

#
i
j
l
x
‘

.
[
l
v
i
‘
i
’

2
3
.
9
.
5
3
.
.

1
.
0
.
3
.
.
.
.

.
2
7

..
I
.

L
i
fl
w
a
r
i
i

1
.
:

5
:
.
»

[
L
u
a
n
n

A
‘
5
.

~
‘
5
.

,
r
t
!1
.
.
.
!

x
.

.
-

.
F

r
)
3
.

.

i

.
s

5
.
.
.
.

2
.
?

x
.
1
2
.
!
-

.

f
.
.
.
-

m
m
w
g
é
é

h
a

3
5
%
.
.
.
.

.
l

.

a .
b
.
.
.

1
”
.

1
:
1
.

.
1

.
1
—

1
.
.
.
”
:

2
.
4
3
3
.
1
3
3
“

h
a
s
.

..
.

i
a
h
f
i
fl
c

1
.
5
.
5
:
.

”
$
5
5
3
.
q
u

I
.
.
.

a

f
u
n
.
.
.
»w
e
.

w
Q
Z
a
H
H
A
W
-
m
u
m
.

THESIS)

7000

LIBRARY

Michigan State

University

This is to certify that the

dissertation entitled

DESIGN AND ENGINEERING OF COMPLEX REAL-TIME SYSTEMS

presented by

Aleksandar M. Bakic

has been accepted towards fulfillment

of the requirements for

Doctoral degreein Computer Science &

Engineering

7%M494
Major professor

Date Mag. 311m

M5U is an Aflirmatiw Action/Equal Opportunity Institution 0-12771

PLACE IN RETURN BOXto remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

11m wow.“

DESIGN AND ENGINEERING OF COMPLEX REAL-TIME

SYSTEMS

By

Aleksandar M. Bakic’

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science and Engineering

2000

ABSTRACT

DESIGN AND ENGINEERING OF COMPLEX REAL-TIME SYSTEMS

By

Aleksandar M. Bakic’

Complex real-time systems are emerging parallel or distributed, heterogeneous

computer systems with many disparate constraints and requirements. Their subsys—

tems and components are designed using appropriate, multiple models from real-time

scheduling theory, resource allocation and quality-Of-service managements schemes.

Issues in the design, engineering and deployment of complex real-time systems ad-

dressed by this research include problem-solving approaches for finding satisfactory

values of system parameters according to the real-time models and their integration;

dynamic reconfiguration; instrumentation; and on-line performance analysis and vi-

sualization.

Four main objectives of this research resulted in proof-Of-concept contributions. A

compiler-based approach to design and engineering of complex real-time systems was

designed, implemented and evaluated that represents a systems engineering frame-

work particularly suitable for this systems domain. A distributed instrumentation

system kernel was developed and evaluated in order to investigate performance and

portability issues of the instrumentation of parallel and distributed, heterogeneous

systems. A comprehensive on-line performance analysis and visualization technology,

for the same domain and with an emphasis on complex real-time systems, was de-

veloped that incorporates common properties Of extant tools and provides a basis for

advanced on-line performance analysis and visualization tools. A mainly automated

technology that combines the preceding results was developed in an attempt to in-

tegrate systems engineering and on-line performance analysis and visualization in a

way that facilitates on-line reconfiguration of complex real—time systems.

© Copyright 2000 by Aleksandar M. Bakié

All Rights Reserved

To my parents

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Matt W. Mutka, for his continued guidance and

support during my research. I have been fortunate to have an experienced researcher

and talented pedagog to supervise me. He made the pursuit Of my PhD. an enjoyable

and invaluable professional experience.

I am thankful to Dr. Diane T. Rover for providing me with my first research Oppor—

tunity and continuing to support me as a PhD. student. Her ideas and constructive

critiques in our collaboration made a difference so many times.

I thank the other members of my guidance committee, Dr. Anthony S. Wojcik

and Dr. James Stapleton, for their helpful comments and suggestions.

I wish to thank Dr. George C. Stockman again for extending me an offer to come

to the MSU in the first place. I am indebted to Dr. Lionel M. Ni for valuable lectures

in practical, and Dr. Eric K. Torng in theoretical aspects of Computer Science; as

well as to other MSU professors who taught me advanced and exciting.

Many of my fellow students helped me and collaborated with me over the course

of study. I would like to thank them all, especially Peter C. Wong, Paul A. Reed,

Hugh M. Smith, Wenting Tang, Kuk-jin Lee and Abdul Waheed. I would also like to

vi

thank the CSE and ECE departments for the excellent facilities, and technical and

administrative support.

I am grateful to my family for their love, support and patience. Special thanks to

my wife Vera for her love and understanding, and to our little daughter Jovana for

bringing joy to our lives.

vii

TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xi

1 Introduction and Motivation 1

1.1 Focus of the Dissertation 2

1.2 Motivation 6

1.2.1 Design and Engineering of Complex Real-Time Systems 7

1.2.2 Distributed Instrumentation Systems 9

1.2.3 On-Line Performance Analysis and Visualization 11

1.3 Research Objectives, Activities and Contributions 13

1.4 Organization 17

2 Background and Related Work 20

2.1 Distributed Real-Time System Design 21

2.2 Constraint Logic Programming and Real-Time Systems 26

2.2.1 Constraint Logic Programming Background 27

2.2.2 Use of CLP as Support for Real-Time Systems 30

2.2.3 Overview of ECL‘PSe 32

2.3 Explicit Timing Constraint Checking 34

2.4 Distributed Instrumentation Systems 38

2.5 Performance Analysis and Visualization 42

3 A Compiler-Based Approach to Design and Engineering of Complex

Real-Time Systems 47

3.1 Real-Time System Specification in RTSML 48

3.2 Process of Compilation to CLP 55

3.2.1 Module common 57

3.2.2 Module rms 58

3.3 Experiments 61

3.3.1 Conventional CLP Approach 64

3.3.2 Repair-Based CLP Approach 65

3.4 Scalability Issues in the Approach 69

3.5 On the Correctness of the Approach and Compilation 70

3.5.1 Language Semantics and the Power of CLP Problem Solving 71

3.5.2 Correctness-Related Compilation Details 75

3.5.3 Evaluation Against the High-Integrity Compilation Criteria 77

3.6 Summary 78

4 A Portable and Flexible Distributed Instrumentation System 80

4.1 Objectives and Approaches 81

4.2 Description of BRISK 85

4.2.1 Architecture 85

4.2.2 Implementation 87

4.3 Evaluation of BRISK 96

4.3.1 Local Performance 97

4.3.2 Distributed Performance 101

4.4 Summary 108

5 An On-Line Performance Visualization Technology 109

5.1 Visual Object Architecture 110

5.1.1 Low-level visual object 112

5.1.2 High-level visual object 114

5.1.3 Application of visual objects to a heterogeneous system 117

5.2 Visual Object Markup Language (VOML) 118

5.2.1 Event Processing and Information Rendering Architecture (EPIRA) . . 119

5.2.2 The VOML language 121

5.2.3 The VOML compiler 125

5.3 The VOML Specification of a Simple Visual Object 128

5.4 Summary 134

6 An Integrated Approach to Real-Time System Design and On—Line

Performance Visualization with Steering 136

6.1 Target Real—Time System 137

6.2 RTSML Specification 141

6.3 RTSML Compiler Extension 150

6.4 Example Run-Time Session 156

6.5 Summary 161

7 Conclusions and Future Work 162

7.1 Research Contributions 162

7.2 Future Work 164

APPENDICES 166

A RTSML Document Type Definition (excerpt) 167

B VOML Document Type Definition (excerpt) 170

BIBLIOGRAPHY 177

ix

2.1

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

4.4

LIST OF TABLES

Performance visualization tools and systems 45

Ranges of system parameters 50

Some constraint predicates used 60

Scenario of parameter changes 63

Conventional CLP approach timings 65

Repair-based CLP approach timings 67

Successive solutions’ distances 68

Summary of BRISK evaluation 96

CPU time per 6-integer NOTICE macro 98

Count of increases in time frame T 106

Peak time frame T in milliseconds 106

1.1

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

6.1

6.2

6.3

6.4

6.5

6.6

LIST OF FIGURES

Overview of the integrated approach 19

An example complex RT system 48

RTSML specification excerpts 49

A generic repair-based CLP program 66

BRISK as an instrumentation system kernel 81

Architecture of the BRISK instrumentation system 86

Diagram of the BRISK basic implementation 88

An example three-field NOTICE macro call (internal sensor) 91

In-memory structure of the event record generated by the call in Figure 4.4 91

EXS CPU utilization for various event rates 99

Measurements of the clock synchronization algorithm (8 EXS nodes, 5—

second polling period, 10-minute experiment) 103

The design of a visual object 111

On-line performance visualization of the real-time multimedia application 117

Event Processing and Information Rendering Architecture (EPIRA) . . . 119

A brief description of VOML 122

Code of the IR component used as lineplotrender in Figure 5.4b . . . 123

VOML compilation and execution process diagram 126

Sketch of a VOML specification that uses remote component definitions . 128

Event declarations 129

Info and control structures 130

View initialization 130

Event processing components 131

Template IR component 132

Active IR component 133

A snapshot of the view 135

Original face-tracking system’s state diagram 137

Distributed face-tracking system 139

RTL-specific details of the target system 141

RTSML Specification excerpts 148

Integrated visualization, repair and steering 151

A snapshot from the RTSML-based visual object 160

xi

Chapter 1

Introduction and Motivation

A broad variety of different software systems—ranging from small, embedded con-

trollers with microsecond response times to large, heavyweight systems with response

times of seconds or even minutes—have been designated “real-time.” For both a

power plant control system and a global air-ticket reservation system, as well as an

abundance of other diverse systems, certain common characteristics can be summa-

rized in the following definition by Selic [100]:

Definition. A real-time system is a software system that maintains a timely and

ongoing interaction with its environment.

Unlike other system resources in conventional software systems, such as memory

and processing power, the (real) time cannot be controlled; only its progress can

be measured. The timeliness property of a software system is a function of the

timeliness of individual activities (or tasks) that the system supports. A real-time

system achieves its timeliness by managing its resources accordingly. Jensen further

defines “real-time—liness” of a task [62]:

Definition. A task is real-time to the degree that its completion timeliness pre-

dictability is part of its logic.

The ongoing interaction property of a software system relates to a quality that

is often referred to as reactivity [77]. Translated from a logic-theoretic framework to

English:

Definition. A reactive system persists across some interval of time (possibly

indefinitely) during which it responds to inputs as they occur.

In this setting, the dominant feature of a real-time system is its structure, rather

than its function. To reason about the above two properties of a real-time system,

its structure must be fixed, while the function may be modified. Consequently, the

focus of software system design shifts from the traditional, algorithmic to structural

approaches. The structural approaches range over different domains. On one end,

real-time scheduling theory is mainly concerned about low-level issues, such as phys-

ical resource allocation. On the other, formal software-engineering methods address

more abstract real-time requirements, such as timing relations among different appli—

cation states.

1.1 Focus of the Dissertation

Complex real-time systems are emerging parallel or distributed, heterogeneous com-

puter systems with many disparate constraints and requirements. For example, an

embedded complex real-time system may possess limited system resources (for com-

putation, communication and I/O) that need to be shared by many of its components.

2

It must perform certain tasks in a timely fashion under possibly large variances in

the amount of data and events that it processes. If the system or some of its com-

ponents are critical for the operation of its embedding system and/or environment,

they must be made fault-tolerant. The dynamics of the environment may span from

static models to stochastic ones, to unpredictable ones.

Consequently, components and subsystems of a complex real-time system are de-

signed using apprOpriate, multiple models from real-time scheduling theory, resource

allocation and quality-of-service management schemes. Issues that arise in the design,

engineering and deployment of complex real-time systems include the following.

1. Detailed models are complex and require exhaustive search through the design

Space to find values of model parameters for which the system satisfies imposed

requirements. Engineers of complex real-time systems often cannot afford this,

and use fast heuristics or simple, ad hoc schemes instead.

2. As the above mentioned models and schemes may vary greatly in their assump-

tions and goals, it is hard to analyze how they interact when the components

and subsystems are to be integrated. The integration further increases the

complexity of the system.

3. One design solution most likely cannot satisfy the requirements when the system

parameters vary significantly and dynamically. In a dynamic system reconfig-

uration, the quality of a new design solution is almost always traded for the

speed of the reconfiguration.

4. System performance data needed to decide whether and what kind of dynamic

reconfiguration should be performed, has to be collected and analyzed on-line.

In integrated complex real-time systems with end-to—end requirements, justified

decisions can only be made using global information.

5. To collect the performance data from a distributed, heterogeneous real-time

system, a portable distributed instrumentation system (IS) is needed. It has to

be designed with low real-time intrusion and flexible performance in mind.

6. Although the performance data can be analyzed completely automatically, it is

often required that a human operator has insight into the system performance

and makes reconfiguration decisions. To present system performance informa—

tion at a high level, a performance visualization technology is crucial.

Problem Statement. The central focus of research presented in this disser-

tation has been a unifying, extensible, compiler-based framework for the design and

engineering of complex real-time systems. Its novelty is manifest in a comprehensive

application of a constraint programming technology in model—based design and integra-

tion of complex real-time systems. In addition, the framework lends itself to further

extensions, such as a novel integration of on-line performance visualization and dy-

namic system reconfiguration. In this broader context, the dissertation research foci

are in the areas of distributed system instrumentation and on-line performance visu-

alization, aiming at improved testing and deployment support for complex real-time

systems.

The unifying property of the framework is related to the goal of supporting dis-

parate real-time models of system components and their integration. The compiler-

based property is aimed at allowing users of the framework to specify complex real-

time systems at a high level, and have a knowledge-based compiler that would handle

the complexity behind high-level specifications. The extensibility property applies to

both the front and back ends, and is achieved through an extensible syntax and add-

on modules that cooperate in constructing a model of the whole complex real-time

system. The framework supports solving for the system parameters using multiple,

controllable problem-solving approaches. It also integrates an on-line performance

visualization technology and facilitates creating real-time model- and system-specific

performance visualizations. This integration is especially suitable for visualization-

driven on-line system reconfiguration.

The general problem and solution of this dissertation should be regarded from a

systems engineering point of view. As defined in [55], systems engineering is a disci-

pline that develops and exploits structured, efficient approaches to analysis and design

to solve complex engineering problems. Its focus is on methods to solve problems,

not the solution of the problems per se.

In the following section, the motivation is discussed for the research in the ar-

eas of the design and engineering of complex real-time systems, distributed system

instrumentation, and on-line performance visualization, respectively.

5

1 .2 Motivation

In [104], Stankovic concludes that, despite extensive results in the area of real-time

scheduling in recent years, the state of the art still provides piecemeal solutions.

There are many realistic issues that have not yet been addressed in an integrated

and comprehensive manner. New scheduling approaches should be analyzable and

comprehensive enough to simultaneously handle multiple characteristics of real-time

systems, such as: task preemptiveness, periodicity, importance, and grouping; prece-

dence, placement, and end-to-end timing constraints; communication, resource, and

fault tolerance requirements; tight and loose deadlines, and normal and overload con—

ditions. The solution should be integrated enough to handle interfaces between

CPU scheduling and resource allocation,

1/O scheduling and CPU scheduling,

CPU scheduling and real-time communication scheduling,

local and distributed scheduling, and

static scheduling of critical tasks and dynamic scheduling of essential and non-

essential tasks.

These issues are too complex to be addressed all at once, and it will probably take

years of researchers’ work before first comprehensive and tightly integrated real-time

models are devised. However, there are two constituents of a solution to the general

problem: one is the real-time theory (including scheduling and formal methods), and

the other is systems engineering. Tools are needed that will bridge the gap between

theory and practice in an efficient manner.

6

1.2.1 Design and Engineering of Complex Real-Time Sys—

tems

An idea behind this dissertation that has led to the choice of the main parts of the

compiler-based framework—the target language and compiler back-end—is that a

complex real-time system could be regarded as a complex, highly non-linear network

(or circuit), seemingly analogous to those from, e.g., control theory. (Although the

similarity comes from non-linear relations between interconnected components—in

particular, the way changes in Operation of an element affect the operation of other

elements—it is difficult to see whether analogues of the control theory approaches

can help with solving real-time computer system problems. Almost the opposite,

real-time control systems, are common nowadays [14]. There has been theoretical

research [110] in applying the control theory to proving the stability of self-stabilizing

distributed algorithms. However, no real-time properties of algorithms or systems

have been analyzed.) In such a network, real-time activities are performed according

to real-time models, across interconnected bounded hardware resources. Relations

among the activities and the resources, within subsystems and among the subsystems,

are relatively simple and best termed as time and resource constraints expressed

via equations and inequalities of the real-time models. This common underlying

property of real-time models has been a major motivation for adopting a constraint-

programming approach to solving complex real-time system problems. To solve such

a network means to solve for unknown real-time model parameters and perform the

resource allocation. This inevitably requires combinatorial search in general.

7

A new class of programming languages combining the declarativity of Logic Pro-

gramming with the efficiency of constraint solving is Constraint Logic Program-

ming (CLP). New application areas, including combinatorial search problems such as

scheduling, planning or resource allocation can now be tackled, which were intractable

for logic programming [36]. The declarativity of a Prolog-like CLP language provides

an elegant way of expressing the disparate requirements of complex real-time systems

in an integrated manner.

Among the research foci proposed by a group of leading experts for real-time sys-

tems [103] is the deve10pment of requirements and internal documentation which can

state real-time requirements precisely and can be used for maintenance and inspection

of safety critical systems. Specifying a complex real-time system means Specifying its

structure and relations among individual components and subsystems, accompanied

with real-time semantics. This task can be broken into two orthogonal ones. First,

the structure (such as the breakdown of computation and communication onto tasks

and messages) and basic relations (such as resource allocation) are independent of

the heterogeneity present in complex real-time systems that primarily comes from

disparate real-time models. Their specification can be supported by a fixed syntax.

Second, each real-time model defines certain semantics, and some semantics are at-

tached to the rules of integration of two different real-time models. These rules can

be viewed as a variable, model-specific syntax.

The Standard Generalized Markup Language (SGML) [42] is a meta-language and

information infrastructure for structured documents and specifications that has been

used, among many other applications, for maintaining technical documentation. It

8

allows for explicitly specifying the structure of a document and the relations among

its elements, while the checking of the document semantics is performed by tools

called SGML applications. The motivation to use SGML for the compiler front-end

comes from an idea that a complex real-time specification can also be viewed as a

multi—purpose specification document. In other words, the compiler front-end is an

SGML application.

1.2.2 Distributed Instrumentation Systems

Besides Specification and problem-solving tools addressed in the previous subsection,

tools are also needed that can provide feedback from tested and deployed complex

real-time systems. The feedback in the form of collected system performance data

can be analyzed on-line or most-mortem, and is necessary for validating the design

assumptions. Furthermore, the performance data collected and analyzed on-line can

be further fed to a problem-solving tool, in order to find new values of system param-

eters that might better handle a current situation imposed onto a deployed system

by the environment. It should also be possible to enforce the new parameters onto

the running target system. Altogether, a distributed instrumentation system, which

can be used for collecting performance data in real time and without significant in-

trusion on the target complex real-time system, is necessary. Since it would have an

infrastructure to link the real-time system performance data and the problem-solving

tool in one way, reusing the infrastructure for steering the target system (i.e., en-

forcing the new parameters) is possible. Finally, the heterogeneous and still evolving

9

nature of complex real-time systems prevents making most of detailed design and

implementation decisions of such a distributed IS at once and in advance. Hence, the

needed IS should rater be designed and seen as a kernel than a final and complete

implementation.

Designers and users of parallel and distributed systems have applied a variety of

monitoring methods and instrumentation techniques to gather information for testing,

debugging, and analyzing performance and optimizing systems [112]. These methods

and techniques require deve10pment of systems for instrumentation data collection,

management and analysis, which are themselves distributed systems. A distributed

instrumentation system is typically specialized to an application domain and/or com-

puting environment. Moreover, the distributed nature often makes it harder to use

and adapt. A significant investment in time and effort may be needed to understand

the IS implementation sufficiently to port and/or configure it for another application

and/or environment.

An off-the-Shelf distributed IS that is robust, portable and flexible would benefit

both designers and users of a wide range of parallel and distributed systems. It would

allow them to instrument and begin monitoring their system rapidly, and as needed

subsequently, to optimize or extend the IS for their environment. High performance

and openness of the IS implementation are equally important for its success as general-

purpose systems software.

Obviously, the requirements of a distributed IS for instrumenting and steering

complex real-time systems are broad, and even exceed those for instrumenting con-

ventional parallel and distributed systems. A viable approach to the design and

10

implementation of such an IS could be one of a portable and flexible distributed IS

kernel, augmented with features that are needed in the complex real-time system

domain. One such IS feature, for example, is being able, to a certain degree and with

cooperation with the operating system, to schedule its computation and communica-

tion activities in a way that reduces its intrusion, in the real-time sense, on the target

system.

1.2.3 On-Line Performance Analysis and Visualization

With the advent of computer technology, systems are becoming more and more com-

plex and, at the same time, there is more and more computing power available and

needed for supporting the systems themselves, in various forms of on-line analyses.

One large class of the on-line analysis deals with the system performance, trying

to summarize and/or explain various performance metrics, such as the efficiency of

resource usage or quality of service provided for higher-level activities. Advanced

analyses attempt to diagnose performance problems and suggest actions that may

lead to the performance improvements. In the domain of complex real-time systems,

the on-line analysis places emphasis on different measures of the real-time—liness, both

hard and soft, individual and collective ones.

Performance analysis and visualization (PAV) tools are crucial components of an

effective development cycle, as well as deployment, of parallel and distributed appli-

cations. On-line PAV is even becoming necessary for the latter. Since the amount of

performance data to be analyzed and visualized increases with the size of a target par-

11

allel/distributed application, on-line PAV itself should be distributed. Heterogeneous

systems, in addition, need PAV tools that provide flexible integration and configura-

tion support for heterogeneous performance data. Extant generic and library-Specific

PAV tools for parallel/distributed systems can cover only low-level performance as-

pects, provided that the target systems fit into their generic schemes and/or use

specific libraries, such as PVM [32] and MP1 [31]. A wider range of performance as-

pects, at multiple levels, global and local, are needed to capture and visually explain

the behavior of a heterogeneous system.

As the performance data are gathered from different subsystems and components

of a complex real-time system by a distributed IS, they need to be analyzed according

to general, but also model-Specific real-time-liness criteria. One example of model-

specific criterion is that in all sequences of n invocations of a periodic activity, at

least m (m g n) must meet their deadline [15]. This requires a PAV tool that

can be extended to support new analyses. There are also real-time quality-of-service

metrics of interest that have a more complex semantics than, for example, the just

mentioned m-out-of-n criterion. Such metrics are often used for applications running

atop of systems that provide generic real-time support. In these cases of vertical real-

time integration, automated analyses that are comprehensive and helpful are hard

to devise, and it may be necessary to provide visualizations of simpler performance

metrics for a human operator to analyze ad hoc instead. Finally, complex real-time

systems are supposed to guarantee a degree of aggregate real-time-liness through

the integration of its subsystems and components. However, if certain temporary

conditions, such as overloads, violate the design assumptions, the guarantee is voided.

12

If the assumed real-time—liness is found to have deteriorated, it may be safer to treat

the situation as unpredicted than to analyze it automatically. Again, the human

operator needs a potentially large amount of performance information presented in the

form of visualizations in order to make a dynamic reconfiguration/recovery decision.

Altogether, on-line PAV tools can greatly benefit the testing and deployment of

complex real-time systems. If well integrated with a suitable model-based problem

solving framework, it would extend the latter from a static to a dynamic one, and

make it achieve even higher level of abstraction (from textual Specifications to visu-

alizations) provided for the system designers and users.

1.3 Research Objectives, Activities and Contribu-

tions

This section states the objectives of the research presented in the dissertation. The

statements are followed by the description of activities undertaken towards meeting

the objectives, and a summary of contributions that have resulted from the activities.

There are four research objectives:

1. To devise a systems engineering framework particularly suitable for the design

and engineering of complex real-time systems. This includes a systems specifica-

tion language and multiple problem-solving approaches, as well as an automated

mapping between them.

13

2. To investigate performance and portability issues of the instrumentation of par-

allel and distributed, heterogeneous systems. The performance issues include

real-time prOperties relevant to the instrumentation of complex real-time sys-

tems.

3. To discover common properties of extant on-line PAV tools for parallel and

distributed, heterogeneous systems, as well as gather desired properties of the

on—line PAV viewed as a real-time middleware. Using the findings, to devise a

comprehensive PAV framework as a basis for advanced extensions.

4. Finally, to integrate the systems engineering and on-line PAV frameworks in

a way that facilitates on-line system steering/reconfiguration of complex real-

time systems. The integrated approach should be semi—automated, and allow

algorithmic and visual analyses of instrumentation data received from the target

system to utilize problem-solving tools.

The activities in pursuit of the above objectives were carried in the following order,

with certain overlappings:

1. The first version of an object-oriented, on-line PAV software was designed and

implemented.

2. The CLP technology was chosen as appropriate and promising for solving design

and engineering problems of complex real-time systems.

3. A simple distributed instrumentation system was designed and developed.

4. Several real-time models and small test systems were used for determining the

power of a publicly available CLP tool. The CLP code was either written

manually or generated by utility tools.

14

5. The distributed IS was made more portable, augmented with performance tun-

ing options and reconceived as an extensible IS kernel.

6. The first version of a complex real-time system specification language and its

translator to CLP were designed and implemented.

7. The on-line PAV software was vertically extended into a component-based tech-

nology, and supported by a high-level language and compiler.

8. A new version of the systems specification language was introduced together

with an extensible compiler. The first complex real-time system was modeled.

9. The distributed IS kernel was evaluated, and then extended to provide instru-

mentation control and steering.

10. The on-line PAV technology was ported, in addition to the Unix/X11 domain,

to the Java/WWW domain.

11. A real-time test-bed and client-server system were prepared for evaluating the

three constituents (the systems engineering framework, the on-line PAV tech-

nology, and the distributed IS kernel) of the integrated approach together.

12. The compiler for the complex real-time system specification language was

rewritten and extended to generate system-specific code that is input to the

on-line PAV technology.

This research has made four notable contributions to the state of the art in the

design and engineering of complex real-time systems, and instrumentation and on-

line performance analysis & visualization of a wider range of parallel and distributed,

heterogeneous systems:

1. A compiler-based approach to design and engineering of complex real-

time systems. Based on a comprehensive usage of the CLP technology, this

contribution addresses the first objective and problem statement by (1) enabling

high-level specifications of complex real-time systems that place emphasis on

the system structure and real-time models involved; (2) automated handling of

model-specific details, including the integration of different real-time models;

15

and (3) providing multiple problem-solving approaches, such as finding optimal

solutions and repairing partially correct solutions.

. A portable and flexible distributed instrumentation system kernel.

This contribution addresses the second objective and part of the problem s-

tatement by providing (1) a flexible and robust tool for instrumentng complex

real-time systems; (2) base for developing elaborate, domain-specific distributed

ISes; and (3) test-bed for experimenting with IS managing polices and IS-specific

distributed algorithms.

. An on-line performance visualization technology. Centered around an

object-oriented, portable and distributable, adaptive, system- and application-

specific on-line performance analysis and visualization framework that supports

rapid prototyping, this contribution addresses the third objective and important

part of the problem statement related to the dynamic reconfiguration/steering

of complex real-time systems. The technology extends the core framework with

(1) a PAV-specific architecture and very high-level language designed atop of

it; and (2) component-based approach to development of PAV tools; which

together form (3) a base for automated and advanced PAV systems, such as the

last contribution in this list.

. An integrated approach to real-time system design and on-line PAV

with steering. This contribution extends the compiler from the first contri-

bution with support for generating code that is treated as input to the PAV

technology of the third contribution; it also utilizes the distributed IS kernel

16

from the second contribution to instrument and steer complex real-time sys-

tems. The fourth objective and problem statement are addressed by a novel,

integrated technology that tightly links a target complex real-time system, its

specification, an appropriate PAV, and PAV-driven and model-based dynamic

reconfiguration; and does so in a mainly automated manner.

Overall, all the contributions were supported with a proof of concept. Whenever

the time and technical conditions permitted, performance evaluations were carried

out additionally to support the contributions.

1.4 Organization

Chapter 2 discusses background and related work. Several approaches to the design

of distributed real-time systems are described first. Constraint Logic Programming

is introduced and several works that use it as support for the specification and ver-

ification of real-time systems are described next. They are followed by related work

on checking of explicit timing constraints. Issues in distributed instrumentation are

discussed, and an overview of several distributed ISes is presented. The chapter ends

with a discussion on on-line performance analysis and visualization (PAV).

Chapter 3 presents the compiler-based approach to design and engineering of

complex real-time systems, the central focus of the dissertation. First, the Real-Time

System Markup Language (RTSML) is described. An example complex real-time

system is presented next, followed by the process of compiling its RTSML specifica-

tion to CLP. Salient characteristics of the compiler back-end and the descriptions of

17

two real-time model-specific modules are presented. Results of experiments with the

example complex real-time system are analyzed.

Chapter 4 presents a portable and flexible distributed instrumentation system

kernel called BRISK. Along with the description, approaches that provided IS per-

formance gains are discussed. The objectives of BRISK, approaches taken in its

design and implementation, the architecture and implementation details, and results

of evaluating its performance and scalability are presented.

Chapter 5 presents a software technology for on-line performance analysis and

visualization of parallel and distributed, heterogeneous systems. A visual object

framework is described, followed by an example of its successful use for PAV of a dis-

tributed multimedia real-time application. A PAV architecture for the visual objects,

a markup language based on it called VOML, and the development environment are

presented next. The chapter concludes with an example of a VOML specification and

corresponding performance visualizations.

Chapter 6 presents an integrated approach to the design and engineering of com-

plex real-time systems, their instrumentation, on~line PAV, and dynamic system re-

configuration. Figure 1.1 illustrates this approach; it also serves as a reference by

showing the relations between diflerent parts of the work presented in this disser—

tation. A real-world target distributed real-time system is described, followed by a

description of its design and engineering performed using the approach described in

Chapter 3. Technical details of the integration are explained next, and the operation

of the new, integrated technology is shown on an example execution scenario.

18

Chapter 7 concludes the dissertation with a summary of the major contributions

and future directions in areas that include complex real-time system problem-solving

related optimizations, extensions of the distributed IS kernel, advanced on-line PAV

tools, and different integrations of the systems engineering and on-line PAV frame-

works.

RT

RTSML
models

specmcation

VOML

—— a ‘ specification

RTSML compiler

CLP

program

.
VOML compiler

conventional

& repair-based
[I

search

Visual

Object

prototype

w/steering

extension

oil-line

on-line
ll

#%

target

CLP

dynamic RT system

reconfiguration
instrumentation & steering p___y

human operator

Figure 1.1: Overview of the integrated approach

19

Chapter 2

Background and Related Work

This chapter discusses background and previous work related to the dissertation re-

search presented in the following chapters. The first section covers several approaches

to the design of distributed real-time systems. The second section provides back-

ground in Constraint Logic Programming (CLP) and presents several works that use

it as a tool in the area of real-time systems. The third section overviews other works

in the area of real-time systems that deal with explicit timing constraints (as opposed

to implicit ones, such as those contained in the constraint formulae from real-time

scheduling theory models). The fourth section describes several distributed instru-

mentation systems and their relation with BRISK. Finally, the fifth section describes

related work in the area of system performance visualization, including a few more

comprehensive, integrated approaches.

20

2.1 Distributed Real-Time System Design

As was stated in Section 1.2, the state of the art in the area of real-time scheduling

still does not provide integrated and comprehensive solutions for realistic scenar-

ios. Among many fragmented design and engineering approaches for parallel and

distributed real-time systems, some concentrate on integration and decomposition.

More comprehensive approaches usually pr0pose a search algorithm for solving sys—

tem parameters, such as branch-and-bound, simulated annealing, or even greedy. For

specific classes of distributed real-time systems, an approach may include run-time

support as well. The descriptions of some related approaches are presented below and

ordered approximately from simpler to more complex ones.

