
h
p

....
..

.
7
“
.

1
.
9
m
m

..

a
.

a
.
r

.
.

..
.

.
,

.
.

M
u
m
t
h
i
s
“
?

as...
3
%
.

,
.

.
.

.
_

.
.

.
.
.

:
V
a
M
w
m
w
i

,
.

.
.

3
:
.

.

a
n
y

x
.

,
.

.
#
5
.
"
s
z

-
k

fi
n
i
w
m
u
fl
n
..

A
a
w
w
n
r
.
.
.

3
.
-

.

‘

“
a
n

r
.

a

F
i
r
m
.

3
.
3
.
3
.
.
.
.

.

.
.
.

“
5
1
‘
.

c
h
»
.

_
U
L

.
.

.
5
1
,

c
fl
fi
r

.

9
.
.
.
.

.
,

_
.

.
.

.
.

fi
t

.
,

.
.

,
.

..

t
w
i
l
l
.

.
4
.

.
1
1
.
“
.

.
r

‘
3
.
.
.

.
2

5
r
1
!
»

fi
w
x
fi
u
m
fi
?

..

:
v
W
.

.
2
:

.

«
v
.
4
3
?

f
2
.
t
r
‘
v
l

.
.

.
3
.
.
.

3
:
;

‘
.
1
3
2
2
.

.
.
.
.
.
.
L
:
.
.

\

.
.
1
|

.
.

.
.

.
v

.
.
E
r
.

r
,

.
.

.
1
.

r
.

.
.
I

T
.

a
.

.
:
1
.
”
5
1
.
3
9
2
4
1
:
7

«_
.
.
v

1
.
»
.

..
W
a
r
.

.
5

I
i
.

:
5
.
.
.
.
.
1
.

.
:
.
.
-
.
t
.
:

3
!
:

.
.
.

.
.
1
.

.
.
2
;

w
,

.
,
.
.
!

W
t
}
.
.
.

..
.
.

.
.
r

v
.

.
.
.

.

.

é
fi
é
é
é

.
7
:

r
.

.
.

THESIS

2(?*\

LIBRARY

Michigan State

University

This is to certify that the

thesis entitled

THE USEIOF NAVELET ANALYSIS FOR THE PROGNOSIS

0F FAILURES IN ELECTRIC MOTORS

presented by

Wes Zanardeiii

has been accepted towards fulfillment

of the requirements for

Masters degree in EIQQU‘EQQI Eng

664§AQT
Major professor

Date I? ADec QQDC)

04639 MSU is an Affirmative Action/Equal Opportunity Institution

PLACE IN RETURN BOXto remove this checkout from yo
ur record.

To AVOID FINES return on or before date due.

MAY BE RECAUED with earlier due date if requesred.

II RAIIECDXE
DATE DUE ' DATE DUE

Iii-FE." igooz

AR 0 1 2002

APR°2zocz

05 0712

4‘ E “—6

AUG 0 9 2005

"‘1 3 m

woo W959.

“

The Use of Wavelet Analysis for the Prognosis of

Failures in Electric Motors

By

Wesley G. Zanardelli

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

2000

ABSTRACT

The Use of Wavelet Analysis for the Prognosis of

Failures in Electric Motors

By

Wesley G. Zanardelli

The ability to give a prognosis for failure of a system is an invaluable tool. In this

work, four wavelet-based methods have been developed for use with DC motors used

in automotive applications that achieve this goal. Wavelet and filter bank theory is

reviewed, as well as the nearest. neighbor rule, the Minkowski p metrics and linear

discriminant functions. The framework for the development of a fault detection and

classification algorithm is described. Additionally, an experimental setup based on

RT-Linux, and results from testing are presented, verifying the analysis.

Copyright © by

Wesley G. Zanardelli

2000

To my parents, Virgil and Loretta Zanardelli

iv

ACKNOWLEDGMENTS

I would like to express my gratitude and thanks to my thesis advisor Professor

Elias Strangas for his guidance, support, and his professional as well as personal

example. I would also like to thank Professors Hassan Khalil and Hayder Radha for

their time and effort in being part of my committee. I would like to thank Professor

Hassan Khalil, in particular, for his guidance as well as the insight he was able to

provide throughout this work.

I would like to extend special thanks to Professor John Miller for providing the

funding which made this project possible. I would like to thank Larry Castle and

David Price for providing the fuel pumps and wiper motors which were used in this

project. I would also like to thank Kevin Houle whose semester-long commitment

greatly helped with the development of one of the algorithms which was implemented.

Special words of thanks go to my lab colleagues Ali Khurram, Andres Diaz, 'Fida

Khan, Bader Aloliwi, Bilal Malik and John Kelly for all of their support. I would

also like to thank the members of the department whose help was much appreciated,

including Brian Wright, Roxanne Peacock, Marilyn Shriver and Vanessa Mitchner.

Finally, I owe special thanks to my parents, Virgil and Loretta Zanardelli, whose

support. and encouragement helped make my graduate studies possible.

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

1 Introduction 1

2 Wavelets and Filter Banks 3

2.1 Introduction to \Navelets 3

2.2 The Continuous Wavelet Transform 5

2.3 The Discrete Wavelet Transform 6

2.4 Filter Banks 9

3 Clustering and Discriminant Functions 11

3.1 Nearest Neighbor Rule 11

3.2 Linear Discriminant Functions 12

4 Analysis Methods 14

4.1 Introduction 14

4.2 Discrete Wavelet Transform 15

4.3 Modulus Maxima of the DWT 18

4.4 Minimum Distance Using the Normalized Modulus Maxima of the DWT 26

4.5 Linear Discriminant Functions 29

5 Experimental Setup and Results 31

5.1 Experimental Setup 31

5.1.1 HVAC Fan Motor Experimental Setup 31

5.1.2 Wiper Motor Experimental Setup 33

5.1.3 Fuel Pump Experimental Setup 37

5.2 Experimental Results 38

5.2.1 Discrete Wavelet Transform 38

5.2.2 Modulus Maxima of the DWT 39

vi

5.2.3 Minimum Distance Using the Normalized Modulus Maxima of

the DWT 40

5.2.4 Linear Discriminant, Functions 42

6 Conclusions 46

A MATLAB Tools 50

B RT-Linux System 57

C DWT Filter Coefficients 68

BIBLIOGRAPHY 74

vii

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

5.4

CI

C2

C3

C4

LIST OF TABLES

Modulus maxima of the wavelet coefficients for motors with Fault A

(coefficients in bold designate those above the corresponding threshold)

Modulus maxima of the wavelet coefficients for motors with Fault B

(coefficients in bold designate those above the corresponding threshold)

Modulus maxima of the wavelet coefficients for motors with Fault C

(coefficients in bold designate those above the corresponding threshold)

Modulus maxima of the wavelet coefficients for motors with Fault D

(coefficients in bold designate those above the corresponding threshold)

Modulus maxima of the wavelet coefficients for motors with Fault E

(coefficients in bold designate those above the corresponding threshold)

Initial Weighting Coefficients for Wiper Motor Testing

Adjusted Weighting Coefficients for Wiper Motor Testing

Initial Weighting Coefficients for Fuel Pump Testing

Adjusted Weighting Coefficients for Fuel Pump Testing

Daubechies wavelet decomposition filter coefficients

Biorthogonal wavelet decomposition filter coefficients

Coiflet wavelet decomposition filter coefficients

Symlet wavelet decomposition filter coefficients

viii

21

22

23

24

25

43

43

43

69

70

71

72

LIST OF FIGURES

2.1 Sinusoidal wave

2.2 Daubechies’ D20 scaling and wavelet functions

2.3 Scaling Function and Wavelet Vector Spaces

2.4 Haar scaling and wavelet functions

2.5 Two-Stage Filter Bank Analysis Tree

4.1 Wiper Motor Current Waveforms - Low Speed Wet Windshield

4.2 Wiper Motor Current Waveforms — Low Speed Wet Windshield

4.3 Euclidean distance for a non-normalized set of points

4.4 Euclidean distance for a normalized set of points

5.1 HVAC fan motor experimental setup

5.2 Fan motor exhibiting step discontinuities

5.3 Fan motor exhibiting ramp discontinuities

5.4 Fan motor Operating normally V.

5.5 Wiper motor profile for high speed operation on dry glass

5.6 Wiper motor profile for high speed operation on wet glass

5.7 Wiper motor profile for low speed operation on dry glass

5.8 Wiper motor profile for low speed operation on wet glass

9 Wiper motor experimental setupC
H

5.10 Fuel pump experimental setup

5.11 Ratio of average cluster radius to average distance between clusters

ix

0
0
0
0
0
1
.
3
3

10

16

17

28

28

32

32

33

34

35

35

35

36

36

38

41

CHAPTER 1

Introduction

In recent years, industries have focused much attention in methods of analysis to

determine the state of health of electrical systems. The ability to get a prognosis of a

system is very useful, because attention can be brought to any problems a system may

exhibit before they cause the system to fail. The electric motor is a prime example

of a system where failure occurring at an inopportune time can be inconvenient and

expensive. The ability to give a prognosis to an electric motor is crucial in correcting

problems before they cause the motor to fail.

To address these concerns, specifically in cases of electrical motors, research has

been done in the area of examining signatures from the current waveforms of un-

healthy electric motors. In general, it can be considered a trivial problem to detect

when an electric motor is no longer functional. It is more complicated, however, to

measure the state of health of a functional motor. The state of health can include

information such as imminent problems with the motor and an estimation of the re-

maining life expectancy of the motor. In this thesis, this problem is approached by

measuring the voltage, current, torque and speed of motors with known defects that

are considered to significantly shorten their life and analyzing this data using wave-

lets. The signatures that indicate the presence. of a fault are often minor transient

effects in their current waveforms. These waveforms are non-stationary signals whose

characteristics make Fourier methods unsuitable for analysis.

Wavelet analysis is ideal for these types of applications. Unlike traditional fre-

quency domain analysis methods, wavelet analysis has the key advantage of being

able to localize information in time. When non-stationary information is transformed

into the frequency domain, in the case of the Fourier transform, most of the infor-

mation about the transient components of the signal is lost. The multiresolution

property of wavelet analysis allows for both good time resolution at high frequencies

and good frequency resolution at low frequencies. Even techniques such as the short-

time Fourier transform (STFT), where a nonstationary signal is divided into short

pseudostationary segments and then analyzed, are not suitable for the analysis of

signals with complex time-frequency characteristics. If the time-domain analysis win-

dow in the STFT is made too short, frequency resolution will suffer, and lengthening

it could invalidate the assumption of stationarity within the window.

Implementing wavelets to give a prognosis for an electrical system was initially

motivated by research done in the biomedical community [1]. In that research, wave-

lets were used to analyze heart sounds, which are correlated to the turbulence of

blood flow in the cardiovascular system. Instruments were then developed using this

information that were capable of detecting coronary ischemia, or the reduction of

blood flow caused by clogged arteries, in its early stages. Coronary ischemia, left

untreated, is one of the causes of coronary artery disease.

Both the current waveforms from electric motors and signals generated from heart

sounds are nonstationary and contain information about faults present in each system.

The early detection and classification of faults present in either of these systems can

provide valuable information so that steps can be taken to prevent these systems

from failing. This thesis focuses on the approaches developed using wavelet analysis

to obtain a prognosis for electrical motors.

CHAPTER 2

Wavelets and Filter Banks

2.1 Introduction to Wavelets

We will begin by defining some of the notation that we will be using. L” (R) denotes

the Hilbert space of measurable functions f (:13) (2.1):

/_ oo|f(:i:)|pd:1: < +00 (2.1)

00

The Hilbert space of measurable, square-integrable functions, f (:13) E L2(R), (2.2) is

a subset of (2.1):

f- 00 |f(a:)|2d:r < +00 (2.2)

00

A basis for a space V is defined as a set of linearly independent functions that

span the space. That is, any function in V can be written as a linear combination

of the basis functions. This can be illustrated by a linear decomposition (2.3), where

f (t) represents any function in the space V, WU) are the basis functions, and at are

the scaling coefficients.

N) = Z art/96m (2.3)

Z

We can now begin an introduction of wavelets. A wave can be considered to be

a function that is periodic in time. An example of a wave is the sinusoid, shown in

3

s
i
n
(
t
)

Figure 2.1. Sinusoidal wave

Figure 2.1. Sinusoids are often used in the decomposition and analysis of periodic

signals. The Fourier series is an example of this. The Fourier series is a basis for

the set of L2(R) functions. The trigonometric form of the Fourier series of functions

xp(t) is shown in (2.4) [2]:

.1:,,(t) = (1.0 + Z (1;, cos(kw0t) + bk sin(kw0t) (2.4)

1:21

A wavelet system [4] is a set of scaling functions and wavelet functions and is also

a basis for the set of L2(R) functions. We will be defining the scaling function and the

wavelet function in the next. section, however it is appropriate to discuss some of their

basic characteristics in this introduction. One of the unique preperties of a wavelet

system is that its basis functions, the scaling function and the wavelet function,

have finite energy, which is concentrated around a point. The basis functions of the

Fourier series have an infinite amount of energy, which spreads out on —oo < t < 00.

This property gives a wavelet system the ability to localize a signal in both time

and frequency. The Fourier series however, can only localize a signal in frequency.

An example of a scaling function and its corresponding wavelet function from the

Daubechies’ family are shown in Figure 2.2.

Figure 2.2. Daubechies’ D20 scaling and wavelet functions

2.2 The Continuous Wavelet Transform

Although the implementation of the detection algorithms is based on the discrete

wavelet transform, a basic understanding of the continuous wavelet transform is help-

ful. First, we will define more of the notation that we will be using.

The convolution of two functions f and g is shown in (2.5):

f * g(;1:) =1 oof(u)g(.r. — u)du (2.5)

The exponential form of the Fourier transform of a function f is denoted as f in (2.6):

fa») = 00 (@61de (2.6)

‘00

Finally, for any function f(.r), fs(:1:) denotes the dilation of f(:r) by the scale factor

8 in (2.7):

1 :1:

f,(.17) = —f (—) (2.7)

We can now describe the properties of the continuous wavelet transform [7]. As

mentioned in the introduction, wavelets are a basis for the L2(R) functions (2.2). A

function i/2(:1:) is said to be a wavelet if and only if its Fourier transform 212(1) satisfies

(2.8):

+00 ,7), 2 0 2

/ “(WM de/ “(“1” (1w=C,,-',<+OO (2.8)

0 w -00 M

This implies that the area under the wavelet function is zero (2.9):

+00

/ e’)('u.)d'u = 0 (2.9)

(X)

In general, we will denote the continuous wavelet transform of a function by

Wf(s, 3:), which is a function of both scale s and position :13, or in this case time. We

can say that the continuous wavelet transform is defined for the scale-space plane.

