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ABSTRACT

LEARNING-BASED DETECTION, SEGMENTATION AND MATCHING

OF OBJECTS

By

Nicolae Duta

Object learning is an important problem in machine vision with direct implications

on the ability of a computer to understand an image. Usually, an object is defined

by its appearance (the pattern of gray/color values in the Object Of interest and

its immediate neighborhood), shape, and sometimes, by its relationships to other

Objects in the scene. This dissertation presents appearance-based as well as shape-

based methods for Object learning and retrieval. The Object appearance is modeled

as a Markov chain that maximizes the discrimination (Kullback distance) between

positive and negative examples in a training set. The learned appearance model can

be used for Object detection: given an arbitrary black and white image, decide if the

object is present in the image and find its location(s) and size(s). Two applications

will be discussed in detail: human face detection in Black and white images and

heart ventricle localization in MR images. We. have also developed a fully automated

shape learning method which is based on clustering a set of training shapes in the



original shape space defined by the coordinates of the contour points and performing a

Procrustes analysis on each cluster to Obtain cluster prototypes (average Objects) and

statistical information about intra-cluster shape variation. The main difference from

previously reported methods is that the training set is first automatically clustered

and those Shapes considered to be outliers are discarded. In this way, the cluster

prototypes are not distorted by outlier shapes. The second difference is in the manner

in which registered sets Of points are extracted from each Shape contour. We have

proposed a flexible point matching technique that takes into account both pose/scale

differences as well as non-linear shape differences between a pair of objects. The

matching method is independent Of the initial relative position/scale of the two Objects

and does not require any manually tuned parameters. Our shape learning method has

been used to develop a state-of-the—art hand shape-based personal identity verification

system, a shape warping-based system for segmenting the Corpus Callosum in MR

images of the brain, as well as an automatic system for predicting dyslexia based on

the shape of the Corpus Callosum.



© Copyright 2000 by Nicolae Duta

All Rights Reserved



TO All My Teachers



ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Anil Jain, for his guidance, support and

encouragement during my PhD. years. His suggestions, questions and careful editing

has contributed greatly to the quality Of this dissertation. I am also grateful to the

other members of my committee Dr. Marie-Pierre Jolly, Dr. Sridhar Mahadevan, Dr.

RV. Ramamoorthi and Dr. John Weng for their helpful feedback and suggestions.

Many thanks to the Imaging Department at Siemens Corporate Research: Dr. Marie—

Pierre Jolly, Dr. Alok Gupta, Dr. Gareth Funka-Lea and many others, for their

support and assistance. They have provided data, financial support, internships and

very useful advice.

I am also indebted to my coauthors and all those who kindly Offered me their data

and/or code: Dr. Dorin Comaniciu, Dr. Mario Figueiredo, Dr. Arvid Lundervold,

Dr. Kanti Mardia, Dr. Kerstin von Plessen, Dr. Milan Sonka and Dr. Torfinn Taxt.

Without their help, this research work would have not been possible.

I would also like to thank my Officemates over the years, with whom I had valuable

discussions and who provided helpful feedback on my research: Paul Albee, Vera

Bakic, Scott Connell, Dan Gutchess, Friederike Griess, Lin Hong, Vincent Hsu, Wey

vi



Hwang, So Hee Kim, Yatin Kulkarni, Youghong Li, Karissa Miller, Silviu Minut, Salil

Prabhakar, Arun Ross and Aditya \I'ailaya. And last, but not least, I am grateful to

the Romanian community at Michigan State for making me feel like home.

vii

 



TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

1 Introduction

1.1 An object learning approach to facilitate image understanding ......

1.2 Applications ..................................

1.3 Thesis outline .................................

2 Literature Review

2.1 Object detection ...............................

2.1.1 Why is it difficult to detect objects? ...................

2.1.2 Object representation ...........................

2.1.3 Classifier comparison on the face detection problem ...........

2.1.4 Comparing the performances of some available face detectors ......

2.1.5 Discussion and conclusions .........................

2.2 Object segmentation using deformable models ...............

2.3 Point Distribution Models ..........................

2.4 Model design and training ..........................

2.5 Object matching ...............................

2.6 Summary ...................................

3 Object detection

3.1 Basic Methods ................................

3.2 Maximum discriminat.ion-based object

detection ..................................

3.2.1 Introduction .................................

3.2.2 Mathematical model ............................

3.2.3 Most discriminant Markov chain .....................

3.2.4 Classification procedure ..........................

3.2.5 Experimental results ............................

3.3 Summary ...................................

4 Learning 2D shape models

4.1 Problem specification .............................

4.2 Shape learning method ............................

4.3 Shape registration ..............................

4.4 Shape clustering and prototype computation ................

viii

58

61

61

64

65

67

70

74

75

79

81

82

85

91

97



4.5 Experimental Results ............................. 100

4.6 Discussion ................................... 104

4.7 Summary ................................... 109

5 Deformable model segmentation 110

5.1 Top-down Active Shape segmentation .................... 110

5.2 Warping-based segmentation ......................... 115

5.3 Summary ................................... 117

6 Object matching 119

6.1 Deformable matching of hand shapes for user verification ......... 120

6.1.1 Proposed Method .............................. 122

6.1.2 Experimental Results ............................ 124

6.1.3 Improving verification accuracy ...................... 127

6.2 Corpus Callosum shape analysis: a comparative study of group differences

associated with dyslexia, gender and handedness ............ 130

6.2.1 Methods .................................. 133

6.2.2 Results ................................... 136

6.3 Summary ................................... 145

7 Conclusions and Future Work 146

BIBLIOGRAPHY 151

ix



LIST OF TABLES

2.1 A summary of the types of features used by different applications of object

detection. ................................. 12

2.2 A survey of the learning-based object detection systems. ......... 16

2.3 A comparison of different classifiers for the face detection problem.

Legend: [4:] = the classification rate does not depend on the

size/distribution of the training set or the test sample, [**] = the

classification rate depends on the size of the training set but not on

the distribution of the training/testing samples, [* * it] = the classi-

fication rate depends on the size/distribution of the training set but

not on the test example, [* * **] = the classification rate depends on

the Size/distribution of the training set and the test pattern, 1‘ The

FA rate for the Maximum discrimination classifier is very small Since

false alarms from previous testing trials were added to the training set

(as such, it should not be directly compared to the FA rates of other

classifiers). The testing results Show that the training set is crucial and

should be constructed incrementally for each type of classifier. . . . . 33

3.1 Performance of the left ventricle detection algorithm. ........... 79

6.1 A brief description of the five datasets used in this study, the variation

factors that have been considered and a comparison between the origi-

nal results and our shape analysis results. The table entries are Shown

in increasing order of the average age of the subjects in the datasets.

Note: Dys = Dyslexics, Nor = Normals, Mal = Males, Fem 2 Females,

RH = right handed, nRH 2 non right handed, ‘ = only the published

part of the dataset has been used..................... 134



1.1

1.2

1.3

1.4

2.1

2.2

2.3

2.4

2.5

LIST OF FIGURES

A 256 x 256 frame from a video sequence of moving cars. a) Original

image. b) Mean-shift segmentation into 4 gray levels [23]. c) The

region of (b) containing the foreground car (shown in white) ......

Midsagittal MRI section of the brain. a) Original image showing the

corpus callosum (CC) as a C-shaped central structure. b) Low—level

segmentation of white matter that contains the CC (taken from [86]).

c) High-level segmentation of the CC...................

Schematic diagram of the learning-detection-segmentation—matching

paradigm for the object learning and retrieval system developed in

this thesis. The actions performed by the system are shown inside el-

lipsoidal boxes while the data involved in the process are shown inside

rectangular boxes. The dashed arrows implying the use of appearance

models in object segmentation and matching are shown only for com-

pleteness; our current system uses appearance models only for object

detection. .................................

Practical applications considered in this thesis. a) Detection and segmen-

tation of the left ventricle in MR cardiac images. b) Segmentation of

neuroanatomic structures in coronal-viewed MR brain images. c) De-

tection and segmentation of vehicles in highway video sequences. (1)

Segmentation of Corpus Callosum in midsagittal MR brain images. e)

Hand shape-based personal identity verification. ............

What features define an object? (a) A human face is mostly defined by

appearance. (b) The left ventricle in MR cardiac images is defined by

a combination of appearance, Shape and position relative to the lung

(dark region). (a) A car is mostly defined by shape. ((1) A building in

aerial images is mostly defined by its shape. ..............

The structure of a learning-based face detector. ..............

Face-like patterns extracted from outdoor images that are typically used

to generate negative examples. We believe that such patterns make

the training set inconsistent, since they may very well be classified as

faces if found in the right visual context. ................

11

17

19

The relationship between the classifier accuracy and detection performance. 21

A face pattern (left-most image) is gradually deformed into random noise

(right-most image) by linear interpolation. It is very difficult to label

the intermediate images as positive/negative examples for training a

face detector. ...............................

xi



2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

Face detection results produced by a “relaxed” version of the maxi-

mum discrimination classifier followed by an SVM classification on the

Olivetti database. 362 out of the 400 faces (90.5%) were successfully

detected. .................................

Face detection results produced by the maximum discrimination classifier

on a group image. No arbitration has been performed; all patterns

classified as faces are Shown. 57 out of the 89 faces (64%) were suc-

cessfully detected. About 35 background windows were misclassified

as faces inducing a false accept rate of 1 /49,000.............

Face detection results produced by a “relaxed” version of the maximum

discrimination classifier followed by an SVM classification on a group

image. Multiple detections at nearby positions have been combined

into one face rectangle. 63 out of the 89 faces (70.8%) were successfully

detected. There are 34 false accepts. ..................

Output of the Rowley et al. [111] (produced by the system demo posted at

http://www. z'us. cs. cmu. edu/IUS/usrpO/har/FaceDemo/gallery. html)

(a), and Lew and Huijmans [83] (produced using the code posted at

http://www.wilez’denuniv.nl/~mlew/face.detection.html#DMO) (b)

face detectors on a collated test image. .................

Output of the Colmenarez and Huang [22] (produced by the system

demo posted at http://troz’.z'fp.uz'uc.edu/~antonz'o/section2.html) (a),

and Amit et al. [3] (b) face detectors on a collated test image. . . . .

Output of a “relaxed” version of the maximum discrimination classifier

(implemented by Duta et al. [41]) followed by an SVM classification

on a collated test image. .........................

CC segmentation using snakes. a) Gradient magnitude of a region around

CC. b) Manual snake initialization using an average CC. c) Same ini-

tialization as (b), but shifted 3 pixels upward. d)-f) Snake segmenta-

tion starting from (b). g)-i) Snake segmentation starting from (c).

Segmentations in (d) and (g) used traditional snakes [76], (e) and

(h) used balloons [21], (f) and (i) used GVF snakes [133]. Results

Shown in images (d)-(i) were produced using the software posted at

http://z'acl. ece.jhu. edu/projects/gvf. ...................

CC segmentation using B-spline models [47]. a) Manual spline initial-

ization using an average CC; b) Adaptive spline segmentation starting

from (a); c) Same initialization as (a) shifted 3 pixels upward; d) Adap.

tive spline segmentation starting from (c); (Courtesy of Prof. Mario

Figueiredo) ................................

Illustration of Point Distribution Model. a) A 256 x 256 frame from a

video sequence of moving cars with 55 landmark points superimposed.

b) A 55 point car model..........................

A set of nine training images for the foreground car (moving left-to-right)

with the car outline manually overlaid. .................

The nine aligned car contours of Fig. 2.15 .................

xii

36

37

39

40

41

47

50

51

52



2.17 Artificial car examples generated by simultaneously varying the model

3.1

3.2

3.3

3.4

3.5

3.6

3.7

parameters corresponding to the first two largest eigenvalues on a bidi-

mensional grid. The average car is shown in the center. The main two

modes of variation determine the shape of the front and rear part of

the vehicle as the global shapes in the aligned training set (Fig. 2.16)

are relatively similar. Note that the original objects (Fig. 2.15) look

more different because of scale and gray-level appearance. ......

Midsagittal MRI section of the brain. a) Original image. b) A region of

interest with respect to the skull (white curve) containing the CC. c)

Low-level segmentation of the white matter in the ROI in (b).

Example of automated car detection. a) Original image. b) Optimal left-

to-right car model position. c) Optimal right-to—left car model position.

d) Second best right-to—left car model position..............

Several examples of 256 x 256 gradient echo cardiac MR images (short axis

view) showing the left ventricle variations as a function of acquisition

time, slice position, patient and imaging device. The left ventricle is

the bright area inside the square. The four markers Show the ventricle

walls (two concentric circles). ......................

The feature set defining a heart ventricle. a) The four cross sections

through the ventricle and its immediate surroundings used to extract

the features. b) The 100-element normalized feature vector associated

with the ventricle in (a). .........................

Training examples for the left ventricle detection problem. a) Positive

examples. b) Negative examples. ....................

The distribution of the log-likelihood ratio for left ventricle (red) and non

left ventricle (blue) examples computed for the two cross-validation

trials. For a decision threshold set at zero, 2,460 (2.4%) of the 101,250

positive examples and 6,854 (3.8%) of the 179,603 negative examples

are misclassified. .............................

Feature reordering induced by the most discriminant Markov chain (a)

Positive examples. (b) Negative examples. ...............

xiii

54

62

63

66

67

75

76

77



4.1

4.2

4.3

4.4

4.5

Learning the shape of the right ventricle from MR brain images. a) Man—

ual tracing of the right ventricle performed by a neuroanatomist on

three different patients. b) A ventricle model consists of a shape pro-

totype (drawn in black) along with statistical information about shape

variation. The prototype vertices (drawn as colored circles) have been

obtained by averaging the coordinates of the corresponding vertices on

the three ventricles (drawn as colored diamonds) after they have been

aligned in a common coordinate frame (e.g., vertex s is the average of

.91, 32 and 33). The three aligned ventricle shapes are shown in dotted

red, green and blue lines. This method for obtaining a shape prototype

is called Procrastes analysis [11, 54, 34]. Note that, in order for this

method to work one needs to extract sets of corresponding points of

equal cardinality (in this case 16) from the three ventricle shapes. The

Shape variance is given by the 32 x 32 covariance matrix of the (x, y)

coordinates of the vertices on the three ventricle shapes after alignment.

Expert—defined pseudo-landmarks (yellow squares) on the three shapes in

Fig. 4.1 along with some obvious point correspondences (red arrows).

Note that if the pseudo-landmarks are defined on each shape indepen-

dently (as it was the case here) then, in most cases, it is very difficult

to find corresponding points on other Shapes. .............

Magnetic resonance image of the human brain, imaged in the coronal plane

with in-slice resolution of 256x256 pixels. a) Original image (cropped

to Show only the brain region). b) Structures of interest whose contours

were identified by a neuroanatomist. ..................

The shape learning method (Algorithm 4.1) .................

Flexible registration of a shape approximation (b) to an original shape

(a), with point correspondences drawn in green. c) Global similarity

registration - Algorithm 4.2. d) Monotonic registration obtained from

(c) after point reordering and inversion elimination (the point labeled

0 causes an inversion): Steps 1-3 of Algorithm 4.3. e) Topological

neighborhood corresponding to point O: Step 4a of Algorithm 4.3. f)

Similarity registration of the two topological neighborhoods in e). g)

Final flexible registration. ........................

4.6 Two training sets of 28 right ventricular (rows 1 and 2) and 28 globular

shapes (rows 3 and 4) and a set of 11 cistern shapes (row 5) from

different patients were automatically divided into clusters (main cluster

(C1) drawn using multicolor dots and secondary clusters drawn in red,

green and magenta). The registration of the best fit shape (#1047

for ventricles, #8917 for globus pallidus and #1179 for cisterns) to

clusters C1 is overlaid as sets of colored points; corresponding points

on different shapes are drawn using the same color. For example,

corresponding bottom points on each right ventricle are drawn in red.

xiv

83

84

86

89

95

98



4.7

4.8

5.1

5.2

5.3

5.4

5.5

5.6

6.1

6.2

6.3

6.4

Procrustes averages (prototypes) of the shapes in the main clusters for 11

brain structures with the aligned Shape examples overlaid. The clouds

of consecutive points are drawn in different colors to show the accuracy

of the registration. ............................

Prototype of the 25 right-ventricle shapes in the main cluster (a) and

prototype of the 28 right-globus pallidus shapes (b) with the aligned

shape examples overlaid. The ground truth position for several points

are shown using black circles. For each such point, we also Show the

rms error of the manual and automatic registrations. .........

Example of automatic car segmentation. a) Detected car using similarity

transforms. b) Refined segmentation using piecewise similarity trans-

forms. ...................................

Automatic segmentation of 11 brain structures in four different MR images

using the learned models..........................

Registration of CC in the ROI image in Fig. 3.1(b). (a) The strongest 600

edges from the ROI in Fig. 3.1(b). (b) Registration of an average CC

to the edge image in (a) (point correspondences are shown in green).

CC registration to the ROI image in Fig. 3.1(c). (a) Edges from the low

level segmentation in Fig. 3.1(c). (b) Registration of an average CC

to the edge image in (a) (point correspondences are shown in green).

High level segmentation of CC. (a) Registration of an average CC to the

edge image in Fig. 5.4(a). (b) Warping the average CC onto the edge

image in (a) .................................

Automatic segmentation of the Corpus Callosum in nine MR images using

the warping-based paradigm........................

Hand shape acquisition system (a) and the image it captures (b) (Courtesy

of Dr. Sharath Pankanti and Arun Ross).................

Four pairs of input hand shapes: contours that form pair (a) belong to

the same hand, contours that form pair (b) belong to the same hand

(different from (a)), pairs (c) and (d) are formed by different hands.

Based on the input contours, it is very difficult to tell which of the four

pairs belongs to the same hand. None of the existing systems aligns the

hand contours before extracting features, leading to inferior matching

accuracy...................................

Alignment-based hand verification system. .................

Two pairs of hands before ((a),(c)) and after ((b),(d)) alignment. The

hand pairs in (a) and (b) belong to the same hand while the pairs in

(c) and (d) belong to different hands. These two pairs correspond to the

overlapping region between the genuine and the imposter distributions

in Fig. 6.5(a) ................................

XV

103

112

114

115

116

116

118

121

121

123

125



6.5 Hand shape-based verification performance. (a) Mean alignment error

distributions for the genuine class (red) and imposter class (blue). The

distributions are derived based on a total of 353 hand images of 53

persons. (b) ROC curve for the hand shape-based verification system.

The annotations on the curve represent different thresholds on the

MAE distance. ..............................

6.6 ROC curves generated by taking into account three, four and five fingers

in the alignment error computation....................

6.7 Learning a personal hand template. A hand template per person can be

selected from the enrollment set based on its average alignment dis-

tance to the remaining enrollment shapes. In this case, the enrollment

shape closest to the remaining ones is SQ with an average alignment

distance of 2.02...............................

6.8 (a) Midsagittal, Tl-weighted MRI section of the brain (12 year old boy)

showing the Corpus Callosum as a C-shaped structure. (b) Details

showing a partition of the Corpus Callosum (Courtesy of Prof. Arvid

Lundervold).................................

6.9 Corpus Callosum shapes belonging to normal subjects (a) and to dyslexic

subjects (b). By simple visual inspection, there is no apparent differ-

ence between the two groups of shapes..................

6.10 Comparing the normal (shown in red) and dyslexic (Shown in blue) group

means of Corpus Callosum shapes in our dataset. (a) Rostrum align-

ment. (b) Both rostrum and splenium alignment. The dyslexic proto—

type is actually cut into two parts which are aligned separately. The

posterior midbody in the dyslexic subjects is significantly shorter than

in normal subjects. ............................

6.11 Two templates representing the anterior half and posterior third of the

Corpus Callosum are independently aligned with a given CC instance

and the distance between the aligned templates (the length of the unit-

ing line segment) is measured. Alignment to a dyslexic CC instance

(left) and to a normal instance (right). .................

6.12 Class distributions of the inter-template distances for the Bergen dataset.

6.13 Comparing the normal (Shown in red) and dyslexic (shown in blue) group

means of Corpus Callosum shapes in the Robichon and Habib [108]

dataset. (a) Rostrum alignment. (b) Both rostrum and splenium align-

ment. The dyslexic prototype is actually cut into two parts which are

aligned separately. The dyslexic CC prototype is more curved and

significantly shorter than the normal prototype. ............

6.14 Class distributions of the inter—template distances for the Robichon and

Habib [108] dataset.............................

xvi

129

131

135

137

138

138

139

139



6.15 Comparing the Right Handed (RH) (shown in magenta) and non Right

Handed (nRH) (shown in green) group means for dyslexic (a) and

normal (b) subjects in the Robichon and Habib [108] dataset. The

dyslexic nRH prototype is a little Shorter than its corresponding RH

prototype. The normal nRH prototype is longer and thicker in the

isthmus region than its corresponding nRH prototype..........

6.16 (a) Comparing the male (shown in red) and female (Shown in blue) group

means for subjects in the Byne et al. [18] dataset. There are no

significant differences between the two prototypes. (b) Comparing the

Right Handed (RH) (shown in blue) and non Right Handed (nRH)

(shown in red) group means for the male subjects in the Witelson

[131] dataset. The nRH prototype is significantly longer and thicker in

the isthmus region than the RH prototype................

6.17 Comparing the male (shown in red) and female (Shown in blue) group

means for dyslexic (a) and normal (b) subjects in the Bergen dataset.

The female CC prototype in both dyslexic and normal subjects is

shorter (though not significantly) than its corresponding male pro-

totype. Except for the length, the male and female prototypes are

practically identical. ...........................

6.18 Comparing the male (shown in red) and female (Shown in blue) group

means for subjects in the Davatzikos et al. [32] dataset. The female

CC prototype is shorter and has a more bulbous posterior part than

the male prototype. Overlay of the female (b) and male (c) group

means obtained by us (Shown in blue) and by Davatzikos et al. [32],

(shown in red). The prototypes in each pair are almost identical (up

to a similarity transformation) despite the fact that they have been

obtained using different methods. ....................