In [102], Spuri and Stankovic address the problem of integration of task precedence

constraints with resource sharing in real—time scheduling. Their motivation is to

give more freedom to the scheduler so that more dynamic real-time systems can be

supported. They derive analytical task schedulability formulae that can be applied

in more real-time system situations than previously developed.

An engineering technique for decomposing end-to—end delays in distributed real-

time systems is prOposed by Saksena and Hong [97]. In efl'ect, a global distributed

scheduling problem is transformed into a set of single-processor scheduling problems

with local deadlines. The problem solving approach consists of an approximate tech-

nique to quickly generate an initial solution, and an iterative method to fine-tune the

initial solution.

21

In an end-to—end approach to the design of real-time systems by Gerber et al. [39],

real-time applications are structured as a set of process components, connected by

asynchronous channels in which the end-points are the system’s external inputs and

outputs. End-to—end propagation delay, temporal input-sampling correlation, and

allowable separation times between updated output values, are postulated as end-

to-end constraints. The problem solving approach is a multi-stage procedure that

involves an augmentation of the problem, an optimization algorithm that generates

a set of intermediate rate constraints, and a domain-specific constraint solver.

An approach to scheduling and allocation in multiprocessor real-time systems is

described in [23]. Cheng develops a hybrid timings model that combines absolute and

relative timing constraints on tasks. Based on this model, the simulated annealing

technique is applied as the overall search algorithm to find feasible schedules over

multiple processors. A task replication technique (for the purpose of improving the

scheduling) is developed and embedded into the simulated annealing algorithm.

A framework that provides a systematic approach to designing distributed, het-

erogeneous real-time systems that utilize resources in an efficient, pipelined and pre-

dictable manner, is proposed by Chatterjee and Strosnider in [22]. It defines abstrac-

tions for representing real-time applications and capturing the fundamental prop-

erties of distributed pipelining; a flow control mechanism; a decomposition of the

multi-resource scheduling problem into a set of single resource scheduling problem-

s with well-defined interactions; an analysis methodology to support heterogeneous

scheduling policies among system resources; and a delineation of how manipulating

22

system configuration parameters affect various application timing metrics. It does

not specify any particular mapping or optimization technique.

In [84], Mutka and Li describe a tool that finds feasible processor allocations

for sets of rate-monotonically scheduled (RMS) tasks over a set of heterogeneous

processors. It uses three different RMS tests, considers possible task blocking due

to priority inversion, allows task co—allocation, and can perform task transformations

if needed. Communication among the tasks is not considered. The problem solving

approach is based on a branch-and-bound algorithm.

An optimal solution to the problem of allocating communicating periodic tasks

to heterogeneous processing nodes in a distributed real—time system by Peng et a1. is

presented in [87]. The maximum normalized task response time is minimized subject

to the precedence constraints resulting from intercommunication among the tasks to

be allocated. The task system is modeled with a task graph in which computation and

communication modules, communication delays, and intertask precedence constraints

are described. These tasks are assigned to processing nodes by using a branch-and-

bound search algorithm.

In [66], Kang et al. describe a distributed real-time system model with statistical,

end-to-end constraints. It exploits both discrete-time Markovian analysis and real-

time scheduling theory, and uses several approximations to avoid modeling the entire

system. A system is modeled as a set of chains, where each chain is a distributed

pipeline of tasks, and a task can represent any activity requiring non-zero load from a

processor or network resource. Every chain has two end-to-end constraints: delay and

minimum allowable success rate for outputs that meet their delay constraints. The

23

search algorithm uses two heuristics, which help in significantly reducing the number

of potential feasible solutions but, at the same time, can miss some and report a

failure.

PERTS [101] is a commercial prototyping environment based on the rate mono-

tonic analysis (RMA), initially developed at the University of Illinois at Urbana—

Champaign. It integrates multiple analysis tools allow a real-time system designer

to test and evaluate the system against various design scenarios. Several real-time

scheduling algorithms and protocols are supported, and end-to-end analysis for single—

and multiple-node architectures is provided. It interfaces to Real-Time CORBA [27],

ObjecTime [74] and a few more real-time software technologies.

An approach due to Welch et al. for engineering time-constrained systems which

must operate in dynamic environments (with potentially unknown worst-case scenar-

ios and large, unpredictable variances in system parameters) is presented in [120].

A specification language was developed that enables the description of environment-

dependent features. An abstract model constructed from the specifications is aug-

mented dynamically with the state of environment-dependent features. It is also

used to define techniques for quality-of-service monitoring and diagnosis, and allo—

cation analysis. A prototype resource-management middleware was developed to

experimentally evaluate the approach.

In the light of an overall approach that would be able to handle all the issues

brought out by Stankovic and listed in Section 1.2, the approach presented in this

dissertation attempts to address the need for a comprehensive computer-aided design

and engineering framework for complex real-time systems. However, it fundamentally

24

differs from one that implicitly follows from the above-mentioned motivation in [102]

by the same author. The latter is based on the need for a single real-time scheduling

approach that would address as many realistic scenarios at once as possible. The

approach presented in this dissertation aims to integrate and compose extant real-

time scheduling approaches, which address only specific scenarios, into a complex,

more realistic one. Intuitively, a single complex scheduling approach might not scale

well in complex real-time systems, which are parallel/distributed systems that should

scale with respect to the system real-time-liness. (It is easy to see that for a single

resource, such as CPU, the addition of support for more realistic scenarios in real-time

systems, such as fixed priorities to activities and/or resource sharing among activities,

strengthens schedulability conditions, resulting in a lower resource utilization.) Such

an approach might overly underutilize the resources, leaning toward extensive resource

sharing and tight integration. In other words, an inherent property of loosely-coupled

systems, such as distributed computer systems, is that the Operating time scale is

larger than that of tightly-coupled ones, such as symmetric multiprocessors. This

is rather relevant to realistic real-time systems, in which the operating time scale

affects the real-time-liness. (AS a side note, anticipating as many realistic scenarios

at once as possible is similar to analyzing worst cases in the hard real-time scheduling

theory. For a reference, Jensen in [63] argues that hard real-time scheduling does not

scale.) Another important difference between the two approaches is that Stankovic’

one is more scheduling theoretic, while the one presented in this dissertation is a

systems engineering approach. The former attempts to devise real-time scheduling

models that would support more realistic scenarios without strengthening feasibility

25

conditions. The latter attempts to build realistic real-time systems by placing an

emphasis on the use and integration of appropriate extant real-time models.

2.2 Constraint Logic Programming and Real-Time

Systems

Constraint Logic Programming tools have matured over the last decade and solvers

exist for a wide range of problem domains. For example, solvers for combinatorial

problems over finite domains and sets, systems of equations and inequalities involving

rational and real numbers, and solvers for systems of non-linear equations over real

numbers can be integrated within a CLP tool by the means of a Logic Programming

language, usually extended Prolog. CLP has been used in a variety of applications,

such as scheduling, resource allocation, timetabling, financial planning, frequency as-

signment for cellular phones, etc. [116] Research in various areas of engineering have

used CLP for solving practical industrial problems. Constraint Logic Programming

has been used in some areas of computer-aided engineering (e.g., in mechanical en-

gineering [69, 107]; for VLSI design of electrical circuits [13]; in manufacturing [124];

in computer system performance analysis [75]) in the recent past. In the context

of Artificial Intelligence, a more general framework of Constraint Programming has

been used in reactive systems [35] and electro—mechanical machines [114].

26

Before more related work, which uses CLP in the area of real-time systems, is

presented in Section 2.2.2, CLP background is given in Section 2.2.1. Section 2.2.3

describes ECL'PSe, the CLP tool used in the work presented in this dissertation.

2.2.1 Constraint Logic Programming Background

The insight which led to the design Of the CLP framework is the observation that

the algorithm of unification used in Logic Programming (LP) is a constraint solving

algorithm and as such it could be combined with, or replaced by, various other con-

straint solving algorithms. In other words, LP offers the means to create a single and

powerful framework for various cooperating constraint solving algorithms [116].

More formally, CLP is a many-sorted generalization of LP, in which different sorts

are associated with different interpretation domains, and corresponding formulae are

manipulated using predefined constraint solvers. Special classes of formulae, called

constraints, are not handled using traditional resolution, but are interpreted under a

predefined specific interpretation and handled by external constraint solvers. Basic

definitions of the formal CLP framework presented in [71, 56] are given below.

A CLP language is built upon a set 23 of function and constraint predicate symbols,

called signature. Primitive constraint predicates (including the equality symbol =)

belong to E and are interpreted with respect to a predefined interpretation structure,

called E-structure, while user-defined constraint predicates are subject to the user

definitions.

27

A term is an Object created using function symbols from 2 and a collection of

variables. It can be either a simple variable or an application f(t1, . . . , tn) of an n-

ary function symbol f E E to n terms t1, . . . , tn (n 2 0). An atom is an application

p(t1, . . . , t,,) of a constraint predicate symbol p to n terms t1, . . . , tn. pr is a primitive

constraint predicate, then the atom is called a primitive constraint. Every constraint

is built from primitive constraints. A program is composed of a collection Of clauses,

where each clause has the form:

headz—c [b1,...,b,c

where head and b,(i : 1, . . . , k) are user-defined atoms, while c is an arbitrary con-

junction Of constraints. The symbol | is used in the body Of the clause to separate

the constraint part from the goals and can be read as “and,” in the same way as a

comma in the body of the clause.

A E-Structure D consists of a set D and an interpretation function ID. A con-

straint c is solvable if D [2 3(c), where the notation 3(a) denotes the existential

closure of the formula 4) (i.e., each variable in (b is within the scope of an existential

quantifier). A Z-theory is a collection of closed Z-formulae (i.e., formulae built over

2). A solution 0 for c is a mapping from the variables in c to D, such that D [2 CH.

The execution of a constraint program requires the use of constraint solvers ca-

pable of deciding the solvability of each possible constraint formula. Resolution is

extended in order to embed calls to constraint solvers. If ? — C] | g1, . . . , 9,, is a

28

goal, and p : —02 [b1, . . . , 1),, is a clause in the program, then the resolvent of the

goal wrt. the given clause is

?— (c1,c2,gl =1?) I b1,---.bk,92.---.9n

as long as D [2 (c1 /\ c2 /\ (gl 2 p)). The symbol = is an abbreviation for the

conjunction of equations between corresponding arguments of g1 and p, if g1 and p

have the same predicate symbol. The constraint solver is used to test the validity of

the condition on the constraints.

The idea behind the introduction of the CLP framework is that a logic-based pro-

gramming language, its declarative and operational semantics and the relationships

between these semantics can be parameterized by a choice of the domain of compu-

tation and constraints. The resulting scheme defines the class of languages CLP(X)

obtained by instantiating the parameter X [116].

The parameter X stands for a 4-tuple (2, D, L, T), where Z is a signature, D is

a Z-structure, L is a collection of Z-formulae and T is a first-order Z-theory. The

2 determines the predefined predicate and function symbols with their arities, D is

the structure over which computation is to be performed, .6 is the class of constraints

which can be expressed, and T is an axiomatization of some properties of D. The

pair (D, L) is called a constraint domain. One such domain, FD, will be described in

Section 2.2.3.

29

2.2.2 Use of CLP as Support for Real-Time Systems

CLP and its more general version, Constraint Programming, have successfully been

used as a tool for solving specific problems in the area of real-time systems as well

as other areas with certain real-time aspects, ranging from temporal reasoning and

scheduling to formal methods, to resource allocation. This fact supports the moti-

vation for using CLP as an elegant way of expressing the disparate requirements of

real-time systems, in Section 1.2.1.

A family of logics and associated programming languages for representing and

reasoning about time is introduced in [37]. The family is conceptually simple while

allowing for different models of time. Formulae can be labeled with temporal infor-

mation using annotations. Unlike temporal logic [88], both qualitative and quantita-

tive (metric) temporal reasoning about definite and indefinite information with time

points and time intervals in different models of time are supported. The introduced

temporal annotated logic can be made an instance of annotated constraint logic, and

there is a systematic was to make a clausal fragment executable as a CLP program.

A new class of application domains for Constraint Programming is introduced

in [98], due to the emergence of special real-time systems, enjoying increasing popu-

larity in the areas of automotive electronics and aerospace industry. Real-time sys-

tems of this kind are time-triggered in the sense that their overall behavior is globally

controlled by a recurring clock tick. An off-line scheduling approach maps infinite,

periodic processing onto a single time window of a fixed length. The authors also

30

describe which techniques from traditional scheduling and real-time computing led to

success and which failed, when confronted with a large-scale application of this type.

In [33], the author first explains how the bottom-up evaluation method of Revesz

for computing least-fixed points of CLP programs can be adapted from the domain

of integers to the domain of reals. The procedure is applied on a state reachability

problem in timed automata [2], also including certain extensions of timed automata.

It has been successfully experimented for proving automatically the correctness of a

SOphisticated reactive program that controls dataflow rates on ATM networks.

A CLP-based framework is developed in [46] for Specification and verification of

real-time systems that is based on the notion of timed automata. A user models

the ordering of real-time events as the grammar of a language accepted by a timed

automaton, and real-time constraints on these events are then captured as denotations

of the grammar productions specified by the user (i.e., the valuation function of

the associated denotational semantic maps into the time domain). The resulting

specification is a CLP program that is executable. Many interesting properties of the

real-time system can be verified by posing appropriate queries to this CLP program.

The approach is also constructuve in the sense that conditions can be computed under

which a property will hold for a given real—time system.

In [45], the author applies CLP on a problem of global optimization of DSP

application mapping onto parallel architectures. The problem is characterized by

numerous resources (number of processors, bandwidth, memory size), real-time con-

straints (latency, sampling) and many non-linear constraints. The author also notices

the capacity Of CLP to compose several concurrent system models. Certain aspects

31

of the problem are presented in [3]. It is shown how it is possible to handle and

solve three system models at once, under architectural and real-time constraints: a

data-partitioning model equivalent to that supported by HP Fortran; a fine-grained

(at macro-instruction level) scheduling; and a capacitive, distributed shared memory

model.

2.2.3 Overview of ECLiPSe

The ECL‘PSC platform integrates a number of constraint solvers, including ones for

solving sets of constraints over finite domains CLP(FD), real and rational numbers

(CLP(R,Q) [52]), and intervals over real numbers (RIA) [53]. A special library called

REPAIR [96] allows the user to start with a tentative solution, which can be modified,

or repaired, if it turns out inconsistent with the constraint set.

The finite domain support consists of three libraries: for symbolic finite domain-

s; for handling integer variables and numerical constraints on these variables; and

with built-in complex constraints. The second library is the major one, propagating

equations and inequalities between linear expressions. A linear numeric expression

is one that can be written in the form Terml + Termg + + Termn, where each

term can, in turn, be written as Number or Number - Variable. According to the

definitions in Section 2.2.1, the set D in this case is the set Z of integers, and finite

domain constraints are existential positive formulae built up from the linear expres-

sions and the five predicates 2, >, 2, < and S, interpreted in Z, and infinitely

many membership predicates 6 [a,b], one for each finite interval [a, b] of Z. The

32

primitive constraint 1‘ E [a, b] is interpreted by the empty set when b < a; similarly,

x = a and x E [a,a] are identified. Solving finite domain constraints is both NP-

complete and very important for practice, which has favored the use of a practically

efficient technique called constraint propagation. It consists of a set of transformation

rules such that each primitive ordering or equality constraint c between the variables

2:], . . .,xn in c, whose domains are defined by membership constraints :13,- E [a,-,bi],

induces new restrictions on these domains, resulting in new membership constraints.

A reduced domain RD(xj,c) of the variable x,- for c is the smallest interval [oz-J3]

containing all m E Z such that the constraint obtained by substituting xj by m in

c A (2:? x, E [a,, b,]) is satisfiable in FD.

In practice, a typical CLP(FD) program consists of three sections. First the

domains of program variables are declared (the notation is slightly different than

above; comma is used to separate intervals, and intervals are specified using . .).

For example, the variable declaration Task_0_TimeAt1MIPS : : [0, 1000 . . 2000]

could be interpreted as task 0 being either inactive (does not use any CPU time)

or active such that it may require between 1,000 and 2,000 milliseconds of CPU

time on a unit-capacity CPU. (Some program variables, a.k.a. meta-terms, may be

assigned attributes other than finite domains, and multiple different, cooperating

constraint solvers may be involved.) Second, constraints are stated that are used to

build a constraint network at run time. As opposed to the generate-then-test approach

to searching of logic programming, CLP uses a much more efficient constrain-then-

generate approach. The last program section defines the order the program variables

will be assigned values, which are consistent with the constraints, and the order

33

those values will be tried; this is called labeling. Sometimes, stating the constraints

is enough to reduce the domains of program variables to Single values and obtain

solutions, if any. In other situations, the CLP system cannot decide the problem

with this information only, i.e., it may return domains of the program variables’

values for which there might be solutions. As the program variables are assigned

values in an user-specified order, their domains are further reduced by the constraint

propagation. If the CLP system detects that the constraints cannot be satisfied with

current value assignments, backtracking is performed and most recent assignments

are undone. Other CLP solvers may handle their constraints more or less differently

than CLP(FD).

2.3 Explicit Timing Constraint Checking

In the area of specification and verification of real-time systems, explicit timing con-

straints have been a research focus during the last years. They have been studied in

two main contexts. The first one is formal methods, where theories based on the tim-

ing constraints have been developed, independently of the real-time scheduling theory,

for expressing and statically checking temporal properties of real-time systems. The

other context is real-time languages and systems, where the timing constraints are

checked dynamically at run-time.

Major work in the context of formal methods has been done by A. Mok and

F. Jahanian et al. Their work started with Real—Time Logic (RTL) [59], a formal

language for the specification of real-time systems. RTL formulae are constructed

34

using addition and subtraction of event occurrence functions (which map to the time

domain) with integers, (in)equality predicates, universal and existential quantifiers,

and logic connectives. The semantics Of RTL is based on the occurrence of events

(using the absolute timing, not only ordering) that are based on the execution of a

real-time system, such as an event coming from the environment, the start and end

of code blocks or the assignment of values to a state variable. Checking whether a

set of timing constraints in RTL is satisfied is generally undecidable, although certain

classes of RTL formulae are easier to check [57, 106]. Algorithms were developed for

checking safety properties [60] and partial event-traces [57].

The research was later directed toward the other context. A distributed on-line

monitoring and checking tool was described in [24] and [58] that allows for specifying

timing properties in a subset Of RTL and checking for their violation. The work de-

scribes how to store events coming from the system, how to define timing constraints

based on these events, and how to evaluate the constraints in a distributed environ-

ment. A graph~based algorithm was developed that evaluates these RTL formulae

whenever a new event arrives or when a timeout expires (at earliest possible time).

In the context of dynamic timing constraint checking, a real-time system is e-

quipped with means for detecting and/or preventing timing constraint violations.

When a timing constraint violation is detected, the system tries to adapt by, for

example, activating stand-by resources, rescheduling of the remaining resources, or

executing alternative algorithms for solving the problem under different conditions.

A methodology for specifying and checking timing constraints in a distributed

object-oriented environment is presented in [40]. The focus there is on how object

35

orientation can be utilized to simplify the specification and the checking of timing

constraints and how this can be integrated in an existing programming language like

C++. The methodology integrates a precompiler that generates instrumentation code

and a constraint checker based on RTL-like timing constraints specified for each class,

and a distributed instrumentation system. The functional and timing specifications

are semantically separated. Notifications by constraint checkers in the form of events

are used as the feedback from the target system.

Another approach to dynamic timing constraint checking in distributed object-

oriented systems is presented in [93]. Like the previous approach, it separates real-

time requirements from individual commands in a program. The real-time require-

ments are timing constraints described by declarative synchronization code between

the interfaces Of objects, expressing common, message-based temporal coordination

patterns. Objects in the system are based on the Actor model [1], and a high-level

programming language construct called RTsynchronizer is defined that specifies a

collection of temporal constraints between actors. The run-time system is able to

dynamically enforce timing constraints, based on the principles of safe progress and

unsafe wait, by e.g. delaying messages. A group of actors may be constrained by

overlapping RTsynchronizers, which may be dynamically added or removed.

In [85], the work has been extended and the actors and synchronizers have been

assigned formal Operational semantics. The actor semantic interprets actor primitives

as two-phase transitions between configurations, which are modeled by ordered pairs

((1, u), where (1 represents actor states and u is the set of pending messages. As for

the synchronizers, a constraint configuration is similarly defined as an ordered pair

36

(x,£), where x is a multi-set of demands for message invocations corresponding to

the constraint é; transitions are determined by constraint firings, whenever a message

invocation matches a pattern in a constraint. A collection of synchronizers is termed

an interaction constraint system configuration. Finally, the two operational semantics

are composed into one. The overall model is yet to be implemented, and the authors

have identified three main tasks: a (so-called constraint-directed) scheduling strategy

that fits the synchronizer approach; constraint propagation by the compiler and run-

time system; and the distribution of synchronizer entities.

A number of other formal methods for real-time systems treat explicit timing con-

straints using various time models. For static checking, the CLP approach described

in this dissertation could support some of the formal methods on the grounds Of

common underlying frameworks such as logic and Presburger (linear) arithmetic. An

interesting issue is one of the integration Of these models with models from real-time

scheduling theory within the compiler-based framework.

While the behavior of a real-time system based on static analysis becomes unde-

fined as soon as some of its design assumptions are violated, it is difficult to provide

any guarantees for a real-time system equipped only with dynamic timing constraint

checking. The approach to dynamic system reconfiguration described in this disserta-

tion attempts to combine static analysis and constraint checking with on-line system

performance analysis. Similarly to, for example, common analysis of missed task

deadlines, the on-line performance analysis may include dynamic timing constraint

checking as described above. Namely, parts of real-time models that allow for static

analysis are evaluated in advance by the CLP tool to derive unknown system param-

37

eters. Run-time system performance degradations and constraint violations are then

fed back to the CLP tool, which tries to solve for new, better values of the system

parameters by taking into consideration all the static requirements that result in cer-

tain guarantees. While a run-time system for dynamic timing constraint checking

can prevent some constraint violations and quickly detect unpreventable ones, it it-

self lacks complete information to steer the target system toward a provably better

configuration.

2.4 Distributed Instrumentation Systems

Many distributed ISes have been developed over the past decade (e.g., [30, 80, 47]),

usually as components of larger software toolkits for analysis of parallel/distributed

systems. Only a few have been ported to multiple platforms and made available to

broader usage. Several such systems are briefly discussed here. The usage of BRISK

in the context of the Objectives and features of these distributed ISes is based on

certain inferences only, and their developers may have different recommendations.

The Automated Instrumentation and Monitoring System (AIMS) [123] contains

xinstrument, a source-code instrumentor for Fortran77 and C, and monitor, a library

of time-stamping and trace-collection routines that generates trace files. Tools for off-

line processing of trace files include a utility for removing monitoring overhead and

maintaining consistency of causally-related events, and a trace file animation and

analysis toolkit. If xinstrument were modified to support BRISK, BRISK could

replace the rest of the IS.

38

The Pablo [91] software instrumentation system contains an instrumenting parser

with a GUI, and a performance data capture library for generating trace files in Self-

Describing Data Format (SDDF) [4]. The instrumentation software supports tracing,

interval timing, and counting. The instrumentation library monitors the instrumen-

tation overhead and volume of data, and can automatically adjust the intrusion on

the target application by changing the monitoring method. The basic implementation

of BRISK could be extended to support SDDF and automatic intrusion adjustment.

Paradyn [79] takes an approach called dynamic instrumentation for dynamically

controlling the performance data to be collected. The design of the tOOl is based on

two data abstractions: metric-focus and time-histogram. The dynamic instrumenta-

tion environment includes a compiler and code generation, structural analysis of the

binary, and an instrumentation manager that allows code to be inserted and removed

from the running program. It also incorporates a strategy for describing performance

information to users of high-level parallel languages. This is an example of a com-

prehensive, specialized distributed IS, although ported to multiple platforms, which

probably would not benefit fundamentally from BRISK as its kernel.

Falcon [43], a monitoring and steering system, uses a low-level sensor specifica-

tion language and mechanisms for on-line capture and analysis of application-specific

information about large—scale parallel programs. It includes a semi-portable binary

I/O facility and a tool for instilling a partial order on an unordered event stream.

The latest BRISK implementation provides generic capabilities that can be used to

emulate those of the core Falcon system (i.e., not including auxiliary tools).

39

The JEWEL distributed measurement system [70] uses low-cost software sensors

in the form of cpp macros, assumes synchronized hardware clocks, and has a data

collection and reduction infrastructure based on the External Data Representation

(XDR) protocol [54]. It is integrated with a configurable graphical presentation fa-

cility providing a set Of single-metric views, and an interactive experiment control

system. JEWEL components are based on a custom configuration language and data

and control protocols. A distributed IS with JEWEL’S features and slightly different

architecture could be built on top of an extended BRISK.

Vista [117], a C++ framework for development of domain-specific distributed IS-

es, is based on a generic distributed IS model that defines three components of a

distributed IS: (1) local instrumentation server (LIS), (2) IS manager (ISM), and (3)

transfer protocol (TP). In the interests of flexibility, this simple model has been adopt-

ed for the BRISK design. For performance reasons, the BRISK LIS implementation

is based on JEWEL’S internal and generic external sensors.

In Cristian’s distributed (centrally-controlled, master—slave) clock synchronization

algorithm [29], a master node polls slave nodes in so-called rounds. In each round,

the master queries each slave for its current time, and waits for an answer; when the

answer is returned, the master computes the time difference between the pair. This

querying is repeated a number of times for each slave to average the results. At the

end of each round, the master sends the time differences to the slaves to adjust their

clocks. In effect, the master maintains the slaves’ clocks synchronized relative to each

other (a.k.a. internal synchronization) by maintaining their values within a maximum

deviation from its clock value (a.k.a. external synchronization). Furthermore, the

40

algorithm discards measurements whose round-trip time is longer than one calculated

based on the assumed clock drift, shortest round-trip, and achievable clock error. It

also adjusts the number of queries in a round based on the observed probability of a

successful query. A variant of this algorithm has been used in a distributed IS called

DTM, described in [47].

Kimelman and Zernik in [67] present a technique for on-the-fly ordering and

matching of causally-related event data records that are being produced by a number

of distinct processors, engaged in multiple one—to-many and many-to—one communi-

cations. The technique is Optimal in terms of the amount of space required, and in

terms of the amount of additional delay incurred prior to delivery of an event data

record to its ultimate destination. The time—stamps of out-of-order causally-related

event data records are used, instead of a distributed clock synchronization algorithm,

to estimate clock drifts of the processors, and these estimates are used for correction

of the time-stamps of the preprocessed event data records.

The primary source of software-based instrumentation intrusion is execution of

additional instructions, while side-effects include changes in memory reference pat-

terns, event reordering and even CPU stalls. Malony presents in [76] two time-based

intrusion and perturbation analyses of software-based tracing on a multiprocessor.

(In [76], the term perturbation is used for any—not only critical—change in even-

t timing due to instrumentation.) Based on two derived performance perturbation

models, trace event times are adjusted to (1) remove delays due to the measured costs

of instrumentation, and (2) reorder the event sequence based on knowledge of event

dependencies, maintaining causality. Experimental results show that it is possible to

41

characterize perturbations through Simple models and recover the actual execution

timing with up to 20% error.

It is clear that extant distributed ISes have different goals in different domains,

but share many Similar needs and characteristics. The related work discussed in this

section supports the motivation from Section 1.2.2 for the development of BRISK as a

distributed IS kernel, with an emphasis on features that are useful for instrumenting

complex real-time systems.

2.5 Performance Analysis and Visualization

In this section, several related PAV tools, systems and environments are described.

The PAV environments are progressing with features to incorporate new analysis and

display modules. Visualization environments are not only becoming extensible, but

retargetable to different analysis scenarios.

ParaGraph [49] is a graphical display tool developed by Michael T. Heath for vi-

sualizing the behavior and performance of parallel programs that use PICL (Portable

Instrumented Communication Library) [122] or MP1 (Message-Passing Interface) [31].

The visual animation of a parallel program is based on execution trace information

gathered during an actual run of the program on a message-passing parallel computer

system. The resulting trace data are replayed pictorially to provide a dynamic de-

piction of the behavior of the parallel program, as well as graphical summaries of its

overall performance. The same performance data can be viewed from many different

visual perspectives to gain insights that might be missed by any single view. The

42

necessary execution trace data are produced by a tool called MPICL, developed by

Pat Worley of Oak Ridge National Laboratory, which uses the profiling interface of

MP1 to provide timestamped records of MP1 events.

Pablo took the PAV environment research one step further by incorporating sup-

port for performance analysis environment prototyping [92]. The Analysis GUI com-

ponent of the Pablo Performance Analysis Environment consists of a performance

visualization system that provides a portable, scalable, and extensible tool for the

analysis and display of data written in the Pablo Self-Defining Data Format (S-

DDF) [4]. The user interacts graphically with the Analysis GUI to build a data-flow

graph whose nodes organize, transform, analyze, and display data read from Pablo

SDDF files. Typically, the input files are generated with a trace library component.

Viz continues in this direction by focusing on the visualization technology required

for application-specific performance visualizations [50]. It was created out of a need

to support rapid visualization prototyping in an environment that could be extended

by abstractions in the application problem domain. Viz provides this in a program-

ming environment built on a high-level, interactive language (Scheme) that embeds a

3D graphics library (Open Inventor), and that utilizes a data reactive model of visu-

alization operation to capture mechanisms that have been found to be important in

visualization design (e.g., constraints, controlled data flow, dynamic analysis, anima-

tion). The strength of Viz is in its ability to create non-trivial visualizations rapidly

and to construct libraries of 3D graphics functionality easily. Although our original

focus was on parallel program and performance data visualization, Viz applies beyond

these areas.

43

Avatar [90] is a virtual reality framework, built on the Pablo performance anal-

ysis kit that supports multiple metaphors to display dynamic data. By separat-

ing the metaphor display software from the data processing and interaction compo-

nents, Avatar’s software architecture has allowed for quickly creating new display

metaphors. Three different display metaphors for performance data have been devel-

oped to date: time tunnels (time lines and event driven graphs of task interactions),

scattercubes (3D generalizations of 2D scatterplots that support analysis of high-

dimensional time-varying data), and geographic displays (texture—mapped spheres

with source-destination arcs and stacked bars). Avatar has been used to study two

types of high-performance input/output of the Portable Parallel File System (PPFS):

parallel scientific codes and WWW servers.

Rivet [18] is an information visualization environment that provides a cohesive

platform for the analysis and visualization of modern computer systems. It uses a

component-based architecture in which complex visualizations can be composed from

simple data objects, visual Objects and data transformations. Additionally, it provides

powerful coordination mechanisms, which can be used to add extensive interactivity

to the resulting visualizations. Rivet has been successfully applied in focused studies

of a wide range of computer systems: parallel applications, superscalar processors,

memory systems, and wireless networks.

Lucent Technologies’ Visual Insights [115] Offers a set of interactive and linked

data visualization components for the Microsoft ActiveX developer market that help

software developers create more flexible, animated ways to display trends in vast

stores of information.

44

In Table 2.1, PGRT visual objects that are described in Chapter 5 Of this dis-

sertation, are compared with the above-described related PAV tools and systems.

While some of the latter have gone further in specific directions, such as the graphi-

cal metaphor, the design decisions taken in the approach presented in this dissertation

were primarily based on the requirements stated in Section 1.2.3. (There is also a

concern that insisting on use of the state-Of-the-art, academic software technologies

in PAV tools and systems, such as, for example, lazy functional languages, could limit

their accessibility by non-experts who use legacy software tools. Instead, using tech-

nologies that are gaining acceptance, such as SGML (e.g., in the Chemical Markup

Language [83]) and use of structure, components and scripting (e.g., in VRML [109]),

increases the chance of the PGRT visual objects contributing to the PAV community.)