The value of Wf (3,230) depends on the values of f (:13) in an area near 1:0, which is

proportional to the scale s. We can define a wavelet function for a specific scale s

as 133(33) = (1 /s)i/.2(:1;/ s) and we can define the continuous wavelet transform of a

function flat) at that scale (2.10):

IVf(s,:1t) é f *t’i23(:1:) (2.10)

At the scale s = 1, 1141:) is often referred to as the mother wavelet.

The concepts and ideas in the continuous implementation of wavelet transform

help in understanding the theory behind wavelets; however, all of the signals used in

this work are sampled by A/D hardware and a personal computer and are therefore

discrete in nature. We will now go on to discuss the discrete wavelet transform.

2.3 The Discrete Wavelet Transform

We will define the discrete wavelet transform using the idea of multiresolution by

starting with the scaling function and defining the wavelet function in terms of it [4]

A basic one-dimensional scaling function can be defined to translate a function in

time (2.11) where Z is the set of all integers.

We) : 99(t — k) k e z 99 e L2 (2.11)

Wavelet systems are two-dimensional, so we will define a scaling function 991,).(15) that

both scales and translates a function 99(t) (2.12):

99m“) = 21/294241 — 2%)) j. k e z «,9 6 L2, (2.12)

where j is the log; of the scale and 2‘jk represents the translation in time. We can

define a subspace of the L2(R) functions as the scaling function space V. We note

that cpJ-JCU) spans the space V], meaning that any function in Vj can be represented

by a linear combination of functions of the form 9914‘“)-

When discussing scaling functions in terms of multiresolution analysis we need

to see the relationship between the span of scaling functions with different indicies

(2.13-2.14):

---CV_2CV_1CV0CV1CVgC~~~CL2 (2.13)

1L... 2 {0}, v... = L2 (2.14)

Another subspace of the L2(R) functions is the wavelet vector space W. A wavelet

spans the space Wj, which represents the difference between two scaling function

spaces, Vj and V)“. We can see (2.15) which extends to (2.16):

V1 2 V0 EB W0 (2.15)

L2=v0ewoewle~ (2.16)

The relationship between the scaling function and wavelet vector spaces is illustrated

in Figure 2.3.

wziwnwoivo ypyzaylayo

Figure 2.3. Scaling Function and Wavelet Vector Spaces

Figure 2.4. Haar scaling and wavelet functions

The scale of the initial space V]- can be chosen arbitrarily, but is usually chosen to

be the coarsest detail of interest in a signal. It can even be chosen as j z —00 where

L2 can be reconstructed in terms of only wavelet functions (2.17):

L2=-.-eW_2e>W_1eW0eW1eW2e-~ (2.17)

A very basic wavelet system with a scaling function and a wavelet function to

make up the detail between one level of decomposition and the next is the Haar

system shown in Figure 2.4.

We can now say that any function in L2(R) can be written as an expansion of a

scaling function and wavelets (2.18), where cj0(k) are the scaling function coefficients,

4,910,).(t) is the scaling function at the initial scale jo, dJ-(k) are the wavelet function

coefficients and t=’.«',-,k(t) are the wavelet functions spanning the space between V10 and

L2.

00

f(t)= 2 (III) III-III>+ Z XIII) (2.18)
kz—oo k:—ooj—=j0

2.4 Filter Banks

In order to perform the Discrete V’V’avelet Transform on a computer, computational

methods must be developed. The DVVT can be performed without using calculus,

but rather additions and multiplications in the form of convolutions [4].

If we consider the linear decomposition in (2.3), and if the basis functions are

orthogonal (2.19),

<I<II(I).vIcI(t)> = [III)II<)It—- o k # I (2.19)

we can determine the coefficients of the decomposition, ak, by calculating the inner

product (2.20):

a. = <f(t).'I>I(t)> = [f<t>IIII>It (2.20)

In the two-dimensional case of the wavelet transform, we can use the same tech-

niques to calculate the scaling coefficients (2.21) and the wavelet coefficients (2.22):

610”.) : <f(t))(pj,(tk)>:_'(/ft) ‘19j,(tk (2.21)

djfk) = (HIM"We)>=/f(t) >t’j.(k (222)

We can finally define the scaling function coefficients for a coarse scale from the

scaling function coefficients at the next finer scale by convolving the coefficients at

Y

h,(-n) H['2 >61].

Y I

j+l

h.(-n) +12» >d...

V h0(- n) v [2 H c

] 7-. ’10(- n) h [2 "D C-I

Figure 2.5. Two-Stage Filter Bank Analysis Tree

the finer scale with the recursion coefficients 120(71) and then down-sampling (2.23):

cJ-(k) : 2110071. — 2k)cj+1(m) (2.23)

We can do the same in the case of the wavelet coefficients using the recursion coeffi-

cients 111(71) (2.24) where [11(11) 2 (—1)"h(1 — n).

dJ-(k) = 2:11.107), — 2k)cj+1(m) (2.24)

The decomposition lowpass filter coefficients, h0(n), and the decomposition highpass

filter coefficients, [11(71) corresponding to each mother wavelet used in this thesis are

listed in Appendix C. An example of a filter bank analysis tree is illustrated in Figure

2.5.

The down-sampling Operation does not result in the loss of signal information. In

the filter bank structure shown in Figure 2.5, there is enough information to recon-

struct c311 in either the combination of c,- and d], or the combination of cj_1, dJ-_1

and (1,. Despite down-sampling, either of these combinations of coefficients will have

approximately the same number of values as 9-“. Signal reconstruction from DWT

coefficients is not used in this thesis, however it is discussed in detail in [4].

10

CHAPTER 3

Clustering and Discriminant

Functions

3.1 Nearest Neighbor Rule

In order to categorize a sample point in d-dimensional space into a set of previously

classified points, we use the nearest neighbor rule (I-NN). We assume that observa-

tions which are close to each other (in some appropriate metric) will have the same

classification [5]. We could approach this problem in two different ways. First, by

assuming that we have some given statistical distribution for the data, and second,

by assuming no knowledge of a distribution except for what can be concluded from

the samples. We will focus on the second method, where we. assume no probabilistic

model of a distribution.

In calculating the minimum distance, we need to use some appropriate measure.

Any dissimilarity measure (3.1) would be applicable, however the most commonly

used dissimilarity measures are the Minkowski p metrics (3.2) where the d in the

summation is defined to be the dimensionality of the vectors Km and X" [6].

i=1

(1

(“X1719 X11) 2 g [2: fi(1\fim71¥m)] (31)

11

d

 (1(Xm, X1!) =]: A’mV] p (p 2 1) (32)

The three most often used Minkowski metrics are the taxi-cab distance (3.3) where

p = 1, the Euclidean metric (3.4) for which [2 = 2 and the maximum coordinate

distance (3.5) where p z 00. This work focuses on the use of the Euclidean metric.

(“Xma X11) :2: [lyim — [Yin] (33)

1

2d

(1(x,,,,x,,) = [Zen-m — X,,,)‘2] (3.4)

i=1

(1(x...x..) = Inga:axes... — X...)} (3.5)

3.2 Linear Discriminant Functions

A second approach to categorizing points in a d-dimensional space relies on the use of

discriminant functions. In the implementation of discriminant functions, we assume

no knowledge of a probability distribution among the sample points. The space is

separated into K disjoint regions, each having its own weighting coefficients. In this

work, we focus on the use of linear discriminant functions (3.6) [9],

Dk(X) = $101k + il?20'2k+, . . . , +1'NCYNk + Q'N-HJc A321, 2, . . . , K (3.6)

where x is the N-dimensional sample vector and a are the normalized weighting

coefficients for the k-th class. A sample vector belongs to a particular class if its

discriminant function is greater for that class than for any other class, i.e., x,- belongs

to class Cj if

afx, > a; x, for every 1; 74 j.

12

The weighting coefficients are adjusted from their initial guess through a training

procedure. The algorithm for this procedure makes adjustments to the weighting

coefficients until each known sample vector is correctly classified. Young and Calvert

[9] prove that this training algorithm will converge in a finite number of steps. When a

known sample vector is correctly classified, no adjustment to the weighting coefficients

is made. When one of the known sample vectors is incorrectly classified, or

03- x, g afx,

where

Ofxi = IIlIaX [(1239, . . . , OCICXz'] ,

at}

adjustments are made to a,- (3.7) and a, (3.8) only,

(1,-(2' + 1) = aJ-(i) + ax, (3.7)

011(27 + 1) 2 (11(1) — ax,- (3.8)

where a is a gain constant.

13

CHAPTER 4

Analysis Methods

4. 1 Introduction

In this chapter, the theory discussed in the previous chapters including wavelets,

filter banks, the nearest neighbor rule, and linear discriminant functions is used in

the development of four wavelet-based fault detection and classification algorithms.

These algorithms are applied to the current waveforms of brush DC motors used in

automotive applications, in particular HVAC fan motors, windshield wiper motors and

fuel pump motors. Experimental setups used to obtain these waveforms are discussed

in Section 5.1. The algorithms are presented in the order they were developed, and in

general they increase in complexity. The first algorithm makes decisions based on the

output of the discrete wavelet transform directly. The second algorithm goes a step

further and makes decisions based on the modulus maxima of the discrete wavelet

transform. This greatly reduces the number of calculations required in the algorithm.

The third algorithm adds a normalization step to the modulus maxima of the discrete

wavelet transform coefficients and employs a more statistical decision making process

based on Euclidean distance calculations. This algorithm is considered to be the best

balance between the deterministic approach used in the first two algorithms and the

statistical framework of the fourth algorithm. Decisions made in the fourth algorithm

14

are based on linear discriminant functions, however an additional training procedure

is employed. The training procedure is used to fit each motor used in the development

of the algorithm with a specified fault classification.

At this point, one might ask why it is not possible to detect the types of faults

that are present by simply applying a threshold to the original signal. This would not

be effective for several reasons. First, changes in the load on the motor would not be

allowed since the load is proportional to the average value of the current. In order to

set the threshold value close enough to the signal to accurately detect discontinuities,

the load would have to be almost identical in every test. If this were the case, it

would not be possible to test a system with a dynamic load such as a windshield

wiper motor under normal operating conditions.

Second, it is often the case that visual inspection of an unprocessed signal does

not help one to determine whether or not a fault exists. In cases where it can be

determined that a fault exists, visual inspection of the signal does not usually help in

classifying it.

An sample of raw data taken from several windshield wiper motors running at low

speed on a wet windshield is shown in Figure 4.1. A zoomed section of the data is

shown in Figure 4.2. It is clear that it is not possible to detect and classify each of

the faults shown without a more sophisticated approach than looking at the current

directly.

4.2 Discrete Wavelet Transform

When a slight discontinuity is present in a signal, depending on the mother wavelet

chosen, its location is usually obvious after inspection of the output of the wavelet

transform. With some experience, one can often determine the nature of the fault as

well. Different mother wavelets will help to extract different types of discontinuities

15

N
O
D
-
[
>
0
1

C
u
r
r
e
n
t
(
A
)

—
L

0

0.10

C
u
r
r
e
n
t

(
A
)

N
O
J

A
0
1

—
L

0

0.10

N
e
r
U
'
l

C
u
r
r
e
n
t

(
A
)

—
I

0

0.10

New Motor

Time (5)

Motor with Fault C

Time (3)

Motor with Fault F

Time (s)

2.72

2.72

2.72

C
u
r
r
e
n
t

(
A
)

C
u
r
r
e
n
t

(
A
)

N
(
a
)

J
>

0
1

_
L

0

0.10

m
o
o
n
.

—
I

0

0.10

Motor with Fault A Motor with Fault B

C
u
r
r
e
n
t

(
A
)

Time (s) 2.72 0.10 Time (s) 2.72

Motor with Fault D Motor with Fault E

5

4

2

:7 3

C

2

‘5 2

O

1

0 .
Time (s) 2.72 0.10 Time (s) 2.72

Figure 4.1. Wiper Motor Current Waveforms , Low Speed Wet Windshield

16

0
1

b
[
0
0
)

C
u
r
r
e
n
t

(
A
)

A

New Motor

w

D 1

b l

 M
 0

1 .00 Time (5)

Motor with Fault C

N
O
D
-
>
0
1

C
u
r
r
e
n
t

(
A
)

—
§

W
W
W

.

 0

1 .00 Time (5)

Motor with Fault F

N
O
D
h
U
'
l

C
u
r
r
e
n
t
(
A
)

.
—
L

VIM/WW

 0

1.00

Figure 4.2. Wiper Motor Current Waveforms — Low Speed Wet Windshield

Time (s) 1.02

1.02

1 .02

C
u
r
r
e
n
t

(
A
)

c
-
A

Motor with Fault A

1
0
0
0
1
5
0
1

WW
1

 0

1 .00

0
1

Time (5)

Motor with Fault D

1.02

3

C
u
r
r
e
n
t
(
A
)

t
o

c
o

-I
>

A

ant/WM

 0

1.00 Time (s)

17

1.02

C
u
r
r
e
n
t

(
A
)

Motor with Fault B

C
u
r
r
e
n
t
(
A
)

N
)

(
D

h
0
1

—
L

 0

1 .00

0
'
1

Time (s)

Motor with Fault E

1.02

M
O
D

.
4

i
A—.
 0

1.00 Time (s) 1.02

from a signal. The choice of mother wavelet is one of the most critical steps in

developing an algorithm to detect and classify faults using wavelets.

The first approach at using wavelets to detect and classify faults was implemented

on HVAC fan motors. These motors are discussed in detail in Section 5.1.1. This

initial algorithm was motivated by a publication in the biomedical community [1]

where it was shown that abnormal cardiac cycles could be detected by abnormally

high wavelet coefficients in certain scales using specific mother wavelets.

The algorithm has both a detection phase and a classification phase. The crite-

rion for the detection phase was the comparison of the coefficients of the Discrete

Wavelet Tiansform (DWT) using the Biorthogonal 1.3 mother wavelet at level 9 with

a threshold which was determined experimentally. This threshold was set to 2.75,

and if exceeded, would indicate the presence of some type of fault.

The DWT coefficients using the Biorthogonal 1.3 mother wavelet at level 11 were

used for the classification phase in the analysis. Thresholding was also used on these

coefficients, so that if the value of any of the coefficients was greater than or equal to

3 when the first criterion was met, the existence of a step fault would be recognized

at that point in the decomposition. Otherwise, if the first criterion was met and the

value of the level 11 coefficients was less than 3, the presence of a ramp fault would

be recognized at that point in the decomposition.

4.3 Modulus Maxima of the DWT

The second approach to the fault detection and classification problem was imple-

mented on windshield wiper motors. These motors are discussed in detail in Section

5.1.2. The algorithm uses an if-then-else set of rules on the modulus maxima of the

wavelet coefficients from the first ten different levels of decomposition. Daubechies’

D8 and the C18 Coifiet were used as mother wavelets for decomposition. Wiper mo-

18

tor data from both low speed dry windshield as well as low speed wet windshield

testing was used. For this approach, the goal was to detect and classify all of the

faults (including all variations of Fault E) with the exception of Fault F which had

the faulty parking mechanism. Initially, it was not believed to be possible to detect

the presence of Fault F since in the testing procedure, data is only analyzed while the

motors are running. In later testing however, it was discovered that it was possible

to properly classify motors with this fault as well.

