasitoids. Ann Rev Entomol 35: 59-79 Avise J C (1994): Molecular markers, natural history and evolution. Chapman & Hall, NY. Avise J C (2000): Phylogeography: The history and formation of species. Harvard University Press, Cambridge, MA Avise JC, Arnold J, Ball RM Jr., Bermingham E, Lamb T, Neigel JE, Reeb A, Saunders NC (1987): Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Ann Rev Ecol Syst 18: 489-522. Barraclough TG, Vogler AP (2000): Detecting the geographic pattern of speciation from species-level phylogenies. Am Nat 155: 419-434 Berlocher SH (1995): Population structure of Rhagoletis mendax, the blueberry maggot. Heredity 74: 542-555. Berlocher SH (1998): Can sympatric speciation via host or habitat shift be proven from phylogenetic and biogeographic evidence? In: Howard DJ, Berlocher SH (eds): Endless Forms. Oxford University Press, New York. pp 99-113. Berlocher SH (2000): Radiation and divergence in the Rhagoletis pomonella species group: Inferences from allozymes. Evolution 54: 543-557 Berlocher SH, Bush GL (1982): An electrophoretic analysis of Rhagoletis (Diptera: Tephritidae) phylogeny. Syst 2001 31: 136-155. Berlocher SH, McPheron BA, Feder J L & Bush GL (1993): Genetic differentiation at allozyme loci in the Rhagoletis pomonella (Diptera: Tephritidae) species complex. Ann Entomol Soc Amer 86: 716-727. Bemardi G, Sordino P, Powers DA (1993): Concordant mitochondrial and nuclear DNA phylogenies for populations of the teleost fish F undulus heteroclitus. Proc Natl Acad Sci USA 90: 9271~9274. 202 Bierbaum TJ, Bush GL (1990): Genetic differentiation in the viability of sibling species of Rhagoletis fruit flies on host plants, and the influence of reduced hybrid viability on reproductive isolation. Entomol Exp Appl 55: 105-118. Bogdanowicz SM, Wallner WE, Bell J, Odell TM, Harrison RG (1993): Asian Gipsy Moths (Lepidoptera: Lymantriidae) in North America: Evidence from molecular data. Ann Entomol Soc Am 86: 710-715 Brigneti G, GarciaMas J, Baulcombe DC (1997): Molecular mapping of the potato virus Y resistance gene Ry(sto) in potato. Theor Appl Genet 94: 198-203 Britten RJ (1986): Rates of DNA sequence evolution differ between taxonomic groups. Science 231: 1393-1398 Brower AVZ (1994): Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci USA 91: 6491-6495 Brown JM, Abrahamson WG, Way PA (1996): Mitochondrial DNA phylogeny of the goldenrod ball gallmaker, Eurosta solidaginis (Diptera: Tephritidae). Evolution 50: 777-786 Brown JM, McPeek MA, May ML (2000): A phylogenetic perspective on habitat shifts and diversity in the north American Enallagma damselflies. Syst Biol 49: 697-712 Brown WL Jr. (1957): Centrifugal speciation. Quart Rev Biol 32: 247-277 Brown WM, George M Jr., Wilson AC (1979): Rapid evolution of animal mitochondrial DNA. Proc Acad Natl Sci USA 76: 1967-1971 Burton RS, Lee B-N (1994): Nuclear and mitochondrial gene genealogies and allozyme polymorphism acros a major phylogeographic break in the copepod T igriopus californicus. Proc Natl Acad Sci USA 91: 5197-5201. Bush GL (1966): The taxonomy, cytology and evolution of the genus Rhagoletis in North America (Diptera, Tephritidae). Bull Mus Comp Zool 134: 431-562. Bush GL (1969): Symaptric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera: Tephritidae). Evolution 23: 237-251 Bush GL (1975): Modes of animal speciation. Ann Rev Ecol Syst 6: 339-363 Bush GL (1992): Host race formation and sympatric speciation in Rhagoletis fruit flies (Diptera: Tephritidae). Psyche 99: 335-357 203 Bush GL (1994): Sympatric speciation in animals: New wine in old bottles. Trends Ecol Evol 9: 285-288 Bush GL, Smith J] (1998): The genetics and ecology of sympatric speciation: A case study. Res Pop Ecol 40: 