Table 2.1: Performance visualization tools and systems

Tool/System On/off Graphical Underlying gra- View classes Reu-

line metaphor phical technology sable

ParaGraph off-line data-flow X library generic no

Pablo widgets off-line data-flow X library generic yes

Avatar on-line data-flow VRML three metaphors n/a

Viz on—line data-reactive Open Inventor domain-specific yes

Rivet off-line data-flow OpenGL domain-specific yes

Visual Insights mostly n/a n/a generic yes

off-line

PGRT VO on-line data-flow low-level VO domain-specific yes implementations

Among the few more comprehensive PAV approaches that try to link on-line PAV

with system modeling, design, engineering, and steering, PERTS [101] and Falcon [43]

come close to what is the self-contained result of this dissertation, presented in Chap-

45

ter 6. PERTS facilitates the design and engineering of real-time systems based on the

rate-monotonic analysis, and interfaces Wind River’s WindView visualization tech-

nology [121]. Falcon is not specifically aimed at real-time systems, but integrates

an application-specific on-line monitoring system, an interactive steering mechanism,

and a graphical display system, in an effort to affect the performance and/or execu-

tion behavior of large-scale parallel programs. A good source of related work is An

Annotated Bibliography of Interactive Program Steering [44], which places emphasis

on monitoring, information presentation and steering.

46

Chapter 3

A Compiler-Based Approach to

Design and Engineering Of

Complex Real-Time Systems

This chapter describes the unifying, compiler-based approach to the design and en-

gineering of complex real-time systems. The Real-Time System Markup Language

(RTSML) is described in Section 3.1. An example of a complex real-time system

accompanies the description, in order to make it easier to explain how the compiler

generates CLP code in Section 3.2. Results of experiments with the example system

are presented in Section 3.3. Section 3.4 briefly comments on the scalability issues

in the approach. Before a summary, Section 3.5 discusses correctness issues in the

approach and RTSML-to-CLP compilation.

47

3.1 Real-Time System Specification in RTSML

In this section, the RTSML language is described using excerpts of an example com-

plex real-time system that is motivated by a shipboard control system described

in [119]. Figure 3.1 shows the hardware configuration and a detail from the software

configuration of the system. The squares represent processors, circles represent chan-

nels, and small squares labeled R represent routers; the lines connecting the processors

and channels show possible routes among the processors.

Sensors (8) Sense (8), Evaluate-and-Decide (3), Act (a) ”Actuators (8)

p0
P12

@
‘
fi
b
—
—

—
—
—
.
-
_

I ‘ I ‘

I ' I '

I ' I '

I ' I '

I ' I :

I

I I

: . : .
I I

: | .00 ., : '

I .-:’ I :

| .

I I '

I ' I I P13 '

l P1 ' I I '

I ’ I I '

I : I I :

I I

, I I

I ' I i '

I ' I I '

I ‘ I I '

I P2 ' I I P14 [

I

I ' I I '

I [I I [

I I

I ' C3 I i '

I : I I :

I

I I I '

I P3 ' I I P15 '

I ' I I '

I ' I I '

I ' I I '

I I
Figure 3.1: An example complex RT system

There are 40 periodic tasks, divided into five groups of 8 tasks each. Sensor

tasks make the first group, to be allocated over the four leftmost processors. Sense,

evaluate-and-decide, and act tasks are all to be allocated over the eight processors

in the middle. Actuator tasks are to be allocated over the four rightmost processors.

The communication among the tasks goes from left to right: each sensor sends a

48

1 <!DOCTYPE RTSML PUBLIC "-//MSU-PGRT//DTD RTSML 2.0//EN">

2 <rtsm1>

3 . . .

4 (system id="sO" type="common">

5 (processor-group fidfifipggfgtype="common">

6 <processor EEEFEUfl type="rms (mips (initial 10)

7 (domain (10)))"></processor>

8 </proceasor-group>

9 .

10 (processor-group fidgffigfffitype="common">

11 .

12 (processorm type="rms (mips (initial 10)

13 (domain ((range 8 10))))"></processor>

14 .

15 </processor-group>

16 (task-group id="th" type="common">

17 (task lfi=ItDTI type="common (period (initial 50)

18 (domain ((range 50 80)))) (deadline (initial 50)

19 (domain ((range 40 50)))) (timeOImips (initial 180)

20 (domain ((range 100 300))))" processors=fipg0"p

21 </task>

22 .

23 </task-group>

24 (message-group id="mgO" type="common">

25 <message [fair -E-E‘l type="common

26 (period (initial 500) (domain ((range 500 600))))

27 (deadline (initial 15) (domain ((range 10 30))))

28 (length (initial 17) (domain ((range 8 32))))"

29 Ia'EtEcEFItDI‘I WEEEE'IBZtE'D

30 </message>

31

32 </message-group>

33 (task-group id="sense" type=”common">

34 .

35 (task lfi=3§21 type="common

36 (period (initial 1200) (domain ((range 800 1600))))

37 (deadline (initial 1000) (domain

38 ((range 800 1200)))) (timeclmips (initial 2300)

39 (domain ((range 2000 4000))))" processors=“pgi"p

40 </task>

41

42 (channel-group id="upper" type8"common">

43 (channel type="rms (mbps (initial 10)

44 (domain (10)))”> ...

45 </channe1-group>

46 .

47 (routing-table id="rt0" type="common">

48 <route typea"common"

49 W“

50 .

51 </routing-tab1e>

52 .

Figure 3.2: RTSML specification excerpts

49

Table 3.1: Ranges of system parameters

Task, message period deadline demand, length

group [ms] [ms] [k1, kB]

Sensors 25—120 25—75 40—400

Sense 800—2500 800—1800 1500—6000

Eval & Decide 800—2500 800—1800 1500—6000

Act 800—2500 800—1800 1500—6000

Actuators 35—120 30—75 40—400

Sensors to Sense 200—650 10—75 8—80

Sense to E&D 200—650 10—75 8—80

E&D to Act 200—650 10—75 8—80

Act to Actuators 200—650 10—75 8—80

periodic message to two sense tasks (as shown for task T0 sending to tasks T8 and

T9); each sense task sends a periodic message to two evaluate-and-decide tasks; each

evaluate—and-decide task sends a periodic message to two act tasks; and each act task

sends a periodic message to two actuator tasks. Table 3.1 lists the ranges of system

parameters. For any specific values of, for example, a task’s period and deadline,

additional constraints will be enforced according to the real-time model. For example,

the rate-monotonic model requires the deadline to be less than or equal to the period.

The (idealized) capacity of the processors is 10 MIPS, but the available capacity of

any of the eight processors in the middle can possibly drop to 8 MIPS; the channels

have the capacity Of 10 MB/s. The upper part of the last column shows processor

time demands in milliseconds assuming the capacity of 1 MIPS, which is equivalent

to demands in kiloinstructions (kl); the lower part Shows message lengths in kB.

Parts of the RTSML specification that are relevant to the details shown in Fig-

ure 3.1 are highlighted in Figure 3.2. The system consists of processor, channel, task

50

and message groups, which are specified using corresponding RTSML elements (e.g.,

processor-group). The attributes of the elements are used to either specify relations

among the elements (e.g., the processors attribute of the task element), or their

properties with respect to a real-time model (the type attribute). The attributes in

dotted boxes of Figure 3.2 show that task t0 (i.e., T0 in Figure 3.1) can be allo-

cated to a processor in processor group ng only (lines 5 and 20; corresponding to

the leftmost dashed oval rectangle in Figure 3.1), and that task t9 can be allocated

to a processor in processor group pg1 only (lines 10 and 39; corresponding to the

dashed oval rectangle in the middle in Figure 3.1). The attributes in solid rectangles

of Figure 3.2 (lines 6, 12, 43 and 48—49) show that processors p0 and p8 can com-

municate via route r0-8 going across channels c0 and c1; routes are unidirectional

and there may exist more than one route between two processors. The attributes in

dashed rectangles of Figure 3.2 (lines 17, 25, 29 and 35) Show that message m0-8-9

is multicast by task to to tasks t8 and t9.

As a markup language, RTSML is not intended to capture the semantics of var-

ious real-time models. Extending its document type definition (DTD), given in the

Appendix A, with model-specific elements and attributes would require the core of

the compiler to be modified with the addition of each new real-time model or scheme.

Instead, attribute type is added to each RTSML element that is used to store the

type of the real-time model which the corresponding element instance abides, along

with model-specific parameters. In this way, it was possible to design the compiler so

that elements of different real-time “types” are handled by different compiler mod-

ules, which can be added without modifying the core. In other words, these compiler

51

modules are responsible for capturing the semantics of real-time models and their

integration; it is the responsibility of a module implementor to exploit available con-

straint solvers efficiently and to provide interface (in terms Of generated CLP code)

for integration with other modules.

The model-specific parameters are given in the form of S-expressions, a notation

close to markup, which are easily parsed. For example, at line 6 Of Figure 3.2, the

underlined value of the type attribute of the first processor element will be parsed

by a compiler module responsible for the Rate-Monotonic Scheduling (rms) real-time

model. This module handles both computation and communication resources (i.e.,

processors and channels). In the case Of processor p0, the module will determine that

it has a constant capacity Of 10 MIPS, while in the case of processors in processor

group pgi it will determine that their initial capacities are 10 MIPS, but down to

only 8 MIPS may be available at times. (This does not mean a non-deterministic

model. This attribute is an input parameter in practice, whose value may vary at

times. However, it is beneficial to know its bounds.)

Another compiler module that has been integrated in the current implementation

of the RTSML compiler is called common. It handles elements with a default, or

common, real-time model assigned. In the case of tasks and messages, by default

they are periodic, have deadlines, and require certain amounts of resources (CPU

time required by a task, or communication time required to transfer a message). We

have chosen milliseconds and kilobytes as the units for time and message length,

respectively. Like the resources, tasks’ and messages’ parameters may take values

52

from a finite integer domain, including ranges. The common routing model, used in

this example, is static.

As new real-time models are supported, the problem of model compatibility arises.

Namely, it is hard to integrate components or subsystems of a complex real-time sys-

tem that have been designed separately, based on independent real-time models. The

developer of a new model-Specific compiler module will define how the new module in-

tegrates with the other modules. For example, how to insure that a periodic message

arrives before its deadline across a number of rate-monotonically scheduled real-time

channels? The rms module will cooperate with the common module and generate

CLP code such that, for example, the message’s deadline is divided by the number of

channels it traverses, and the floor of the result is used as the message deadline when

crossing each channel. Similarly, a stochastic version of the rate-monotonic schedul-

ing model [111] would see a common task’s fixed CPU requirement as a degenerated

distribution. Vice versa, the deterministic rms model could work with tasks with

stochastic CPU requirements by taking into account the upper bounds of their CPU

requirement distributions. A dynamic and/or fault-tolerant routing model, over a set

of processors and channels, would probably require more effort to integrate.

All the above examples could be classified into the horizontal system integration.

For the benefit Of such integration of complex real-time systems, it might be useful

to draw from approaches to integration of low-level digital systems. Extending the

discussion at the end of Section 2.1, there are numerous examples of successful inte-

gration of digital devices implementing different functional subsystems/components

by means of their timings specifications. In complex digital systems, there are also

53

multiple, special-purpose busses and multiple timing protocols. Vice-versa, real-time

models might be more integrable if they were devised with the horizontal integration

with some—not as many as possible at once—other real-time models among the goals.

Vertical integration of complex real-time systems deals mainly with coupling low-

er, system-level subsystems/components with higher-level software. In many cases,

the real-time properties of the latter are specified using software-engineering formal

methods. Future support for integration of formal methods in RTSML is envisaged

as their application on special cases of real-time system components that Obey the

above-mentioned models. One example of such integration, also referred to as method

integration, is given in [89]. A real-time design method, called HRT-HOOD [21], that

constrains the designer to produce a design that is amenable to scheduling analysis (of

periodic and sporadic tasks) is integrated with the Modecharts [81] formal method for

real-time systems. In effect, a Modechart design is constrained so that it can be ana-

lyzed for schedulability; Modecharts are applied to only the most “important” parts

of the design by applying them to the relative HRT-HOOD objects. The following

section will show how the CLP approach can handle a schedulability analysis, while

Section 2.3 discussed checking of RTL constraints used in Modechart specifications.

The future RTSML support might include (1) if it turns out beneficial, syntactic ex-

tensions of the core RTSML to support embedding of formal method expressions, and

(2) adapting the existing CLP-based (such as in [46]) or other verification/constraint-

checking approaches to that of the compiler presented in this dissertation.

54

3.2 ProCess of Compilation to CLP

The RTSML compiler is implemented in CLOS [17] and based on an SGML conversion

library called STIL [99]. Its core compiles an RTSML specification to a CLP program

in four phases:

1. parsing of the RTSML system specification, and creation Of a hierarchy of initial

objects that contain data collected during the parsing,

2. traversing the object hierarchy and invoking real-time model-specific modules’

methods to upgrade the initial objects (by changing their class to its subclass) to

module-specific objects with real-time parameter slots and methods for generat-

ing chunks of corresponding CLP code (variable declarations and constraints),

3. structure-based (generic and module-specific) cross-linking Of the objects in the

hierarchy to create a complete internal system representation needed by the

CLP-generating methods, and

4. controlling of the CLP code generation.

Each module defines methods, according to an object-oriented compilation proto-

col established by the compiler core, for creating internal representations of the system

structure specified in RTSML, for all the RTSML elements that have the type at-

tribute. The internal representation of an RTSML element instance (e.g., task), in

the context of an RTSML specification, is an object of a class that corresponds to the

RTSML element. The object contains

0 other objects according to the RTSML specification (e.g., a task object contains

the list of processor Objects to which it can be allocated, and vice versa),

0 real-time parameters derived from the S-expressions in the RTSML element

instance’s attributes, and

o dynamically created individual (per-instance) methods that generate parts of

the CLP program:

55

— declaration generator method, for declaring program variables used by the

module,

— constraint generator method, for setting constraints upon the program

variables, and

— variable generator method, for generating lists of program variables and

their values, used as arguments of predicates generated by the compiler

core.

These methods may handle CLP code optimization.

The program variables are divided into four groups. Parameter variables are

used as input arguments to constraint predicates (e.g., Task_i_Period, denoting the

period Of task i, is usually known and assigned a value in advance). The values of

solution variables are to be determined by the CLP program (e.g., Task_i_Processor,

denoting the processor allocated to task i, is to be determined if a goal of the CLP

is to find a feasible allocation for this task). Cost variables are used tO compute

the cost of a solution and possibly as arguments to optimization predicates (e.g.,

the number of tasks allocated the same processor could be represented by such a

variable; an Optimization predicate could use these variables to find a solution which

minimizes the maximum number of tasks allocated to the same processor). Finally,

supplementary variables are not needed as part of a solution, but must be instantiated

in order to guarantee the existence of a solution (otherwise, a possible contradiction

might not be inferred if these variables remain represented by non-singular domains

at the end of search).

Some implementation details of the two compiler modules, both of which use

CLP(FD) as the target language, are described in the remainder of this section. The

modules are integrated via shared program variables, which are in turn constrained

56

by both modules. In other words, the high declarativity of CLP allows that real-

time subsystems be specified by laying out (in)equalities over parameters according

to their models, and integrated by laying out more (in)equalities. The more these

(in)equalities have the nature of simple constraints (as Opossed to, e.g., having high

computational complexity), the better performance could be expected from the CLP

approach.

3.2.1 Module common

Task objects created by the common module, among other information, con-

tain functions that generate declarations of program variables Task_i_Period,

Task-i_Dead1ine, Task_i_TimeAt1MIPS and Task_i_Processor, where i is the task

index. For each task, the first three variables are parameter variables, and the last

one is a solution variable. Messages are handled similarly, but since a message is

to be allocated to a number of channels, additional variables need to be declared

for storing the route and channels over which a message is transferred to a task,

the number of hops along the route, and the per-hop deadline. Since the routing

model supports multicasts, this module may, in order to better exploit available

resources, generate additional variables and constraints for insuring that (a) if

multiple tasks that receive a message are on the same processor, only one route is

used for transferring the message to them, and (b) if a message is multicast via

multiple but intersecting routes to multiple processors, at most one route can be

57

used between the intersecting points. Routing implementation details are omitted

for brevity.

The common module also handles processors and channels with simple, utilization-

based task/message feasibility checks. The checks may be used for, e.g., round—

robin non-real-time scheduling, but are also strong enough for, e.g., real-time resource

management based on the earliest-deadline-first (EDF) criterion. An example of use

is given in Chapter 6.

3.2.2 Module rms

Processor objects created by the rms module, among other information, contain

functions that generate declarations of parameter variables Proc_k_MIPS, where k is

the processor index. For the purpose of expressing rate-monotonic (RM) schedul-

ing constraints, additional variables are used, including Task_i_preempts.'l‘ask_j,

Task-i_on_Proc_k and the others that appear in the following examples. This module

generates constraints that consider all possible allocations of tasks to processors and

message to channels, and set the RM priorities to the tasks and messages. Hard

real-time schedulability constraints are generated based on a generalized version of

the well-known formula from [113] that guarantees the RM schedulability of a task

set (considering the worst-case scenario of a so-called critical instant),

i

(VlgiSNiXaOgthIt) Zleil < t- (3-1)

1:1 T1

58

In the formula, N is the number of tasks indexed by priority and allocated to

the same processor, D,- is the deadline of task i, 03- is the time demand of task j

on the processor, and T]- is the period of task j. Unlike the formula, the constraints

must capture any subset of the N tasks that are actually allocated to the processor

in a solution. Additionally, since the tasks’ periods are input parameters, the tasks

cannot be indexed in advance; their relative priorities must be computed by the CLP

program. Finally, the above formula is expressed using the following four types of

constraints (see Table 3.2 for the meanings of the constraints):

1. #<= (Task_i_Period, Task_j_Period, Task-i_preempts_Task_j),

where i at j, for determining the relative task priority,

2. ceiling_d(Task_i_on_Proc_k-Checktime, Task.j_Period,

Arrivals_of.Task-j -on_Proc_k-by_Task-i-Checktime) ,

if tasks i and j could be allocated to the same processor k, for determining how

many instances of task j could arrive before the deadline of task i,

3. #= (Task-i_Processor , k , Task_i_on_Proc_k),

for determining whether task i is on processor k (0 = “no”, 1 = “yes”); and

4. Proc_k_MIPS * Task_i_on_Proc-k_Checktime #>= Task_i_on_Proc_k

* (Task_i_TimeAt1MIPS + Task.j1_on_Proc_k * Task.j1_preempts_Task_i

* Arrivals_of-Task.j1-on_Proc_k_by.Task-i_Checktime * Task.j1_TimeAt1MIPS

+ ...),

for expressing the inequality in the formula (the

summands, in which 3'] is replaced by j2, j3,)

t 1

stands for the other

The t in the formula corresponds to the Checktime variable, and the processor

time demand CJ- (assuming some processor capacity) corresponds to the ratio of the

normalized processor demand time (the TimeAthIPS variable) and the processor

capacity (the MIPS variable). Tasks indexed by j in the formula are named j1,j2,

59

Table 3.2: Some constraint predicates used

Syntax Semantics

#<=(E1, E2, VB) VB 2 1 iff E1 3 E2; otherwise VB 2 0

#=(E1, E2, VB) VB 2: 1 iff E1 2 E1; otherwise VB 2 0

ceiling_d(VX , Vy, V2) ”2 = [iff

E1 #>= E2 E1 2 E2

E, is a linear expression including program variables, V3: is a (finite-domain)

program variable

After the constraints have been set, the domains Of the Task_i-on_Proc_k_-

Checktimes are reduced. They are subsequently further reduced as the

Task_i_Processor and then Arrivals_of_Task_j_on_Proc_k.by.Task-i_Checktime

variables have been labeled. A solution could be found if all the Task_i_on.Proc-k--

Checktimes had non-empty domains. This way of searching for values of t that

satisfy the formula is notably different from the one used in some RM schedulability

analysis tools (e.g., [84]), which checks the formula for values of t that are multiples

Of the tasks’ periods in a generate-then-test manner.

If the variable Arriva1s_of..Task_j..on_Proc_k_by-Task_i_Checktime is assigned

the smallest value possible, then the minimum value from the resulting domain of

the variable Task_i_on_Proc_k_Checktime will be an upper bound on the earliest

completion time of task i in the worst case. The difference between the deadline of

task i and this value is thus a lower bound on its worst-case maximum laxity. The

smallest such lower bound among all tasks allocated to a processor, multiplied by

the processor’s capacity in MIPS, may be used as the lower bound on the maximum

additional, unexpected load the processor can sustain so that no task fails to meet

60

its deadline. An optimal solution would maximize the smallest lower bound on the

maximum additional sustainable load among all the processors.

The handling Of channels and messages is similar. The real-time communication

mode] is similar to the one defined in [64] for short messages (no pipelining) in multi-

hop real-time networks, and based on the rate-monotonic scheduling of messages on

channels. The routers are assumed to have enough processing and buffer capacity,

and to insure (by delaying) that a periodic message is made ready at equidistant

points in time on all channels it traverses. In the real-time communication-related

constraints, some Of the variables defined and computed by the routing-related part

generated by the common module are used, such as Message_i_on_Channe1_k (analo-

gous to Task_i_on_Processor_k).

Chapter 6 presents a third compiler module, rtlrms, an extension Of the rms

module for modeling Real-Time Linux [12] with a RM scheduler.

3.3 Experiments

The RTSML specification of the system described in Section 3.1 was compiled to CLP

code that contained 17,046 program variables and 30,466 model-based constraints.

Most of these constrants were internally rewritten by ECLiPSe as several simpler

constraints. The CLP code consists of predicates that, alone or combined, implement

a problem-solving approach, such as search for an optimal solution, any solution, or

repair of a solution.

61

The division of program variables (implemented in the two modules described in

Section 3.2) was based on a natural approach to system design: the columns of Ta-

ble 3.1 were represented by parameter variables (totalling 238), and task-to-processor

and message-to—route allocations were represented by solution variables (totalling

104). (When a message is multicast, it is allocated one route for each destination task.

Allocated channels are determined from the message-to-route allocations.) There were

7,104 supplementary variables that required additional labeling. (The other variables

were uniquely determined by labeling the solution variables.) For each processor and

channel (totalling 22), a cost variable is defined that contains a lower bound on the

maximum additional load the processor (in kI) or the channel (in kB) could sustain

if a task or message unexpectedly exceeded its declared resource demand, so that all

tasks/messages allocated to the processor/channel still meet their deadlines. In the

cost function, 1 k1 is valued as good as 1 kB.

The experiments were conducted under the following scenario. The complex real—

time system was specified such that initial input parameters, described in Table 3.1,

took on values from the lower half of their ranges (i.e., domains), and the CLP

program was run to solve the constraints for the output parameters, i.e., to allocate

the tasks to processors and messages to routes/channels. After the system had been

imaginarily deployed, some input parameters were changed, and the CLP program

was run to redesign the system, i.e., in this case to reallocate the tasks and messages

as necessary to satisfy all the constraints again.

There are eight applications in the system, each consisting of one of the sensor

tasks and the tasks that process its data, as described in Section 3.1. Based on the

62

communication patterns, these applications form trees rooted in their sensor tasks.

The changes in the input parameters (at the task, message and processor level) were

modeled by changes at the application level, such as increased load due to increased

amount Of input data; reduced resource capacities due to uncontrollable activities out-

side the modeled system; and need for reduced response times (e.g., reduced periods

and deadlines) in, for example, emergency situations. Five such successive changes

were modeled with six input parameter assignments (IPA) described in Table 3.3.

Table 3.3: Scenario Of parameter changes

IPA Description

P0 Load, i.e., computation requirements and message lengths, in the lower half

of their domains; available processor capacity 100%

P1 Load increases up to 15% wrt. P0 down the T0 tree

P2 Load down the TO tree back to normal; load increases up to 15% wrt. P0

down the T7 tree

P3 Load down the T7 tree back to normal; available capacities of P4 and P11

drop to 8 MIPS

P4 P4 and P11 capacities back to normal; deadlines reduced up to 15% wrt. P0

down the T1 tree

P5 Deadlines down the T1 tree back to normal; periods reduced (i.e., priorities

increased) up to 20% wrt. P0 down the T2 tree

Two problem-solving approaches were evaluated, using IPAs in the order as spec-

ified in the above scenario:

1. the conventional CLP search, in which the parameter variables are assigned the

values of the current input parameters, the constraints are set, and labelings

are performed to search for consistent values of the solution variables, and

63

2. the repair-based CLP approach, in which the parameter variables are assigned

the values of the current input parameters, the solution variables are temporar-

ily assigned the values from the previous solution, and repair labelings are per-

formed that modify the temporary values until all the constraints are satisfied.

The experiments were run using ECL’PSe 4.0.2 on a 300 MHz single-CPU Ultra-

SPARC running Solaris 2.6. It is difficult to find the relation between the constraint

level and search time. Usually, the hardest problems are neither underconstrained nor

overconstrained. The results are discussed in the following subsections (the search

for Optimal solutions has not been yet evaluated).

3.3.1 Conventional CLP Approach

Relatively consistent timings were obtained using a labeling heuristic that consists of

a sequence Of two partial labelings: the “smallest-domain and most-constrained first”

variable and “smallest-to-largest” value ordering for the solution variables, followed

by the “smallest-domain first” variable and “smallest-to-largest” value ordering for

the supplementary variables. (Note that the value ordering is important for better

approximating the costs, as described in Section 3.2.) The timings of constraint

setting and labeling until the first solution is found are shown in Table 3.4. With the

“smallest-domain first” variable ordering of the solution variables, some timings were

about as good as for the repair-based approach below, but some were much worse.

Even though the conventional approach does not appear fast to be used in an

incremental manner, it appears good for one-time applications. Compared to, e.g.,

64

Table 3.4: Conventional CLP approach timings

IPA Setting con- First so- Sustainable over-

straints [s] lution [5] load [k1, kB]

P0 13.11 7,350.09 10—8000, 0—130

P1 12.89 1,180.07 30—8000, 0—130

P2 13.09 137.03 10—8000, 0—130

P3 13.07 6,750.46 10—8000, 0—130

P4 12.86 333.80 20—8000, 0—120

P5 12.85 231.08 50—8000, 0—120

a search technique popular in the recent years, genetic algorithms (GA), it promises

significantly better performance and ease Of use on highly constrained problems, such

as complex real-time systems, on which the GA perform poorly [41].

3.3.2 Repair-Based CLP Approach

A generic CLP program loop that uses the repair library of ECL’PSe is shown in Fig-

ure 3.3 for the purpose of explaining the results. The variables Parameter, Solution

and Cost are lists of the corresponding program variables; the supplementary vari-

ables are “shown” in the figure together with the solution variables (i.e., also in

Solution) for simplicity. A notable difference from the conventional approach is that

the constraints are set using the input parameters’ domains instead of their current

values. The resulting constraint networks are thus weaker, but this is necessary in

order to allow input parameter modifications.

The repair-1abeling predicate finds conflicting variables and constraints, and

tries to assign values to the variables that result in no further conflicts. The fastest

repairs were obtained using a labeling heuristic for the solution variables that first

65

repair_100p :-

setup_constraints_as_repairable(Parameter, Solution, Cost),

(

1abeling(Solution), Z find initial solution

copy_term(p(Solution, Cost), S), % trim associated constraints

setva1(solution, S), X store solution

output_solution(Solution, Cost),

fail Z undo labeling

repeat,

getva1(solution, p(01dSolution, Cost)), % fetch old solution

modify_parameters(Parameter), Z use new IPA

tent_set(Solution, 01dSolution), % set old solution as tentative

repair_1abeling(Solution, Cost), % repair tentative solution

tent-get(p(Solution, Cost), p(NewSolution, NewCost)),

copy_term(p(NewSolution, NewCost), S), X trim associated constraints

setva1(solution, S), X store new solution

output_solution(NewSolution, NewCost),

fail 2 undo repair_1abe1ing

Figure 3.3: A generic repair-based CLP program

assigns values to conflicting variables using the “smallest-domain first” variable and

“smallest-tO—largest” value ordering, and then variables involved in conflicting con-

straints using the “smallest-domain first” variable and “smallest-to-largest” value

ordering. This labeling heuristic was followed by another one for the supplementary

variables, in which the “smallest-domain first” was replaced by the “smallest-domain

and most-constrained first” variable ordering.

The repair loop from Figure 3.3 was slightly modified to start with the IPA P0 and

replace it by the IPAS P1, P2, . . . , P5, successively. In this way, a current solution

is checked against a new IPA and, if a repair is necessary, subsequently replaced by

a new solution. This corresponds to a scenario in which the input parameters of a

continuously-Operating complex real-time system change dynamically, and the repair

66

Table 3.5: Repair-based CLP approach timings

IPA change modify_parameters [s] tent_set [s] repair_1abeling [3]

P0 —-) P1 34.58 40.19 199.92

Pl —> P2 34.55 40.12 64.60

P2 —> P3 34.97 42.20 67.64

P3 —> P4 36.14 40.40 68.24

P4 —> P5 34.47 40.86 215.44

loop redesigns the system on-line. The solution variables were stored at the end of

each iteration, but the supplementary variables were not, because they are local and

dependent on the solution variables. Using their values under P0 as temporary in

each iteration resulted in faster repairs.

Table 3.5 shows timings for assigning new values to the parameter variables

(modify_parameters in Figure 3.3), assigning temporary values to the solution vari-

ables (tent_set), and repair labeling, relative to the moment the corresponding IPA

change occured. The first solution under P0 was Obtained using the conventional

approach; this search time is not accounted.

Compared to the conventional approach, the described repair-based approach is

considerably faster in incremental solving overall. However, this holds for relatively

moderate parameter changes; for significant changes, this approach tends to yield

timings similar to those of the conventional approach. The choice of the problem-

solving approach depends on both the search time and the solving time (off- or on-

line). In this approach, it is possible to further improve the search time by identifying

temporarily stable parameters and incorporating their values in advance of the solving

time, and also by dynamically choosing the labeling heuristics. Due to its inherent

67

scalability [5], and having in mind that model-oblivious repair heuristics were used and

that ECL‘PS“ is not a heavily optimized system, the repair-based approach appears

good for dynamic resource allocation in large-scale complex real-time systems.

Table 3.6: Successive solutions’ distances

Next IPA Conventional Repair-based

approach approach

P1 (12, 13) (1, 6)

P2 (13, 21) (0, 0)

P3 (15, 24) (11, 28)

P4 (18, 22) (3, 11)

P5 (19, 22) (1, 5)

AS an alternative for the fast repair, the repair-based approach may also be useful

for minimally perturbing a previous solution. In this case, corresponding system

reconfigurations are less considerable, which is sometimes desired. Some benefits of

a perturbation-optimized heuristic include

0 potential finding of a stable solution in situations when there is a pattern in the

parameter changes, and

0 reduced system reconfiguration enforcement time, which could possibly be com-

parable to the repair time.

A repair labeling heuristic for this purpose was similar to the one described

above, with the only difference in the “smallest-to-largest” value ordering replaced

by “previous-value first” for the solution variables. The timings of this heuristic are

somewhat larger overall and have larger variance, whereas it is consistent in find-

ing solutions that are relatively close to their predecessors. Table 3.6 compares the

68

distances between successive solutions found by the conventional approach and by

this repair heuristic. The distance between two solutions is an ordered pair (tp, mr),

where tp is the number of task-to-processor allocations and mr is the number of

message-to-route allocations in which the solutions differ. (Notice that the solution

to P1 satisfies the constraints under P2, too. The previous, speed-optimized heuris-

tic found different solutions to P1 and P2 because of the temporary values of the

supplementary variables, which were taken from the solution to P0 when repairing

P1 ——> P2. These values caused (artificial) conflicts, and since the speed-Optimized

heuristic does not try previous values of the solution variables first, it found anoth-

er solution even though the old one had satisfied the constraints. However, this is a

“false alarm” kind of situation that may be traded for faster repair in other situations.)