The method used to detect irregularities in the system was to apply a thresh-

old to the wavelet transform coefficients of a measurement of the current through a

motor being tested. To select a threshold, the original signal is compared with the

wavelet transform modulus maxima using different mother wavelets and the results

are observed at various scales. A local maximum of the wavelet transform modu-

lus is defined at a point 2:0 where 6Wf (s, 2:) /81: has a zero-crossing at x = 3:0 and

[Wf (s, 113)] < [Wf (s, 20)] when x belongs to the neighborhood around $0. In general,

the number of wavelet maxima increase proportionally to the number of irregularities

in the signal. Also, the number of maxima at a given scale often increase linearly

with the number of vanishing moments in the wavelet. We should, ideally, have the

minimum number of maxima necessary to detect the desired irregularity in the signal.

A wavelet is said to have n. vanishing moments if and only if for all positive integers

k where k < n, (4.1) is satisfied.

+00

/ xke'2(.r)d;r = 0 (4.1)

When the irregularities in a signal that are being searched for are sharp, it is desirable

to choose wavelets with fewer vanishing moments.

When analyzing a signal in the presence of noise, many additional modulus max-

ima are created in the finer scales. The maxima due to light noise disappear in higher

19

scales where only edges relevant to the signal remain.

In building the detection and classification algorithm, fifteen mother wavelets were

used. The modulus maxima of the coefficients from the discrete wavelet transform

over ten levels of decomposition for each motor were analyzed. For the detection

phase of the algorithm, it was considered that a fault may be present when one of the

modulus maxima exceeded a threshold. The threshold for each level of decomposition

was set to be 5% above the maximum of the modulus maxima observed on the motors

said to be either new or having Fault F.

For the classification phase of the algorithm, a parameter a, named the localization

parameter, was developed to give an estimate for the level of decomposition exceeding

its corresponding threshold most (4.2),

10 - A
. . ,. _ d, .

(Y : 21:1(1 X (dz ,.)) di — d,‘ > 0 (4.2)

2.131% ‘T di)

where d,- is defined as the modulus maxima of the 2th level of decomposition and cf,-

is the threshold at that level. The parameter a is only defined if the criterion for

detection is met, that is if for at least one level of decomposition d,- — (f,- > 0. Then

the classification strategy was to run the decomposition coefficients as well as the

parameter a through a decision tree to reduce the number of possible faults.

Tables 4.1—4.5 show the modulus maxima as well as the localization parameters

for a sample of motors having each of Faults A—E. The bold values represent the

coefficients that exceed the corresponding detection threshold. The modulus maxima

manifest themselves in a unique way for each of the faults. The localization parameter

remains relatively constant for each fault as well.

20

Level

l 2 3 4 5 6 7 8 9 10

dbl = 0.487 0.501 0.699 0.989 1.430 1.216 2.144 2.971 6.583 14.11] a = N/A

db4 : ' 0.437 0.421 0.441 0.801 1.813 1.016 0.951 1.601 2.395 11.17] a 2: 5.457

db7 = 0.437 0.408 0.472 0.906 1.817 0.807 0.872 1.562 1.677 11.25] a = 5.000

deO = i 0.422 0.397 0.384 0.907 1.819 0.725 1.008 1.438 1.493 9.863] a = 5.000

bior2.2 : 0.398 0.551 0.796 1.195 2.098 1.815 2.627 1.738 5.654 11.57] a = 8.172

bior2.8 = 0.398 0.611 0.668 1.072 2.098 0.914 1.411 2.043 4.715 12.16] a = 9.000

bior3.5 : 0.365 0.580 0.747 1.219 2.816 2.153 3.258 2.442 4.274 7.351] a r: 7.000

bior6.8 = 0.430 0.525 0.505 0.900 1.833 0.793 1.123 1.443 2.223 10.42] a : 5.000

coifl : 0.490 0.525 0.706 1.068 1.723 1.279 1.269 1.642 5.084 13.77] a = 5.541

coif3 : _ 0.448 0.432 0.627 1.014 1.786 0.878 1.098 1.465 2.162 11.33] a = 5.943

coif5 : _ 0.440 0.408 0.510 1.018 1.813 0.701 1.063 1.436 1.821 5.614] a = 4.521

sym2 = 0.530 0.526 0.666 0.948 1.619 1.242 1.303 1.614 3.929 15.72] a = 6.000

sym4 : 0.465 0.557 0.556 0.918 1.811 1.074 1.118 1.592 2.939 11.84] a = 6.304

sym6 = 0.461 0.424 0.647 0.986 1.768 0.899 1.086 1.590 2.228 10.95] a : 8.606

sym8 =[0.458 0.510 0.466 0.913 1.793 0.768 1.057 1.516 1.931 10.52] a = 5.000

dbl : [0.646 0.701 0.854 1.146 1.656 1.535 1.827 4.231 9.427 17.59] a : 7.015

db4 :[0.562 0.582 0.648 1.143 1.884 1.120 1.074 1.974 4.638 15.85] a = 7.810

db7 : [0.555 0.490 0.509 0.861 2.026 1.000 0.818 1.905 3.056 11.33] a : 7.836

dblO : [0.479 0.483 0.496 1.181 2.021 0.796 0.805 1.869 3.143 8.215] a = 7.388

bior2.2 = [0.567 0.714 0.969 1.246 2.276 2.141 2.715 2.110 5.427 11.00] a = 7.069

bior2.8 : [0.567 0.639 0.894 1.342 2.266 1.228 1.300 2.101 5.674 11.13 a = 7.491

bior3.5 : [0.438 0.662 0.942 1.515 2.655 2.813 2.629 2.189 7.121 10.79 i a = 7.345

bior6.8 = [0.586 0.541 0.683 1.038 2.132 0.945 0.855 1.751 3.588 10.35 i a = 7.840

coifl = [0.686 0.692 0.864 1.129 1.850 1.383 1.503 2.375 4.926 13.28 a = 6.082

coif3 : [0.612 0.576 0.651 0.993 2.087 0.905 0.818 1.896 3.197 11.99 a : 7.745

coil?) = [0.595 0.537 0.592 1.016 2.215 0.773 0.767 1.756 3.036 10.83 a = 7.462

sym2 : [0.582 0.636 0.741 1.167 1.838 1.354 1.626 2.108 4.737 10.96 a = 5.433

sym4 : [0.638 0.591 0.771 1.095 1.883 1.209 1.064 1.823 3.729 12.99 a = 7.315

sym6 : [0.617 0.608 0.672 0.959 1.983 0.936 0.884 1.844 3.014 11.93] a = 8.112

sym8 = [0.605 0.520 0.650 1.015 2.146 0.868 0.750 1.928 3.080 11.72] a = 7.763

Table 4.1. Modulus maxima of the wavelet coefficients for motors with Fault A

(coefficients in bold designate those above the corresponding threshold)

21

1

dbl = [0.859

db4 :[0.730

db7 : [0.664

deO =[0.668

bior2.2 =[0.691

bior2.8 :[0.691

bior3.5 =[0.560

bior6.8 =[0.687

coifl : [0.897

C0113 = [0.744

C0if5 = [0.696

sym2 =[0.712

sym4 = [0.776

sym6 : [0.732

symB : [0.702

dbl =[0.646

db4 : [0.746

db? =[0.482

deO :[0.565

bior2.2 :: [0.549

bior2.8 =[0.549

bior3.5=[0.542

bior6.8 =[0.594

coifl =[0.640

coif3 = [0.609

coif5 :: 0.595

sym2 = 0.531

sym4 : [0.554

sym6 : [0.555

sym8 = [0.556

Table 4.2.

2

1.208

1.041

1.338

1.047

1.393

1.195

1.189

1.014

1.431

1.322

1.314

1.251

1.165

1.347

1.059

1.546

0.920

0.827

1.078

0.967

0.982

0.887

0.892

0.975

0.897

0.879

0.971

0.894

0.904

0.901

3

2.510

2.238

1.652

1.457

2.029

2.714

2.355

2.196

2.286

1.994

1.756

2.301

1.862

1.833

2.110

2.377

1.757

1.966

1.446

1.660

2.053

2.104

1.669

1.583

1.599

1.562

1.453

1.782

1.656

1.625

4.720

3.162

3.228

4.374

3.939

6.224

3.951

4.965

3.711

5.441

3.151

4.065

4.121

5.180

5.095

3.909

2.741

3.459

2.666

3.137

3.016

4.262

2.217

2.433

2.239

2.367

2.659

2.975

2.634

2.009

Level

11.61

6.166

5.201

4.567

5.944

7.466

11.07

5.822

6.443

6.153

5.038

6.080

5.536

6.146

5.873

7.443

3.422

5.603

4.595

6.590

7.238

5.622

5.820

4.924

6.218

4.714

6.707

4.992

6.206

5.925

28.27

10.83

9.597

10.83

13.02

17.52

13.30

13.07

12.74

12.48

12.52

19.56

11.76

11.29

12.40

10.22

7.089

8.660

9.146

10.81

10.77

12.74

8.013

9.572

8.195

7.364

9.533

8.234

8.347

7.861

39.73

23.08

28.32

21.64

37.36

36.86

29.35

30.25

37.78

32.71

28.66

35.05

35.64

34.22

31.14

16.39

18.60

17.60

15.65

20.12

19.79

24.99

16.80

19.19

17.56

16.40

15.56

16.98

17.38

16.90

102.4

67.47

34.43

54.08

58.31

57.36

119.8

43.57

57.90

43.75

42.70

54.85

54.75

47.93

43.13

33.94

23.70

26.66

25.61

28.71

33.16

50.81

25.35

21.93

22.49

24.63

36.14

20.01

20.93

23.01

9

83.92

105.1

106.7

68.98

164.8

181.5

139.5

142.9

152.2

141.6

135.7

107.6

138.4

141.6

138.9

16.06

25.83

19.85

17.66

34.43

22.41

27.58

16.69

24.53

15.77

15.87

19.62

26.75

27.26

15.79

10

134.4]

117.7]

83.85]

53.83]

151.4]

94.12 1

241.5]

72.68]

112.4]

64.67]

65.67]

88.37]

95.47]

70.78]

79.53]

(coefficients in bold designate those above the corresponding threshold)

22

a = 7.173

a 2 7.937

a = 7.964

a = 7.677

a = 8.188

a = 7.843

a = 8.316

a = 7.931

a = 7.763

a = 7.933

a = 7.934

a = 7.525

a = 7.960

a = 7.981

a = 7.925

a = 6.367

a = 7.312

a = 7.097

a = 7.024

a =3 7.376

a = 7.049

a = 7.286

a = 7.138

a = 7.045

a = 7.121

a = 7.112

a = 7.070

a = 7.220

a = 7.316

a = 7.104

Modulus maxima of the wavelet coefficients for motors with Fault B

dbl

3
.
0
.
.

7
3
'

«
.
2
.

II
II

H
H

II
H

II
II

dblO

bior2.2

bior2.8

bior3.5

bior6.8

coifl = [

coif3 = [

(:oif5 2' [

sym2 : [

sym4 : [

sym6 : [

sym8 : [

l

l

I

1

l

l

l

1

dbl = [

(“)4 r: [

db7 :: [

dblO : [

bior2.2 : [

bior2.8 = [

bior3.5 z [

bior6.8 = [

coifl : [

c0113 = [

coif5 : [

sym2 :: [

sym4 : [

sym6 : [

sym8 : [

1

0.540

0.467

0.509

0.455

0.496

0.496

0.381

0.531

0.598

0.557

0.542

0.500

0.559

0.549

0.542

0.620

0.530

0.541

0.514

0.514

0.514

0.414

0.550

0.631

0.574

0.560

0.625

0.599

0.588

0.581

2

0.463

0.425

0.417

0.403

0.571

0.589

0.654

0.516

0.497

0.478

0.467

0.530

0.539

0.463

0.488

0.651

0.505

0.578

0.417

0.831

0.757

0.697

0.658

0.787

0.690

0.654

0.601

0.705

0.692

0.650

3

0.580

0.535

0.421

0.339

0.688

0.665

0.653

0.527

0.590

0.473

0.439

0.490

0.488

0.504

0.499

0.775

0.705

0.596

0.607

0.933

0.846

1.086

0.700

0.788

0.670

0.590

0.617

0.890

0.711

0.670

4

0.660

0.678

0.712

0.732

0.870

0.825

1.004

0.632

0.805

0.688

0.722

0.791

0.778

0.703

0.640

0.861

0.713

0.776

0.920

1.157

1.126

1.262

0.839

1.023

0.986

0.777

0.848

0.825

0.981

0.848

Level

5

0.943

1.151

1.086

1.254

1.445

1.552

2.128

1.172

1.037

1.162

1.084

1.112

1.031

1.114

1.154

1.206

1.804

1.407

1.532

1.785

1.717

2.121

1.528

1.304

1.435

1.432

1.251

1.413

1.392

1.483

6

0.842

0.594

0.444

0.531

1.014

0.602

1.163

0.483

0.695

0.476

0.431

0.688

0.579

0.505

0.459

1 . 158

0.852

0.734

0.635

1.950

1.167

2.319

0.858

1.079

0.767

0.555

0.980

0.943

0.791

0.664

Table 4.3. Modulus maxima of the wavelet

(coefficients in bold designate those above the corresponding threshold)

23

7

2.557

0.942

0.636

0.846

1.455

0.760

1.888

0.622

0.848

0.645

0.644

0.888

0.683

0.673

0.638

1.848

0.556

0.509

0.409

1.394

0.861

1.883

0.550

0.769

0.535

0.495

0.823

0.500

0.503

0.512

8

4.007

1.521

0.979

0.991

1.644

1.908

2.240

1.242

1.481

1.155

1.158

1.639

1.150

1.097

1.137

3.700

1.591

1.325

1.166

1.759

1.394

1.679

1.170

2.056

1.290

1.272

2.017

1.394

1.330

1.268

9

8.067

3.646

2.710

1.889

5.638

5.166

3.183

3.104

6.245

3.342

2.779

4.041

4.418

3.505

3.043

7.751

3.436

3.218

3.139

5.638

5.660

6.805

3.329

6.445

3.010

3.360

6.080

4.585

3.152

3.237

10

16.00]

16.67]

18.86]

8.781 J

18.96]

20.28]

9.867]

18.33]

21.18]

20.27]

19.29]

16.19]

19.13]

20.04]