7.1 Detailed localization of the left ventricle. a) Multiple detections produced

by the maximum discrimination method (Section 3.2). b) Horizontal

feature profiles corresponding to each detected box in (a). An average

horizontal profile is shown in red. c) The profiles in (b) aligned to the

average profile using dynamic time warping. d) The feature profiles

corresponding to the detected boxes in (a) after warping to their cor-

responding auerage profiles. A voting procedure is applied to estimate

the center and the medial axis of the ventricle wall (shown in yellow).

xvii

141

141

142

144

150



Chapter 1

Introduction

Object learning is an important problem in machine vision with direct implications

on the ability of a computer to understand an image. Usually, an object is defined

by its appearance (the pattern of gray/color values in the object of interest and its

immediate neighborhood), shape, and sometimes, by its relationships to other objects

in the scene. For many years it has been thought that finding objects in digital

images can be achieved by image segmentation (unsupervised partitioning of the

image into several “homogeneous” regions based on the similarity of pixel attributes

[73]). Unfortunately, unsupervised segmentation by itself has been shown to have

limited applicability in object recognition. This is because most real world objects

do not have homogeneous color or texture characteristics. To recognize objects, it is

generally agreed that we should integrate several contextual cues and prior knowledge

which are not utilized in a low-level segmentation module. Fig. 1.1 shows an example

of unsupervised segmentation; the pixels in Fig. 1.1(a) have been partitioned into

four different constant graylevel regions as shown in Fig. 1.1(b). Note that the



homogeneous regions in Fig. 1.1(b) do not correspond very well with the objects

present in the scene. Even if we know the gray value of the region containing the

foreground car, it is still not easy to segment the car from the corresponding region

(see Fig. 1.1(c)). A similar Situation is encountered in segmenting the MR-brain

image of Fig. 1.2; an unsupervised segmentation attempting to identify the corpus

callosum traced in Fig. 1.2(a) produces the noisy regions in Fig. 1.2(b) instead of

the true object of interest in Fig. 1.2(c).

 

Figure 1.1: A 256 x 256 frame from a video sequence of moving cars. a) Original

image. b) Mean—shift segmentation into 4 gray levels [23]. c) The region of (b)

containing the foreground car (shown in white).

New segmentation methods have emerged that guide the image partitioning pro-

cess using appearance, shape and/or contextual models. The early bottom-up seg-

mentation paradigm grouped pixels according to their similarity in spatial and at-

tribute (feature) space and the resulting regions were assigned object labels. This

paradigm is now either being replaced by or integrated with top-down paradigms

that extract objects from scenes based on the prior knowledge that the user has about

the object of interest. The object models themselves have evolved from handcrafted
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(a) (C)

Figure 1.2: Midsagittal MRI section of the brain. a) Original image showing the

corpus callosum (CC) as a C—shaped central structure. b) Low-level segmentation of

white matter that contains the CC (taken from [86]). c) High-level segmentation of

the CC.

templates that were rigidly matched to the image into learned flexible (deformable)

templates that are warped (deformed) to fit the image data. This allows the segmen-

tation method to adapt itself to the natural object variability and different viewing

conditions in sensed images. However, despite all these advances, the general image

understanding problem is still mostly unsolved.

1.1 An object learning approach to facilitate im-

age understanding

The goal of this thesis is to propose and investigate an object learning and retrieval

approach meant to facilitate image understanding by computers. We will demonstrate

how various types of objects can be learned and subsequently retrieved from gray level

images without attempting to completely partition and label the image. Our method

follows a view-based paradigm: an object is defined by its shape, appearance, and
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possibly other features present in several view-specific images of the object. Therefore,

we do not attempt to reconstruct any 3D information; our belief is that it is not

necessary to construct 3D object models and 2D view-specific information is enough

for defining an object.

 We propose the following learnt”, J ‘ " _, ‘ " ‘ L' _, paradigm for

object learning and retrieval (Fig. 1.3):
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paradigm for the object learning and retrieval system developed in this thesis. The

actions performed by the system are shown inside ellipsoidal boxes while the data

involved in the process are shown inside rectangular boxes. The dashed arrows im-

plying the use of appearance models in object segmentation and matching are shown

only for completeness; our current system uses appearance models only for object

detection.

1. Defining and training an object model. A shape and/or appearance model is

4

 



trained from several examples of the object of interest, and possibly, of the remaining

pictorial universe (negative examples). It is still unclear how to automatically decide

what sort (shape vs. appearance) of model to use, as well as how to integrate the

two different types of information. In our work, we have manually determined when

a shape model was better suited than an appearance model, but we are aware that a

general visual learning system should integrate the two types of models.

2. Object detection. We believe that in order to segment and recognize an object,

we must first detect it. In other words, we need to determine if the object we are

looking for (or at least a part of it) is present in the image and if yes, then we

determine a region of interest (or a bounding polygon) that contains it. We want to

emphasize the difference between object detection and object recognition [94, 101]. The

object recognition problem [94] typically assumes that a test image contains one of the

objects of interest on a homogeneous background. The problem of object detection

does not use this assumption and, therefore, is considered to be more difficult than

the problem of isolated object recognition [101].

3. Object segmentation. After detection, an object may need to be segmented from

the nearby background, either for computing some instance-specific properties (area,

shape, etc.) or for verifying its identity. We consider that an exact segmentation

is possible only if the object of interest is well distinguishable from its immediate

background, that is, it has a visible boundary with a certain Shape. For segmenting

different objects, we have used state-of-the-art unsupervised methods (mean shift)

as well as shape-based deformable templates (both top-down and a combination of

bottom-up and top-down approaches). The “right” segmentation method to apply

5



seems also to be object dependent, and it remains unclear how to automatically select

it.

4. Object matching. In certain applications, after an object belonging to a general

class of objects (e.g., human faces, hands, etc.) has been detected and segmented,

the final goal is to assign/verify a precise identity (out of a set of possible identi-

ties). In this work we demonstrate how the shape of the hand (hand geometry) can

be reliably used to verify the identity of a person within a small size (< 100 per-

sons) database. Although appearance information has also been used for identity

recognition/verification, we have not yet incorporated it in our system.

1.2 Applications

This section describes the practical applications of our object learning system. These

applications can be grouped into three main domains:

1. Medical applications. We have considered three different medical applications:

(a) Detection and segmentation of the left ventricle walls in MR cardiac images

(Fig. 1.4(a)). The automatic segmentation is intended to help physicians

diagnose heart diseases, but automatic diagnosis can be envisioned as a

long term goal.

(b) Segmentation of neuroanatomic structures in coronal-viewed MR brain

images (Fig. 1.4(b)). Certain properties of the segmented structures are

needed for studying brain diseases like schizophrenia.

6



 
Figure 1.4: Practical applications considered in this thesis. a) Detection and segmen-

tation of the left ventricle in MR cardiac images. b) Segmentation of neuroanatomic

structures in coronal-viewed MR brain images. c) Detection and segmentation of vehi-

cles in highway video sequences. (1) Segmentation of Corpus Callosum in midsagittal

MR brain images. e) Hand shape-based personal identity verification.



(c) Segmentation and Shape analysis of Corpus Callosum in midsagittal MR

brain images (Fig. 1.4(d)). It has been reported [11] that the shape of the

Corpus Callosum may indicate the presence of schizophrenia. Our present

goal is the segmentation and shape analysis of the Corpus Callosum in

several normal and dyslexic subjects for assessing if the disorder can be

indicated by the Corpus Callosum shape.

2. Intelligent transportation systems. Detection and segmentation of vehicles in

highway video sequences (Fig. 1.4(c)) is useful for reducing travel time by

assisting the traveler to avoid congested traffic situations [36].

3. Biometric systems. Hand shape—based personal identity verification (Fig.

1.4(e)) is one of the biometrics that can be used in applications that require

some sort of user verification [71].

1 .3 Thesis outline

The remainder of the thesis is organized as follows.

Chapter 2 surveys the current state-of-the-art in object detection, deformable

model-based object segmentation and object matching. An important goal of this

chapter is to present comparative results on common datasets for some popular de-

tection and segmentation methods. It also points out some of the advantages and

drawbacks of the current approaches and suggests ways for improving their perfor-

mance.



Chapter 3 describes our approaches to object detection. Objects can be located

in images based on either their Shape or on their gray level appearance. We present

algorithms and results for each of these paradigms as well as a quantitative evaluation

over a large test set.

Chapter 4 presents a novel method for learning shape models from sets of manually

traced examples. We show how to cluster the Shapes in the training set and eliminate

the outliers. Then, a shape prototype and the main modes of variation are derived

based on a highly accurate point registration algorithm. We also show results for

learning several objects in the brain imaging domain.

Chapter 5 describes two methods for object segmentation that follow the detection

stage. One method belongs to the top-down segmentation paradigm and is useful

when the object is not well distinguishable from the background. The other method

combines a bottom-up low level segmentation with a shape-based top-down matching

for objects with a clearly visible boundary.

Chapter 6 examines how one can use the segmented objects for further classifica-

tion or identity verification. A state-of-the-art hand Shape-based personal verification

system is presented and its performance is evaluated and discussed. We also demon-

strate how morphometric analysis of Corpus Callosum shapes can reveal differences

associated with gender, handedness or presence of dyslexia.

The thesis is concluded by Chapter 7 with a list of potential problems which

should be investigated in the future.



Chapter 2

Literature Review

This section will survey the existing state-of-the-art in object detection, segmenta-

tion and matching. There exists a large amount of literature on segmentation and

matching approaches. However, general object detection methods have just begun

to appear and there is still a long way until they can be integrated into a practical

general purpose vision system.

2.1 Object detection

Object detection is probably one of the most difficult problems in computer vision [66].

This problem can be defined as follows: given an object O and an arbitrary black and

white, still image, find the pose (location and scale) of every instance of 0 contained

in the image. In contrast to what is called “object recognition” where one needs to dis-

criminate between well-defined object classes [94], the detection problem requires us

to differentiate between an object class and its complement. Therefore, the detection

10



methods have to accommodate the object intra-class variability without compromis-

ing the discriminative power in distinguishing the object from “background” within

cluttered1 scenes. In most cases, one cannot assume that the test image contains an

instance of the object(s) of interest, so the classification of different image patches

(windows) has to be done independently and maximum likelihood type methods can-

not be applied directly (one has to threshold some form of probability/distance for

deciding if a pattern can be classified as the object of interest).

  (a) (b)

Figure 2.1: What features define an object? (a) A human face is mostly defined by

appearance. (b) The left ventricle in MR cardiac images is defined by a combination

of appearance, shape and position relative to the lung (dark region). (a) A car is

mostly defined by shape. ((1) A building in aerial images is mostly defined by its

shape.

Usually, an object is defined by its appearance, shape, and sometimes, by its

relationships to other objects in the scene (see Fig. 2.1). The term “appearance” was

introduced in the Computer Vision literature following the seminal paper of Turk and

Pentland [123]. According to Nayar et al. [94], “the appearance of an object is the

combined effect of its shape, reflectance properties, pose in the scene, and illumination

conditions”. Here, we define appearance as the pattern of gray/color values in the

 

1Hatches et al. [104] define clutter as “...all signals in a scene of no interest to the observer; for

example trees are of no interest to an observer looking for automobiles”.
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object of interest and its immediate neighborhood?

There is a large amount of literature on object detection methods applied to var-

ious problems (see Fig. 2.1 and Table 2.1). Earlier methods were mostly based on

object/domain specific features (which may include, but are not limited to, color,

motion, 3D models and constraints). Comprehensive reviews and evaluations can

be found in [88, 38] for medical imaging, in [10, 104] for automatic target detec-

tion/recognition, and in [118] for building detection/segmentation in aerial images.

Although useful (and usually fast and accurate) for their particular application, these

approaches suffer from restrictive assumptions such as the presence of a single object

in the scene or a stationary camera. One should also make a distinction between

the algorithms handcrafted to detect a specific object and general methods that can

be trained to detect an arbitrary object class in gray level images. The dedicated

detection algorithms rely on the designer’s knowledge about the object and domain

of interest as well as on the designer’s ability to code this knowledge. On the other

hand, a general detection method, would necessitate very little, if any, prior knowl-

edge about the object of interest; the specific domain information is usually replaced

by a general learning mechanism based on a number of training examples of the object

of interest.

Shape-based object detectors have mostly been used in robotics. There are two

well known approaches to detection which use explicit shape features: (i) shape in-

dexing [6, 19] and (ii) feature point alignment [124, 67]. There are also two recent

 

2Some shape features may be implicitly specified by this definition. However, we would like to

differentiate appearance-based methods from approaches where explicit shape features are used.
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methods in which the shape characteristics of the object of interest are learned from

training examples [82, 3]. Indexing schemes can handle multiple objects efficiently

and allow for 3D modeling and pose estimation. However, as pointed out by Beis and

Lowe [6], such methods are sensitive to occlusion, noise and feature point misdetec-

tion. They are also limited to detection of rigid objects under different pose and may

not work in case of non-linear variations in shape of the object of interest. The shape

learning approaches3 are able to accommodate the larger amount of variation present

in an object class (e.g., a human face).

Appearance-based object detectors have recently been introduced (one of the first

face detectors was that of Sung and Poggio [121]) as an alternate to shape-based

detectors. They have the advantage that appearance representation is less ambiguous

than the representation which uses pure shape features (see the discussions in [3, 6]

and Section 2.1.2) or high level object specific features (an interesting comparison of

high level features versus appearance templates for human face recognition can be

found in [16]).

To our knowledge, there are relatively few appearance learning-based object de-

tection systems, most of which are based on input gray level information [7, 22, 83,

85, 93, 96, 97, 103, 111, 121, 126] and only two approaches [3, 115] combine them

with some shape features 4. Also, many of them have only been applied to a single

 

3We would like to note that shape-learning based detection systems face the difficult problem

of selecting negative examples. Appearance based approaches tackle this problem using an “active

learning paradigm” [111] in which the false accepts are used for retraining the system. However, we

are not aware of an equivalent algorithm for shape based systems.

4An object model which integrates appearance with explicit shape features (called Active Ap-

pearance Model) has been presented in [80, 24]. The object examples used for training are deformed

to the mean shape and a shape-free representation of the object of interest is obtained by principal

component analysis. However, the associated model fitting procedure has mainly been used for
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domain (the detection of human faces in gray level images). Table 2.2 Shows the

main characteristics of some of the detection systems reported in the literature. It is

difficult to provide a direct performance comparison of the above mentioned systems

since they were not tested on a common dataset. A partial comparison based on the

results reported in the original papers can be found in Rowley’s and Schneiderman’s

theses [110, 113]. However, since all systems are based on learning, it may not be fair

to directly compare their performances, if the training sets were different.

Most appearance learning-based detection systems essentially utilize the following

paradigm (Fig. 2.2): several windows are placed at different positions and scales in

the test image and a set of low-level features is computed from each window and fed

into a classifier. Typically, the features used to describe the object of interest are the

“normalized” gray-level values in the window. This generates a feature vector with

a large dimensionality (of the order of a couple of hundred), whose classification is

both time consuming and requires a large number of training samples to overcome the

“curse of dimensionality”. The main difference among these systems is the classifica-

tion method: Moghaddam [93] and Lew [83] use a complex probabilistic measure (a

combined distance within and from the feature space), Lin [85], Rowley [111], Vaillant

[126] and Weng [129] use neural networks, Colmenarez [22] and Duta [41] use the log-

likelihood ratio of the most discriminant Markov chain, Osuna [96] and Papageorgiou

[97] use support vector machines, Amit [3] uses tree classifiers and Sung [121] uses

the distance from the face and nonface prototypes.

 

segmenting (and computing the identity of) the object of interest in test images in which the object

was present. No results have been reported on the method’s ability to determine whether the object

of interest was indeed present in the test image.
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Table 2.2: A survey of the learning-based object detection systems.

 

[ System [ Objects learned [ Features used [ Type of classifier [
 

 

Amit et al. [3] Human faces, Edge fragments, Tree classifier

 

 

 

handwritten 2D gray level

characters pattern (20 x 20)

Ben-Yacoob [7] Human faces 2D gray level Multilayer

pattern (20 x 20) perceptrons

Colmenarez and Human faces 2D gray level Log likelihood

Huang [22] pattern (11 x 11) ratio

Duta et al. [41] Cardiac ventricle 1D gray level Log likelihood

in MR images patterns (100 feat.) ratio
 

Lew and

Huijmans [83]

Human faces 2D gray level

pattern (23 x 32)

Distance from

feature space
 

Lin et al. [85] Human faces 2D gray level

pattern (12 x 12)

Neural network

 

Moghaddam and

Pentland [93]

Human faces,

hands

2D gray level

pattern (N/A)

Distance in and

from feature space
 

Osuna et al. [96] Human faces 2D gray level Support vector

 

 

pattern (19 x 19) machine

Papageorgiou Human faces, 2D gray level Support vector

et al. [97] pedestrians pattern (19 x 19) machine

Ratan et al. [103] Human faces, 1D gray level No classifier,

cars pattern (64 feat.) 1D warping
 

Rowley et al. [111] Human faces 2D gray level

pattern (20 x 20)

Neural network

 

 

Schneiderman Human faces, Wavelet coefs, Likelihood

and Kanade [114, 115] cars Eigenvect (16 x 16) ratio

Sung and Human faces 2D gray level Distance from

Poggio [121] pattern ( 19 x 19) prototypes
 

Vaillant et al. [126] Human faces 2D gray level

pattern (20 x 20)

Neural network

 

Weng et al. [129] Human faces  2D gray level

pattern (64 x 64)

Neural network   
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Figure 2.2: The structure of a learning-based face detector.

One of the main performance indices used to evaluate such systems is the detection

time. Most detection systems are inherently slow since for each window (centered at

a pixel in the test image), a feature vector with large dimensionality is extracted and

classified. Two approaches have been proposed to speed up the detection process:

(i) Amit et al. employed an efficient focusing method during which a relatively small

number of regions of interest is identified based on spatial arrangements of edge

fragments. These edge fragments are invariant over a wide range of photometric and

geometric transformations and those configurations that are more common in faces

than in the background are learned from face examples. Only image patches centered

at pixels that belong to the identified regions of interest are further classified into face

or non-face. This method is one of the few attempts to incorporate shape information

in an appearance-based approach.

(ii) A fast way to perform the classification (called Information-based Maximum Dis-

crimination), previously employed in image registration and parameter estimation,
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was introduced by Colmenarez and Huang [22] and later modified by Duta et al.

[41] for object detection. The pattern vector is modeled by a Markov chain and its

elements are rearranged such that they produce maximum discrimination between

the sets of positive and negative examples. The parameters of the optimal Markov

chain obtained after rearrangement are learned and a new observation is classified by

thresholding its log-likelihood ratio. The main advantage of the method is that the

log—likelihood ratio can be computed extremely fast, only one addition operation per

feature is needed.

We are not aware of any comparative evaluation of the different learning—based

approaches to object detection. This is probably due to the fact that this domain of

research is relatively new and each research group uses its own proprietary data and

implementations. Since the object detection domain is very broad and there already

exist good comparative evaluations for some specific applications (see Table 2.1), we

would like to focus our attention on appearance learning-based methods. The goal of

this section is to provide a quantitative comparison of several classification methods

applied to the face detection problem, as well as to investigate the difficult issues of

object representation and detector training. We regard this evaluation task as very

difficult and somewhat empirical and incipient because of the following reasons: (i)

there are no standard datasets for training and testing5 as are (at least for testing)

for the face recognition problem (FERET database [99]), (ii) there are no commonly

agreed evaluation criteria and methodologies, (iii) in most cases the code is proprietary

 

5Although some of the recent studies report testing results on Rowley’s datasets [111] (part of

which was taken from Sung’s data [121]), about half of the studies mentioned in Table 2.2 report

results on other test sets.
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and cannot be accessed”, while independent implementations are very difficult to

write due to the complexity of the approaches, and (iv) the object detection problem

is sufficiently difficult that empirical ROC curves obtained by Simultaneously varying

the parameters of the system (like those proposed for edge detector evaluation in [15])

cannot practically be computed.

2.1.1 Why is it difficult to detect objects?

There are several reasons why the object detection problem is considered to be ex-

tremely challenging.

1. Large variability in the appearance of an object. The sources of variability include:

image plane variation (rotation, translation and scale), 3—D object pose, distance from

camera and natural variations across different instances of the same object. For a

detailed discussion on the variability of the human face, see Rowley’s thesis [110].

 

Figure 2.3: Face-like patterns extracted from outdoor images that are typically used

to generate negative examples. We believe that such patterns make the training set

inconsistent, Since they may very well be classified as faces if found in the right visual

context.

2. Limited information used for object representation. Often, due to computing time

requirements, object detection systems base their decision on a region included in

the object of interest. Thus, parts of the object and its immediate context are not

 

6There are three face detection systems which can be tested through the Internet which are

discussed in Section 2.1.4.
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used during classification. By restricting the classified region to the central part of

the face, the true class (face vs. non-face) of an instance becomes highly context

dependent. This is illustrated in Fig. 2.3 where 7 face—like patterns were extracted

from outdoor images that are typically used to generate negative examples [110].

We believe that the boundary between face and non-face domains is rather fuzzy

since patterns like those in Fig. 2.3 may as well be classified as a face if found in

the right visual context. Therefore, we think that the negative examples should not

be randomly generated from images that do not contain faces Since the training set

may become inconsistent. The problem is amplified by histogram equalization. This

not only reduces the variability generated by illumination conditions and enhances

the contrast, but also increases the number of instances one can actually encounter.

Consider, for example, the window extracted from the background in Fig. 2.2. It is a

constant gray-level region to which noise was added. If we equalize the histogram, we

obtain (the third window from top in the third column) only noise, which is seldom

encountered if the histogram is not equalized7. This noise together with the limited

information used for face detection is the most serious source of false alarms.

3. Accuracy of the classification method. It is obvious that the number of windows

containing the object of interest we encounter in real images is a very small fraction

of the total number of windows. One can balance the instance distribution when

training the system, but this remains highly unbalanced towards non-objects during

testing. Therefore, the classification errors should also be highly unbalanced towards

 

7See also Schneiderman’s thesis [113] for an interesting discussion about pattern diversity and an

ideal rote learning classifier for object detection.
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Classifier Face 53 windows

54 face windows , _

1% classrfication

ClTOl'

Nonface 1 window

500000 nonface windows Face 5000 wmdows

l% classification

error

 

  Nonface 495000 windows

 

Figure 2.4: The relationship between the classifier accuracy and detection perfor-

mance.

very small type II errors (non-objects classified as objects). This fact is illustrated in

Fig. 2.4. Let us consider a classifier with a type I and type II error rates of 1% which

is applied to an image containing 9 human faces. One usually expects that several

windows placed very near the true faces be classified as faces; let us assume in this

case that every face may be detected at 6 nearby positions/scales. Suppose we extract

500, 000 windows at different positions and scales; only 54 of these windows should be

classified as faces. With a 1% error rate, our system would correctly classify 53 of the

54 windows as faces, but at the same time, it will incorrectly classify 5,000 nonface

windows as faces too. It is obvious that such a system is not useful for practical

purposes. Conversely, if we are willing to accept the number of false alarms equal at

most to the number of real objects, our system must classify as faces only 54 out of

the 500,000 non~face windows, that is, it must have a false alarm rate of 1 in 9,259

windows classified. Unfortunately, there are not too many classifiers capable of such

a performance!