The perturbation-Optimized repair-based approach resulted in fewer task-tO-processor

and message-tO-route reallocations triggered by dynamic changes in the input system

parameters.

3.4 Scalability Issues in the Approach

The efficiency of a CLP problem-solving approach is highly dependent on the structure

of a problem [51]. In general, the faster the search space is pruned by the constraint

propagation, the easier it becomes to find a solution. A complex real-time system is in

a CLP program modeled by a number of global and local constraints and variables,

corresponding to integration-related and subsystem/component—specific constraints

and system parameters, respectively. For the conventional CLP approach and a

69

tightly-integrated complex real-time system, labeling the global variables first might

result in faster pruning of the search space. However, if loosely-integrated complex

real-time systems were shown to scale better in the real—time sense (in the light of the

discussion at the end of Section 2.1), there would be relatively less global constraints

and variables (i.e., their number would slowly increase with the system Size) in their

CLP models, which would negatively affect the scalability with this problem structure-

aware choice of labeling. On the other hand, for the repair-based CLP approach and

a previous solution to a loosely-integrated complex real—time system problem, if the

violated constraints were mostly local, the repair time might be almost independent Of

the system size. Otherwise, or if the complex real-time system were tightly-integrated,

that would increase the probability of a need for global repair (due to a violation Of

global constraints). In these cases, the benefit of the repair-based approach might

degrade.

3.5 On the Correctness of the Approach and Com-

pilation

This section discusses correctness issues in the approach and RTSML-tO-CLP com-

pilation that are most relevant for users and compiler module developers. First, the

semantics of the source (RTSML) and target (CLP) languages, and the power of the

approach are addressed. Next, details and the correctness Of the compiler modules

used in the example of Section 3.1 are discussed. Finally, the correctness of the

70

approach and compilation are evaluated against a set of high-integrity compilation

criteria.

3.5.1 Language Semantics and the Power of CLP Problem

Solving

The RTSML is a declarative, relational and extensible language. Individual re-

sources (processors for computation; channels for communication and I/O), ac-

tivities (tasks for computation; messages for communication and I/O), and routing

information of a complex real-time system are specified in a declarative manner, using

RTSML attributes. Structural and other basic relations among these components and

subsystems are determined by the nesting of RTSML elements (tags) and the values of

attributes other than the type attribute, and can be intuitively interpreted from the

DTD given in Appendix A. (The eye and group attributes are meant to be available

for use by the modules, and are not used as structural information by the compiler

core.) For example, by listing the ids of processors and/or processor-groups as

the value of the processors attribute of a task, a relation “can be allocated to”

is established between the task and designated processors. Real-time model-specific

parameters and relations among the components and subsystems are determined by

module-specific, extended syntax of the type attribute that is specified by the devel-

oper of each module.

The relations in an RTSML specification are viewed through the constraint mod-

el [65]. Unlike, e.g., the traditional relational model in which relations are represented

71

by ordered tuples, they are represented by finite constraint forms while the ordered

tuples satisfying them are implicit. The dominant real-time model-specific parameters

and relations naturally fit the constraint model, but it is not difficult to fit the basic

relations into this model either. In the above example task-to-processor allocation

relation, the ordered tuples are (task, processor) ordered pairs, while the relation

“can be allocated to” can be represented by a constraint, in the general mathematical

sense (e.g., a set membership constraint), that for the given task task, processor can

only be one of the designated processors. For all supported syntax extensions and

real-time models:

Definition. The semantics of an RTSML specification is the set of all ordered

tuples of all the system parameters such that all the basic and real-time model-specific

constraints are satisfied.

The system parameters include both those figuring in the basic relations, such as

the task—tO-processor allocations, and real-time parameters, such as the task periods.

Different compiler modules consider different system parameters as input parameters

and the others as output parameters, but they are all treated equally in RTSML. The

mathematical domain and constraint types over a system parameter are not restricted.

In the real-time scheduling theory, for example, constraints usually involve non-linear

functions of real numbers.

In Section 2.2.1, it was said that an arbitrary conjunction of constraints in a CLP

language is solvable if the domain of computation satisfies the existential closure of

it. It is assumed that the satisfiability problem is decidable by the corresponding

solver, which is sound and complete wrt. its domain and constraint types. Accord-

72

ingly, the semantics of such a CLP program, without LP predicates, is the set of all

ordered tuples of values of the quantified variables for which all the constraints are

satisfied by the computation domain. The ECL‘PS" system allows the integration of

different constraint solvers, e.g., FD and RIA. This is achieved via declaring program

variables as belonging to multiple computation domains at once, and defining special

constraint propagation handlers that make the different constraint solvers cooperate

and maintain a consistency relationship between the multiple value domains of the

program variables. Hence, the semantics of a CLP program with multiple integrated

solvers/computation domains is defined similarly as above, and includes the multiple

values of the multiply-declared variables for which all the constraints are satisfied by

all the computation domains.

The goal of the RTSML-tO-CLP compilation is to transform a complex real—time

system problem to one that is decidable by one or more cooperating constraint solvers,

by mapping from unrestricted mathematical domains and constraints to computation—

al domains and constraints that can be handled by the constraint solver(s). In some

cases, such as restricting a domain from reals to integers, the approach loses its com-

pleteness (and that is why the term transformation is used instead of reduction [86]).

Namely, the CLP solver(s) may not find a solution to the transformed problem even

if there exists a solution to the original problem. (In this section, a solution means

an ordered tuple of all values of interest, Of both input and output variables/system

parameters.) Although the loss of completeness is difficult to avoid in practice, it can

be controlled in many cases by, for example, changing the degree of approximation of

real numbers by integers, and/or resorting to multiple constraint solvers with differ-

73

ent capabilities. On the other hand, the developers Of compiler modules that handle

different real-time models and their integration with other models must insure that

the approach retain its soundness in all anticipated uses. In other words, a CLP pro-

gram must not positively decide its transformed problem if the original problem has

no solution. Beside the Obvious need for a correct problem transformation (the main

task of the compilation), this issue is related to the power of CLP problem solving.

Generalizing what was discussed in Section 2.2.3, a CLP solver needs enough

information in order to return a (correct) solution to the transformed problem. There

are correctness nuances, based on the amount of supplied information:

1. The CLP solver syntactically accepts stated constraints, even they ex-

ceed its solving power. An example are FD constraints Di, Y] :: 0. .10,

X * Y #>= 5., because the second constraint cannot be linearized and decided.

The result returned are the original domains of the variables, and is interpreted

as “there might be solutions for the domains,” which cannot be considered

correct.

2. Some stated constraints do not exceed the solver’s power, but the solu-

tion is not “good enough.” For example, FD constraints [X,Y] :: 0. .10,

X * 2 + Y * 3 #>= 5. are decidable, but the solution are the original vari-

able domains. It is interpreted as “there are solutions for the domains,” which

cannot, for example, help linearize an additional constraint like X * 2 #<= 5.

3. By explicitly and significantly reducing the domains of some variables, the so-

lutions to some stated constraints may become “good enough.” In FD, this is

74

done by labeling the variables (instantiating them with consistent values), in

RIA by invoking a strong-propagation algorithm to search for a small (bounded)

consistent sub-interval of a variable’s domain, etc.

The RTSML compiler module object-oriented interface includes a method that is

supposed to list all program variables whose domains should be explicitly and signif-

icantly reduced in order to guarantee the correctness of solutions to the constraints

generated by a module. The reduction is performed by CLP code generated by the

compiler core. The following subsection shows excerpts of an example problem trans-

formation and steps taken for ensuring the correctness of the CLP problem solving.

3.5.2 Correctness-Related Compilation Details

To summarize the presentation of the two compiler modules from sections 3.2.1 and

3.2.2, the meaning of the RTSML specification Of the example complex real-time

system consists of all solutions to the following constraints (stated informally with

reference to the preceding sections, for brevity):

0 Each common task is assigned a period, deadline and normalized execution time

demand in ms, and is allocated a processor.

0 Each common message is assigned a period and deadline in ms, length in kB, a

source and a list of destination tasks.

0 Each common route is allocated an ordered tuple of channels, source and desti-

nation processor.

0 Each rms processor is assigned a capacity in idealized MIPS.

o For all common tasks allocated to a me processor, (1) relative priorities are

determined according to the RM criterion, and (2) the schedulability constraint

in Equation 3.1 is satisfied.

75

For each (message, destination task) ordered pair, a route is allocated from

the processor allocated to the message’s source task, to the processor allocated

to the destination task.

Without resource usage Optimizations, allocating a route to a message means

allocating all the route’s channels to the message.

The per-hop deadline of a message is equal to the message’s deadline divided

by the maximum route length over all its destination tasks.

Each rms channel is assigned a bandwidth in MB/S.

For all common messages allocated to a rms channel, (1) relative priorities are

determined according to the RM criterion, and (2) a schedulability constraint

similar to that in Equation 3.1, using the per-hop deadlines, is satisfied.

Both compiler modules use the FD solver only, so that all system parameters

must be approximated by integers. Referring back to the rms processor-related FD

constraints listed in Section 3.2.2, the meaning of the transformed problem consists

of all ordered tuples of integers that satisfy FD constraints including the following

(again, informally and for an illustration purpose):

If the period of task i is less than or equal to the period of task 3', the value of

FD variable Task_i-preempts-Task_j is 1; otherwise 0.

User, non-linear ceiling constraint predicate over FD is defined as

ceiling-d(x, Y, Z) :- Z * Y #>= X, Z * Y #< X + Y.

If task i is allocated to processor k, the value of FD variable Task_i_on_Proc_k

is 1; otherwise 0.

The CLP version of the RM schedulability constraint is a non-linear constraint

over FD involving integer variables.

The common and rms compiler modules insure that their variables get properly

instantiated by the time a solution is found. Some variables, such as the task periods,

are input parameters and are instantiated in the beginning of the search; some are

76

trivially guaranteed to be instantiated, such as the Task_i_preempts_Task_j variable.

Others ought to be labeled: solution variables, such as Task_i_Processor, and sup-

plementary variables, such as Arrivals_of_Task_j_on_Proc_k_by_Task_i_Checktime.

Finally, some variables are allowed to remain represented by non-singleton domains,

such as Task_i_on_Proc_k_Checktime, which neither prevents other constraints from

being solvable nor is a specific value of it needed at all.

It is easy to see from the above representative excerpts that, assuming that all

the CLP constraints are decidable, the compilation is meaning-preserving in the sense

that a solution to the CLP problem corresponds to a solution to the RTSML problem.

In other words, the compiler-based approach is not complete, but is sound.

3.5.3 Evaluation Against the High-Integrity Compilation

Criteria

Although the RTSML compilation is not an exercise in high-integrity compilation,

the following criteria [105] help summarize this section.

1. The high-level source language must have a target-independent meaning. It must

be possible to deduce the logical behavior of any particular program [specifica-

tion], independent of its execution on a particular target machine.

This property follows from the definition of the RTSML purely declarative se-

mantics.

2. This implies, among other things, that the source language must have a mathe-

matically defined semantics. Otherwise, it is impossible to deduce what should

be the effect of executing a particular program.

Although informally stated, the RTSML semantics is mathematically defined

via the semantics of supported real-time models.

77

3. The target machine language must also have a mathematically defined seman-

tics. Otherwise, it is impossible to prove that the compilation translation is

correct.

A CLP language also has a mathematically defined semantics.

4. The compiler from the source to the target language must be correct. Hence it

must be derived from the semantics of both the source language and the target

machine’s language.

The compiler correctness is to be shown for each module, in a way similar, but

complete, to that presented in Section 3.5.2.

a. To permit validation, the compiler for a high-integrity language must be seen

to be correct. It must be written clearly, and must be clearly related to the

semantics.

All compiler modules only transform constraints from RTSML to CLP, and

follow the Object-oriented compilation protocol to insure that the CLP solver(s)

can decide the transformed problem.

6. The target code produced by the compiler must be clear, and easily related to

the source code. This gives the visibility to the compilation process that is a

requirement for high-integrity applications.

The target code is a text file, and the names Of CLP variables are explanatory.

7. The semantics for both the source and target languages must be available for

peer review and criticism.

Module-specific RTSML semantics are based on extant real-time models, and

the semantics of model integration is also a real-time issue. The semantics of

CLP languages is a well-studied issue.

3.6 Summary

An approach to the design and engineering of complex real-time systems, based on

CLP and compilation from a high-level, domain-specific specification language has

been presented. It is oriented toward the integration of various real-time models,

applied to computation, communication and I/O. One basic and a rate-monotonic

technology-based system model have been implemented and briefly described.

78

An example complex real-time system, consisting of dozens of tasks communicat-

ing and competing for real-time scheduled computation and communication resources,

has been specified, and the approach was evaluated on the example. The timings

Obtained Show that the approach has acceptable performance overall and that the

repair-based CLP approach is promising one for coping with dynamic changes in the

system parameters.

Scalability issues of the CLP problem—solving approaches have been analyzed in

combination with scalability issues of target complex real-time systems. Correctness

issues of the compiler-based approach have been discussed, such as the completeness

of the CLP-based modeling and soundness of the CLP problem-solving.

The following three chapters describe work that covers a run-time front-end Of

the repair-based CLP approach. Namely, (1) a distributed instrumentation system

to gather performance data from a complex real-time system; (2) a PAV tool to

process and transform the performance data into the input parameters of the real-

time system models of the target system; and (3) an integration Of the first two, PAV-

driven, repair-based dynamic system reconfiguration. Based on observed changes in

the input parameters, either by a human Operator or automatically, the CLP tool

may he demanded to repair the current solution.

79

Chapter 4

A Portable and Flexible

Distributed Instrumentation

System

This chapter presents a basic, reference implementation Of a portable and flexible

IS called BRISK (Baseline Reduced Instrumentation System Kernel). Along with

the description, approaches that provided the IS performance gains are discussed.

Section 4.1 describes major Objectives of distributed ISes, and approaches taken in

the design and implementation of BRISK. Section 4.2 details the BRISK architecture

and implementation. Results of evaluating its performance and scalability are given

in Section 4.3.

80

4.1 Objectives and Approaches

BRISK is a simple distributed IS designed with the following goals in mind:

0 to be portable to a majority of operating systems and platforms, and easily

used with a wide range of parallel/distributed applications and systems, and

e to provide a robust implementation base for the development Of future distribut-

ed monitoring and control systems.

Figure 4.1 depicts the concept of BRISK as a distributed IS kernel that could be

extended to support higher-level, more specific monitoring approaches.

Domain and application-specific extensions

. source—code instrumentation

- monitoring approaches

- adaptive intrusion adjustment

- perfonnance-infonnation description

- experiment control

- perforrnanoe visualization

 r

BRISK as a kernel]

- portability

- performance knobs

- event-based monitoring

~ time-stamping

- event ordering

- clock synchronization

t J;

Figure 4.1: BRISK as an instrumentation system kernel

Design objectives concreting the above goals can be divided into three groups:

Performance flexibility. BRISK should offer high performance under various re-

quirements. Simple metrics were evaluated first that are related to localized IS

81

performance, and to implement, evaluate and optimize relevant parts of BRISK

in isolation. More complex IS performance metrics, related to IS operation

on distributed applications, depend on the simple ones, plus the target appli-

cation and system characteristics. Henceforth, “tuning knobs” were added to

many Of BRISK’S subsystems, so that users can balance simple and complex IS

performance metrics in a specific working environment.

Usage flexibility. BRISK should be able to support different monitoring applica-

tions, such as fine-grained instrumentation for testing, performance measure-

ment for visualization and/or steering, etc. It should also be able to emulate

various monitoring methods and techniques, such as hybrid (software instru-

mentation/hardware detection) monitoring for tracing or profiling. Without

assuming specific hardware monitoring support, BRISK implements a generic

software, event-based monitoring approach that allows (1) new users to start

instrumenting their parallel/distributed applications quickly, and (2) then in-

crementally extend and/or specialize the approach.

On the other hand, the IS should be compatible with a variety of extant,

independently-built tools and systems for the analysis of instrumentation da-

ta. Rather than impose a quasi standard of instrumentation data storage upon

these tools/systems—and likely, in practice, render them unusable—it should

be possible to adapt or extend BRISK to support a particular interface.

Finally, different parallel/distributed applications may require very different in-

strumentation/experiment scenarios. It is likely that no fixed IS control protocol

82

and/or graphical user interface can be powerful enough to support arbitrary s-

cenarios of testing these complex systems. All these issues resulted in the design

of BRISK as a general-purpose distributed IS kernel, based on a simple model

described in Section 2.4.

Portability. BRISK, as general-purpose distributed software, should be able to op-

erate in heterogeneous environments. This means that it should be designed and

implemented assuming a minimal set of resources that are available in a major-

ity of parallel/distributed environments. The basic implementation of BRISK

relies on a small number of highly available systems libraries, such as those for

interprocess communication through shared memory, External Data Represen-

tation (XDR), and TCP/IP protocols. (Shared memory IPC semantics may

vary across different platforms, but this is a minor problem. It is important

that there is probably no platform that does not support Shared memory IPC.)

A number of important issues challenge the concept of a portable and flexible

distributed IS. These include:

Degree of intrusion on the application. Due to the instrumentation overhead,

a target system may exhibit different behavior. The overhead should be pre-

dictable and must not change the order and timing Of critical events in the

target system, i.e., cause perturbation. (In this dissertation, the term pertur-

bation means only those changes in event timing that are significant from the

target system perspective). It is desired, especially for real-time systems, that

IS components are schedulable with the target system, so that perturbation

83

analyses can be performed using schedulability theory. The BRISK design ad-

dresses this issue by defining a via-shared-memory event detection/notification

protocol atop of which different event generation schemes may be used, and by

having an event processing/delivery component as a separate process.

Global clock reference. Processes that make up a parallel/distributed system run

on processors that may have non-synchronized clocks. It is very difficult to

determine the precise global time and/or relative timings of events, which is

mandatory for determining accurate global states and debugging erroneous tim-

ing behavior based on the instrumentation data. BRISK by default (1) chooses

the best available systems clock call for a platform, (2) converts the current

local time into the Universal Coordinated Time (UTC) format, and (3) uses a

distributed clock synchronization algorithm. In this way, users who can afford

synchronized hardware clocks may Specialize BRISK for their type of platform.

BRISK also provides a tunable algorithm for coping with network delays and

minimizing the chance for the instrumentation data to be delivered to consumers

out of order.

Throughput and latency of the instrumentation data transfer. Events of

interest in a target system that are to be processed on-line may collectively

form large volumes Of instrumentation data and monopolize resources. On

the other hand, in time-critical analysis, important events may need to be

delivered to a central place as soon as possible. The IS should be able to adapt

84

to throughput/latency requirements Of the target system. The basic BRISK

implementation has a number of command-line parameters for this purpose.

Support for transparent monitoring. Adding significant amounts of instrumen-

tation code to parallel/distributed systems by users is subject tO errors. It is

important that tools can be built based on the IS to instrument the target sys-

tem automatically, so that the users need only specify what to monitor, from

which aspect, and at which level. The IS design should be flexible enough to al-

low the deve10pment Of such tools. This issue actually overlaps with the BRISK

usage flexibility Objective. The default software event generation is amenable

to automation at the source level. Different aspects Of the target system perfor-

mance may be dynamically monitored after a tool has instrumented its source

code, possibly with the user’s guidance.

4.2 Description of BRISK

This section details the BRISK architecture and implementation.

4.2. 1 Architecture

The architecture of BRISK is shown in Figure 4.2 (for less intrusion, a separate IS

network is preferred, but not necessary). On each node, multiple user processes are

instrumented using internal sensors. The internal sensors use cpp macros, described

later in the Section 4.2.2, to write instrumentation data records to the shared memo-

ry. The shared memory is read by an external sensor, which runs as another process

85

on the same node and may be assigned a lower priority. Both the internal sensors

and the external sensor (EXS) form an local instrumentation system (LIS) that sends

instrumentation data to the instrumentation system manager (ISM). Time-stamps,

embedded into the instrumentation data records by the internal and external sensors

on different nodes, are synchronized. BRISK synchronizes LIS clocks using a modi-

fication of the Cristian’s clock synchronization algorithm. This algorithm invokes a

master-slave strategy whereby a master polls the Slaves, determines differences be-

tween the values Of its clock and the slaves’ clocks, and updates the slave clocks.

Target network 1

APP = application

INS = internal sensor

EXS = extemal sensor

ISM = instmmentation snared w

tem meager

PGRT- IE = our l W

integration environment

9,, as

l

temporal and '''' instmmentation data

causal ordering - - - control

\

— app. communication

Figure 4.2: Architecture of the BRISK instrumentation system

The instrumentation data transfer protocol used between a LIS and the ISM is

based on XDR, which makes BRISK amenable to a heterogeneous environment. In

the ISM, the instrumentation data records are sorted on-line by time-stamp before

86

delivery to consumers. Special, causally-related events are additionally ordered, pos-

sibly overriding incorrect time-stamps. The default output mode of the ISM is writing

to a shared memory, which is then read by instrumentation data consumer tools. Be-

sides writing to shared memory, the BRISK ISM may log instrumentation data to

trace files in the PICL-compliant [122] ASCII format, or it may pass instrumentation

data tO a list of CORBA-enabled visual objects [6].

4.2.2 Implementation

BRISK is written using the FWEB [38] literate programming package and may be

compiled by a C or C++ compiler to create two executables, exs—external sensor

and ism—instrumentation system manager; a header file with dynamically-typed N0-

TICE macros; a utility tool for creating faster and shorter, statically-typed NOTICE

macros, and a tiny library for shared memory initialization and access. Figure 4.3

shows details Of the implementation described below.

The main BRISK subsystems and components are described below. The pre-

sentation order follows that of the flow of instrumentation data from source (LIS)

to destination (output of the ISM). The LIS time-stamps events with the help of

the distributed clock synchronization algorithm. The transfer protocol forwards the

instrumentation data over to the ISM, for on-line sorting and output.

Local instrumentation server (LIS). The BRISK NOTICE macros are inter-

nal sensors used in an application for event notifications. They are an extension of

JEWEL cpp macros, which write a data record consisting of integers to a ring-buffer

87

F—Tfl F——\

. . O

' I '1 shared

' NOTICE macro Z ' NOTICE macro 'fi mem.
t l I. ______ l j

instrumented instrumented d Ita ‘

L application J application e 5

F——W (N ' ' ' FT——\ f—

: / batching, / batching,

-'—————— latency —-—————— latency

18019533”? .——1 180195??? r—l control

instrumented ‘ ' i'nétr'uinériiéd"""">

I application I lication

my

in-order transfer

'———> data flow ' ' ' sync ’°°p

"""> control flow OLS = On-Line Sorting

CRE = Causally-Fielated

a batch queue shared Events

mem

E event queue j .

kinshumentation system ""9 buffer

switch for causally
CORBA

@ related events F y R

V ts-ordered heap instrumentation instrumentation

(15 = timestamp) file system data consumer data consumer

tool tool

1 event dropping

L—_J

Figure 4.3: Diagram of the BRISK basic implementation

data structure in shared memory. The NOTICE macros are capable of writing hetero-

geneous records, with over ten basic types available for individual fields, ranging from

bytes, to floats, to null-terminated strings. It is possible to modify certain parts Of the

NOTICE macros to affect the degree of intrusion and perturbation on the target ap-

plication. The potential modifications that are not part of the basic implementation

are based on the following.

0 Regarding the intrusion, it can be lowered by, for example, partially evaluating

the NOTICE macros in advance (as described at the beginning of this section),

88

or by dropping events in certain cases. Namely, the NOTICE macros use a

simple ring-buffer locking mechanism to allow multiple instrumented programs

to run on the same node; this mechanism could be busy-waiting, blocking or

causing a NOTICE macro to be dropped if the lock is not free.

Regarding the perturbation, the described lowering of the intrusion of the NO-

TICE macros is one way of avoiding it in an instrumented target application.

Sometimes, a low level of perturbation in an instrumented target application

may be acceptable; however, the perturbation issue may reappear if the instru-

mentation code is removed from the target application after testing. To avoid

this reversed perturbation, the NOTICE macros may be slightly modified and

left in the target application code. For example, they could be modified to write

event data records to private memory when the application is not monitored,

so as to take approximately the same time to execute; the drawback of the

software approach is a change in memory reference patterns.

With the basic implementation, it is also possible to locally activate/deactivate

event detection by dynamically toggling the value of a BRISK variable that is in

the sc0pe of the target application source code. Beside this simple Option, BRISK

provides a generic, flexible scheme for on-line remote control of the instrumentation

and/or steering of the target application. Instrumentation data consumers can send

data through BRISK in the other direction that are written in a shared memory area

accessible to the EXS and target application. The organization and interpretation of

89

these data in the shared memory area are to be defined in a contract between the

target application and a monitoring/steering tool, and can be easily automated.

Besides the data types for event data, three system types are available for coor-

dination among BRISK, instrumented distributed applications, and instrumentation

data analysis tools. A “time-stamp type,” X_TS, allows the user to embed BRISK’S

internal time-stamp into an event record. The embedded time-stamp is an eight-byte

longlong_t, representing the number of microseconds of Universal Coordinated Time

(UTC). The local time is read by a call to gettimeofday library function embedded

in the NOTICE macro code. (If gettimeofday is not available on a platform, a

substitute should be provided.) The read value is then added to a correction value,

maintained by the EXS. The result is a time-stamp Of the synchronized EXS clock,

embedded into the record before its sending to the ISM. The other two system types,

X.REASON and X-CONSEQ, are used to mark causally-related events. The user supplies

u_1ong identifiers for fields of these types, determining which consequence events must

follow respective reason events. If BRISK’S clock synchronization algorithm fails to

prevent the occurrence of so-called tachyons, i.e., consequence events that appear to

happen before their reason events, events marked using these system types will be

post-processed by the ISM to ensure proper ordering. Without additional informa-

tion, it is not possible to handle more than pairs of causally-related events. The

technique described in Section 2.4 uses other event data records, specific to the PICL

library, to gather information about causally-related send/receive events in collective

communication.

90

An example NOTICE macro call is shown in Figure 4.4 (to save space, the macro

code itself is not described). It writes an event record in the shared memory with the

structure shown in Figure 4.5. All fields are aligned according to their types.

char *C = "Job XYZ";

float percent_done = 58.7;

NOTICE_3(X_TS, TIMESTAMP, X_STRING, c, X_FLOAT, percent_done);

Figure 4.4: An example three-field NOTICE macro call (internal sensor)

8-byte internal time-stamp (ITS) in UTC format

1-byte X_TS type (not followed by a value; ITS will be used instead)

l—byte X_STRING type

null-terminated "Job XYZ" (8 bytes, assuming 1-byte chars)

1-byte X_FLOAT type

sizeof(float)-byte 58.7

1-byte end-of—record/end-of-buffer marker

Figure 4.5: In-memory structure of the event record generated by the call in Figure 4.4

A goal is to provide the convenience of dynamic typing to new users, and, at the

same time, retain the form of a macro for lower intrusion. The header file contains NO-

TICE macros for up to eight dynamically-typed fields, which are likely to be sufficient

for many uses. More than eight dynamically-typed fields in a macro adds excessive

code to a compiled instrumented application, which indirectly increases the intrusion.

A utility tool is provided, accompanying the basic implementation, to create custom

NOTICE macros having user-defined field types and insert them into the header file.

This tool effectively supports an on—demand partial evaluation/specialization of NO-

TICE macros that results in smaller and faster code, and thus lower intrusion. It

91

exemplifies the flexibility of BRISK and can be used as a starting point for the other

modifications of NOTICE macros mentioned above.

Distributed clock synchronization algorithm. Each LIS takes part in the

distributed clock algorithm. The main difference between the BRISK algorithm and

the Cristian’s algorithm is that the master (ISM) time is used only as a common

reference point for computing relative skews of the slave (EXS) clocks. That is, instead

of directly adjusting the EXS clocks based on their skews relative to the ISM clock, like

in the Cristian’s algorithm, the BRISK algorithm only considers relative differences

between the EXS clock values for the adjustment purpose. This modification is due

to the fact that, for measurement purposes, it is important that the EXS clock values

be as close to each other as possible, while it is not necessary for them to be close

to the ISM clock value. At the cost of small positive drifts of the EXS clocks, the

algorithm described below converges faster than the original Cristian’s algorithm.

Other minor differences between the two algorithms are (1) in the criterion for the

measurement discards; and the absence of some optimistic enhancements in the basic

BRISK implementation, such as (2) dynamical changing of the number of queries in

a round based on the observed probability of a successful query; and (3) inclusion of

the EXS hardware clock drift in the adjustment calculation.

Firstly, an EXS clock with the maximum positive skew relative to the ISM clock,

i.e., one with the most-ahead clock, is selected, based on polling as in the Cristian’s

algorithm. Then, the skews of the other EXS clocks and their average are computed

relative to the selected EXS clock, as absolute values. Finally, only the EXS clocks

whose relative skews are greater than the average, i.e., only those slower than the

92

average, are advanced by a correction value. The purpose of this restriction is to ac-

count for the network noise and, in a conservative manner, take care not to promote

another EXS clock as the fastest one erroneously. The price Of this decision is po-

tentially Slower convergence. The correction value is chosen as follows: if the average

value is above a small threshold, e.g., 3 times the number of EXSes, in microseconds,

the correction value is set equal to the relative skew of the corresponding EXS clock;

otherwise, the correction is set to a fixed fraction of the relative skew, 0.7 in the basic

implementation. This reduction of the correction value is also conservative in nature,

because the EXS clocks cannot be perfectly synchronized in practice.

Additionally, the algorithm was modified to detect and discard outliers occurring

in a single polling period, up to a predefined number. This modification accounts

for anomalies, such as unexpected, large clock value differences obtained during the

polls.

Transfer protocol (TP). For instrumentation data transfer between the

LIS/EXS and ISM, the XDR protocol has been chosen in the basic BRISK implemen-

tation. BRISK’S data transfer protocol does not, however, use XDR in the typical

way, with rpcgen and static typing, as in JEWEL. Instead, each dynamically typed

instrumentation data record is sent with a meta-information header needed for it to

be correctly received. The external sensor packages instrumentation data in XDR

format with the meta-information header compressed, and sends them to the ISM

over a TCP stream socket. Minimizing the slack in instrumentation data messages

is important since transferring of likely large volumes of event records through the

network is several orders of magnitude slower than through shared memory.

93

Instrumentation system manager (ISM). When the ISM receives an instru-

mentation data batch from an EXS, it stores it in the corresponding queue; the

in-order arrival of these batches is guaranteed by the socket stream protocol. For

dynamic merging/on-line sorting and extracting instrumentation data records from

multiple queues, the ISM uses a heap having one entry for each queue.

Each instrumentation data record, after being extracted from the ISM’s heap,

is written to a shared memory buffer using the same binary structure used by the

NOTICE macros. Optionally, a PICL—compliant trace record can be generated with

the time-stamps either in the UTC format or as the floating-point number of seconds

passed since the ISM has been run. The visual objects mentioned in Section 4.2.1

are components of an Object-oriented framework for the development of on-line per-

formance visualization of parallel/distributed systems. Through an optionally linked,

portable implementation of CORBA 2.0 called MICO [94], the ISM can call remote

visual Objects’ methods and pass instrumentation data records to be processed as

PICL-compliant strings. Other consumers can read the ISM’s shared memory bufler,

e.g., using BRISK library code that creates such strings.

On-line sorting algorithm. Before the ISM finally delivers instrumentation

data to their consumers, it uses the synchronized embedded time-stamps, the current

time, an estimated clock difl'erence between the ISM and the most-ahead EXS, and

a user-specified time frame T to delay the processing of each instrumentation data

record for T time units after the record creation. If the ISM detects that two successive

records from different external sensors have been extracted from the heap out of order,

it increases the time frame; then, it exponentially decreases the time frame to reduce

94

the latency of event processing and the amount of instrumentation data in the queues.

This method Of sorting results in a tradeoff between event ordering and latency.