175-187. Caillaud MC, Via S (2000): Specialized feeding behavior influences both ecological specialization and assortative mating in sympatric host races of pea aphids. Am Nat 156: 606-621 Cardoso SRS, Eloy NB, Provan J, Cardoso MA, Ferreira PCG (2000): Genetic differentiation of Euterpe edulis Mart. populations estimated by AF LP analysis. Mol Ecol 9: 1753-1760 Caroll SP, Dingle H, Klassen SP (1997): Genetic differentiation of fitness associated traits among rapidly evolving populations of the soapberry bug. Evolution 51: 1 182-1 188 Castiglioni P, Ajmone-Marsan P, van Wijk R, Motto M (1999): AF LP markers 11 a molecular linkage map of maize: Codominant scoring and linkage group distribution. Theor Appl Gen 99: 425-431 Catling PM, Catling VR (1993): F loristic composition, phytogeography and relationships of prairies, savannas and sand barrens along the Trent River, Eastern Ontario. Can Field Nat 107: 24-45 Charlesworth B, Morgan MT, Charlesworth D (1993): The effect of deleterious mutations on neutral molecular variation. Genetics 134: 1289-1303 Cho YG, Blair MW, Panaud O, McCouch SR (1996): Cloning and mapping of variety- specific rice genomic DNA sequences: Amplified fragment length polymorphisms (AF LP) from silver-stained polyacrylamide gels. Genome 39 (2): 373-378 Chown SL, Smith VR (1993): Climate change and the short-term impact of feral house mice at the sub-Antarctic Prince Edward Islands. Oecologia 96: 508-516 Clark AG (1997): Neutral behavior of shared polymorphism. Proc Natl Acad Sci USA 94: 7730-7734 Coyne JA (1992): Genetics and speciation. Nature 355: 511-515 Danley PD, Markert JA, Amegard ME, Kocher TD (2000): Divergence with gene flow in the rock-dwelling Cichlids of Lake Malawi. Evolution 54: 1725-1737 Doak P (2000): Habitat patchiness and the distribution, abundance, and population dynamics of an insect herbivore. Ecology 81: 1842-1857 204 Doebeli M, Dieckmann U (2000): Evolutionary branching and sympatric speciation caused by different types of ecological interactions. Am Nat 156: S77-S 101 Emelianov I, Mallet J, Baltensweiler W (1995): Genetic differentiation in Zeiraphera diniana (Lepidoptera: Tortricidae), the larch budmoth: polymorphism, host races or sibling species. Heredity 75: 416-424. Estoup A, Solignac M, Comuet JM, Goudet J, Scholl A (1996): Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Mol Ecol 5: 19-31 Eyre-Walker A, Gaut RL, Hilton H, Feldman DL, Gaut BS (1998): Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci USA 95: 4441-4446 Feder J L, Berlocher SH, Opp SB (1997): Sympatric host-race formation and speciation in Rhagoletis (Diptera: Tephritidae): a tale of two species for Charles D. In Mopper S, Strauss SY, eds. Genetic structure and local adaptation in natural insect populations: Effects of ecology, life history and behavior. Chapman & Hall, New York. pp. 408-441 Feder J L, Bush GL (1989): A field test of differential host-usage between two sibling species of Rhagoletis pomonella fruit flies (Diptera: Tephritidae) and its consequences for sympatric models of speciation. Evolution 43: 1813-1819 F eder J L, Chilcote CA & Bush GL (1988): Genetic differentiation between sympatric host races of the apple maggot fly Rhagoletis pomonella. Nature 336: 61-64. F eder J L, Filchak KE (1999): It’s about time: The evidence for host plant-mediated selection in the apple maggot fly, Rhagoletis pomonella, and its implications for fitness trade-offs in phytophagous insecs. Entomol Exp Appl 91: 211-225 F eder J L, Roethele JB, Wlazlo B, Berlocher SB (1997): Selective maintenenace of allozyme differences between sympatric host races of the apple maggot fly. Proc Natl Acad Sci USA 94: 11417-11424. Feder J L, Williams SM, Berlocher SH, McPheron BA, Bush