20.04]

a = 7.701

a = 9.021

a = 9.580

a = N/A

0 = 9.705

a = 9.735

a = N/A

0 = 9.615

a = 9.674

a 2: 9.470

a = 9.643

a = N/A

(1 = 9.273

a = 9.396

a : 9.538

a = 8.000

a = 9.194

a = 9.000

a = 9.000

a = 9.000

a =: 9.000

a = 8.931

a = 9.038

a = 9.039

a = 9.100

a = 9.099

a = 9.000

a = 9.102

a = 9.147

a = 9.126

coefficients for motors with Fault C

Level

1 2 3 4 5 6 7 8 9 10

dbl :[0.717 0.820 0.753 0.767 0.901 0.590 0.880 1.505 4.141 9.426] a = N/A

db4 : [0.693 0.708 0.803 0.654 0.947 0.526 0.542 0.493 0.758 5.921] a : 3.000

db7 : [0.570 0.722 0.651 0.750 0.999 0.476 0.589 0.514 0.655 4.899] a = 2.211

deO : [0.631 0.582 0.607 0.689 1.007 0.528 0.528 0.706 0.515 3.752] a = N/A

bior2.2 : [0.514 0.939 0.987 0.899 1.422 0.717 1.137 0.986 1.252 5.210] a : 2.000

bior2.8 = [0.514 0.941 1.072 0.863 1.508 0.510 0.703 0.749 1.064 5.567] a = 2.585

bior3.5 = [0.474 1.034 1.240 0.874 2.026 1.013 1.142 0.938 1.201 4.070] a = 3.000

bior6.8 : [0.557 0.839 0.861 0.733 1.062 0.451 0.581 0.551 0.648 4.844] a = 2.619

coifl = [0.606 0.906 0.770 0.719 0.953 0.560 0.640 0.710 1.534 7.228] a = 2.000

coif3 :: [0.576 0.844 0.787 0.725 0.978 0.447 0.569 0.508 0.649 5.395] a = 2.231

coifS : [0.564 0.813 0.723 0.737 1.032 0.436 0.542 0.480 0.594 4.681] a = 2.513

sym2 = [0.623 0.801 0.747 0.725 0.916 0.547 0.639 0.757 1.788 6.332] a : N/A

sym4 : [0.547 0.832 0.756 0.680 0.972 0.576 0.565 0.480 0.778 5.795] a = 2.196

sym6 : [0.544 0.824 0.758 0.733 0.977 0.511 0.594 0.502 0.679 5.236] a = 2.342

sym8 : [0.545 0.816 0.800 0.732 0.961 0.445 0.571 0.493 0.632 5.053] a = 2.488

dbl : [0.876 0.826 0.730 0.692 0.799 0.457 0.872 1.588 4.166 10.03] a : 1.000

db4 : [0.739 0.788 0.712 0.592 0.852 0.351 0.429 0.442 0.904 5.300] a = 1.432

db7 = [0.752 0.701 0.670 0.628 0.899 0.313 0.454 0.403 0.747 5.274] a = 1.756

(lb10 :: [0.702 0.622 0.588 0.630 0.911 0.291 0.413 0.413 0.668 4.759] a = 1.000

bior2.2 : [0.633 0.834 0.988 0.820 1.317 0.560 0.898 0.855 1.193 5.900] a = N/A

bior2.8 = [0.633 0.876 0.939 0.729 1.462 0.360 0.515 0.671 1.213 6.108] a = 2.000

bior3.5 = [0.564 1.055 1.146 0.761 1.949 0.609 1.066 0.965 1.068 2.854] a = 1.292

bior6.8 : [0.698 0.779 0.763 0.579 1.069 0.287 0.432 0.446 0.519 4.795] a = 2.474

coifl : [0.734 0.818 0.796 0.668 0.891 0.412 0.482 0.620 1.756 7.519] a = 2.000

coif3 : [0.719 0.773 0.717 0.595 0.989 0.327 0.427 0.425 0.529 5.277] a = 2.000

00115 = [0.712 0.743 0.741 0.613 0.937 0.265 0.394 0.414 0.604 3.722] a = 2.607

sym2 : [0.770 0.852 0.858 0.654 0.894 0.340 0.470 0.536 1.627 7.738] a = 3.000

sym4 : [0.755 0.852 0.722 0.583 0.939 0.439 0.459 0.473 0.664 5.862] a = 1.870

sym6 : [0.753 0.784 0.733 0.577 0.947 0.375 0.423 0.416 0.529 5.057] a = 1.461

sym8 = [0.748 0.796 0.722 0.580 0.986 0.290 0.412 0.414 0.546 4.896] a = 1.686

Table 4.4. Modulus maxima of the wavelet coefficients for motors with Fault D

(coefficients in bold designate those above the corresponding threshold)

24

Level

1 2 3 4 5 6 7 8 9 10

dbl = [0.815 0.895 1.049 1.290 1.490 1.823 1.858 3.490 8.637 22.10] a = 6.822

db4 = [0.659 0.751 0.966 0.895 1.707 1.899 0.662 1.088 2.300 19.14] a = 6.308

db7 : [0.626 0.589 0.751 0.766 1.718 1.441 0.559 0.934 1.821 14.70] a = 6.390

dblO : [0.550 0.571 0.871 0.701 1.694 1.779 0.661 0.899 2.017 10.76] a = 5.719

bior2.2 =] 0.589 0.785 1.197 1.391 2.070 2.774 1.856 2.307 4.260 15.26] a = 7.122

bior2.8 : [0.589 0.808 1.125 1.374 2.208 2.563 0.880 1.426 4.283 15.93] a = 6.376

bior3.5 = [0.531 0.957 1.210 2.106 2.030 4.666 1.633 2.303 3.266 12.48] a = 5.765

bior6.8 : [0.624 0.697 0.887 0.988 1.960 1.726 0.608 0.984 2.059 13.05] a = 6.462

coifl = [0.721 0.715 1.039 1.270 1.89] 1.583 0.884 1.380 5.381 19.73] a = 6.441

coif3 = [0.658 0.655 0.811 0.901 1.918 1.497 0.574 0.917 2.025 15.73] a = 6.623

60115 = [0.639 0.631 0.867 0.973 1.977 1.610 0.538 0.960 1.782 9.057] a = 5.901

sym2 : [0.635 0.794 0.921 1.047 1.721 1.582 0.927 1.842 5.097 20.03] a = 6.587

sym4 =] 0.691 0.710 0.822 1.103 1.915 1.628 0.647 0.949 2.834 18.66] a = 6.684

sym6 = [0.670 0.671 0.757 0.888 1.804 1.480 0.576 0.874 2.032 16.72] a = 7.084

sym8 = [0.657 0.686 0.895 0.893 2.030 1.442 0.563 0.916 1.862 14.98] a = 6.592

dbl :] 0.806 0.927 1.182 1.299 1.434 1.567 1.607 3.443 9.605 21.10] a = 6.618

454 =] 0.664 0.826 0.879 0.875 1.870 1.585 0.542 0.734 2.324 13.74] a = 5.895

(11)? : [0.635 0.760 0.765 0.783 1.760 1.398 0.496 0.717 1.113 16.65] a = 7.252

deO =] 0.606 0.706 0.774 0.868 1.988 1.597 0.482 0.692 1.046 14.41] a = 5.821

bior2.2 = [0.606 0.949 1.207 1.259 2.206 2.833 1.697 2.057 2.974 16.90] a = 7.558

bior2.8 = [0.606 0.851 1.186 1.465 1.933 2.856 0.668 1.389 2.551 17.69] a = 6.532

bior3.5 : [0.507 1.055 1.311 1.896 2.272 4.397 1.708 2.238 2.571 8.141] a = 5.364

bior6.8 = [0.639 0.756 0.956 1.065 1.792 1.928 0.495 0.685 1.247 14.71] a = 6.649

coifl = [0.749 0.927 0.993 1.157 1.864 1.657 0.866 1.436 3.962 21.21] a = 7.089

coif3 = [0.675 0.856 0.879 1.017 1.831 1.557 0.522 0.673 1.299 17.04] a = 7.017

60115 =] 0.653 0.820 0.897 0.918 1.848 1.608 0.459 0.690 1.130 7.976] a = 5.957

sym2 : [0.741 0.902 0.970 0.938 1.657 1.672 0.701 1.420 5.175 20.96] a = 7.220

sym4 = [0.705 0.752 0.898 0.931 1.913 1.494 0.680 0.724 1.753 16.66] a = 6.379

sym6 = [0.683 0.869 0.909 1.002 1.878 1.577 0.570 0.658 1.300 16.37] a = 6.778

sym8 =] 0.669 0.722 0.926 0.964 1.867 1.557 0.462 0.675 1.204 15.65] a = 6.709

Table 4.5. Modulus maxima of the wavelet coefficients for motors with Fault E

(coefficients in bold designate those above the corresponding threshold)

25

4.4 Minimum Distance Using the Normalized

Modulus Maxima of the DWT

The third approach to the detection and classification problem was implemented on

both the wiper and fuel pump motors. These motors are discussed in detail in Sections

5.1.2-5.1.3. The development of this algorithm was motivated by the desire to use

a statistical framework rather than the deterministic framework from the algorithms

previously implemented. In examining the modulus maxima of the wavelet coefficients

from the motors shown in Tables 4.1-4.5, it can be seen that the coefficients from

motors with the same fault are not exactly the same, however they follow the same

general pattern. In the analysis, these coefficients were represented as ten-dimensional

vectors.

In the detection part of the algorithm, it was considered that a fault may be

present when one of the modulus maxima exceeded a threshold. The thresholds

corresponding to each level of decomposition are defined by the maximum of those

observed on the new motors provided for this work. A small number, 6, can be

added to the corresponding threshold for each level of decomposition to decrease the

sensitivity of the detection.

In the classification part of the algorithm the lengths of the vectors from each

motor are normalized and the coefficients of the dimensions of the normalized vectors

from faults of the same type are averaged. The resultant vectors serve as the centers

of each fault cluster. Through this normalization, direction of the coefficient vector

provided the determination for the type of fault. Experimental results show this

improve the accuracy of the algorithm. It was also found that different faults cluster

themselves with different variances, so a. maximum radius is defined for the clusters

for each type of fault. The classification strategy is then to find the fault, which is

now represented by a point on a 10-dimensional unit sphere, having the minimum

26

Euclidean distance (3.4) from the vector representing the center of each fault cluster

that the test motor is included in. If the normalized coefficient vector representing a

test motor does not fall into one of the fault clusters, it is said that the motor does

not have any of the known faults.

A two-dimensional example of this technique is shown in Figures 4.3 and 4.4.

Here an attempt is made to classify the point 6 (which belongs to cluster A) into

either A or B. The circular shapes belong to cluster A and the square shapes belong

to cluster B. The triangles represent the mean of the vectors from each cluster. If

6 is said to belong to the cluster having the minimum Euclidean distance between

6 and the cluster mean, 6 will be classified as part of cluster B rather than cluster

A. This is similar to how the motor faults manifest themselves in ten-dimensional

space. Experimentation showed that the motor faults could be classified much more

accurately by using a normalized Euclidean distance which is shown in Figure 4.4. It

is clear, after normalization that 6 is closer to the cluster mean of A.

If, however, 6 were positioned slightly lower in the figure than it is, its normalized

Euclidean distance would again classify it incorrectly within B. This is due to the fact

that cluster A has higher variance than cluster B. To remedy this situation, a ball of

radius a was assigned to serve as a valid region for each cluster. This can be seen in

Figure 4.4 where 51 is the valid region for A and 52 is the valid region for B. Each test

motor was therefore classified by finding its minimum normalized Euclidean distance

within a radius E from the mean of each fault cluster. If the test motor did not fall

within the radius 6 from the mean of any of the fault clusters, it was classified as a

good motor, or at least free of the faults which were being searched for.

Minimum angle could also be used in the algorithm instead of minimum distance.

Since they are proportional, and nearly the same for small angles, this led to the

same set of results. For this method, instead of a maximum radius for each cluster,

a maximum angle was chosen. The angle between two vectors x and y is defined as

27

Figure 4.3. Euclidean distance for a non-normalized set of points

 Figure 4.4. Euclidean distance for a normalized set of points

28

T

cosflz—x—L, 039371 (4.3)

IIXHIIYH

In the case where x and y are normalized, or very close to normalized, (4.3) simplifies

to (4.4):

cos6 z xTy, O S 0 g 77 (4.4)

Therefore, for small angles, both the cosine function and the inner product are at their

maximum values. The use of minimum angle in the algorithm from this section led

to the development of the algorithm in the following section using linear discriminant

functions.

4.5 Linear Discriminant Functions

The fourth approach to the detection and classification problem was again imple-

mented on both the wiper and fuel pump motors. This algorithm was developed in

an effort to fine tune the previous minimum distance algorithm. The detection part

of the algorithm remains the same. Thresholds are defined on the modulus maxima

of the wavelet transform corresponding to the maximum of those observed on the new

motors which were provided for this work. If any one of the modulus maxima of the

coefficients from the wavelet transform of a test motor exceed these thresholds, it is

considered that a fault may be present.

Instead of relying on minimum distance or minimum angle for the classification

step, the maximum linear discriminant was used. A minimum discriminant was also

defined for each cluster instead of the maximum distance or maximum angle defined

in the previous algorithm. If the test motor did not fall into one of the fault clusters,

it was said that it did not have any of the known faults.

The introduction of a training procedure made the classification algorithm more

29

consistent. The initial guess for the weighting coefficients of each class was defined to

be the mean of all of the known sample vectors in that class. A class in this case refers

to a particular fault. The initial weighting coefficients are identical to the averaged

normalized vectors from faults of the same type from the classification step in the

previous algorithm. These coefficients were then adjusted until all of the test motors

with known faults were correctly classified. A gain constant of a = 0.01 was used to

keep adjustments of the weighting coefficients small. With this method, any mother

wavelet could be used to achieve perfect classification of the known test motors. The

weighting coefficients from the mother wavelet that required the fewest number of

corrections to converge were used in the algorithm.

Without the introduction of the training procedure for this method, the results

would be the same as the results from the previous algorithm, which made decisions

based on minimum distance or minimum angle. This is because the discriminant

function is proportional to the cosine of the angle which was used in the previous

algorithm. The cosine has its maximum for an angle of 0°, which relates to the case

for minimum distance when the distance is zero.

The training procedure, however, could have undesirable effects if one of the mo-

tors specified as part of a particular class is considerably different than the others,

possibly having multiple faults, or being an outlier in some other way. The weighting

coefficients can adjust themselves so that each cluster is much larger than it would

have been in the previous algorithm in order to accommodate all of its members.

30

CHAPTER 5

Experimental Setup and Results

5. 1 Experimental Setup

5.1.1 HVAC Fan Motor Experimental Setup

The experimental setup in the HVAC fan motor testing consisted of an HVAC fan

motor, a PC running Real-Time Linux (RT-Linux), and a 12-bit A/D board. The

motor was fed by a standard automobile battery and it was loaded by the squirrel cage

fan that it is normally coupled to in an automobile. Both voltage and current were

simultaneously sampled from the motor at a frequency of approximately 16kHz. Data

was recorded in the computer and MATLAB was then used for post-experimental

analysis. The experimental setup is shown in Figure 5.1.