Additionally, causally-related events are matched via a hash-table: if a conse-

quence event record being processed does not match a reason event record with the

same identifier in the hash-table, it is kept in a data structure until the corresponding

reason event record is processed. When a just-arrived reason event record matches

a waiting consequence event record whose time-stamp is smaller than its own, the

latter’s time-stamp is overridden by a larger value. Since in this case it is Obvious

that the clocks have not been synchronized, i.e., the time-stamps Should reflect the

causality, an extra round of the clock synchronization algorithm is invoked immedi-

ately. A causally-marked event of either type is kept in the data structure no longer

than a specified timeout, because its peer may have been dropped.

The on-line sorting algorithm assumes that the EXS clocks are perfectly synchro-

nized. Since this is not achievable in practice, tachyon occurrences are possible if the

EXS clock value difference is greater than the time taken between the causally-related

events, e.g., the time it takes to send a message between two nodes. (For example,

when node A receives a message from node B, the event of receiving the message is

causally-related to the event of sending the message. Node A’s clock could be t1 units

behind node B’s clock, but it also takes t2, possibly smaller than t1, time units for

the message to arrive.) Tachyons can pass through the ISM if causally-related events

in the target application are not marked using BRISK. In fact, instrumenting some

causally-related events using BRISK may help BRISK maintain better EXS clock

synchronization. (Note that users may define application-specific causally-related

95

events that are not necessarily send and receive events. However, there is danger that

incorrect causality assumptions may deteriorate the BRISK clock synchronization.)

The extra synchronization rounds would, in turn, reduce the probability of tachyon

occurrences resulting from other causally-related events.

4.3 Evaluation Of BRISK

Table 4.1 summarizes the relationships between (1) the design criteria in Section 4.1,

and (2) the actual BRISK architecture and implementation presented in the previous

section and experimental results presented in this section. The relevance of a result

with respect to a criterion can be low (L), moderate (M), high (H) or none (-).

Similarly, the success of a result in satisfying the corresponding criterion can be

poor (P), fair (F), high/with special attention (H) or not applicable (-)

Table 4.1: Summary of BRISK. evaluation

Implementation results

L
I
S
d
e
s
i
g
n

T
P

d
e
s
r
g
n

I
S
M

d
e
s
i
g
n

N
O
T
I
C
E

t
i
m
i
n
g

E
X
S
C
P
U

u
s
a
g
e

E
v
e
n
t

l
a
t
e
n
c
y

C
l
o
c
k
s
y
n
c
h
r
o
n
i
z
a
t
i
o
n

O
n
—
l
i
n
e
s
o
r
t
i
n
g

Relevance/Success

Performance flexibility H/H M/F H/H H/F H/H H/F H/H H/H

Usage flexibility H/H M/F H/H M/F L/F M/H M/F H/H H/F

Portability H/H H/H H/H - -/- -/- -/- H/H M/H

Low intrusion H/F H/F L/F H/F H/H H/F M/F L/F L/-

Global clock reference L/F Lf- L/F M/F M/F M/F H/F H/H H/H

Throughput and latency M/F H/H H/H L/F M/F H/H H/F L/- L]-

Transparent monitoring H/H L/- M/H L/- L/- L/- L/— L/- LF

g
E
v
e
n
t
t
h
r
o
u
g
h
p
u
t

.
\

 D
e
s
i
g
n

c
r
i
t
e
r
i
a

96

The table entries containing at least one “H” follow from the preceding and follow-

ing presentations. The “H/F” entries indicate aspects in which the basic implemen—

tation should be specialized in order to satisfy the criteria in extreme cases of target

system behaviors and/or monitoring requirements. The “M/F” and “L/F” entries,

based on available knowledge, may also imply rare use cases in which BRISK may

need a design or implementation modification in order to satisfy a criterion which has

become negatively affected by the basic implementation.

Experiments have been conducted with BRISK using two configurations. The first

configuration consists of one external sensor; the range of several simple performance

metrics were measured. The second configuration includes multiple external sensors

on different nodes; the system scalability was measured, as well as the quality of the

clock synchronization and dynamic on-line sorting. In both configurations, loop-based

synthetic applications were used that were instrumented using NOTICE macros hav-

ing six fields of type integer. Including the time-stamp and type information, each

instrumentation data record requires 40 bytes in the XDR-based transfer protocol.

The experiments were executed primarily on Sun Ultra-1 workstations running SO-

laris 2.5.1 within a 155 Mbps local ATM network. Eight nodes were available for

measurements under the second configuration.

4.3.1 Local Performance

NOTICE macro (internal sensor) timing. The CPU time taken by a six-integer

NOTICE macro to write to shared memory is given in Table 4.2 for three platforms.

97

The experiments were performed with 100,000 macro calls. The timings compare well

to those of the simpler, low-intrusion JEWEL macros. Hence, with the options of

NOTICE macro modifications for further reducing the degree of intrusion and the

possibility of perturbation on the application, BRISK approaches an Optimum that

can be achieved with software, portable event generation and detection.

Table 4.2: CPU time per 6-integer NOTICE macro

Platform us

150 MHz SGI Onyx 4><R4400 / IRIX 6.2 18.6

195 MHz SGI Indigo2 R10000 / IRIX 6.2 8.7

140 MHz Sun Ultra-1 / Solaris 2.5.1 3.6

External sensor CPU use. Besides the internal sensors, the external sensor

(EXS) is another component of BRISK that could interfere with a target distributed

system. It is a separate process running on the application nodes, and it therefore

competes with the application for machine resources such as CPU time. CPU utiliza-

tion of the EXS was measured for six different event rates, with one message (batch)

buffer of size 8 kB. The t0p tool was used to save CPU utilization to a file at 5-second

intervals. The application was started approximately 10 seconds after starting tep,

and it ran for 60 seconds. Figure 4.6 shows the results.

The CPU utilization of the EXS is shown to be negligible at event rates of up

to 38,000 per second. At 41,000 events per second, the EXS uses approximately 3%,

which may still be insignificant for some applications. In practice, a few thousand

events per second should be enough for fine-grainly instrumented real-time appli-

cations. At these rates, the EXS process could be assigned a lower priority (on a

98

50 I I I I I I I I

38K/s ~0—

41K/s +-

45 ’ 44K/s 43- ‘

46K/s «-

50K/s +-

40 - 75K/s ar- .

35 ~ ..

E 30 - .

C

.3

g 25 - -

5

E0 20 e -

15 ~ ~

10 - i «

5 - 3 ..

o _ 4 _- . t t xW; V i

0 to 20 30 40 50 60 70 80 90

Time [s]

Figure 4.6: EXS CPU utilization for various event rates

conventional or real-time Operating system) to further reduce the degree of intrusion

and the chance for perturbation.

Event throughput. A synthetic application was used to generate event records

at various fixed rates. In order to obtain the relatively high event rates desired, it

was necessary to generate events in batches, pausing between the batches instead of

between successive events. A nanosleep system call was used to create the pause

between batches. The time resolution of this function is platform dependent; the

shortest sleep time that could be achieved on the Sun workstations ranged from 10

to 20 milliseconds.

Throughput was measured for various values of two parameters: (1) the size of the

internal/external sensor shared memory buffer, and (2) the maximum size of messages

99

that carry events from the EXS to the ISM. A single application process was used to

generate event records. Each experiment was executed for a duration of one minute.

To determine the maximum throughput, experiments were repeated using successively

higher event rates, until the internal or external sensor began to drop events. In an

experiment in which the maximum throughput was found to be around 90 thousand

events per second, shared memory size of 2 MB was used with a message size of

65536 bytes, including 4 bytes for the header and 64 message buffers. The size of

shared memory buffer was large enough to preclude it becoming a bottleneck. At

the receiving end, the ISM is run with a command-line parameter that specifies its

responsiveness to incoming event records. It sets the number of event records that

can be processed/Output without an interruption to receive incoming events. If this

parameter is set sufficiently low, and the incoming event rate is sufficiently high, the

ISM will receive incoming events faster than it outputs them. This is an unstable

situation, since the ISM continues tO allocate additional memory to hold the events

waiting to be output. However, setting this parameter with an appropriate value may

allow the ISM to handle higher peak rates of incoming events while allocating only a

small amount Of additional memory for events pending output.

To quickly adapt BRISK to a target application throughput and latency require—

ments, as well as to minimize its memory usage, the EXS and ISM provide several

command-line parameters. These include all the above mentioned ones, and three

more for the EXS: the maximum number of events to read from the shared memory

in one turn; the approximate shared memory buffer polling period; and the approxi-

mate batch sending latency.

100

4.3.2 Distributed Performance

Event throughput. When multiple EXSes send instrumentation data to the

same ISM, their maximum sustainable event rates are dependent on each other

and also on event-generation/transfer patterns. Using approximately uniform event-

generation/transfer patterns across the EXSes, the maximum per-EXS and aggregate

event rates were measured to investigate potential bottlenecks.

In this experiment, the ISM ’s responsiveness command-line parameter was tuned

with the increase of the number of EXSes in order to find a balance between the

receiving and processing rates and to achieve an approximate maximum throughput

of 90 thousand events per second. The on-line sorting was effectively turned off

by setting the time frame T to 0, so that it does not affect the responsiveness. A

significant factor here is the minimum blocking time of a select system call that

separates the receiving and processing phases. To balance the flow of events through

receiving, processing and blocking phases, the processing rate must be sufficiently

high to keep up with all the instrumentation data that arrives during the phases.

The results show that the aggregate event rate is limited by the CPU capacity

and dependent on the kernel clock quantization which affects the select system call.

The rate remained almost constant as more EXSes were added. This low dependence

on the number of EXSes is favorable toward future BRISK extensions that include

scalable, hierarchical instrumentation data collection with local ISMS forwarding in-

strumentation data to a global ISM.

101

Clock synchronization. As explained in Section 4.2, the ISM polls EXSes in

periodic rounds. At the end of each round, the clocks Of the EXSes are updated with

the time difference to the fastest EXS clock. Three metrics for evaluating the clock

synchronization were selected:

1. the mean relative error, which is computed at the end of each round of polls,

is simply the mean of the absolute values of differences (skews) between each

EXS clock and the fastest one;

2. the time required for the mean relative error to converge, i.e., the number of

rounds after which the mean relative error falls below a threshold value. This

time also depends on the polling period;

3. the maximum relative error, which is also computed at the end of each round of

polls, is found by taking the diflerence between the fastest and slowest clocks.

It provides some indication of variance.

To perform a larger number of experiments, the polling period was reduced from

a default of sixty seconds to five seconds. Because the system clocks have less chance

to drift apart with five-second polling periods, the results Obtained were expected

to be better than what would be obtained with sixty-second periods. Figure 4.7

shows the performance of the BRISK clock synchronization on relatively lightly loaded

processors and network. The mean and maximum relative error in microseconds are

plotted over time after start of the algorithm, which is specified as number of polling

periods or rounds.

Although the peaks in Figure 4.7 are relatively insignificant, the conditions were

investigated under which the peaks occur. The algorithm is dependent on, among

other things, the implementation of gettimeofday, i.e., the type and precision of the

clock used, and network conditions.

102

200 I I I I I I I I I I I I

, Mean relative error +—

180 l
Maximum relative error —+—]

,60_ . _ . . A . .

120 f‘ .. i_ . .1. ‘f‘ : _,

M
i
c
r
o
s
e
c
o
n
d
s

Rounds

Figure 4.7: Measurements of the clock synchronization algorithm (8 EXS nodes, 5-

second polling period, 10-minute experiment)

Improvements to the basic clock synchronization algorithm, including discarding

of outliers, did not substantially reduce the occurrence of the peaks in the mean

relative error. With further study, the first observation was that the peaks were

caused by more than one node during an experiment. This Observation eliminates

the possibility of a single machine having an errant clock. Second, the clock errors

occurred both above and below the expected value during a single round. These

within-round variations imply that the Unix clock synchronization daemon is not

the cause, since the daemon does not change the clock more than once within a few

seconds. Finally, some correlation was observed between the occurrence of peaks

and two other factors: (a) the time of day, and (2) other activity on the computers.

For example, experiments were performed around the same time on separate trials.

103

Each time, the frequency of the peaks was greater at 11:30 PM than what had been

measured just thirty minutes earlier. Thus, isolating the factor affecting the quality

Of clock synchronization, if needed, will require controlled experimentation.

The average synchronization of EXSes within a few tens Of microseconds on a fast

local network is likely to be an acceptable cheap substitute for synchronized hardware

clocks for the majority of target applications. Similarly, the observed drift of EXS

clocks relative to the ISM clock of up to a few tens of milliseconds per hour can often

be tolerated. The command-line parameter for the clock synchronization period can

be used to balance between the quality Of the clock synchronization and the negative

effect that messages sent by this distributed algorithm, which have the priority over

instrumentation data messages, may have on the instrumentation data latency and

throughput.

Dynamic on-line sorting. In order to test and evaluate the dynamic on-line

sorting algorithm, which attempts to nullify variations in the latency of instrumenta-

tion data arriving from different nodes, code was added to BRISK to simulate delays

in the network. This code passes event records for a random period of time. After

this period, an event record is delayed for some other random time. The amount

of time by which an event record is delayed is determined by subtracting a random

number with a bounded, uniform distribution, from its time-stamp. An exponential

distribution was used for the time between delayed event records, as it has the desir-

able “memoryless” characteristic for this type of simulation [61]. Event records are

considered late when both of the following occur: (1) their delays are greater than

104

the time frame T, the on-line sorting delay described in Section 4.2.2, and (2) the

ISM has already output an event record with a more recent time—stamp.

The sorting was evaluated with a set of experiments in which four parameters

were varied: algorithm for time frame T; time frame half-life; maximum delay time;

and mean time between delayed events. These parameters are described as follows:

1. An algorithm increases the time frame T upon the arrival of a late event record.

The two options for this algorithm were either to double the current value of

the time frame (doubling algorithm) or to set the time frame to the lateness of

the event record (lateness algorithm).

2. The time frame half-life (hl) is the amount of waiting time before reducing the

time frame when no event records are late. The two options for hl were either

2 s or 10 s.

3. While the minimum event record delay was fixed at 50 ms, the maximum event

record delay time was variable. The two options for this parameter were either

200 ms or 500 ms.

4. The exponential distribution is parameterized by the mean time between de-

layed event records. The two options were either 1 s or 2 s.

The following performance metrics were used in these experiments to evaluate the

on-line sorting algorithm: the frequency of increasing the time frame T and the peak

value of the time frame T. Each experiment was performed twice. Eight EXSes were

used, and the aggregate event rate was approximately 2,000 event records per second.

The duration of each experiment was 125 seconds, resulting in 256,000 event records.

Table 4.3 shows the frequency by which the time frame T was increased due to

late event records. Table 4.4 shows the peak magnitude of the time frame T, which

correlates to the event latency. In both tables, the first column lists the simulation

105

parameters used: minimum event record delay (min), maximum event record delay

(max), and mean time between delays (MTB-delay).

Table 4.3: Count of increases in time frame T

doubling lateness

min/max/MTB_de1ay Trial bl = 2 s hl = 10 s hl = 2 s bl = 10 s

50 ms/200 ms/l s 1 48 8 16 9

2 11 10 85 24

50 mS/200 ms/2 s 1 38 11 20 25

2 l4 4 61 22

50 ms/500 ms/l s 1 44 13 33 29

2 48 13 21 13

50 mS/500 mS/2 S l 34 11 78 14

2 47 12 56 14

Table 4.4: Peak time frame T in milliseconds

doubling lateness

min/max/MTB_de1ay Trial bl = 2 s bl = 10 s hl = 2 s bl = 10 s

50 ms/200 ms/ 1 s 1 800 800 429 268

2 200 800 505 452

50 mS/200 Ins/2 s 1 800 400 373 391

2 400 400 374 391

50 ms/500 ms/ 1 s 1 800 3200 1589 1799

2 3200 3200 1016 1524

50 ms/500 ms/2 s 1 1600 800 1194 1177

2 1600 1600 808 1274

In Table 4.4, higher noise levels on the network, represented by higher max and

lower MTB-de1ay values, resulted in higher latency. However, this elevated noise level

did not result in a significantly higher number of late events, as shown in Table 4.3.

These two observations suggest that the dynamic on-line sorting algorithm is adapting

to the noise level on the network.

106

The non-parametric Wilcoxon signed rank test [16] has been applied to analyze

the effect of the first two parameters on the performance metrics and numerically

support qualitative analysis.

When comparing the results from the doubling algorithm to those from the late-

ness algorithm in Tables 4.3 and 4.4, the following observation was made. The lateness

algorithm resulted in a higher number of late events, at a confidence level of about

90%, but smaller peak values of time frame T, at the 99.22% confidence level. This

higher number suggests that the lateness algorithm is better suited for latency-critical

applications, while the doubling algorithm is better for order-critical applications.

A comparison of the results from the 2 s half-life to those from the 10 s half-life

shows that reducing the time frame T half-life increases the number of late events,

at the 99.99% confidence level. No evidence was found for this to have recognizable

effect on T’s peak value. This independence of T’s peak value on T’s half-life implies

that the half-life may be a large value for most applications, except those that are

latency-critical.

The minimum value of the time frame T, the choice of the algorithm for its

increasing, and its half-life are available as command-line parameters, and so are the

maximum times for keeping reason and consequence events in the ISM hash tables.

Event latency

Extensive measurement of the event latency, which is aflected more significantly by

multiple EXSes than is throughput, is part of our future work on BRISK. Network

noise, combined with dynamic on-line sorting, is one source of latency. Another source

107

is waiting select system calls, which are used in both the EXS’S and ISM’s main

event lOOpS to avoid busy-waiting. Namely, the duration of waiting select system

calls depends on the resolution Of the kernel clock, which has been found to be 10—

20 ms. While the event processing time taken by EXS and ISM is in the range of

tens of microseconds, two select calls can add up to about 40 ms latency in a worst

C388.

4.4 Summary

BRISK is a lightweight distributed instrumentation system developed with an em-

phasis on portability and flexibility. It exploits successful technical solutions of extant

distributed ISes in order to provide a robust kernel for future distributed monitoring

and control systems. So far, it has been ported to Sun Solaris, SGI IRIX, Linux and,

using AT&T U/WIN [68] and Cygnus IPC library, to the MS Windows family.

Characteristics of BRISK that were evaluated included event throughput, clock

synchronization, intrusion on the instrumented system, and dynamic on-line sorting.

Measurements indicate that BRISK could meet the performance requirements of a

wide range Of distributed applications. Being a flexible and open IS, it should be

relatively easy to adapt it to a specific environment and improve its performance in

a specific direction.

108

Chapter 5

An On—Line Performance

Visualization Technology

This chapter describes a framework for on-line performance analysis and visualiza-

tion called PGRT visual objects. It is Object-oriented and easily distributable via

middleware software such as CORBA [82] and DCOM [20]. Within it, a visual-Object

deveIOper can integrate low- and high-level, application-specific PAV. Furthermore, it

is based on two visual-object levels for portability and code reuse: a device-dependent

low level, and a device-independent high-level. A goal was also to be able to integrate

various sources of Off- and on-line performance data. To achieve this flexibility, the

visual Objects consume performance data in the form of event records from an envi-

ronment. To formalize the design of high-level visual objects, i.e., enforce a structured

approach that is less error-prone, certain rules and a very high-level, component-based

specification language, called Visual Object Markup Language (VOML) have been

109

defined. The language uses Standard Generalized Markup Language (SGML) markup

for structuring visual objects, and Scheme scripts for defining PAV semantics.

The use of SGML enables development of a PAV information infrastructure for

platform- and tool-independent development of visual Objects. It may also facilitate

automatic monitoring, analysis, and visualization Of globally distributed applications

via network-enabled SGML entity managers. The use Of Scheme for visual object

semantics enables both rapid prototyping of visual objects and customizing VOs for

a wide range of platforms via, for example, Scheme-tO-C and Scheme-tO-Java VM

bytecode compilers. That is, a single VOML specification may be used to generate

automatically an X library-based visual Object and one that runs within a WWW

browser.

In Section 5.1, the visual-Object framework is described in detail, and an example

of successful use for PAV of a distributed multimedia real-time application are Shown.

A PAV architecture for high-level visual objects, the markup language based on it,

and the development environment are presented in Section 5.2. An example of a

VOML specification is given in Section 5.3.

5.1 Visual Object Architecture

The Visual Object (VO) architecture identifies two main software layers apparent in

the majority of extant PAV tools, and represents them as two classes: the high-level

V0 (HLVO) class and the low-level V0 (LLVO) class. In general, the responsibility

of an HLVO class is to implement an application-specific semantics, while an LLVO

110

class is platform-dependent while providing a platform-independent interface to the

HLVO class. When implementing a V0 class, an HLVO class implementation is

derived from an LLVO class implementation, as shown in Figure 5.1. (Vertical bars

in a high-level method denote the presence of multiple peer components.) In the

following subsections, the main characteristics of the LLVO and HLVO class, and an

application to a heterogeneous system are shown.

N

[HLvisualobject

[\r T _‘ (lf “N

is
3

23

nil-gi-

£2

8 ,
dehmtializeJL We _ \ m’oc calbackj

[infostructures]

,-_-l__________________ l ___________

LL visual object

quantitative

and

qualitative

adaptation

 --———
—
—
-
—
—
—
—
—
—
—
—
—
/

Figure 5.1: The design of a visual object

111

5.1.1 LOW-level visual object

The responsibilities of an LLVO class described below illustrate the basic building

block of this PAV technology. They have evolved by repeat of substantial experimen-

tation with an X library-based two-dimensional LLVO class implemented in C++.

Multiple views. An LLVO maintains a number Of display areas, referred to as views.

In the Xlib-based implementation of the LLVO class, each display area is sup—

ported by a contained object that maintains the state of the corresponding X

window.

Graphical primitives. The LLVO class provides methods for rendering simple

graphical Objects, text and figures in the views. The coordinate system used for

the graphical objects’ representative coordinates (as arguments to the meth-

ods) is a world coordinate system specified by the user at the moment of

(re)initializing a view. That is, the user chooses a coordinate system in which

the dimensions are closely related to the performance information. The trans-

formation to the view coordinate system is then in most cases transparent to

the user. (Major exceptions are labels written on the margins, whose coordi-

nates must be given in the world coordinate system, while the view coordinate

system is sometimes more intuitive. There exists a LLVO method that provides

information which enables the use of the view coordinate system.)

Display area. A view consists of an internal area surrounded by margins, referred

to as scrollable area. As a visualization progresses, the mapping from the world

112

coordinate system to the view coordinate system may change (either implicitly,

as declared for quantitative adaptation purposes, or explicitly), at which point

only the contents of the scrollable area may be translated or rescaled (zoomed)

as a response.

Control methods. Methods such as scroll, resize, rescale and snapshot provide ex-

plicit control over each view. Combined with the graphical primitives, they

allow an HLVO to control explicitly, among other things, what to be drawn and

what to be visible at a point in time.

Quantitative adaptation. A relation between a view and calls to graphical prim-

itives that draw in the view may be established that causes the view to adapt

dynamically by translating or rescaling (zooming) the contents of the scrollable

area, thus implicitly controlling what should be visible over an interval of time.

Qualitative adaptation. The LLVO class may be portable to multiple graphical

platforms that differ at some extent (e.g., different X servers may use different

color maps). At run time, it may adapt to the platform capabilities, as well as

provide drawing optimization.

An LLVO class implementation may perform book-keeping about graphical object-

s being drawn and/or be based on vector graphics, in order to facilitate quantitative

and/or qualitative adaptation. However, this is not mandatory and an HLVO class

implementation can only assume that the underlying LLVO class is memoryless and

raster-based.

113

The quantitative adaptation of a view in this implementation is initialized by

specifying directions (from {x+,x—, y+, y—}) and types of adaptation (rescaling or

scrolling) for these directions. On the other hand, one of the parameters of every

graphical primitive is the adaptation flag that determines whether the view Should

adapt, e.g., rescale down if necessary, before the graphical Object is drawn, in order

for the graphical Object to be visible. In the case of rescaling, the view may also

adapt in the opposite way. For example, if the view had to rescale “down” (zoom

out) in response to a peak in a temporal line plot (the contents of the scrollable

area is scrolled to the left as the time progresses), it will rescale “up” (zoom in)

once the peak has disappeared from the scrollable area. Another parameter for the

initialization is the level of quantitative adaptation. It can be used to, for example,

specify the maximum size of data structures (in this implementation, interconnected

red-black trees [28]) used to remember extreme points of graphical objects that have

been drawn with the adaptation flag set.

5.1.2 High-level visual object

Similarly as for the LLVO class in general, the implementors have freedom to define a

precise framework for developing HLVOs. In this section, the HLVO implementation

base is described, and in Section 5.2 an HLVO development framework is presented.

The main components of an HLVO class are the four methods shown in Figure 5.1.

Event processing. The performance data passed to an HLVO via calls to the pro-

cessing method are termed events (or data events). Based on the events, this

114

method (1) updates data structure holding performance information that are

referred to as info structures, and (2) controls the rendering of this information

by updating data structures referred to as control structures.

Information rendering. The rendering method may be called, to (read and) map

a portion of the info structures’ contents to the LLVO views, either immedi-

ately after processing an event (asynchronous rendering mode) or by a thread

that may synchronize the rendering of multiple HLVOS (synchronous rendering

mode). This method communicates with the processing method by both reading

and writing the control structures.

Callback processing. An HLVO may also respond to changes in its run-time en-

vironment, as well as to the user’s commands. This method may, for example,

preprocess callback events coming from the LLVO (e.g., if a view has been

automatically resized), the GUI Of a V0, etc., and then forward them to the

processing method as if they were data events.

(Re)initialization. In on-line performance visualization, it is desirable to be able

to partially reinitialize or reconfigure an HLVO without interrupting the target

application and/or instrumentation system that supplies performance data. The

user may define which info structures should be reinitialized and how, and what

should be drawn upon a mouse click on a “reinit” button or a similar event.

In order to allow for rapid prototyping of HLVOS and further PAV research, two

frameworks have been developed based on two interpreters/compilers of the Scheme

115

language [26]. The first Scheme implementation is called GUILE [73] and has a

Scheme-tO-C compiler called Hobbit [108] associated with it. In this implementation,

a generic HLVO class inherits the X library-based LLVO class. Both classes have

some methods and data wrapped by Scheme procedures within a tool integration

environment for instrumentation and performance visualization, called PGRT-TIE [6,

7]. The GUI of a V0 (in addition to LLVO callbacks) is implemented separately,

using a GUILE interface to Tk [118]. A CORBA interface has been developed for

this framework SO that a PAV application may consist of VOs distributed over multiple

nodes.

The second Scheme implementation is called Kawa [19], and includes an interpreter

and a compiler to Java VM bytecodes. Similarly to the first implementation, a generic

HLVO class inherits the Java AWT-based LLVO class. The LLVO class methods are

wrapped by Scheme macros. The GUI of a V0 is implemented in a way that minimizes

necessary modifications Of the VOML compiler described in Section 5.2.3: a layer of

Scheme macros mimics the GUILE Tk interface on top Of the Java Swing library. This

framework allows for developing either standalone or WWW-centered VO prototypes.

It is possible in Scheme, as a dynamically-typed language, for the event processing

method to receive any type of data structure as an event, which allows for easy

integration of different performance data sources. Most importantly, this high-level

algorithmic language is suitable for easy definition of complex info structures (e.g.,

association lists serving as micro-databases) and compact expression of updating and

querying them (e.g., with the help of powerful macros) in the event processing and

information rendering methods, respectively.

116

5.1.3 Application of visual objects to a heterogeneous system

T KecSIrI-aififlistflhrgfimit T Frame Flex; T ‘ A

- i r. I Tar-Terr ,2.9491

F

I”flTil/1min“l LLAIL/(I’JVVV‘ 7 7 lg 2.21m

1.47m

, 7.3590

FPS

TIME [sat] 128.37TIHE [SEC]

, , 4 .. , Sp

7 Viieréiuéde-if Pallinrizcl L317 7 g ReceiverllLost nimughput

frame Hate

Receiveiiflnsl I‘enorllcny

Packet Statistics

llivjli LEVI

l I Fvenl Window

I
“Eat” [HZ] LiliestlIettanarkS

Figure 5.2: On-line performance visualization of the real-time multimedia application.

As part of the PGRT environment, two prototype visual objects have been applied

to the study of a distributed multimedia real-time application. The target system

consisted of a server and a number of heterogeneous receivers of multimedia data

streams. The visual objects helped determine the processing demands required to

playback different patterns of video frames and to handle different sizes of video

frames, as well as the wasted computation due to receiving video frames that cannot

be replayed due to time constraints (e.g., a new video frame arrives before an older

video frame can be processed). Furthermore, they helped understand the operation

of the application: variations in periodic behavior, and specific points in a network

117

where frame loss occurs, either due to network congestion or individual workstations

loading conditions, were displayed. Immense amount of state information, condensed

into a set of visual displays, could be used by the feedback control algorithm to make

decisions automatically about target bandwidth being requested of the video source.

The snapshot of one visual object is given in Figure 5.2. Its four views show (1)

the throughput of received and estimated throughput of lost video data, (2) the frame

rate, (3) the frequency distributions of received and lost video frames over one-second

intervals, and (4) a spatial, animated view of all receivers and their connections,

depicting the relative volumes of received, lost, used, and dropped video packets.

The other visual object has 16 views, divided into four groups: (1) CPU utilization,

(2) the periodicity of video frames received, the number of received ATM cells, and

(4) the number of lost ATM cells. In each group, there are four related views of

the corresponding metric: (1) minimum-average-maximum, (2) sample deviation, (3)

aggregate, and (4) per-receiver histogram.

5.2 Visual Object Markup Language (VOML)

In this section, a framework is described for semi-automatic design and prototyping

of HLVOS. First, a generic architecture for event processing and performance infor-

mation rendering is defined that is orthogonal to the V0 architecture described in

Section 5.1. (In this context, where the two architectures coexist, “orthogonal” means

that either architecture can be extended without essentially affecting the other, while

they are combined to obtain a working HLVO.) Next, salient characteristics of a very

118

high-level language based on this architecture, called Visual Object Markup Language

(VOML), and its compiler are presented. The full VOML document type definition

(DTD) is given in Appendix B. The VOML system allows a performance visualiza-

tion developer to concentrate on application- and visualization-specific semantics and

build HLVOS by combining reusable components.

_ ,, rendering the contents '

event processIng of Info stmcts updating

based on the contents

cond c J kcondj controlstiucts

LL

1 T
r :

l

[
N J N

p
i

p

c
J \

J

I

p
-
I

K
_
_
_
J

r
—
fl

Event lnfonnation

Processing Rendering

Module Module

.. _ 1

info structures

1

L
.

c
o
n
t
r
o
l
s
t
r
u
c
t
u
r
e
s

l
l

c
o
n
t
r
o
l
s
a
n
d
g
r
a
p
h
i
c
a
l
p
r
i
m
i
t
i
v
e
s
f
o
r
L
L
V
O

d
a
t
a
e
v
e
n
t
s

c
a
l
l
b
a
c
k
e
v
e
n
t
s

r
J

k r
N

c f c

_ I
—
I
l
p
i

Figure 5.3: Event Processing and Information Rendering Architecture (EPIRA)

5.2.1 Event Processing and Information Rendering Architec-

ture (EPIRA)

There are many possible patterns for development of complex HLVOS. For example,

one could extend or modify the V0 architecture in Figure 5.1 and build complex

119

HLVOS in a pure object-oriented style, by inheriting from simpler HLVOS. How-

ever, since a goal was to develop a framework that could be applicable to target

languages that do not have strong support for object orientation (e.g., Scheme and

C), a component-based approach has been taken.

Figure 5.3 shows the Event Processing and Information Rendering Architecture

(EPIRA). The architecture specifies the tentative parts of the HLVO architecture,

shown in Figure 5.1, and focuses on the data-driven computation aspect. The two

modules in the figure correspond to the event processing and information rendering

methods. The events arrive (via method calls) from the two “busses” on the left: they

carry the performance data and the changes in the run-time environment. Arrows

are drawn to denote unidirectional data flows.