GL (1999): The population genetics of the apple maggot fly, Rhagoletis pomonella and the snowberry maggot, R. zephyria: implications for models of sympatric speciation. Entomol Exp Appl 90: 9-24. F elsenstein J (1981): Skepticism toward Santa Rosalia, or why are there so few kinds of animals? Evolution 35: 124-138 Felsenstein J (1985): Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791 205 Filchak KB, Feder JL, Roethele JB, Stolz U (1999): A field test for host-plant dependent selection on larvae of the apple maggot fly, Rhagoletis pomonella. Evolution 53: 1 87-200 F oote RH, Blane FL, Norrbom AL (1993): Handbook of the Fruit Flies (Diptera: Tephritidae) of America North of Mexico. Cornell University Press, Ithaca, NY Frey J E, Feder JL, Palm J, Bush GL (1998): Differences in the electroantenal responses of apple and hawthom-infesting races of Rhagoletis pomonella to host fruit volatile compounds. Chemoecology 8: 175-186 Fry JD (1996): The evolution of host specialization: Are trade-offs overrated? Am Nat 148: S84—S107 Fu Y-X, Li W-H (1993): Statistical tests of neutrality of mutations. Genetics 133: 693- 709 Funk DJ (1999): Molecular systematics of cytochrome oxidase I and 16S from Neoclamisus leaf beetles and the importance of sampling. Mol Biol Evol 16: 67- 82. Funk DJ, Futuyma DJ, Orti G, Meyer A (1995): Mitochondrial DNA sequences and multiple data sets: a phylogenetic study of phytophagous beetles (Chrysomelidae: Ophraella). Mol Biol Evol 12: 627-640. Futuyma DJ (1997): Evolutionary Biology, 3rd ed. Sinauer Associates, Inc, Sunderland, MA. Futuyma DJ, Moreno G (1998): The evolution of ecological speciation. Annu Rev Ecol Syst 19: 207-234 Gavrilets S, Li H, Vose M (2000): Patterns of parapatric speciation. Evolution 54: 1126- 1 134 Geritz SAH, Kisdi E, Meszena G, Metz JAJ (1998): Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12: 35— 57 Grant PR, Abbott I, Schluter D, Curry RL, Abbott LK (1985): Variation in the size and shape of Darwin’s finches. Biol J Linn Soc 25: 1-39 Gilbert CL (1995): Symphoricarpos albus (L.) S.F. Blake (S. rivularis Suksd., S. racemosus Mihaux). J Ecol 83: 159-166 206 Guldemond ] A, Mackenzie A (1994): Sympatric speciation in aphids. I. Host race formation by escape from gene flow. In: Leather SR,Walters KFA, Mills NJ, Watt AD (eds): Individuals, populations and patterns in ecology. Intercept, Andover, Hampshire, pp 367-378. Han HY, McPheron, BA (1997): Molecular phylogenetic study of Tephritidae (Insecta : Diptera) using partial sequences of the mitochondrial 16S ribosomal DNA. Mol Phylogenet Evol 7: 17-32 Hare MP, Avise JC (1998): Population structure in the American oyster as inferred by nuclear gene genealogies. Mol Biol Evol 15: 119-128. Harrison S (1991): Local extinction in a metapopulation context: an empirical evaluation. Biol J Linn Soc 42: 73-88 Hatfield T, Schluter D (1999): Ecological speciation in sticklebacks: Environment- dependent hybrid fitness. Evolution 53: 866-873. Hendry AP, Kinnison MP (1999): Perspective: The pace of modern life: Measuring rates of contemporary microevolution. Evolution 53: 1637-1653 Hendry AP, Wenburg JK, Bentzen P, Volk EC, Quinn TP (2000): Rapid evolution of reproductive isolation in wild: Evidence from introduced salmon. Science 290: 516-519 Hillis DM, Mabel BK, Moritz C (1996): Applications of molecular systematics. In: Hillis D, Moritz C, Mable B (eds): Molecular Sysytematics. Sinauer, Sunderland, MA. pp 5 1 5-543 Hudson RR, Kreitman M, Aguade M (1987): A test of neutral molecular evolution based on nucleotide data. Genetics 116: 153-159 Jeffreys AJ, Wilson V, Thein SL (1985): Individual-specific “fingerprints” of human DNA. Nature 316: 76-79 Jenkins J (1996): Systematic studies of