In this experiment, it was unknown what physical abnormalities were present

in each motor. It was only known that the motors were removed from vehicles for

warranty reasons and were faulty. After some analysis of the data obtained from them,

two specific types of signatures from the current waveforms were recognized. Some

of the data had faults where the current abruptly increased or decreased, remained

constant for a short period of time and then quickly returned back to the original

state. This was classified as a step fault. Sample data from a motor with a step fault

is shown in Figure 5.2.

31

C
u
r
r
e
n
t
(
a
m
p
e
r
e
s
)

‘ I]

l l

400

- MHz ND
RTLanX Convener Squirrel

Pll Cage Fan

- Voltage

Transducer

Current

Transducer \

+ 12v '

Automobile

Battery

Figure 5.1. HVAC fan motor experimental setup

10.5

‘ . H1]113;1]1] 1 1]]11] ‘llllllr ‘

l I l l i

0 0.5 1 1.5 2 2.5

Time (seconds)

Figure 5.2. Fan motor exhibiting step discontinuities

32

N

C
u
r
r
e
n
t
(
a
m
p
e
r
e
s
)

.
0

l J; l l I

1 .5

Time (seconds)

Figure 5.3. Fan motor exhibiting ramp discontinuities

Other motors demonstrated faults where the current abruptly increased or de-

creased and then slowly ramped back to the original state. These were classified as

ramp faults. Sample data from a motor with a ramp fault is shown in Figure 5.3.

In many cases, the current stayed more or less steady through the experiment.

These motors were classified as normal. The current waveform from a motor operating

normally is in Figure 5.4.

5.1.2 Wiper Motor Experimental Setup

The experimental setup in the wiper motor testing consisted of a wiper motor, a PC

running Real—Time Linux (RT-Linux), a 12-bit A/D board and an 8-bit D/A board.

The wiper motor has a 50:1 gear ratio and contains 12 commutator bars/slots. It

was powered by a standard automobile battery through a controller and was loaded

by a brushless DC motor. The RT-Linux system was used to control the torque

output of the brushless DC motor. Torque profiles of the wiper system under different

environmental conditions were constructed. Torque profiles were developed for the

33

N o
n

.
“

o
:

.
‘
l

3
:
.

 C
u
r
r
e
n
t
(
a
m
p
e
r
e
s
)

m
N

d
)

\
1

r
0

0 O U
!

N [
0

0
|

Time (seconds) '

Figure 5.4. Fan motor operating normally

wiper motor at high speed on dry glass (Figure 5.5), at high speed on wet glass (Figure

5.6), at low speed on dry glass (Figure 5.7) and at low speed on wet glass (Figure

5.8). Using the simulated load offered much greater flexibility in the experiment.

Voltage, current, torque and speed were simultaneously sampled from the motor and

drive at a frequency of 12.5kHz. Data was recorded in the computer and MATLAB

was then used for post-experimental analysis. The experimental setup is shown in

Figure 5.9.

To develop and test various detection and classification algorithms, both new

windshield wiper motors as well as motors that were manufactured to have specific

faults known to significantly shorten their lives were analyzed. The faults are referred

to by capital letters throughout this thesis. Fault A refers to a condition where one of

the springs that normally keep the brushes in contact with the commutator face has

become stuck due to excess sealant applied during assembly. This sealant is used to

seal the motor’s housing so water cannot enter. Fault B indicates a condition where

one of the springs that keep the brushes in contact with the commutator face has

been kinked at some point during assembly. Fault C refers to the condition where

34

High Speed — Dry Windshield

I I I I —I I

T
o
r
q
u
e

(
i
n
-
l
b
s
)

5
‘

8
8
8
8
8

_
L

O l l I I l

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time (seconds)

 0

Figure 5.5. Wiper motor profile for high speed operation on dry glass

High Speed - Wei Windshield

4o__ 1 I I I I I l I _,

T
o
r
q
u
e

(
i
n
—
l
b
s
)

8

I l

 _20 l l l 4 I l l l l

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time (seconds)

Figure 5.6. Wiper motor profile for high speed operation on wet glass

Low Speed - Dry Windshield

I I I I I I

70- 7

60-
..

37507
a

Q

{1340— 5

o
3 ~ .19.30

0

P20_

—4

10- -

0-
_

l l l l l l

0 0.5 1 1.5 2 2.5 3

Time (seconds)

Figure 5.7. Wiper motor profile for low speed operation on dry glass

35

Low Speed - Wet Windshield

I T I Mr T
T
o
r
q
u
e

(
i
n
-
l
b
s
)

a T

l

 '10 1 1 L L 1

0 0.5 1 1 .5 2 2.5

Time (seconds)

Figure 5.8. Wiper motor profile for low speed operation on wet glass

l D/A 57 Brushless

400 Convener __‘ DC Drive

RTLinux MHZ _l
Pll ND

Converter

I Flexible

—' Voltage Mechanical

Cum,“ TranSduceI Coupflng

Transducer

Wiper '/ . _-.

[Control Box \I WIPGI Brushless

Motor DC M010!

F

9* 12v 7

Automobile

Battery

Figure 5.9. Wiper motor experimental setup

36

one gear tooth is removed from the 50:1 gear reduction mechanism. Fault D indicates

shaft misalignment due to the failure to install a bushing during assembly. Faults E1,

E2 and E3 were due to increased friction. These were grouped together because of

their similarity. Motors with Fault E1 had no gear grease applied during assembly. In

the case of Fault E2, no thrust ball grease was applied during assembly and Fault E3

refers to the application of some thrust ball grease during assembly, however less than

what the assembly specification calls for. Fault F indicates that the cardboard/copper

disk located in the plastic gear cover which is used by the motor to locate the correct

parking position has been “punched” at some point during assembly causing the

copper to be raised slightly which results in the motor running through the park

position for one or more revolutions.

5.1.3 Fuel Pump Experimental Setup

The experimental setup for the fuel pump motor testing consisted of a fuel pump

motor, a PC running Real-Time Linux (RT-Linux), and a 12-bit A/D board. Testing

was performed in an enclosure which was resistant to the test solvent which was used

as a fuel substitute. The motor was fed by a standard automobile battery. Pressure

was monitored by a gauge and adjusted by a valve in the fuel line. The solvent was

filtered at both the input to the test motor and prior to reentry into the test enclosure.

Both voltage and current were simultaneously sampled from the motor at a frequency

of approximately 16.7kHz. Data was recorded in the computer and MATLAB was

then used for post-experimental analysis. The experimental setup is shown in Figure

5.10.

As with the wiper motors, both new fuel pump motors as well as motors that were

manufactured to have specific faults known to significantly shorten their lives were

analyzed. The faults are referred to by capital letters throughout this thesis. Faults

G and H both refer to cases where the resistance in one coil is above the specification.

37

l'fi

:J

400 g» 5

RTLinux MHZ c6558...

Pll] a 1

I ‘ «9 1...
‘ Transducer

c 1

fixcer l , Valve Gauge

a la
1

i“ SW02?! yBox f—._ ‘ '9’ ‘ ——.*
---—--a_—+.

\/ $

L
r' —— - .___...

__._
___‘

_ I 1

+ 12v -
F |

Automobile

ue

Battery
Filter 2 Pump

&
Acrylic Enclosure

Figure 5.10. Fuel pump experimental setup

In the case of Fault G, one of the coils is poorly fused to the commutator causing its

resistance to be increased and in the case of Fault H, the coil is cut entirely making

its resistance infinite. Fault 1 indicates that the commutator face was scored during

assembly.

5.2 Experimental Results

5.2.1 Discrete Wavelet Transform

Results from testing show that this algorithm was accurate in that it was not only

able to detect that a fault was present, but it could also determine which type it was.

We can see, however, that the first threshold from the level 9 decomposition can be

modified to make the system more or less sensitive to detecting a fault condition. The

second threshold from the level 11 decomposition can also be modified to make the

system lean more or less toward a specific type of discontinuity. Performing analysis

directly on the DWT coefficients is advantageous in that it is possible to localize the

38

faults in time, however it is more computationally intensive than the strategies that

follow since the number of coefficients is very large.

In the first example with the step discontinuity (Figure 5.2), the algorithm de-

tected three step faults at 1.22s, 1.538 and 1.81s. One of the remarkable qualities

of the DWT is that it makes it possible to detect irregularities with different time-

frequency characteristics. This is clear in this example where all three faults were

considerably different from one another.

In the second example with the ramp discontinuity (Figure 5.3), the algorithm

detected three ramp faults at 1.56s, 2.28s and 2.448. There are clearly ramp type

discontinuities at these time periods, however the other fault in the signal just after 1

second was not detected. Perhaps this was because the beginning of the discontinuity

was not abrupt enough to satisfy the first criterion in the algorithm. In this case,

the threshold for the level 9 decomposition could be lowered or a different mother

wavelet or different level of decomposition could be used in the analysis to make the

algorithm more sensitive to this type of fault.

Finally, in the last example with the normally operating motor (Figure 5.4), the

algorithm did not detect any irregularities in the signal. The signal essentially re-

mained at steady state.

In developing an algorithm using the DWT coefficients directly, the mother wave-

let selection is highly deterministic and is therefore a very crucial step. As the signal

processing techniques become more sophisticated in the following sections, the pro-

cedure for choosing a mother wavelet is based on more statistical criteria.

5.2.2 Modulus Maxima of the DWT

In the implementation of the second algorithm, many observations can be made from

the results shown in Tables 4.1-4.5. The algorithm was developed based on which

coefficients exceeded their corresponding thresholds as well as the value of the local-

39

ization parameter from decompositions using specific mother wavelets.

It can be observed that the modulus maxima from the motors with Fault A ex-

ceeded their corresponding thresholds among the mid-to-high levels of decomposition.

The average value of a, the localization parameter, from both motors over the fifteen

mother wavelets was 6.767. The modulus maxima from the motors with Fault B were

greater than their corresponding thresholds for almost all levels of decomposition.

The average value of oz in this case was 7.490. The modulus maxima from the motors

with Fault C exceeding their corresponding thresholds distributed themselves over

the high levels of decomposition. The average value of a was 9.153. The modulus

maxima from the motors with Fault D were above their corresponding thresholds for

the low levels of decomposition. The average value of a was 2.106. The modulus

maxima from the motors with Fault E exceeded their corresponding thresholds for

the middle levels as well as the highest levels of decomposition but with a gap in be-

tween. The average value of a for this fault was 6.524. It is clear from examination of

these results how a decision tree based on a series of if-then-else tests was developed

to correctly detect and classify faults.

Performing analysis on the modulus maxima of the DWT coefficients was advan-

tageous in that the algorithm was far less computationally intensive than the previous

algorithm using the DWT coefficients directly.

5.2.3 Minimum Distance Using the Normalized Modulus

Maxima of the DWT

To measure the quality of this and the following clustering methods, the ratio of the

average cluster radius to the average distance between clusters is used. An illustration

of this is shown in Figure 5.11 where A and B are clusters, x and z are the radii of

clusters A and B respectively, and y is the distance between the center of clusters A

and B. All measurements are made 011 the unit circle. The ratio in this case would

40

ooooooooo

,

0‘---
.o

.-
,o

-n
-o

'-
.—

u,-

ooooo

...............

..............

.......

Figure 5.11. Ratio of average cluster radius to average distance between clusters

be defined as in (5.1):

:9

1+2

2

ratio = 1 : (5.1)

For the wiper motor analysis, the ratio was 1 : 3.378, and for the fuel pump motor

analysis, the ratio was 1 : 0.703. In any case, a higher ratio indicates more closely

spaced points and better separation between clusters.

The only parameters required by the algorithm were the modulus maxima of the

coefficients from the decomposition using the Biorthogonal 3.5 mother wavelet. For

the windshield wiper motors, data was only required from low speed dry windshield

testing and for the fuel pump motors, data was only used from testing at 250 kPa.

This was one-fourth the amount of data that was required for the if-then-else approach

from the second algorithm.

The application of a preliminary weight to each dimension prior to analysis was

experimented with to bring the magnitudes from each dimension closer together. This

extra mapping step, however, did not improve the performance of the classification

algorithm so this step was not kept in the final version of the algorithm.

41

[0.2615

[0.2291

[0.2453m
§
§
9
U
Q
w
>

II
II

11
II

II
II

II
II

'
3

M \
J

o
»
:

O

2

0.1562

0.0153

0.2386

0.3164

0.2530

0.2200

0.1556

0.1838

3

0.1648

0.0245

0.1600

0.2294

0.1856

0.1888

0.1913

0.1668

4

0.3548

0.0421

0.4569

0.4330

0.4299

0.3703

0.4550

0.4383

Level

5

0.3732

0.0873

0.3907

0.3438

0.4479

0.3612

0.3319

0.4144

6

0.1964

0.1437

0.1676

0.1638

0.1426

0.1514

0.1423

0.2028

7

0.3011

0.4117

0.1971

0.2007

0.2241

0.1590

0.3582

0.3309

8

0.4758

0.7108

0.2821

0.2381

0.3038

0.4520

0.2263

0.3532

9

0.3022

0.5421

0.2587

0.2861

0.3303

0.3956

0.2940

0.2959

10

0.4497]

0.0192]

0.5094]

0.4454]

0.4119]

0.4135]

0.5323]

0.3892]

Table 5.1. Initial \Veighting Coefficients for Wiper lV-"Iotor Testing

The addition of a second normalization step on the fault cluster centers after the

averaging step was also experimented with to maintain unit length. Results from

analysis, however, show that this technique did not improve overall performance of

the classification algorithm.

5.2.4 Linear Discriminant Functions

In Table 5.1, the initial weighting coefficients for the wiper motors from low speed

testing on a wet windshield are shown. These are the average values of the modulus

maxima from the DWT coefficients on all of the motors for each fault using the

Coiflet 30 mother wavelet. This mother wavelet was chosen because it required only

401 corrections, the least among all mother wavelets tested, to converge using the

training algorithm described in Section 3.2. The weighting coefficients after training

are shown in Table 5.2.

In Table 5.3, the initial weighting coefficients for the fuel pump motors tested at

310kPa are shown. These are the average values of the modulus maxima from the

DWT coefficients on all of the motors for each fault using the Biorthogonal 2.2 mother

wavelet. Using this mother wavelet, 1136 adjustments were required for the training

algorithm to converge. The weighting coefficients after training are shown in Table

5.4.