The event processing module may contain a number of event processing (EP)

components. Each EP component in turn may contain a number of parts (separated by

horizontal lines in the figure), belonging to one of three classes: (1) event-based ones,

shown in the middle and executed upon arrival of a specific event, and condition-based

ones, which can be executed (2) before or (3) after the event processing, provided

that a specific condition tests true. (In VOML, this is referred to as a “condition

event.”) Since only one event can be received at a time, among all event-based parts

(belonging to different EP components) only those for the received event are executed.

The conditions corresponding to the condition-based parts are evaluated each time

any event is received.

Similarly, the information rendering module contains a number of information

rendering (IR) components. Each IR component in turn contains two parts, or phases,

120

in order to avoid potential write-after-read hazards involving the control structures.

During the first phase, info and control structures are analyzed and the contents of

the info structures are appropriately rendered in multiple views. Once that all first-

phase parts of the IR components have been executed, the execution of second-phase

parts begins, when the control structures may be safely updated. Since the HLVO

assumes that the LLVO has no special rendering support (e.g., a depth buffer), some

visualizations may depend on the relative execution order of the first—phase parts.

5.2.2 The VOML language

The SGML [42] has been chosen as the basis for a PAV information infrastructure

to be built around the V0 and EPIRA architectures. For a start, the VOML is an

SGML document type definition (DTD) that encompasses the structure of HLVOS

based on EPIRA. Some of its higher-level elements and example relations among the

elements are given in Figures 5.4a and 5.4b.

As it can be seen from Figure 5.4b, VOML attributes are used both to specify

certain characteristics of software components described by the elements and to create

relations among them, some of which directly correspond to the connections shown in

Figure 5.3. The others are not as “hardwired,” and are described using Figures 5.4b

and 5.5. Figure 5.5 defines an example IR component that is used in a visual object

defined in Figure 5.4b.

Although SGML is a very suitable tool for writing structured specifications, it lack-

s the means for describing semantics of a specification. On the other hand, Scheme is

121

voml

head

body

vi

anal-object

event-declarations

data-event

info-structures

control-structures

utility-code

view-initialization:

view

event-processing

ep-component

preprocess-inputs

into-rendition

ir-component

line

(event-declarations)

(data-event name="onescalar" rtype="entry" etype="3000">

(data-field name="key">

(data-field name="value">

<info-etructuree>

(variable name="currenttine" type-"real">

(variable name=”aeeocliet" type="list">

(variable name="palette" type8"list">

(control-structures)

(variable name=“beepcount" type="int" init="0">

<utility-code>

(define (beep)

(display 8\Bel))

</utility-code>

(view-initializatione>

(view name="lineplotvieu" title="Multi-scalar line-plot"...>

(event-processing)

(op-component name="cneecalarprocees" inputs="onescalar.key.value"

info:="currenttime aseccliet”)

(info-rendition)

(it-component names"lineplotrender” vieve="1ineplotview"

intoe="currenttine assocliet palette" controla="beepcount">

(a) Higher-level elements

(b) Relations among elements of a VOML specification

Figure 5.4: A brief description of VOML

a standardized language with simple syntax and clean semantics that is very suitable

for describing the semantics of EP and IR components. Hence, a decision was to em-

bed Scheme into VOML markup. Combining markup and a programming language,

typically Java in WWW-related markup languages, is not a new idea. However, the

integration of VOML and Scheme is tighter, as can be seen from the code example

in Figure 5.5. Unlike script-augmented HTML files that are final documents to be

“executed,” VOML specifications are to be compiled.

Namely, within Scheme code defining the semantics of a component, there may

exist references to “formal parametersz” info structures, control structures, events

122

(description)

This IR component draws a line-plot of multiple scalars over time, in the supplied

view (‘0). Only lines with the last-update time equal to the current time are drawn.

Once 10 lines have been drawn, a short sound (beep) is generated.

The info structures consist of the current time (80, non-negative real number)

a multi-scalar association list (31, indexed by non-negative integer keys),

and a color palette ($2, a list of strings -- color names).

Each value in the association list is a 4-element vector:

8(old-time old-value new-time new-value).

The key of each value in the multi-scalar association list is used to index the

color. when all colors are exhausted, the line thickness is increased to distinguish

between different scalars. A counter is used as a control structure (10) for

generating sounds.

(/description>

(let ((palette-len (length 32)))

(alist-for-each

(lambda (scalar-id scalar)

(if (= $0 (vector-ref scalar 2))

(begin

(set! 20 (+ 20 1))

(if (= Z0 10)

(begin

(beep)

(set! 20 0)))

(line view=“‘0” from=”(vector-ref scalar 0) (vector-ref scalar 1)"

to="$0 (vector-ref scalar 3)" thick="(+ (quotient scalar-id palette-lea) 1)"

color="(nth (modulo scalar-id palette-lea) 82)" adapt="yes" clip="margin">))) 81))

Figure 5.5: Code of the IR component used as lineplotrender in Figure 5.4b

(in EP components) or views (in IR components). The reference notation is Tn [/m] ,

where

e T is $ for info structures, 7. for control structures, and “ for events and views;

e n is the position of the formal parameter in the corresponding parameter list

(e.g., $0 corresponds to currenttime in the last line of Figure 5.4b, because it

is the O-th argument supplied via the infos attribute);

e optional /m is used for referencing individual fields of an event. (Currently,

VOML only supports PICL [122] compliant events, i.e., lists with the first two

elements being integers that determine the record and event type.) For example,

123

an occurrence of “O/ 1 within code of EP component onescalarprocess in

Figure 5.4b would reference field value of data event onescalar.

The info and control structures are translated into special global variables by the

compiler. Effectively, they are “passed” to RP and IR components by reference when

listed in the infos and controls attributes of the enclosing VOML element. In this

way, a reusable component may be written, tested, and placed into a library. In an

SGML system, such components may be kept as external SGML entities and used in

VOML specifications of different HLVOS by simply referencing them by names.

EP components tend to be application-specific, as they process application—specific

event records. To make them more reusable, the element preprocess-inputs is

provided that allows for specifying “glue logic” (as Scheme expressions) for da-

ta events specific to a new application. Namely, before an existing EP com-

ponent is referenced (i.e., used), any fields of the data events it processes may

be arbitrarily preprocessed. For example, an EP component that updates in-

fo structures for a simple line-plot visualization (e.g., Scheme code just under

<ep-component name="onescalarprocess". . . > in Figure 5.4b, updating info struc-

tures to be rendered by the IR component code in Figure 5.5) can be used to visualize

the frame rate of a multimedia application. The glue logic in this case could be a

function that divides the number of frames received in a time interval by the length

of the time interval, whose result would be assigned to the second field (named value

in the case of the default data event onescalar). (Assume that the number of frames

is contained in a data event field, and the time interval is kept in an info structure.)

124

Similarly, different library IR components that are parameterized may be com-

bined in interesting ways over a number of views. Additionally, they may be given

attributes to determine their higher-level behavior. (Currently, this behavior is sup-

ported in the HLVO implementation by auxiliary Scheme code; it might also be sup-

ported by a drawing-optimizing LLVO class.) One such attribute is named refresh,

which currently can have any combination of values resize, rescale and update. If

any of the first two values is used for an IR component, the component will redraw

its contents if any of the views it draws to gets resized or rescaled. This is useful

for raster-based LLVO class implementations, where resizing or rescaling an image is

lossy. If update is used, the component will undraw what it drew last time, before

proceeding to render the contents of the info structures again. Certain higher-level

behavior, which would by default ignore any control structures (e.g., the effect of

update does not depend on the actual IR component code), can also be controlled by

an enable attribute that takes a Scheme expression evaluating to a Boolean value.

When combining IR components, the HLVO developer may define their execution

order.

5.2.3 The VOML compiler

The VOML compiler is built on top of an SGML transformation library called

STIL [99] and consists of the following components.

125

Catalog

external

entities

SGML

parse

SGML parser

w/ entity manager

\

/ ll

SGML VOML

declaration docrment

tor VOML type

definition

<
—
—
—
—

-
—
—
—
-
—
—
—
—
—
—
r
—
—
—
—
-
—
—
—
—
—

tree

(ESIS format)

VOML compiler

on top oi STlL

Figure 5.6: VOML compilation and execution process diagram

HLVO

GUILE

SGML parser. The sgmls parser [25] is used as the front-end that parses an SGML

declaration, VOML DTD, and external entities used in a VOML specification

of an HLVO.

STIL library. This library is written for the clisp [48] implementation of Common

Lisp with CLOS. It allows traversing a parse tree created by the SGML parser,

and defining “hooks” (semantic actions) that are called during the traversal.

VOML validating parser. One part of this component consists of the hooks called

by the STIL library. The other part consists of CLOS objects that contain code

and other information relevant to EPIRA components of the HLVO specification

126

being compiled. The hooks process VOML elements (including the contents in

Scheme), their relations and attributes, and build the CLOS objects.

VOML code generator. This component “tangles” the plain, application- and

visualization-specific Scheme code from a VOML specification with code that

it generates for integration with the run-time environment. The latter includes

a graphical user interface for accessing and modifying selected info and con-

trol structures, managing views, registering VOs with routines that supply data

events, etc.

Figure 5.6 shows the compilation and execution process of a VOML specification in

the GUILE-based environment. Processes are shown as oval rectangles, while input,

intermediate and output files are shown as rectangles. Solid lines denote the process

of file inclusion, while dashed lines denote references in VOML and Scheme files.

While an SGML parser uses an entity manager to find components of a document

which are referenced as external entities—such as library EP and IR components-—

within its virtual storage system, the SGML standard itself does not specify how to

implement one. A WWW-enabled entity manager would further enlarge the PAV

information infrastructure and facilitate automated monitoring and PAV of globally

distributed applications. Figure 5.7 shows an example of how component defini-

tions could be fetched off a WWW site by the entity manager, to be included for

compilation. In the example, the vendor of an imaginary software product, whose

performance is to be visualized, keeps the latest implementations of an EP and IR

127

component for the product, ready to be used in a HLVO specification. (It is assumed

that the information about the components’ interfaces is available.)

<!DOCTYPE VOML PUBLIC "-//MSU-PGRT//DTD VOML 1.0//EN"

[

(!ENTITY SoftwareXYZep

SYSTEM "http://vendor.com/voml/XYZep.voml">

(lENTITY SoftwareXYZir

SYSTEM "http://vendor.com/voml/XYZir.voml">

J

>

(voml)

(event-processing)

(op-component name="XYZep"

inputs=”mydata1.f1.f2 ...” ...>

tSoftwareXYZep;

(lop-component)

(info-rendition)

(it-component name="XYZir"

views="myview1 ..." ...)

tSoftwareXYZir;

(lit-component)
Figure 5.7: Sketch of a VOML specification that uses remote component definitions

5.3 The VOML Specification of a Simple Visual

Object

In this section, the main parts of the VOML specification of a simple V0 with a view

similar to the last one of the V0 shown in Figure 5.2 are presented and commented.

The V0 receives performance data events from a distributed application, generated

whenever a node is (1) added or (2) removed, and periodically to carry profile data

from each node. The event declaration section is shown in Figure 5.8. The record and

event types of the first two events are taken from the PICL specification [122], while

the profile event belongs to an extension of PICL. When some field are skipped (i.e.,

128

ignored), the index attributed is used to specify the position of the next declared

field.

(event-declarations)

(data-event name="addnode"

rtype="pg-entry" etype="-901">

(data-field name="ts" type="int">

(data-field name="node-id" type="int">

</data-event>

(data-event name="rmnode"

rtype="pg-exit" etype="-901">

(data-field name="ts" type="real">

(data-field name="node-id" type="int">

</data-event>

(data-event name="node-prf"

rtype="entry" etype="3141">

(data-field name="ts" type="real">

(data-field name="node-id" inder="3" type="int">

(data-field name="node-type" index="5" type="int”>

(data-field name="rkbps" type="real">

(data-field name="tb" type="real">

(data-field name="used" type="real">

(data-field name="fps" type="real">

(data-field name="packets" type="int">

(data-field name="pack-used" type="int">

(/data-event>

(levent-declarations>
Figure 5.8: Event declarations

The info and control structure specifications are shown in Figure 5.9. The info

variable numofnodes (although redundant) keeps the current number of communi-

cating nodes; nodes is an association list that keeps the previous and current profile

of each node; nodeno keeps the (non-negative) node id from the latest profile event.

The control variable nodechange indicates whether the number of nodes has changed

(meaning that the view has to be updated, as will be seen later).

The next is the utility code section, which is omitted for brevity. It contains func-

tion getfontname that returns a font name from a list of available fonts, given some

hints. Besides, functions id-get, id-put and id-rem, which are used to manipulate

129

(info-structures)

(variable name="numofnodes" type="int">

(variable name="nodes" type="1ist">

(variable name=”nodeno" type="int" init="-1">

(/info-structures>

(control-structures)

(variable name="nodechange" type="boolean">

</control-structures>

Figure 5.9: Info and control structures

the nodes association list, may be defined in this section (in this case, they are defined

and exported from another module, available in the run-time environment).

The view initialization section is shown in Figure 5.10. The (only) BU-View view

is 700 by 700 pixels large, through which a rectangle in the world coordinate system

from (—10, —10) to (110, 120) is visible. In this example, the view neither scrolls nor

zooms. The control variable nodechange is set to true only to trigger the drawing of

the switch in the beginning.

(view-initializations)

(view name="BU-View" window="700 700"

wor1d="-10 110 -10 120" controls=”nodechange”>

(description>Switch, nodes and bandwidth

utilizations<ldescription)

(set! 10 it)

(lview)

(/view-initializations>

Figure 5.10: View initialization

There is one EP component for each event, although one could implement, for

example, only one for all the three events (depending on the desired granularity when

creating a component library). They are shown in Figure 5.11, as updating the info

and control structures according to the event declarations. Fields of an event are

listed using a notation in which the event name is followed by some of its fields’

130

(event-processing)

(op-component name="rmnode" inputs="rmnode.ts.node-id"

infos="numofnodes nodes nodeno" controls="nodechange">

<description>Remove a node(/description>

(input name="‘0">

(set! 31 (id-rem 81 ‘0/1))

(set! 80 (- 80 1))

(set! 82 -1)

(set! 20 8t)

(linput)

(lop-component)

(op-component name="addnode" inputs="addnode.ts.node-id"

infos="numofnodes nodes nodeno" controls="nodechange">

(description>Add a node, reset the infos(/description>

(input name="‘0">

(set! 81 (id-put 31 ‘0/1

(cons (vector ‘0/0 ‘0/1 0 0

(vector ‘0/0 ‘0/1 0 0

(set! 30 (+ $0 1))

(set! 32 -1)

(set! 10 3t)

(/input>

</ep-component>

(op-component name="nodeprofile"

inputs="node-prf.ts.node-id.node-type.rkbps.tb.used.fps.packets.pack-used"

infos="numofnodes nodes nodeno")

(description>Update a node’s infos<ldescription>

(input name="“0">

(let ((old-info (cdr (id-get 31 ‘0/1)))

(new-info (vector ‘0/0 ‘0/1 ‘0/2 “0/3 ‘0/4

‘0/5 ‘0/6 “0/7 “0/8)))

(set! 31 (id-put 81 ‘0/1

(cons old-info new-info))))

O O 0 O O 0)

0 O 0 0 0 0))))

(set! 82 ‘0/1)

(/input>

</ep-component>

</event-processing>

Figure 5.11: Event processing components

names, delimited by periods. In the nodeprofile EP component, all the event fields

declared above are used. It is not necessary to use them all and in the same order as

declared; the ‘m/n notation uses the order(s) given in the inputs attribute. It can

be seen that the field node-id is used as the key, and the value field in the nodes

association list is a pair of vectors keeping the previous and current profile of a node.

In this example, only the current profile will be used, but in a more complex VO both

the previous and current one may be needed.

131

(ir-component name="nodes-ir" views=”BU-View"

infos="numofnodes" controls="nodechange"

refresh=“update resize" buffer="yes" enable="%0">

<description>Switch, nodes, connections<ldescription)

(let! ((viewinfo (view-info view="‘0">)

(width (list-ref viewinfo 5))

(height (list-ref viewinfo 6))

(size (inexact->exact

(max (/ width 40) (/ height 40))))

(font (getfontname "fonttable"

"courier" size “bold")))

(text view="“0" coords=”50 107“ hali =“center”

font="font" fcolorS’"black"’

content=’"Bandwidth Utilization"’>

(figure view=”‘0" filename=’"bggif/switch.gif"’

orig-origin="0 0" orig-extents=“0 0"

world-origin="45 45" world-extents="10 10")

(let* ((nodenum (- SO 1))

(step (/ (if (gt $0 0)

(I 6.28 nodenum)

0)))

(if (gt nodenum 0)

(let loop ((num nodenum))

(lets ((angle (a num step))

(sine (sin angle))

(cosine (cos angle)))

(figure view="‘0"

filename=’"bggif/node.gif"’

orig-origin="0 0" orig-extents="0 O"

world-origin="(+ 45 (t 45 sine))

(+ 45 (* 45 cosine))"

world-extents="10 10")

(line view="‘0" from="(+ 50 (a 6 sine))

(+ 50 (a 6 cosine))"

to="(+ 50 (t 39 sine))

(+ 50 (a 39 cosine))“

color=’"red"’ thick="12">

(if (gt num 0)

(loop (- num 1))))))))

<end-with>(set! XO If)</end-with>

(/ir-component>

Figure 5.12: Template IR component

Finally, the information rendering section consists of two IR components. The

nodes-1r IR component, which is shown in Figure 5.12 and will be executed first,

writes text and draws the switch and as many “PGRT globes” around it as there

are active nodes, connected with the switch via thick red lines. (In the prototype

implementation of the VOML compiler, the execution order of the IR components

is opposite of the order they appear in a specification.) The enable attribute spec-

ifies that this IR component should be executed whenever the number of nodes has

132

(it-component name="bu-ir" views="BU-View"

infos="numofnodes nodes nodeno" refresh="resize">

(description) Bandwidth utilization (/description>

(if (gt 82 -1)

(let* ((angle ("I 32 (/ 6.28 30)))

(sine (sin angle))

(cosine (cos angle))

(new-info (cdr (id-get $1 $2)))

(node-t (vector-ref new-info 2))

(newkbps (vector-ref new-info 3))

(newtotal (vector-ref new-info 4))

(newused (vector-ref new-info 5))

(sent (/ newkbps newtota1))

(mag (/ newused newkbps)))

(line view="‘0" from="(+ 50 (a 6 sine))

(+ 50 (a 6 cosine))"

to="(+ 50 (e 39 sine))

(+ 50 (t 39 cosine))"

color=’“red"’ thick="l2">

(if (= node-t 2)

(line view="‘0" from="(+ 50 (a 6 sine))

(+ 50 (a 6 cosine))"

to="(+ 50 (a (+ 6 mag) sine))

(+ 50 (* (+ 6 mag) cosine))"

color=‘"blue"’ thick="10">

(line view="‘0" from="(+ 50 (t 6 sine))

(+ 50 (a 6 cosine))"

to="(+ 50 (t (+ 6 mag) sine))

(+ 50 (t (+ 6 mag) cosine))"

color=’"green"’ thick="10">

(set! 82 -1)))

(/ir-component>

Figure 5.13: Active IR component

changed. The refresh attribute adds that everything the IR component drew last

time should be redrawn when the view BU-View is resized. It also specifies that ev-

erything the IR component drew last time has to be undrawn before something new

is drawn (whenever the IR component is enabled). The buffer attribute is used to

make the IR component draw in-memory only until it is done, and then flush the con-

tents of the memory to the screen. This is useful to make the rendering smoother and

faster when there are many graphical objects to be drawn. This IR component resets

the nodechange control variable in the second phase, so that other IR components

may be added safely that depend on the value of this variable. In Scheme, the HLVO

prototyping language embedded in VOML, this second phase is implemented using

133

the delay and force primitives. This allows for mixing the first- and second-phase

IR code as if there were only one phase, and avoiding the write-after-read hazard at a

high level. (Care must be taken when there are circular/mutual dependencies among

control structure updates.)

The other IR component is executed each time an event is received, and it draws a

blue thick line on top of a red thick line (drawn in the same place as the thick red line

drawn by the previous IR component, so that it can effectively be undrawn), showing

the relative bandwidth used by a node (i.e., a portion of the received bandwidth; the

line is drawn after a profile event was received that resulted in setting the nodeno info

variable to a non-negative value). If the node is the server, it draws a green thick line

instead of a blue one, showing the relative bandwidth consumed by the server. The

IR component code is shown in Figure 5.13. The refresh attribute treats the resizing

of the view same as above.

A snapshot of the view is given in Figure 5.14. Note that not all of the VOML

features have been shown in this example.

5.4 Summary

A novel PAV technology intended to satisfy growing needs of researchers and users

of heterogeneous parallel and distributed systems has been presented. Salient char-

acteristics of the technology include support for rapid prototyping and automated

design of PAV tools, object orientation, distributability, portability, code reuse and

134

34X eu-vrew Jfijfig‘i

Band-rim ecufixation

Figure 5.14: A snapshot of the view

flexibility. An example of high-level visual object specification in VOML has been

presented that shows some of the features of the language.

135

Chapter 6

An Integrated Approach to

Real-Time System Design and

On-Line Performance Visualization

with Steering

This chapter presents an approach to integration of the two technologies presented

in chapters 3 and 5, which use BRISK, presented in Chapter 4, for instrumenting

and steering a target complex real-time system. First, in Section 6.1, an example,

real-world target distributed real-time system is described. Its design and engineering

using the CLP approach/technology is described in Section 6.2. Next, technical details

about the integration of the two technologies are explained in Section 6.3. Finally,

136

the operation of the new, integrated technology is shown on an example scenario in

Section 6.4.

6.1 Target Real-Time System

The target real-time system used to demonstrate the approach is a modification of a

real-time face-tracking system [11]. The original system runs on a single workstation

equipped with an inexpensive “eye” video camera. It analyzes video frames and finds

the workstation user’s face and, once the face has been found, the eyes (as well as other

features, such as the eyebrows and nose tip). By tracking the head movements and

gaze direction in real time, the system can be used as a basis for handless application

control, graphics cursor driver, etc.

match

match

A

PD-TRACK

grab.match

no match

no match

match (predict)

(recovered) -

FD_PREDICT

grab,match

match

PD-FIRST

match

match

(not

recovered)

0 match

(do not

predict)

Figure 6.1: Original face-tracking system’s state diagram

The state diagram of the original face—tracking system is shown in 6.1. The most

relevant facts about it are summarized below.

137

e The task of finding the user’s eyes (“match”) is relatively lightweight, and is the

main part of the system’s “inner loop.” It assumes that the user’s face has been

located, and is invoked as frequently as possible. It usually suffices to invoke

this task at a frequency between 15 and 20 Hz in order to smoothly track the

eyes. The eyes can be located even if the user’s face moves a little, relatively to

the assumed face location. In cases of short temporary problems with finding

the eyes, the system uses a computationally simple Kalman filter to extrapolate

the eyes coordinates (“predict”).

e The most time-consuming task is that of finding the user’s face (“face”). As

the main part of the system’s “outer loop,” it is invoked after the user’s face

has moved significantly enough for that the eye-finding task to fail to locate the

eyes. This usually happens after 5 to 20 successful eye findings, possibly helped

by a few predictions.

Real-time characterization of the original system. It is a soft real-time

system in which, besides a required minimum average tracking frequency that depends

on the workstation user’s head movements, important roles have the extrapolation and

face-recovery mechanisms. The latter is the most critical task because it interrupts

the tracking for a user-noticeable time interval. However, it is too expensive on a

workstation to look for the current location of the user’s face more often than only

when necessary.

While the original system achieves required tracking frequencies on an average

workstation, it does that at the cost of fully utilizing the CPU. Its modification p-

138

resented here is a transformation into a client-server system. The motivation comes

from the facts that making the target real-time system distributed, (1) the approach

to design and engineering of complex, distributed real-time systems from this disser-

tation can be applied on a non-trivial case, and (2) the CPUs of several workstations

in a fast local—area network can be drastically off-loaded.

sewer side 3 client side

newtull image 9

"M.Wflmm

lind lace area i

wait lor next period

E grabasendlwem

newtacearea
:

J

ready? ;

, receive the servers' r N

finderyes : responses and update

It lound. return coordinates E W'xe and match MM

3 WT: sigtaltacea'rdrnaui statedagran

I i condvars; or implementation

i Sthcdl lhestate

waitlornext period 3 dagranmm L J

Figure 6.2: Distributed face-tracking system

The original state diagram has been modified, and the tasks of face and eye

finding have been made largely decoupled periodic real-time tasks executing on the

same or two different Real-Time Linux (RTL) [12, 78] server PCs. The new system is

shown in Figure 6.2. A main modification of the state diagram consists of replacing

all “grab, face/match” actions by returns (in the single—threaded case, where the

139

state diagram is a function) or waits on the corresponding signal variable (in the

multi-threaded case, where the state diagram is a separate thread). The invocation

frequencies of the real-time tasks are high enough to achieve a satisfiable face-tracking

quality. At the same frequencies, they receive full and face-only raw images from the

client workstations, and return the coordinates of the face and eyes, respectively. The

client receives the coordinates, forwards new face coordinates to the eye-finding task,

extrapolates eyes coordinates if necessary, and possibly passes them to an application.

Real-time characterization of the distributed system. It is a soft real-time

system centered around a hard real-time subsystem running on the RTL server PCs.

Behavior based on (fixed over an interval of time) periods had to replace the reactive

one, because the delay and jitter introduced by two transfers over the network (to

immediately send the image data and receive the coordinates) would stop the tracking

for a moment and make it less smooth. The hard real-time subsystem acts as a clock

of the whole system. The clients periodically send the image data into a pipeline and

receive the coordinates with more delay but less jitter out of it; they can estimate the

jitter and take advantage of that. Except for sudden head movements, the periodic

face—finding task is less critical, because the face coordinates are kept more up—to-date.

Even with a noticeable delay, the tracking can be useful and considered real-time if

the delay is almost constant.

Besides these main design choices, there are implementation details to compensate

partially the lack of real-time support in legacy workstations and networking hard-

ware. The chosen target system should be viewed mainly as an example. There may

be other real-time systems, similar in structure to this one, for which the motivation

140

 ’ ‘3 I! 9%...." ‘~

for a similar transformation may be stronger. Section 6.2 describes how the target

system has been engineered using the compiler-based approach from this dissertation.

6.2 RTSML Specification

In the transformed target real-time system, described in the previous section, up

to eight pairs of CPU-demanding face and eye finding tasks execute on three RTL

server PCs. They have been implemented as real-time tasks, which are scheduled

using a rate-monotonic scheduler. The Linux kernel is also scheduled by RTL as

a background task, which is allocated the CPU when no real-time tasks are ready.

Figure 6.3 sketches the description of RTL-specific details (the arrows represent data

and control flow).

1 other

shared memory J to? Linux

5 processes

I J

lace eye

finder finder

Linux kernel

RT FIFOs

RT 188k controller ll

” V Real-Time kernel ”)(

Interrupt control hardware ”
Figure 6.3: RTL-specific details of the target system

141

Due to the current lack of networking (TCP/1P) support in RTL, the inputs of the

real—time tasks, messages with images from the corresponding clients’ cameras, are

received by a Linux network interface card (NIC) driver (see [95] for more information)

and read by a proxy Linux process. The proxy process stores them to a (unmapped

and hidden from the Linux kernel) shared memory area accessible to the real-time

tasks. In order for the NIC driver not to lose packets of the incoming messages, causing

their retransmission, it must be allowed to process them very frequently (1—2 kHz,

depending on the NIC hardware). Since the driver cannot be isolated from the rest of

Linux (and treated as a real-time task), the whole Linux kernel must be allocated the

CPU very frequently and allowed enough time in each turn for the driver’s interrupt

handling routine, for which the RTL leaves NIC interrupts pending, can copy the

incoming packets from the NIC. This required a modification of the default rate-

monotonic scheduler, such that it (1) treats Linux similarly to a periodic real-time

task, and also (2) allocates the CPU to it when no real-time tasks are ready. Unlike

the real-time tasks, which return the control to the scheduler when they finish, the

periodic invocations of Linux need to be stopped by the RTL’s timer handler after

their allowed time has expired.

Furthermore, a real-time analysis of the traffic coming into a RTL server from a

fast Ethernet-based LAN is very limited. For example, it is not possible to guarantee

that before each instance of a real—time task is allocated the CPU, a fresh input will

be available in the shared memory. However, at least a soft real-time, average-case

analysis can be beneficial that is applied on the TCP/IP packet assembly in the

Linux kernel and storing of messages to the shared memory by the proxy task (the

142

proxy task receives the messages via stream sockets). Even though the Linux kernel

is allocated the CPU very frequently, its allowed time in each turn is only supposed

to be long enough to handle outstanding packets in the NIC buffers. Part of this time

may actually be given by the Linux kernel to the TCP/IP subsystem and proxy task,

but in a conservative analysis it is assumed negligible. Within an interval of time,

the time needed by the proxy task to prepare the inputs for the real-time tasks is

(conservatively) approximated as linearly proportional to the sum of the lengths of all

the messages expected to arrive within that interval. A similar approximation can be

done for the task of TCP/IP packet assembly, where small but possible bursts/jitter

should be taken into account. Altogether, for this purpose a constant K6,, [ms/KB]

can be defined whose value is a measured normalized input-preparation time on a

given RTL server PC.

To reconcile the above RTL-specific requirements with the exact rate—monotonic

schedulability analysis, a theorem due to Lehoczky, Sha and Ding [113] is presented for

a start (T,, C.- and D,- are period, time demand and deadline of task 7",, respectively):

Theorem. Let a periodic task set T1,T2, . . .,r,, be given in priority order and

scheduled by a fixed priority scheduling algorithm using those priorities. If D,- 3 Ti,

then T,- will meet all its deadlines under all task phasings if and only if

" C, t
min —[—l g 1. (6.1)

—‘ 'jzl t 71.7

The entire task set is schedulable under the worst case phasing if and only if

143

max min

l<z<n O<t<D

i=1

C'JT

—— — 6.2

Note: To find the minimum, one needs only to consider some of the values of t which

are multiples of any of T1, T2, . . . ,T,_1 and Di. [3

Assume that under a task-to—processor allocation, the tasks T], 72, . . . , Tn are some

face and eye finding tasks on a RTL server PC. Their priorities are, under the rate-

monotonic scheduling, fixed based on their periods. First, the frequent allocation of

the CPU to the Linux kernel may be added to the above equations as task To, the

highest-priority one. However, a simplification is possible because To is two to three

orders of magnitude smaller than the periods of the other tasks. Namely, in the sum-

mand in Equation 6.2, when t takes on the values of multiples of T], j = 0, 1, . . . ,i— 1,

the relative error of removing the ceiling function1n the summand for j: 0 becomes

negligible, and the summand approaches a constant utilization fraction Co/To. It can

be subtracted from both sides of the inequality for all i = 1,2,. . .,n. Furthermore,

assuming that time demands 0,, i = 1, 2, . . . , n, are inversely proportional to the CPU

capacity (unlike Co, which is the fixed allowed time), the effect of introducing the fre-

quent CPU allocations to the Linux kernel is approximately equivalent to slowing

down the CPU 1/(1 — Co/T0) times (the error is on the conservative side, because the

time demands C,,i = 1, 2, . . . , n, on a real PC with a memory hierarchy will actually

be increased by a smaller factor).

Second, consider “promoting” the Linux background task into a lowest-priority

real-time task rn+1 with Tn“ = Dn+1 > T". ' The time demand within an interval of

144

time tcp S Tn“, for preparing the inputs from messages expected to arrive within the

interval, under an assumption that tap is large enough for an average-case analysis, is

given by the following formula:

n «Li

Cn+l(tcp) : tcchp X Ti (63)

i=1 1

where L,- is the length of r,’s input. Equation 6.1 has been chosen as the feasibility

test for task Tn+1, with Cn+1 = Cn+1(Tn+1) and Tn+1 slightly larger than the largest

of the other periods. A stronger test could, for example, have multiple deadlines for

partial preparations (so that each instance of a real-time task gets a fresh input before

it is allocated the CPU):

max++Z gfgl S 1. (6.4)

J
lgzgn CT“ . -

However, such a stronger and more complex test approaches a worst-case analysis as

ta,D becomes small for the average-case analysis. Since the incoming network traffic is

non-deterministic, a worst-case analysis is not worth pursuing. On the other hand,

allowing tcp to become too large would make the chosen feasibility test degenerate

into a simple CPU utilization check, which is unnecessarily weak. Finally, the cho-

sen feasibility test requires only a minimal extension to the original rate-monotonic

schedulability analysis.