Rhagoletis and related genera. Ph.D. Thesis, Michigan State University. Johnson PA, Hoppensteadt F C, Smith JJ, Bush GL (1996): Conditions for sympatric speciation: A diploid model incorporating habitat fidelity and non-habitat assortative mating. Evol Ecol 10: 187—205 Jones GN (1940): A monograph of the genus Symphoricarpos. J Arnold Arbor 21: 201- 252 207 J ukes TH, Cantor CR (1969): Evolution of protein molecules. In: Munro NH (ed): Mammalian Protein Metabolism. Academic Press, New York. pp 21-132 Kawecki TJ (1996): Sympatric speciation driven by beneficial mutations. Proc R Soc Lond B, Biol Sci 263: 1515-1520 Keohavong P, Thilly WG (1989): Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci USA 86: 9253-9257 Kiester AR, Lande R, Schemske DW (1984): Models of coevolution and speciation in plants and their pollinators. Am Nat 124: 220-243 Kimura M (1968): Evolutionary rate at the molecular level. Nature 217: 624-626 Kimura M (1983): The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, MA Kimura M, Ohta T (1971): Protein polymorphism as a phase of molecular evolution. Nature 229: 467-469 Kitching IJ, Forey PL, Humphries C], Williams DM (1998): Cladistics: the Theory and Practice of Parsimony Analysis, 2"d ed. Oxford University Press, New York Klein J (1986): Natural history of the Major Histocompatibility Complex. John Wiley, New York Klein J, Takahata N, Ayala FJ (1993): MHC polymorphism and human origins. Sci Am 269: 78-83 Kliman RM, Andolfatto P, Coyne JA, Depaulis F, Kreitman M, Berry AJ, McCarter J, Wakeley J, Hey J (2000): The population genetics of the origin and divergence of the Drosophila simulans complex species. Genetics 156: 1913-1931 Kondrashov AS, Kondrashov FA (1999): Interactions among quantitative traits in the course of sympatric speciation. Nature 400: 351-354 Laird CD, McConaughy BL, McCarthy BJ (1969): Rate of fixation of nucleotide substitutions in evolution. Nature 224: 149-154 Li W-H (1997): Molecular evolution. Sinauer Associates, Sunderaland, MA Liu Z], Li P, Kucuktas H, Nichols A, Tan G, Zheng XM, Argue BJ, Dunham RA (1999): Development of amplified fragment length polymorphism (AF LP) markers suitable for genetic linkage mapping of catfish. T Am Fish Soc 128: 317-327 208 Lenteren J C van (1981): The potential of entomophagous parasites for pest control. Ag Ecos Env 10: 143-158 Losos JB, J ackrnan TR, Larson A, de Queiroz K, Rodiguez-Schettino L (1998): Contingency and determinism in replicated adaptive radiations of island lizards. Science 279: 2115-2118 Losos JB, Warheit KB, Schoener TW (1997): Adaptive differeniation following experimental island colonization in Anolis lizards. Nature 387: 70-73 Lynch M, Crease TJ (1990): The analysis of population survey data on DNA sequence variation. Mol Biol Evol 7: 377-394 Lynch M, Milligan BG (1994): Analysis of population genetic structure with RAPD markers. Mol Ecol 3: 91-99 Maddison DR (1991): The discovery and importance of multiple islands of most- parsimonious trees. Syst Zool 40: 3 15-328 Maddison WP (1995): Phylogenetic histories within and between species. In: Hoch PC, Stephanson AG (eds): Experimental and molecular approaches to plant biosystematics. Monogr Syst Bot Mo Bot Gard 53, pp 273-287 Maddison WP (1997): Gene trees in species trees. Syst Biol 46: 523-536 Maddison DR, Maddison WP (2000): MacClade 4. Analysis of Phylogeny and Character Evolution. Sinauer Associates, Sunderland, MA Mantel N (1967): The detection 0 disease clustering and a generalized regression approach. Cancer Res 27: 209-220 Martin AP, Palumbi SR (1993): Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90: 4087-4091 Masta SE (2000): Phylogeography of the jumping spider Habronattus pugillis (Aranea: Salticidae): Recent