42

1

[0.1820

[0.0107

[0.2986

[0.3581

[

l

l

[

U
O
U
J
I
>

II
II

II
II

0.2679

0.2615

0.2274

0.25744
.
9
1
.
5
5
9
1

ll
ll

Table 5.2. Adjusted W'eighting Coefficients for Wiper Motor Testing

1

G:

H:

I

2

0.1539

0.0153

0.2019

0.3621

0.2500

0.2200

0.1538

0.1819

2

3

0.1777

0.0245

0.1352

0.2401

0.1755

0.1888

0.1906

0.1788

3

4

0.3450

0.0421

0.4930

0.4148

0.4186

0.3703

0.4518

0.4447

4

Level

5

0.3707

0.0873

0.4121

0.3170

0.4345

0.3612

0.3280

0.4397

6

0.2018

0.1437

0.1688

0.1663

0.1227

0.1514

0.1410

0.2149

Level

5 6

[0.0857 0.1507 0.2844 0.5170 0.2709 0.4351

[0.0838 0.1392 0.2506 0.3626 0.4191

[0.1040 0.1613 0.2870 0.5510 0.2925 0.4231

0.4194

7

0.2810

0.4117

0.2182

0.2008

0.2087

0.1590

0.3557

0.3477

7

8

0.4821

0.7108

0.2742

0.2771

0.2883

0.4520

0.2223

0.3354

8

9

0.3189

0.5421

0.2210

0.3053

0.3550

0.3956

0.2911

0.2759

9

0.4479 0.2162 0.2680

0.4484 0.3359 0.3157

0.4920 0.1214 0.1595

Table 5.3. Initial Weighting Coefficients for Fuel Pump Testing

1 2 3 4

Level

5 6 7 8 9

10

0.4556]

0.0192]

0.4989]

0.4352]

0.4674]

0.4135]

0.5260]

0.3546]

10

0.1997]

0.1191]

0.1741]

10

G=[0.0573 0.1369 0.2810 0.4857 0.3223 0.4388 0.4858 0.1902 0.2593 0.1682]

H = [0.0721 0.1280 0.2714 0.4445 0.3383 0.4282 0.3789 0.4050 0.3205 0.1227]

I=[0.1443 0.1863 0.2696 0.5003 0.3220 0.4107 0.5236 0.0784 0.1635 0.2020]

Table 5.4. Adjusted Weighting Coefficients for Fuel Pump Testing

43

For this algorithm, the same measure of quality used for the previous algorithm is

used. The ratio of the average cluster radius to the average distance between clusters

for the wiper motor analysis is 1 : 2.599 and the ratio for the fuel pump motor

analysis is 1 : 0.768. Using the previous algorithm without training on the same set

of coefficients, the ratios were 1 : 2.643 and 1 : 0.773 for the wiper motor analysis

and fuel pump analysis respectively. Although the training procedure can increase

the number of data points classified correctly, it is also shown to increase the average

cluster size.

The choice to use the mother wavelet requiring the fewest number of corrections

helps to assure that outliers do not exist in the data. In the case of the Coiflet 30

wiper motor coefficients from the low speed wet windshield testing in this section

(Tables 5.1 and 5.2), only slight adjustments were made causing the average cluster

radius to increase from 0.1531 to 0.1627 or 6.27% after 401 corrections. Cluster

radii are measured using the Euclidean metric (3.4). In the case of the Biorthogonal

2.2 fuel pump coefficients from the 310 kPa testing in this section (Tables 5.3 and

5.4), the average cluster radius increased from 0.3383 to 0.3726 or 10.14% after 1136

corrections. The adjustments made to the coefficients are reasonable and improved

the performance of the algorithm.

It can be shown by applying the same procedure to the weighting coefficients from

the work in Section 4.4 that the training algorithm does not provide a benefit in all

cases. In the case of the Biorthogonal 3.5 wiper motor coefficients from the low speed

dry windshield testing, considerable adjustments were required causing the average

cluster radius to increase from 0.0744 to 0.2751 or 269.76% after 7273 corrections.

In the case of the Biorthogonal 3.5 fuel pump coefficients, the average cluster radius

increased from 0.3743 to 0.6616 or 76.76% after 12172 corrections. Although the

test motors may still be classified correctly in this case, the validity of the clusters

should be questioned after such a significant adjustment from the initial weighting

44

coefficients. It is likely that at least one outlying data point is present.

45

CHAPTER 6

Conclusions

The objective of this work was to give a prognosis for the failure of DC motors used

in automotive applications and to achieve this goal using a wavelet-based approach.

This was accomplished by attempting to detect different faults that lead to a shorter

overall life of the motor. The ability to classify the faults into different categories was

another objective in this work, that was also met.

The results from this work can be applied to the development of a fault prognosis

system as well. In this type of system, the goal would be to not only detect the

presence of a fault and correctly classify it, but also determine the severity of it.

This could be achieved by having test motors with different degrees of severity of

each particular fault. The same techniques used in this work could then be applied,

however in terms of the work done for this thesis, faults with different degrees of

severity would be considered as separate faults altogether. Then the goal would

again be to correctly detect and classify all of the known faults, however many of the

faults we would be searching for would actually be different degrees of severity of a

smaller set of faults. In this manner, one could monitor the cumulative degradation

of a system.

For the prognosis of Fault X, this fault would be divided into three separate faults,

X1, X2 and X3. Fault X1 would be defined as a motor in the earliest detectable stages.

46

Motors with Fault X1 would not show much if any performance degradation compared

to motors considered to be free of faults. Fault X2 would be defined as a motor with

a moderate case of the fault. Motors with Fault X2 may show a slight decrease in

performance compared to motors considered to be free of faults. Fault X3 would be

defined as a motor in the final stages before failure having the fault. These motors

would have a severe degradation in performance compared to motors considered to

be free of faults and most likely a severe impact on the system they are interacting

with as well. In being able to properly detect and classify motors with Faults X1, X2

and X3, one would be able to give an accurate prognosis for Fault X.

Having this type of information about a variety of faults could be described as a

state of health prognosis. With prior knowledge of the typical longevity of motors

having each of the faults with different degrees of severity, an idea of the time to fail

for a motor can be given as well.

There are some issues that could be explored in the future related to this work.

One possibility for future work could be the implementation of a fault prognosis

system as described above, in a dedicated system, or a system dedicated to a different

task but with available time.

Further research in terms of clustering methodologies could be explored as well.

The application of a set of initial weights to each of the test motors may be useful

if it could be used to minimize the size of each fault cluster, while at the same time

maximize the distance between the vectors, or weighting coefficients, representing the

center of each fault cluster.

Research in the area of nonlinear discriminant functions could be explored in the

future as well. It is possible that performance in terms of the classification between

different types of faults could be improved, especially if work with faults having

varying degrees of severity is attempted.

Future work could be done in applying the techniques developed in this work to

47

a problem where a much greater number of test motors would be available. In this

type of problem, issues such as the existence and removal of outliers from the test

data as well as consequences arising from having a significantly greater number of

test vectors could be explored.

Finally, future work could be done to implement a system capable of detecting

and classifying faults in more than one motor connected to a node. With the additive

nature of the current, new issues regarding the detection and classification of faults

as well the additional step of determining which motor is responsible for a fault

would have to be researched. In this case, current would only be measured at the

node instead of at each motor individually, so the overall cost of hardware would be

reduced.

48

APPENDICES

49

APPENDIX A

MATLAB Tools

All computational analysis in this research was done using MATLAB. The Math-

Works’ Wavelet Toolbox [8] was used initially and custom MATLAB functions fol-

lowed for increased flexibility.

The main problem with the Wavelet Toolbox is that in performing a discrete

wavelet transform some form of signal extension is required. The options given are

zero padding, boundary value replication, first order smooth padding, smooth padding

of order zero, and periodic padding. This is to assure that the edges of the signal

being analyzed are not cut off in the downsampling operation. Unfortunately, this

also distorts the Discrete Wavelet Transform (DWT) coefficients at the edges of the

analysis. To avoid this problem, we developed a DWT algorithm that does not pad

the edges of the signal. Using this method, to prevent the loss of information at the

edges of the signal, care must be taken in selecting both the length of the signal as

well as the length of the mother wavelet to be used for analysis. Prior to the discovery

of this problem, the edge effects made it difficult to form conclusions from the DVVT

coefficients.

The DWT algorithm is based on the filter bank theory discussed in Section 2.4. A

series of convolutions with both lowpass and highpass filters are implemented to get

the scaling and wavelet coefficients for the next level of decomposition respectively

and a downsampling operation on each set of output coefficients follows.

A few examples of our MATLAB code are included. First, the detection algorithm

for the HVAC fan motors (fault5.m) is listed. This was written before we were aware

of the edge effect problems in the toolbox and could be revised to eliminate this

problem. Our wiper motor and fuel pump testing algorithms were created after we

resolved these issues. Second, our DWT algorithm (waveanalyze.m) is listed. This

algorithm performs all of the convolutions and downsampling necessary for the DWT

and does not rely on the wavelet toolbox except to get the filter coefficients. Third,

the DWT summary algorithm (wavesummarize.m) is listed. This function is used to

summarize the maximum of the absolute value of the DWT coefficients using various

mother wavelets at the first ten levels of decomposition. This is helpful in choosing

threshold values in fault analysis.

X Function: faults

Z Author: Wes Zanardelli

% Last Modified: 02/10/99

X

% Usage:

X fau1t5(y)

Z

Z y=origina1 signal

X

Z example: fault5(y)

function faultSCy)

y=y(:,3);

yflip=flipud(y);

y=[y;yflip];

[c1,11]=wavedec(y,9,’bior1.3’);

[c2,12]=wavedec(y,11,’bior1.3’);

d1=detcoef<c1,11,9);

d1=abs(d1(1:fix(1ength(d1)/2)));

d2=detcoef(c2,l2,11);

d2=d2(1:fix(1ength(d2)/2));

f1ag=0;

for n=1:1:1ength(d1),

if f1ag>0,

flag=flag-1;

end;

51

if(d1(n)>=2.75)

if((f1ag==0)&(1ength(d2)>=(fix(n/4)+2))&

(abs(d2(fix(n/4)+2)>=0)))

f1ag=5;

if(d2(fix(n/4)+2)>5)

fprintf(’\nThere is a +2 step discontinuity near

. %.2f seconds’,n*2.5/80);

else

fprintf(’\nThere is a +2 ramp discontinuity near

%.2f seconds’,n*2.5/80);

end;

end;

if((flag==0)&(length(d2)>=(fix(n/4)+3))&

(abs(d2(fix(n/4)+3)>=O)))

flag=5;

if(d2(fix(n/4)+3)>O)

fprintf(’\nThere is a +3 step discontinuity near

%.2f seconds’,n*2.5/80);

else

fprintf(’\nThere is a +3 ramp discontinuity near

%.2f seconds’,n*2.5/80);

end;

end;

if((flag==0)&(1ength(d2)>=(fix(n/4)+4))&

(abs(d2(fix(n/4)+4)>=O)))

f1ag=5;

. if(d2(fix(n/4)+4)>O)

fprintf(’\nThere is a +4 step discontinuity near

%.2f seconds’,n*2.5/80);

else

fprintf(’\nThere is a +4 ramp discontinuity near

%.2f seconds’,n*2.5/80);

end;

end;

if((flag==0)&(1ength(d2)>=(fix(n/4)+1))&

(abs(d2(fix(n/4)+1)>=O)))

flag=5;

if(d2(fix(n/4)+1)>3)

fprintf(’\nThere is a +1 step discontinuity near

%.2f seconds’,n*2.5/80);

else

fprintf(’\nThere is a +1 ramp discontinuity near

%.2f seconds’,n*2.5/80);

end;

end;

if((flag==0)&(n>=4)&(abs(d2(fix(n/4))>=O)))

f1ag=5;

if(d2(fix(n/4))>2)

52

fprintf(’\nThere is a 0 step discontinuity near

%.2f seconds’,n*2.5/80);

else

fprintf(’\nThere is a O ramp discontinuity near

%.2f seconds’,n*2.5/80);

end;

end;

if((f1ag==0)&(n>=8)&(abs(d2(fix(n/4)-1))>=O))

f1ag=5;

if(d2(fix(n/4)-1)>1)

fprintf(’\nThere is a -1 step discontinuity near

%.2f seconds’,n*2.5/80);

else

fprintf(’\nThere is a -1 ramp discontinuity near

%.2f seconds’,n*2.5/80);

end;

end;

if((f1ag==0)&(n>=12)&(abs(d2(fix(n/4)-2))>=O))

f1ag=5;

if(d2(fix(n/4)-2)>1)

fprintf(’\nThere is a -2 step discontinuity near

%.2f seconds’,n*2.5/80);

else

fprintf(’\nThere is a -2 ramp discontinuity near

%.2f seconds’,n*2.5/80);

end;

end;

if((flag==0)&(n>=16)&(abs(d2(fix(n/4)-3))>=O))

flag=5;

if(d2(fix(n/4)-3)>1)

fprintf(’\nThere is a -3 step discontinuity near

%.2f seconds’,n*2.5/80);

else .

fprintf(’\nThere is a -3 ramp discontinuity near

%.2f seconds’,n*2.5/80);

end;

end;

if((flag==0)&(n>=20)&(abs(d2(fix(n/4)-4))>=O))

f1ag=5;

if(d2(fix(n/4)-4)>1)

fprintf(’\nThere is a -4 step discontinuity near

%.2f seconds’,n*2.5/80);

else

fprintf(’\nThere is a -4 ramp discontinuity near

%.2f seconds’,n*2.5/80);

end;

end;

end;

53

end;

fprintf(’\nAnalysis is complete\n\n’);

Z Function: waveanalyze

Z Author: Wes Zanardelli

Z Last Modified: 10/05/99

Z

% Usage:

Z waveanalyze(y,’wavelet’,min,max,ymax,’identifier’)

Z

Z y=original signal

Z wavelet=predefined mother wavelet

% min=first displayed scale

Z max=last displayed scale

1 ymax=maximum y-axis value

Z identifier=identifier for motor being tested

Z

Z example: waveanalyze(y,’coif1’,1,10,20,’N1’)

function waveanalyze(y,wavelet,min,max,ymax,identifier) y=y(:,3)’;

subplot(max+2-min,2,1:2),plot(y); title(strcat(’Motor #’,identifier,’ -

Decomposition using the ”’,wave1et,”’ Mother Wavelet’));

[lo_d,hi_d]=wfilters(wavelet,’d’); for n=1:max,

Z Convolution computed without the zero-padded edges

d=conv2(y,hi_d,’valid’);

y=conv2(y,lo_d,’va1id’);

% Dyadic downsampling

d=d(2:2:length(d));

y=y(2:2:1ength(y));

if((n>=min)&(n<=max))

X Save desired levels of decomposition to base workspace

assignin(’base’,strcat(’d’,num2str(n)),d);

subplot(max+2-min,2,2*(max-n+2)-1),plot(d);

axis tight;

1im=ylim;

axis_max=ymax;

axis_min=-ymax;

data_max=lim(2);

data_min=1im(1);

if(data_max<axis_max)

axis_max=data_max;

end

if(data_min>axis_min)

axis_min=data_min;

end

ylim(’manual’);

ylim([axis_min axis_max]);

54

set(gca,’XTick’,[1 1ength(d)])

set(gca,’XTickLabel’,{’1’;num2str(length(d))})

title(strcat(’Details Coefficients at level ”’,

num28tr(n),””));

subplot(max+2-min,2,2*(max-n+2)),plot(y);

axis tight;

set(gca,’XTick’,[1 length(y)])

set(gca,’XTickLabel’,{’1’;num2str(length(y))})

title(strcat(’Reconstruction at level ”’,num2str(n),””));

end

end;