21



2.1.2 Object representation

In order to detect an object, one should first specify the instance (feature) space from

which the object examples are drawn [91]. Very few studies give any motivation for

the chosen representation8 (the feature set that describes the object of interest) [9].

Usually, an object is represented by a “normalized” 2D gray-value pattern that spans

the central part of the object. For human faces, where the immediate background of

the head is unconstrained and can take any value, most of the previously mentioned

methods implicitly assume that the central part of the face (usually a square defined

by the eyes, mouth and the two cheeks) reduces intra-class variation while producing

a good inter-class discrimination. Sometimes, the forehead, hair and chin are also

included, but the background is always masked. However, each system chooses a

different number of features (between 121 and 4096, see Table 2.2) to define the face

pattern, depending on the computational constraints of the classification method and

personal belief. There are some. type of objects, though, that cannot be defined by “a

central part” (e.g., pedestrians in [97]) and whose representation has to include part

of the background. In such cases, the detection performance reported is usually lower

than for object representations that do not include background. On the other hand,

sometimes it is useful to include the immediate background in the object description.

This is the case in medical images, where immediate neighborhoods of anatomical

structures are Similar in different subjects (e.g., the left cardiac ventricle in [41] is

always located near the lungs; see Fig. 2.1(b)). For such applications, the immedi—

 

8For a discussion of the object representation issues outside the appearance learning paradigm,

see Schneiderman’s thesis [113].
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ate background can help to disambiguate the image interpretation and improve the

detection rates.

The second important aspect of the object representation problem is the type

of transformations performed on the original input (gray value) pattern in order to

obtain the features defining the object. These transformations are also meant to

reduce the intra-class variability due to illumination conditions (e.g., brightness and

contrast) and camera position. Typical transformations are histogram equalization,

lighting correction and, sometimes, feature alignment (warping) [110]. However, as

mentioned above, there is a three-way trade-off between the amount of preprocessing

and the total detection time of the system (note that the preprocessing has to be

applied to each patch/window in the image) and the saliency (characterization power)

of a feature set in describing the object. The characterization problem comes from the

fact that the preprocessing /feature extraction procedures are not one-to-one, that is,

background patterns may produce the same set of features as patterns that belong

to the concept to be learned. Most object detection studies do not acknowledge this

problem but, implicitly, reduce preprocessing to a minimum and consider as features

the normalized pixel values. As such, the feature extraction procedure is close to

a one-to-one mapping and the error due to overlap of class conditional densities in

the feature space (which adds to the classification error) is quite small. By contrast,

the representation problem is well analyzed in the face recognition literature. Craw

et al. [30] give a comprehensive comparison of different feature sets for automatic

face recognition. However, these feature sets are computationally too expensive to be

used by a face detector (recall that a detector must compute the feature set for each
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patch in the test image while a recognizer extracts features at one or at most a small

number of locations).

Finally, it is very difficult to quantify the inherent complexity of the object de-

tection problem. Such an attempt was made by Rowley [110] who compensates the

infeasibility of an exhaustive training (training the classifier on the true distributions

for object and non-object examples) with a Bayesian approach that takes into account

the prior probabilities of faces and non-faces. He estimated that the prior probabil-

ity that a window of arbitrary size extracted from 130 real world images contains

a human face is 1 /20, 984. We believe that the prior probabilities for other objects

are of the same order of magnitude as well. On the other hand, it first seems that

if enough information is used for object description (the object plus the immediate

background) and the feature extraction procedure is one-to—one, then the class condi-

tional densities of the object and non-object examples should not overlap (a feature

vector represents either the object of interest or not”), that is, the Bayes error for this

problem should be close to zero. However, in practice it is very difficult to establish

an exact boundary between object and non-object examples (see Fig. 2.5).

 

Figure 2.5: A face pattern (left-most image) is gradually deformed into random noise

(right-most image) by linear interpolation. It is very difficult to label the intermediate

images as positive/negative examples for training a face detector.

Although the representational framework of our comparison is fixed (2D gray level

 

9Most of the time, humans use additional high level information to make this distinction.
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pattern), we still have to decide on the three issues discussed above: (i) what region of

the object of interest to use for feature extraction (including/excluding background),

(ii) the number of features and (iii) preprocessing transformations. These are difficult

choices which cannot be automatically explored given the current computing power.

AS Schneiderman points out [113] “Ultimately, we must make representational choices

by hand... The best we can do is make educated guesses”. In short, we have attempted

to use a representation for faces which is common to as many of the systems described

in Table 2.2 as possible. There was, however, an exception. We have determined that

the square region between eyes and mouth was too ambiguous for defining a face (see

the discussion in Section 2.1.1), therefore we extended it to also include the forehead

(see Fig. 2.2). The rectangular 2D region was linearly subsampled to a 20 x 15

pattern and the only preprocessing we applied was histogram equalization on 16 gray

levels“). The 20 x 15 pattern is quite close to the pattern sizes employed by previous

systems and seemed to be a good compromise between representational information

and computational requirements.

2.1.3 Classifier comparison on the face detection problem

As already mentioned in Section 2.1, once the representation and preprocessing of

the object of interest are fixed, the detection problem becomes a two-class (object of

interest vs. background) classification problem. This section presents a comparison

of the results produced by six different classifiers on the face detection problem. The

 

1016 gray levels is the maximum which is currently computationally feasible for the maximum

discrimination classifier.
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purpose of these experiments is to attempt to identify the advantages and drawbacks

of using a specific classifier“, as well as to gain some insight into the problems associ-

ated with training. Recall from Section 2.1.2 that the representation (feature vector)

used to describe a human face in all classification experiments was a 20 x 15 (forehead-

to—mouth) pattern, and the only preprocessing applied was histogram equalization.

Classifier description

The classifier choice was driven by the following two criteria: (i) existence of relevant

literature describing the classifier properties and its possible applicability to object

detection (Table 2.2), and (ii) existence of either a commercial or a public domain

implementation. The following classifiers were used (see also Table 2.3):

1. I-Nearest Neighbor classifier [37]. In a Nearest Neighbor type of classification, a

training set P of points in a d—dimensional space is preprocessed into a data structure

so that given any query point q, the nearest (or generally the nearest k) points of P to q

can be found efficiently. We employed the “ANN” package of Arya et al. [5, 64] which

is a system for answering nearest neighbor queries both exactly and approximately.

It uses a [rd — tree (or bd — tree) to store the training data. It offers a choice among

different Minkowski metrics, as well as a way to specify the amount of error to be

tolerated in the search (returning a point that may not be the nearest neighbor, but

is not significantly further away from the query point than the true nearest neighbor).

 

11None of reviewed object detectors attempted to combine multiple classifiers. Due to computa-

tional expenses, it is not feasible to apply several classifiers to each patch of the image. However,

one can apply cascaded classification, where a pattern is fed into a more computationally demanding

classifier only if it was classified as an object of interest by a previous simpler classifier [39].
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We specified the kd -— tree data storage and the Euclidean metric and constructed

an ROC curve (indexed by the error tolerance parameter c, or equivalently, by the

classification rate) of the training set using the “leave one out” paradigm. A “knee”

in the curve was found for e = 6 (corresponding to a FR 2 0.08% and FA 2 0.04%)

and was kept fixed for the remaining experiments.

2. Support Vector Machines (SVM) [127, 17]. The main idea behind the SVM ap-

proach is to separate the classes represented as multidimensional patterns with a

surface that maximizes the margin between them. This is an approximate implemen-

tation of the Structural Risk Minimization induction principle and aims at minimizing

a bound (equal to the sum of the training error rate and a term which depends on

the Vapnik-Chervonenkis dimension of the learning machine) on the generalization

error of a model. For our experiments, we used the “SVM“9“” package of Joachims

[75, 62]. The following kernel functions were tested: first to third degree polynomials,

radial basis function and sigmoid function. For linear and sigmoid kernels, the train-

ing process did not converge although we tried multiple values for the “c” parameter

which regulates the trade-off between the training error and the generalization mar-

gin. For the remaining kernels, the training process took between 25 mins. (second

degree polynomial) and 10 hours (radial basis function) depending on the values of

“c” parameter and the width 7 of the RBF kernel. The offiine classification accuracy

(defined in Section 2.1.3) was somewhat better (by about 3%) for the radial basis

function kernel. Since results on the face detection problem using this type of kernel

were also reported by Joachims, we decided to use an RBF kernel with "y = 1 for our

experiments.
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3. Learning vector quantization (LVQ) [77]. LVQ is a classification method in which

the object classes are described by a relatively small number of codebook vectors,

properly placed within the feature space such that the decision boundaries are ap-

proximated by the nearest neighbor rule. The accuracy of the approach is dependent

on (i) the number of codebook vectors assigned to each class and their initial val-

ues, and (ii) the learning algorithm, learning rate and stOpping criterion. For our

evaluation, we employed the “LVQ” package of Kohonen et al. [78, 63]. The main

parameter to be Specified when using this package is the number of codebook vectors

to be constructed for each class. We performed several experiments with 250, 500

and 1000 codebook vectors per class. There was an 8% increase in accuracy when

going from 250 to 500 codebook vectors and no Significant improvement was noticed

for 1,000 codebook vectors. Therefore, all subsequent experiments were done with

500 codebook vectors/class and 20, 000 learning iterations.

4. Decision trees [106]. Decision trees classify pattern vectors by propagating them

down the tree from the root to some leaf node, which provides the class labels. Each

node in the tree denotes a test of a specific feature, and each branch from that node

corresponds to one of the possible values for that feature. A test pattern is classified

by starting at the root node of the tree, testing the feature specified by this node, then

moving down the tree branch corresponding to the value of the feature in the given

pattern. This process is then repeated for the subtree rooted at the new node [91]. In

our experiments, we used the C5 software package of Quinlan [102]. C5 is a program

for computing classification rules in the form of decision trees and/or rulesets from a

set of given training examples. Trees can optionally be converted to rulesets. Rulesets

28



are often simpler and easier to understand (since each rule can be interpreted) and

sometimes rules are more accurate predictors than decision trees. A pattern vector

is classified by a ruleset by identifying all the rules that it satisfies and resolving

conflicts by (weighted) voting. C5 also incorporates an adaptive boosting procedure,

that is, the program generates multiple trees and rulesets using different weights for

each training example. The weights are adjusted after each tree or ruleset is produced

to focus attention on those cases that were misclassified. For our experiments we used

3-trial boosting applied to rulesets derived from the decision trees constructed by C5.

5. Neural Network [91, 37]. Several algorithms have been designed for training a

feedforward neural network (computing the network weights and biases) among which

the most well known is the “backpropagation rule” (a gradient descent in the weight

space). For the reported experiments, we have used the backpropagation package

written by Shufelt [90]. The network architecture was fixed to one hidden layer

completely connected to the input and output layers and several experiments were

performed using 10, 15 and 30 hidden units. We noticed that the convergence of

the training process was highly dependent on the [Learning rate, Number of training

examples] pair. When using only 1,000 (500 positive and 500 negative) examples,

the training converged12 after 1,000 epochs with a learning rate of 0.1. However,

when using 20,000 (half positive, half negative) examples, the training converged

only after about 4,000 epochs and required a learning rate of 0.004. On the other

hand, the number of hidden units (10, 15 or 30) seemed to mostly influence the actual

 
 

12We say that the training converged on a given training set if the classification error on that set

is less than 5%.
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computing time (more hidden units required more computation) and had less impact

on the classification accuracy (about 5% improvement between 10 and 30 hidden

units) and the learning rate. Also note that since we used the neural network as a

general purpose classifier, we did not tailor the network architecture for the problem

at hand as other studies did [111, 129]. This may be one of the reasons why we were

not able to obtain better results as reported by others [111].

6. Maximum discrimination (MD) [22, 41]. A detailed description of this classifier

can be found in Chapter 3. The MD classifier used for the reported experiments was

implemented by us and most of the time a threshold T = 0 was used to generate the

decision boundaries”.

Training data and methods

The training data consisted of a combination of laboratory captured face images

(Weizmann dataset: 840 pictures of 28 persons, 2 facial expressions, 3 lighting direc-

tions and 5 face orientations per person, MIT dataset: 144 images of 16 persons, all

frontal views with different lighting, MSU dataset: 216 pictures of 62 persons mostly

frontal view with frontal lighting) and real-world scanned photographs (390 persons

with unknown lighting and frontal to semi-profile orientation). In each of the 1,590

face images, the central part of the face was manually identified using a rectangle of

Side ratio 4/3 which was resampled to form a 20 x 15 pattern and whose histogram was

equalized to 16 gray levels. From each “true” face pattern, 6 synthetic patterns were

 

‘3 In section 2.1.3 we will refer to a “relaxed” version of the MD classifier in which the threshold

T was decreased in order to decrease the false reject rate (with a corresponding increase of the false

accept rate).
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created by symmetry and rotation in the image plane as described by Rowley [110].

Therefore, a total of 9,540 face-patterns were employed as positive examples. The set

of negative examples started with a random set of 5,564 non—face patterns to which

5,013 more patterns were added from the false alarms produced by the maximum

discrimination classifier during eight successive training sessions. During the eight

training sessions, the system examined about half a billion patterns and attained a

false alarm (FA) rate of about 1 pattern in 500,000 patterns classified on the training

images, and about 1 pattern in 50,000 patterns classified on test images. After the

8th training session, many of the false alarms were face-like patterns (see Fig. 2.3)

and we gave up further training Since the training set could become inconsistent.

Therefore, a total of 20,117 training patterns were used to bring the MD classifier to

a reasonable accuracy and were subsequently used to train the other classifiers.

Evaluation results

In order to compare the discrimination power of the six classifiers, we performed the

following experiments:

0 Offline assessment of the generalization ability to unseen faces and low quality

images. The set of 9,540 face patterns was split into two sets corresponding to the

laboratory images (7,200 patterns) and real world images (2,340 patterns). The non-

face pattern set was randomly split into two parts. A 2-way cross validation was used

to assess how well a classifier would perform when tested on face images which are

new and of a different quality. The results are Shown in column 3 of Table 2.3 (first

row corresponding to each classifier). One can notice that only the decision tree and
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the maximum discrimination classifiers are sensitive to the quality of the face pattern

(when trained on the scanned faces, the accuracy was much lower than when trained

on the laboratory images). The FA rate did not vary too much between the two

trials. On the average, the FR rate was between 18 — 32% while the FA rate was in

the range 3 —- 20%. The best overall performance on this task was obtained by the

SVM classifier.

9 Offline assessment of the generalization ability to rotation and symmetry. The set

of 9,540 face patterns was split into five sets (by taking every 5th pattern) such that

no more than two patterns per “real face” were used for training while the system

was tested on the remaining patterns (5-way cross validation). The results are shown

in column 3 of Table 2.3 (second row corresponding to each classifier). The FR rate is

much lower in this case, showing that symmetry and small rotation do not introduce

as much variability in the face set as new face patterns. Again, the best results were

attained by the SVM.

0 Online assessment of the face detector performance. Five of the six classifiers were

trained on the full set of 20,117 examples and the performance of the resulting face

detector was evaluated as follows. First we examined the processing time needed for

training/testing (columns 2 and 4 in Table 2.3) since this was an important parameter

whose value influences the values of the remaining parameters. The training times

spanned 3 orders of magnitude range (0.5 min for approximate nearest neighbor to

2,400 min for neural networks). We measured the testing time by the number of

patterns classified in one second. These times also varied largely from 20,000 classi-

fications/sec (maximum discrimination) to 4 classifications/sec (l-nearest neighbor).
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Table 2.3: A comparison of difierent classifiers for the face detection problem. Legend:

[at] = the classification rate does not depend on the size/distribution of the training set

or the test sample, [H] = the classification rate depends on the size of the training set

but not on the distribution of the training/testing samples, [* * *] = the classification

rate depends on the size/distribution of the training set but not on the test example,

[4: =1: H] = the classification rate depends on the size/distribution of the training set

and the test pattern, 1‘ The FA rate for the Maximum discrimination classifier is very

small since false alarms from previous testing trials were added to the training set

(as such, it should not be directly compared to the FA rates of other classifiers).

The testing results show that the training set is crucial and should be constructed

incrementally for each type of classifier.
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Classifier Train Offline accuracy Testing Online accuracy

Implementation time FR / FA time Faces rejected/NF

Parameters (%) class/sec patterns accepted

1 Nearest Neighbor — 27/8, 29/15 4 Not tested

2.4/16 [**]

Approx. 1-NN 30 secs 26/9, 30/16 30 Not tested

Arya et al. [5] 2.8/17.5 [****]

e = 6

. SVM [127, 17] 2 h 18/2, 18/4 40 FR: 5.6 -19%

Joachims [75] 2.5/4.7 [***] FA : 0.8%

RBF kernel, 7 = 1

LVQ [77] 10 mins 33/17, 32/15 100 FR : 7.3 — 9.5%

Kohonen et al. [78] 58/76 [***] FA : 7.4%

1000 codebook vectors

Decision tree [106] 1.5 h 11/16, 41/5 900 FR : 10.7 —— 15%

(35 [102] 11.3/2.1 [****] FA: 1.7%

Rules, 3 trial boosting

Neural Network 20—40 h 29/11, 32/7 2000 FR : 4.3 — 25%

Shufelt [90] 106/103 [*1 FA : 5.3%

30 hid. u. LR = .004

Max. discr. [22] 20 mins 15/27, 43/11 20000 FR : 6.5 — 35%

Duta et al. [41] 5/23.5 [*1 FA: .01%1
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There is one fact that we would like to emphasize: for only two of the six classi-

fiers (neural networks and maximum discrimination), the testing time is independent

of the size/structure of the training set as well as of the test pattern. As a con-

sequence, increasing the size of the training set by including the mistakes made in

the early training stages (especially on non-object patterns) will not affect the detec-

tion time. Unfortunately, the remaining four classifiers become significantly slower

when the training set is increased. As an example, we attempted to retrain the SVM

using about 2,000 of the false alarms it produced after the initial training session.

AS a result, 500 more support vectors were selected and the classifier became 25%

Slower. However, the FA rate decreased by a factor of 3 and the FR rate slightly in-

creased. Therefore, it seems quite impractical to have several training sessions using

the SVM’S (or, in general, any sort of nearest neighbor approach). If the classifier

has to go through several hundred million patterns in order to achieve a reasonable

accuracy, then at 40 classifications/sec, several months of computing time would be

required.

The online face detection accuracy was estimated as follows. First, the Olivetti

face database (40 persons, 10 images/person with difl'erent lighting and facial ex-

pression) was grouped into one 1024 x 846 composite image (see Fig. 2.6 and

http://www.cam-orl.co.uk/facesataglancehtml) and was used to evaluate the FR rate

on laboratory images. We also estimated the FR rate for real world images on a 620 x

1152 group image containing 89 faces (Figs. 2.7-2.8) downloaded from the CMU demo

page (http://www. ius. cs. cmu. edu/IUS/usrp0/har/FaceDemo/images/64 .9/input.gif).

One should notice that during online evaluation, the FR rate can only be expressed
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Figure 2.6: Face detection results produced by a “”relaxed version of the maximum

discrimination classifier followed by an SVM classification on the Olivetti database.

362 out of the 400 faces (90.5%) were successfully detected.
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Figure 2.7: Face detection results produced by the maximum discrimination classifier

on a group image. No arbitration has been performed; all patterns classified as

faces are shown. 57 out of the 89 faces (64%) were successfully detected. About

35 background windows were misclassified as faces inducing a false accept rate of

1/49,000.
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Figure 2.8: Face detection results produced by a “relaxed” version of the maximum

discrimination classifier followed by an SVM classification on a group image. Multiple

detections at nearby positions have been combined into one face rectangle. 63 out of

the 89 faces (70.8%) were successfully detected. There are 34 false accepts.

37



as the percentage of human faces rejected as opposed to offline evaluation where the

percentage of rejected face patterns was computed. This is due to the fact that during

online testing, the set of patterns is not labeled and one usually does not know how

many nearby positive responses a human face can induce (see Fig. 2.7). On the other

hand, we could only indirectly assess the number of false rejects on large images.

Both images described above contain over 2 million patterns (windows) to be classi-

fied which would require almost one day of computing time for the slow classifiers.

Instead of classifying each pattern with a given classifier, we chose to first apply a

“relaxed” version of the maximum discrimination (the log-likelihood threshold was

set such that the FR rate was very small) and classify further only the positive re-

sponses. As such, the number of patterns was reduced to less than 10,000 and the

testing time became acceptable. The FR estimates for the five classifiers are shown in

the last column of Table 2.3. It can be noticed that all classifiers performed substan-

tially better on the laboratory images (FR 2 7 :l: 3%) than on the real world image

(FR 2 21 :l: 11%). The FA rate was evaluated on a set of 40 images that did not

contain human faces (though they may have contained face-like patterns as previously

discussed) from which about 1,500,000 patterns were extracted and classified. The

results (also shown in the last column of Table 2.3) are not very different among the

tested classifiers (except for the maximum discrimination whose FA rate is 3 orders

of magnitude smaller due to the fact that it was trained in several sessions with false

alarm bootstrapping).
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Figure 2.9: Output of the Rowley et al. [111] (produced by the system

demo posted at http://unvw.ius. cs. emu. edu/IUS/usrp0/har/FaceDemo/gallery.html)

(a), and Lew and Huijmans [83] (produced using the code posted at

http://www.wileidenuniv.nl/~mlew/face.detection.html#DMO) (b) face detectors on

a collated test image.
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Figure 2.10: Output of the Colmenarez and Huang [22] (produced by the system

demo posted at http://troi.ifp.aiuc.edu/~antonio/section2.html) (a), and Amit et al.

[3] (b) face detectors on a collated test image.
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Figure 2.11: Output of a “relaxed” version of the maximum discrimination classifier

(implemented by Duta et al. [41]) followed by an SVM classification on a collated

test image.

2.1.4 Comparing the performances of some available face de-

tectors

It is rather difficult to quantitatively evaluate the performances of the detection sys-

tems outlined in Table 2.2. The main reason is that, except the Lew system [83] and

the online demos of the Rowley [111] and Colmenarez [22] systems, the original code

is not made available for public testing. Even with the above three cited systems, the

user does not have access to the parameters of the method, so an empirical ROC curve

cannot be computed. On the other hand, all the detection algorithms are quite so-

phisticated and do not allow for a detailed description in a conference/journal paper,

so an independent implementation is not easy to achieve either. A partial comparison

made on the basis of the results reported in the original papers describing some of
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these methods can be found in Rowley and Schneiderman’s theses [110, 113]. We

also performed a “visual” comparison of the systems which we could access according

to the following methodology: we picked up from Rowley’s gallery [65] a fairly large

(752 x 1152) image containing 22 mostly frontal human faces at very different scales.