vicariance of sky island populations? Evolution 54: 1699-1711 Matter SF (1996): Interpatch movement of the red milkweed beetle, T etrapoes tetraophthalamus: individual responses to patch size and isolation. Oecologia 105: 447-453 Mayr E (1963): Animal species and evolution. Harvard University Press, Cambridge, MA. McDade L (1992): Hybrids and phylogenetic systematics II. The impact of hybrids on cladistic analysis. Evolution 46: 1329-1346 209 McPheron BA (1990): Genetic structure of apple maggot fly (Diptera: Tephritidae) populations. Ann Entomol Soc Am 83: 568-577. McPheron BA, Smith DC, Berlocher SH (1988): Genetic differences between Rhagoletis pomonella host races. Nature 336: 64-66. McPheron BA, Han HY (1997): Phylogenetic analysis of North American Rhagoletis (Diptera : Tephritidae) and related genera using mitochondrial DNA sequence data. Mol Phylogenet Evol 7: 1-16. Metz J A] , Nisbet RM, Geritz SAH (1992): How should we define fitness for general ecological scenarios? Trends Ecol Evol 7: 198-202 Meyer A (1993): Phylogenetic relationships and evolutionary processes in East African cichlid fishes. Trends Ecol Evol 8: 279-284 Miller MP (1997): Tools for population genetic analyses (TFPGA) 1.3: A Windows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by author. Available from http://www.public.asu.edu/~mmi1e8/index.html. accessed March 19, 2001 Mitter C, Farrell B, Futuyma DJ (1991): Phylogenetic studies of insect-plant interactions: Insights into the genesis of diversity. Trends Ecol Evol 6: 290-293. Moericke V, Prokopy RJ, Berlocher SH, Bush GL (1975): Visual stimuli eliciting attraction of Rhagoletis pomonella (Diptera: Tephritidae) flies to trees. Entomol Exp Appl 18: 497-507 Moran P, Komfield I (1993): Retention of an ancestral polymorphism in the Mbuna species flock .(Teleostei, Cichlidae) of lake Malawi. Mol Biol Evol 10: 1015-1029 Mueller UG, Wolfenbarger LL (1999): AF LP genotyping and fingerprinting. Trends Ecol Evol 14: 389-394 Myashita NT, Kawabe A, Innan H (1999): DNA variation in the wild plant Arabidopsis thaliana revealed by amplified fragment length polymorphism analysis. Genetics 152: 1723-1731 Nagel L, Schluter D (1998): Body size, natural selection, and speciation in sticklebacks. Evolution 52: 209-218 Nei M (1972): Genetic distance between populations. Am Nat 106: 283-292 Nei M (1978): Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590 210 Neigel JE, Avise JC (1986): Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In: Karlin S, Nevo E (eds): Evolutionary processes and theory. Academic Press, New York. pp. 515-534 Nijman 1], Bradley DG, Hanote O, Otsen M, Lenstra AJ (1999): Satellite DNA polymorphisms and AF LP correlate with 303 indicus-taurus hybridization. An Genet 30: 265-273 Orr MR, Smith TB (1998): Ecology and speciation. Trends Ecol Evol 13: 502-506 Palumbi SR, Baker CS (1994): Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Mol Biol Evol 11: 426-435 Price PW (1977): General concepts on the evolutionary biology of parasites. Evolution 3 1 : 405-420 Prokopy RJ (1972): Evidence for a marking pheromone deterring repeated oviposition in apple maggot flies. Env Entomol 1: 326-332 Prokopy RJ, Bennett EW, Bush GL (1971): Mating behavior in Rhagoletis pomonella (Diptera: Tephritidae). I. Site of assembly. Can Entomol 100: 318-329 Prokopy RJ, Bennett EW, Bush GL (1972): Mating behavior in Rhagoletis pomonella (Diptera: Tephritidae). II. Temporal organization. Can Entomol 103: 1405-1409 Prokopy RJ, Bush GL (1972): Mating behavior in Rhagoletis pomonella (Diptera: Tephritidae). 