% Function: wavesummarize

Z Author: Wes Zanardelli

Z Last Modified: 10/18/99

%

X Usage:

Z wavesummarize(y,min_sca1e,max_scale,’identifier’)

Z

Z y=original signal

X min_sca1e=first displayed scale

% max_sca1e=last displayed scale

X identifier=identifier for motor being tested

2

Z example: wavesummarize(y,1,10,’Nl’)

function wavesummarize(y,min_scale,max_scale,identifier) wavelet=[{’db1’}

{’db4’} {’db7’} {’dblO’} {’bior2.2’} {’bior2.8’} {’bior3.5’} {’bior6.8’}

{’coifI’} {’coif3’} {’coif5’} {’sym2’} {’sym4’} {’sym6’} {’sym8’}];

summary=sprintf(’Motor #%s\nlevel\t’,identifier);

for n=1:max_scale,

if((n>=min_scale)&(n<max_scale))

summary=strcat(summary,sprintf(’Z-8d\t’,n));

elseif(n==max_scale)

summary=strcat(summary,sprintf(’Z-8d’,n));

end

end; for loop=1:length(wavelet)

sig=y(:,3)’;

summary=strcat(summary,sprintf(’\n%s\t’,char(wavelet(loop))));

[lo_d,hi_d]=wfilters(char(wavelet(loop)),’d’);

for n=1:max_scale,

Z Convolution computed without the zero-padded edges

d=conv2(sig,hi_d,’valid’);

sig=conv2(sig,lo_d,’valid’);

% Dyadic downsampling

d=d(2:2:1ength(d));

sig=sig(2:2:length(sig));

55

if((n>=min-scale)&(n<max_scale))

summary=strcat(summary,sprintf(’%.6f\t’,max(abs(d))));

elseif(n==max_scale)

summary=strcat(summary,sprintf(’%.6f’,max(abs(d))));

end

end;

end;

sprintf(’%s’,summary)

56

APPENDIX B

RT-Linux System

As a basic platform for data acquisition and control for the experiment, Real-Time Linux

[3] was used with a Pentium II 400MHz PC. The system was connected to a 4 channel 12-bit

A/D data acquisition system and a single channel 8-bit D/A analog output system through

the parallel port on the motherboard as well as two additional parallel ports connected via

the ISA bus. We used the A/D system to measure voltages and currents in each experiment

and additionally torque and speed for the wiper motor experiment. The D/A system was

used to give a torque command to the brushless DC drive which controls the load used in

the wiper motor experiment.

We chose RT-Linux as opposed to a DSP system for several reasons. RT-Linux is an

excellent development platform just as standard Linux is. Compilers, debugging tools and

editors all come standard with most Linux distributions. When writing real-time software,

the C language is used and all of the C libraries including those which add additional math

functionality are available. RT-Linux is an excellent environment to prototype a system.

Parameters and equations governing the system being deve10ped can be changed and tested

very quickly.

The difference between standard Linux and RT-Linux is that RT-Linux has a real-time

operating system running underneath the standard Linux kernel. First, a standard Linux

distribution is installed. Debian 2.2 was used for this work. Then the RT-Linux patch was

applied to a fresh kernel source and finally the kernel was recompiled. Linux then became

57

a task in the real-time part of the Operating system that runs when there is no real—time

task waiting to use the processor. RT-Linux is a hard real-time operating system. In a hard

real-time operating system, all deadlines are guaranteed. It is not acceptable for interrupts

to be missed or data to be lost as it would be in a soft real-time Operating system. Linux is

pre—empted whenever a real-time task requires use of the processor. RT-Linux provides the

ability for either software timers or external hardware devices to trigger interrupts in the

system which can then force interrupt service routines to run. The A/D data acquisition

system used in this work is triggered by software timers. Software timers were found to

have superior periodicity compared with the use of the hardware interrupt on the parallel

port from the A/D data acquisition system.

RT-Linux also provides the ability for real-time tasks to communicate with standard user

tasks via either first-in first-out buffers known as FIFOs or shared memory which can be

accessed through the POSIX mmap calls. This allows data acquisition, control calculations,

and the issuing of output commands to be performed in real-time andless critical tasks such

as writing data to disk to be performed in a user process. This ability makes the system

more flexible and allows it to handle more complex tasks. Included is the software used in

the wiper motor analysis. The first file (sched.c) is the real-time part of the system, which

handles data acquisition, controls the brushless DC load and processes data to be sent to

the user process. The second file (user.c) is the user process, which takes the data from the

real-time process and archives it on the hard disk. This is necessary so that the data can

be analyzed later in MATLAB.

//

// Wes Zanardelli

// Machines Lab

// Michigan State University

// Last Modified: 07/07/2000

//

// sched.c

//

#include <rt1.h>

#include <rtl_sched.h>

58

#include <pthread.h>

#include <rt1_fifo.h>

#include <asm/io.h>

#include <math.h>

#define LPT 0x378

#define LPTS LPT+1

#define LPTC LPT+2

#define LPT2 0x278

#define LPT2S LPT2+1

#define LPT2C LPT2+2

#define LPT3 0x268

#define LPT3S LPT3+1

#define LPT3C LPT3+2

#define LPT4 0x280

#define LPT4S LPT4+1

#define LPT4C LPT4+2

pthread_t thread;

int voltage_msb,voltage_lsb,current_msb,current_lsb;

int torque_msb,torque_lsb,velocity_msb,velocity_lsb;

int voltage_d,current_d,torque_d,velocity_d,brushless_d;

int control,control_default,i;

double seconds,voltage_a,current_a,torque_a,velocity_a,brushless_a=0;

double pi=3.14159265359;

hrtime_t zero_ticks,ticks;

void * sched_task(void *arg)

{

// Begin infinite loop

whilefl)

{

// Return control to the Linux kernel

pthread_wait_np();

// After software interrupt we begin here

control=control|0x01; // Pulse RD

outb(control,LPTC); // Pulse RD

voltage_msb=inb(LPT); // Read 8-bit MSB voltage from LPT

voltage_lsb=inb(LPT2); // Read 8-bit LSB voltage from LPT2

control=control&OxFE; // Un-Pulse RD

outb(control,LPTC); // Un-Pulse RD

control=control|0x01; // Pulse RD

outb(control,LPTC); // Pulse RD

current_msb=inb(LPT); // Read 8-bit MSB current from LPT

current_lsb=inb(LPT2); // Read 8-bit LSB current from LPT2

59

control=control&OxFE;

outb(control,LPTC);

control=control|0x01;

outb(control,LPTC);

torque_msb=inb(LPT);

torque_lsb=inb(LPT2);

control=control&OxFE;

outb(control,LPTC);

control=control|0x01;

outb(control,LPTC);

velocity_msb=inb(LPT);

velocity_lsb=inb(LPT2);

control=control&OxFE;

outb(control,LPTC);

control=control|0x02;

outb(control,LPTC);

control=control&OxFD;

outb(control,LPTC);

ticks=gethrtime()-zero-ticks;

// Un-Pulse RD

// Un-Pulse RD

// Pulse RD

// Pulse RD

// Read 8-bit MSB torque from LPT

// Read 8-bit LSB torque from LPT2

// Un-Pulse RD

// Un-Pulse RD

// Pulse RD

// Pulse RD

// Read 8-bit MSB velocity from LPT

// Read 8-bit LSB velocity from LPT2

// Un-Pulse RD

// Un-Pulse RD

// Enable CONVST

// Enable CONVST

// Disable CONVST

// Disable CONVST

// Get time in ticks

seconds=(double)ticks/NSECS_PER_SEC; // Convert ticks to seconds

// Multiply MSB by 16 and add on the least sig. 4 bits of the LSB value

voltage_d=(16*voltage-msb)+(voltage_lsb&OxOF);

if ((voltage_d&0x800)==0x800)

voltage_d=-(voltage_d‘OxFFF)-1;

// Multiply MSB by 16 and add on the least sig. 4 bits of the LSB value

current_d=(16*current_msb)+(current_lsb&0x0F);

if ((current_d&0x800)==0x800)

current_d=-(current_d“0xFFF)-1;

// Multiply MSB by 16 and add on the least sig. 4 bits of the LS8 value

torque_d=(16*torque_msb)+(torque_lsb&0x0F);

if ((torque_d&0x800)==0x800)

torque_d=-(torque_d‘0xFFF)-1;

// Multiply MSB by 16 and add on the least sig. 4 bits of the LSB value

velocity_d=(16*velocity_msb)+(velocity-lsb&0x0F);

if ((velocity_d&0x800)==0x800)

velocity_d=-(velocity_d“0xPFF)-1;

// voltage_a=(double)voltage_d;

// current_a=(double)current_d;

// torque_a=(double)torque_d;

60

// velocity_a=(double)velocity_d;

voltage_a=((double)voltage_d+3.443)*0.00842434551611; // volts

current_a=(((double)current_d+8.3511)*0.0375600961539)/3; // amps

torque_a=((double)torque_d+0.0285)*0.099609375; // lb-in

velocity_a=((double)velocity_d+0.1570)*0.09765625; // RPM

// Analog commands for the brushless motor

// brushless_a=80*sin(2*pi*0.5*seconds);

// CHANGE TO HIGH SPEED OPERATION

// High Speed - Dry Windshield

brushless_a=48.376449+7.823853*sin(pi*seconds/0.713)-22.788756*

cos(2*pi*seconds/0.713)-2.470633*sin(2*pi*seconds/

O.713)+4.994901*sin(3*pi*seconds/O.713)-9.392711*

cos(4*pi*seconds/0.713)+4.092408+sin(5*pi*seconds/

O.713)-3.955176+cos(6*pitseconds/0.713)+2.717524t

sin(7*pi*seconds/0.713)-1.946637tcos(8*pitseconds/

0.713)-1.515678tsin(8*pi*seconds/0.713)-1.753906*

cos(9*pi*seconds/0.713)+2.351623tsin(9*pi*seconds/

O.713)-1.504302*sin(10*pi*seconds/O.713)-3.365590*

cos(11*pitseconds/O.713)+1.721990*sin(11*pitseconds/

0.713)-3.939613tcos(13*pitseconds/0.713)-1.826908*

cos(15*pi*seconds/O.713)-5.012247*sin(15*pitseconds/

O.713)-3.032478*cos(16*pi*seconds/0.713)+2.074728*

sin(16*pi*seconds/0.713)+4.785437tcos(17*pi*seconds/

0.713)-2.219884+sin(17*pi*seconds/0.713)-4.452630*

sin(18*pi*seconds/O.713)+1.817154+cos(19*pi*seconds/

0.713)+1.638729*sin(19*pi*secondS/O.713)+3.874182*

cos(20*pi*seconds/0.713)+1.902562tsin(22*pitseconds/

0.713);

// High Speed - Wet Windshield

// brushless_a=16.981963-5.298248tcos(pi*seconds/0.974)+4.940973*

sin(pi*seconds/O.974)-17.836616*cos(2*pitseconds/

0.974)+2.201684tsin(2*pi*seconds/O.974)+2.398844t

cos(3*pi*seconds/O.974)+3.286658+sin(3*pi*seconds/

0.974)-7.759975tcos(4*pi*secondS/O.974)-1.159234*

sin(4*pi*seconds/0.974)+2.497423*sin(5*pi*seconds/

0.974)-4.026412tcos(6*pi*seconds/0.974)-2.036235*

sin(6*pi*seconds/O.974)-1.407880¥cos(7*pi*seconds/

O.974)+0.857107*sin(7*pi*seconds/O.974)-1.079281*

cos(8*pi*seconds/0.974)-2.581217+sin(8*pi*seconds/

0.974)-0.733904*sin(9*pitseconds/0.974)+1.371537*

cos(10*pi*seconds/O.974)+1.075152tcos(11*pitseconds/

0.974)+2.111872*sin(11*pi*seconds/0.974)+1.732163*

sin(12*pi*seconds/0.974)-3.742143*cos(13*pi*seconds/

61

0.974)-1.345360*sin(13*pi*seconds/0.974)-2.068130*

sin(14*pi*seconds/0.974)-0.799167¥cos(15*pi*seconds/

0.974)+1.181509*sin(15*pi*seconds/O.974)-0.934461*

sin(17*pi*seconds/O.974)+0.859892+sin<18*pi*seconds/

0.974);

// CHANGE TO LOW SPEED OPERATION

// Low Speed - Dry Windshield

// brushless_a=38.170087-0.796044*cos(pi*seconds/1.663)+1.980773*

sin(pi*seconds/1.663)-25.513824*cos(2*pi*seconds/

1.663)-0.929707*c08(3*pi*seconds/1.663)-2.256987*

sin(3*pi*seconds/1.663)-9.811351*cos(4*pi*seconds/

1.663)+1.120521*cos(5*pi*seconds/1.663)-0.839671*

sin(5*pi*seconds/1.663)-3.700725*cos(6*pi*seconds/

1.663)-1.362421*cos(8*pitseconds/1.663)-0.744313*

cos(10*pi*seconds/1.663)-0.920556*cos(12*pi*seconds/

1.663)-1.793031*cos(14*pi*secondS/1.663)-1.619333*

cos(16*pi*seconds/1.663)-1.085740*sin(16*pi*seconds/

1.663)+1.183431tcos(17*pi*seconds/1.663)-1.347943*

cos(18*pi*seconds/1.663)-1.298173*cos(19*pi*seconds/

1.663)+1.618273*cos(20*pi*seconds/1.663)-3.978682*

sin(20*pi*seconds/1.663)+2.600308*cos(21*pitseconds/

1.663)+1.859519*sin(21*pi*seconds/1.663)+0.861204*

cos(22*pi*seconds/1.663)+2.709995*sin(22*pi*seconds/

1.663)-3.125911*cos(23*pi*seconds/1.663)+0.840724*

cos(25*pi*seconds/1.663)-1.556771tsin(25*pi*seconds/

1.663);

// Low Speed - Wet Windshield

// brushless_a=13.677002-4.872948*cos(pi*seconds/1.389)+5.399117*

sin(pi*seconds/1.389)-15.155698*cos(2*pi*seconds/

1.389)+1.969676*sin(2*pi*seconds/1.389)+3.196256*

cos(3*pi*seconds/1.389)+1.514894*sin(3*pi*seconds/

1.389)-4.969694*cos(4*pi*seconds/1.389)+0.705146*

cos(5*pi*seconds/1.389)+0.858481*sin(5*pi*seconds/

1.389)-2.259268*cos(6*pi*seconds/1.389)-0.653241*

sin(6*pi*seconds/1.389)-0.983701tcos(8*pi*seconds/

1.389)-1.296708*sin(8*pi*seconds/1.389)+0.447498*

cos(10*pi*seconds/1.389)-1.632106+sin(10*pi*seconds/

1.389)+2.115891*Cos(12*pi*seconds/1.389)+O.464924*

sin(13*pi*seconds/1.389)+2.835643*sin(14*pitseconds/

1.389)-1.011456*cos(15*pi*seconds/1.389)-2.305862*

cos(16*pi*seconds/1.389)-0.820942+sin<16*pitseconds/

1.389)+0.551730*cos(18*pi*seconds/1.389)-1.177618*

sin(18*pi*seconds/1.389)-0.519896tcos(19*pi*seconds/

1.389)+0.964000*sin(20*pi*secondS/1.389)-0.596129*

cos(23*pi*seconds/1.389)+0.523948*cos(24*pi*seconds/

62

}

}

1.389);