Since the results of Rowley’s face detector on this image were already displayed, we

only tested the other three mentioned systems (using their default parameter settings)

as well as our implementation of the MD-based detector. The results are shown in

Figs. 2.9-2.11. The detection times we obtained on this test image ranged from 25

secs for [22], 80 secs for [3], 5 mins for our implementation to about 5 hours for

[83]. Since the demos were run on different machines the detection times may not be

directly comparable. However, the Lew system [83] is quite slow since the classifier

is based on projecting the feature vector on a relatively high-dimensional subspace.

Our overall impression is that a substantial amount of work still needs to be done in

designing a reliable object detection system.

2.1.5 Discussion and conclusions

In this section we have surveyed the research area of appearance-based object detec-

tion. We also attempted to identify and discuss some of the problems one encounters

when designing and training an object detector. The detection problem is very im-

portant since it is the first step towards an unconstrained object recognizer. As

mentioned in Section 2.1, most studies have focused on the human face detection

problem, although five other object classes were successfully learned. However, the
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range of choices for object representation as well as for classification methods has not

been fully explored yet.

Our choice for representing a human face was determined by the trade-off between

the characterization power of the feature set and detection time. We determined

whether including more information (e.g., the forehead region) in the face description

can reduce the ambiguity discussed in Section 2.1.2. This was indeed the case, but

we still obtain several false accepts which need to be removed. Fig. 2.3 suggests

that a human face is not a unique pattern, but the right pattern in the right context.

That is, we do not perceive as faces face-like patterns that come from the grass or

tree regions in Fig. 2.7 just because we do not perceive them at all (they cannot be

visually separated from their immediate background). To our knowledge, no object

detector has yet attempted to incorporate explicit context information when classi-

fying a pattern. The relatively large number of false accepts in Fig. 2.3 suggests

that such information may be required for reliable detection. However, it does not

seem computationally feasible to compute contextual information for each pattern in

a large image. We believe that classifying a pattern based on context should be done

only if the pattern itself was classified as object of interest. If context information

is going to be used, the answer to the question “What part of the object of interest

should be used for feature extraction?” may not be very important.

We also performed a quantitative comparison of several classification methods

which could be integrated in an object detector. Based on the results shown in

Section 2.1.3, we could draw the following conclusions:

(i) The differences in accuracies of the tested classifiers were not larger than 15% while
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the computation time needed for training/testing varied over a 3 order of magnitude

range. Therefore, the selection of a certain classifier for object detection should

also take into consideration the computational requirements not only the accuracy

performance. A slow classifier may not only be impractical to test in a reasonable

amount of time, but also impractical to sufficiently train it.

(ii) The choice of the training set can make a large difference in the system’s accuracy

and computational requirements. The results shown in Table 2.3 suggest that the

training set required to obtain a good detection accuracy is classifier dependent.

This statement obviously applies to the set of negative examples, that is, this set

should be collected incrementally in several sessions by bootstrapping the false accept

errors. However, we believe that choosing the “right” positive examples also affects

the detection performance. In our case, we feel that our set of face examples was

not fully representative of the face pOpulation (e.g., we had few examples of persons

wearing glasses or beards, fact which impacted negatively on the detection rate).

To our knowledge, no systematic strategy has been used yet for collecting positive

examples in the same manner negative examples are collected. We believe though

that such a strategy may be necessary.

(iii) The classifiers which have a nearest neighbor type complexity (that is, approxi-

mately linear dependence on the size of the training set) may not be well suited for

object detection since both the training and testing times can become prohibitive

with incremental training.

(iv) We do not believe that a Single classifier can reasonably solve the general object

detection problem. A sequential combination of classifiers (of which the first one
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applied should be very fast) may be better suited for this problem. This fact is

illustrated in Figs. 2.7-2.8 where using SVMS in a second classification stage improved

the detection rate by 7% for the same false accept rate. Note that it would not have

been computationally feasible to only use SVM on such a large image.

Finally, we have not explicitly addressed the problem of arbitration among mul-

tiple detections of the object of interest at nearby positions. This may require using

a combination of classifiers or a voting scheme (which we actually used in our exper-

iments). A more detailed treatment of this aspect can be found in Rowley’s thesis

[110].

2.2 Object segmentation using deformable models

Objects in sensed images are expected to deform due to the varying imaging condi-

tions, sensor noise, occlusions, and natural variations among different instances of the

same object. For this reason, deformable models are becoming increasingly popular.

The main idea is to encode a variety of Shape deformations while maintaining the

inherent object structure in the model.

Deformable models have been used in a wide range of applications, including im-

age/video database retrieval [125, 136], medical image analysis [120, 88, 27], tracking

[51, 84], and restoration [4]. Here, we are specifically concerned with the use of de-

formable models for image segmentation. Given an object model and a set of rules

about the possible aspects of the objects as seen in the real world, the goal is to lo-

cate the exact boundaries of that particular object in an image. Various approaches

45



have been proposed in the literature to solve this problem. The differences lie in the

specification of the model, the definition of the set of rules, and the recovery process

which performs the segmentation.

The study of deformable models started with an attempt to solve shape matching,

where a given shape needs to be located in an image. The simplest approach to shape

matching is correlation-based matching which has limited applications because objects

are not always undergoing rigid transformations in many applications. Further, one

might want to segment a generic class of objects such as cars, without having to model

each and every type of car. Deformable models allow us to capture such sources of

intra-class variability. We now categorize various deformable models that have been

presented in the literature.

Active contour models were first introduced by Kass et al. [76] and have been

intensively studied. An energy-minimizing contour, called a snake, is controlled by

internal forces which enforce smoothness of the contour and external forces which

attract the contour to salient features in the image. A gradient descent procedure is

used to slowly bring an initial contour to the edges of the object of interest in the

image. Note that these models do not encode any specific shape information about

the object and are very sensitive to the initial position of the snake and to image

noise (see Fig. 2.12). To overcome these limitations, more constrained energy func-

tions with balloon forces (Cohen [21]), attractors and tangent constraints (Fua and

Brechbuhler [50]), region information (Ronfard [109]) and gradient vector flow (Xu

and Prince [133]) have been proposed. Others have proposed different energy mini-

mization approaches such as dynamic programming and graph theoretic algorithms
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(Amini et al. [2], Geiger et al. [51] and Cox et al. [28]).

6%

 

(c)

6%

6%

(g) (h) (i)

  
Figure 2.12: CC segmentation using snakes. a) Gradient magnitude of a region

around CC. b) Manual snake initialization using an average CC. c) Same initializa—

tion as (b), but shifted 3 pixels upward. d)-f) Snake segmentation starting from

(b). g)-i) Snake segmentation starting from (c). Segmentations in (d) and (g) used

traditional snakes [76], (e) and (h) used balloons [21], (f) and (i) used GVF snakes

[133]. Results shown in images (d)—(i) were produced using the software posted at

http://iacl. ece.jhu. edu/projects/gvf.

Spline-based models try to impose a little more structure in the shape of the

snake. These models still do not encode specific shape information but the model

is expressed as a linear combination of a set of basis functions and the shape of the

object is defined by the coefficients of this linear combination (Menet et al. [89],

Figueiredo et al. [47]). An example of adaptive B-spline segmentation [47] is shown

in Fig. 2.13. Since the segmentation method enforces the interior of the object defined

by the spline to be homogeneous, the results are more accurate than those obtained
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(a) (b)

(c) (d)

Figure 2.13: CC segmentation using B-spline models [47]. a) Manual spline initial-

ization using an average CC; b) Adaptive Spline segmentation starting from (a); c)

Same initialization as (a) shifted 3 pixels upward; d) Adaptive spline segmentation

starting from (c); (Courtesy of Prof. Mario Figueiredo)

 

using snakes. It also appears that the method is less sensitive to the starting position

of the spline.

When some prior information about the shape of the object is known, parametric

deformable models are used, where the shape of the object is encoded by a small

number of parameters. The advantage of these models, also called deformable tem-

plates, is that they are better at bridging boundary gaps and they are more consis-

tent. Since we are mostly concerned with parametric deformable models, the terms

model and template will be used interchangeably. Parametric deformable models can

be categorized into analytical deformable templates and prototype-based deformable

templates. In both of these models, the template interacts with the image through an

energy function which needs to be minimized. As in the case of active contours, the
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energy function usually comprises of two terms. The internal energy term encodes

the shape of the template which penalizes the deviation of the deformed template

from the expected Shape. The external energy term measures the fit of the template

to the important features in the image.

Analytical deformable templates are defined by a set of analytical curves. The

geometric shape of the template can be changed by varying the parameters in the

analytical expressions. Yuille et al. [135] use ellipses to define the shape of the eyes

and the mouth to detect facial features in images. Lakshmanan et al. [79] use two

parallel straight lines to detect the boundary of airport runways in radar images.

Prototype-based deformable templates are more flexible because they are derived

from a set of examples of objects which are expected in the images. This approach

was first presented by Grenander et al. [56] who described a systematic framework

to represent and generate patterns from a class of shapes. A shape is represented by

a set of parameters and a probability distribution on the parameters is specified to

allow a flexible bias towards a particular shape.

The success of these models depends on how well the parameters and the prob-

ability distribution can be defined to accurately represent the Shape class. This has

lead to an increased interest in the topic of shape learning. Cootes et al. [27] have

proposed the Point Distribution Models, where the shape class is learned from a set

of example shapes. Once the shapes are aligned and properly annotated, principal

component analysis is used to generate an average shape (or prototype) along with

a series of modes of variation. Duta et al. [40] have proposed a method to automat-

ically align and annotate the training examples. They are then able to generate an
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average shape and modes of variation from a set of object outlines.

2.3 Point Distribution Models

We now describe the Point Distribution Model (PDM) originally designed by Cootes

et al. [27] and improved by Duta and Sonka [44, 43]. A PDM represents a shape

as a set of points in the Euclidean plane (space) (Fig. 2.14a)). Training shapes are

obtained by (manually) tracing the object of interest in several images (see Fig. 2.15).

From these tracings, an object model (Fig. 2.14b)) is constructed and a set of points

corresponding to the model are extracted either manually or by automatic learning

[40].

 

Figure 2.14: Illustration of Point Distribution Model. a) A 256 x 256 frame from a

video sequence of moving cars with 55 landmark points superimposed. b) A 55 point

car model.

The given set of training shapes is first aligned (scaled, rotated and translated

so as to minimize the sum of squared distances between corresponding points) using

Procrustes Analysis [34] (Fig. 2.16). Each n-vertex shape instance from the training
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Figure 2.15: A set of nine training images for the foreground car (moving left-to—right)

with the car outline manually overlaid.



set can be regarded as a single point in the 2n-dimensional space. Thus, a set of m

shape examples typically produces a cluster of m points in this space. The Point

Distribution Model describes the variation of the data within a cluster assuming

a linear dependence between point coordinates.

Mm

Figure 2.16: The nine aligned car contours of Fig. 2.15

The assumptions in using the PDM model are [27]:

1. Points in a cluster lie within an Allowable Shape Domain (ASD) of the object

which is approximately ellipsoidal.

2. Training examples give an indication of the size of the ASD.

3. Cluster center is specified by an “average shape”.

4. Every 2n-dimensional point within an ASD represents a vertex sequence, whose

shape is similar to the shapes of examples in the training set. Thus, by moving

about the ASD, we can generate new shapes in a systematic way.
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The principal axes of the 2n-dimensional ellipsoid are described by pk (k:1,...,2n),

the unit eigenvectors of the 272. x 2n covariance matrix S, corresponding to Ah, the

k-th eigenvalue of S. Each axis gives a mode of variation, a manner in which the

landmark (object contour) points tend to move together as the shape varies. The

main properties of the ASD are:

1. The eigenvectors corresponding to the largest eigenvalues describe the longest

axes of the ellipsoidal ASD. Thus, they describe the most significant modes of

variation in the variables used to derive the covariance matrix.

2. The variance represented by each eigenvector is equal to the corresponding

eigenvalue.

3. Most of the variation in object shape can usually be represented by a small

number, t, of modes. This means that the 272-dimensional point cluster (el-

lipsoid) can be approximated by a t-dimensional ellipsoid (t 3 2n), where t is

chosen so that

t 2n

2 Aj/ X )‘j 2 K-
121 i=1

where K, 0 < K S I is specified by the user. Typical value of K is 0.95.

4. Any point in the ASD (any allowable Shape of the object) can be reached by

taking the mean (center) cluster point and adding a linear combination of the

eigenvectors. Thus, any shape x, (a 2n-dimensional vector) in the training set,

can be approximated using the mean shape :2, and a weighted sum of deviations
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obtained from the first t modes:

x z :2 +Pb, (2.1)

where P = ( [)1 p2 Pi ) is the 2n X t matrix of the first t eigenvectors,

and b = ( b1 b2 b, )T is a vector of weights.

5. New examples of shapes similar to those in the training set can be generated

by varying the parameters (bk) within suitable limits (Fig. 2.17).

55:3)

[6:50

0&0

Figure 2.17: Artificial car examples generated by Simultaneously varying the model

parameters corresponding to the first two largest eigenvalues on a bidimensional grid.

The average car is shown in the center. The main two modes of variation determine

the shape of the front and rear part of the vehicle as the global shapes in the aligned

training set (Fig. 2.16) are relatively similar. Note that the original objects (Fig.

2.15) look more different because of scale and gray-level appearance.

In order to take advantage of the available a priori knowledge, three additional

features of the object might be included in the model: gray-level appearance, border

strength, and average position of the object (for more details, see [44]). We may

also use implicit knowledge about object context representing inter-relationships of

several objects present in the image.
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To summarize, a knowledge-based shape model combines generally applicable

parameters of the point distribution model and the knowledge-specific parameters

appropriate for the image segmentation task in question. As such, a complete model

is composed of:

1. Connectivity information (the number of Shapes, point ordering along contours).

2. The eigenvectors corresponding to the largest t eigenvalues of the covariance

matrix describing the ASD.

3. The average border strength for corresponding border segments (if applicable).

4. The average gray level appearance values for each point of the model (if appli-

cable).

5. The average position of the points of the average shape (if applicable).

2.4 Model design and training

A current trend in automatic image interpretation is to use model-based methods.

Typically, the models are handcrafted based on the prior knowledge the user has

about the object of interest. More recently, automatic model design has emerged as

a powerful tool for learning object characteristics. Shape models are especially useful

when the object of interest has a homogeneous appearance and can be distinguished

from other objects mostly by its shape. One important application for shape-based

object recognition is in medical image analysis. During the past decade there has

been a lot of work in shape-based approaches for automatic segmentation of flexible
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structures [120, 27, 95, 44], statistical tests to differentiate between healthy and sick

patients [11] and building anatomical atlases. Among the numerous shape models

that have been used, the following approaches are well known: Fourier [120], wavelet

[95] and contour (eigen-shape) [27, 11]. However, regardless of the model used, the

training data consists of a set of coordinates of some points along the contour of the

object of interest from several images. It is usually desirable for a model to describe

an average object (prototype), to contain information about shape variation within

the training set and to be independent of the object pose. In a detailed comparison of

Fourier, wavelet and eigen-shape models, Neumann and Lorenz [95] demonstrate that

if one does not separate shape information from pose or parametrization information

then the resulting model is unable to precisely describe the shape variation present in

the training set. That is, the model parameters should be computed after the training

shapes have been aligned in a common coordinate and parametrization frame.

Among the rich computer vision literature dealing with shapes, there are few

studies that give a precise definition of the term alignment. However, most authors

seem to implicitly agree that if D(., .) is a “distance” function between two sets of

points, then a point set B is aligned to a point set A with respect to a transformation

group G (e.g., rigid, similarity, linear, affine) if D(A, B) cannot be further decreased

by applying to B a transformation from C. The main difference between various

alignment approaches is in the distance function used: Huttenlocher et al. [67] use

the Hausdorff distance, Sclaroff and Pentland [117] use “strain energy”, T011 and

Jain [122] use “support functions”, and Horn [61], Besl and McKay [8], Gold et al.
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[52] and the statistical shape community [54] use a least-squares type (ProcrustesH)

distance. Other difiererices are the types of transformations allowed and whether

point correspondences are established during the alignment process. We are not

aware of any comparative study that reports alignment results on a common data

set for various distance functions and neither of a common quantitative evaluation

criterion. Therefore, except for some theoretical assessments, it is difficult to claim

that one alignment method dominates another for a given practical problem.

Based on our literature search, there have been few attempts to automate the

shape alignment/averaging process in the least-squares framework: Bookstein [11]

used thin-plate splines, Hill et al. [60] used polygonal matching and Davatzikos et

al. [32] used curvature registration on outlines produced by an active contour ap-

proach. In the thin-plate spline approach, the shape registration-reparametrization

is only implicit and not completely automatic. Polygonal matching is based on the

assumption that arc path-lengths between consecutive points are equal, which may

be violated in case of severe shape differences. As pointed out by several studies, cur-

vature is a rigid invariant of shape and its applicability is limited in case of nonlinear

shape distortions. None of these methods attempt to reject a training Shape if it is

 

l4Procrustes was a villainous son of Poseidon in Greek mythology who robbed travelers on the

road from Eulesis to Athens. He offered travelers a room for the night and fit them into his bed

by stretching them if they were too short or cutting off their legs if they were too tall. One can

regard by analogy one shape as the bed and the other as the person being “translated”, “rotated”

and “rescaled” so as to fit as close as possible to the bed (Webster dictionary). Procrustes analysis

compares the differences in shape between two point sets by transforming one point set in order

to match the other. The transformations allowed in a standard analysis are the similarity (shape-

preserving) ones: scale changes, rotations and translations. One can regard by analogy one point

set as the bed and the other as the person being “translated”, “rotated” and “rescaled” so as to fit

as close as possible to the bed. After one of the point sets has been transformed to match the other,

the sum of squared differences of the coordinates between them is called the Procrustes distance,

while the shape instance defined by the average of their coordinates is called Procrustes average

shape [119, 34, 54, 11].



significantly different from the majority in the training set.

2.5 Object matching

In many cases, after an object has been detected and segmented, one needs to classify

it into one of several classes. A typical situation is face recognition, where an image

window centered on a human face has to be assigned an “identity”. Usually, a face

database is searched and the most “similar” images (according to some distance

function) are returned. Recently, the multiclass identity classification problem has

successfully been transformed into a set of two-class problems [92]. This paradigm

would present the system with two query images and ask if they represent the same

person or not. In this way, the recognition task can be transformed into a set of

verification subtasks. ( In this context, we define the general recognition task as “Tell

me what object is this?” and the general verification task as “Tell me if this is an

instance of object X?” or “Tell me if these two images represent the same object?”).

There is, however, a subtle and often overlooked difference between recognition

and verification. This difference is of the same nature as that between object recogni-

tion and object detection we emphasized in Section 2.1; a recognition system usually

reports the objects in the database closest to the query object and often it does not

have an efficient strategy for rejecting objects not present in the database. This fact

was evident in the September 1996 FERET (Face Recognition Technology) test [100]

where the best performing system attained a 35% correct identification rate at a 10%

false alarm rate. Unfortunately, the FERET ROC curves give only an indirect assess-
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ment of the goodness of the similarity measures between two face images. In order to

be able to evaluate the discriminating power of such a similarity/distance measure,

one should compute the distribution of its values when comparing objects from the

same class (e.g., two face images of the same person), usually called the “genuine

(intra-class) distribution”, versus the distribution of the values when comparing ob-

jects from difierent classes (e.g., two face images of different persons), usually called

the “imposter (inter-class) distribution”. Most verification systems currently make

their classification decision based on these two distributions [70], while as far as we

know, very few recognition systems have even considered them. Though the genuine

and imposter distributions do not appear to us to be class dependent (e.g., the dis-

tribution of the distances between several frontal images of the same person should

not depend on the identity of the person), the designers of the FERET test have not

attempted to include them in their testing methodology [100].

We appreciate that there also is a somewhat “visually semantic” difference between

recognition and verification methods. Most of the current verification systems (see,

for example, biometric systems [71]) compare only objects with a quite close visual

appearance (e.g., a human face with another human face, a fingerprint with another

fingerprint, etc.), performing a very fine-scale and precise classification that many

times is challenging even for a human. On the other hand, recognition systems tend

to perform a rather coarse visual object classification (e.g., Nayar et al.’s 100-object

recognition system [94] or Sclaroff’s fish and tool shape-based recognition system

[116]) and almost always they replace, not follow, object detection.

Since we assume that the objects of interest have already been detected and seg—
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mented, our work concerns only the detailed aspects of object matching, that is, what

we previously defined as the verification paradigm. There are broadly two domains

where visual object matching systems obeying this paradigm are currently employed:

biometric-based personal identification [71] and medical image-based differentiation

between healthy and sick patients [11]. All such medical systems that we are aware

of are based exclusively on the shape of some brain structures, while the biometric

systems are based either on shape [137, 72] or on gray level appearance [31, 92].

There is one recent approach (called “Active Appearance Models” [45]) which explic-

itly integrates shape with appearance but it follows the “recognition” rather than the

“verification” paradigm.

2.6 Summary

In this chapter, we first presented a survey of the techniques currently employed in

appearance-based object detection. We have focused on a detailed description of

the human face detection problem and we analyzed and compared the performances

of six classifiers used for detecting faces. Next, we reviewed and compared several

deformable models and we provided a detailed description of the Point Distribution

Model. Segmentation results on brain and vehicle images demonstrated the advan-

tages and drawbacks of these approaches. Finally, we discussed how object matching

can find the identity of segmented objects and we provided several references to the

biometric literature.
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Chapter 3

Object detection

Object detection should be the first step towards image understanding. For a long

time, one has attempted to segment objects in images without first verifying if the

object of interest is really present. We believe that the (many times deformable

template-based) segmentation per se does not offer enough information (or at least

not the right sort of information) to decide the presence of an object. Object detection

has become a very active area of research in recent years. This chapter presents the

methods we have developed for detecting objects in different applications: namely

Corpus Callosum in MR brain images, cars in highway video and left ventricle in MR

cardiac images.

3. 1 Basic Methods

The easiest way to detect an object is to use a priori knowledge. For example, we

know that the Corpus Callosum (CC) is always present at approximately the same
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position/orientation with respect to the skull in the MR Images. It is relatively easy

[86] to detect the skull and determine a region of interest (Fig. 3.1).

   
(a) (b)

Figure 3.1: Midsagittal MRI section of the brain. a) Original image. b) A region

of interest with respect to the skull (white curve) containing the CC. c) Low—level

segmentation of the white matter in the ROI in (b).