The soft real-time analysis of the network traffic is simple. The whole LAN is

viewed as a single communication channel. While the message latency cannot be

bounded in a non-real-time LAN, one can hope that it will be relatively low if the

145

LAN is not very loaded. By observation, e.g., looking at local FTP throughput rates,

an upper bound for the allowed bandwidth B can be set. Then, the following formula

is used to check if the messages will likely arrive from all the clients to all the servers

with low latency:

b
i

f. (6.5)
I

BZZ

i=1

H

The client programs execute on various non-real-time operating systems, one client

per computer. They are now computationally light, with the average CPU time

needed per video frame depending also on the application built on top of the face-

tracking task. In addition, the CPU time needed by the OS for copying and sending

messages to the server(s) is modeled similarly as in the case of the Linux background

task on an RTL server PC. The total CPU utilization by the client can be limited

using the following formula:

Cnorm cl i Cnorm c
Si > __‘ ______'_E 6.6

where S.- is the allowed dedicated CPU capacity of the computer on which the client i

executes (the CPU capacity in idealized MIPS is used instead of utilization, because

the RTSML compiler modules expect it as one of the parameters). Gummy“,- is the

normalized (at 1 MIPS) average CPU time demand of the client within an interval of

time equal to the period of the corresponding, more frequent, eye-finding task, T61,,-

(conservatively estimated). Guam“, [ms] is the normalized message c0pying demand

time within a unit of time (1000 ms), obtained using a formula similar to Equation 6.3.

146

Here ends the modeling of the distributed real-time face-tracking system. Two

RTSML compiler modules have been used to compile parts of the system’s specifica-

tion:

1. default module common, for simple periodic tasks and messages, non-real-time

channels and processors with utilization checks only (using generalizations of

Equation 6.5 and Equation 6.6), and static routing. The client tasks, which are

not trivially periodic, have been approximated by periodic ones; this explains

the form of Equation 6.6.

2. module rtlrms, for RTL-augmented processors with rate-monotonic scheduling

(using a generalization of Equation 6.2). Both the rtlrms and common modules

internally create for each processor a common task to approximately model the

CPU time demand for unaccounted message processing on that processor.

The above-mentioned generalizations assume all possible task-to-processor and

message-to—route allocations, variable CPU capacities, message multicasting, etc. The

common and rtsml modules generate CLP code in which satisfactory resource alloca-

tions are to be found by applying possibly multiple problem-solving approaches. In

general, other modules may search for satisfactory values of some real-time parame-

ters, such as periods. In the context of CLP and problem solving, one distinguishes

between input parameters (e.g., tasks’ periods) and output solutions (e.g., task-to-

processor allocations). Figure 6.4 shows excerpts from the RTSML specification of

the target system.

147

1 (!DOCTYPE RTSML PUBLIC "-//MSU-PGRT//DTD RTSML 2.0//EN”)

2 (rtsml)

3 (head)

4 (title>Distributed Face Tracking Application(/title)

5 (/head)

6 (body)

7 (system id="ft" type="common")

8 (processor-group id="pg0" type="common")

9 (processor id="p0" type="rtlrms (mips (initial 450) (domain (450)))

10 (norm-copy-time 5)">(/processor)

11 (processor id=“p1” type="rtlrms (mips (initial 450) (domain (450)))

12 (norm-copy-time 5)")(/processor)

13 (processor id=“p2” type="rt1rms (mips (initial 200) (domain (200)))

14 (norm-copy-time 5)")(/processor>

15 (/processor-group)

16 (channel-group id="cg0" type="common")

17 (channel id="c0" type="common (mbps (initial 4)

18 (domain ((range 2 5))))">(/channel)

19 (Ichannel-group)

20 (processor-group id="pg1" type="common")

21 (processor id="wsO" type="common (mips (initial 100) (domain (50 100)))

22 (norm-copy-time 6)")(/processor)

23 ...

24 (processor id=”ws7" type="common (mips (initial 100) (domain (50 100)))

25 (norm-copy-time 6)"></processor)

26 (/processor-group)

27 (task-group id="servers" type=“common")

28 (task id="stf0" type="common

29 (period (initial 590) (domain ((range 500 1000))))

30 (deadline (initial 590) (domain ((range 100 1000))))

31 (timeOImips (initial 20250) (domain (0 (range 18000 22500))))"

32 processors="pg0")(/task)

33 (task id="ste0" type="common

34 (period (initial 59) (domain ((range 50 100))))

35 (deadline (initial 59) (domain ((range 50 100))))

36 (timeclmips (initial 4050) (domain (0 (range 3600 4500))))"

37 processors="pg0")(/task)

38 . (!-- through stf7 and ste7 —-)

39 (Itask-group)

40 (task-group id="clients" type="common")

41 (task id="ct0" type="common

42 (period (inherit-from ste0))

43 (deadline (inherit-from ste0))

44 (timeclmips (initial 500) (domain (0 500)))"

45 processors="wsO")(/task)

46 . (!-- through ct7 --)

47 (Itask-group)

48 (message-group id="mg0" type="common“)

49 (message id="me" type-“common

50 (period (inherit-from sth))

51 (deadline (inherit-from sth))

52 (length (initial 225) (domain (0 225)))"

53 source="ct0“ destinations="stf0”)(/message)

54 (message id="me0" type="common

55 (period (inherit-from ste0))

56 (deadline (inherit-from ste0))

57 (length (initial 7) (domain (0 (range 4 14))))"

58 source-"ctO" destinations="ste0">(/message)

59 . (!-- through m1? and me7 --)

60 (Imessage-group)

61 (routing-table id="rt0" type="common")

62 (route id="r00" type="common" source="wsO" destination="p0"

63 channels-"c0")

64 ...

65 (Irouting-table)

66 (lsystem)

67 (lbody)

68 (lrtsml)

Figure 6.4: RTSML specification excerpts

148

In line 7 of Figure 6.4, common means that there is no Special relationship between

the subsystems of the system with identifier ft. Similar holds for the subsystems

themselves (processor, channel, task and message groups), and routing. The pro-

cessors in group ng, whose descriptions start in line 8, are the ones running RTL

with the modified rate-monotonic scheduler, and the real-time model that they obey

is identified by the name of the corresponding compiler module, rtlrms. After this

identifier, follows a list of model parameters (given using S-expressions) of the pro-

cessor being described: its capacity in estimated idealized MIPS (initial value and

the domain, which may contain single integer values and ranges or integers) and the

normalized message-copying demand time (ch) at the unit CPU capacity (1 MIPS).

Parameters which have domains of possible values can be changed at run time (in

the case of the MIPS parameter, the changing means increasing/decreasing the CPU

utilization share allocated to the tasks of the target system). In line 17, channel c0

models the 100 Mbps LAN that we have used for the clients and servers: it can be

loaded with 2—5 MBps, depending on other users’ usage. Eight client workstations

are described in lines 20—26 as common, i.e., having a non-real-time OS. Eight pairs

of face- and eye-finding real-time tasks are described in lines 27—39. The ranges of

their periods correspond to the ranges of usual frequencies of the face- and eye-finding

tasks in the original system. There are no special deadline constraints, so that they

can be equal to the periods. The timemmips parameter is the normalized CPU

time demand in milliseconds, and its value is the maximum measured time demand

in typical face-tracking experiments, multiplied by the CPU’s specified capacity in

idealized MIPS. Depending on the actual workstation user’s head/eye movements,

149

this maximum value can vary within a range. The value of 0 means that the task is

actually not running at all. The processors attribute states that the real-time tasks

can only be allocated the processors in the group ng. Eight client tasks are described

in lines 40—47. Their periods and deadlines are inherited from the corresponding eye-

finding server tasks for the purpose of modeling, but are also enforced so by a proxy

task at run time, as will be described in Section 6.4. The inherit-from specifier is

a convention provided by the module common for use with tasks and messages. In

lines 48—60, the messages carrying full and face-only raw images are described. The

length of a full 24-bit video frame needed for the face finding is 225 kB; the maximum

length of a message carrying a typical 8-bit face area needed for the eye finding is

7 kB, but it can vary as the user moves closer/farther from the camera. An implicit

convention of the common module is that the length of a message is 0 if its source

task’s time demand is 0, which means that the message is not sent at all. Finally,

in lines 61—65, routes (in general, series of channels) are statically specified for each

source-destination pair of processors.

6.3 RTSML Compiler Extension

This section describes the coupling of the RTSML/CLP and VOML-based on-line

PAV technology, and extensions of the RTSML compiler for this purpose. In the

coupling, the PGRTTIE environment with visual objects also acts as an intermediary

between the target system, a human operator and the CLP engine, as shown in

Figure 6.5.

150

 (BEE) Pentrrs

Taroet System\
steer. cmrb
fi ECUPSe

V0

it
V'— ISM J CLPm

/ W pert. data '\l

we

[a k [trout vo views] g

 L
e
a
r
s
r
r

r
/
‘
\

 (

L L Linux J

H RTL server PC
Figure 6.5: Integrated visualization, repair and steering

The performance data arrive to the environment and steering commands are sent

to the target system via BRISK. Either the human operator or a visual object alone

may trigger a repair as a response to, for example, deteriorated performance of the

target system.

The core of compiler and three currently available modules have been extended to

support the creation of VOML specifications, as well. From an RTSML specification,

the compiler generates a VOML specification with one visual object for each system

element. (That is, a target system may actually consist of multiple, disjoint or related,

systems as by the RTSML notation.) This is achieved by

0 adding slots to the classes of the initial objects that contain (1) data needed

for graphical rendering of a system’s structure and model-specific performance

information of its subsystems and components, and (2) chunks of model-specific

VOML/Scheme code for processing events and rendering performance informa-

151

tion, as well as preparing the parameter inputs and possibly automatic repair

triggering;

e modifying the second compilation phase to both update some VOML data slots

and augment the added methods to update some VOML data in the CLP code

generation phase;

0 additional cross-linking of the VOML data in the third compilation phase; and

0 extending the fourth compilation phase with the splicing of all the

VOML/Scheme data and code together into a VOML file.

The correspondence between the CLP and VOML/Scheme data and code is not

always direct, because the latter must in some cases produce less abstract information

suitable to the graphical rendering. Some VOML data, which are stored in the info

and control structures, are compile—time transformations of the information supplied

about the real-time parameters; Scheme code, embedded in VOML elements, is also

needed in cases when similar transformations need be performed on-line by a created

visual object. For example, while in the CLP domain messages are thought of as being

sent via routes, a graphical view of a distributed system’s physical resources should

depict channels instead of the routes. Or, while different tasks may have different

ranges of values for their periods, a View with normalized ranges and current values

may be easier to comprehend.

In addition to the module-specific VOML/Scheme data and code, there is a con-

vention that enables the creation of several standard views for any modeled system.

Namely, each subsystem has to provide common VOML data: the name of the real-

time model obeyed; identifier; and a list of its components. Similarly, each component

has to provide: the name of the real-time model obeyed; identifier; subsystem iden-

tifier; a list of allocated resources or activities; and the minimum, maximum and

152

initial/current goodness value. After these common data, any module may or may

not provide additional data and accompanying code. The standard views for an

RTSML system include: a resource (processors and channels) and activity (tasks and

messages) graphs, generated using a graph-drawing algorithm [34]; and one view for

each of the subsystem types: processor, channel, task and message group, graphically

presenting contained components and their goodness values. All the views are inter—

linked: the user can, for example, click on a task in the activity graph, and the task

view will pop up; the user can then click on the task view to open another view of

the corresponding task group, etc.

Note, on the other hand, that using this scheme, an RTSML compiler module

could be used for implementing a specific performance visualization aspect only. For

example, instead of using common as the value of the type attribute of a task-group

element, one could use the name of a “real-time model” that sets no additional con-

straints over its tasks, but only creates a view in which specific performance aspects,

such as the tasks’ collective timeliness, are visualized on-line. (It is assumed that

a compiler module handling the task-group element would “know how” to extract

relevant data from the task objects based on the task class.)

This section concludes with the description of an example VOML extension of the

RTSML compiler for supporting common tasks (to save space, the complete code is

omitted). The list of modifications is as follows:

153

e the module-specific class i-task-common, which inherits from the initial ob-

ject class i-task, specifies shared (per-class) slots containing the following

VOML/Scheme code:

— event declarations: a callback event common-task-click for clicking on the

common-task view; and a data event common-task-instance that carries

the information about a task instance’s identifier, start time, response time,

and time demand;

— control structures: a Boolean (distinguishing between false and any oth-

er value) variable current-common-task for remembering which task’s

information is rendered in the common-task view; and a Boolean vari-

able common-task-updated considered for enabling an IR component

common-task-updated-ir, which updates graphical presentation of the

current-common-task’s performance information;

— info structures: an association list common-tasks that contains module-

specific, on-line processed information about all common tasks;

— view initializations: the title, size and span of the common-task view;

- event processing: an EP component common-task-click-ep for respond-

ing to the user’s click on “task group” or (allocated) “processor” in

the common-task view, by updating one of predefined control struc-

tures selected-task-group and selected-processor; an EP componen-

t common-task-instance-ep for processing the common-task-instance

events and updating the common-tasks association list with new mini-

154

mum, moving average and maximum values of the period, response time

and time demand; and an EP component common-repair for responding

to a pre-condition event repair-needed by setting the new values of some

of the parameters, as needed for the CLP repair described above, based on

all the common tasks’ moving average period and time demand; and

— information rendering: an IR component common-task-ir for render-

ing in the common-task view the expected performance information

as previously computed by the CLP engine; and the IR componen-

t common-task-updated-ir, mentioned above, for rendering the current

performance information that can be compared against the expected ones;

0 one of the individual (per-instance) CLP code generation methods, which out-

puts lists of CLP variables, is augmented to update mappings between the

CLP parameter and solution variables, and data (period, deadline, demand and

processor allocation) kept in the VOML info structures, so that the expected

performance data and resource allocation computed by the CLP engine can be

loaded into the info structures after an initial solution has been found or af-

ter a repair (note that immediately after a repair, the expected performance

information is consistent with previously measured ones);

0 the module-specific method used in the second compilation phase, as described

at the beginning of this section, is augmented to update task-related data, kept

in a predefined slot of the class i-system that will be stored in VOML info

155

structures; and to collect all the VOML/Scheme code from the i-task-common

class’ shared slots into predefined slots of the class i-system; and

e the data and code from the above-mentioned slots of the i-system class are

spliced into a VOML file in the final compilation phase.

6.4 Example Run-Time Session

This section completes the presentation of the integration by giving some more detail

about the target system and the integrated approach that has been adopted for

experimentation, and by showing an excerpt from the operation of the former being

steered by the latter.

A middleware has been developed that consists of three Linux proxy tasks, de-

scribed in Section 6.2, one of them acting as the main proxy for the face-tracking

clients. The proxy tasks are located in a dedicated LAN that is connected to larger

LAN via a switch. All the proxies and clients are instrumented using BRISK. The

proxies also receive steering commands via BRISK and control the real-time tasks’ pe-

riods and RTL server PC allocations, which they forward to the clients. The following

is a sequence of steps that initiates a run-time session:

1. the PGRT-TIE environment is started on a control host computer;

2. on the host computer, outside PGRT-TIE, the human operator starts the BRISK

Instrumentation System Manager (ISM);

156

. on all the RTL server PCs and computers where the face-tracking clients will

be running, the BRISK External Sensor (EXS) is started; on the RTL server

PCS, the EXSes are given unique, known identifiers;

. the proxies are started and given the same identifiers as those of the EXSes

running on the same RTL server PCs;

. in PGRT-TIE, the human operator starts BRISK as a so—called data source,

from which the visual object will receive instrumentation data records (as per-

formance data events);

. in PGRT-TIE, the human operator loads a Scheme file generated by the VOML

compiler, containing the visual object according to the target system’s RTSML

specification;

. by opening, for example, the resource graph view of the visual object, and

by clicking on a processor, the first (callback) event is generated; before the

processor view is opened, the visual object starts the ECL‘PSC engine on another

computer via the Guile implementation of the Expect library [72], and asks it to

find a feasible resource allocation according to the initial real-time parameters

in the RTSML specification;

. after the solution received from ECL‘PSe is loaded into the info structures, a spe-

cial, manually added event-processing component passes the task-to-processor

allocation mapping and periods for the real-time tasks, via the BRISK inter-

face of PGRT-TIE and the ISM, to the EXSes running on the RTL server PCs;

157

10.

the proxies read the allocation and periods from a memory area shared be-

tween them and the EXSes, start/stop the real-time tasks and forward these

information to the clients, too;

. the face-tracking clients are started, and they connect to the main proxy task,

from which they receive unique client identifiers and the addresses of the RTL

server PCs which will run the corresponding face- and eye-finding tasks, ac-

cording to the initial resource allocation; subsequently, the clients establish

connections with the proxies running on the assigned RTL server PCs;

the visual object starts receiving performance data from the proxy tasks (about '

the real-time tasks, such as the common-task-instance event mentioned in

Section 6.3) and clients.

The above-mentioned special event-processing component has knowledge about

the correspondence of the proxy and real—time task identifiers on one hand, and the

identifiers of the processors belonging to the group ng and tasks belonging to the

group servers in the RTSML specification, on the other. Since the steering is inte-

grated with the performance visualization, and only indirectly with the design and

engineering approach, the RTSML compiler has no knowledge about a particular 8-

teering mechanism. Note, again, the disparity among the various variables involved:

(1) the period and time demand of a task are system parameters, and can be mon-

itored; (2) the deadline is also a system parameter, but is not supposed to be mon-

itored; (3) the goodness of a task is defined as its laxity (deadline minus response,

one of the fields of the common-task-instance event), which can be monitored but

158

is not a system parameter; etc. Probably the most of related knowledge that can be

embedded in an RTSML compiler module is about what variables are monitorable,

regardless of whether they belong to the parameters or solution. This would help the

code reuse and separate design/engineering from steering concerns.

Once that the run-time session has been initiated, the visual object allows the

human operator to compare visually the expected and actual system performance.

The common-task view, mentioned in Section 6.3, is shown in Figure 6.6, together

with a few other views and the GUI.

In order to receive the coordinates of the new face area and the face features within

the current face area at the requested frequencies, the clients must send the messages

to the real-time tasks in a pipelined fashion, with up to a predefined maximum number

of outstanding messages in the LAN and servers’ buffers. On the other hand, if a

message does not arrive in time to be processed by a real-time task, the real-time task

immediately returns the CPU to the RTL scheduler and waits for the next period.

In this case, the sending of a common-task-instance event via BRISK is skipped.

Too frequent skips can be noticed by the moving-average task period that becomes

significantly larger than the projected period. Similarly, if it becomes harder to find

a workstation user’s face or eyes, the time demand by the corresponding real-time

task(s) may become larger than the expected maximum. The clients also may send

data about their perceived quality of service, which, for example, may drop if the face-

tracking needs higher face- or eye-finding frequencies; these data may be processed

and visualized by another visual object, possibly on another computer. In a situation

like these, the human operator may decide to trigger a repair, by pressing the “Trigger

159

160

Figure 6.6 A snapshot from the RTSML-based visual object

 i
a
t
r
'
“
E
a
fl
d
fl
u
h

t
4
1
1
E

’
l1

.
a
u
u
m
a
a
w
:

u
n
u
u
a
u
e
u
u
m
u
s
m
n

.
r

s
o

1
'

n
e
x
n
e
u
s
u
z
w
n
w
"

P
r
o
c
e
s
s
o
r

R
e
s
o
u
r
c
e
G
r
a
p
h

A
c
t
r
v
r
t
y
G
r
a
p
h

.
S
e
l
e
c
t
o
r
!
P
r
o
c
e
s
s
o
r
G
r
o
u
p

(
s
e
l
e
c
t
e
d
C
n
a
n
n
e
l
G
r
o
u
p

S
e
l
e
c
t
e
d

l
a
s
k
G
r
o
u
p

S
e
l
e
c
t
e
d
M
e
s
s
a
g
e
G
r
o
u
p

S
e
l
e
c
t
e
d
C
o
m
m
o
n
M
e
s
s
a
g
e

S
e
l
e
c
t
e
d
C
o
m
m
o
n
T
a
s
k

S
e
l
e
c
t
e
d
C
o
m
m
o
n

C
h
a
n
n
e
l

S
e
l
e
c
t
e
d
R
T
L
/
H
M
S

P
r
o
c
e
s
s
o
r

S
e
l
e
c
t
e
d
C
o
m
m
o
n

P
r
o
c
e
s
s
o
r 1

q
l
i

l
e
v
e
l
A
l
l
c
r
r

T
r
i
g
g
e
r
R
e
p
a
i
r

C
h
a
n
n
e
l
G
o
o
d
n
e
s
s
W
a
n
u
n
g

L
e
v
e
l

[
T
o
]

P
r
o
c
e
s
s
o
r
G
o
o
d
n
e
s
s
W
a
n
i

A
c
t
i
v
i
t
y
G
r
a
p
h

Repair” button in the GUI, which will result in passing of the measured performance

information as new parameters to ECLiPSe. With a more elaborate GUI, generated

indirectly by the RTSML compiler modules, the human operator could be allowed

to manually override the new parameters. If a solution is found by ECL’iPS", it

is enforced upon the target system in a way similar to the steps 8—9 in the above

sequence. Depending on the target system model’s complexity and the values of the

parameters, the repair approach’s solving time may vary from about the same as for

solving from scratch, to about an order of magnitude faster than for solving from

scratch, as discussed in Section 3.3.2.

6.5 Summary

A novel technology was presented that integrates multiple other approaches: the

design and engineering of complex real-time systems; support for their dynamic re-

configuration; on-line PAV with steering/reconfiguration. The presentation included

an example distributed real-time system and details about how the involved technolo-

gies are used in an integrated manner to help system developers and users achieve

better system performance.

161

Chapter 7

Conclusions and Future Work

This dissertation describes the work in four areas related to heterogeneous, parallel

and distributed real-time systems. The main focus is on a compiler-based approach

to the design and engineering of complex real-time systems, which is augmented by

instrumentation, performance analysis & visualization, and dynamic system reconfig-

uration.

7.1 Research Contributions

Based on the analogy with non-linear circuits in other areas, such as the control

theory and digital systems, the design and engineering approach for complex real-

time systems presented in this dissertation views a complex real-time system as a

network of integrated and interoperating subsystems and components. It attempts

to help developing distributed, heterogeneous real-time systems that can operate in

162

more realistic scenarios by integrating specialized parts that abide extant models from

real-time theory.

The observation that real-time requirements are best termed as time and resource

constraints expressed via equations and inequalities of the real-time models, led to the

application of CLP as a promising engineering tool for specifying through integration

and solving real-time design problems.

An SGML-based specification language (RTSML) has been developed that sup-

ports integration of heterogeneous components and subsystems into complex real-time

systems. Its compiler generates CLP code and can be extended with new modules

to support other real-time models. An especially interesting and important aspect

of the CLP-based problem solving is the repair-based approach. The experiments

showed that it is promising for coping with moderate dynamic changes in the system

parameters. Portions of this work were published in [8].

In the area of distributed instrumentation systems, the concept of a portable

and flexible IS kernel was proven by the development and evaluation of BRISK. It

is expected to be beneficial for instrumenting heterogeneous distributed real-time

systems due to its ability to adapt and tune so as to minimize the intrusion on a

real-time target system. Portions of this work were published in [10].

A novel on-line performance analysis and visualization technology for heteroge-

neous parallel and distributed systems was developed. It supports rapid PAV pro-

totyping, automated design of PAV tools, object orientation, distributability, porta-

bility, code reuse and flexibility. A high-level visual object specification language

163

(VOML) has been developed. Its compiler generates visual object code that receives

instrumentation data. from BRISK. Portions of this work were published in [9].

The RTSML compiler was extended with support for the developed on-line PAV

technology. The BRISK IS kernel is also utilized in a novel, mainly automated, in-

tegrated technology that includes the design and engineering of complex real-time

systems, system-specific PAV, and PAV-driven and model-based dynamic reconfigu-

ration.

7.2 Future Work

Work in the complex real-time system design and engineering based on the approach

presented in this dissertation may include:

0 addition of new compiler modules for other real-time models, with an emphasis

on stochastic ones,

0 static (e.g., introduction of redundant constraints) and dynamic (e.g., support

for user/module-specified labeling priorities) CLP search/repair optimization,

and

0 potential extensions to RTSML (e.g., broader support for end-to-end con-

straints; finer-than-task granularity of real-time software; support for formal

methods).

The basic BRISK implementation may be extended in several ways. First of

all, hierarchical instrumentation data collection, preprocessing and reduction—via

the notion of local ISM—would make it usable for large-scale parallel/distributed

systems. For programmable, run-time control of BRISK’S components, it may be ex-

tended with a portable interpreter [73] over the existing communication infrastructure

164

for BRISK control. (It is assumed that resources needed for the IS control are in-

significant compared to those used for the main IS functions under average operating

conditions.) A system type may be added to event records to allow for low-latency,

out-of-band events. The NOTICE macros could be made multithread-safe. The sup-

port for causally-related events may be extended with one-to-many and many-to—one

dependencies, such as those described in [67]. As needed, more interfaces to consumer

tools would be added, e. g., SDDF trace files and DCOM [20]. More evaluations ought

to be done, especially of latency and causally-related events.

Besides potential extensions to the VOML language and enhancements of the

underlying VO implementations, the most promising aspect of the on-line PAV tech-

nology is its being a base for the development of advanced on-line PAV tools. The

EPIRA and the declarative style of composing an HLVO from reusable components

allow for easy automated generation of domain-specific on-line PAV tools, analogous

to the one presented in Chapter 6. On the other hand, the VOML compiler could be

extended into a more powerful tool, such as an expert system for, e.g., pattern-based,

on-line PAV composition.

The application of the PAV-driven dynamic reconfiguration of a complex real-

time system could be extended. For example, there could be multiple, distributed

and cooperating visual objects and CLP tools that would exploit the repair-based

dynamic system reconfiguration for different purposes, such as gradual performance

improvement; or simultaneously trying and deciding from multiple, different repairs

(with different assumptions and/or repair heuristics), etc.

165

APPENDICES

166

Appendix A

RTSML Document Type Definition

(excerpt)

This appendix provides the precise definition of RTSML, which is subject to changes

and extensions in the future. The header part of the DTD is omitted to save space.

Element attributes marked #IMPLIED are inferred from the context by the compiler,

unless specified by the user.

 < ! - Document Body ->

<!ELEMENT PROCESSOR - - (TASK*)>

<!ATTLIST PROCESSOR

1d ID #REQUIRED

sys IDREF #IHPLIED

type CDATA #REQUIRED

group IDREF #IMPLIED

>

<!ELEMBNT PROCESSOR-GROUP - - (PROCESSOR*)>

<!ATTLIST PROCESSOR-GROUP

id ID #REQUIRED

167

sys IDREF #IMPLIED

type CDATA #REQUIRED

>

<!ELEMENT CHANNEL - - (#PCDATA)>

<!ATTLIST CHANNEL

id ID #RBQUIRED

sys IDREF #IMPLIED

type CDATA #REQUIRED

group IDREF #IMPLIED

>

<!ELEMENT CHANNEL-GROUP - - (CHANNEL*)>

<!ATTLIST CHANNEL-GROUP

id ID #REQUIRED

sys IDREF #IMPLIED

type CDATA #REQUIRED

>

<!ELEMENT ROUTE - O EMPTY)

<!ATTLIST ROUTE

id ID #REQUIRED

sys IDREF #IMPLIED

type CDATA #REQUIRED

table IDREF #IMPLIED

source IDREF #REQUIRED

destination IDREF #REQUIRED

channels IDREFS #REQUIRED

>

<!ELEMENT ROUTING-TABLE - - (ROUTE*)>

<!ATTLIST ROUTING-TABLE

id ID #REQUIRED

sys IDREF #IMPLIED

type CDATA #REQUIRED

>

<!ELEMENT TASK - - (#PCDATA)>

<!ATTLIST TASK

id ID #REQUIRED

sys IDREF #IMPLIED

type CDATA #REQUIRED

group IDREF #IHPLIED

processors IDREFS #IMPLIED

>

<!ELEHENT TASK-GROUP - - (TASK*)>

168

<!ATTLIST TASK-GROUP

1d ID #REQUIRED

sys IDREF #IMPLIED

type CDATA #REQUIRED

>

<!ELEMENT MESSAGE - - (#PCDATA)>

<!ATTLIST MESSAGE

id ID #REQUIRED

sys IDREF #IMPLIED

type CDATA #REQUIRED

group IDREF #IMPLIED

source IDREF #REQUIRED

destinations IDREFS #REQUIRED

>

<!ELEMENT MESSAGE-GROUP - - (MESSAGE*)>

<!ATTLIST MESSAGE-GROUP

id ID #REQUIRED

sys IDREF #IMPLIED

type CDATA #REQUIRED

>

<!ELEMENT SYSTEM - - ((PROCESSDR-GROUP I

CHANNEL-GROUP l

ROUTING-TABLE l

TASK-GROUP l

MESSAGE-GROUP)*)>

<!ATTLIST SYSTEM

id ID #REQUIRED

type CDATA #REQUIRED

>

<!ELEMENT BODY O O (SYSTEM)*>

<!— Document Structure

<!ENTITY Z version.attr "VERSION CDATA #FIXED ’%RTSML.Version;’">

<!ELEMENT RTSML 0 0 (HEAD, BODY)>

<!ATTLIST RTSML

Zversion.attr;

>

169

Appendix B

VOML Document Type Definition

(excerpt)

This appendix provides the precise definition of VOML, which is subject to changes

and extensions in the future. The header part of the DTD is omitted to save space.

Element attributes marked #IMPLIED are inferred from the context by the compiler,

unless specified by the user.