// Quantize Analog Torque Command for 8-Bit D/A

brushless_d=(int)(brushless_a*127/80)+128;

// Send analog command to brushless

outb(brushless_d,LPT3);

// Push seconds into fifo

rtf_put(0,&seconds,sizeof(double));

// Push analog voltage into fifo

rtf_put(1,&voltage_a,sizeof(double));

// Push analog current into fifo

rtf_put(2,¤t_a,sizeof(double));

// Push analog torque into fifo

rtf_put(3,&torque_a,sizeof(double));

// Push analog velocity into fifo

rtf_put(4,&velocity_a,sizeof(double));

// Push torque command into fifo

rtf_put(5,&brushless_a,sizeof(double));

return 0;

int init_module(void)

{

// Initialize thread

struct sched_param p;

rtf_create(0,16*sizeof(doub1e)); // Create fifos

rtf_create(1,16*sizeof(double));

rtf_create(2,16*sizeof(double));

rtf_create(3,16*sizeof(double));

rtf_create(4,16*sizeof(double));

rtf_create(5,16*sizeof(double));

control=control_default=inb(LPTC);

control=control|0x20;

outb(control,LPTC);

outb(inb(LPT2C)l0x20,LPT2C);

control=control&OxF0;

outb(control,LPTC);

control=control|0x02;

outb(control,LPTC);

control=control&0xFD;

63

// Store initial values

//

//

//

//

//

//

//

//

Enable input direction on LPT

Enable input direction on LPT

Enable input direction on LPT2

Clear control bits

Clear control bits

Enable CONVST

Enable CONVST

Disable CONVST

outb(control,LPTC); // Disable CONVST

pthread_create(&thread,NULL,sched_task,0);

pthread_make_periodic_np(thread,gethrtime()+0.1*NSECS_PER_SEC,80000);

pthread_setfp_np(thread,1);

p.sched_priority=1;

pthread_setschedparam(thread,SCHED_FIFO,&p);

zero_ticks=gethrtime();

return 0;

void cleanup_module(void)

{

pthread_delete_np(thread);

rtf_destroy(5);

rtf_destroy(4);

rtf_destroy(3);

rtf_destroy(2);

rtf_destroy(1);

rtf_destroy(0);

outb(control_default,LPTC);

//

// Wes Zanardelli

// Machines Lab

// Michigan State University

// Last Modified: 07/07/2000

//

// user.c

//

#define NUM_SAMPLES 32785

#define BASE_ADDRESS (127 * 0x100000)

#include

#include

#include

#include

#include

#include

<stdio.h>

<sys/resource.h>

<fcntl.h>

<unistd.h>

<rtl_fifo.h>

<rt1_time.h>

int main(void)

64

// Get initial time in ticks

// Destroy fifos

// Replace initial values

int rt_

int rt_

int 1;

double

double

double

double

double

double

to_user_0,rt_to_user_1,rt_to_user_2;

to_user_3,rt_to_user_4,rt_to_user_5;

stor_seconds[NUM_SAMPLES];

stor_voltage[NUM_SAMPLES];

stor-current[NUM_SAMPLES];

stor_torque[NUM_SAMPLES];

stor_velocity[NUM_SAMPLES];

stor_brush1ess[NUM_SAMPLES];

FILE *fp;

char datafi1e_name[20];

double seconds,voltage_a,current_a,torque_a,velocity_a,brush1ess_a;

setpriority(PRIO_PROCESS,0,-20); // Increase priority

// Open fifo

if ((rt_to_user_O = open("/dev/rtf0", O_RDONLY)) < 0)

{

fprintf(stderr, ”Error opening /dev/rtf0\n");

exit(1);

}

// Open fifo

if ((rt_to_user_1

{

Open("/dev/rtf1", O_RDONLY)) < 0)

fprintf(stderr, "Error Opening /dev/rtf1\n");

exit(1);

}

// Open fifo

if ((rt_to_user-2 - open("/dev/rtf2", O_RDONLY)) < 0)

{

fprintf(stderr, "Error Opening /dev/rtf2\n”);

exit(1);

}

// Open fifo

if ((rt_to_user_3 = open("/dev/rtf3", O_RDONLY)) < 0)

{

fprintf(stderr, "Error opening /dev/rtf3\n");

exit(1);

}

// Open fifo

if ((rt_to_user_4

{

open("/dev/rtf4", O_RDONLY)) < 0)

fprintf(stderr, "Error opening /dev/rtf4\n");

exit(1);

}

// Open fifo

if ((rt_to_user_5 = open("/dev/rtf5", O_RDONLY)) < 0)

{

fprintf(stderr, "Error opening /dev/rtf5\n");

exit(1);

}

for (i=0; i<NUM_SAMPLES ; i++)

{ .

// Read seconds from fifo

while(read(rt_to_user_0,&seconds,sizeof(double))==0);

// Store seconds in vector

stor_seconds[i]=seconds;

// Read voltage from fifo

read(rt_to_user_1,&voltage_a,sizeof(double));

// Store analog voltage in vector

stor_voltage[i]=voltage_a;

// Read current from fifo

read(rt_to_user_2,¤t_a,sizeof(double));

// Store analog current in vector

stor_current[i]=current_a;

// Read torque from fifo

read(rt_to_user_3,&torque_a,sizeof(double));

// Store analog torque in vector

stor_torquefi]=torque_a;

// Read velocity from fifo

read(rt_to_user_4,&velocity_a,sizeof(double));

// Store analog velocity in vector

stor_velocityfi]=velocity_a;

// Read torque command from fifo

read(rt_to_user_5,&brushless_a,sizeof(double));

// Store torque command in vector

stor_brushless[i]=brushless_a;

}

close(rt_to_user_5); // Close fifo

close(rt_to_user_4); // Close fifo

close(rt_to_user_3); // Close fifo

close(rt_to_user_2); // Close fifo

close(rt_to_user_l); // Close fifo

close(rt_to_user_O); // Close fifo

// Get name for datafile

printf("Enter the name for the datafile: ");

scanf(”%s",datafile_name);

66

while (fopen(datafile_name,"r")!=NULL)

{

printf("Already Exists! Enter a new name for the datafile: ");

scanf(”%s",datafile_name);

}

fp=fopen(datafi1e_name,"w"); // Open datafile

// Write seconds, V, I, torque, velocity and torque command to file

for (i=17;i<NUM_SAMPLES;i++)

{

seconds=stor_seconds[i];

voltage_a=stor_voltage[i];

current_a=stor_current[i];

torque_a=stor_torque[i];

velocity_a=stor_velocity[i];

brushless_a=stor_brushless[i];

fprintf(fp,"%f\t%f\t%f\t%f\t%f\t%f\n",seconds,voltage_a,current_a,

torque_a,velocity_a,brushless_a);

fclose(fp); // Close datafile

return 0;

}

67

APPENDIX C

DWT Filter Coefficients

For the DWT scaling and wavelet function coefficients to be realized using filter banks, both

the decomposition lowpass filter coefficients, h0(n), and the decomposition highpass filter

coefficients, h1(n), must be defined.

The scaling function coefficients at the scale j are defined as the convolution of h0(n)

with the scaling function coefficients at the scale j+1 (2.23). Similarly, the wavelet function

coefficients at the scale 3' are defined as the convolution of h1(n) with the scaling function

coefficients at the scale 3' + 1 (2.24).

Tables C.1—C.4 list the decomposition filter coefficients, h0(n) and (11(71), corresponding

to each mother wavelet used in this thesis from the Daubechies, Biorthogonal, Coiflet and

Symlet families respectively.

68

[10(71) 2 [

01(0) =

h0(7l) 2

Table C.1. Daubechies wavelet decomposition filter coefficients

0.0004

0.2240

-0.0779

0.0380

-0.0000

0.0332

0.6885

—0.0267

-0.0931

0.0007

-0.0106 0.0329 0.0308

—0.2304 0.7148

dbl

110(77):] 0.7071 0.7071]

hl(n.)=[-0.7071 0.7071]

db4

-0.1870 -0.0280 0.6309 0.7148 0.2304]

—0.6309 -0.0280 0.1870 0.0308 -0.0329 -0.0106]

db7

-0.0018 0.0004 0.0126 -0.0166 -0.0380 0.0806 0.0713

-0.I439 0.4698 0.7291 0.3965 0.0779

0.3965 -0.7291 0.4698 0.1439 -0.2240 -0.0713 0.0806

-0.0166 -0.0126 0.0004 0.0018 0.0004]

db10

0.0001 -0.0001 -0.0007 0.0020 0.0014 -0.0107 0.0036

-0.0295 -0.0714 0.0931 0.1274 -0.1959 -0.2498 0.2812

0.5272 0.1882 0.0267]

0.1882 -0.5272 0.6885 -0.2812 -0.2498 0.1959 0.1274

-0.0714 0.0295 0.0332 -0.0036 -0.0107 —0.0014 0.0020

00001 -00001 00000]

69

—0.0138

-0.2679

0

0

-0.1768

0.3536

0.0015

0.9516

0.0015

0.3536

0.0414

0.0525

0

0

0.0019

0.8259

0.0019

0

0.4178

0

0.3536

-0.7071

—0.0030

0.4626

0.0525

0.0414

0

0

-00019

0.4208

1

0

0.0404

bior2.2

1.0607

0.3536

bior2.8

-0.0129

-0.1638

bior3.5

-0.2679

-0.0138

0

0

bior6.8

-0.0170

-0.0941

0.0144

-0.0787

0.3536

0

-0.1768

0

0.0289 0.0530

~0.1349 0.0530 0.0289

0

0

-0.0718

l

01768

1

0.0119

-0.0773

-0.0145

-0.0145

0

0

0.9667

0.5303

0.0497

0.0497

-0.0787

0.0144

l

l

-0. 1349

0

0

0.9667

-0.5303

-0.0773

0.0119

0.0404

0

-0.1638

-0.0129

0.3536

0

-0.0718

0.1768

-0.0941

-0.0170

0.4178

0

Table C.2. Biorthogonal wavelet decomposition filter coefficients

70

h0(n) : [

h1(n) = [

h0(") = l

(11(0) = l

h0(")

h] (71) I

00157 -00727

0.0727 0.3379

0.0000 0.0001 0.0005

-0.0823 -0.0718 0.4285

0.0078 -0.0038]

0.0038 0.0078 0.0235

0.0718 -0.0823 -0.0346

0.0001 —0.0000]

-00000 -00000 0.0000

-0.0006 -0.0017 0.0024

-0.1056 -0.0620 0.4380

0.0234 00101 -00042

0.0002 0.0004 0.0022

0.0520 0.4216 0.7743

0.0198 .0.0092 -0.0068

0.0000 .0.0000 -0.0000

coifl

coif3

0.0011

0.7938

-0.0658

0.0159

coif5

0.0000

0.0068

0.7743

0.0022

-0.0042

0.4380

0.0024

0.0000

71

0.3849 0.8526 0.3379

-0.8526 0.3849 0.0727

-0.0026

0.4052

0.0611

0.0090

-0.0000

-0.0092

0.4216

0.0004

0.0101

0.0620

0.0017

0.0000

-0.0727

-0.0157

-0.0090

—0.0611

0.4052

—0.0026

-0.0000

-0.0198

—0.0520

-0.0002

0.0234

-0. 1056

-0.0006

-0.0000

1

1

0.0159

-0.0658

-0.7938

-0.0011

0.0001

0.0327

-0.0919

-0.0282

-0.0413

-0.0003

Table C.3. Coifiet wavelet decomposition filter coefficients

0.0346

0.0235

0.4285

0.0005

0.0003

0.0413

0.0282

-0.0919

0.0327

0.0001

h.0(n)=[-0.1294 0.2241 0.8365 0.4830]

11.1(1z)=[-0.4830 0.8365 -0.2241 -0.1294]

sym4

h0(n)=[-0.0758 -0.0296 0.4976 0.8037 0.2979 -0.0992

h1(n)=[-0.0322 -0.0126 0.0992 0.2979 -0.8037 0.4976

sym6

ho(n)=[0.0154 0.0035 -0.1180 -0.0483 0.4911

-0.0211 0.0447 0.0018 -0.0078

h1(71)=[0.0078 0.0018 -0.0447 -0.0211 0.0726 0.3379

0.0483 -0.1180 -0.0035 0.0154]

sym8

ho(n)=[-0.0034 -0.0005 0.0317 0.0076 -0.1433 -0.0613

0.3644 -0.0519 -0.0272 0.0491 0.0038 -0.0150

h1(n)=[-0.0019 -0.0003 0.0150 0.0038 -0.0491 -0.0272

-0.7772 0.4814 0.0613 -0.1433 -0.0076 0.0317

Table C.4. Symlet wavelet decomposition filter coefficients

sym2

72

0.0296

0.7876 0.3379

-0.0126 0.0322]

-0.0758]

-0.0726

-0.7876 0.4911

0.4814

-0.0003

0.0519

0.0005

0.7772

0.0019

0.3644

-0.0034

BIBLIOGRAPHY

73

[ll

[2]

l3]

l4]

[5]

[6]

[7]

[9]

BIBLIOGRAPHY

M. Akay. Wavelet applications in medicine. IEEE Spectrum, pages 50—56, May 1997.

A. Ambardar. Analog and Digital Signal Processing. PWS Publishing Company, 1995.

M. Barabanov. A linux-based real-time Operating system. Master’s thesis, New Mexico

Institute of Mining and Technology, 1997.

C. S. Burrus, R. A. Gopinath, and H. Guo. Introduction to Wavelets and Wavelet

Transforms 0 Primer. Prentice Hall, 1998.

T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Transactions

on Information Theory, IT-13(1):21—27, 1967.

J. H. Friedman, F. Baskett, and L. J. Shustek. An algorithm for finding nearest neigh-

bors. IEEE Transactions on Computers, pages 1000-1006, October 1975.

S. Mallat and W. L. Hwang. Singularity detection and processing with wavelets. IEEE

Transactions on Information Theory, 38:617—643, 1992.

M. Misiti, Y. Misiti, G. Oppenheim, and J. M. Poggi. Wavelet Toolbox for Use with

MATLAB. The MathWorks, Inc., 1997.

T. Y. Young and T. W. Calvert. Classification, Estimation and Pattern Recognition.

American Elsevier Publishing CO., Inc., 1974.

74