When no prior information is available about object’s position, one has to search

for it throughout the image. A popular strategy is to quantize the continuous pa—

rameter space (translation, rotation and/or scale) into bins and perform a template

matching for each bin. The problem is even more complicated if we do not know how

many instances of that object are likely to be present in the image. For example, for

the CC segmentation problem we know that there is exactly one CC per MR image,

while for the car segmentation problem one does not know the number of cars that

may be present. In this case one has to threshold the values of the objective function

and keep only those positions where the corresponding evaluation function exceeds

the above threshold value.

Moreover, sometimes the object of interest may be partially occluded, e.g. the

background, right to left oriented cars in Fig. 3.2. Therefore, the matching criterion
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should also take into account the fact that only a part of the object may be visible.

We approached this problem by splitting the car model shown in Fig. 2.14(b) into

four overlapping models which are evaluated locally as if they were separate objects

in a fixed (relatively rigid) spatial relationship. Although an individual submodel

can be successfully matched at several locations in the image, it is quite likely that

a simultaneous matching of three out of four submodels is attained only at locations

where the object of interest is present. This is illustrated in Fig. 3.2, where two types

of cars (moving left-to—right and right-to—left) were detected, even if the background

cars are almost half occluded. Also note that, even if the model represents a sedan

car (it was trained only on sedans), it is usually able to detect other types of cars as

well (like the hatchback in the foreground), although with less confidence.

3.2 Maximum discrimination-based object

detection

This section details one of the methods, namely “maximum discrimination-based

loglikelihood ratio classification”, currently (see Table 2.2) used for object detection.

Though the main idea on which the classification is based has been employed for some

time in image registration and parameter estimation, it has only recently [22] been

adapted to object detection. We advocate this approach especially because it is by

far one of the fastest: to classify an n feature pattern one has to perform it additions

(decision trees may actually be faster but the decision boundaries they can represent
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are much more restrictive).

3.2.1 Introduction

We propose to modify and adapt the Maximum Discrimination method for left ventri-

cle detection in short axis cardiac MR images. There has been a substantial amount of

recent work in studying the dynamic behavior of the human heart using non-invasive

techniques such as magnetic resonance imaging [51, 130]. Among the domain Specific

methods for ventricle detection in cardiac images, one can mention Chiu and Razi’s

multiresolution approach for segmenting echocardiograms [20], Bosch et al.’s dynamic

programming based approach [14], and Weng et al.’s algorithm based on learning an

adaptive threshold and region properties [130]. In order to provide useful diagnostic

information, a cardiac imaging system should perform several tasks such as segmenta-

tion of heart chambers, identification of endocardium and epicardium, measurement

of the ventricular volume over different stages of the cardiac cycle, measurement of

the ventricular wall motion, etc. Most approaches to segmentation and tracking of

heart ventricles are based on deformable templates, which require Specification of a

good initial position of the boundary of interest. This is often provided manually,

which is both time consuming and requires a trained operator.

Our goal is to automatically provide the approximate scale/position (given by a

tight bounding box) of the left ventricle in 2-D cardiac MR images. This information

is needed by most deformable template segmentation algorithms which require that a

region of interest be provided by the user. This detection problem is difficult because
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of the variations in shape, scale, position and gray level appearance exhibited by the

cardiac images across different slice positions, time instants, patients and imaging

devices (see Fig. 3.3).

 

Figure 3.3: Several examples of 256 x 256 gradient echo cardiac MR images (short

axis view) showing the left ventricle variations as a function of acquisition time, slice

position, patient and imaging device. The left ventricle is the bright area inside the

square. The four markers Show the ventricle walls (two concentric circles).

Our proposed method differs from the maximum discrimination approach used by

Colmenarez and Huang for face detection in two significant ways:

1. Definition of the instance space. In [22] the instance space was defined as the

set of 2-bit 11 x 11 non-equalized images of human faces. In our case, the

ventricle diameter ranges from 20 to 100 pixels and a drastic subsampling of

the image would loose the ventricle wall (the dark ring). On the other hand,

even a 20 x 20 window would generate 400 features and the system would be

too slow. Therefore, we used only four profiles passing through the ventricle

(see Fig. 3.4) subsampled to define a total of 100 features.
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2. Solution to the optimization problem. An approximate solution to a Traveling

salesman type problem is obtained in [22] using a minimum spanning tree al-

gorithm. Since the quality of the solution is crucial for the performance of the

learning algorithm, we believe simulated annealing to be a better choice for our

optimization problem.

 

   

 

(b)

Figure 3.4: The feature set defining a heart ventricle. a) The four cross sections

through the ventricle and its immediate surroundings used to extract the features. b)

The 100—element normalized feature vector associated with the ventricle in (a).

3.2.2 Mathematical model

In order to learn a pattern, one should first specify the instance (feature) space from

which the pattern examples are drawn. Since the left ventricle appears as a relatively

symmetric object with no elaborate texture, it was not necessary to define the heart

ventricle as the entire region surrounding it (the red squares in Fig. 3.3). Instead, it

was sufficient to sample four cross sections through the ventricle and its immediate

neighborhood, along the four main directions (Fig. 3.4(a)). Each of the four linear

cross sections was subsampled as to contain 25 points and the gray values were nor-

malized in the range 0-7. The normalization scheme used here is a piece—wise linear
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transformation that maps the average gray level of all the pixels in the cross sections

to a value 3, the minimum gray level is mapped to a value 0 and the maximum gray

value is mapped to 7. In this way, a heart ventricle is defined as a feature vector

:1: = ((131,...,1‘100), where 41',- E 0..7 (Fig. 3.4(b)). We denote by Q the instance space

of all such vectors.

Markov Chain-based discrimination

We regard an n-dimensional observation as the realization of a random process X 2

{X1, X2, .., X,,}, where n is the number of features defining the object of interest and

X.- is the random variable associated with the ith feature. Let P and N denote the

two class conditional probabilities over the feature space Q:

P(x) : Prob(X=x | x is an object example) and

N(x) = Prob(X=x | x is a non object example).

For each instance x E (2, we define its log-likelihood ratio L(x) = 109%. Note

that L(x) > 0 if and only if x is more probable to be a left ventricle than a non left

ventricle, while L(x) < 0 if the converse is true.

The Kullback divergence between P and N can be regarded as the average of the

log-likelihood ratio over the entire instance space [55]:

P(x)

HPHN = Z P(x)logN(x).

xEQ

 

It has been shown that the Kullback divergence is not a distance metric. However,
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it is generally assumed that the larger HPHN is, the better one can discriminate

between observations from the two classes whose distributions are P and N. It is not

computationally feasible to estimate P and N taking into account all the dependencies

between the features. On the other hand, assuming a complete independence of the

features is not realistic because of the mismatch between the model and the data. A

compromise is to consider the random process X to be a Markov chain, which can

model the dependency in the data with a reasonable amount of computation.

Let us denote by S the set of feature sites with an arbitrary ordering {31, 32, .., 3"}

of sites {1,2, ..,n}. Denote by X3 : {XSH ---,Xs,,} an ordering of the random vari-

ables that compose X corresponding to the site ordering {31,32, ..,sn}. If X5 is

considered to be a first-order Markov chain then for x = (131,272,..,2:n) E {2 one has:

P(X5 2' x) = P(Xsl = 171,...,X3n = :17”) = P(X3n = $ansn_1 = :r,,_1) x ...x

xP(X,,2 —     X51: 171) X P(\s,—— :11).

Therefore, the log-likelihood ratio of the two distributions P and N under the Markov

chain assumption can be written as follows:

 

n

S _ 17(stx)_ (‘P(\___‘L__:1'1) P(Xs,=1'ile,-_ =Ii—1) _

L (x) — logivcxg=x) — log/’(NLY.21:1)_2N(X5i=xi|.X',i_ll—-=1:g_1)) —

 

g-I;|\11=I1_1) PX(1:11)

—ZlogA(Y=:r.|.\3'_,:.r._1) + 109A\(.\31=.c1)

: le(.r1)+ZL3'IIS“1(I,‘,CL‘,'_1). (3.2)

i=2

The Kullback divergence of the two distributions P and N under the Markov

chain assumption can be computed as follows:
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r , P(X_,t.=:r,|X,l._ =13- )

Z Z( Z P(A3i : £17,“, ‘xst—l Z xi-1)logN(Xs,=xilei-ll =Ii—ll))+

i=2 (x! 731—1)

 

ZP((1x231: I1[09% HPHIV(X81)+:Z2HPHN(JYS.||1YS'_1)o (3.3)

3.2.3 Most discriminant Markov chain

One can note that the divergence Hg” N defined in Eq.(3.3) depends on the site or-

dering {31, 32, .., 3”} because each ordering produces a different Markov chain with a

different distribution. The goal of the learning procedure is to find a site ordering S“

that maximizes H‘2” N which will result in the best discrimination between the two

classes. The resulting optimization problem, although related to, is more difficult

than the Traveling salesman problem since:

1. It is asymmetric (the conditional Kullback divergence is not symmetric, i.e.

 
XS,)).

 HPIIN(‘Y8."XS.’-1 ) ¢ HPHA’ ( \'81‘_1l

2. The salesman does not complete the tour, but remains in the last town.

3. The salesman starts from the first town with a handicap (HpHN(X3,)) which

depends only on the starting point.
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Therefore, the instance space of this problem is of the order of n x ml, where n is the

number of towns (feature sites), since for each town permutation one has n starting

possibilities. It is well known that this type of problem is NP-complete and cannot

be solved by brute-force except for a very small number of sites. Although for the

symmetric Traveling salesman problem there exist strategies to find both exact and

approximate solutions in a reasonable amount of time, we are not aware of any heuris—

tic for solving the asymmetric problem involved here. However, a good approximate

solution can be obtained using simulated annealing [1]. Even though there is no guar-

antee that an optimal solution will be found, in practice, simulated annealing does

almost always find a solution which is very close to the optimal (see also the discus-

sion in [1]). Comparing the results produced by the simulated annealing algorithm

on a large number of trials with the optimal solutions (for small size problems), we

found that all the solutions produced by simulated annealing were within 5% of the

optimal solutions.

Once S* is found, one can compute and store tables with the log-likelihood ratios

such that, given a new observation, its log-likelihood can be obtained from n — 1

additions using Eq. (3.2).

The learning stage, which is described in Algorithm 3.], starts by estimating the

distributions P and N and the parameters of the Markov chains associated with

all possible site permutations using the available training examples. Next, the site

orderng that maximizes the Kullback distance between P and N is found using

simulated annealing (Algorithm 3.2), and the log-likelihood ratios induced by this

ordering are computed and stored.
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Algorithm 3.1: Finding the most discriminating Markov Chain

0 Given a set of positive/negative training examples (as preprocessed n-dimensional

feature vectors).

1. For each feature site 3,, estimate P(X . =12) and N(X,. ——-v) for v = 0..GL — 1

(GL 2 number of gray levels) and compute the divergence Hp“N(X,,).

2. For each site pair (3,,sj), estimate P(Xs, = 111,ij 2 v2), N(Xs, = 1%ij =

v2),P(X3, = Uile, = 212) and N(Xs, = vllej = 212) for 211,122 6 0..G'L -— 1 and

GL— 1
PX(X,i=v1|X3.=v2)

:2 PX(A31 ——v1’ij Z U2)lnNx (X3=v1|X,JJ.:v2)'

v1,v2=——0

 

  
compute HPHN(X

3. Solve a traveling salesman type problem over the sites S to find 5" = {s’f, ..., 3;}

that maximizes HP||N(1YS)-

P \',.=

4. Compute and store L(Xs; : v—)— MEET;- and L(XS; = ”lllXSLI 2 v2)

P(X,.=v1|X,.__1=v2)

N(x,_.=v1|x,. 2:)
I l—l

 for 11,211,122 6 {0. .GL — 1}.ln
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Algorithm 3.2: Maximizing HPHN using Simulated Annealing

(We are actually minimizing —HPHN)

o m: The sets of parameters for the positive and negative l\larkov chain models.

0 Output: A permutation S“ of the sites 5 = {1..n} that maximizes HpHN(S*).

For i = 1 to it do

Initialize S: with the cyclic permutation {i, i + 1, ...n, 1, ...,i — 1}.

Compute the Kullback distance HpHN(.X’5.-) (system energy) associated with Sf.

For Temp 2 2 to 0.0005 do

For l = 1 to NM, do

Randomly select two non-consecutive sites p and q different from 32,.

Let S,” be the permutation obtained from S: by interchanging p and q.

Set AM 2 Hp||,\,r(.\'g:-) — HPIIN(XS.-'l°

If AM < 0, accept the transition from S; to 5," (set S,’ = 53‘“);

otherwise accept this transition only with probability e’lAMl/Te’m’)

end

Temp 2 Temp * 0.97

end

end

Choose 5* as the permutation S,” that minimizes the energy over the 11 starting sites.
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3.2.4 Classification procedure

The detection (testing) stage consists of scanning the test image at different scales

with a constant size window from which a feature vector is extracted and classified.

The classification procedure using the most discriminant Markov chain, detailed in

Algorithm 3.3, is very simple: the log-likelihood ratio for a window is computed as

the sum of conditional log-likelihood ratios associated with the Markov chain ordering

(Eq.(3.2)). The total number of additions used is at most equal to the number of

features.

 

Algorithm 3.3: Classification

0 Given 5*, the best Markov chain structure and the learned likelihoods L(Xs; = ’U)

and L(Xs; : v1|
 
‘XSI—i = ’02).

0 Given a test example 0 = (01, ...o,,) (as preprocessed n—dimensional feature vector).

1. Compute the likelihood L0 : L(Xs; : 03;) + Z L(XS: : Os;

i=2

  

7

X . = o - ).
‘ Sr—i St-i

2. If L0 > T then classify 0 as left ventricle else classify it as non left ventricle.

 

Here T is a threshold to be learned from the ROC curve of the training set depending

on the desired (correct detection - false alarm) trade—off.
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3.2.5 Experimental results

A collection of 1,350 MR cardiac images from 14 patients was used to test our system.

The images were acquired using a Siemens Magnetom MRI system. For each patient,

a number of slices (4 to 10) were acquired at different time instances (5 to 15) of

the heart beat, thus producing a matrix of 2D images (in Fig. 3.8, slices are shown

vertically and time instances are shown horizontally). As the heart is beating, the

left ventricle is changing its size, but the scale factor between the end of diastolic and

the end of systolic periods is negligible compared to the scale factor between slices at

the base and the apex of the heart.

 
Figure 3.5: Training examples for the left ventricle detection problem. a) Positive

examples. b) Negative examples.

In each image, a tight bounding box (defined by the center coordinates and scale)

containing the left ventricle was manually identified (Fig. 3.5(a)). From each cardiac

image, 75 positive examples were produced by translating the manually defined box

up to 2 pixels in each coordinate and scaling it up or down 5%. In this way, a total

of 101,250 ventricle patterns (positive examples) were generated. We also produced a

total of 179,603 non-ventricle patterns (negative examples) by uniformly subsampling

a subset of the 1,350 available images at 8 different scales. Several non left ventricle
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patterns are shown in Fig. 3.5(b).

We trained and tested our algorithm using two-way cross-validation. The 14

subjects were randomly divided into two subsets of 7 subjects each such that the total

number of images in the two subsets were approximately equal. The distributions of

the log-likelihood values for the sets of positive and negative examples over the two

cross-validation trials are shown in Fig. 3.6. They are very well separated, and by

setting the decision threshold at 0, the resubstitution detection rate is 97.6% with

a false alarm rate of 3.8%. It is also interesting to note how the representation of

positive and negative examples look after their features have been reordered according

to the most discriminant Markov chain (Fig. 3.7). Although the positive examples

are not well registered when extracted from the data, after feature reordering they

look pretty much aligned.
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Figure 3.6: The distribution of the log-likelihood ratio for left ventricle (red) and

non left ventricle (blue) examples computed for the two cross-validation trials. For

a decision threshold set at zero, 2,460 (2.4%) of the 101,250 positive examples and

6,854 (3.8%) of the 179,603 negative examples are misclassified.
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(a) (b)

Figure 3.7: Feature reordering induced by the most discriminant Markov chain (a)

Positive examples. (b) Negative examples.

During testing, each image was subsampled at 8 different scales and scanned with

a constant 25 x 25 pixel window using a step of 2 pixels along rows and columns. This

means that, at each scale, a number of windows equal to a quarter of the number of

pixels of the image at that scale was used for feature extraction and classification. All

positions that produced a positive log-likelihood ratio were classified as left ventricles.

Since several neighboring positions might have been classified as left ventricle, we

partitioned them into clusters (a cluster was considered to be a set of image positions

classified as left ventricles that had a distance smaller than 25 pixels to its centroid).

At each scale, only the cluster centroids were reported, together with the log-likelihood

ratio value for that cluster (a weighted average of the log-likelihood ratio values in the

77



cluster).

It was not possible to choose the best scale/position combination based on the

log-likelihood value of a cluster. That is, values of the log-likelihood criterion obtained

at different scales are not comparable: in about 25% of the cases, the largest log-

likelihood value failed to represent the real scale/position combination. Therefore, we

report all cluster positions generated at different scales (an average of 7 clusters are

generated per image by combining all responses at different scales). Even if we could

not obtain a single scale/position combination per image using this method, the real

combination was among those 7 clusters reported in 95.5% of the cases. Moreover,

the 4.5% failure cases came only from the bottom most slice, where the left ventricle

is very small (15-20 pixels in diameter) and looks like a homogeneous grey disk. We

suspect that these situations were rarely encountered in the training set, so they

could not be learned very well. The quantitative results of the detection task are

summarized in Table 3.1. The false alarm rate has been greatly reduced by reporting

only cluster centroids.

We could select the best hypothesis by performing a consistency check along all

the images that represent the same slice: our prior knowledge states that, in time,

one heart slice does not modify its scale/position too much, while consecutive spatial

slices tend to be smaller. By enforcing these conditions, we could obtain complete

spatio—temporal hypotheses about the heart location. A typical detection result on

a complete spatio-temporal (8 slice positions, 15 sampling times) sequence of one

patient is shown in Fig. 3.8).
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Table 3.1: Performance of the left ventricle detection algorithm.

 

 

 

 

 

 

Resubstitution detection rate 97.6%

Resubstitution false alarm rate 3.8%

Test set detection rate 95.5%

Test set false alarms per image 6

Test set false alarm rate/windows analyzed 0.03%

Detection time/image (Sun Ultra 10) 2 sec    
 

3.3 Summary

W'e addressed the problem of object detection in black and white images. Simple

techniques based on prior knowledge and/or shape cues were shown to produce a good

localization of the object of interest in some particular cases. For situations where

the object of interest is mostly described by texture properties and the test image

may contain several/none instances of it, we have developed an appearance based

detection method. We modified a fast classifier, previously employed in the speech

processing domain, and demonstrated it on left ventricle detection in MR cardiac

images. A detailed formulation of the mathematical model (first order Markov chain)

as well as the algorithms required for deriving the chain order that best discriminates

positive examples from negative examples have been provided. Finally, results on a

spatio—temporal MR cardiac study are shown and discussed.
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Chapter 4

Learning 2D shape models

This chapter describes a novel approach towards automatic design of 2D shape models.

Our method is based on clustering a set of training shapes in the original shape

space defined by the coordinates of the contour points and performing a Procrustes

analysis [11, 54, 34] on each cluster to obtain cluster prototypes (average objects) and

statistical information about intra-cluster shape variation. The main difference from

previously reported methods is that the training set is first automatically clustered

and those shapes considered to be outliers are discarded (Section 4.4). In this way,

the cluster prototypes are not distorted by outlier shapes. The second difference is in

the manner in which registered sets of points are extracted from each shape contour.

We propose a flexible point matching technique (Section 4.3) that takes into account

both pose/scale differences as well as non-linear shape differences between a pair of

Objects. The matching method is independent of the initial relative position/scale of

the two objects and does not require any manually tuned parameters. A quantitative

analysis of our shape registration approach within the main cluster of each object
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(brain structure), demonstrated results that compare very well to those achieved by

manual registration; achieving an average rms error of about 1 pixel (Section 4.5).

Our approach can serve as a fully automated substitute to the tedious and time-

consuming manual shape registration and analysis.

4.1 Problem specification

We will concentrate on learning 2D shape models: given a number of 2D shapes, a

model consists of a shape prototype along with statistical information about shape

variation around the prototype (Fig. 4.1). In some cases, more than one prototype

may be necessary to capture the variability in the training set.

We use a least-squares type (Procrustes) distance between two shapes whose choice

was motivated by the following facts: (i) it provides a convenient way to compute

a prototype (average shape) from a set of simultaneously aligned shapes (Procrustes

analysis [34]), (ii) once the point correspondences are found, there exists an analytical

(exact) solution to the alignment problem [61, 26] and (iii) it has been quite frequently

used in medical image analysis [11, 25, 26, 52]. Unfortunately, least-squares alignment

methods do not deal with parametrization, and can be applied only to sets of corre-

sponding points. In practice, such sets of points have been obtained by a painstakingly

manual inspection of the data of interest. This fact is illustrated in Fig. 4.2 where

an expert defined the points (called pseudo-landmarks) that characterize each of the

3 ventricle shapes in Fig. 4.1. When these points are defined independently for each

shape, it may be very difficult to exactly define point correspondences in the absence
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Shape

learning

 
(a) (b)

Figure 4.1: Learning the shape of the right ventricle from MR brain images. a)

Manual tracing of the right ventricle performed by a neuroanatomist on three different

patients. b) A ventricle model consists of a shape prototype (drawn in black) along

with statistical information about shape variation. The prototype vertices (drawn as

colored circles) have been obtained by averaging the coordinates of the corresponding

vertices on the three ventricles (drawn as colored diamonds) after they have been

aligned in a common coordinate frame (e.g., vertex 5 is the average of 31, 32 and

53). The three aligned ventricle shapes are shown in dotted red, green and blue

lines. This method for obtaining a shape prototype is called Procrustes analysis

[11, 54, 34]. Note that, in order for this method to work one needs to extract sets

of corresponding points of equal cardinality (in this case 16) from the three ventricle

shapes. The shape variance is given by the 32 x 32 covariance matrix of the (2:,y)

coordinates of the vertices on the three ventricle shapes after alignment.

83



of anatomical landmarks (points for which correspondences can be defined based on

prior knowledge). Other problems are human bias and lack of reproducibility, that

is, different experts may extract different numbers of pseudo-landmarks and even

different point correspondences.

\\\,\<\..\\\\

[ I
<]/.