111. Male aggregation in response to an arrestant. Can Entomol 104: 275-283 Prokopy RJ, Bush GL (1973): Mating behavior in Rhagoletis pomonella (Diptera: Tephritidae). IV. Courtship. Can Entomol 105: 873-891 Prokopy RJ, Diehl SR, Cooley SS (1988): Behavioral evidence for host races in Rhagoletis pomonella flies. Oecologia 76: 138-147 Prokopy RJ, Moericke V, Bush GL (1973): Attraction of apple maggot flies to odor of apples. Env Entomol 2: 743-749 Questiau S, Eybert MC, Taberlet P (1999): Amplified fragment length polymorphism (AF LP) markers reveal extra-pair parentage in a bird species: the bluethroat (Luscinia svecica). Mol Ecol 8: 1331-1339 211 Rademaker J LW, Hoste B, Louws FJ, Kersters K, Swings J, Vauterin L, Vauterin P, de Bruijn FJ (2000): Comparison of AF LP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Micr 50: 665-677 Rambaut A (1996): Sequence Alignment Editor v 1.0. Available at http://evolve.zps.ox.ac.uk/sofiware/Se-Al/mainhtml, accessed April 18, 2001 Randen AJ van, Roitberg BD (1996): The effect of egg load on superparasitism by the snowberry fly. Entomol Exp Appl 79: 241-245 Rausher MD (1984): The evolution of habitat preference in subdivided populations. Evolution 38: 596-608 Reineke A, Karlovsky P, Zebitz CPW (1998): Amplified fiagment length polymorphism analysis of different geographic populations of the gypsy moth, Lymantria dispar (Lepidoptera: Lymatriidae). Bull Entomol Res 89: 79-88 Rezrrick DN, Shaw FH, Rodd FH, Shaw RG (1997): Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275: 1934-1937 Rice WR, Hostert EE (1993): Laboratory experiments on speciation: What have we learned in 40 years? Evolution 47: 1637-1653 Rice WR, Salt GW (1990): The evolution of reproductive isolation as a correlated character under sympatric conditions: experimental evidence. Evolution 44: 1140- 1152 Roethele JB, Feder JL, Berlocher SH, Kreitman ME, Lashkari DA (1997): Toward a molecular genetic linkage map for the apple maggot fly (Diptera : Tephritidae): Comparison of alternative strategies. Ann Entomol Soc Amer 90: 470-479. Rozas J, Rozas R (1999): DnaSP version 3: An integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15: 174-175 Schliewen U, Tautz D, Paabo S (1994): Sympatric speciation suggested by monophyly of crater lake Cichlids. Nature 368: 629-632. Schluter D (1988): Character displacement and the adaptive divergence of finches on islands and continents. Am Nat 131: 799-824 Schluter D (1994): Experimental evidence that competition promotes divergence in adaptive radiation. Science 266: 798-801 Schluter D (1996): Ecological causes of adaptive radiation. Am Nat 148: S40-S64 212 Schluter D (1998): Ecological causes of speciation. In: Howard DJ, Berlocher SH (eds): Endless Forms. Oxford University Press, NY. pp. 114-129. Simon C, Frati F, Bekenbach A, Crespi B, Liu H, Flook P (1994): Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation conserved polymerase chain-reaction primers. Ann Entomol Soc Am 87: 651-701 Smith DC (1986): Genetics and reproductive isolation of Rhagoletis flies. Ph. D. Thesis. University of Illinois at Urbana-Charnpaign. Smith DC, Lyons SA, Berlocher SH (1993): Production and electrophoretic verifiction of F1 hybrids between the sibling species Rhagoletis pomonella and R. comivora. Entomol Exp App 69: 209-213 Smith JJ, Bush, GL (1997): Phylogeny of the genus Rhagoletis (Diptera : Tephritidae) inferred from DNA sequences of mitochondrial cytochrome oxidase 11. M01 Phylogenet Evol 7: 33-43 Smith JJ, Bush GL (2000): Phylogeny of the subtribe Carpomyina (Trypetinae), emphasizing relationships of the genus Rhagoletis. In: Aluja M, Norrbom AL (eds): Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior. pp 187- 217. CRC Press LLC Soper JH, Heimburger ML (1994): Shrubs of Ontario. A life sciences miscellaneous publications of the Royal Ontario Museum, Toronto, ON Sota T, Vogler AP (2001): Incongruence of mitochondrial and nuclear gene trees in the carabid beetles 0hom0pterus. Syst Biol 50: 39-59 Stephan W, Wiehe THE, Lenz MW (1992): The effect of strongly selected substitutions on neutral polymorphism: Analytical results based on diffusion theory. Theor Pop Biol 41: 237-254 Sturmbauer C (1998): Explosive speciation in cichlid fishes of the African Great Lakes: 3 dynamic model of adaptive radiation. J Fish Biol 53: 18-36 Suppl. A Stiltmann H, Mayer WE, Figueroa F, Tuchy H, Klein J (1995): Ohylogenetic nalysis of Ccihlid fishes using nuclear DNA markers. Mol Biol Evol 12: 1033-1047 Swofford D L (1999): PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts Tajima F (1989): Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595 213 Takahata N, Nei M (1985): Gene genealogy and variance of interpopulational nucleotide differences. Genetics 110: 325-344 Thompson DQ, Smith RH (1970): The forest primeval in the Northeast — a great muth? Proc Tall Timbers Fire Ecol Conf 10: 255-265 Travisano M, Rainey PB (2000): Studies of adaptive radiation using model microbial systems. Am Nat 156: S35-S44 Tregenza T, Pritchard VL, Butlin RK (2000): The origins of premating reproductive isolation: Testing hypothess in the grasshopper Chorthippus parallelus. Evolution 54: 1687-1698 US. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (2001, February). Fire Effects Information System, [Online]. Available at http://www.fs.fed.us/database/feis/ , accessed April 18, 2001 Via S, Bouck AC, Skillman S (2000): Reproductive isolation between divergent races of pea aphids on two hosts. 11. Selection against migrants and hybrids in parental environments. Evolution 54: 1626-1637 Voorrips RE, Jongerius MC, Kanne HJ (1997): Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AF LP markers. Theor Appl Genet 94: 75-82 Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995): AF LP: A new technique for DNA fingerprinting. Nucl Acid Res 23: 4407-4414 Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Liibberstedt T, Xia XC, Starn P, Zabeau M, Kuiper M (1999): Two high-density AFLP-linkage maps of Zea mays L.: Analysis of distribution of AF LP markers. Theor Appl Gen 99: 921-935 Wang RL, Wakeley J, Hey J (1997): Gene flow and natural selection in the origin of Drosophila pseudoobscura and close relatives. Genetics 147: 1091-1106 Wayne RK, Meyer A, Lehman N, Van Valkenburgh B, Kat PW, Fuller TK, Girrnan D, O’Brien SJ (1990): Large sequence divergence among mitochondrial DNA genotypes within populations of eastern African black-backed jackals. Proc Natl Acad Sci USA 87: 1772-1776 Weber J L, May PE (1989): Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Gen 44: 388-396 214 Weir B, Cockerham CC (1984): Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370 Westcott RJ (1982): Differentiating adults of apple maggot, Rhagoletis pomonella (Walsh) from snowberry maggot, R. zephyria Snow (Diptera: Tephritidae) in Oregon. Pan-Pac Entomol 58: 25-30 White MD (1978): Modes of Speciation. WH Freeman, San Francisco. Whitlock MC (1996): The Red Queen beats the jack-of-all-trades: The limitations on the evolution of phenotypic plasticity and niche breadth. Am Nat 148: S65-S77 Wilson AB, Noack-Kunnmann, Meyer A (2000): Incipient speciation in sympatric Nicaraguan crater lake cichlid fishes: sexual selection versus ecological diversification. Proc Roy Soc Lond B Biol Sci 268: 2133-2141 Wright S (1968-1978): Evolution and Genetics of Populations (4 volumes). University of Chicago Press, Chicago. Zuckerkandl E, Pauling L (1965): Evolutionary divergence and convergence in proteins. Pp 97-166 in: V Bryson, HJ Vogel, eds. Evolving genes and proteins. Academic Press, New York 215 lllllllllllllllllllll '