<!-

<!ENTITY % datatype

<!ENTITY % guitype

<!ENTITY % cbacktype

<!ENTITY Z recordtype

<!ENTITY Z inputtype

<!ENTITY % graphtype

<!ENTITY X viewcontrol

<!ENTITY Z scrolldir

<!ENTITY % svaltype

<!ENTITY Z boolval

Document Body >

"(intlreallstringlbooleanllistlvector)">

"(checkbuttonltextboxlslidebar)">

"(clicklkeystrokelresizeIrescalelgui)">

"(entrylexitlatomiclpg-entrylpg-exitlpg-atomic)">

"INPUTIPRECDNDITIONIPOSTCONDITIDN">

"POINTILINEIRECTANGLEIPOLYGONIARCIELLIPSEITEXTIFIGURE")

"OPEN-VIE“ICLOSE-VIEWISCROLLIRESIZEIRESCALEIVIEH-INFOI

SNAPSHOTITEXT-EXTENTS">

"(leftlrightlupldown)">

"(endvalldisplacement)">

"(yeslno)">

170

<!ENTITY Z clipval "(edgelmargin)">

<!ELEMENT DATA-FIELD - O EMPTY)

<!ATTLIST DATA-FIELD

name NAME #REQUIRED

index NUMBER #IMPLIED

type Zdatatype #IMPLIED

>

<!ELEMENT DATA-EVENT - - (DATA-FIELDI#PCDATA)*>

<!ATTLIST DATA-EVENT

name ID #REQUIRED

rtype Zrecordtype #REQUIRED

etype CDATA #REQUIRED

>

<!ELEMENT CALLBACK-EVENT - O EMPTY)

<!ATTLIST CALLBACK-EVENT

name ID #REQUIRED

ctype Zcbacktype #REQUIRED

View IDREF #IMPLIED

var IDREF #IMPLIED

>

<!ELEMENT CONDITION-EVENT - - (#PCDATA)>

<!ATTLIST CONDITION-EVENT

name ID #REQUIRED

infos IDREFS #IMPLIED

controls IDREFS #IMPLIED

>

<!ELEMENT EVENT-DECLARATIONS - - (DATA-EVENTICALLBACK-EVENTICONDITION-EVENT)*>

<!ELEMENT VARIABLE - O EMPTY)

<!ATTLIST VARIABLE

name ID #REQUIRED

title CDATA #IMPLIED

type Zdatatype #REQUIRED

init CDATA #IMPLIED

gui Zguitype #IMPLIED

gparam CDATA #IMPLIED

>

<!ELEMENT INFO-STRUCTURES - - (VARIABLE)*>

<!ELEMENT CONTROL-STRUCTURES - - (VARIABLE)*>

<!ELEMENT (Zinputtype) - - (#PCDATA)>

171

<!ATTLIST (Xinputtype)

name CDATA #REQUIRED

>

<!ELEMENT (Xviewcontrol) - O EMPTY)

<!ATTLIST OPEN-VIEW

view CDATA

<!ATTLIST CLOSE-VIEW

view CDATA

<!ATTLIST SCROLL

view CDATA

direction Zscrolldir

valtype staltype

value CDATA

>

<!ATTLIST RESIZE

view CDATA

window NUMBERS

>

<!ATTLIST RESCALE

view CDATA

factors CDATA

>

<!ATTLIST VIEW-INFO

view CDATA

>

<!ATTLIST SNAPSHOT

view CDATA

filename CDATA

<!ATTLIST TEXT-EXTENTS

content CDATA

font CDATA

halign CDATA

valign CDATA

#IMPLIED)

#IMPLIED)

#IMPLIED

#REQUIRED

#REQUIRED

#REQUIRED

#IMPLIED

#REQUIRED

#IMPLIED

#REQUIRED

#IMPLIED

#IMPLIED

#IMPLIED)

#IMPLIED

#IMPLIED

#IMPLIED

#IMPLIED)

<!ELEMENT (Zgraphtype) - 0 EMPTY>

<!ATTLIST POINT

view CDATA #IMPLIED

172

coords

color

adapt

clip

>

<!ATTLIST LINE

view

from

to

thick

color

adapt

clip

>

view

from

to

color

fillc

adapt

clip

>

view

points

color

fillc

adapt

clip

>

<!ATTLIST ARC

view

center

radii

angles

color

fillc

adapt

clip

>

CDATA

CDATA

Zboolval

chipval

CDATA

CDATA

CDATA

CDATA

CDATA

Zboolval

chipval

<!ATTLIST RECTANGLE

CDATA

CDATA

CDATA

CDATA

CDATA

Zboolval

Xclipval

<!ATTLIST POLYGON

CDATA

CDATA

CDATA

CDATA

Zboolval

chipval

CDATA

CDATA

CDATA

CDATA

CDATA

CDATA

Xboolval

chipval

<!ATTLIST ELLIPSE

#REQUIRED

#IMPLIED

#IMPLIED

#IMPLIED

#IMPLIED

#REQUIRED

#REQUIRED

#IMPLIED

#IMPLIED

#IMPLIED

#IMPLIED

#IMPLIED

#REQUIRED

#REQUIRED

#IMPLIED

#IMPLIED

#IMPLIED

#IMPLIED

#IMPLIED

#REQUIRED

#IMPLIED

#IMPLIED

#IMPLIED

#IMPLIED

#IMPLIED

#REOUIRED

#REQUIRED

#REQUIRED

#IMPLIED

#IMPLIED

#IMPLIED

#IMPLIED

173

view CDATA #IMPLIED

center CDATA #REQUIRED

radii CDATA #REQUIRED

angle CDATA #IMPLIED

color CDATA #IMPLIED

fillc CDATA #IMPLIED

adapt Zboolval #IMPLIED

clip chipval #IMPLIED

>

<!ATTLIST TEXT

View CDATA #IMPLIED

content CDATA #REQUIRED

coords CDATA #REQUIRED

halign CDATA #IMPLIED

valign CDATA #IMPLIED

fcolor CDATA #IMPLIED

bcolor CDATA #IMPLIED

font CDATA #IMPLIED

adapt Zboolval #IMPLIED

clip chipval #IMPLIED

>

<!ATTLIST FIGURE

view CDATA #IMPLIED

filename CDATA #REQUIRED

orig-origin NUMBERS #IMPLIED

orig-extents NUMBERS #IMPLIED

world-origin CDATA #IMPLIED

world-extents CDATA #IMPLIED

adapt Zboolval #IMPLIED

clip Xclipval #IMPLIED

>

<!ELEMENT OVERRIDE-FIELD - O EMPTY)

<!ATTLIST OVERRIDE-FIELD

name CDATA #REQUIRED

new-value CDATA #REQUIRED

>

<!ELEMENT PREPROCESS-INPUTS - - (OVERRIDE-FIELD)*>

<!ELEMENT DESCRIPTION - - (#PCDATA)>

<!ELEMENT EP-COMPONENT - - ((PREPROCESS-INPUTS)*, DESCRIPTION, (Zinputtype)*)>

<!ATTLIST EP-COMPONENT

name NAME #REQUIRED

inputs NAMES #IMPLIED

174

infos IDREFS #IMPLIED

controls IDREFS #IMPLIED

>

<!ELEMENT END-WITH - - ((ZviewcontrollZgraphtypel#PCDATA)*)>

<!ELEMENT IR-COMPONENT - - (#PCDATA, DESCRIPTION,

(Zviewcontrolngraphtypel#PCDATAIEND-WITH)*)>

<!ATTLIST IR-COMPONENT

name NAME #REOUIRED

views IDREFS #IMPLIED

infos IDREFS #IMPLIED

controls IDREFS #IMPLIED

refresh NAMES #IMPLIED

enable CDATA #IMPLIED

buffer Zboolval #IMPLIED

bcolor CDATA #IMPLIED

>

<!ELEMENT EVENT-PROCESSING - — (EP-COMPONENT)*>

<!ELEMENT INFO-RENDITION - — (IR-COMPONENT)*>

<!ELEMENT VIEW - - (#PCDATA, DESCRIPTION, (ZviewcontrollxgraphtypeI#PCDATA)*)>

<!ATTLIST VIEW

name ID #REQUIRED

title CDATA #IMPLIED

infos IDREFS #IMPLIED

controls IDREFS #IMPLIED

window NUMBERS #REQUIRED

world CDATA #REQUIRED

margins CDATA #IMPLIED

fcolor CDATA #IMPLIED

bcolor CDATA #IMPLIED

adirs NAMES #IMPLIED

>

<!ELEMENT UTILITY-CODE - - (#PCDATA)>

<!ATTLIST UTILITY-CODE

infos IDREFS #IMPLIED

controls IDREFS #IMPLIED

>

<!ELEMENT VIEW-INITIALIZATIONS - - (VIEW)+>

<!ELEMENT VISUAL-OBJECT - -

(EVENT-DECLARATIONS,

175

INFO-STRUCTURES,

CONTROL-STRUCTURES,

(UTILITY-CODE)*,

VIEW-INITIALIZATIONS,

EVENT-PROCESSING,

INFO-RENDITION)

>

<!ATTLIST VISUAL-OBJECT

name ID #REQUIRED

type (asynclsync) #REQUIRED

aqual NAME #IMPLIED

>

<!ELEMENT BODY O O (VISUAL-OBJECT)"‘>

<!-- Document Structure

<!ENTITY X version.attr "VERSION CDATA #FIXED ’%VOML.Version;’">

<!ELEMENT VOML O 0 (HEAD, BODY))

<!ATTLIST VOML Zversion.attr;>

176

BIBLIOGRAPHY

177

l1]

[2]

l3]

[4]

l7]

[8]

[9]

Bibliography

Gul A. Agha. Actors: A Model of Concurrent Computation in Distributed

Systems. MIT Press, 1986.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical

Computer Science, 126(2):183—235, April 25 1994.

Corinne Ancourt et al. Automatic data mapping of signal processing applica-

tions. In Proceedings of the International Conference on Application-Specific

Systems, Architectures and Processors (ASAP’97), July 14—16 1997.

Ruth A. Aydt. The Pablo self-defining data format. Technical report, Depart-

ment of Computer Science, University of Illinois, Urbana, Illinois 61801, April

11 1995.

R. Bahgat and R. Yang. A distributed repair-based technique for constraint

satisfaction. In Proceedings of the 7th International Conference on Intelligent

Systems, July 1—3 1998.

Aleksandar Bakic’, Matt W. Mutka, and Diane T. Rover. Real-time system per-

formance visualization and analysis using distributed visual objects. In Proceed-

ings of the IEEE Workshop on Middleware for Distributed Real- Time Systems

and Services, December 2 1997.

Aleksandar Bakié, Matt W. Mutka, and Diane T. Rover. Performance opti-

mization of distributed applications in an extensible, adaptive environment.

Accepted for publication in Elsevier Science Future Generation Computer Sys-

tems, special issue on performance data mining, 1999.

Aleksandar M. Bakic’ and Matt W. Mutka. A compiler-based approach to design

and engineering of complex real-time systems. In Proceedings of the 19th IEEE

International Conference on Distributed Computing Systems, May 31-June 5

1999.

Aleksandar M. Bakié, Matt W. Mutka, and Diane T. Rover. BRISK: A portable

and flexible distributed instrumentation system. In Proceedings of the IEEE'

2nd Merged Symposium IPPS/SPDP 1999 — 13-th International Parallel Pro-

cessing Symposium 63 10-th Symposium on Parallel and Distributed Processing,

April 12—16 1999.

178

[10] Aleksandar M. Bakic’, Matt W. Mutka, and Diane T. Rover. An on-line per-

formance visualization technology. In Proceedings of the IEEE Heterogeneous

Computing Workshop, in conjunction with the 2-nd Merged Symposium IPP—

S/SPDP 1999 — 13-th International Parallel Processing Symposium 63 10-th

Symposium on Parallel and Distributed Processing, April 12—16 1999.

[11] Vera Bakic’ and George Stockman. Menu selection by facial aspect. In Proceed-

ings of the 12th Conference on Vision Interface ’99. Canadian Image Processing

and Pattern Recognition Society, May 1999.

[12] Michael Barabanov. A Linux-based real-time operating system. Master’s thesis,

New Mexico Tech, 1997. [Online] Available http: //wvw.rt1inux.org/.

[13] Renate Beckmann, Ulrich Bieker, and Ingolf Markhof. Application of constraint

logic programming for VLSI CAD tools. In Proceedings of the Conference Con—

straints in Computational Logics, September 1994.

[14] S. Bennett. Real—Time Computer Control: An Introduction. Prentice Hall,

1994.

[15] G. Bernat and A. Burns. Combining (n m)-hard deadlines with dual priority

scheduling. In Proceedings of the 18th IEEE Real- Time Systems Symposium,

December 1997.

[16] Peter J. Bickel and Kjell A. Doksum. Mathematical Statistics—Basic Ideas and

Selected Topics. Prentice Hall, 1977.

[17] D. Bobrow, L. DiMichiel, R.P. Gabriel, S. Keene, G. Kiczales, and D. Moon.

A Common LISP object system specification: X3J13 document 88—002R. SIG-

PLAN Notices, 23, September 1988.

[18] Robert Bosch, Chris Stolte, Diane Tang, John Gerth, Mendel Rosenblum, and

Pat Hanrahan. Rivet: A flexible environment for computer systems visualiza-

tion. Computer Graphics, 34(1), February 2000.

[19] Per Bothner. Kawa - compiling dynamic languages to Java VM. In Proceedings

of the 1998 USENIX Annual Technical Conference, New Orleans, 1999. [Online]

Available http://www.gnu.org/software/kawa/ .

[20] Don Box. Essential COM. Addison-Wesley, January 1998.

[21] A. Burns and A.J. Wellings. HRT-HOOD: A structured design method for hard

real-time Ada systems. Real- Time Safety Critical Systems, 3, 1995.

[22] Saurav Chatterjee and Jay Strosnider. Distributed pipeline scheduling: A

framework for distributed, heterogeneous real-time system design. The Com-

puter Journal, 38(4):271—285, 1995.

179

[23] Sheng-Tzong Cheng. Scheduling and Allocation in Multiprocessor Systems. PhD

thesis, Department of Computer Science, University of Maryland, 1995.

[24] S. E. Chodrow, F. Jahanian, and M. Donner. Run-time monitoring of real-time

systems. In Proceedings of the Real- Time Systems Symposium, pages 74—83,

December 4—6 1991.

[25] James Clark. sgmls: A validating SGML parser, 1993. [Online] Available

ftp://ftp.jclark.com/pub/sgmls/.

[26] William Clinger and Jonathan Rees, editors. Revised“) Report on the Algo-

rithmic Language Scheme. IEEE, November 2 1991.

[27] Object Management Group Technical Committee. Realtime CORBA 1.0 RF-

P, 1999. [Online] Available http://www.0mg.org/techprocess/meetingSI-

schedule/Realtime_CORBA_1 . O_RFP.htm1.

[28] Corman, Lieserson, and Rivest. Introduction to Algorithms. McGraw-Hill, 1990.

[29] F. Cristian. Probabilistic clock synchronization. Distributed Computing, 3:146-

158, 1989.

[30] Paul S. Dodd and Chinya V. Ravishankar. Monitoring and debugging distribut-

ed real-time programs. Software—Practice and Experience, 22(10):863—877, Oc-

tober 1992.

[31] Jack Dongarra et al. MP1: A message-passing interface standard. Technical

report, Oak Ridge National Laboratory, June 1995.

[32] G. Giest et al. PVM 3.0 User’s Guide and Reference Manual. ORNL/TM-

12187, February 1993.

[33] Laurent Fribourg. A closed-form evaluation for extended timed automata. Tech-

nical Report LSV—98—2, Laboratoire Specification et Verification, Ecole Nor-

male Supérieure de Cachan, 61, avenue du President Wilson, 94235 Cachan,

Cedex, France, March 1998.

[34] Mehldau Prick, Ludwig. A fast adaptive layout algorithm for unidirected graphs.

In Proceedings of Graph Drawing ’94. Springer-Verlag, 1994. [Online] Avail-

able http://i44www.info.uni-karlsruhe.de/“frick/gd/gd94p.ps.gz and

ftp://ftp.uni-passau.de:/pub/loca1/graphed.

[35] Markus P.J. Fromherz and John Conley. Issues in reactive constraint solving. In

Proceedings of the Workshop on Concurrent Constraint Programming for Time

Critical Applications - COTIC 97, November 1997.

[36] Thom Friihwirth, Alexander Herold, Volker K'éhenhoff, Thierry Le Provost,

Pierre Lim, Eric Monfroy, and Mark Wallace. Constraint logic programming—

an informal introduction. Technical report, European Computer-Industry Re-

search Center, Arabellastr. 17, D-8000 Miinchen 81, Germany, 1992.

180

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Thom Friiwirth. Temporal annotated constraint logic programming. Journal

of Symbolic Computation, Special issue on Executable Temporal Logics, 22:555—

583, 1996.

FWEB. A literate programming tool. The FTP server of the Plasma

Physics Laboratory, Princeton University (PPPL), 1995. [Online] Available

ftp://ftp.pppl.gov/pub/fweb/.

R. Gerber, S. Hong, D. Kang, and M. Saksena. Formal Methods in Real— Time

Computing, chapter End-to—End Design of Real-Time Systems, pages 237—265.

John Wiley & Sons, 1996.

Martin Gergeleit, Jorg Kaiser, and Hermann Streich. Checking timing con-

straints in distributed object-oriented programs. OOPS Messenger, 7(1):51—-58,

January 1996.

David E. Goldberg. Genetic Algorithms, chapter Computer Implementation of

a Genetic Algorithm, pages 85—86. Addison-Wesley Publishing Company, Inc.,

1989. '

Charles F. Goldfarb. The SGML Handbook. Oxford University Press, 1990.

Weiming Gu, Grep Eisenhauer, Eileen Kramer, Karsten Schwan, John Stasko,

and Jeffrey Vetter. Falcon: On-line monitoring and steering of large-scale paral-

lel programs. Technical Report GIT-CC-94—21, Georgia Institute of Technology,

1994.

Weiming Gu, Jeffrey Vetter, and Karsten Schwan. An annotated bibliography of

interactive program steering. Technical report, College of Computing, Georgia

Institute of Technology, November 1 1994.

Christophe Guettier. Global Optimisation of DSP Application Mapping onto

Parallel Architectures using Constraint Logic Programming. PhD thesis, Ecole

des Mines de Paris, Boulevard Saint Michel, Paris, France, December 12 1997.

G. Gupta and E. Pontelli. A constraint-based approach for specification and

verification of real-time systems. In Proceedings of the 18th IEEE Real- Time

Systems Symposium, December 2-5 1997.

Dieter Haban and Dieter Wybranietz. A hybrid monitor for behavior and per-

formance analysis of distributed systems. IEEE Transactions on Software En-

gineering, 16(2):197—211, February 1990.

Bruno Haible. CLISP, a Common LISP implementation, 1997. [Online] Avail-

able http : //clisp . cons . org/“haible/clisp . html.

Michael T. Heath and Jennifer Etheridge Finger. ParaGraph: A tool for visu-

alizing performance of parallel programs. Technical report, Oak Ridge National

Laboratory, Oak Ridge, TN, 1994.

181

[50]

[51]

[55]

[57]

[58]

[59]

[60]

[61]

[6?]

Harold H. Hersey, Steven T. Hackstadt, Lars T. Hansen, and Allen D. Malony.

Viz: A visualization programming system. Technical Report CIS—TR-96—05,

Department of Computer and Information Science, University of Oregon, Eu-

gene, OR 97403—1202, April 1996;

T. Hogg. Phase transitions in constraint satisfaction search, 1997. [On-

line] Available http : //www . parc . xerox . com/spl/groups/dynamics/www/-

constraints.htm1.

Christian Holzbaur. OFAI clp(Q,R) manual. Technical report, Austrian Re-

search Institute for Artificial Intelligence (OFAI), Schottengasse 3, A-1010 Vi-

enna, Austria, December 1995.

E. Hyvonen. Constraint reasoning based on interval arithmetic. In Proceedings

of the 11th International Joint Conference on Artificial Intelligence, 1989.

Sun Microsystems Inc., editor. Solaris 2.4 Software Developer Answerbook. Sun

Microsystems, Inc., 1995.

ISR. What is systems engineering? Technical report, The Institute for Sys-

tems Research, University of Maryland, 1999. [Online] Available http:/hum . -

isr.umd.edu/.

Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey.

Journal of Logic Programming, 19/202503—581, 1994.

F. Jahanian and A. Goyal. A formalism for monitoring real-time constraints

at run-time. In Proceedings of the IEEE Fault- Tolerant Computing Symposium,

pages 148—155, June 1990.

F. Jahanian, R. Rajkumar, and S. Raju. Runtime monitoring of timing con-

straints in distributed real—time systems. Real- Time Systems, 7(3):247—274,

November 1994.

Farnam Jahanian and Aloysius Mok. Safety analysis of timing properties in real-

time systems. IEEE Transactions on Software Engineering, SE—12(9):890—904,

September 1986.

Farnam Jahanian and Aloysius K. Mok. A graph-theoretic approach for timing

analysis and its implementation. IEEE Transactions on Computers, C—36(8),

August 1987.

Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley &

Sons, Inc., 1991.

E. Douglas Jensen. Some of my perspectives on real-time computer systems,

1995. [Online] Available http://www.rea1time-os.com/realtime.htm1/.

182

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

E. Douglas Jensen. A real-time manifesto, 1996. [Online] Available

http://www.realtime-os.com/rtmanifesto/rtmani_0.html.

D. Kandlur, K.G. Shin, and D. Ferrari. Real-time communication in multi—

hop networks. IEEE Transactions on Parallel and Distributed Systems, pages

1044—1056, October 1994.

PC. Kanellakis and D.Q. Goldin. Constraint programming and database query

languages. In Proceedings of the Symposium on Theoretical Aspects of Computer

Software, number 789 in Lecture Notes in Computer Science, pages 96-120,

April 1994.

Dong-In Kang, Richard Gerber, and Manas Saksena. Performance-based design

of distributed real-time systems. In Proceedings of the Third IEEE Real- Time

Technology and Applications Symposium, 1997.

Doug Kimelman and Dror Zernik. On-the—fly topological sort—a basis for in-

teractive debugging and live visualization of parallel programs. In Summary of

the ONR/ACM Workshop on Parallel and Distributed Debugging, May 17—18

1993.

David G. Korn. UWIN—UNIX for Windows. Technical report, AT&T Re-

search, 1998. [Online] Available http://www.research.att.com/sw/tools/-

uwin/.

S. Lakmazaheri and W. Rasdorf. Constraint logic programming for the analysis

and partial synthesis of truss structures. Artificial Intelligence for Engineering

Design, Analysis, and Manufacturing, 3(3):157—173, 1989.

Frank Lange, Reinhold Kroeger, and Martin Gergeleit. JEWEL: Design and

implementation of a distributed measurement system. Technical report, German

National Research Center for Computer Science (GMD), P. O. Box 1316, Schloss

Birlinghoven, D—5205 St. Augusting 1, Federal Republic of Germany, April

1992.

J. L. Lassez and J. Jaffar. Constraint logic programming. In Proceedings of

the 14th ACM Symposium on Principles of Programming Languages (POPL),

pages 111—119, January 1987.

Don Libes. Exploring Expect. O’Reilly & Associates ISBN 1—56592—090-—2, 1994.

Thomas Lord. An anatomy of Guile/the interface to Tcl/Tk. In Proceedings

of Usenix Tcl/Tk Workshop ’95, 1995. [Online] Available http://www.red--

bean.com/guile/.

ObjecTime Ltd. Embedded software solutions for the connected world, 1999.

[Online] Available http : //www . objectime . com/ .

183

[75] Shikharesh Majumdar. Application of relational arithmetic in performance

analysis of computing systems. In Workshop on Interval Constraints (Inter-

national Logic Programming Symposium ILPS ’95), December 1995.

[76] Allen D. Malony, Daniel A. Reed, and Harry A.G. Wijshoff. Performance mea-

surement intrusion and perturbation analysis. IEEE Transactions on Parallel

and Distributed Systems, 3(4):433—450, July 1992.

[77] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

System’s Specification. Springer-Verlag, 1992.

[78] Paolo Mantegazza. DIAPM-RTAI for Linux: WHYs, WHATS and

HOWs. In Proceedings of the Real-Time Linux Workshop, Novem-

ber 1999. [Online] Available http://www.thinkingnerds.com/projects/-

rtl-ws/presentations.html.

[79] Barton P. Miller, Jonathan M. Cargille, R. Bruce Irvin, Krishna Kunchitha—

padam, Mark D. Callagha, Jeffrey K. Hollingsworth, Karen L. Karavanic, and

Tia Newhall. The Paradyn parallel performance measurement tools. IEEE

Computer, November 1995.

[80] Barton P. Miller, Cathryn Macrander, and Stuart Sechrest. A distributed

programs monitor for Berkeley UNIX. Software—Practice and Experience,

16(2):183—200, February 1986.

[81] K. Mok and F. Jahanian. Modecharts: A specification language for real-time

systems. IEEE Transactions on Software Engineering, 20(12):933—947, Decem-

ber 1994.

[82] Thomas J. Mowbray and Ron Zahavi. The Essential CORBA—System In-

tegration Using Distributed Objects. The Object Management Group ISBN

0—471—10611-9, 1997.

[83] Peter Murray-Rust. Chemical markup language, 1997. [Online] Available

http:/lvww.venus.co.uk/omf/cml/.

[84] Matt W. Mutka and Jong—Pyng Li. A tool for allocating periodic real-time

tasks to a set of processors. Journal of Systems and Software, Vol. 24, pages

135-148, 1995.

[85] Brian Nielsen, Shangping Ren, and Cu] Agha. Specification of real-time in-

teraction constraints. In Proceedings of the First International Symposium on

Object-Oriented Real- Time Computing, 1998.

[86] Christor H. Papadimitriou. Computational Complexity, chapter Reductions and

Completeness, page 159. Addison-Wesley Publishing Company, 1994.

184

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

D. T. Peng, K. G. Shin, and T. F. Abdelzaher. Assignment and scheduling of

communicating periodic tasks in distributed real-time systems. IEEE Transac-

tions on Parallel and Distributed Systems, 8(12), December 1997.

Amir Pnueli. The temporal logic of programs. In The Proceedings of the 18th

Annual Symposium on Foundations of Computer Science. IEEE, 1977.

D. Priddin and A. Burns. Integrating real-time structured design and formal

techniques. In Proceedings of the Symposium on Formal Techniques in Real-

Time and Fault- Tolerant Systems, number 1486 in Lecture Notes in Computer

Science, pages 92-102, September 14—18 1998.

D. Reed, K. Shields, W. Scullin, L. Tavera, and C. Elford. Virtual reality and

parallel systems performance analysis. IEEE Computer, 28(11):55—67, Novem-

ber 1995.

Daniel A. Reed, Ruth A. Aydt, Tara M. Madhyastha, Roger J. Noe, Keith A.

Shields, and Bradley W. Schwartz. An overview of the Pablo performance analy-

sis environment. Technical report, Department of Computer Science, University

of Illinois, Urbana, Illinois 61801, November 7 1992.

Daniel A. Reed, Ruth A. Aydt, Tara M. Madhyastha, Roger J. Noe, Keith A.

Shields, and Bradley W. Schwartz. An overview of the Pablo performance analy-

sis environment. Technical report, Department of Computer Science, University

of Illinois, Urbana, Illinois 61801, November 7 1992.

Shangping Ren, Gul A. Agha, and Masahiko Saito. A modular approach for

programming distributed real-time systems. Journal of Parallel and Distributed

Computing, Special Issue on Object-Oriented Real-Time Systems, 36(1):4—12,

July 10 1996.

Kay Réimer and Arno Puder. MICO: CORBA 2.0 implementation. Technical

report, Computer Science Department, University of Frankfurt, Germany, 1997.

[Online] Available http:/ldiamant-atm.vsb . cs .uni-frankfurt . de/"mico/.

Alessandro Rubini. Linux Device Drivers. O’Reilly & Associates, 1998.

Hani El Sakkout and Stefano Novello. Repair through conflict detection in

ECL‘PSe. Technical report, IC-Parc, University of London, UK, June 1997.

Manas Saksena and Seongsoo Hong. An engineering approach to decomposing

end—to—end delays on a distributed real—time system. In Proceedings of the IEEE

Workshop on Parallel and Distributed Real- Time Systems, pages 244—251, 1996.

Klaus Schild and J6rg Wiirtz. Ofl-line scheduling of a real-time system. In

Proceedings of the Symposium on Applied Computing, 1998.

185

[99] Joachim Schrod. SGML transformations in LISP. Technical report, Com-

puter Science Department, Technical University of Darmstadt, Kranichweg 1,

D-63322 Roedermark, FR Germany, 1995.

[100] Bran Selic. Turning clockwise: Using UML in the real-time domain. Commu-

nications of the ACM, 42(10):46—54, October 1999.

[101] Tri-Pacific Software. PERTS: The art of modeling real-time systems, 1998.

[Online] Available http : //www.tripac . com/perts/.

[102] Marco Spuri and John A. Stankovic. How to integrate precedence constraints

and shared resources in real-time scheduling. IEEE Transactions on Computers,

43(12):1407—1412, 1994.

[103] Jack Stankovic et a]. Real-time computing: A critical enabling technology. [On-

line] Available ftp: //ftp.cs .umass .edu/pub/ccs/spring/critenable .ps.

[104] John A. Stankovic. Distributed real-time computing: The next generation.

Journal of the Society of Instrument and Control Engineers of Japan, 1992.

[105] Susan Stepney. High Integrity Compilation—«A Case Study, chapter Introduc-

tion, page 4. Prentice Hall International (UK) Ltd., 1993.

[106] Douglas A. Stuart, Aloysius K. Mok, and Farnam Jahanian. A methodology and

support tools for analysis of real-time specifications. Submitted for publication.

[107] D. Subramanian and C-S Wang. Kinematic synthesis with configuration spaces.

In Proceedings of Qualitative Reasoning 93, pages 228—239, 1993.

[108] Tanel Tammet. Hobbit: A Scheme-to-C compiler. Technical report, Depart-

ment of Computing Science, Chalmers University of Technology, University of

Goteborg, Sweden, 1995. [Online] Available http://www-swiss.ai .mit.edu/-

~jaffer/Hobbit.html.

[109] The VRML Consortium Inc. The virtual reality modeling language, 1997. [On-

line] Available http://www.vrml . orgl.

[110] Oliver Thee] and Felix C. Gartner. An exercise in proving convergence through

transfer functions. In Proceedings of the IEEE ICDCS Workshop on Self-

Stabilizing Systems, pages 41—47, June 5 1999.

[111] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J.W.-S. Liu.

Probabilistic performance guarantee for real-time tasks with varying computa-

tion times. In Proceedings of the IEEE Real- Time Technology and Applications

Symposium, 1995.

[112] Jeffrey J. P. Tsai and Steve J. H. Yang, editors. Monitoring and Debugging of

Distributed Real- Time Systems. IEEE Computer Society Press, 1995.

186

[113] André M. van Tilborg and Gary M. Koob, editors. Foundations of Real-

Time Computing: Scheduling and Resource Management, chapter Fixed Prior-

ity Scheduling Theory for Hard Real-Time Systems, page 7. Kluwer Academic

Publishers, 1991.

[114] Flavio M. Varejao, Markus P.J. Fromherz, Ana C. Bicharra Garcia, and

Clarisse S. de Souza. An integrated framework for the specification and design of

reprographic machines. In Proceedings of the 13rd International Conference on

Applications of Artificial Intelligence in Engineering (AIENG ’98), July 1998.

[115] Visual Insights, Lucent Technologies. Software components, 1998. [Online]

Available http : //wvw . visualinsights . com/components/.

[116] Ioannis Vlahavas, Panagiotis Tsarchopoulos, and Ilias Sakellariou. Parallel and

Constraint Logic Programming: An Introduction to Logic, Parallelism and Con-

straints. Kluwer Academic Publishers, 1998.

[117] Abdul Waheed and Diane T. Rover. A structured approach to instrumenta-

tion system development and evaluation. Proceedings of Supercomputing ’95,

December 4—8 1995. To appear.

[118] Brent Welch. Practical Programming in Tel and Tk. Prentice Hall ISBN 0—13—

182007-9, 1995.

[119] Lonnie R. Welch, Michael W. Masters, and Robert D. Harrison. Toward a 2lst

century shipboard computing infrastructure. Technical report, Naval Surface

Warfare Center, Dahlgren, Virginia, January 1996.

[120] Lonnie R. Welch, Binoy Ravindran, Behrooz A. Shirazi, and Carl Bruggeman.

Specification and modeling of dynamic, distributed real-time systems. In Pro-

ceedings of the 19th IEEE Real- Time Systems Symposium, December 2-4 1998.

[121] David Wilner. WindView: A tool for understanding real-time embedded soft-

ware through system vizualization. In Proceedings of the ACM SIGPLAN Work-

shop on Languages, Compilers, 65 Tools for Real- Time Systems, pages 117—123,

July 21—22 1995.

[122] Patrick H. Worley. A new PICL trace file format. Technical Report ORNL/TM-

12125, Oak Ridge National Laboratory, Mathematical Sciences Section, PO.

Box 2008, Bldg. 6012, Oak Ridge, TN 37831-6367, September 1992.

[123] Jerry Yan. Performance tuning with AIMS—an automated instrumentation and

monitoring system for multicomputers. In Proceedings of the Twenty-Seventh

Hawaii International Conference on System Sciences, Hawaii, January 1994.

[124] Darko Zupanié. Optimal solution for a textile production unit. In Proceedings of

the Second International Conference on the Practical Application of Constraint

Technology, April 1996.

187

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[WWWWW