Figure 4.2: Expert-defined pseudo—landmarks (yellow squares) on the three shapes in

Fig. 4.1 along with some obvious point correspondences (red arrows). Note that if

the pseudo-landmarks are defined on each shape independently (as it was the case

here) then, in most cases, it is very difficult to find corresponding points on other

shapes

  

  

We present an alternate solution to the problem of shape reparametrization-

alignment-averaging problem. One difference from most previous methods is that

it does not necessarily compute a single average shape from the given training set,

but it rather detects shape clusters in the data and provides a shape average and vari-

ation for each cluster. The idea of detecting shape clusters in the training set has been

employed before by Cootes and Taylor [26] and by Gold et al. [53]. However, in [26]

the clusters were not detected in the initial shape space but in the parameter space

obtained by Principal Component Analysis, while in [53] clustering is formulated as

a complex optimization problem whose solution is computationally expensive.

Mathematically speaking, we are attempting to solve the following problem: Given
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a set of m shape instances 5,, = {(1rf,yf) 133,7; represented by a set of boundary

points (shape 5;, represented by m, boundary points), partition it into a set of clusters

and, for each shape cluster, compute a prototype (mean shape). The set of prototypes

will be used as models for detection of object instances in new images by means

of deformable template matching. Working with average templates learned from

examples results in a faster and more reliable segmentation. As a direct application

of our shape learning method, we use it to learn the shapes of 11 different structures

in .MR brain images and demonstrate how the learnt shapes facilitate subsequent

image segmentation. Figure 4.3 shows an example of an MR brain image taken in

the coronal plane. Several structures of interest whose contours were identified by

a neuroanatomist are shown in Figure 4.3(b). Note that parts of the contours of

some structures cannot be distinguished from the background based on gray level

information alone. In such cases, only a model-based segmentation that uses prior

knowledge about the shape of a structure of interest is able to identify the structures

[44].

4.2 Shape learning method

In this section we first provide a short introduction to the shape related terminology

that will be used throughout the chapter. Then, we present an outline of the proposed

shape learning method and the ideas that stand behind it.

An n-point shape instance B : {3,3},:1,_n = {(153, y?)},-:1,,, is said

to be aligned to A = {(If, yf‘)},~=1__n if the sum-of-squares SS(A, B) =
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Figure 4.3: Magnetic resonance image of the human brain, imaged in the coronal

plane with in—slice resolution of 256x256 pixels. a) Original image (cropped to show

only the brain region). b) Structures of interest whose contours were identified by a

neuroanatomist.

I 1

ing B. In this case, the quantity SS(A,B)/n is called the Mean Alignment Error

7: [(zf — z?)2 + (y,A — y?) 2] cannot be decreased by scaling, rotating or translat-

(MAE(A, 3)). Practical algorithms for shape alignment can be found in [26, 34]. In

general, the alignment procedure is not symmetric and, if |A| 2 IE] 3 2, A and B

can be aligned exactly (the alignment error is 0).

Let A = (($34, yf)}j=1_.p and B = {(zrf, yf)}k=1,, be two shape instances defined

by p and r contour points, respectively. A match matrix M = {M',k}ii:ill’r’ [52] is

defined by:

1 if point Aj corresponds to point Bk

MN: =

0 otherwise.

We consider 0-1 match matrices M corresponding to symmetric one-to-one links
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(point correspondences); that is. a point AJ- 6 A can have at most one corresponding

point By, E B, in which case the correspondence is symmetric. The points from both

sets that have no correspondence are called outliers. We denote by AM and BM the

subsets of A and B matched by M and by AIAEM/I) : MAE(AM, BM). Note that

the definition of a match matrix M does not assume the existence of a similarity

transformation that would overlay the subsets AM and BM exactly (this would be

equivalent to MAE(AM,BM) : 0). However, in practice it makes sense to use a

match matrix M only when the distances between corresponding points matched by

.M are reasonably small. For a discussion of this issue, see Section 4.6.

The Procrustes average of a set of shapes {Ak}k:1__m is a shape instance near the

center of the empirical distribution of Ak’s in the shape space defined by the coor-

dinates of the contour points. The computation of Procrustes average is graphically

illustrated in Fig. 4.1(b). From the three ventricle shapes (dense sets of 20 points),

sparser subsets of corresponding points (in this case 16 points) were extracted. These

subsets are aligned into a common coordinate frame and their coordinates are av-

eraged in order to obtain the Procrustes average shape. For a detailed definition,

properties and methods of computing an average shape, see [11, 26, 34].

The outline of our shape learning method is as follows (see also Fig. 4.4):

 

Algorithm 4.1: Shape Learning Outline

Input: A set of in. shapes instances $1,...,Sm, each represented by a sequence of

boundary points.
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1. Polygonal approximation: For each shape S, in the training set, compute a

polygonal approximation SL

2. Global and local similarity registration: For each j, k = 1..m, perform a flexible

one-to-one registration (mapping) of S,’c to Sj. If the registration succeeds,

define Tch as the subset of S]- that corresponds (was matched) to the points of

SL, otherwise set Tch = (b.

3. Inter-shape distance matrix computation: Compute a pairwise mean alignment

error matrix D = {dj,k}j,k:1_,m, where d“, = MAE(Tj,k,S,'C) if TM # 0 or

dig, = 00, otherwise.

4. Shape clustering and prototype computation: Set the current training set equal

to the original set, of m shapes: CTS = {Sk}k:1”,,,. While CTS 79 (0 do

(a) Find the shape approximation So that has the least average distance to

the shapes SJ- 6 CTS (the best fit shape to the current training set).

(b) Extract from CTS and put in a cluster all the shapes S,,,..,S,-p to which

5’ could be fit (see Sections 4.4 and 4.6.3).
20

(c) The cluster prototype is defined as the Procrustes average ofT,-,,,-0,..., Tipyo.

The shape variance inside the cluster is defined as the covariance matrix

of the aligned sets {T,-k,,'0}k:1__p. The size of the covariance matrix is equal

to twice the. number of points in So.
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Figure 4.4: The shape learning method (Algorithm 4.1).
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Step 1 of the learning algorithm finds a polygonal approximation of each shape

using a method described in [47]. The distance between consecutive vertices of the

polygonal approximations is about 2-3 pixels in order to smooth small shape artifacts,

noise and quantization effects. The polygonal approximation is only used to extract

subsets of corresponding points from the original shapes. This makes the registra-

tion task easier and implicitly brings together the extracted subsets into a common

parametrization frame. Indeed, if a point 51-0 on a polygonal approximation 5" is reg-

istered t0 3., 6 SI, 31-, 6 S2, ..., 8..., E Sm (51,...,Sm are original shapes that form

a cluster) then, by transitivity, sips,” .., s, are correspondents on $1,..,Sm of one

vertex of an average shape (the idea of registration by transitivity was previously used

by Sclaroff and Pentland [117]. though in a different context). For example, in Fig.

4.1(b), 31, .32 and 33 are the corresponding vertices on the three example shapes of

the prototype vertex 3. It is not advisable to register two polygonal approximations

because one can dilute information about the original point variation and encounter

contention problems caused by the one-to-one mapping requirement. On the other

hand, one should not attempt to directly register pairs of original shapes since it

is more difficult to define and register local topological neighborhoods (see section

4.3) because of the local noise (jagged contours) and point contention. By using a

smoother and sparser approximation of a shape, we increase the likelihood that every

point on it will eventually have a correspondent. If, after registration, there exists a

point on S}, that does not. have a correspondent on 51- then we say that the registration

between S,’c and Sj has failed and we set d” = 00.
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4.3 Shape registration

In order to ensure that the shape variation present in the original data is preserved,

one needs a precise automatic registration method. Hill et al. [59] reported that the

mean-square-error (from a ground truth) of their registration method is about twice

as large as the error in manual registration. They also reported that other methods

were even less robust. Therefore, we have decided to combine several ideas from

the literature [52, 48, 57, 117, 46] with new ideas in order to obtain a more precise

registration method.

Our shape registration method consists of two stages: (i) global similarity regis-

tration of two arbitrary sets of points and (ii) non—linear registration based on local

similarity of two curves (ordered sets of points).

The global registration method attempts to find a similarity transformation corre-

sponding to a one-to—one mapping of a subset A’ of a shape instance A onto a subset

B’ of a shape instance B. (Ideally, the entire shape instance A should be mapped

one-to-one by a similarity transformation onto the entire shape instance B, but most

of the time the number of vertices on the two shapes are different, and moreover,

some vertices on one shape have no corresponding vertex on the other shape). This

mapping is required to simultaneously fulfill two contradicting requirements: (i) the

size n of the matched subsets is as large as possible, and (ii) the mean-alignment—error

between A’ and B’ is as small as possible.

There is a plethora of point-based registration methods, see [87] for a recent

survey. As noted in [52], when solving for best alignment transformation and its
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associated match matrix (set of point correspondences), one has to search one of

the two complementary spaces: either the space of correspondence functions which

is finite but exponential in the number of points from the two sets, e.g., Softassign

[52] or the space of similarity transformations which is infinite, and can be only

partially explored, e.g., ICP [8] or Chamfer Matching [13]. We propose a registration

procedure (Algorithm 4.2) based on a polynomial quasi-exhaustive exploration of

the correspondence functions (match matrices) space. Its main novelty compared to

techniques previously used in the literature [48, 124, 57, 46, 52] is the way it resolves

the shrinking effect [46]: an unconstrained linear registration of two sets of points

tends to “shrink” one set with respect to the other since, theoretically, the “best”

alignment is obtained when one point set is rescaled to become a single point. Our

problem formulation requires a small MAE between the two chosen subsets, using

as many point correspondences as possible. Unfortunately, if we have less than 3

correspondences, the MAE is 0 and this should be compensated for. Therefore, we

want to explicitly specify in the search criterion that a q% increase in MAE with a

11% increase in the number of correspondences is accepted as long as no individual

distance between a pair of corresponding points exceeds a given threshold. One of the

simplest functionals that captures this trade-off is the ratio between a compensated

MAE and the number of correspondences:

f(M) = [.MAE(.’II) + K]/n, (4.1)

where K is a constant depending on the percentages p, q and the scale of the object
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(see Section 4.6 for the properties of this functional and how to choose K). If we

also impose the constraint that the mapping is one-to—one, we implicitly solve the

shrinking problem. With a large number of one-to-one correspondences (and the

assumption that the two shapes are not sampled at very different rates), there can

be no shrinking of one shape with respect to the other.

 

Algorithm 4.2 (Global similarity registration)

1. Set me = 00.

2. For every pair of points (away-2) E A x A

For every pair of points (ka, bkg) E B x B do steps (i) through (v)

i. Find the similarity transformation it that aligns the sets {aj1,aJ-2} and

{12.1.1112}.

ii. Apply 1;“) to all the points in B to obtain B’.

iii. For every point bk of B’, find its nearest neighbor NN(bk) in A. If

the distance between bk and IVA/(bk) is smaller than a threshold T

then set a correspondence between the two points. A match matrix

M between A and B is constructed in this way. Since two points from

B’ can have the same nearest neighbor in A, we enforce the one-to-

one correspondence requirement, that is. allow a point to be linked

to its second to fifth nearest neighbor if the first one can be assigned

to a closer point in B’, and the length of the link does not exceed
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T. Recompute the transformation it) that aligns the sets A and B

according to the match matrix M.

iv. Compute f(1lI).

v. If f(M ) < me then Vin... = f(M ), it"... = w.

3. Apply y’r,,,,-,, to all the points in B to obtain B’.

4. For every point bk of B’, find its nearest neighbor in A. If the distance between

bk and its nearest neighbor is smaller than T then set a correspondence between

the two. A match matrix M’ between A and B is constructed in this way and

enforced to correspond to one-to-one links.

5. Find the linear transformation 'le’i’final that aligns the corresponding sets AM:

and B)”: .

 

Figure 4.5(c) shows an example of similarity registration of a ventricle shape

approximation to a full ventricle shape. Although globally the registration is quite

good, some point correspondences are wrong (e.g., the point labeled O) or have been

missed (the two neighboring vertices of O).

We are interested not only in computing an average shape (which is robust to slight

misregistrations) but also the shape variation present in the data set which is best

described by the set of high curvature points. Since a global linear registration does

not necessarily perform a good local registration (see [46] and Figure 4.5(c)), we need

to locally refine the results of the global registration such that the corresponding
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Figure 4.5: Flexible registration of a shape approximation (b) to an original shape

(a), with point correspondences drawn in green. c) Global similarity registration -

Algorithm 4.2. d) Monotonic registration obtained from (c) after point reordering

and inversion elimination (the point labeled 0 causes an inversion): Steps 1-3 of

Algorithm 4.3. e) Topological neighborhood corresponding to point 0: Step 4a of

Algorithm 4.3. f) Similarity registration of the two topological neighborhoods in e).

g) Final flexible registration.

points of high curvature from the two data sets are matched together. However,

some high-curvature points in A may not correspond to high curvature points in

B, therefore we do not enforce this requirement explicitly, but rather through local

similarity registration and monotonicity. We define the term “local” in a topological

sense according to the natural point ordering along curves defined by A and B. A good

registration should be monotonic, that is, preserve the topologies (point ordering) on

the two shapes.

A registration of two curves (sets of points along the contour) A and B (which

can be regarded as a partial function f from A to B) is called monotonic if:

1. The points of A are cyclicly reordered such that point a1 corresponds to point

b1.
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2. There are no inversions, that is, if a, and aj correspond to bk and b, (in this

order) and i < j then k < l (for example, an inversion is caused by point O in Figure

4.5(c)).

Note that a monotonic registration of two sets of distinct points is one-to-one,

therefore we can perform a local registration and obtain one-to—one links by looking

for a monotonic registration.

 

Algorithm 4.3 (Monotonic, local similarity-based registration)

Input: two sets of points A and B and a set M of one-to—one links between a

subset A’ of A and a subset B’ of B obtained by global similarity registration.

1. Cyclicly reorder the points of A and B and the links in M such that al corre-

sponds to b1.

2. If the number of inversions exceeds [MI/2, reverse the ordering of the points in

A.

3. Break the smallest number of links in M such that there are no more inversions

(Figure 4.5(d)). Note that we are left with a monotonic registration.

4. For i = 1..|B| do

(a) Find a topological neighborhood of 0,, [b,,b,+1, ..., bi, ...b,_1, b,.] (the actual

size of the neighborhood depends on the curvature at b,; the larger the

curvature, the smaller the neighborhood) such that both b; and b, have

correspondences in A, let them be a1, and arr with l’ < r’ (Figure 45(6))
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(b) Perform a similarity registration between the sets [alr,a(r+1,..,a,.1] and

[bl,bl+1, ..,b,] (Figure 4.5(f)).

(c) If B,- is linked to a different point in A than it was before, then record this

change in M.

5. Break the smallest number of links in M such that there are no more inversions.

 

4.4 Shape clustering and prototype computation

Since the objects we deal with are complex manifolds of different dimensionality (de-

pending on the number of points along the contour), shape clustering proved to be a

difficult problem. We are aware of only two type of approaches to shape clustering:

(i) projecting all shape instances to a common subspace (e.g., PCA, Fourier, modal

space, etc.) and treating the projection coordinates as points in an Euclidean space

[26] and (ii) specifying a “distance” between 2 shapes and performing a distance-based

clustering [53]. As such, shape clustering reduces to the general clustering problem

for which numerous solutions have been proposed. One limitation of projection-based

methods is that they exhibit an inherent loss of information due to the fact that the

projection transformation is not one-to-one. That is, one point in the transformed

space may correspond to several shapes whose visual appearance may be quite differ-

ent (see the discussion in [44]).

Here, we propose to solve the shape parameterization/correspondence/clustering
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Figure 4.6: Two training sets of 28 right ventricular (rows 1 and 2) and 28 globular

shapes (rows 3 and 4) and a set of 11 cistern shapes (row 5) from different patients

were automatically divided into clusters (main cluster (C1) drawn using multicolor

dots and secondary clusters drawn in red, green and magenta). The registration of

the best fit shape (#1047 for ventricles, #8917 for globus pallidus and #1179 for

cisterns) to clusters C1 is overlaid as sets of colored points; corresponding points on

different shapes are drawn using the same color. For example, corresponding bottom

points on each right ventricle are drawn in red.
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problem in a unitary framework based on the MAE distance. The third step of

Algorithm 4.1 defines a pseudo—distance matrix D of mean alignment errors between

a polygonal approximation of a shape and an original shape from the training set. A

natural way for obtaining shape clusters based on D which is also helpful for cluster

prototype (average) computation is a greedy, divide—and-conquer strategy related to

histogram mode seeking [58]:

1. Find a seed which is closest to the data (analogue of a mode of a histogram).

This is done in Step 4a of Algorithm 4.1 by finding the shape approximation Sfio that

best fits the current training set (based on the average distance to the rest of the

shapes). S,’O will be used as a reference set for extracting corresponding sets of points

of the same size from as many training shapes as possible, as discussed in Section 4.2.

2. Find all shapes S,- in the current training set that “fit” (are close enough

to) 5:0 (Step 4b of Algorithm 4.1). These shapes are removed from the training

set and will form a new cluster (analogue to finding the two valleys adjacent to the

histogram mode and grouping in one cluster all points between the valleys). For

the mathematical details of what we mean by “close enough”, see Section 4.6.3. We

mention that it is very important that the cluster seed fits the shapes in the cluster

as well as possible. Though there is no theoretical guarantee that all the points of

the seed are perfectly registered to the shapes in the cluster, a poor fit can be due to

one of the following two causes: either the training shapes are very different or the

registration results are not accurate.

This cluster extraction procedure continues using a smaller current training set

until all shapes have been assigned to a cluster. The clustering process makes only
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one pass through the data since each cluster starts from a shape (seed) which is close

to the cluster center. We noticed that this seed is very similar to the cluster average,

therefore we do not believe that adding more passes (cluster reassignments) would

modify the cluster membership (at least for well separated clusters).

For each cluster, the cluster prototype is defined as the Procrustes Average of the

subsets of registered points extracted from each shape in the cluster. The cluster

variation is defined as the 2n >< 2n covariance matrix of the subsets of points used to

compute the prototype (n is the number of points on the cluster prototype). This

variation can be used by a segmentation method to reject shape deformations that

have not been seen in the training set (see [44, 25]).

4.5 Experimental Results

The shape learning method presented above was employed to design a shape model

for 11 brain structures and its performance was assessed by a quantitative com-

parison to a “ground truth” model obtained manually. The training set consisted of

observer-defined contours identified by a neuroanatomist in 28 individual Tl-weighted

contiguous MR images of the human brain, imaged in the coronal plane with in-slice

resolution of 256x256 pixels. Figure 4.5 shows the following five registration stages:

global similarity registration - Algorithm 4.2 (Fig. 4.5(c)), point reordering and inver-

sion elimination - Algorithm 4.3.1-3 (Fig. 4.5(d)), defining topological neighborhoods

in Algorithm 4.3.4a (Fig. 4.5(c)) and their registration (Fig. 4.5(f)) and final regis—

tration (Fig. 4.5(g)). Figure 4.6 shows the original manual tracings and clustering

100



 
Figure 4.7: Procrustes averages (prototypes) of the shapes in the main clusters for 11

brain structures with the aligned shape examples overlaid. The clouds of consecutive

points are drawn in different colors to show the accuracy of the registration.
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results for three structures together with the best fit shape registration to the main

cluster (the sets T1130» TQM-0 as defined in Algorithm 4.1). The main cluster is drawn

using multicolor dots, while the secondary clusters (which can be considered as out-

lier shapes) are drawn in red, green and magenta. To emphasize the role of a good

registration for extraction of {Tikyohzlum we drew consecutive points on Tug-0 using

different colors, the same color for corresponding points on each shape. For example,

corresponding bottom points on each right ventricle are drawn in red. Figure 4.7

shows the main cluster prototypes for 11 structures with the aligned shape examples

overlaid. Consecutive point clouds are drawn in different colors to Show that the

clouds are non-overlapping; the registration appears to be very precise.

In order to obtain a quantitative validation of our results, we used the method

employed in [59]. From each structure prototype, we manually selected several points

which we considered most important in defining its shape (points with the highest

curvature) and we manually registered them to the training images. We defined

the ground truth position of these points as the Procrustes average of the manually

registered points (these point positions are shown for the right ventricle and globus

pallidus in Fig. 4.8 as black circles). We computed and compared the root-mean-

square (rms) distance of manually placed points from the ground truth and the rms

distance of the automatically registered points from this ground truth, respectively.

The rms distances for the right ventricle and globus pallidus are also shown in Fig.

4.8: for every point selected on each shape, each distance is displayed on the same y

coordinate as the ground truth point it corresponds to. The average rms distances

for the selected points are similar, though, on individual points they may be quite
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Figure 4.8: Prototype of the 25 right-ventricle shapes in the main cluster (a) and

prototype of the 28 right-globus pallidus shapes (b) with the aligned shape exam-

ples overlaid. The ground truth position for several points are shown using black

circles. For each such point, we also show the rms error of the manual and automatic

registrations.
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different. The very high curvature points (the extreme upper or lower points) are

somewhat better registered manually while the intermediate points are better placed

automatically. This was expected, since it is very difficult for a human to exactly

place a point (identify landmarks) if there are no curvature or other anatomical cues.

The average rms error for each of the 11 structures is between 0.7 — 1.2 pixels. For

some structures, the automatic method produced a slightly smaller rms distance than

the manual one, while for others the rms of the automatic method is slightly larger.

4.6 Discussion

We will provide a brief discussion on the choice of parameters, criterion function,

computational complexity, failure cases and range of applicability of our algorithm:

1. Upper bound on the distance between corresponding poznts. Based on several

thousand registration experiments using various real data sets for which there exists

a ground truth match matrix, we found that almost all the distances between valid

corresponding points are smaller than 10% of the object scale. The scale of a shape

instance .4 : {(13, y,)},-:1“,, is defined as

 

Scalc(A) 2 \/( max (1:,)— min (13,-) + 1).(rnax (y,)— _r_nlin (y,)+1). 1
1:1..n r:1..n 1:1..n

Therefore, we enforce this upper bound when we set a point correspondence in

 

1This definition of scale is different from that employed by most previous studies [119, 34, 54, 11]

n

where Scale(.'~l) = 2: ((m— i)? + (er— Elli) since we wanted it to be independent of the number

i=1

of points and the sampling rate. Consider, for example, two circles centered at the origin of radius

1 and 0.001, respectively. Our definition of scale does not depend on whether the point set consists

of exactly 10 points on the outer circle and 1000 on the inner circle or vice versa. By contrast, the

Euclidean norm-based definition of scale is highly dependent on the sampling rate which, for some

applications, may be an undesirable property.
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Step 2.3 of Algorithm 4.2. In practice, if there exists a proper matching between two

sets, most of the links are actually shorter than half of this upper bound. We also

found it to be convenient to work with scale independent objects, therefore, before

registering two point sets, we rescale them such that the largest one has a scale equal

to 10. In this case, the threshold T in Step 2.3 of Algorithm 4.2 is set to 1.

2. Properties of the evaluation function f(M) (Eq. (4.1)). Since the distance between

two corresponding points is not larger than 1 (see above), we have that

K/n g f(M) g (K +1)/n,\7’ match matrix M and V n.

If a match matrix M’ has p% more links than M, one has

K/[(1+ Mn] 5 f(M’) s (K + 1)/[<1 + PM]

and M’ is preferred to M if

(K +1)/[(1+p)n] < [$772.41) Kp >1.

On the other hand, the choice between an n-link matrix and one with less than

(1 +p)n links (ifp < l/K) is determined by the MAE: the 11% increase in the number

of links will be accepted iff

K/n + MAE(AII)/n Z K/[(1+ p)n] + (1 + q)MAE(M)/[(1+ p)n] 4:)

q S p + Kp/MAE(M).

Since MAE(M) g 1, one has that, ifq g p(1+K) then q s p+Kp/MAE(M). In

particular, if K = 2 a 50% increase in the number of links will always be accepted no

matter what the increase of the MAE is, while a 25% is accepted if the MAE increase

is less than 75% (this does not mean that if q > 75% then AF is always rejected; in

practice it might be accepted until q becomes about 100%).
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3. Constructing a shape cluster (Step 4 of Algorithm 4.1). One should note that

a match matrix A! obtained by global similarity registration satisfies MAE(M) g

10%Scale and this does not usually hold after the local registration. After performing

all 8,687 possible pairwise registrations (between examples of the same structure), we

found that in almost all the cases, a MAE 2 15%Scale corresponds to a wrong

matching. This is due to either large shape differences or cases when least-squares is

not a good matching philosophy (for example, the hand shapes in [59], or handwritten

characters). Our method always found a good least squares matching if it was present.

For the shape learning application reported here, we expected to find one main shape

cluster and a few other small clusters with outlier shapes. Therefore, when computing

the best fit to the training set in Step 4.a, we did not compute the average Mean

Alignment Error to all the shapes but only to the closest 70% (expecting that the

furthest 30% might be outliers). On the other hand, two shapes were considered to be

“close enough” in Step 4.b if their MAE S 15%Scale. We would also like to mention

that the manner in which all theabove parameters are chosen seems to be application

independent. We obtained similar results for learning shapes coming from different

applications like fingerprint matching or hand shape-based person verification, with

no changes in the implementation.

4. Time complexity. There are two aspects regarding the time complexity of our

method. The first one concerns the shape registration complexity (Algorithm 4.2).

It is easy to see that if the two sets to be registered have n points each, then the

complexity of Algorithm 4.2 is 0(n5). This can be reduced to 0(n4) if one data

set is formed of ordered, relatively evenly sampled points along a continuous curve
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(and even further reduced to 0(n3) if both data sets are like that) and one does not

expect large scale differences between the two objects or in the percentage of outliers

found in the two data sets. The heuristic is based on the observation that an initial

2-point pairing hypothesis in which the two points from A (or those from B) are very

close together produces a worse estimate of the transformation between the two sets

than a hypothesis where the selected points are far away. In this case we could form

the initial hypothesis based only on the “diagonal” of the data set(s): (si, Si+|AI/2).

Though it might be argued that this complexity is still high, for applications using 2D

contours extracted from images that usually have less than a few hundred points, it

is sufficiently fast and gives the result in order of seconds (our 0(n4) implementation

needs about 10 seconds to register a 30—point approximation to a 100-point original

contour on a Sun Ultrasparc (296 MHz processor)).

The second complexity aspect concerns the shape learning itself. Algorithm 4.]

performs in2 pairwise matchings, where m is the number of shapes in the training

set. We mention that it is neither possible nor necessary to apply it directly to a

large shape set. The idea behind trying all m2 matchings is to find a shape in the

training set that fits well with the remaining shape examples, and compute a mean

shape based on it. The resulting mean shape is sufficiently smooth (see Fig. 4.7)

and retains enough shape characteristics so that it can be used for direct matching

to new shape examples. Therefore, we only need to apply the quadratic pair-wise

matching to a relatively small training set (a few tens of elements). After that, one

can classify the remaining shapes only by registration to the estimates of the current

clusters prototypes. Each time a shape does not fit any of the current prototypes,
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a new cluster is started. In this way, the learning process becomes incremental, and

linear in the size of the training set.

5. Failure cases. Algorithm 4.2 may fail to find the real point matchings between two

point sets in cases where the proportion of outliers in at least one of the sets is very

large (e.g., when matching one object outline to the edge points in a cluttered scene)

and no additional information (constraints on the allowed similarity transformations

or edge direction at each point) is used. However, this is not a failure of the search

method in finding an “optimal” matching according to the optimality criterion in Eq.

4.1, but rather a failure of the data points in satisfying this optimality criterion. Since

we used Algorithm 4.2 as a filter (declaring failure whenever the proportion of outliers

resulted was high and stopping further processing) we have not noticed any failure of

Algorithm 4.3. In the current application, Algorithm 4.4 used the assumption that

we expect to have one main cluster along with some outlier shapes. This seems to be

a reasonable assumption for shapes which describe natural variations across different

subjects in medical or biometric images. However, we do not consider that this

algorithm will necessarily fail on true multimodal distributions. If the 70% threshold

defined in Section 4.6.3 is decreased, we believe that the method could accommodate

multimodal distributions as well.

6. Range of applicability. As experimental results, we showed how to identify clusters

and compute prototypes for 11 different neuroanatomic brain structures from training

sets of 28 manual tracings per structure in MR images. However, this method has

a larger range of applicability (see Chapters 5-6 and [49, 42] for more applications).

It can also be employed for designing shape models for open contours (Section 6.1)
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as well as for sets of points containing no connectivity information (e.g., fingerprint

minutiae or palm feature points [42]). In the latter case, only Algorithm 4.2 is applied

for data registration, and the amount of non-linear deformation that can be handled

is smaller. In general, there is a tradeoff (regulated by the threshold T described

in Section 4.6.1) between the amount of non-linear deformation accepted and the

proportion of outlier points present in the data sets. If one does not expect to have

many outliers, then the threshold T can be increased and more non-linear deformation

(equivalent to a larger average distance between corresponding points) is accepted.

4. 7 Summary

This chapter demonstrated an automatic approach to 2D shape model design. A set of

training shapes is divided into several clusters for which shape prototypes and modes

of variation are derived. The method is based on finding homologous points on a set of

shapes using a two-stage approach. The first stage aligns two shapes using similarity

transformations and produces an initial set of homologous points. This set is further

refined by a second stage that handles nonlinear shape deformations. The method

has been employed to learn shape models for 11 brain structures. A quantitative

analysis of the registration accuracy shows that the automatic results are as precise

as manual registration. We have concluded the chapter with a discussion concerning

the choice of the method parameters and computational time requirements.

109



Chapter 5

Deformable model segmentation

Once the object of interest has been detected, the segmentation problem can be

approached either using a top-down strategy (as described in [44]) or by a combination

of bottom-up and top-down methods [40].

5.1 Top-down Active Shape segmentation

The top—down search procedure is based on the model fitting strategy. At each step

of the fitting process, several model location hypotheses are considered and evalu-

ated. During the hypothesis generation, the actual image data play no role (no image

preprocessing is done). Also, an outlier detection and replacement procedure has

been developed to detect misplaced points and infer their new positions. The outlier

detection improves robustness and accuracy of the shape model fitting process. The

searching procedure consists of the following steps [44]: 1) Model fitting using sim-

ilarity transforms, 2) model fitting using piecewise similarity transforms, 3) outlier
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removal, 4) final point adjustment and 5) final outlier removal.

Model Fitting Function As a result of the hypotheses generation processes, shape

model locations are sequentially hypothesized. In order to evaluate the model location

hypotheses, a fitness function is needed to assess the agreement between the image

data and the particular model instance. We have designed a fitness function F =

FB/(FGA)2 that consists of two components:

1. Fitness of the gray level appearance FGA is determined as the average squared

Euclidean distance between the actual gray level appearance and the mean gray

level profile incorporated in the shape model.

2. Fitness of the border FB is calculated as the ratio between the aggregate response

of all four-point cliques along the contour and the maximum possible response

(twice the number of cliques).

Model fitting using similarity transforms. Shape instance hypotheses specify the

locations of all model points within the analyzed image. The hypotheses are generated

using similarity transformations and are applied to the model average position. All

generated hypotheses are sequentially evaluated using the model fitting function F

and the best fit is determined (Fig. 5.1(a)).

Model fitting using piecewise similarity transforms. Since non-rigid objects or

objects with inter-subject variability are discussed here, similarity transforms do not

account for any potential deformations of the expected shape. Therefore, similarity

transforms are applied to subsets of 5—7 consecutive model points. This accounts

for global non-linear deformations of the prototype (stretching or shrinkage), while
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maintaining the expected shape locally (Fig.5.1(b)).

 

(a) (b)

Figure 5.1: Example of automatic car segmentation. a) Detected car using similarity

transforms. b) Refined segmentation using piecewise similarity transforms.

Outlier removal. Under unfavorable circumstances, the previous step may introduce

incorrectly determined vertices — outliers. This may happen if a subshape fitted by

the previous step exhibits weak edges or if there exists another border of similar

properties in the neighborhood. Typically, when using PDM’s, shapes that do not

correspond to the allowed shape at any stage of the detection process are rejected or

approximated (projected onto) with allowable ones. To treat the problem of outliers

in a systematic fashion, we developed an approach to outlier detection and position

adjustment [44]. The misplaced points are identified using the information about the

relative positions of the shape model vertices that are implicitly included in the shape

model.

Final point adjustment. Some of the shape model points may have been declared

outliers in the previous step. Consequently, their position may have been adjusted
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solely considering the average shape appearance and not considering the image data.

Therefore, they must be subjected to the position optimization step to better corre-

spond with the image data.

Final outlier removal. Outliers may be introduced during the final point adjust-

ment. Following the same outlier detection procedure applied earlier, the outliers

are identified and removed. No adjustment is attempted in this final step of model

fitting.

This paradigm is very useful for segmenting objects with low contrast from back-

ground (e.g., the thalami in MR brain images [44]) where a bottom-up approach

would not be able to segment them. On the other hand, if the objects have a good

contrast with the background a low-level segmentation or edge detection could be a

good starting step for a high level procedure.

We employed the automatically extracted prototypes to train a knowledge-based

Point Distribution Model (PDM) [44, 25] and segment 11 neuroanatomical structures.

Note that Algorithm 1 not only gives an average shape and variation for each cluster,

but also the registration of the cluster prototype to all the shapes in the cluster.

Therefore, PDM training becomes very fast and does not require any kind of human

intervention once the shapes in the training set have been clustered.

We show the results of the automatic segmentation on four different MR images in

Fig. 5.2. Since the automatically derived models are almost identical to the manually

traced models, the segmentation results are as good as those reported in [44] with

an average boundary positioning error of 0.8 i 0.1 pixels with respect to the manual

tracings, and maximum boundary positioning error of 4.3 :i: 1.2 pixels.
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Figure 5.2: Automatic segmentation of 11 brain structures in four different MR images

using the learned models.
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5.2 Warping-based segmentation

When the object of interest is homogeneous and has a good contrast with respect to

the immediate background, one can combine low-level with high-level segmentation

methods. Low-level methods include edge detection (Fig.5.3(a)) and unsupervised

segmentation followed by edge detection (Fig.5.4(a)). High-level methods learn the

shape and/or appearance of the object of interest and refine the low-level results using

this additional information. For example, the main characteristic that makes the CC

distinguishable from other structures in the brain is its shape. The CC shape can

be learned from manual tracings using a PDM and can be used in a model-based

segmentation guided by a low-level edge map. The first stage of the warping-based

segmentation is the alignment of a learned CC prototype to the edge image.
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Figure 5.3: Registration of CC in the ROI image in Fig. 3.1(b). (a) The strongest

600 edges from the ROI in Fig. 3.1(b). (b) Registration of an average CC to the edge

image in (a) (point correspondences are shown in green).

Figure 5.3(a) shows the alignment of a CC prototype to the edge map computed

from the ROI in Fig.3.1(b) while Figure 5.4(a) shows the alignment to an edge map

obtained following a low-level pixel classification. The second stage of the segmenta-
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(a) (b)

Figure 5.4: CC registration to the ROI image in Fig. 3.1(c). (a) Edges from the

low level segmentation in Fig. 3.1(c). (b) Registration of an average CC to the edge

image in (a) (point correspondences are shown in green).

 

Figure 5.5: High level segmentation of CC. (a) Registration of an average CC to the

edge image in Fig. 5.4(a). (b) Warping the average CC onto the edge image in (a).

tion warps the CC prototype to the edge image: each vertex of the prototype moves

towards its corresponding edge (Figs. 5.3(b) and 5.4(b)). If a vertex has no corre-

sponding image edge, then there is a disagreement between the edge map and the

expected shape. This can be caused either by a large shape difference between the

template and the real object, or more often, by the vagaries of the edge detection

procedure. In this case, one can either keep the position of the model vertices with

no corresponding image evidence after the alignment (if we are confident that the
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object of interest does not deviate significantly from the shape template) or one can

simply exclude them from the template. In both situations one could also apply an

outlier removal step (Section 3.2.1) in order to enforce the shape variation present

in the training set. Since we usually use a small number of points for the object

prototype, the warping result may not be very smooth (Fig.5.4(b)). Therefore, one

can conclude the segmentation by applying some smoothing Operators like a morpho-

logical opening. Results of the automatic segmentation of the Corpus Callosum in

nine MR images using the warping—based paradigm are shown in Fig. 5.6.

Although, in principle, the warping could be applied to the edge set obtained

directly from the gray-level image as well as from a low level segmentation, we found

that the low-level classification eliminates most of the noisy edges belonging to struc-

tures other than CC.

5.3 Summary

This chapter addressed the problem of shape-based object segmentation. First, we

described a tOp-down approach based on an active shape fitting paradigm. This

method may be quite computationally demanding but it has the advantage to work

for objects that are not easily separable from the immediate background. We also

demonstrated an alternate approach which is based on a combination of bottom-up

and top-down methods. This is able to perform a fast and accurate segmentation

provided that the object of interest is visually separable from the background.
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Figure 5.6: Automatic segmentation of the Corpus Callosum in nine MR images using

the warping-based paradigm.
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Chapter 6

Object matching

This chapter presents the last stage of the detection-segmentation-matching paradigm

for object learning and retrieval. As discussed in Section 2.5, an exact matching of

two objects is essential for systems in the personal identification domain. We will

demonstrate how the shape of a human hand (though not necessarily unique within a

large population) can be used to reliably verify the identity of a person in a database of

53 persons. We will next attempt to identify, using morphometric analysis of Corpus

Callosum shapes extracted from MR images, the extent to which the CC shape is

correlated to (or moreover, can predict) the gender, handedness (left handed or right

handed) or presence of dyslexia.
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6.1 Deformable matching of hand shapes for user

verification

Automatic human identification has become an important issue in today’s information

and network-based society. The techniques for automatically identifying an individual

based on his physical or behavioral characteristics are called biometrics. Biometric

systems are already employed in domains that require some sort of user verification

(e.g., for access control or welfare disbursement programs). Numerous distinguishing

traits that have been used for personal identification include fingerprints, face, voice,

iris and hand geometry. It is generally accepted that fingerprint and iris patterns

can uniquely define each member of an extremely large population which makes them

suitable for large-scale recognition (establishing a subject’s identity). However, in

many applications, because of privacy or limited resources, we only need to authen-

ticate a person (confirm or deny the person’s claimed identity). In these situations,

we can use traits with less discriminating power such as voice or hand shape.

Hand geometry-based verification systems have been available for almost three

decades. Still, their technical descriptions are scarce and the available information

is based mostly on patents (see [137, 74] and the references therein). However, the

problem of matching hand shapes is not only important for biometric systems, but

it is part of a more general, shape-based object learning and recognition topic (see,

for example, studies by Grenander et al. [56] and Hill et al. [59]). We propose to

approach the practical problem of person verification based on hand geometry using

the powerful tools of deformable shape analysis. This is motivated by the limited
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Figure 6.1: Hand shape acquisition system (a) and the image it captures (b) (Courtesy

of Dr. Sharath Pankanti and Arun Ross).

. WW(a (C) (d)

Figure 6.2: Four pairs of input hand shapes: contours that form pair (a) belong to

the same hand, contours that form pair (b) belong to the same hand (different from

(a)), pairs (c) and (d) are formed by different hands. Based on the input contours,

it is very difficult to tell which of the four pairs belongs to the same hand. None of

the existing systems aligns the hand contours before extracting features, leading to

inferior matching accuracy.
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ability of the hand shape acquisition system to implicitly register different hand im-

ages using the rigid pegs on the hand scanner platen (Fig. 6.1(b)). If the user has

not been properly trained or does not c00perate to properly use the hand scanner,

then the resulting images are not aligned (Fig. 6.2) and the system’s verification

performance degrades [137, 74]. Therefore, it is necessary to align the acquired hand

shapes before extracting the feature vector used for verification. On the other hand,

it is also useful to compare the discriminating power of the handcrafted feature set

used by the existing systems to that of the shape distance between two hand shapes

which is a byproduct of our alignment procedure.

6.1.1 Proposed Method

Given a pair of top views of hand images acquired by a hand scanner (Fig. 6.1)

similar to those described in [137, 74], we propose the following hand shape matching

paradigm (Fig. 6.3):

1. Peg removal. A mask containing the known positions of the five pegs is used to

replace the pegs with a background like color.

2. Contour extraction. A mean-shift unsupervised segmentation [23] is applied to

each image, followed by a morphological smoothing and hole filling. Then a contour

following algorithm is used to compute the shape of the hand.

3. Finger extraction and alignment. The five pairs of corresponding fingers are ex-

tracted from each contour and aligned separately with respect to the rigid trans-

formations group as described in Section 4.3. We chose to align pairs of fingers as
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Figure 6.3: Alignment-based hand verification system.
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opposed to the entire hand because of the following reasons: (i) a human hand is an

articulated object and the motion of one finger cannot be described by a linear trans—

formation, but rather by a set of local rigid transformations and small deformations,

(ii) computationally, it is faster to detect and align individual fingers than an entire

hand.

4. Pairwise distance computation. Each alignment in Step 3 produces a set of point

correspondences (shown in green in Fig. 6.3). The Mean Alignment Error (MAE)

between the two hand shapes is defined as the average distance between the corre-

sponding points.

5. Verification. A pair of hand shapes is said to belong to the same hand if their MAE

is smaller than a threshold T. Usually, the Neymann-Pearson rule that minimizes the

False Reject Rate (FRR) for a fixed False Accept Rate (FAR) is employed to compute

T.

6.1.2 Experimental Results

A data set of 353 hand images belonging to 53 persons was collected (the number of

images per person varied between 2 and 15). We show the alignment of two hand

shape pairs in Fig. 6.4; pair in (a) belongs to the same hand, while pair in (c)

is formed by different hands. In each pair, one of the hand shapes contains about

120 — 130 points, while the other contains about 300 — 350 points (see Section 4.6

for details about the number of points to be used). To each pair of images of the

same hand, we applied Steps 1-5 of the algorithm in Section 6.1.1 and obtained a
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(a) (b)

(c) ((1)

Figure 6.4: Two pairs of hands before ((a),(c)) and after ((b),(d)) alignment. The

hand pairs in (a) and (b) belong to the same hand while the pairs in (c) and (d) belong

to different hands. These two pairs correspond to the overlapping region between the

genuine and the imposter distributions in Fig. 6.5(a).
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complete set of 3,002 intra—class pairwise distances. We also randomly chose a set of

3,992 pairs of images of different hands and obtained a set of inter-class distances.

Based on these distance sets, we computed genuine and imposter distributions (Fig.

6.5(a)). Note that the smaller peak in the genuine distribution is only an artifact

of the alignment method. When we match two hands, the contours to be aligned

are sampled differently (one of them has about three times more points than the

other). Therefore, when a hand shape is matched to itself, the alignment error is not

zero due to the different point sampling along the contour. It appears that matching

two different samplings of the same contour produces an alignment error of about

0.5 pixels while when matching two different contours of the same hand the error is

about 1.5 pixels.
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Figure 6.5: Hand shape-based verification performance. (a) Mean alignment error

distributions for the genuine class (red) and imposter class (blue). The distributions

are derived based on a total of 353 hand images of 53 persons. (b) ROC curve for

the hand shape-based verification system. The annotations on the curve represent

different thresholds on the MAE distance.

The ROC curve associated with the two distributions is shown in Fig. 6.5(b).

One can see that the classification system is very accurate: e.g, for a threshold of
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T = 1.80, the genuine accept rate is 96.5% for a 2% false accept rate. Although the

2% false accept rate may seem high, in practice, it is much smaller, since a user of

the system does not know the identity of which other user he can assume such that

their hand shapes match.

6.1.3 Improving verification accuracy

One can improve the accuracy of the verification method by analyzing the causes of

the overlap between the genuine and the imposter distributions shown in Fig. 6.5(a).

There are mainly two situations that produce the overlap:
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Figure 6.6: ROC curves generated by taking into account three, four and five fingers

in the alignment error computation.

1. The right tail of the genuine distribution (that overlaps the imposter distribu-

tion) is generated by images where the subjects did not properly place their hand on

the scanner. Such an example is shown in Fig. 6.7 (scans SQ and S3). We noticed
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that the spatial arrangement of the pegs on the scanner allows quite a large flexibility

in placement of the subject’s thumb (see Fig. 6.7). Since a bent thumb cannot be

linearly aligned to an unbent thumb, the alignment error will be larger in this case.

This fact is quantitatively confirmed by excluding the user’s thumb from the com-

putation of the alignment error. Figure 6.6 shows three ROC curves computed by

taking into account three (red curve), four (green curve) and five (blue curve) fingers

of the hands in the matching. The best performance is attained when four finger are

used (the thumb is excluded). This is the reason why Fig. 6.3 shows only four pairs

of fingers extracted from each hand shape.

A second way to improve system’s accuracy with respect to the genuine distri-

bution is by learning a personal hand template (Fig. 6.7). Note that the genuine

distribution in Figure 6.5(a) was computed using all the enrollment data. However,

since after alignment, multiple contours of the same hand are very similar, in practice

it is enough to keep only one hand template per user. This template should be the one

that best matches the hand contours belonging to that user (has the smallest average

distance to the remaining enrollment shapes of that user). After selecting one hand

template for each user as described above, the genuine accept rate increases by about

2% for the same false accept rate.

2. We also noticed that the left tail of the imposter distribution (that overlaps

the genuine distribution) is generated by the images where different subjects have

almost identical handshapes. Such an example is shown in Fig. 6.4(c-d). Although

in this case nothing can be done from a pattern recognition viewpoint, this problem

is not likely to be frequently encountered since a user of the system does not know
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Figure 6.7: Learning a personal hand template. A hand template per person can be

selected from the enrollment set based on its average alignment distance to the re-

maining enrollment shapes. In this case, the enrollment shape closest to the remaining

ones is 52 with an average alignment distance of 2.02.
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the identity of which other user he can assume such that their hand shapes match.

Finally, we believe that the performance of our verification system is comparable

to the state-of-the-art commercial systems. We also emphasize that after alignment,

one does not need to compute a traditional set of handcrafted features anymore.

One can simply use the MAE criterion whose value is available once the alignment is

done. The matching time for a pair of hand images using our general shape alignment

implementation is about 8 seconds on a 250 MHz Sun Ultrasparc. It can, however, be

substantially reduced if the acquisition device is redesigned such that the hand image

can be segmented from the background by simple thresholding and the alignment

procedure is reimplemented specifically for this application.

6.2 Corpus Callosum shape analysis: a compara-

tive study of group differences associated with

dyslexia, gender and handedness

Corpus Callosum is the main interhemispheric commisure of the brain consisting of

approximately 180 million fibers, most of which connect homologous cortical areas

(Fig. 6.8). Corpus Callosum is a structure that is of interest when searching for the

morphological bases of the brain’s laterality. It is also thought to play an important

role in organizing auditory stimuli and in language perception.

Unfortunately, the influences of age, gender, handedness, presence of dyslexia, and

other factors on the variability of the Corpus Callosum size and shape are still con-
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A partition of the corpus callosum:

r = rostrum

g = genu
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s = splenium

Figure 6.8: (a) Midsagittal, Tl—weighted MRI section of the brain (12 year old boy)

showing the Corpus Callosum as a C-shaped structure. (b) Details showing a partition

of the Corpus Callosum (Courtesy of Prof. Arvid Lundervold).

troversial. Previous studies have reported inconsistent and many times contradicting

results concerning the CC size differences. A larger splenium in women compared

to men was found by de Lacoste and Holloway [33] and Davatzikos et al. [32] while

Byne et al. [18] and Witelson [131] found no significant difference. Witelson [131] and

Robichon & Habib [108] reported significantly larger and thicker isthmus regions in

non right handed men compared with right handers (no handedness related difference

was found in women though). In the same way, reports of differences in callosal size

between dyslexic and normal subjects have produced inconsistent results. Duara et

al. [35] found a larger splenial (posterior) area of the midsagittal CC in 12 male and

9 female dyslexic adults, as compared to 19 controls. Rumsey et al. [112] reported

a larger area of the posterior third part of the CC in a group of 21 dyslexic men as

compared to a control group. Hynd et al. [68], who examined 11 male and 5 female

children with dyslexia, found the region of the genu (anterior part) to be smaller in

the dyslexic group. Larsen et al. [81], comparing the callosal area of 15 female and

4 female adolescent dyslexics to 17 controls matched for age, gender and IQ, did not
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find area differences between the groups. Robichon and Habib [108] compared the

CC shape and size in a group of 16 adult dyslexics and 12 controls. Overall, the

dyslexics had larger callosal area than controls. In contrast to previous studies, Robi-

chon and Habib could not find differences in the anterior (genu) nor in the posterior

(splenial) areas between the groups. However, they detected significant differences

in the isthmus area, with a larger isthmus in the dyslexic group. Using a “circular-

ity index”, they found the CC to be thicker and more round-shaped in the dyslexic

group, whereas the CC in non-dyslexic subjects were more flat and thinner along their

antero—posterior axis. The most recent study known to us was done by Pennington et

al. [98] who found no significant callosal differences between dyslexics and normals.

Some methodological problems that may have influenced the results in previous

studies are determination of a proper midsagittal section and the possible influence

of the total brain volume on estimated CC area. Methods for segmentation and

subdivision of the Corpus Callosum have also differed among studies. Four of the

studies have used a subdivision of the CC into five subregions, but since the methods

for subdivision are different, subregion results cannot be compared directly. Even

more important, as Davatzikos et al. [32] have noted, the quite variable CC curvature,

which can highly affect the computed areas, has never been taken into consideration.

We therefore believe that CC shape analysis is more informative than area analysis

since it is a continuous global measurement which does not depend on size or pose.

The main goal of this study is to investigate to what extent the shape of the

Corpus Callosum is correlated to (or can even predict) the gender, handedness or the

presence of dyslexia. A second goal is to apply a common shape analysis framework
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to several datasets previously employed in the literature as an attempt to mitigate

the partly contradicting results that have been reported.

6.2.1 Methods

Data

For this analysis, we have used five different datasets: [128, 108, 18, 131, 32]. Except

for the Bergen dataset [128] (Fig. 6.9), the remaining CC shapes were scanned from

the original papers, therefore we could use only the male population of Witelson [131]

and a random half of the Byne et al. [18] dataset. The total number of CC shapes we

processed was 132, however each dataset was analyzed independently since the tracing

procedures for each set of shapes were probably different [107]. We do not believe

that scanning the CC shapes from previously published papers has introduced any

major methodological problem: the shape analysis is independent of the absolute scale

information which is unknown for the scanned data. A brief comparative description

of the data is shown in Table 6.1, a more detailed description of the Bergen dataset

follows while the other four sets are completely described in the original papers.

Imaging data from 54 subjects, 28 (22 males, 6 females) dyslexic children and 26

(21 males, 5 females) controls matched for age (12i1 years) and handedness (all right

handed), used in this study were part of a series of 3D MRI examinations on a Siemens

Impact 1.0 T scanner with whole head, ear~to~ear, multispectral 3D gradient echo ac—

quisitions (T1W FLASH TR.=22ms, TE=6ms, FA=30°; T2W DESS TR=26, TE=9,45,

FA=40; PDW FISP TR=23, TE=10, FA=15; FOV=256mm, 3Dslab=160mm, with a
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voxel size ofl x 1 x 1.25 mm3).

From each multispectral data set, the Tl-weighted 3D FLASH channel was se-

lected for CC analysis because of good signal-to—noise ratio and gray matter/white

matter contrast. To eliminate the variability in CC shape and cross-sectional area

attributable to differences in head position in the scanner and the orientation of the

scan plane used to generate the mid-sagittal image [105], each 3D data set was subject

to AC-PC alignment using the AFNI software package [29].

flflfl mfifl
(a) (b)

Figure 6.9: Corpus Callosum shapes belonging to normal subjects (a) and to dyslexic

subjects (b). By simple visual inspection, there is no apparent difference between the

two groups of shapes.

Shape analysis

We have investigated the possible differences in the Corpus Callosum shape associ-

ated with gender, handedness and presence of dyslexia by comparing the group means

(prototypes) of CC shapes in each data set. The choice of the group mean shapes was

motivated by the fact that a simple visual inspection or set of features (e.g., perime-

ter, area, bounding box, etc.) may not reveal any significant difference between the

CC shapes belonging to different classes (e.g., dyslexic vs. normal, see Fig. 6.9). On

135

 

 



the other hand, several studies reported shape differences associated with sex [32] and

schizophrenia [11] groups. We believe that in order to find any differences, one has

to compare some representative shapes of the two groups, which have been aligned

with respect to the similarity group of planar transformations (scaling, rotations and

translations). The problem of defining shape prototypes has attracted considerable

interest [34, 12], but practical methods for computing these prototypes are somewhat

scarce. This is mainly due to the fact that the statistical shape theory [34, 12] can

only be applied to sets of points of equal cardinality between which point correspon-

dences have been established. However, almost all the time, the data that must be

processed consists of a set of contours with different point counts and no known point

correspondences (Fig. 6.9).

6.2.2 Results

Influence of dyslexia over callosal shape

We computed shape prototypes for the normal and dyslexic groups in the Bergen

dataset using the shape learning method presented in Chapter 4. After aligning

the rostrum of the two prototype shapes, one can notice a four-pixel length difference

between them (Fig. 6.10(a)). Moreover, if the dyslexic group prototype is cut into two

pieces in the isthmus region, and the two parts are aligned separately to the normal

prototype, then there is an almost perfect matching of the rostrum and splenium

parts of the two CC prototype (Fig. 6.10(b)).

Is it only by chance that the dyslexic prototype is 4 pixels shorter than the normal
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Figure 6.10: Cbnlparing the normal (shown in red) and dyslexic (shogvri in blue) group

means of Corpus Callosum shapes in our dataset. (a) Rostrum alignment. (b) Both

rostrum and splenium alignment. The dyslexic prototype is actually cut into two

parts which are aligned separately. The posterior midbody in the dyslexic subjects is

significantly shorter than in normal subjects.

prototype, or are the two classes really separable by the posterior midbody length?

In order to answer this question, we designed a classification system which, given a

CC shape instance, computes the length of the posterior midbody and assigns it to

one of the two groups (normal/dyslexic). Since there are no real anatomical land-

marks delimiting the isthmus, we decided to measure its length as follows. Two

templates representing the anterior half and posterior third are computed from the

normal Corpus Callosum prototype in Fig. 6.10 by eliminating what we assume to

be the posterior midbody. These two templates, shown in blue in Fig. 6.11, are sepa-

rately aligned to a new shape instance (we actually do not allow a scale factor larger

than 5% in order to preserve the relative size ratios of the templates). Subsequently,

we compute the distance that separates the aligned templates as the length of the

cyan line segment shown in Fig. 6.11. We would like to mention that the actual

templates employed are not important for classification purposes, as long as they can

be well aligned to the new CC instance. What really matters is the distance that

separates them after the alignment. Fig. 6.11 shows the distance computation for a
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dyslexic CC instance (left), and for a normal instance (right).

< E 960427ram 418 :> < E 950330bh 15.62 g I

Figure 6.11: Two templates representing the anterior half and posterior third of the

Corpus Callosum are independently aligned with a given CC instance and the distance

between the aligned templates (the length of the uniting line segment) is measured.

Alignment to a dyslexic CC instance (left) and to a normal instance (right).
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Figure 6.12: Class distributions of the inter-template distances for the Bergen dataset.

The distributions of the inter-template distances for the Bergen set of 26 normal

and 28 dyslexic subjects are shown in Fig. 6.12. The two distributions are well

separated though some overlap is present. If a threshold is set at 9.8 (the green

vertical segment in Fig. 6.12) and all shapes with an inter-template distance smaller

than 9.8 are classified as dyslexic while the ones with a greater distance are classified

as normal, then there are 12 misclassifications (6 normals classified as dyslexic and

6 dyslexics classified as normal) in the 54—subject data set. Therefore, about 78% of

the CC shapes in our dataset can be accurately classified by this method.

We obtained similar results on the dataset of Robichon and Habib [108]. The
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(b)

Figure 6.13: Comparing the normal (shown in red) and dyslexic (shown in blue)

group means of Corpus Callosum shapes in the Robichon and Habib [108] dataset.

(a) Rostrum alignment. (b) Both rostrum and splenium alignment. The dyslexic

prototype is actually out into two parts which are aligned separately. The dyslexic

CC prototype is more curved and significantly shorter than the normal prototype.

means of the normal and dyslexic groups are shown in Fig. 6.10. The dyslexic

prototype is again about 6 pixels shorter than the normal prototype. It also has a

larger curvature, a fact noticed in the original study, too. The classification method

produces even better results on this dataset; the distributions of the inter-template

distances are shown in Fig. 6.14. If a threshold is set at 8, then the only misclassifi-

cations are 4 dyslexics who are classified as normal. Thus, the classification accuracy

on this dataset is 86%.

Class aluminium ofthe inter-template distance: for the Giant of Rahlchon me ”A. ;"
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Figure 6.14: Class distributions of the inter-template distances for the Robichon and

Habib [108] dataset.
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In conclusion, it seems that the length of the posterior midbody can distinguish

a dyslexic shape example from a normal one about 80% of the time. Although this

accuracy may not be considered high enough for an automatic diagnosis system, we

believe it to be a sufficient evidence that the dyslexic CC shapes are indeed shorter

than the normal ones.

Callosal shape and hand preference

We have tested the influence of the handedness on the CC shape on the following two

datasets: Robichon and Habib [108] and Witelson [131] (the part of the dataset which

has been published). Both sets contain only males, the former in their twenties, while

the later were analyzed after their death (around fifties). The group averages for the

Robichon and Habib dataset are shown in Fig. 6.15. The nRH dyslexic prototype is

2-3 pixels shorter than the RH dyslexic prototype (Fig. 6.15(a)). This is confirmed by

the inter-template distance distributions shown in Fig. 6.14 (compare the blue (RH)

and cyan (nRH) histograms). However, it is more difficult to separate the classes,

the best decision threshold (6.3) produces a classification accuracy of 69%. On the

contrary, the nRH normal prototype is longer and thicker in the isthmus region than

the RH normal prototype (Fig. 6.15(b)). Since the data was insufficient (only 2

normal nRH subjects), one cannot tell if this finding is statistically significant on

this dataset. However, the fact that the nRH normal prototype is longer and thicker

in the isthmus region than the RH normal prototype remains true for the Witelson

dataset (Fig. 6.16(b)). Although we have not attempted to classify the shapes in this

set, we believe that the two shape classes are quite separable by the same template
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Figure 6.15: Comparing the Right Handed (RH) (shown in magenta) and non Right

Handed (nRH) (shown in green) group means for dyslexic (a) and normal (b) subjects

in the Robichon and Habib [108] dataset. The dyslexic nRH prototype is a little

shorter than its corresponding RH prototype. The normal nRH prototype is longer

and thicker in the isthmus region than its corresponding nRH prototype.
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Figure 6.16: (a) Comparing the male (shown in red) and female (shown in blue) group

means for subjects in the Byne et al. [18] dataset. There are no significant differences

between the two prototypes. (b) Comparing the Right Handed (RH) (shown in blue)

and non Right Handed (nRH) (shown in red) group means for the male subjects in

the Witelson [131] dataset. The nRH prototype is significantly longer and thicker in

the isthmus region than the RH prototype.

Gender differences in callosal shape

Three datasets have been used to investigate gender related differences in callosal

shape: our dataset, Byne et al. [18] (the part of the dataset which has been published)

and Davatzikos et al. [32]. This collection of data has much more variance than the

data used for hand preference or dyslexia related analysis as far as the age or subject

handedness are concerned. Our dataset contains only children (12 fl: 1 years old),
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that of Byne et al. contains adults of various ages (with an average age of about

35 years), while the subjects in the Davatzikos et al. are quite old (70 i 6 years

old). Moreover, subject handedness for the Byne et al. dataset is unknown. The

group averages with respect to gender for our dataset are shown in Fig. 6.17. Both

the dyslexic (Fig. 6.17(a)) and normal (Fig. 6.17(b)) female prototypes are about 2

pixels shorter than their corresponding male prototypes. An analysis of the posterior

midbody length distributions in Fig. 6.12 reveals that the variance of the female

population is substantially larger than the variance of the male population, therefore

we do not consider the 2-pixel length difference in group means to be significant.

Except for the length difference, the prototypes in the two pairs are almost identical.

A shape analysis of the Byne et al. dataset (Fig. 6.16(a)) does not reveal any major

difference between the male and female prototypes. The only significant difference

was found in the dataset of Davatzikos et al. (Fig. 6.18(a)). The posterior part of

the female prototype is shorter and more bulbous than the male prototype. Since

this dataset is small, we have not checked how well these differences can separate the

two classes.

 

   

 

(a)

Figure 6.17: Comparing the male (shown in red) and female (shown in blue) group

means for dyslexic (a) and normal (b) subjects in the Bergen dataset. The female CC

prototype in both dyslexic and normal subjects is shorter (though not significantly)

than its corresponding male prototype. Except for the length, the male and female

prototypes are practically identical.
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Discussion and conclusions

We would like to briefly compare the results produced by our shape analysis method

with those in the original studies [128, 108, 18, 131, 32]. On the datasets of Byne

et al. and Davatzikos et al. our results are identical to those reported in [18, 32].

A comparison between the group means produced by our shape learning method

and that of Davatzikos et al. [32] (Fig. 11) is shown in Figs. 6.18(b) and (c).

The prototypes in each pair are almost identical (up to a similarity transformation)

despite the fact that they were produced using different methods. The shape analysis

not only confirmed but also further clarified the influence of handedness on Corpus

Callosum reported by Robichon and Habib [108] and Witelson [131]. And finally,

the most important result of this work, stating that the dyslexic population can

be relatively well separated from the normal population based on the length of the

posterior midbody, was not reached (and we believe it cannot be obtained based only

on area measurements) neither by Robichon and Habib [108] nor by our previous

study [128].

This study leaves unresolved the contradicting results concerning gender influences

on Corpus Callosum. However, it seems to us that most analyses that reported a

more bulbous splenium in females were done on elderly while those that could not

find any differences had younger subjects (see Table 1). The contradicting findings

may become consistent if “a different or earlier ageing process may occur in the brains

of men than in women” as Witelson noted in [131].

Finally, a short note on the computational aspects of our method. The prototype
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Figure 6.18: Comparing the male (shown in red) and female (shown in blue) group

means for subjects in the Davatzikos et al. [32] dataset. The female CC prototype

is shorter and has a more bulbous posterior part than the male prototype. Overlay

of the female (b) and male (c) group means obtained by us (shown in blue) and

by Davatzikos et al. [32], (shown in red). The prototypes in each pair are almost

identical (up to a similarity transformation) despite the fact that they have been

obtained using different methods.

computation does not require human intervention once the contours have been ex—

tracted from images; several automatic methods for tracing the Corpus Callosum in

MR images have been reported. The computation time required for computing the

two class prototypes is (on an average) 90 seconds per CC shape in the dataset on a

Sun UltraSparc 10 computer.
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6.3 Summary

In this chapter we have demonstrated how the shape of segmented objects can be used

for further object classification or identity verification. A hand shape-based personal

verification system has been presented and its performance has been evaluated and

discussed. We also have demonstrated how morphometric analysis of Corpus Callo-

sum shapes can reveal differences associated with gender, handedness or presence of

dyslexia.
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Chapter 7

Conclusions and Future Work

As we have discussed in Chapter 2, reliable detection, segmentation and subsequently

matching of objects in images is still an open problem. Although several object

recognition systems have been reported in the literature, they are rarely able to

handle arbitrary backgrounds or occlusion, not to mention images that do not contain

any of the objects these systems have been trained on. In his thesis, Rowley [110]

estimated that the prior probability that a window of arbitrary size extracted from

130 real world images contains a human face is 1 /20, 984. We believe that the prior

probabilities for other objects are of the same order of magnitude as well. This makes

the object detection problem one of the most diflicult ones which computer vision

and pattern recognition has to face.

The main purpose of this dissertation is to integrate some of the most recent

advances in computer vision and pattern recognition together with new ideas in de-

signing a global object learning and retrieval system. We would like to point out that

integration is a very difficult task; almost all methods employed or at least evaluated
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throughout this thesis are the result of recent Ph.D. theses (e.g., the mean-shift un-

supervised segmentation [23], the maximum discrimination object detection [22]) or

other type of academic research work. None of these methods is easy to implement,

and many times one cannot implement them without the cooperation of their authors.

There are several important ideas beginning to develOp in the vision community

which we advocate in this thesis:

1. A general object detection/recognition/matching system should be based on

learning. Here, learning denotes not only the estimation of the parameters of an

(often sophisticated) model from training examples, but also the strategy of selecting

the training examples according to their discrimination power. We have developed a

learning-based system that is able to detect, segment and match objects in several

diverse applications and we have evaluated its performance on large test sets.

2. The necessity for an automatic model design and training. We believe that a

general mechanism for object modeling is needed; this mechanism should be general

enough to be applied to most objects, and yet it should be able to distinguish not

only between the objects learned, but between each object learned and the rest of

the world. The current principal component analysis-based recognition systems are

able to encompass any type of object, but they cannot accurately reject patterns

representing non-objects. It is not yet clear how appearance information can be

combined with shape information in developing a global model for object detection.

The well known “Active appearance model” [24] that combines the two types of clues,

also based on principal component analysis, is not yet reliable enough for object

detection. For the time being we have developed separate appearance and shape
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models but we detect objects based only on one of them (depending on whether

the object of interest is better defined by shape or appearance). In any case, no

matter what the model is, one should be able to automatically train it. This requires

the training examples be automatically aligned in order to reduce the amount of

variation between instances of the same object [110]. For appearance-based models,

the alignment is currently done manually. One main advance provided by our work

is an automatic method for aligning shape examples and training shape models.

3. The necessity for an adequate object similarity measure. We have introduced

and evaluated a shape-based object similarity measure (mean alignment error). A

related measure applying to appearance models was designed by Moghaddam et al.

[92]. Both measures are based on some sort of warping (either shape or appearance),

and work very well in case of small object differences (that is, when comparing two

objects of the same type, like two human faces or hands). However, for large object

differences, it is still not clear how robust the current similarity measures (like the

distance within and from feature space of Moghaddam and Pentland [93]) are.

There are several aspects of our work which, we believe, need further investigation:

1. It is important to make the shape learning process incremental. Our current

method (Chapter 4) aligns (and computes a shape distance between) every pair of

shapes in the training set. As a consequence, for large training sets, the number of

alignments that have to be performed becomes prohibitive. An incremental learning

strategy attempts to “grow” shape clusters online; a new shape example is assigned

to one of the current clusters whose prototype is “closest” (based on the alignment

error) if the distance between the two is small enough (see Section 4.6.2). However, if
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the new shape example cannot properly fit any of the current clusters, it will become

the starting seed of a new cluster.

2. Refining the left ventricle localization procedure (Section 3.2) and designing

a new segmentation paradigm for tracing the ventricle walls since it appears that

the results produced by the current deformable template method are not sufficiently

accurate. The approach we envision is shown in Fig. 7.1: the profiles corresponding

to each detected box in Fig. 7.1(a) are warped onto their corresponding average

feature profiles and the location of two salient points (the intersection between the

profile and the medial axis of the ventricle wall) on each profile is estimated (Fig.

7.1(c)). Then, by applying a voting procedure, the center and the medial axis of the

ventricle wall can be estimated quite reliably (Fig. 7.1(d)). Finally, a radial tracking

procedure can be employed to produce the exact segmentation of the ventricle wall.
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Figure 7.1: Detailed localization of the left ventricle. a) Multiple detections produced

by the maximum discrimination method (Section 3.2). b) Horizontal feature profiles

corresponding to each detected box in (a). An average horizontal profile is shown in

red. c) The profiles in (b) aligned to the average profile using dynamic time warping.

d) The feature profiles corresponding to the detected boxes in (a) after warping to

their corresponding average profiles. A voting procedure is applied to estimate the

center and the medial axis of the ventricle wall (shown in yellow).
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